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Preface

The need to protect valuable information is as old
as history. As far back as Roman times, Julius
Caesar saw the need to encrypt messages by
means of cryptographic tools. Even before then,
people tried to hide their messages by making
them “invisible.” These hiding techniques, in an
interesting twist of history, have resurfaced quite
recently in the context of digital rights manage-
ment. To control access or usage of digital contents
like audio, video, or software, information is se-
cretly embedded in the data!

Cryptology has developed over the centuries
from an art, in which only few were skillful, into a
science. Many people regard the “Communication
Theory and Secrecy Systems” paper, by Claude
Shannon in 1949, as the foundation of modern
cryptology. However, at that time, cryptographic
research was mostly restricted to government
agencies and the military. That situation gradu-
ally changed with the expanding telecommunica-
tion industry. Communication systems that were
completely controlled by computers demanded
new techniques to protect the information flowing
through the network.

In 1976, the paper “New Directions in Cryptog-
raphy,” by Whitfield Diffie and Martin Hellman,
caused a shock in the academic community. This
seminal paper showed that people who are com-
municating with each other over an insecure line
can do so in a secure way with no need for a
common secret key. In Shannon’s world of secret
key cryptography this was impossible, but in fact
there was another cryptologic world of public-key
cryptography, which turned out to have exciting
applications in the real world. The 1976 paper
and the subsequent paper on the RSA cryptosys-
tem in 1978 also showed something else: math-
ematicians and computer scientists had found
an extremely interesting new area of research,
which was fueled by the ever-increasing social and
scientific need for the tools that they were de-
veloping. From the notion of public-key cryptog-
raphy, information security was born as a new

xi

discipline and it now affects almost every aspect
of life.

As a consequence, information security, and
even cryptology, is no longer the exclusive domain
of research laboratories and the academic com-
munity. It first moved to specialized consultancy
firms, and from there on to the many places in the
world that deal with sensitive or valuable data;
for example the financial world, the health care
sector, public institutions, nongovernmental agen-
cies, human rights groups, and the entertainment
industry.

A rich stream of papers and many good books
have been written on information security, but
most of them assume a scholared reader who has
the time to start at the beginning and work his
way through the entire text. The time has come to
make important notions of cryptography accessi-
ble to readers who have an interest in a particu-
lar keyword related to computer security or cryp-
tology, but who lack the time to study one of the
many books on computer and information security
or cryptology. At the end of 2001, the idea to write
an easily accessible encyclopedia on cryptography
and information security was proposed. The goal
was to make it possible to become familiar with
a particular notion, but with minimal effort. Now,
4 years later, the project is finished, thanks to the
help of many contributors, people who are all very
busy in their professional life. On behalf of the
Advisory Board, I would like to thank each of those
contributors for their work. I would also like to ac-
knowledge the feedback and help given by Mihir
Bellare, Ran Canetti, Oded Goldreich, Bill Heelan,
Carl Pomerance, and Samuel S. Wagstaff, Jr. A
person who was truly instrumental for the suc-
cess of this project is Jennifer Evans at Springer
Verlag. Her ideas and constant support are greatly
appreciated. Great help has been given locally by
Anita Klooster and Wil Kortsmit. Thank you very
much, all of you.

Henk van Tilborg
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A5/1

A5/1 is the symmetric cipher used for encrypt-
ing over-the-air transmissions in the GSM stan-
dard. A5/1 is used in most European countries,
whereas a weaker cipher, called A5/2, is used
in other countries (a description of A5/2 and an
attack can be found in [4]). The description of
A5/1 was first kept secret but its design was re-
versed engineered in 1999 by Briceno, Golberg,
and Wagner. A5/1 is a synchronous stream cipher
based on linear feedback shift registers (LFSRs).
It has a 64-bit secret key.

A GSM conversation is transmitted as a se-
quence of 228-bit frames (114 bits in each direc-
tion) every 4.6 millisecond. Each frame is xored
with a 228-bit sequence produced by the A5/1
running-key generator. The initial state of this
generator depends on the 64-bit secret key, K,
which is fixed during the conversation, and on a
22-bit public frame number, F.

The A5/1 running-key generator (see Figure 2)
consists of three LFSRs of lengths 19, 22, and 23.
Their characteristic polynomials are X' + X° +
X24+X+1, X24+X+1, and XB+ X% 4 X2+
X+ 1. For each frame transmission, the three
LFSRs are first initialized (see Figure 1) to zero.
Then, attime¢ =1, ..., 64,the LFSRs are clocked,
and the key bit K; is xored to the feedback bit
of each LFSR. For t+ =65, ..., 86, the LFSRs are
clocked in the same fashion, but the (¢ — 64)th bit
of the frame number is now xored to the feedback
bits.

After these 86 cycles, the generator runs as fol-
lows. Each LFSR has a clocking tap: tap 8 for the
first LFSR, tap 10 for the second and the third
ones (where the feedback tap corresponds to tap 0).
At each unit of time, the majority value b of the

three clocking bits is computed. A LFSR is clocked
if and only if its clocking bit is equal to 4. For
instance, if the three clocking bits are equal to
(1, 0, 0), the majority value is 0. The second and
third LFSRs are clocked, but not the first one. The
output of the generator is then given by the xor of
the outputs of the three LFSRs. After the 86 ini-
tialization cycles, 328 bits are generated with the
previously described irregular clocking. The first
100 ones are discarded and the following 228 bits
form the running-key.

Several time-memory trade-off attacks have
been proposed on A5/1 [1, 2]. They require the
knowledge of a few seconds of conversation plain-
text and run very fast. But, they need a huge
precomputation time and memory. Another attack
due to Ekdahl and Johansson [3] exploits some
weaknesses of the key initialization procedure. It
requires a few minutes using 2—5 minutes of con-
versation plaintext without any notable precom-
putation and storage capacity.

Anne Canteaut
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ABA DIGITAL SIGNATURE
GUIDELINES

The American Bar Association provided a very
elaborate, thorough, and detailed guideline on all
the legal aspects of digital signature schemes and
a Public Key Infrastructure (PKI) solution such as
X.509 at a time when PKI was still quite novel
(1996). The stated purpose was to establish a
safe harbor—a secure, computer-based signature
equivalent—which will
1. minimize the incidence of electronic forgeries,
2. enable and foster the reliable authentication of
documents in computer form,
3. facilitate commerce by means of computerized
communications, and
4. give legal effect to the general import of the
technical standards for authentication of com-
puterized messages.
This laid the foundation for so-called Certificate
Policy Statements (CPS) issued by Certification
Authorities (CA), the purpose of which is to re-
strict the liability of the CA. It is fair to state that
often these CPS are quite incomprehensible to or-
dinary users.

Peter Landrock

ACCESS CONTROL

Access control (also called protection or authoriza-
tion) is a security function that protects shared
resources against unauthorized accesses. The
distinction between authorized and unauthorized

accesses is made according to an access control pol-
icy. The resources which are protected by access
control are usually referred to as objects, whereas
the entities whose accesses are regulated are
called subjects. A subject is an active system entity
running on behalf of a human user, typically a pro-
cess. It is not to be confused with the actual user.

Access control is employed to enforce security
requirements such as confidentiality and integrity
of data resources (e.g., files, database tables), to
prevent the unauthorized use of resources (e.g.,
programs, processor time, expensive devices), or to
prevent denial of service to legitimate users. Prac-
tical examples of security violations that can be
prevented by enforcing access control policies are:
a journalist reading a politician’s medical record
(confidentiality); a criminal performing fake bank
account bookings (integrity); a student printing
his essays on an expensive photo printer (unau-
thorized use); and a company overloading a com-
petitor’s computers with requests in order to pre-
vent it from meeting a critical business deadline
(denial of service).

ENFORCEMENT MECHANISM AND PoLicy DE-
CISION: Conceptually, all access control systems
comprise two separate components: an enforce-
ment mechanism and a decision function. The en-
forcement mechanism intercepts and inspects ac-
cesses, and then asks the decision function to de-
termine if the access complies with the security
policy or not. This is depicted in Figure 1.

An important property of any enforcement
mechanism is the complete mediation property
[17] (also called reference monitor property), which
means that the mechanism must be able to inter-
cept and potentially prevent all accesses to a re-
source. If it is possible to circumvent the enforce-
ment mechanism no security can be guaranteed.

The complete mediation property is easier to
achieve in centralized systems with a secure ker-
nel than in distributed systems. General-purpose
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operating systems, e.g., are capable of intercepting
system calls and thus of regulating access to de-
vices. An example for an enforcement mechanism
in a distributed system is a packet filter firewall,
which can either forward or drop packets sent to
destinations within a protected domain. However,
if any network destinations in the protected do-
main are reachable through routes that do not
pass through the packet filter, then the filter is
not a reference monitor and no protection can be
guaranteed.

AccCESs CONTROL MODELS: An access control
policy is a description of the allowed and denied
accesses in a system. In more formal terms, it is
a configuration of an access control model. In all
practically relevant systems, policies can change
over time to adapt to changes in the sets of objects,
subjects, or to changes in the protection require-
ments. The model defines how objects, subjects,
and accesses can be represented, and also the op-
erations for changing configurations.

The model thus determines the flexibility and
expressive power of its policies. Access control
models can also be regarded as the languages
for writing policies. The model determines how
easy or difficult it is to express one’s security re-
quirements, e.g., if a rule like “all students ex-
cept Eve may use this printer” can be conveniently
expressed. Another aspect of the access model is
which formal properties can be proven about poli-
cies, e.g., can a question like “Given this policy, is
it possible that Eve can ever be granted this ac-
cess?” be answered. Other aspects influenced by
the choice of the access model are how difficult it
is to manage policies, i.e., adapt them to changes
(e.g., “can John propagate his permissions to oth-
ers?”), and the efficiency of making access deci-
sions, i.e. the complexity of the decision algorithm
and thus the run-time performance of the access
control system.

There is no single access model that is suitable
for all conceivable policies that one might wish to
express. Some access models make it easier than
others to directly express confidentiality require-
ments in a policy (“military policies”), whereas
others favor integrity (“commercial policies,” [4]),

Access control 3

or allow to express history-based constraints
(“Chinese Walls,” [3]). Further detail on earlier se-
curity models can be found in [14].

Access Matrix Models

A straightforward representation of the allowed
accesses of a subject on an object is to list
them in a table or matrix. The classical access
matrix model [12] represents subjects in rows, ob-
jects in columns, and permissions in entries. If
an access mode print is listed in the matrix en-
try M Atice. Laser Printer), then the subject Alice may
print-access the LaserPrinter object.

Matrix models typically define the sets of sub-
jects, objects, and access modes (“rights”) that they
control directly. It is thus straightforward to ex-
press what a given subject may do with a given
object, but it is not possible to directly express a
statement like “all students except Eve may print.”
To represent the desired semantics, it is necessary
to enter the access right print in the printer col-
umn for the rows of all subjects that are students,
except in Eve’s. Because this is a low-level rep-
resentation of the policy statement, it is unlikely
that administrators will later be able to infer the
original policy statements by looking at the ma-
trix, especially after a number of similar changes
have been performed.

A property of the access matrix that would be
interesting to prove is the safety property. The gen-
eral meaning of safety in the context of protection
is that no access rights can be leaked to an unau-
thorized subject, i.e. that there is no sequence of
operations on the access matrix that, given some
initial safe state, would result in an unsafe state.
The proof by Harrison et al. [11] that safety is only
decidable in very restricted cases is an important
theoretical result of security research.

The access matrix model is simple, flexible, and
widely used in practice. It is also still being ex-
tended and refined in various ways in the recent
security literature, e.g., to represent both permis-
sions and denials, to account for typed objects with
specific rather than generic access modes, or for
objects that are further grouped in domains.

Since the access matrix can become very large
but is typically also very sparse, it is usually not
stored as a whole, but either row-wise or column-
wise. An individual matrix column contains
different subjects’ rights to access one object. It
thus makes sense to store these rights per ob-
ject as an access control list (ACL). A matrix row
describes the access rights of a subject on all ob-
jects in the system. It is therefore appealing to
store these rights per subject. From the subject’s
perspective, the row can be broken down to a list
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of access rights per object, or a capability list. The
two approaches of implementing the matrix model
using either ACLs or capabilities have different
advantages and disadvantages.

Access Control Lists

An ACL for an object o is a list of tuples
(s,(r1,...,ry)), where s is a subject and the r; are
the rights of s on o. It is straightforward to asso-
ciate an object’s access control list with the object,
e.g., a file, which makes it easy for an administra-
tor to find out all allowed accesses to the object, or
to revoke access rights.

It is not as easy, however, to determine a
subject’s allowed accesses because that requires
searching all ACLs in the system. Using ACLs to
represent access policies can also be difficult if the
number of subjects in a system is very large. In this
case, storing every single subject’s rights results
in long and unwieldy lists. Most practical systems
therefore use additional aggregation concepts to
reduce complexity, such as user groups or roles.

Another disadvantage of ACLs is that they do
not support any kind of discretionary access con-
trol (DAC), i.e., ways to allow subjects to change
the access matrix at their discretion. In the UNIX
file system, e.g., every file object has a designated
owner who may assign and remove access rights
to the file to other subjects. If the recipient sub-
ject did not already possess this right, executing
this command changes the state of the access ma-
trix by entering a new right in a matrix entry. File
ownership—which is not expressed in the basic
access matrix—thus implies a limited form of ad-
ministrative authority for subjects.

A second example of discretionary access control
is the GRANT option that can be set in relational
databases when a database administrator assigns
aright to a user. If this option is set on a right that
a subject possesses, this subject may itself use the
GRANT command to propagate this right to an-
other subject. This form of discretionary access
control is also called delegation. Implementing
controlled delegation of access rights is difficult,
especially in distributed systems. In SQL, delega-
tion is controlled by the GRANT option, but if this
option is set by the original grantor of a right, the
grantor cannot control which other subjects may
eventually receive this right through the grantee.
Delegation can only be prevented altogether.

In systems that support delegation there is typ-
ically also an operation to remove rights again.
If the system’s protection state after a revocation
should be the same as before the delegation, re-
moving a right from a subject which has delegated
this right to other subjects requires transitively

revoking the right from these grantees, too. This
cascading revocation [9, 10] is necessary to pre-
vent a subject from immediately receiving a re-
voked right back from one of its grantees.
Discretionary access control and delegation are
powerful features of an access control system that
make writing and managing policies easier when
applications require or support cooperation be-
tween users. These concepts also support appli-
cations that need to express the delegation of
some administrative authority to subjects. How-
ever, regular ACLs need to be extended to support
DAC, e.g., by adding a meta-right GRANT and by
tracing delegation chains. Delegation is more el-
egantly supported in systems that are based on
capabilities or, more generally, credentials. A sem-
inal paper proposing a general authorization the-
ory and a logic that can express delegation is [13].

Capabilities and Credentials

An individual capability is a pair (o, (1, ...,7,)),
where o is the object and the 1, ..., r, are access
rights for 0. Capabilities were first introduced as a
way of protecting memory segments in operating
systems [6, 8, 15, 16]. They were implemented as
a combination of a reference to a resource (e.g., a
file, a block of memory, a remote object) with the
access rights to that resource. Capabilities were
thus directly integrated with the memory address-
ing mechanism, as shown in Figure 2. Thus, the
complete mediation property was guaranteed be-
cause there is no way of reaching an object without
using a capability and going through the access
enforcement mechanism.

The possession of a capability is sufficient to
be granted access to the object identified by
that capability. Typically, capability systems al-
low subjects to delegate access rights by passing
on their capabilities, which makes delegation sim-
ple and flexible. However, determining who has
access to a given object at a given time requires
searching the capability lists of all subjects in
the system. Consequently, blocking accesses to an
object is more difficult to realize because access
rights are not managed centrally.

resource

capability / {read, write, append, execute, ...}

reference rights

Fig. 2. A capability



Capabilities can be regarded as a form of creden-
tials. A credential is a token issued by an author-
ity that expresses a certain privilege of its bearer,
e.g., that a subject has a certain access right, or is
a member of an organization. A verifier inspecting
a credential can determine three things: that the
credential comes from a trusted authority, that it
contains a valid privilege, and that the credential
actually belongs to the presenter. A real-life anal-
ogy of a credential is registration badge, a driver’s
license, a bus ticket, or a membership card.

The main advantage of a credentials system is
that verification of a privilege can be done, at least
theoretically, off-line. In other words, the verifier
does not need to perform additional communica-
tions with a decision function but can immediately
determine if an access is allowed or denied. In ad-
dition, many credentials systems allow subjects
some degree of freedom to delegate their creden-
tials to other subjects. A bus ticket, e.g., may be
freely passed on, or some organizations let mem-
bers issue visitor badges to guests.

Depending on the environment, credentials may
need to be authenticated and protected from theft.
A bus ticket, e.g., could be reproduced on a photo-
copier, or a membership card stolen. Countermea-
sures against reproduction include holograms on
expensive tickets, while the illegal use of a stolen
driver’s license can be prevented by comparing the
photograph of the holder with the appearance of
the bearer. Digital credentials that are created,
managed, and stored by a trusted secure kernel do
not require protection beyond standard memory
protection. Credentials in a distributed system are
more difficult to protect: Digital signatures may
be required to authenticate the issuing authority,
transport encryption to prevent eavesdropping or
modification in transit, and binding the subject to
the credential to prevent misuse by unauthorized
subjects. Typically, credentials in distributed sys-
tems are represented in digital certificates such as
X.509 or SPKI [7], or stored in secure devices such
as smart cards.

Role-Based Access Control (RBAC)

In the standard matrix model, access rights are
directly assigned to subjects. This can be a man-
ageability problem in systems with large numbers
of subjects and objects that change frequently be-
cause the matrix will have to be updated in many
different places. For example, if an employee in a
company moves to another department, its subject
will have to receive a large number of new access
rights and lose another set of rights.

Aggregation concepts such as groups and roles
were introduced specifically to make security

Access control 5

User Permission

Assignment Assignment
Users Roles Permissions

Fig. 3. The basic RBAC model

administration simpler. Because complex admin-
istrative tasks are inherently error-prone, reduc-
ing the potential for management errors also in-
creases the overall security of a system. The most
widely used role models are the family of models
introduced in [19], which are called RBAC,,...,
RBAC3. RBAC is the base model that defines roles
as a management indirection between users and
permissions and is illustrated in Figure 3. Users
are assigned to roles rather than directly to per-
missions, and permissions are assigned to roles.

The other role-based access control (RBAC)
models introduce role hierarchies (RBAC;) and
constraints (RBAC;). A role hierarchy is a partial
order on roles that lets an administrator define
that one role is senior to another role, which means
that the more senior role inherits the junior role’s
permissions. For example, if a Manager role is de-
fined to be senior to an Engineer role, any user
assigned to the Manager role would also have the
permissions assigned to the Engineer role.

Constraints are predicates over configurations
of a role model that determine if the configura-
tion is acceptable. Typically, role models permit
the definition of mutual exclusion constraints to
prevent the assignment of the same user to two
conflicting roles, which can enforce separation of
duty. Other constraints that are frequently men-
tioned include cardinality constraints to limit the
maximum number of users in a role, or prerequi-
site role constraints, which express that, e.g., only
someone already assigned to the role of an En-
gineer can be assigned to the Test-Engineer role.
The most expressive model in the family is RBACs,
which combines constraints with role hierarchies.

The role metaphor is easily accessible to most
administrators, but it should be noted that the
RBAC model family provides only an extensional
definition of roles, so the meaning of the role
concept is defined only in relation to users and
permissions. Often, roles are interpreted in a task-
oriented manner, i.e., in relation to a particular
task or set of tasks, such as an Accountant role
that is used to group the permissions for account-
ing. In principle, however, any concept that is
perceived as useful for grouping users and per-
missions can be used as a role, even purely struc-
tural user groups such as IT-Department. Finding
a suitable intensional definition is often an impor-
tant prerequisite for modeling practical, real-life
security policies in terms of roles.
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Information Flow Models

The basic access matrix model can restrict the re-
lease of data, but it cannot enforce restrictions
on the propagation of data after it has been read
by a subject. Another approach to control the dis-
semination of information more tightly is based
on specifying security not in terms of individual
acess attempts, but rather in terms of the infor-
mation flow between objects. The focus is thus not
on protecting objects themselves, but the informa-
tion contained within (and exchanged between)
objects. An introduction to information flow mod-
els can be found in [18].

Since military security has traditionally been
more concerned with controlling the release and
propagation of information, i.e., confidentiality,
than with protecting data against integrity vio-
lations, it is a good example for information flow
security. The classic military security model de-
fines four sensitivity levels for objects and four
clearance levels for subjects. These levels are: un-
classified, confidential, secret, and top secret. The
classification of subjects and objects according to
these levels is typically expressed in terms of se-
curity labels that are attached to subjects and
objects.

In this model, security is enforced by control-
ling accesses so that any subject may only access
objects that are classified at the same level for
which the subject has clearance, or for a lower
level. For example, a subject with a “secret” clear-
ance is allowed access to objects classified as “un-
classified,” “confidential,” and “secret,” but not to
those classified as “top secret.” Information may
thus only flow “upwards” in the sense that its sen-
sitivity is not reduced. An object that contains
information that is classified at multiple secu-
rity levels at the same time is called a multilevel
object.

This approach takes only the general sensitivity,
but not the actual content of objects into account.
It can be refined to respect the need-to-know prin-
ciple. This principle, which is also called principle
of least privilege, states that every subject should
only have those permissions that are required for
its specific tasks. In the military security model,
this principle is enforced by designating compart-
ments for objects according to subject areas, e.g.,
“nuclear.” This results in a security classification
that comprises both the sensitivity label and the
compartment, e.g., “nuclear, secret.” Subjects may
have different clearance levels for different com-
partments.

The terms discretionary access control (DAC)
and mandatory access control (MAC) originated

in the military security model, where performing
some kinds of controls was required to meet le-
gal requirements (“mandatory”), viz. that classi-
fied information may only be seen by subjects with
sufficient clearance. Other parts of the model, viz.
determining whether a given subject with suffi-
cient clearance also needs to know the informa-
tion, involved some discretion (“discretionary”).

The military security model (without compart-
mentalization) was formalized in [1]. This model
defined two central security properties, the sim-
ple security property (“subjects may only read-
access objects with a classification at or below their
own clearance”) and the star-property or *-property
(“subjects may not write to objects with a classifi-
cation below the subject’s current security level”).
The letter property ensures that a subject may not
read information of a given sensitivity and write
that information to another object at a lower sen-
sitivity level, thus downgrading the original sen-
sitivity level of the information. The model in [1]
also included an ownership attribute for objects
and the option to extend access to an object to an-
other subject. The model was refined in [2] to ad-
dress additional integrity requirements.

The permitted flow of information in a system
can also more naturally be modeled as a lattice of
security classes. These classes correspond to the
security labels introduced above and are partially
ordered by a flow relation “—” [5]. The set of se-
curity classes forms a lattice under “—” because a
least upper bound and a greatest lower bound can
be defined using a join operator on security classes.
Objects are bound to these security classes. Infor-
mation may flow from object a to b through any se-
quence of operations if and only if A “—” B, where
A and B are the objects’ security classes. In this
model, a system is secure if no flow of information
violates the flow relation.

Gerald Brose
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ACCESS STRUCTURE

Let P be a set of parties. An access structure I'p
is a subset of the powerset 27. Each element of I'p
is considered trusted, e.g., has access to a shared
secret (see secret sharing scheme). I'p is monotone
if for each element of I'p each superset belongs to
I'p, formally: when A C BC Pand A e I'p,B e 'p.

An adversary structure is the complement of an
access structure; formally, if I'p is an access struc-
ture, then 27\TI'p is an adversary structure.

Yvo Desmedt

ACQUIRER

In retail payment schemes and electronic com-
merce, there are normally two parties involved,
a customer and a shop. The Acquirer is the bank
of the shop.

Peter Landrock

ADAPTIVE CHOSEN
CIPHERTEXT ATTACK

An adaptive chosen ciphertext attack is a chosen
ciphertext attack scenario in which the attacker
has the ability to make his choice of the inputs
to the decryption function based on the previous
chosen ciphertext queries. The scenario is clearly
more powerful than the basic chosen ciphertext
attack and thus less realistic. However, the attack
may be quite practical in the public-key setting.
For example, plain RSA is vulnerable to chosen
ciphertext attack (see RSA public-key encryption
for more details) and some implementations of
RSA may be vulnerable to adaptive chosen cipher-
text attack, as shown by Bleichenbacher [1].

Alex Biryukov
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ADAPTIVE CHOSEN
PLAINTEXT AND CHOSEN
CIPHERTEXT ATTACK

In this attack the scenario allows the attacker
to apply adaptive chosen plaintext and adaptive
chosen ciphertext queries simultaneously. The at-
tack is one of the most powerful in terms of the ca-
pabilities of the attacker. The only two examples
of such attacks known to date are the boomerang
attack [2] and the yoyo-game [1].

Alex Biryukov
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ADAPTIVE CHOSEN
PLAINTEXT ATTACK

An adaptive chosen plaintext attack is a chosen
plaintext attack scenario in which the attacker

plaintext a b ¢ d e f g h i j k 1

ciphertext B E K P I R C H S Y T M
plaintext q a g t b o r h e s ¢ y
ciphertext A B C EF G HTIJIKL

NNMNS<ON2IOTOZENRA~TIQIET QWS
NHKMHE<CHNEOTOZEN RS~ TIQEEI QW0
PNRNE<CHREOYOZEON R~ IQHEHOQWS
TWeNKXIE<OHRIOYOZECON R "D QRHEHD QR
OU.'JIJ>N<N€<GHUJW<®"UOZ§F‘WL“—‘EQ’11HU"
UOWrPNRKRIE<OHNREOTUOZEN RS~ DIQHaEo
HUQWrPNRXIE <O NEOUOZZED RS~ T Qo
MEHOQOWEPNRHNE<CENTBOTWOZZ N NS — Q"
CHMEUOEPNRHNE<CHNIO VO ZEE RS — T
mm'ﬁbﬂUOCUD>N'<N2<C}HUJSU¢O"UOZ§L_‘NL<H@
NI QEEOQEP NN S <R RO YO ZEE R Y
CHIOTEEHOQWENRKXE<AHRIO TOZZE X
WL!'—‘EQWHUOCUD>N'<N2<}C}HUJ5U¢O"UOZZL_“<
PRS- IQEETQBPNRIRE<CSNROTOZZE

has the ability to make his choice of the inputs
to the encryption function based on the previous
chosen plaintext queries and their corresponding
ciphertexts. The scenario is clearly more power-
ful than the basic chosen plaintext attack, but is
probably less practical in real life since it requires
interaction of the attacker with the encryption
device.

Alex Biryukov

ALBERTI ENCRYPTION

This is a polyalphabetic encryption with shifted,
mixed alphabets.

As an example, let the mixed alphabet be given
by:

m n o

O N F

N

P g r st uv w y
UAGJ DX QW L
or, reordered for decryption:

l n m d v

M N O P Q

w

w

u
X Y

X

f i

R S Z

Modifying accordingly, the headline of a Vigenere
table (see Vigenere cryptosystem) gives the Alberti
table:

EO RGN IQEEHOQEW P NN S <CHNEO YO 2B
ZEORS-"IQHEHUODQBEPNKAXIE<OTIRNIDOTOR
OzZEgrrR“—~"ZmQHEHOQEPNKXIE<OT DO T
MOZENRSC-IQEHEUQEPNKXS<CS IO <
OPozgr R~ IQHEHDOQEP N X Ig<anE™
HOUWOZErRY—-IQHBEOQE PN XMg<cEn"
NDOUWOZErNRE-TIQHEUOQEEPNLAX S <ORR
HRNHOUWOZEE RS- IQEETQE >N Xa<qs
CHUEBOTOZEO RS- IQHEEUQWENXg <IN
<cHunwWowWoZErRE"HmoaEET QWP N XSS
S<aRRNILOUOZEUOURE"IZIQHEHUQE P NKME
HE<CHRTOUOZENRS - IQHEEHUOQE > N~
KX I<CHRIOTWOZZORE-DmoQEEHTOQW > N



Alberti discs

An encryption example with the keytext “GOLD”
of length 4 is:

plaintext m u ¢ h h a v e i t r
keytext G O L D G O L D G O L
ciphertext U L V K N P B L Y R R

Friedrich L. Bauer
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ALPHABET

An alphabet is a set of characters (literals, figures,
other symbols) together with a strict ordering (de-
noted by <) of this set. For good reasons it is usu-
ally required that a set of alphabetic characters
has at least two elements and that it is finite. An
alphabet Z of n elements is denoted Z,, the order
is usually the one of the listing.

Zos ={a,b,c,...,X,y,z} is the common alpha-
bet of Latin letters of present days. In former
times and cultures, the Latin letter alphabet was
smaller, so

Zo1 = Zog\{j, k, w, X, y} in Italian until about 1925,
Zoy = Zgg\{k, w} in Spanish until about 1950,
Zos = Zog\{w} in French and Swedish until

about 1900.

In the Middle Ages, following the Latin tradition,
20 letters seem to have been enough for most writ-
ers (with v used for u),

Zoo = Zze\{j. k,u, w,x, y}.

Sometimes, mutated vowels and consonants like
a, 0, U, B (German), =, ¢ (French), a, ¢

vvvvv

cur in literary texts, but in cryptography there is
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a tendency to suppress or transcribe them, i.e. to
avoid diacritic marks.

The (present-day) Cyrillic alphabet has 32
letters (disregarding E):

Z32:{A7B?B7F7 ’H7E7}K737 I/‘[7 I;I’ H? JI’ 1\/I7H7O? H’
P, C,T,Y,®,X,I1, Y,I1LILDL,bLLL, 9,10,1}.

A set of m-tuples formed by elements of some set V
is denoted V™. If Z is an alphabet, Z™ has usually
the lexicographic order based on the order of Z.
In mathematics and also in modern cryptogra-
phy, the denotation Z, is usually reserved for the
set {0,1,2,...,n-1}. It makes arithmetic modulo
n possible (see modular arithmetic). Of course,

=g

v
G
w

£0°
M=
Hg -
oQe
Q&

Zos ={a,b,c,...,X,y,z} can and often will be
identified with Z g .

The following number alphabets are of particu-
lar historical interest:

Z1o=1{0,1,2,...,9} (denary alphabet)
with0<1<2<--- <9,

Z4 = {0, 1,2, 3} (quaternary alphabet)
with 0 < 1 < 2 < 3 (Alberti 1466),

Zs = {0, 1, 2} (ternary alphabet)
with 0 < 1 < 2 (Trithemius 1518),

Zy = {0, 1} (binary alphabet) with 0 < 1
(Francis Bacon 1605). An element from
Zs is called bit, from bi(nary digi)t.

The technical utilization of the binary alphabet Z
goes back to Jean Maurice Emile Baudot, 1874; at
present one mainly uses quintuples and octuples
of binary digits (called bytes).

The alphabet of m-tuples formed by elements of
Z, and ordered lexicographically is denoted Z7':
Zy = Z3 (teletype alphabet or CCIT2 code), its

cryptographic use goes back to Gilbert S.

Vernam, 1917.

Zsse = Z5 (bytes alphabet), IBM ca. 1964 (crypto-

graphic use by Horst Feistel, 1973).

Note that from a mathematical point of view,
Z3={0,1,2,...,31} is not the same as Zj =
{(00000), (00001), (00010), (00011), (00100),...,
(11111)}. Of course, these two sets have the same
cardinality, but arithmetically that does not make
them the same. This can be seen from the way ad-
dition is defined for the elements of Z3; and Z3;
while in Z 3o arithmetic is done modulo 32, in Zg
every element added to itself gives (00000) .
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We mention the following alphabets:

standard alphabet: alphabet listed in its regular
order.

mixed alphabet: standard alphabet listed in some
permuted order.

reversed alphabet: standard alphabet listed in
some backwards order.

shifted alphabet: standard alphabet listed with a
cyclically shifted order.

A vocabulary is a set of characters (usually a stan-

dard alphabet), or of words, and/or phrases (usu-

ally alphabetically ordered), used to formulate the

plaintext (plaintext vocabulary) or the ciphertext

(ciphertext vocabulary) (see cryptosystem).

Friedrich L. Bauer
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ANONYMITY

Anonymity of an individual is the property of be-
ing indistinguishable from other individuals in a
certain respect. On the Internet, individuals may
seek anonymity in sending certain messages, ac-
cessing certain chat rooms, publishing certain pa-
pers, etc. Consider a particular system, e.g., an
electronic voting scheme, with participants P,
P, ..., P, who seek anonymity with respect to
a certain class A of action types Aj, Ag, ..., Ap,
e.g., casting ballots B; (for candidate 1), By for
candidate 2, and so forth to B,, for candidate m,
against an attacker who observes the system. In
this system, anonymity with respect to the class
A of action types means that for each i, the at-
tacker cannot distinguish participant P; (1 < j <
n) executing action type A;, denoted [P; : A;], from
any other participant P, (1 <k < n) executing ac-
tion type A;. Expressed in terms of unlinkability,
anonymity with respect to A means that for each
action type A; (1 <i <m) and each two partici-
pants P;, P, the two events [P; : A;] and [P, : A;]
are unlinkable (by the attacker). In this case, the
anonymity set of the event [P; : A;]is the set of all
individuals P, P, ..., P,, i.e., those who the at-
tacker cannot distinguish from P; when they exe-
cute action type A; [3]. Sometimes, the anonymity
set is more adequately defined in probabilistic
terms as the set of all individuals who the attacker
cannot distinguish with better than a small prob-
ability, which needs to be defined.

The anonymity set of an event is a volatile quan-
tity that is beyond control of a single individual
and typically changes significantly in size over
time. For example, at the start of the voting pe-
riod, only few participants may have reached the
voting booths, while in the afternoon almost ev-
eryone may have cast his vote. Hence, soon after
the start of the system, an attacker may not have a
hard time guessing who has cast a particular vote
he sees is cast in the system.

In order to apply this notion to a particular cryp-
tographic scheme, the attacker model needs to be
specified further. For example, is it a passive at-
tacker such as an eavesdropper, or is it an ac-
tive attacker (see cryptanalysis)? If passive, which
communication lines can he observe and when. If
active, how can he interact with the honest system
participants (e.g., oracle access) and thereby stim-
ulate certain behavior of the honest participants,
or how many honest participants can he con-
trol entirely? (The number of honest participants
an attacker can control without breaking a sys-
tem is sometimes called the resilience of the sys-
tem.) Is the attacker computationally restricted or
computationally unrestricted (see computational
security)? Based on a precise attacker model,
anonymity can be defined with respect to specific
classes of critical actions types, i.e., actions types
of particular concern to the honest participants.
Examples of critical actions are withdrawing and
paying amounts in an electronic cash scheme, get-
ting credentials issued and using them in an
electronic credential scheme, casting ballots in
electronic voting schemes, etc.

A measure of anonymity is the strength of the at-
tacker model against which anonymity holds and
the sizes of all anonymity sets. The stronger the at-
tacker model is, the stricter the anonymity sets are
defined, and the larger the sizes of all anonymity
sets are, the stronger anonymity is achieved.

An important tool to achieve anonymity is
pseudonyms [1, 2, 4]. Specific examples of anony-
mity are sender anonymity, recipient anonymity,
and relationship anonymity. Sender anonymity
can be achieved if senders use pseudonyms for
sending messages, recipient anonymity can be
achieved if recipients use pseudonyms for receiv-
ing messages, and relationship anonymity can
be achieved if any two individuals use a joint
pseudonym for sending and receiving messages to
and from each other.

Anonymity can be regarded the opposite ex-
treme of complete identifiability (accountability).
Either extreme is often undesirable. The whole
continuum between anonymity and complete iden-
tifiability is called pseudonymity. Pseudonymity is




the use of pseudonyms as IDs for individuals. The
use of pseudonyms may be rare, occasional, or fre-
quent, and may be fully deliberate.

Gerrit Bleumer
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ASYMMETRIC
CRYPTOSYSTEM

The type of cryptography in which different keys
are employed for the operations in the cryptosys-
tem (e.g., encryption and decryption), and where
one of the keys can be made public without
compromising the secrecy of the other keys. See
public-key encryption, digital signature scheme,
key agreement, and (for the contrasting notion)
symmetric cryptosystem.

Burt Kaliski

ATTRIBUTE CERTIFICATE

This is a certificate, i.e. a message digitally signed
by some recognized Trusted Third Party, the con-
tent of which ties certain attributes to an ID, i.e.
a user-ID. In the wake of the first PKI-euphoria
(see Public Key Infrastructure), it was anticipated
that there would be a great need for attribute cer-
tificates, and we may still come to see useful re-
alizations of this concept. The original idea goes
back to an early European project on PKI, where
attribute certificates were introduced to represent
e.g. power of attorney, executive rights etc., infor-
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mation which currently is stored as official infor-
mation on registered companies.

Peter Landrock

ATTRIBUTES
MANAGEMENT

Attributes management is a subset of general “au-
thorization data” management (see authorization
architecture) in which the data being managed is
attributes associated with entities in an environ-
ment. An attribute may be defined as follows [1]:
“an inherent characteristic; an accidental quality;
an object closely associated with or belonging to a
specific person, thing, or office.”

Carlisle Adams
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AUTHENTICATED
ENCRYPTION

INTRODUCTION: Often when two parties commu-
nicate over a network, they have two main se-
curity goals: privacy and authentication. In fact,
there is compelling evidence that one should never
use encryption without also providing authentica-
tion [8, 14]. Many solutions for the privacy and
authentication problems have existed for decades,
and the traditional approach to solving both si-
multaneously has been to combine them in a
straightforward manner using so-called generic
composition. However, recently there have been
a number of new constructions which achieve
both privacy and authenticity simultaneously, of-
ten much faster than any solution which uses
generic composition. In this article we will explore
the various approaches to achieving both privacy
and authenticity, the so-called Authenticated En-
cryption problem. We will often abbreviate this as
simply “AE.” We will start with generic compo-
sition methods and then explore the newer com-
bined methods.

Background

Throughout this article we will consider the
AE problem in the “symmetric-key model.” This
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means that we assume our two communicat-
ing parties, traditionally called “Alice” and “Bob,”
share a copy of some bit-string K, called the “key.”
This key is typically chosen at random and then
distributed to Alice and Bob via one of various
methods. This is the starting point for our work.
We now wish to provide Alice and Bob with an AE
algorithm such that Alice can select a message M
from a predefined message-space, process it with
the AE algorithm along with the key (and possi-
bly a “nonce” N-a counter or random value), and
then send the resulting output to Bob. The out-
put will be the ciphertext C, the nonce N, and a
short message authentication tag, o. Bob should
be able to recover M just given C, N, and his copy
of the key K. He should also be able to certify that
Alice was the originator by computing a verifica-
tion algorithm using the above values along with
the tag o.

But what makes an AE algorithm “good?” We
may have many requirements, and the relative im-
portance of these requirements may vary accord-
ing to the problem domain. Certainly one require-
ment is that the AE algorithm be “secure.” We will
speak more about what this means in a moment.
But many other attributes of the algorithm may
be important for us as well: performance, porta-
bility, simplicity/elegance, parallelizability, avail-
ability of reference implementations, or freedom
from patents; we will pay attention to each of these
concerns to varying levels as well.

Security

Certainly an AE scheme is not going to serve
our needs unless it is secure. An AE scheme has
two goals: privacy and authenticity. And each of
these goals has a precise mathematical meaning
[2, 3, 19]. In addition there is a precise definition
for “authenticated encryption,” the combination of
both goals [5, 6, 26]. It would take us too far afield
to carefully define each notion, but we will give a
brief intuitive idea of what is meant. In our dis-
cussion we will use the term “adversary” to mean
someone who is trying to subvert the security of
the AE scheme, who knows the definition of the
AE scheme, but who does not possess the key K.

Privacy means, intuitively, that a passive adver-
sary who views the ciphertext C and the nonce
N cannot “understand” the content of the mes-
sage M. One way to achieve this is to make C
indistinguishable from random bits, and indeed
this is one definition of security for an encryption
scheme that is sometimes used, although it is quite
a strong one.

Authenticity means, intuitively, that an active
adversary cannot successfully fabricate a cipher-

text C, a nonce N, and a tag o in such a way that
Bob will believe that Alice was the originator. In
the formal security model we allow the adversary
to generate tags for messages of his choice as if
he were Alice for some period of time, and then he
must attempt a forgery. We do not give him credit
for simply “replaying” a previously generated mes-
sage and tag, of course: he must construct a new
value. If he does so with any significant probabil-
ity of success, the authentication scheme is con-
sidered insecure.

Associated data

In many application settings we wish not only to
encrypt and authenticate message M, but we wish
also to include auxiliary data H which should be
authenticated, but left unencrypted. An example
might be a network packet where the payload
should be encrypted (and authenticated) but the
header should be unencrypted (and authenti-
cated). The reason being that routers must be able
toread the headers of packets in order to know how
to properly route them.

This need spurred some designers of AE
schemes to allow “associated data” to be included
as input to their schemes. Such schemes have been
termed AEAD (authenticated encryption with as-
sociated data) schemes, a notion which was first
formalized by Rogaway [32]. As we will see, the
AEAD problem is easily solved in the generic com-
position setting, but can become challenging when
designing the more complex schemes. In his paper,
Rogaway describes a few simple, but limited, ways
to include associated data in any AE scheme, and
then presents a specific method to efficiently add
associated data to the OCB scheme, which we dis-
cuss below.

Provable security

One unfortunate aspect of most cryptographic
schemes is that we cannot prove that any scheme
meets the formal goals required of it. However,
we can prove some things related to security,
but it depends on the type of cryptographic ob-
ject we are analyzing. If the object is a “prim-
itive,” such as a block cipher, no proof of secu-
rity is possible, so instead we hope for security
once we have shown that no known attacks (e.g.,
differential cryptanalysis) seem to work. However,
for algorithms which are built on top of these prim-
itives, called “modes,” we can prove some things
about their security; namely that they are as
secure as the primitives which underlie them. Al-
most all of the AE schemes we will describe here
are modes; only two of them are primitives.
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Scheme #Passes Provably Secure Assoc Data Parallelizable On-line Patent-Free
IAPM 1 v v v
XECB 1 v v v
oCB 1 v v v
CCM 2 v v v
EAX 2 v v v v
cwcC 2 v v v v v
Helix 1 v v v
SOBER-128 1 v v N

Fig. 1. A comparison of the various AE schemes. Generic composition is omitted since answers would depend on
the particular instantiation. For the schemes which do not support associated data, subsequent methods have

been suggested to remedy this; for example, see [32]

AE schemes

The remainder of this article is devoted to the de-
scription and discussion of various AE algorithms.
For convenience we list them in Figure 1. Note
that we omit generic composition from the table
since this approach comprises a class of schemes
rather than a particular scheme.

Conventions

Let ¢ denote the empty string. Let =" denote the
set of all n-bit strings. In general, if Sis a set we
write ST to mean 1 or more repetitions of elements
from S; that is, the set {s1s9---sn | m >0, s; €
S, 1 <i <m}. Thus (£")* is the set of all binary
strings whose lengths are a positive multiple of n.
If we write S* we mean zero or more repetitions
of elements from S. In other words, S* = S* U {¢}.
We write A@® B to mean the exclusive-or of strings
A and B.

Many of our schemes use a block cipher.
Throughout, n will be understood to be the block
size of the underlying block cipher and £ will be
the size of its key. For block cipher E, we will write
Ex(P) to indicate invocation of block cipher E us-
ing the k-bit key K on the n-bit plaintext block P.

In order to process a message M € (£")" we will
often wish to break M into m strings, M, ..., M,
each having n-bits such that M = MiM; --- M,,.
For brevity, we will say “write M = M; - - - M,,” and
understand it to mean the above.

GENERIC COMPOSITION: Although AE did not
get a formal definition until recently, the goal has
certainly been implicit for decades. The traditional
way of achieving both authenticity and privacy
was to simply find an algorithm which yields each
one and then use the combination of these two al-
gorithms on our message. Intuitively it seems that

this approach is obvious, straightforward, and
completely safe. Unfortunately, there are many
pitfalls accidentally “discovered” by well-meaning
protocol designers.

One commonly made mistake is the assump-
tion that AE can be achieved by using a non-
cryptographic non-keyed hash function 2 and a
good encryption scheme like CBC mode (Cipher
Block Chaining mode; see modes of operation of a
block cipher) with key K and initialization vec-
tor N. One produces CBCg n (M, h (M)) and hopes
this yields a secure AE scheme. However, these
schemes are virtually always broken. Perhaps the
best-known example is the Wired Equivalent Pri-
vacy (WEP) protocol used with 802.11 wireless
networks. This protocol instantiates A as a Cyclic
Redundancy Code (CRC) and then uses a stream
cipher to encrypt. Borisov et al. showed, among
other things, that it was easy to circumvent the
authentication mechanism [15].

Another common pitfall is “key reuse.” In other
words, using some key K both for the encryption
scheme and the MAC algorithm. This approach
appliedly blindly almost always fails. We will later
see that all of our “combined modes,” listed after
this section, do in fact use a single key, but they
are carefully designed to retain security in spite of
this.

It is now clear to researchers that one needs to
use a keyed hash (i.e., a MAC) with some appropri-
ate key K1 along with a secure encryption scheme
with an independent key K2. However, it is un-
clear in what order these modes should be applied
to a message M in order to achieve authenticated
encryption. There are three obvious choices:
® MiE: MAC-then-Encrypt. We first MAC M un-

der key K1 to yield tag o and then encrypt the

resulting pair (M, o) under key K2.
® EtM: Encrypt-then-MAC. We first encrypt M
under key K2 to yield ciphertext C and then

compute o < MACk1(C) to yield the pair (C, o).
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® E&M: Encrypt-and-MAC. We first encrypt M
under key K2 to yield ciphertext C and then
compute o < MACg1(M) to yield the pair (C, o).
Also note that decryption and verification are

straightforward for each approach above: for MtE

decrypt first, then verify. For EtM and E&M verify
first, then decrypt.

Security

In 2000, Bellare and Namprempre gave formal
definitions for AE [5], and then systematically ex-
amined each of the three approaches described
above in this formal setting. Their results show
that if the MAC has a property called “strongly
unforgeable,” then it possible to achieve the
strongest definition of security for AE only via
the EtM approach. They further show that some
known-good encryption schemes fail to provide
privacy in the AE setting when using the E&M
approach, and fail to provide a slightly stronger
notion of privacy with the MtE approach.

These theoretical results generated a great
deal of interest since three major pre-existing
protocols, SSL/TLS (see Secure Socket Layer and
Transport Layer Security), IPSec, and SSH, each
used a different one of these three approaches:
the SSL/TLS protocol uses MtE, IPSec uses EtM,
and SSH uses E&M. One might think that per-
haps security flaws exist in SSL/TLS and SSH be-
cause of the results of Bellare and Namprempre;
however, concurrent with their work, Krawczyk
showed that SSL/TLS was in fact secure because
of the encoding used alongside the MtE mecha-
nism [29]. And later Bellare, Kohno, and Nam-
prempre showed that despite some identified se-
curity flaws in SSH, it could be made provably se-
cure via a number of simple modifications despite
its E&M approach.

The message here is that EtM with a provably
secure encryption scheme and a provably secure
MAC each with independent keys is the best ap-
proach for achieving AE. Although MtE and E&M
can be secure, security will often depend on sub-
tle details of how the data are encoded and on the
particular MAC and encryption schemes used.

Performance

Simple methods for doing very fast encryption
have been known for quite some time. For exam-
ple, CBC mode encryption has very little overhead
beyond the calls to the block cipher. Even more at-
tractive is CTR mode (CounTeR mode; see modes
of operation of a block cipher), which similarly
has little overhead and in addition is paralleliz-

able. However, MACing quickly is not so simple.
The CBC MAC (Cipher Block Chaining Message
Authentication Code; see CBC MAC and variants)
is quite simple and just as fast as CBC mode
encryption, but there are well-known ways to go
faster. The fastest software MAC in common use
today is HMAC [1, 20]. HMAC uses a crypto-
graphic hash function to process the message M
and this is faster than processing M block-by-
block with a block cipher. However even faster ap-
proaches have been invented using the Wegman—
Carter construction [34]. This approach involves
using a non-cryptographic hash function to pro-
cess M, and then uses a cryptographic function to
process the hash output. The non-cryptographic
hash is randomly selected from a carefully de-
signed family of hash functions, all with a com-
mon domain and range. The goal is to produce a
family such that distinct messages are unlikely to
hash to the same value when the hash function
is randomly chosen from that family. This is the
so-called universal hash family [16]. The fastest
known MACs are based on the Wegman—Carter
approach. The speed champions are UMAC [11]
and hash127 [10], though neither of these are in
common use yet.

Associated data

As we mentioned in the introduction, it is a com-
mon requirement in cryptographic protocols that
we allow authenticated but non-encrypted data to
be included in our message. Although the single-
pass modes we describe next do not naturally al-
low for associated data, due to the fact that their
encryption and authentication methods are intri-
cately interwoven, we do not have this problem
with generically composed schemes. Since the en-
cryption and MAC schemes are entirely indepen-
dent, we simply run the MAC on all the data and
run the encryption scheme only on the data to be
kept private.

Can we do better?

One obvious question when considering generi-
cally composed AE schemes is “can we do better?”
In other words, might there be a way of achiev-
ing AE without using two different algorithms,
with two different keys, and making two sepa-
rate passes over the message. The answer is “yes,”
and a discussion of these results constitutes the
remainder of this article.

SINGLE-PASS COMBINED MODES: It had long
been a goal of cryptographers to find a mode of



operation which achieved AE using only a single
pass over the message M. Many attempts were
made at such schemes, but all were broken. There-
fore, until the year 2000, people still used generic
composition to achieve AE, which as we have seen
requires two passes over M.

IAPM

In 2000, Jutla at IBM invented two schemes which
were the first correct single-pass AE modes [25].
He called these modes IACBC (Integrity-Aware
Cipher Block Chaining) and IAPM (Integrity-
Aware Parallelizable Mode). The first mode some-
what resembles CBC-mode encryption; however,
offsets were added in before and after each block-
cipher invocation, a technique known as “whiten-
ing.” However, as we know, CBC-mode encryption
is inherently serial: we cannot begin computation
for the (£ + 1)th block-cipher invocation until we
have the result of the kth invocation. Therefore,
more interest has been generated around the sec-
ond mode, IAPM, which does not have this disad-
vantage. Let’s look at how IAPM works.

TAPM accepts amessage M € (X")*, anonce N €
", and a key pair K1, K2 each selected from x*
for use with the underlying block cipher E. The key
pair is set up and distributed in advance between
the communicating parties; the keys are reused
for a large number of messages. However, N and
(usually) M vary with each transmission. First we
break M into M - - - M,, 1 and proceed as follows.

There are two main steps: (1) offset generation
and (2) encryption/tag generation. For offset gen-
eration we encipher N to get a seed value, and then
encipher sequential seed values to get the remain-
ing seed values. In other words, set Wy < Exo(N)
and then set W, < Exgo(W7 +i —2) for 2<i <t
where ¢ = [lg(m + 2)7. Here lg means logy, so if we
had a message M with 256 n-bit blocks, we would
require [1g(259)] = 9 block-cipher invocations to
generate the W; values. Finally, to derive our m + 1
offsets from the seed values, for i from 1 tom + 1,
we compute S;_1 < EBj-zl(i[ﬂ - W;) where i[j] is
the jth bit of ;.

Armed with Sy through S,, we are now ready
to process M. First we encrypt each block of
M by computing C; < Ex1(M; ®S;)® S; for 1 <
i <m—1. This xoring of S; before and af-
ter the block-cipher invocation is the whitening
we spoke of previously, and is the main idea
in all schemes discussed in this section. Next
we compute the authentication tag o: set o «
Ex1(Sy ® @' M) ®Sp. Notice that we are
whitening the simple sum of the plaintext blocks
with two different offset values, Sy and S,,. Finally,
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output (N, Cy,...,C,_1,0) as the authenticated
ciphertext. Note that the output length is two n-bit
blocks longer than M. This “ciphertext expansion,”
comparable to what we saw with generic composi-
tion, is quite minimal.

Given the K1, K2, and some output
(N,Cq,...,Cp_1,0), it 1is fairly straightfor-
ward to recover M and check the authenticity
of the transmission. Notice that N is sent in the
clear and so using K2 we can compute the W,
values and therefore the S; values. We compute
M, < Exi(C;®S)®S; for 1<i<m—1 to re-
cover M. Then we check Ex1(S,, ® @' M;)® Sy
to ensure it matches o. If we get a match, we ac-
cept the transmission as authentic, and if not we
reject the transmission as an attempted forgery.

Comments on IAPM. Compared to generic com-
position, where we needed about 2m block-cipher
invocations per message (assuming our encryp-
tion and authentication modes were block-cipher-
based), we are now using only around m lg(m) in-
vocations. Further refinements to IAPM reduce
this even more, so the number of block-cipher in-
vocations is nearly m in these optimized versions
meaning that one can achieve AE at nearly the
same cost of encryption alone.

Proving a scheme like IAPM secure is not a sim-
ple task, and indeed we cannot present such a
proof here. The interested reader is encouraged
to read Halevi’s article which contains a rigorous
proof that if the underlying block cipher is secure,
then so are JACBC and IAPM [21].

XCBC and OCB

Quickly after announcement of IACBC and IAPM,
other researchers went to work on finding similar
single-pass AE schemes. Soon two other parties
announced similar schemes: Gligor and Donescu
produced a host of schemes, each with various ad-
vantages and disadvantages [18], and Rogaway,
et al. announced their OCB scheme [33], which is
similar to IAPM but with a long list of added opti-
mizations.

Gligor and Donescu presented two classes of
schemes: XCBC and XECB. XCBC is similar to
CBC mode encryption just as IACBC was above,
and XECB is similar to ECB mode encryption
which allows parallelism to be exploited, much
like the IAPM method presented above. Since
many practitioners desire parallelizable modes,
the largest share of attention has been paid to
XECB. Similar to IAPM, XECB uses an offset to
each message block, applied before and after a
block cipher invocation. However, XECB gener-
ates these offsets in a very efficient manner, using
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arithmetic mod 2", which is very fast on most com-
modity processors. Once again, both schemes are
highly optimized and provide AE at a cost very
close to that of encryption alone. Proofs of security
are included in the paper, using the reductionist
approach we described above.

Rogaway, Bellare, Black, and Krovetz produced
a single scheme called OCB (Offset CodeBook).
This work was a follow-on to Jutla’s IAPM scheme,
designed to be fully parallelizable, along with a
long list of other improvements. In comparison to
IAPM, OCB uses a single block-cipher key, pro-
vides a message space of £* so we never have to
pad, and is nearly endian-neutral. Once again, a
full detailed proof of security is included in the
paper, demonstrating that the security of OCB is
directly related to the security of the underlying
block cipher.

OCB is no doubt the most aggressively op-
timized scheme of those discussed in this sec-
tion. Performance tests indicate that OCB is
about 6.4% slower than CBC mode encryption,
and this is without exploiting the parallelism
that OCB offers up. For more information, one
can find an in-depth FAQ, all relevant publi-
cations, reference code, test vectors, and perfor-
mance figures on the OCB Web page at http://
www.cs.ucdavis.edu/ rogaway/ocb/.

Associated data. In many settings, the ability to
handle associated data is crucial. Rogaway [32]
suggests methods to handle associated data in
all three of the single-pass schemes mentioned
above, and for OCB gives an extension which
uses PMAC [13] to give a particularly efficient
variant of OCB which handles associated data.

Intellectual property. Given the importance of
these new highly efficient AE algorithms, all of
the authors decided to file for patents. There-
fore, IBM and Gligor and Rogaway all have in-
tellectual property claims for their algorithms
and perhaps on some of the overriding ideas in-
volved. To date, none of these patents have been
tested in court, so the extent to which they are
conflicting or interrelated is unclear. One effect,
however, is that many would-be users of this
new technology are worried that the possible
legal entanglements are not worth the benefits
offered by this technology. Despite this, OCB has
appeared in the 802.11 draft standard as an
alternate mode, and has been licensed several
times. However, without IP claims it is possible
all of these algorithms would be in common use
today.

It was the complications engendered by the IP
claims which spurred new teams of researchers
to find further efficient AE algorithms which

would not be covered by patents. Although not
as fast as the single-pass modes described here,
they still offer significant performance improve-
ments over generic composition schemes. These
schemes include CCM, CWC, and EAX, the lat-
ter invented in part by two researchers from the
OCB team. We discuss these schemes next.

Two-PAss COMBINED MODES: If we have
highly efficient single-pass AE modes, why would
researchers subsequently work to develop less ef-
ficient multi-pass AE schemes? Well, as we just
discussed, this work was entirely motivated by
the desire to provide patent-free AE schemes. The
first such scheme proposed was CCM (CBC MAC
with Counter Mode) by Ferguson, Housley, and
Whiting. Citing several drawbacks to CCM,
Bellare, Rogaway, and Wagner proposed EAX,
another patent-free mode which addresses these
drawbacks. And independently, Kohno, Viega,
and Whiting proposed the CWC mode (Carter-
Wegman with Counter mode encryption). CWC
is also patent-free and, unlike the previous two
modes, is fully parallelizable. We now discuss each
of these modes in turn.

CCM Mode

CCM was designed with AES specifically in mind.
It therefore is hard-coded to assume a 128-bit
block size, though it could be recast for other block
sizes. Giving all the details of the mode would be
cumbersome, so we will just present the overriding
ideas. For complete details, see the CCM specifi-
cation [35].

CCM is parameterized. It requires that you
specify a 128-bit block-cipher (eg, AES), a tag
length (which must be one of 4, 6, 8, 10, 12, 14,
or 16), and the message-length field’s size (which
induces an upperbound on the message length).
Like all other schemes we mention, CCM uses a
nonce N each time it is invoked, and the size of
N depends on the the parameters chosen above;
specifically, if we choose a longer maximum mes-
sage length, we must accept a shorter nonce. It is
left to the user to decide which parameters to use,
but typical values might be to limit the maximum
message length to 16 MBytes and then use a 96-bit
nonce.

Once the parameters are decided, we invoke
CCM by providing four inputs: the key K which
will be used with AES, the nonce N of proper size,
associated data H which will be authenticated but
not encrypted, and the plaintext M which will be
authenticated and encrypted. CCM operates in
two passes: first we encode the above parameters



into an initial block, prepend this block to H and
M, and then run CBC MAC over this entire byte
string using K. This yields the authentication tag
o.(The precise details of how the above concatena-
tion is done are important for the security of CCM,
but are omitted here.)

Next we form a counter-value using one of the
scheme’s parameters along with IV and any neces-
sary padding to reach 128 bits. This counter is then
used with CTR mode encryption on (¢ | M) under
K to produce the ciphertext. The first 128 bits are
the authentication tag, and we return the appro-
priate number of bytes according to the tag-length
parameter. The subsequent bytes are the encryp-
tion of M and are always included in the output.

Decryption and verification are quite straight-
forward: N produces the counter-value and allows
the recovery of M. Re-running CBC MAC on the
same input used above allows verification of the
tag.

Comments on CCM. It would seem that CCM is
not much better than simple generic composition;
after all, it uses a MAC scheme (the CBC MAC)
and an encryption scheme (CTR mode encryption),
which are both well-known and provably secure
modes. But CCM does offer advantages over the
straightforward use of these two primitives gener-
ically composed; in particular it uses the same key
K for both the MAC and the encryption steps. Nor-
mally this practice would be very dangerous and
unlikely to work, but the designers were careful to
ensure the security of CCM despite this normally
risky practice. The CCM specification does not in-
clude performance data or a proof of security. How-
ever, a rigorous proof was published by Jonsson
[24]. CCM is currently the mandatory mode for
the 802.11 wireless standard as well as currently
being considered by NIST as a FIPS standard.

EAX Mode

Subsequent to the publication and subsequent

popularity of CCM, three researchers decided to

examine the shortcomings of CCM and see if they
could be remedied. Their offering is called EAX

[7] and addresses several perceived problems with

CCM, including the following:

1. If the associated data field is fixed from mes-
sage to message, CCM does not take advantage
of this, but rather re-processes this data anew
with each invocation.

2. Message lengths must be known in advance be-
cause the length is encoded into the first block
before processing begins. This is not a problem
in some settings, but in many applications we
do not know the message length in advance.
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3. The parameterization is awkward and, in par-
ticular, the trade-off between maximum mes-
sage length and the size of the nonce seems un-
natural.

4. The definition of CCM (especially the encodings
of the parameters and length information in the
message before it is processed) is complex and
difficult to understand. Moreover, the correct-
ness of CCM strongly depends on the details of
this encoding.

Like CCM, EAX is a combination of a type of
CBC MAC and CTR mode encryption. However,
unlike CCM, the MAC used is not raw CBC MAC,
but rather a variant. Two well-known problems
exist with CBC MAC: (1) all messages must be of
the same fixed length and (2) length must be a pos-
itive multiple of n. If we violate the first property,
security is lost. Several variants to the CBC MAC
have been proposed to address these problems:
EMAC [9, 31] adds an extra block-cipher call to
the end of CBC MAC to solve problem (1). Not to
be confused with the AE mode of the same name
above, XCBC [12] solves both problems (1) and
(2) without any extra block-cipher invocations, but
requires k& + 2n key bits. Finally, OMAC [23] im-
proves XCBC so that only % bits of key are needed.
The EAX designers chose to use OMAC with an
extra input called a “tweak” which allows them
to essentially get several different MACs by using
distinct values for this tweak input. This is closely
related to an idea of Liskov et al. who introduced
tweakable block ciphers [30].

We now describe EAX at a high level. Unlike
CCM, the only EAX parameters are the choice
of block cipher, which may have any block size
n, and the number of authentication tag bits to
be output, 7. To invoke EAX, we pass in a nonce
N e ", a header H € ©* which will be authen-
ticated but not encrypted, and the message M ¢
¥* which will be authenticated and encrypted,
and finally the key K, appropriate for the chosen
block cipher. We will be using OMAC under key
K three times, each time with a different tweak,
written OMACY%, OMACL, and OMAC%; it’s con-
ceptually easiest to think of these three OMAC
invocations as three separate MACs, although
this is not strictly true. First, we compute ctr <
OMACY(N) to obtain the counter value we will
use with CTR mode encryption. Then we compute
o < OMAC}{(H ) to get an authentication tag for
H. Then we encrypt and authenticate M with C «
OMAC%(CTR(M)). And finally we output the
first t bits of 0 = (ctr & C ® o) as the authenti-
cation tag. We also output the nonce N, the associ-
ated data H, and the ciphertext C. The decryption
and verification steps are quite straightforward.
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Note that each of the problem areas cited above
has been addressed by the EAX mode: no re-
striction on message length, no interdependence
between the tag length and maximum message
length, a performance savings when there is static
header data, and no need for message length to
be known up front. Also, EAX is arguably sim-
pler to specify and implement. Once again, prov-
ing EAX secure is more difficult than just appeal-
ing to proofs of security for generically composed
schemes since the key K is reused in several con-
texts which is normally not a safe practice.

CWC Mode

The CWC Mode [28] is also a two-pass mode:
it uses a Wegman—Carter MAC along with CTR
mode encryption under a common key K. Its main
advantage over CCM and EAX is that it is par-
allelizable whereas the other two are not (due to
their use of the inherently sequential CBC MAC
type algorithms). Also, CWC strives to be very fast
in hardware, a consideration which was not given
nearly as much attention in the design of the other
modes. In fact, the CWC designers claim that CWC
should be able to encrypt and authenticate data at
10Gbps in hardware, whereas CCM and EAX will
be limited to about 2Gbps because of their serial
constraints.

As we discussed above in the section on generic
composition, Wegman—Carter MACs require one
specify a family of hash functions on a common do-
main and range. Typically we want these functions
to (1) be fast to compute and (2) have a low colli-
sion probability. The CWC designers also looked
for a family with additional properties: (3) paral-
lelizability and (4) good performance in hardware.
The function family they settled on is the well-
known polynomial hash. Here a function from the
family is named by choosing a value for x in some
specified range, and then the polynomial

Yix' + Yox 4 4+ Vi + Yiig

is computed modulo some integer (see modular
arithmetic), typically a prime number. The spe-
cific family chosen by the CWC designers fixes
Y1, ..., Y, to be 96-bit integers, and Y;,; to be a
127-bit integer; their values are determined by the
message being hashed. The modulus is set to the
prime, 2127 — 1.

Although it is possible to evaluate this polyno-
mial quickly on a serial machine using Horner’s
method (and in fact, this may make sense in
some cases), it is also possible to exploit par-
allelism in the computation of this polynomial.
Assume n is odd and set m=(n —1)/2 and

y = x2 mod 2!?7 — 1. Then we can rewrite the func-
tion above as

(Y1ym+Ysym_1+'“+Ye>x
+ (Yzy’” + Yy 4+ YM) mod 2127 — 1.

This means that we can subdivide the work for
evaluating this polynomial and then recombine
the results using addition modulo 2127 — 1. Build-
ing a MAC from this hash family is fairly straight-
forward, and therefore CWC yields a paralleliz-
able scheme since CTR is clearly parallelizable.

The CWC designers go on to provide benchmark
data to compare CCM, EAX, and CWC on a Pen-
tium III, showing that the speed differences are
not that significant. However, this is without ex-
ploiting any parallelism available with CWC. They
do not compare the speed of CWC with that of
OCB, where we would expect OCB to be faster even
in parallel implementations.

CWC comes with a rigorous proof of security via
a reduction to the underlying 128-bit block cipher
(typically AES/Rijndael), and the paper includes
a readable discussion of why the various design
choices were made. In particular, it does not suffer

from any of the above-mentioned problems with
CCM.

AE PRIMITIVES: Every scheme discussed up to
this point has been a mode of operation. In fact
with the possible exception of some of the MAC
schemes, every mode has used a block cipher as its
underlying primitive. In this section we consider
two recently developed modes which are stream ci-
phers which provide authentication in addition to
privacy. That is to say, these are primitives which
provide AE.

This immediately means there is no proof of
their security, nor is there likely to ever be one.
The security of primitives is usually a matter of
opinion: does the object withstand all known at-
tacks? Has it been in use for a long enough time?
Have good cryptanalysts examined it?

With new objects, it is often hard to know how
much trust to place in their security. Sometimes
the schemes break, and sometimes they do not.
We will discuss two schemes in this section: Helix
and SOBER-128. Both were designed by teams of
experienced cryptographers who paid close atten-
tion to their security as well as to their efficiency.

HELIX: Helix was designed by Ferguson et al. [17].
Their goal was to produce a fast, simple, patent-
free stream cipher which also provided authenti-
cation. The team claims speeds of about 7 cycles
per byte on a Pentium II, which is quite a bit faster



than the fastest-known implementations of AES,
which run at about 15 cycles per byte. At first
glance this might be quite surprising: after all,
AES does about 160 table look-ups and 160 32-
bit XORs to encipher 16 bytes. This means AES
uses about 10 look-ups and 10 XORs per byte. As
we will see in a moment, Helix uses more oper-
ations than this per-byte! But a key difference is
that AES does memory look-ups from large tables
which perhaps are not in cache whereas Helix con-
fines its work to the register file.

Helix takes a key K up to 32 bytes in length,
and a 16-byte nonce N and a message M < (£8)*.
As usual, K will allow the encryption of a large
amount of data before it needs to be changed,
and N will be issued anew with each message en-
crypted, never to repeat throughout the life of K.
Helix uses only a few simple operations: addition
modulo 232, exclusive-or of 32-bit strings, and bit-
wise rotations. However, each iteration of Helix,
called a “block,” uses 11 XORs, 12 modular addi-
tions, and 20 bitwise rotations by fixed amounts
on 32-bit words. So Helix is not simple to specify;
instead we give a high-level description.

Helix keeps its “state” in five 32-bit registers
(the designers were thinking of the Intel family
of processors). The ith block of Helix emits one
32-bit word of key-stream S;, requires two 32-bit
words scheduled from K and N, and also requires
the ith plaintext word M;. It is highly unusual
for a stream cipher to use the plaintext stream as
part of its key-stream generation, but this feature
is what allows Helix to achieve authentication as
well as generating a key-stream.

As usual, the key-stream is used as a one-time
pad to encrypt the plaintext. In other words, the
ith ciphertext block C; is simply M; ® S;. The
five-word state resulting from block i is then fed
into block i + 1 and the process continues until
we have a long enough key-stream to encrypt M.
At this point, a constant is XORed into one of the
words of the resulting state, twelve more blocks
are generated using a fixed plaintext word based
on the length of M, with the key-stream of the four
last blocks yielding the 128-bit authentication tag.

SOBER-128

A competitor to Helix is an offering from Hawkes
and Rose called SOBER-128 [22]. This algorithm
evolved from a family of simple stream ciphers
(i.e., ciphers which did not attempt simultaneous
authentication) called the SOBER family, the first
of which was introduced in 1998 by Rose. SOBER-
128 retains many of the characteristics of its
ancestors, but introduces a method for authenti-
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cating messages as well. We will not describe the
internals of SOBER-128 but rather describe a few
of its attributes at a higher level.

SOBER-128 uses a linear-feedback shift regis-
ter in combination with several non-linear com-
ponents, in particular a carefully-designed S-box
which lies at its heart. To use SOBER-128 for
AE one first generates a keystream used to XOR
with the message M and then uses a separate
API call “maconly” to process the associated data.
The method of feeding back plaintext into the key-
stream generator is modeled after Helix, and the
authors are still evaluating whether this change
to SOBER-128 might introduce weaknesses.

Tests by Hawkes and Rose indicate that
SOBER-128 is comparable in speed to Helix; how-
ever, both are quite new and are still undergoing
cryptanalytic scrutiny—a crucial process when de-
signing primitives. Time will help us determine
their security.

BEYOND AE AND AEAD: Real protocols of-
ten require more than just an AE scheme or an
AEAD scheme: perhaps they require something
that more resembles a network transport proto-
col. Desirable properties might include resistance
to replay and prevention against packet loss or
packet reordering. In fact, protocols like SSH aim
to achieve precisely this.

Work is currently underway to extend AE no-
tions to encompass a broader range of such
goals [27]. This is an extension to the SSH analy-
sis referred to above [4], but considers the various
EtM, MtE, and E&M approaches rather than fo-
cusing on just one. Such research is another step
in closing the gap between what cryptographers
produce and what consumers of cryptographic
protocols require. The hope is that we will reach
the point where methods will be available to prac-
titioners which relieve them from inventing cryp-
tography (which, as we have seen, is a subtle
area with many insidious pitfalls) and yet allow
them easy access to provably secure cryptographic
protocols. We anticipate further work in this
area.

NOTES ON REFERENCES: Note that AE and its
extensions continue to be an active area of re-
search. Therefore, many of the bibliographic ref-
erences are currently to unpublished pre-prints
of works in progress. It would be prudent for the
reader to look for more mature versions of many
of these research reports to obtain the latest revi-
sions.

dJ. Black



20

Authenticated encryption

References

[1]

(2]

(3]

[4]

(5]

(6]

[71

(8]

(9]

[10]

[11]

Bellare, M., R. Canetti, and H. Krawczyk (1996).
“Keying hash functions for message authentica-
tion.” Advances in Cryptology—CRYPTO’96, Lec-
ture Notes in Computer Science, vol. 1109, ed. N.
Koblitz. Springer-Verlag, Berlin, 1-15.

Bellare, M., A. Desai, D. Pointcheval, and P.
Rogaway (1998). “Relations among notions of se-
curity for public-key encryption schemes.” Ad-
vances in Cryptology—CRYPT(0’98, Lecture Notes
in Computer Science, vol. 1462, ed. H. Krawczyk.
Springer-Verlag, Berlin, 232—-249.

Bellare, M., J. Kilian, and P. Rogaway (2000).
“The security of the cipher block chaining
message authentication code.” Journal of Com-
puter and System Sciences (JCSS), 61 (3)
362-399. Earlier version in CRYPTO94. See
www.cs.ucdavis.edu/ rogaway

Bellare, M., T. Kohno, and C. Namprempre (2002).
“Authenticated encryption in SSH: Provably fixing
the SSH binary packet protocol.” ACM Conference
on Computer and Communications Security (CCS-
9). ACM Press, New York, 1-11.

Bellare, M. and C. Namprempre (2000). “Authen-
ticated encryption: Relations among notions and
analysis of the generic composition paradigm.”
Advances in Cryptology—ASIACRYPT 2000, Lec-
ture Notes in Computer Science, vol. 1976, ed. T.
Okamoto. Springer-Verlag, Berlin.

Bellare, M. and P. Rogaway (2000). “Encode-then-
encipher encryption: How to exploit nonces or re-
dundancy in plaintexts for efficient encryption.”
Advances in Cryptology—ASIACRYPT 2000, Lec-
ture Notes in Computer Science, vol. 1976, ed.
T. Okamoto. Springer-Verlag, Berlin, 317-330. See
www.cs.ucdavis.edu/"rogaway

Bellare, M., P. Rogaway, and D. Wagner (2003).
“EAX: A conventional authenticated-encryption
mode.” Cryptology ePrint archive, reference num-
ber 2003/069, submitted April 13, 2003, revised
September 9, 2003. See eprint.iacr.org

Bellovin, S. (1996). “Problem areas for the IP secu-
rity protocols.” Proceedings of the Sixth USENIX
Security Symposium, July 1996, 1-16.
Berendschot, A., B. den Boer, J. Boly, A. Bosse-
laers, J. Brandt, D. Chaum, I. Damgérd, M. Dichtl,
W. Fumy, M. van der Ham, C. Jansen, P. Landrock,
B. Preneel, G. Roelofsen, P. de Rooij, and dJ.
Vandewalle (1995). Final Report of Race Integrity
Primitives, Lecture Notes in Computer Science,
vol. 1007, eds. A. Bosselaers and B. Preneel.
Springer-Verlag, Berlin.

Bernstein, D. (2000). “Floating-point arithmetic
and message authentication.” Available from
http://cr.yp.to/hash127. html

Black, J., S. Halevi, H. Krawczyk, T. Krovetz, and
P. Rogaway (1999). “UMAC: Fast and secure mes-
sage authentication.” Advances in Cryptology—
CRYPTO’99, Lecture Notes in Computer Science,
vol. 1666, ed. J. Wiener. Springer-Verlag, Berlin.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Black, J. and P. Rogaway (2000). “CBC MACs
for arbitrary-length messages: The three-key con-
structions.” Advances in Cryptology—CRYPTO
2000, Lecture Notes in Computer Science, vol.
1880, ed. M. Bellare. Springer-Verlag, Berlin.
Black, J. and P. Rogaway (2002). “A Dblock-
cipher mode of operation for parallelizable mes-
sage authentication.” Advances in Cryptology—
EUROCRYPT 2002, Lecture Notes in Computer
Science, vol. 2332, ed. L. Knudsen. Springer-
Verlag, Berlin, 384-397.

Black, J. and H. Urtubia (2002). “Side-channel at-
tacks on symmetric encryption schemes: The case
for authenticated encryption.” Proceedings of the
Eleventh USENIX Security Symposium, August
2002, ed. D. Boneh, 327-338.

Borisov, N., I. Goldberg, and D. Wagner (2001).
“Intercepting mobile communications: The insecu-
rity of 802.11.” MOBICOM. ACM Press, New York,
180-189.

Carter, L. and M. Wegman (1979). “Universal hash
functions.” J. of Computer and System Sciences, 18,
143-154.

Ferguson, N., D. Whiting, B. Schneier, J. Kelsey,
S. Lucks, and T. Kohno (2003). “Helix: Fast en-
cryption and authentication in a single crypto-
graphic primitive.” Fast Software Encryption, 10th
International Workshop, FSE 2003, Lecture Notes
in Computer Science, vol. 2887, ed. T. Johansson.
Springer-Verlag, Berlin.

Gligor, V. and P. Donescu (2002). “Fast encryp-
tion and authentication: XCBC encryption and
XECB authentication modes.” Fast Software En-
cryption, 8th International Workshop, FSE 2001,
Lecture Notes in Computer Science, vol. 2355, ed.
M. Matsui. Springer-Verlag, Berlin, 92-108. See
www.ece.umd.edu/"gligor/

Goldwasser, S., S. Micali, and R. Rivest (1998). “A
digital signature scheme secure against adaptive
chosen-message attacks.” SIAM Journal of Com-
puting, 17 (2), 281-308.

Krawczyk, H., M. Bellare, and R. Canetti (1997).
“HMAC: Keyed hashing for message authentica-
tion.” IETF RFC-2104.

Halevi, S. (2001). “An observation regarding Jutla’s
modes of operation.” Cryptology ePrint archive,
reference number 2001/015, submitted Febru-
ary 22, 2001, revised April 2, 2001. See eprint.iacr
.org

Hawkes, P. and G. Rose (2003). “Primitive spec-
ification for SOBER-128.” Available from http:/
www.qualcomm.com.au/Sober128.html

Iwata, T. and K. Kurosawa (2003). “OMAC: One-
key CBC MAC.” Fast Software Encryption, Lec-
ture Notes in Computer Science, vol. 2887, ed. T.
Johansson. Springer-Verlag, Berlin.

Jonsson, J. (2002). “On the security of CTR + CBC-
MAC.” Selected Areas in Cryptography—SAC 2002,
Lecture Notes in Computer Science, vol. 2595, eds.
K. Nyberg and H.M. Heys. Springer-Verlag, Berlin,
76-93.



[25] Jutla, C. (2001). “Encryption modes with almost
free message integrity.” Advances in Cryptology—
EUROCRYPT 2001, Lecture Notes in Computer
Science, vol. 2045, ed. B. Pfitzmann. Springer-
Verlag, Berlin, 529-544.

[26] Katz, J. and M. Yung (2000). “Complete character-
ization of security notions for probabilistic private-
key encryption.” Proceedings of the 32nd Annual
Symposium on the Theory of Computing (STOC).
ACM Press, New York.

[27] Kohno, T., A. Palacio, and J. Black (2003). “Build-
ing secure cryptographic transforms, or how to en-
crypt and MAC.” Cryptology ePrint archive, refer-
ence number 2003/177, submitted August 28, 2003.
See eprint.iacr.org

[28] Kohno, T., J. Viega, and D. Whiting (2003). “High-
speed encryption and authentication: A patent-free
solution for 10 Gbps network devices.” Cryptology
ePrint archive, reference number 2003/106, sub-
mitted May 27, 2003, revised September 1, 2003.
See eprint.iacr.org

[29] Krawczyk, H. (2001). “The order of encryption and
authentication for protecting communications
(or: How secure is SSL?).” Advances in
Cryptology—CRYPTO 2001, Lecture Notes in
Computer Science, vol. 2139, ed. J. Kilian.
Springer-Verlag, Berlin, 310-331.

[30] Liskov, M., R. Rivest, and D. Wagner (2002).
“Tweakable block ciphers.” Advances in
Cryptology—CRYPTO 2002, Lecture Notes in
Computer Science, vol. 2442, ed. M. Yung.
Springer-Verlag, Berlin, 31-46.

[31] Petrank, E. and C. Rackoff (2000). “CBC MAC for
real-time data sources.” Journal of Cryptology, 13
(3), 315-338.

[32] Rogaway, P. (2002). “Authenticated-encryption
with associated-data.” ACM Conference on Com-
puter and Communications Security (CCS-9). ACM
Press, New York, 196-205.

[33] Rogaway, P., M. Bellare, and J. Black (2003).
“OCB: A block-cipher mode of operation for efficient
authenticated encryption.” ACM Transactions on
Information and System Security (TISSEC), 6 (3),
365-403.

[34] Wegman, M. and L. Carter (1981). “New hash func-
tions and their use in authentication and set equal-
ity.” J. of Comp. and System Sciences, 22, 265-279.

[35] Whiting, D., R. Housley, and N. Ferguson (2002).
“Counter with CBC-MAC (CCM).” Available from
csre.nist.gov/encryption/modes/proposedmodes/

AUTHENTICATION

There is a rather common saying that cryptology
has two faces. The first (and better known) face
is cryptography in its narrow sense which should
protect data (information) from being revealed to
an opponent. The second face, known as authen-
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tication (also as information integrity), should
guarantee with some confidence that a given in-
formation is authentic, i.e., has not been altered or
substituted by the opponent. This confidence may
depend on the computing power of the opponent
(e.g.,in digital signature schemes this is the case).
The latter is called unconditional authentication
and makes use of symmetric cryptosystems.

The model of unconditional authentication
schemes (or codes) consists of a sender, a receiver,
and an opponent. The last one can observe all
the information transmitted from the sender to
the receiver; it is assumed (following Kerkhoff’s
maxim) that the opponent knows everything, even
the original (plain) message (this is called authen-
tication without secrecy), but he does not know the
used key.

There are two kinds of possible attacks by the
opponent. One speaks about an impersonation at-
tack when the opponent sends a message in the
hope that it will be accepted by the receiver as
a valid one. In a substitution attack the opponent
observes a transmitted message and then replaces
it with another message. For authentication pur-
poses it is enough to consider only so-called sys-
tematic authentication codes in which the trans-
mitted message has the form (m;z), where m is
chosen from the set M of possible messages and
z = f(m) is its tag (a string of “parity-check sym-
bols” in the language of coding theory). Let Z be
the tag-set andlet F' = {fi, ..., f,} be a set of n en-
coding maps f; : M — Z. To authenticate (or code)
message m, the sender chooses randomly one of
the encoding mappings f (the choice is in fact
the secret key unknown to the opponent). One
may assume without loss of generality that these
encoding maps f are chosen uniformly. The cor-
responding probabilities of success for imperson-
ation and substitution attacks are denoted by P;
and Ps respectively. The first examples of authen-
tication codes were given in [3], among which is
the following optimal scheme (known as affine
scheme).

Let the set M of messages and the set Z of tags
coincide with the finite field F, of ¢ elements (q
should be a power of a prime number). The set F'
of encoding mappings consists of all possible affine
functions, i.e. mappings of the form

fas(m) =am +b.

For this scheme P; = Ps = q~! and the scheme is
optimal for both parameters—for P; this is obvi-
ous and for Ps this follows from the square-root
bound Pg > 1/./n which is also derived in [3]. Al-
though this scheme is optimal (meets this bound
with equality), it has a serious drawback when
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being applied in practice since its key size (which
is equal to logn = 2logq) is two times larger than
the message size.

For a long time (see [6, 10]), no known schemes
(codes) had a key size that was much smaller
than the message size. Schemes that did allow
this were first constructed in [4]. They made use
of a very important relationship between authen-
tication codes and error-correcting codes (ECC,
shortly) (see [8] and cyclic codes).

By definition (see [5]), an authentication code
is a g-ary code V over the alphabet Z (|Z| =
g) of length n consisting of |M| codewords
(Am), ..., f,(m)) :m € M. Almost without loss of
generality one can assume that all words in the A-
code V have a uniform composition, i.e., all “char-
acters” from the alphabet Z appear equally often
in every codeword (more formally, |{i : v; =z}| =
n/q for any v € V and any z € Z). This is equiva-
lent to saying that P; takes on its minimal possible
value ¢ ~!. The maximal probability of success of a
substitution by the opponent is

Ps=1-n""'daV),

where da(x,y) =n—qy(x,y), y(x,y) =max{|{i:
xi =z, =2}:22 €Z} and da(V) (the min-
imum A-distance of the code V) is defined as
usual (see cyclic codes and McEliece public-key
encryption scheme). The obvious inequality
da(V) <dy(V), with dg(V) being the minimum
Hamming distance of V, allows one to apply
known upper bounds for ECC to systematic A-
codes and re-derive known nonexistence bounds
for authentication codes as well as obtain new
bounds (see [1, 5] for details).

On the other hand, the g-twisted construction
proposed in [5] turns out to be a very effective tool
to construct good authentication codes from ECC
(in fact almost all known authentication schemes
are implicitly or explicitly based on the g-twisted
construction). Let C be an error-correcting code
of length m over F, with the minimal Hamming
distance dg(C) and let U be its subcode of car-
dinality ¢~ |C| such that for all U € U and all
» € K, vectors u + A1 are distinct and belong to
C, where 1 is the all-one vector. Then the fol-
lowingg-arycode Viy :={(uw,u + 21, ..., u+ A1)
u € U} (where 11, ..., A4 are all different elements
of the field F,) of length n = mgq is called g-twisted
code and considered as A-code generates the au-
thentication scheme [5] for protecting |U| mes-
sages with the number of keys n = mq providing
probabilities

1 du(C)

Pg=1- .
m

Application of the g-twisted construction to
many optimal ECC (with enough large minimal
code distance) produces optimal or near optimal
authentication codes. For instance, Reed—Solomon
codes generate authentication schemes which are
the natural generalization of the aforementioned
affine scheme (namely, £ = 1) and have the follow-
ing parameters ([2, 5]):

The number of messages is g*, the number
of keys is q2, and the probabilities are P; =
1/q, Ps=Fk/q, where k + 1is the number of in-
formation symbols of the corresponding Reed—
Solomon code.

Reed—Solomon codes are a particular case of
algebraic-geometry (AG) codes and the corre-
sponding application of g-twisted construction to
AG codes leads to an asymptotically very efficient
class of schemes with the important, additional
property of being polynomial constructible (see
[9D.

To conclude, we note that there is also another
equivalent “language” to describe and investigate
unconditional authentication schemes, namely,
the notion of almost strongly two-universal hash
functions (see [7] and also [10]).

Grigory Kabatiansky
Ben Smeets
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AUTHENTICATION TOKEN

The term “authentication token” can have at least
three different definitions, but is generally used to
refer to an object that is used to authenticate one
entity to another (see authentication). The various
definitions for “authentication token” include the
credentials provided to an authenticating party
as part of an identity verification protocol, a data
structure provided by an authentication server for
later use in authenticating to a different applica-
tion server, and a physical device or computer file
used to authenticate oneself. These definitions are
expanded below.

CREDENTIALS PROVIDED TO AN AUTHENTI-
CATING PARTY: In most identity verification or
authentication protocols, the entity being authen-
ticated must provide the authenticating entity
with some proof of the claimed identity. This
proof will allow the authenticating party to ver-
ify the identity that is being claimed and is some-
times called an “authentication token.” Examples
of these types of authentication tokens include
functions of shared secret information, like pass-
words, known only to both the authenticating and
authenticated parties and responses to challenges
that are provided by the authenticating party but
which could only be produced by the authenticated

party.

DATA STRUCTURE PROVIDED BY AN AUTHEN-
TICATION SERVER: In some security architec-
tures end users are authenticated by a dedicated
“authentication server” by means of an identity
verification protocol. This server then provides the
user with credentials, sometimes called an “au-
thentication token,” which can be provided to other
application servers in order to authenticate to
those servers. Thus, these credentials are not un-
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like those described above, which are provided di-
rectly by the end user to the authenticating party,
except in that they originate with a third party,
the authentication server.

Usually these tokens take the form of a
data structure which has been digitally signed
(see digital signature schemes) or MACed (see
MAC algorithms) by the authentication server
and thus vouch for the identity of the authen-
ticated party. In other words, the authenticated
party can assert his/her identity to the applica-
tion server simply by presenting the token. These
tokens must have a short lifetime since if they are
stolen they can be used by an attacker to gain ac-
cess to the application server.

DEVICE OR FILE USED FOR AUTHENTICATION:
Quite often the credentials that must be provided
to an authenticating party are such that they can-
not be constructed using only data that can be re-
membered by a human user. In such situations
it is necessary to provide a storage mechanism
to maintain the user’s private information, which
can then be used when required in an identity ver-
ification protocol. This storage mechanism can be
either a software file containing the private infor-
mation and protected by a memorable password,
or it can be a hardware device (e.g., a smart card
and is sometimes called an “authentication token.”

In addition to making many identity verifica-
tion protocols usable by human end entities, these
authentication tokens have another perhaps more
important benefit. Since successful completion
of the protocol now usually involves both some-
thing the end entity has (the file or device) and
something the end entity knows (the password or
PIN to access the smart card) instead of just some-
thing the end entity knows, the actual security
of the authentication mechanism is increased. In
particular, when the token is a hardware device,
obtaining access to that device can often be quite
difficult, thereby providing substantial protection
from attack.

Robert Zuccherato

AUTHORIZATION
ARCHITECTURE

Authentication and authorization are separate
concepts (although authentication may be used in
the service of authorization), and their respective
architectures or infrastructures may be separately
deployed and managed. Authentication allows
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Fig. 1. Conceptual model of an authorization architec-
ture

entity A to convince entity B of A’s identity
with some degree of certainty (see identification,
identity verification protocol, and entity authen-
tication). Typically, however, this information is
insufficient. Entity A may be trying to perform
some task (e.g., execute an application, invoke a
function, or access a file) and B needs to know
not “who A is” as much as “whether A should be
allowed to perform this task.” Authorization al-
lows B to make and enforce this decision. In some
cases, A’s identity will be a critical input to the
decision-making process (“is A allowed to read A’s
medical record?”); in other cases, A’s identity may
be almost irrelevant, useful for auditing purposes
only (“the requester is an executive of the com-
pany and—regardless of who it is—all executives
are allowed to see the quarterly results before
they are announced”). Authentication answers the
question “who is this entity?” and authorization
answers the question “is this entity allowed to do
what it is trying to do?”

AUTHORIZATION ARCHITECTURE: An autho-
rization architecture is the set of components and
data that allows authorization decisions to be
made and enforced. The components of this archi-
tecture are shown in Figure 1 (note that this is
a conceptual model; actual implementations will
typically combine subsets of these components
into single machines or even single processes).

COMPONENTS: The subject, S, sends a request to
perform some action on a resource, R (e.g., read a
file, POST to a Web site, execute an application,
or invoke an object method). This request is in-
tercepted by an entity called a policy enforcement
point (PEP) whose job is to enforce a “PERMIT”
or “DENY” decision with respect to this request.
The decision itself is made by an entity called a
policy decision point (PDP). The PDP makes this
decision by gathering all the input data that is
relevant to this request and evaluating it accord-

ing to an authorization policy that is applicable to
this request. The relevant data includes the sub-
mitted request along with particular attributes
about both the subject and the resource, and may
also include attributes about the environment in
which the request is submitted. Various authori-
ties are responsible for creating and making avail-
able this attribute information: one or more sub-
ject authorities (SAs), a resource authority (RA),
and one or more environmental authorities (EAs)
package this information in a syntax that will be
accessible by a policy information point (PIP), the
entity that collects this data on behalf of the PDP.
Similarly, a policy administration point (PAP) is
responsible for creating authorization policies and
making them accessible to a policy retrieval point
(PRP), the entity that fetches policies for the
PDP.

A given implementation may have variations on
the basic architecture discussed above. For exam-
ple, there may be multiple PDPs that work to-
gether to render an overall decision with respect
to an authorization request.

INFORMATION FLOW: The flow of information
in Figure 1 is as follows. The subject S submits
a request to access a resource R. The PEP inter-
cepts this access request and sends a request for
an authorization decision to the PDP. The decision
request will contain the information contained in
the original access request, but may also contain
additional information, such as some attributes
of the subject, resource, or environment that are
known to the PEP (e.g., the IP address of the ma-
chine from which the access request was made).
The PDP will need to find an authorization pol-
icy that is relevant to this access request and so
will supply the appropriate subject, resource, and
action information to the PRP and ask it to retrieve
the correct policy. Once the PDP has the authoriza-
tion policy for this access request, it can examine
the policy to see what subject, resource, or environ-
ment attributes are required in order for it to ren-
der a decision. If the PDP requires attributes that
were not supplied by the PEP in the authorization
decision request, the PDP will ask the PIP to re-
trieve these attributes. Once the PDP has all the
data it requires (or has determined that some at-
tribute data cannot be retrieved for some reason),
it can evaluate the authorization policy and render
a decision or produce a value of “indeterminate”
(no decision possible due to missing attributes) or
“error” (no decision possible due to network or pro-
cessing difficulties). The PDP can then return its
result to the PEP, which will enforce this result
by granting access to the requested resource, or



by returning an “access denied” or relevant error
message to the subject.

ATTRIBUTES: An attribute is a piece of informa-
tion that may be categorized as being associated
with the subject, action, resource, or environment
in an authorization architecture. Attributes may
be static or dynamic. Static attributes of the sub-
ject are referred to by many names in various
discussions and contexts, including privileges, per-
missions, rights, authorizations, properties, char-
acteristics, entitlements, and grants. Static at-
tributes can also be associated with resources and
with actions. Groups, roles, and document labels
are all examples of static attributes (even though
a “role” is dynamic in another sense: that is, an
entity may be able to step into or out of a role at
will in the course of performing some aspects of its
job).

Dynamic attributes are those whose values can-
not be relied upon to remain unchanged between
one time they are required (e.g., by the PDP) and
the next time they are required. Example dynamic
attributes of the subject include current account
balance, amount of credit remaining, and IP ad-
dress of requesting machine; dynamic attributes
of the resource include the number of times it has
been accessed; and dynamic attributes of the en-
vironment include current time of day, and time of
receipt of the request.

Dynamic attributes are retrieved by the
PDP/PIP in real time (i.e., at the time of access re-
quest evaluation) from the relevant authority. In
order for this exchange to occur securely, it is nec-
essary for the response to be authenticated so that
the PDP/PIP can be confident that the intended
authority created the response. In some cases, the
request for these attributes may also need to be
authenticated so that the authority can be confi-
dent that the legitimate PDP/PIP asked for this
information. This authentication may take place
independently on each message (e.g., using digi-
tal signatures), or may take place in the context
of a secure session (such as an SSL (see Secure
Socket Layer) session between the PDP/PIP and
the relevant authority).

Static attributes need not be retrieved in real
time from the authority; for example, they may be
cached locally by the PDP or retrieved from an on-
line repository such as a database or a directory.
However, in such cases, the authenticity and in-
tegrity of the information must still be ensured.
A method commonly employed is to put the at-
tribute data into a data structure along with some
representation of the entity to which it pertains
(the identity of the subject, or the name of the
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resource, for example) and to have the relevant
authority digitally sign this data structure. The
signed data structure is the authority’s “certifi-
cate” of the authenticity of the binding between
the attribute data and the entity, which the en-
tity may be able to use in a proof procedure with
other parties to show ownership of the contained
attributes.

When static attributes are available in an au-
thorization architecture, the use of signed data
structures binding such attributes to entities can
have a number of attractive benefits. First, “of-
fline” operation may be possible, in that relying
parties such as the PDP and PIP do not need to
access SAs or RAs in real time as access requests
are being evaluated. Second, caching or other rela-
tively local storage of this data at the PDP/PIP can
significantly reduce network traffic when these
attributes need to be retrieved. Third, extended
trust and delegation of attribute granting author-
ity are more readily achievable through the use of
signed data structures. Finally, such an architec-
ture can allow a simple mechanism to “turn off”
all attributes for a given entity simultaneously
(for example, if all attribute certificates are cryp-
tographically linked to an entity’s public-key cer-
tificate, then revoking that single public-key cer-
tificate will automatically revoke all associated
attribute certificates—this can be a significant
convenience when a company employee is fired or
otherwise rendered inactive and access to many
different networks and systems has to be cut off
instantaneously).

POLICIES: An access control policy with respect
to a specific resource or set of resources is the
set of rules governing who can do what to those
resources under what conditions. The term au-
thorization policy includes access control policy,
but has a broader definition, potentially includ-
ing rules regarding the actual assignment of at-
tributes to subjects or resources, the rules re-
garding the delegation of authority to assign such
attributes, rules regarding the default behavior of
various components in the absence of sufficient in-
formation, rules regarding the trusted system en-
tities for each component in the architecture, and
SO on.

Terminology in this area is far from universally
agreed, but the concepts are quite similar across
many discussions. Typically a “rule” has an effect
(indicating whether it is intended to contribute
to a PERMIT decision or a DENY decision), a
scope or a target of applicability (indicating the
subject, resource, and action to which it applies),
and a condition or set of conditions (indicating any
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restrictions, limitations, or qualifications to be im-
posed upon this subject being permitted or denied
access to this resource). A “policy” is a collection
of one or more rules along with an (implicit or
explicit) algorithm for combining the rules that
it contains or references. A well-known example
combining algorithm is “deny overrides,” in which
any satisfied rule that has an effect of DENY takes
precedence over all satisfied rules that have an ef-
fect of PERMIT. Another common example is “de-
fault deny,” in which access is denied if for what-
ever reason an actual decision cannot be rendered
by the PDP from the available data.

In many environments, policies will have what
is referred to as “distributed authorship.” That
is, several different PAPs (policy administration
points) may independently create policies that per-
tain to the same subject or to the same resource.
For example, in a particular company or orga-
nization, there may be regulatory policies that
govern access to certain types of data, legislative
policies regarding the release of the same data,
and corporate and even departmental policies re-
garding access to the same data. When a subject
asks to read this data, all these policies must be
taken into account by the PDP before it can ren-
der the appropriate decision. This means that the
PDP must have some sort of reconciliation algo-
rithm, determining the correct (i.e., intended) way
in which to combine these various—potentially
conflicting—policies. The reconciliation algorithm
must be robust and comprehensive in order for
the PDP to be able to deal in an automated fash-
ion with all the possible ways in which indepen-
dently created policies may interact. This aspect
of authorization policy is still an area of much
research.

ATTRIBUTE AND PoLICY MANAGEMENT: Sub-
ject and resource attributes, as well as access con-
trol and authorization policies, need to be man-
aged in an authorization architecture. Attributes
and policies have life cycles: they may be created,
used, versioned, audited, revoked, and archived.
They may be “current” (i.e., active and valid) for a
relatively short period of time or for a long period
of time, and components in the architecture (espe-
cially the PDP) must readily be able to tell whether
a particular attribute binding or policy statement
can be relied upon or not. Various authorities in
the architecture are responsible for managing the
life cycle of this information, including SAs, RAs,
and PAPs. Such authorities must be trusted to do
this job in a reliable and timely fashion; thus, the
establishment of a trust model (see trust models)

or trust infrastructure is critical to the success of
the authorization architecture.

Another important aspect of management is at-
tribute/policy storage and retrieval. How can this
information be found by the components that need
it (the PIP and PRP), when they need it? At-
tributes and policies must be indexed and stored in
a manner that makes them easy to retrieve in real
time, given only the information contained in the
access request. Finding the best indexing mecha-
nism, storage technology, and retrieval method for
a given environment is an area of both theoretical
and practical interest.

SYNTAX: The various pieces of information in the
authorization architecture must be expressed and
conveyed in a syntax that is understood by dif-
ferent components in the architecture. For exam-
ple, the Subject Authority will bind attribute in-
formation to subject identifiers and express this
binding in a data structure; the policy adminis-
tration point will define an access control policy
and express this policy in a data structure; the pol-
icy enforcement point will need a decision from a
policy decision point regarding a particular access
request and will package this decision request in
a protocol message. In each case, the syntax and
semantics of the data must be understood by mul-
tiple components in the architecture in order for
proper enforcement of the intended authorization
policies to take place.

Over the years, there have been many at-
tempts to define a syntax to express attribute
bindings and policy information, some based on
Baccus-Nauer Form (BNF), some based on Ab-
stract Syntax Notation One (ASN.1), and some
more recent work based on Extensible Markup
Language (XML). Examples include work in
the Distributed Computing Environment (DCE),
SESAME, and CORBA Security initiatives, Policy-
Maker, PONDER, Distributed Management Task
Force/Common Information Model (DMTF/CIM),
IETF Simple Public Key Infrastructure (SPKI) s-
expressions, ISO/ITU-T X.509 Attribute Certifi-
cate and PrivilegePolicy, OASIS XACML policy
language, and OASIS SAML assertions and pro-
tocols.

It is unlikely that a single syntax for attribute
binding information or for policy expression will
meet the needs of all environments and architec-
tures. However, the search for flexible, powerful
syntaxes for these types of information continues
throughout the academic and commercial commu-
nities. In the meantime, some of the efforts men-
tioned above have been found to be appropriate



and useful in specific environments and commu-
nities of interest.

FURTHER READING: Further discussion on au-
thorization models and architectures can be found
in the references list.
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AUTHORIZATIONS
MANAGEMENT

Authorizations management is a subset of
general “authorization data” management (see
authorization architecture) in which the data be-
ing managed is authorizations associated with en-
tities in an environment. An authorization may
be defined as follows [1]: something (typically in
writing) “empowering a person (or system entity)
to perform an act or to execute an office.”
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AUTHORIZATION POLICY

Authorization policy is the policy used by a policy
decision point (PDP), in conjunction with autho-
rization data, to render authorization decisions.
See authorization architecture for details.

Carlisle Adams
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AUTOCORRELATION

Let {a;} be a sequence of period n (so a; = a;in
for all values of ¢#) with symbols being the inte-
gers mod g (see modular arithmetic). The periodic
auto-correlation of the sequence {a;} at shift 7 is
defined as
n—1
A(r) = Z @+

t=0

where w is a complex gth root of unity.

In most applications one considers binary
sequences when g = 2 and w = —1. Then the auto-
correlation at shift ¢ equals the number of agree-
ments minus the number of disagreements be-
tween the sequence {a;} and its cyclic shift {a;,.}.
Note that in most applications one wants the au-
tocorrelation for all nonzero shifts 7 # 0 (mod n)
(the out-of-phase autocorrelation) to be low in
absolute value. For example, this property of a
sequence is extremely useful for synchronization
purposes.

Tor Helleseth
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AVAILABILITY

A service is of no practical use if no one is able to
access it. Availability is the property that legiti-
mate principals are able to access a service within
a timely manner whenever they may need to do so.
Availability is typically expressed numerically as
the fraction of a total time period during which a
service is available. Although one of the keystones
of computer security, availability has historically
not been emphasized as much as other properties
of security such as confidentiality and integrity.
This lack of emphasis on availability has changed
recently with the rise of open Internet services.
Decreased availability can occur both inadver-
tently, through failure of hardware, software, or
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infrastructure, or intentionally, through attacks
on the service or infrastructure. The first can be
mitigated through redundancy, where the prob-
ability of all backups experiencing a failure si-
multaneously is (hopefully) very low. It is in re-
gard to these random failures where “five-nines
of availability” (available 99.999% of the time)
are often used when describing systems. The
second cause for loss of availability is of more
interest from a security standpoint. When an

attacker is able to degrade availability, it is known
as a Denial of Service attack. Malicious attacks
against availability can focus on the service it-
self (e.g., exploiting a common software bug to
cause all backups to fail simultaneously), or on the
infrastructure supporting the service (e.g., flood-
ing network links between the service and the
principal).

Eric Cronin



BEAUFORT ENCRYPTION

This is an encryption similar to the Vigenere
encryption [1], but with shifted reversed standard
alphabets. For encryption and decryption, one can
use the Beaufort table below (Giovanni Sestri,
1710).
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BERLEKAMP-MASSEY
ALGORITHM

The Berlekamp-Massey algorithm is an algorithm
for determining the linear complexity of a finite
sequence and the feedback polynomial of a linear
feedback shift register (LFSR) of minimal length
which generates this sequence. This algorithm is
due to Massey [3], who showed that the iterative
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algorithm proposed in 1967 by Berlekamp [1] for
decoding BCH codes (see cyclic codes) can be used
for finding the shortest LFSR that generates a
given sequence.

For a given sequence s" of length n, the
Berlekamp—Massey algorithm performs n iter-

=
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AWPEPNKHYSI<L<CHRIOTOZEDN R~ EHO $
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NHKHYE<AHNIOTIOZErN R =TI QHEBUAQW > N

TQHMEHUIUQW NSLXI<CHIOTOZELD R < —

ations. The ¢th iteration determines an LFSR
of minimal length, which generates the first
t digits of ™. The algorithm can be described as
follows.

Input. s™ = s¢s1...5,_1, a sequence of n elements
of F,.

Output. A, the linear complexity of s™ and P, the
feedback polynomial of an LFSR of length A
which generates s™.

Initialization.

PX)«1,P(X) < 1,A«~0m<«-1,d <1

Fort fromOton —1do
d < s; + Zi/\:lpist_i.
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If d # 0 then
T(X) <« P(X).
P(X) <« P(X) —dd) 1P (X)Xt .
if 2A <t then

A<—t+1-—A.
m <«t.
P(X) « T(X).
d <d.

Return A and P.

In the particular case of a binary sequence, the
quantity d’ does not need to be stored since it is
always equal to 1. Moreover, the feedback polyno-
mial is simply updated by

P(X) < P(X) + P'(X)X'™™.

The number of operations performed for comput-
ing the linear complexity of a sequence of length n
is O(n?).

It is worth noting that the LFSR of minimal
length that generates a sequence s™ of length n
is unique if and only if n > 2A(s™), where A(s™) is
the linear complexity of s™.

EXAMPLE: The following table describes the
successive steps of the Berlekamp—Massey algo-
rithm applied to the binary sequence of length 7,
So---S¢ = 0111010. The values of A and P obtained
at the end of step ¢ correspond to the linear com-
plexity of the sequence s¢- - -s; and to the feedback
polynomial of an LFSR of minimal length that gen-
erates it.

t St d A P(X) m P(X)
0 1 -1 1
0 0 0 0 1 -1 1
1 1 1 2 1+X2 1 1
2 1 1 2 1+ X+ X? 1 1
3 1 1 2 1+X 1 1
4 1 0 2 1+X 1 1
5 0 1 4 1+ X+ X4 5 1+X
6 0 0 4 1+ X+X* 5 1+X

The linear complexity A(s) of a linear recur-
ring sequence s = (s;);>0 is equal to the linear
complexity of the finite sequence composed of
the first n terms of s for any n > A(s). Thus,
the Berlekamp—Massey algorithm determines the
shortest LFSR that generates an infinite linear
recurring sequence s from the knowledge of any
2A(s) consecutive digits of s.

It can be proved [2] that the Berlekamp—Massey
algorithm and the Euclidean algorithm are essen-
tially the same.

Anne Canteaut
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BERLEKAMP Q-MATRIX

The Q-matrix is the key component in Berlekamp’s
elegant algorithm [1] for factoring a polynomial
over finite field.

Let F, be a finite field and let f(x) be a monic
polynomial of degree d over Fy:

fo)=x%+ fi_1x@ P4+ fix+ fo

where the coefficients fj, ..., f;_1 are elements of
F,. The factorization of f(x) has the form

f@) = [T,

where each factor A;(x) is an irreducible poly-
nomial and e; > 1 is the multiplicity of the factor
h;(x).

Berlekamp’s algorithm exploits the fact that for
any polynomial g(x) over F,

g —g@) = [ [(e@) o).

ceF,

Accordingly, given a polynomial g(x) such that
gx) — g(x) =0 mod f(x),

one can find factors of f(x) by computing the great-
est common divisor (in terms of polynomials) of
f(x) and each g(x) —c term. (This process may
need to be repeated with other polynomials g(x)
until the irreducible factors %;(x) are found.) The
@-matrix is the key to obtaining the polynomial
£g(x). In particular, Berlekamp shows how to trans-
form the congruence above into a problem in linear
algebra,

(@ -Dg=0,

where @ is a d x d matrix over Fy, and [ is the
d x d identity matrix. The elements of @ cor-
respond to the coefficients of the polynomials
x? mod f(x),0 <i < d.Theelements of each solu-
tion g, a vector over F,, are the coefficients of g(x).
The running time of the algorithm as described is
polynomial time in d and g, but it can be improved




to be polynomial in d and log g, and more efficient
algorithms are also available (e.g., [2]).

Burt Kaliski
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BINARY EUCLIDEAN
ALGORITHM

The principles behind this algorithm were dis-
covered by R. Silver and J. Tersian and indepen-
dently by Stein [8]. The algorithm computes the
greatest common divisor and is based on the fol-
lowing observations:
® If u and v are both even, then gcd(u,v)=
2ged(u/2,v/2);
® If 4 is even and v is odd, then gecd(u,v) =
ged(u/2, v);
® Otherwise both are odd,
ged(jlu —vl|/2, v).
The three conditions cover all possible cases for
u and v. The algorithm systematically reduces u
and v by repeatedly testing the conditions and ac-
cordingly applying the reductions. Note that the
first condition, i.e., # and v both being even, ap-
plies only in the very beginning of the procedure.
Thus, the algorithm first factors out the highest
common power of 2 from u and v and stores it in g.
In the remainder of the computation only the other
two conditions are tested. The computation termi-
nates when one of the operands becomes zero. The
algorithm is given as follows.

and ged(u,v) =

The Binary GCD Algorithm

Input: positive integers x and y
Output: g = GCD(u,v)
g <« 1

While u is even AND v is even do
u <~ u/2;v <« v/2;g <« 2g;
End While
While u # 0 do
While v is even do u < u/2;
While v is even do v < v/2;
t < |lu—v|/2;
Ifu > v then
u < t;
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Else
v <« t;
End While
End While
Return (gv)

In the algorithm, only simple operations such as
addition, subtraction, and divisions by two (shifts)
are computed. Although the binary GCD algo-
rithm requires more steps than the classical Eu-
clidean algorithm, the operations are simpler. The
number of iterations is known [6] to be bounded
by 2(logy(v) + logs(v) + 2).

Similar to the extended Euclidean algorithm,
the binary GCD algorithm was adapted to re-
turn two additional parameters s and ¢ such
that

su+tv = ged(u, v).

These parameters are essential for modular in-
verse computations. If gcd(u, v) = 1 then it follows
that s =« ! mod v and ¢ = v~! mod u. Knuth [5]
attributes the extended version of the binary GCD
algorithm to Penk. The algorithm given below is
due to Bach and Shallit [1].

The Binary Euclidean Algorithm
Input: positive integers x and y
Output: integers s, ¢, g such that su+tv=g
where g = GCD(u, v)
g « 1
While u is even AND v is even do
u <~ u/2;v <« v/2; g « 2g;

End While

x < uyy < v;8" <« 1;8 <« 0;t" « 0
'« 1

L1 While x is even do

x <« x/2;

If s” is even and ¢” is even then
s// <« S///z; t// <« t///2;
Else
s” <« (s"+ v)/z’ ¢ — (' — u)/z’
End If
End While
While y is even do
y < ¥/
If s’ is even AND ¢’ is even then
s« s'/25t « t')2;

Else
s <« (8'+v)/2;t «— ' —u)/2;
End If
End While
Ifx > ythen
X «— X _y; S// <« S// _ s/; t// «— t// _ t/;
Else
y<—y—x;8/<—8/—8//;t/<—t/—t//;
End If
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If x = 0 then
s <« st < t;
Else
GoTo L1
End If
Return (s, ¢, gy)

The binary Euclidean algorithm may be used for
computing inverses a~! mod m by setting u =m
and v = a. Upon termination of the execution, if
gcd(u,v) = 1 then the inverse is found and its
value is stored in ¢. Otherwise, the inverse does
not exist. In [6], it is noted that for computing mul-
tiplicative inverses the values of s” and ¢” do not
need to be computed if m is odd. In this case, the
evenness condition on s” and ¢” in the second while
loop may be decided by examining the parity of s’.
If m is odd and s’ is even, then s” must be even.

The run time complexity is O((log(n))?) bit op-
erations. Convergence of the algorithm, if not ob-
vious, can be shown by induction. A complexity
analysis of the binary euclidean algorithm was
presented by Brent in [2]. Bach and Shallit give
a detailed analysis and comparison to other GCD
algorithms in [1].

Sorenson claims that the binary Euclidean al-
gorithm is the most efficient algorithm for com-
puting greatest common divisors [7]. In the same
reference Sorenson also proposed a k-ary version
of the binary GCD algorithm with worst case run-
ning time O(n2/log(n)).

In [3], Jebelean claims that Lehmer’s Euclidean
algorithm is more efficient than the binary GCD
algorithm. The same author presents [4] a word-
level generalization of the binary GCD algorithm
with better performance than Lehmer’s Euclidean
algorithm.

See also Euclidean Algorithm.

Berk Sunar
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BINARY EXPONENTIATION

Most schemes for public-key cryptography involve
exponentiation in some group (or, more generally,
in some semigroup; a semigroup is an algebraic
structure that is like a group except that elements
need not have inverses, and that there may not
even be a neutral element). The term exponentia-
tion assumes that the group operation is written
multiplicatively. If the group operation is written
additively, one speaks of scalar multiplication in-
stead, but this change in terminology does not af-
fect the essence of the task.

Let o denote the group operation and assume
that the exponentiation to be performed is g°
where g is an element of the group (or semi-
group) and e is a positive integer. Computing the
result go---og in a straightforward way by ap-
plying the group operation e — 1 times is feasible
only if e is very small; for e > 4, it is possible to
compute g¢ with fewer applications of the group
operation. Determining the minimum number of
group operations needed for the exponentiation,
given some exponent e, is far from trivial; see
fixed-exponent exponentiation. (Furthermore, the
time needed for each single computation of the
group operation is usually not constant: for ex-
ample, it often is faster to compute a squaring
Ao A than to compute a general multiplication
Ao B.) Practical implementations that have to
work for arbitrary exponents need exponentiation
algorithms that are reasonably simple and fast.

Assuming that for the exponentiation one can
use no other operation on group elements than
the group operation o (and that one cannot make
use of additional information such as the order
of the group or the order of specific group ele-
ments), it can be seen that for [-bit exponents
(e, 2"l <e < 2!), any exponentiation method
will have to apply the group operation atleast! — 1
times to arrive at the power g¢. The left-to-right
binary exponentiation method is a very simple and
memory-efficient technique for performing expo-
nentiations in at most 2( — 1) applications of the




group operation for any /-bit exponent (i.e., within
a factor of 2 from the lower bound). It is based on
the binary representation of exponents e:

-1
e= Zei2i, e; € {0, 1}.
i=0

With [/ chosen minimal in such a representation,
we have ¢;_1; = 1. Then g° can be computed as fol-
lows:

A«g

fori =/ —2down to 0 do
A< AocA
ife; =1 then
A<« Aog

return A

Ifthe group is considered multiplicative, then com-
puting Ao A means squaring A, and computing
Ao g means multiplying A by g; hence this algo-
rithm is also known as the square-and-multiply
method for exponentiation. If the group is consid-
ered additive, then computing A o A means dou-
bling A, and computing A o g means adding g to 4;
hence this algorithm is also known as the double-
and-add method for scalar multiplication.

The algorithm shown above performs a left-to-
right exponentiation, i.e., it starts at the most sig-
nificant digit of the exponent e (which, assuming
big-endian notation, appears at the left) and goes
toward the least significant digit (at the right).
The binary exponentiation method also has a vari-
ant that performs a right-to-left exponentiation,
i.e., starts at the least significant digit and goes
toward the most significant digit:

flag <« false
B <« identity element
A<« g
fori = 0tol -1 do
ife; = 1 then
if flag then
B <« Bo A
else
B <~ A {Equiv.to B < B o A}
flag < true
ifi <[ -1 then
A<« Aoc A
return B

This algorithm again presumes that ¢;_; = 1. The
right-to-left method is essentially the traditional
algorithm known as “Russian peasant multiplica-
tion,” generalized to arbitrary groups.

For an [-bit exponent, the left-to-right and right-
to-left binary exponentiation methods both need
[ — 1 squaring operations (Ao A) and, assuming
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that all bits besides ¢;_; are uniformly and inde-
pendently random, (! — 1)/2 general group opera-
tions (Ao g or Bo A) on average.

Various other algorithms are known that can be
considered variants or generalizations of binary
exponentiation: see 2F-ary exponentiation and
sliding window exponentiation for other meth-
ods for computing powers (which can often be
faster than binary exponentiation), and see simul-
taneous exponentiation for methods for comput-
ing power products. See also signed digit exponen-
tiation for techniques that can improve efficiency
in groups allowing fast inversion.

Bodo Méller

BINOMIAL DISTRIBUTION

If a two-sided coin is flipped n times, what is the
probability that there are exactly £ heads? This
probability is given by the binomial distribution.
If the coin is unbiased and the coin flips are in-
dependent of one another, then the probability is
given by the equation

Pr[% heads | n coin flips] = <Z>2_”.
Here, the notation (};), read “n choose k,” is the
number of ways of choosing % items from a set of n
items, ignoring order. The value may be computed

as
(n) B n!
k) Rkl(n—k)

For the first several values of n, the following
probabilities are as follows for an unbiased coin
(read & left to right from 0 to n):

n=0: 1
n=1: % %
n=2: 4
n=d g

n—4. L 1 3 1 1

6 4 8 4 16
More generally, if the coin flips are independent
but the probability of heads is p, the binomial dis-
tribution is likewise biased:

Pr[% heads | n coin flips, probability p of heads]
n
— 1— nfk.
<k)pk( p)

The name “binomial” comes from the fact that
there are two outcomes (heads and tails) and the
probability distribution can be determined by
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computing powers of the two-term polynomial
(binomial) Ax)= px + (1 — p). The probability
that there are exactly £ heads after n coin flips is
exactly the same as the x* term of the polynomial
fle)™.

As coin flips (either physical or their compu-
tational equivalent) are the basic building block
of randomness in cryptography, the binomial dis-
tribution is likewise the foundation of probability
analysis in this field.

Burt Kaliski

BIOMETRICS

A wide variety of systems require reliable au-
thentication schemes to confirm the identity
of an individual requesting their services (see
identification). The purpose of such schemes is to
ensure that the rendered services are accessed
only by a legitimate user, and no one else. Ex-
amples of such applications include secure access
to buildings, computer systems, laptops, cellular
phones, and ATMs. In the absence of robust au-
thentication schemes, these systems are vulnera-
ble to the wiles of an impostor.

Traditionally, passwords (knowledge-based se-
curity) and ID cards (token-based security) have
been used to restrict access to systems. However,
security can be easily breached in these systems
when a password is divulged to an unauthorized
user or an ID card is stolen by an impostor. Fur-
ther, simple passwords are easy to guess (by an
impostor) and complex passwords may be hard
to recall (by a legitimate user). The emergence
of biometrics has addressed the problems that
plague these traditional security methods. Bio-
metrics refers to the automatic identification (or
verification) of an individual (or a claimed iden-
tity) by using certain physiological or behavioral
traits associated with the person. By using biomet-
rics it is possible to establish an identity based on
“who you are,” rather than by “what you possess”
(e.g., an ID card) or “what you remember” (e.g.,
a password). Current biometric systems make
use of fingerprints, hand geometry, iris, retina,
face, hand vein, facial thermograms, signature,
voiceprint, etc. (Figure 1) to establish a person’s
identity [1,4]. While biometric systems have their
limitations (e.g., additional cost, temporal changes
in biometric traits, etc.), they have an edge over
traditional security methods in that they cannot
be easily stolen or shared.

Biometric systems also introduce an aspect of
user convenience that may not be possible using

A

4

(a) Fingerprint (c) Hand Geometry

1
0.8
0.6
0.4
0.2

0
0.2
0.4
0.6
0.8
1

§ 77
A AR

0123456867
. 10¢
(f) Voice *

T

(e) Iris

(d) Signature

Fig. 1. Examples of some of the biometric traits used for
authenticating an individual

traditional security techniques. For example,
users maintaining different passwords for differ-
ent applications may find it challenging to recol-
lect the password associated with a specific ap-
plication. In some instances, the user might even
forget the password, requiring the system admin-
istrator to intervene and reset the password for
that user. Maintaining, recollecting, and resetting
passwords can, therefore, be a tedious and expen-
sive task. Biometrics, on the other hand, addresses
this problem effectively: a user can use the same
biometric trait (e.g., right index finger) or differ-
ent biometric traits (e.g., fingerprint, hand geome-
try, iris) for different applications, with “password”
recollection not being an issue at all.

A typical biometric system operates by acquir-
ing biometric data from an individual, extracting
a feature set from the acquired data, and compar-
ing this feature set against the template feature
set stored in the database (Figure 2). In an identi-
fication scheme, where the goal is to recognize the
individual, this comparison is done against tem-
plates corresponding to all the enrolled users (a
one-to-many matching); in a verification scheme,
where the goal is to verify a claimed identity, the
comparison is done against only those templates
corresponding to the claimed identity (a one-to-
one matching). Thus, identification (“whose bio-
metric data is this?”) and verification (“does this
biometric data belong to Bob?”) are two differ-
ent problems with different inherent complexities.
The templates are typically created at the time
of enrollment, and, depending on the application,
may or may not require human personnel inter-
vention.

Biometric systems are being increasingly de-
ployed in large scale civilian applications. The
Schiphol Privium scheme at the Amsterdam
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Fig. 2. The enrollment module and the verification module of a biometric system

airport, for example, employs iris scan cards to
speed up the passport and visa control procedures.
Passengers enrolled in this scheme insert their
card at the gate and look into a camera; the cam-
era acquires the image of the traveler’s eye and
processes it to locate the iris, and computes the
Iriscode; the computed Iriscode is compared with
the data residing in the card to complete user ver-
ification. A similar scheme is also being used to
verify the identity of Schiphol airport employees
working in high-security areas. Thus, biometric
systems can be used to enhance user convenience
while improving security.

A simple biometric system has four important
modules: (i) Sensor module which acquires the bio-
metric data of an individual. An example would be
a fingerprint sensor that images the fingerprint
ridges of a user. (ii) Feature extraction module in
which the acquired biometric data is processed to
extract a feature set that represents the data. For
example, the position and orientation of ridge bi-
furcations and ridge endings (known as minutiae
points) in a fingerprint image are extracted in the
feature extraction module of a fingerprint system.
(iii) Matching module in which the extracted fea-
ture set is compared against that of the template
by generating a matching score. For example, in
this module, the number of matching minutiae
points between the acquired and template finger-
print images is determined, and a matching score
reported. (iv) Decision-making module in which

the user’s claimed identity is either accepted or re-
jected based on the matching score (verification).
Alternately, the system may identify a user based
on the matching scores (identification).

In order to analyze the performance of a bio-
metric system, the probability distribution of gen-
uine and impostor matching scores is examined.
A genuine matching score is obtained when two
feature sets corresponding to the same individual
are compared, and an impostor matching score is
obtained when feature sets from two different in-
dividuals are compared. When a matching score
exceeds a certain threshold, the two feature sets
are declared to be from the same individual; oth-
erwise, they are assumed to be from different in-
dividuals. Thus, there are two fundamental types
of errors associated with a biometric system: (i)
a false accept, which occurs when an impostor
matching score exceeds the threshold, and (ii) a
false reject, which occurs when a genuine match-
ing score does not exceed the threshold. The error
rates of systems based on fingerprint and iris are
usually lower compared to those based on voice,
face, and hand geometry. A receiver operating
characteristic (ROC) curve plots the false reject
rate (FRR—the percentage of genuine scores that
do not exceed the threshold) against the false ac-
cept rate (FAR—the percentage of impostor scores
that exceed the threshold) at various thresholds.
The operating threshold employed by a system de-
pends on the nature of the application. In forensic
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applications, for example, a low FRR is preferred,
while in high security access facilities like nuclear
labs, a low FAR is desired (Figure 3). Besides FAR
and FRR, other types of errors are also possible
in a biometric system. The failure to enroll (FTE)
error refers to the inability of a biometric system
to enroll an individual whose biometric trait may
not be of good quality (e.g., poor quality fingerprint
ridges). Similarly, a biometric system may be un-
able to procure good quality biometric data from
an individual during authentication resulting in a
failure to acquire (FTA) error.

A biometric system is susceptible to various
types of attacks. For example, an impostor may
attempt to present a fake finger or a face mask
or even a recorded voice sample in order to cir-
cumvent the system. The problem of fake biomet-
rics may be mitigated by employing challenge-
response mechanisms or conducting liveness
detection tests. Most biometric systems currently
deployed are used for local authentication, i.e., sel-
dom is the biometric data acquired from a user
transmitted across a network channel. This avoids
problems that would arise if a channel is compro-
mised. Privacy concerns related to the use of bio-
metrics and protection of biometric templates are
issues that are currently being studied [3].

The increased demand for reliable and conve-
nient authentication schemes, availability of in-
expensive computing resources, development of
cheap biometric sensors, and advancements in sig-
nal processing have all contributed to the rapid de-
ployment of biometric systems in establishments

ranging from grocery stores to airports. The emer-
gence of multimodal biometrics has further en-
hanced the matching performance of biometric
systems [2]. It is only a matter of time before bio-
metrics integrates itself into the very fabric of so-
ciety and impacts the way we conduct our daily
business.

Anil K. Jain
Arun Ross
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BIRTHDAY PARADOX

The birthday paradox refers to the fact that there
is a probability of more than 50% that among



a group of at least 23 randomly selected peo-
ple at least 2 have the same birthday. It follows
from
365 365-1 365—22
365 365 365

it is called a paradox because the 23 is felt to be
unreasonably small compared to 365. Further, in
general, it follows from

[

0<i<1.18,/p P

~ 0.49 < 0.5;

p—1i

~ 0.5

that it is not unreasonable to expect a duplicate
after about ,/p elements have been picked at ran-
dom (and with replacement) from a set of cardinal-
ity p. A good exposition of the probability analysis
underlying the birthday paradox can be found in
Corman et al. [1], Section 5.4.

Under reasonable assumptions about their in-
puts, common cryptographic £-bit hash functions
may be assumed to produce random, uniformly
distributed k-bit outputs. Thus one may expect
that a set of the order of 2%/2 inputs contains two
elements that hash to the same value. Such hash
function collisions have important cryptanalytic
applications. Another prominent cryptanalytic ap-
plication of the birthday paradox is Pollard’s rho
factoring method (see integer factoring) where el-
ements are drawn from Z/nZ for some integer n
to be factored. When taken modulo p for any un-
known p dividing n, the elements are assumed to
be uniformly distributed over Z/pZ. A collision
modulo p, and therefore possibly a factor of n,
may be expected after drawing approximately ,/p
elements.

Cryptanalytic applications of the birthday para-
dox where the underlying distributions are not
uniform are the large prime variations of sieving
based factoring methods. There, in the course of
the data gathering step, data involving so-called
large primes g is found with probability approxi-
mately inversely proportional to ¢. Data involving
large primes is useless unless different data with
a matching large prime is found. The fact that
smaller large primes occur relatively frequently,
combined with the birthday paradox, leads to
a large number of matches and a considerable
speed-up of the factoring method.

Arjen K. Lenstra
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BLIND SIGNATURE

In a blind signature scheme signers have indi-
vidual private signing keys and distribute their
corresponding public verifying keys, just as in
normal cryptographic digital signature schemes.
Public verifying keys are distributed via authen-
tication channels, for example, by means of public
key infrastructures. There is also a publicly avail-
able verifying algorithm such that anyone who has
retrieved a public verifying key y of a signer can
verify whether a given signature s is valid for a
given message m with respect to the signer’s pub-
lic verifying key y.

In a blind signature scheme, the signers neither
learn the messages they sign, nor the signatures
the recipients obtain for their messages. A verifier
who seeks a signature for a message m’ from a
signer with verifying key y prepares some related
message m and passes m to the signer. The signer
provides a response s back to the recipient, such
that the recipient can derive a signature s’ from
y,m,m’, s such that s’ is valid for m’ with respect
to y. The resulting signature s’ is called a “blind
signature,” although it is not the signature that is
blind, but the signer.

The first constructions of cryptographic blind
signatures were proposed by David Chaum. These
early blind signature schemes were based on
RSA signatures. An example is the Chaum Blind
Signature [7, 8].

The security of blind signature schemes is de-
fined by a degree of unforgeability and a degree
of blindness. Of the notions of unforgeability (see
forgery) for normal cryptographic signature
schemes defined by Goldwasser et al. [16], only
unforgeability against total break and universal
break apply to blind signature schemes. However,
the notions of selective forgery and existential
forgery are inappropriate for blind signature
schemes, because they assume an active attack
to be successful if after the attack the recipient
has obtained a signature for a (new) message that
the signer has not signed before. Obviously, this
condition holds for every message a recipient gets
signed in a blind signature scheme, and therefore
the definition cannot discriminate attacks from
normal use of the scheme. For blind signatures,
one is interested in other notions of unforgeability,
namely unforgeability against one-more forgery
and restrictiveness (see forgery), both of which are
mainly motivated by the use of blind signatures in
untraceble electronic cash.

A one-more-forgery [19] is an attack that for
some polynomially bounded integer n comes up
with valid signatures for n + 1 pairwise different
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messages after the signer has provided signa-
tures only for n messages. Blind signatures un-
forgeable against one-more forgery have attracted
attention since Chaum et al. [10] and Chaum
[9] used them to build practical offline and on-
line untraceable electronic cash schemes. Most
practical electronic cash schemes employ one-
time blind signatures, where a customer can ob-
tain only one signed message from each inter-
action with the bank during withdrawal of an
electronic coin. This helps to avoid the problem
of counterfeiting electronic coins [3-6, 22]. For-
mal definitions of one-time blind signatures have
been proposed by Franklin and Yung [15] and by
Pointcheval [19].

In a restrictive blind signature scheme, a re-
cipient who passes a message m to a signer (us-
ing verifying key y) and receives information s
in return can derive from y, m,m’,s only valid
signatures for those messages m’ that observe
the same structure as m. In offline electronic
cash this is used to encode a customer’s identity
into the messages that are signed by the bank
such that the messages obtained by the customer
all have his identity encoded correctly. Impor-
tant work in this direction was done by Chaum
and Pedersen [7], Brands [1], Ferguson [12, 13],
Frankel et al. [14] and Radu et al. [20, 21]. A
formal definition of a special type of restrictive
blind signatures has been given by Pfitzmann and
Sadeghi [18].

Blindness is a property serving the privacy in-
terests of honest recipients against cheating and
collaborating signers and verifiers. The highest
degree of unlinkability is unconditional unlinka-
bility, where a dishonest signer and verifier, both
with unconditional computing power, cannot dis-
tinguish the transcripts (m, s) seen by the signerin
his interactions with the honest recipient from the
recipient’s outputs (m’, s’), which are seen by the
verifier, even if the signer and the verifier collabo-
rate. More precisely, consider an honest recipient
who first obtains n pairs of messages and respec-
tive valid signatures (mq, s1), ..., (m,,s,) from a
signer, then derives n pairs of blinded messages
and signatures (m/,s}), ..., (m,,s;) from the for-
mer n pairs one by one, and later shows the latter
n pairs to a verifier in random order. Then, the
signer and the collaborating verifier should find
each bijection of the former n pairs onto the lat-
ter n pairs to be equally likely to describe which
of the latter pairs the honest recipient has derived
from which of the former pairs. A weaker degree of
blindness is defined as computational unlinkabil-
ity, which is defined just as unconditional unlinka-
bility except that the attacker is computationally

restricted (computational complexity). These are
formalizations of the intended property that the
signer does not learn “anything” about the mes-
sage being signed.

On a spectrum between keeping individuals ac-
countable and protecting their identities against
unduly propagation or misuse, blind signature
schemes tend toward the latter extreme. In many
applications this strongly privacy oriented ap-
proach is not acceptable in all circumstances.
While the identities of honest individuals are pro-
tected in a perfect way, criminal dealings of in-
dividuals who exploit such systems to their own
advantage are protected just as perfectly. For ex-
ample, Naccache and van Solms [17] have de-
scribed “perfect crimes” where a criminal black-
mails a customer to withdraw a certain amount of
money from her account by using a blind signa-
ture scheme and then deposit the amount into the
criminal’s account.

Trustee based blind signature schemes have
been proposed to strike a more acceptable balance
between keeping individuals accountable and pro-
tecting their identities. Stadler et al. [22] have
proposed fair blind signatures. Fair blind signa-
tures employ a trustee who is involved in the
key setup of the scheme and in an additional
link-recovery operation between a signer and the
trustee. The trustee can revoke the “blindness”
of certain pairs of messages and signatures upon
request. The link-recovery operation allows the
signer or the judge to determine for each transcript
(m, s) of the signing operation which message m’
has resulted for the recipient, or to determine for
a given recipient’s message m’ from which tran-
script (m, s) it has evolved. Similar approaches
have been applied to constructions of electronic
cash [3,21].

Blind signatures have been employed exten-
sively in cryptographic constructions of privacy
oriented services such as untraceable electronic
cash, anonymous electronic voting schemes, and
unlinkable credentials.

Gerrit Bleumer
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BLINDING TECHNIQUES

Blinding is a concept in cryptography that allows
a client to have a provider compute a mathemati-
cal function y = flx), where the client provides an
input x and retrieves the corresponding output vy,
but the provider would learn about neither x nor y.
This concept is useful if the client cannot compute
the mathematical function f all by himself, for
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example, because the provider uses an additional
private input in order to compute fefficiently.

Blinding techniques can be used on the client
side of client-server architectures in order to en-
hance the privacy of users in online transactions.
This is the most effective way of dealing with
server(s) that are not fully trusted.

Blinding techniques are also the most effective
countermeasure against remote timing analysis of
Web servers [4] and against power analysis and/or
timing analysis of hardware security modules (see
side-channel attacks and side-channel analysis).

In a typical setting, a provider offers to com-
pute a function f;(m) using some private key x
and some input m chosen by a client. A client
can send an input m, have the provider compute
the corresponding result z = f.(m), and retrieve z
from the provider afterward. With a blinding tech-
nique, a client would send a transformed input m’
to the provider, and would retrieve the correspond-
ing result 2’ in return. From this result, the client
could then derive the result z’ = f.(m') that corre-
sponds to the input m in which the client was inter-
ested in the first place. Some blinding techniques
guarantee that the provider learns no information
about the client’s input m and the corresponding
output z.

More precisely, blinding works as follows: con-
sider a key generating algorithm gen that outputs
pairs (x, y) of private and public keys (see public-
key cryptography), two domains M, Z of messages,
and a domain A of blinding factors. Assume a
family of functions z = f.(m), where each mem-
ber is indexed by a private key x, takes as in-
put a value m € M, and produces an output z € Z.
Let ¢yq : M — M and &, , : Z — Z be two fami-
lies of auxiliary functions, where each member is
indexed by a public key ¥ and a blinding factor
a, such that the following two conditions hold for
each key pair (x, y) that can be generated by gen,
each blinding factor ¢ € A and each input m € M:
- the functions ¢,, and dﬁjji are computable in

polynomial time,

- &, L (fi(dya(m))) = £(m)(as shown in the follow-
ing diagram).

Mz
bam|  Torle)
Mz

In order to blind the computation of f; by the
provider, a client can use the auxiliary functions
¢, @ in a two-pass interactive protocol as follows:
1. The provider generates a pair (x, y) of a private

key and a public key and publishes y.

2. The client chooses an input m, generates a
blinding factor ¢ € A at random, and trans-
forms m into m’ = ¢, ,(m).

3. The client sends m’ to the provider and receives
Z = f;(m’) from the provider in return.

4. The client computes z = @, (2).

If both m and m’ are equally meaningful or mean-

ingless to the provider, then he has no way of dis-

tinguishing a client who sends the plain argument

m from a client who sends a blinded argument m/’

in step 3.

The first blinding technique was proposed by
Chaum as part of the Chaum Blind Signature
[5,6]. It is based on a homomorphic property of the
RSA signing function (see RSA digital signature
scheme).

Let n=pg be the product of two large
safe primes, (x, y) being a pair of private and pub-
lic RSA keys such that x is chosen randomly from
Z}, 1,1 and y=x"" (mod (p—1(g — 1)) and
M = Z, be the domain of multiplicative inverses
of the residues modulo n. The functions f,(m) =
m* (mod n) are the RSA signing functions. The
families ¢, @ of auxiliary functions are chosen as
follows:

$y.o(m) = ma” (mod n)
®,L(Z)=2a"" (mod n).

Other blinding techniques have been used in a
variety of interactive protocols such as divert-
ible proofs of knowledge [1, 7, 8], privacy-oriented
electronic cash [2, 3] and unlinkable credentials
[6], and in anonymous electronic voting schemes.

Gerrit Bleumer
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BLOCK CIPHERS

INTRODUCTION: In his milestone paper in 1949
[43] Shannon defines perfect secrecy for secret-key
systems and shows that they exist. A secret-key ci-
pher obtains perfect secrecy if for all plaintexts x
and all ciphertexts y it holds that Pr(x) = Pr(x|y)
(see Information Theory and [43]). In other words,
a ciphertext y gives no information about the
plaintext. This definition leads to the following
result.

COROLLARY 1. A cipher with perfect secrecy is
unconditionally secure against a ciphertext-only
attack.

As noted by Shannon the Vernam cipher, also
called the one-time pad, obtains perfect secrecy.
In the one-time pad the plaintext characters are
added with independent key characters to pro-
duce the ciphertexts. However, the practical appli-
cations of perfect secret-key ciphers are limited,
since it requires as many digits of secret key as
there are digits to be enciphered. A more desir-
able situation would be if the same key could be
used to encrypt texts of many more bits.

Two generally accepted design principles for
practical ciphers are the principles of confusion
and diffusion that were suggested by Shannon.
Confusion: “the ciphertext statistics should de-

pend on the plaintext statistics in a manner too

complicated to be exploited by the cryptanalyst.”
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Diffusion: “each digit of the plaintext and each
digit of the secret key should influence many
digits of the ciphertext” [29].

These two design principles are very general and

informal.

Shannon also discusses two other more specific
design principles. The first is to make the secu-
rity of the system reducible to some known diffi-
cult problem. This principle has been used widely
in the design of public-key systems, but not in
secret-key ciphers. Shannon’s second principle is
to make the system secure against all known at-
tacks, which is still the best known design princi-
ple for secret-key ciphers today.

Ablock cipher with n-bit blocks and a «-bit key is
a selection of 2¥ permutations (bijective mappings)
of n bits. For any given key k, the block cipher
specifies an encryption algorithm for computing
the n-bit ciphertext for a given n-bit plaintext, to-
gether with a decryption algorithm for computing
the n-bit plaintext corresponding to a given n-bit
ciphertext.

The number of permutations of n-bit blocks
is 2"!, which using Stirlings approximation is
V2r2r(Z)?" for large n. Since +272%(2)? <
20-12" for n >3, with x = (n — 1)2" one could
cover all n-bit permutations, but typically « is cho-
sen much smaller for practical reasons. For ex-
ample, for the AES (see Rijndael/AES and [38])
one option is the parameters « = n = 128 in which
case (n — 1)2" ~ 2135,

Most block ciphers are so-called iterated ciphers
where the output is computed by applying in an
iterative fashion a fixed key-dependent function r
times to the input. We say that such a cipher is
an r-round iterated (block) cipher. A key-schedule
algorithm takes as input the user-selected «-bit
key and produces a set of subkeys.

Let g be a function which is invertible when the
first of its two arguments is fixed. Define the se-
quence z; recursively by

zi = g(ki, zi-1), (1

where zj is the plaintext, %; is the ith subkey, and
z, is the ciphertext. The function g is called the
round function.

kr

kq ky
2\ \ \
20 —)—) 21 —)—) 29 —> 2Zr_1 —)—) Zr

In many block ciphers g consists of a layer of sub-
stitution boxes, or S-boxes, and a layer of bit per-
mutations. Such ciphers are called SP-networks
(see substitution-permutation (SP) network).

A special kind of iterated ciphers are the Feistel
ciphers [10], which are defined as follows. Let n




42 Block ciphers

(even) be the block size and assume the cipher
runs in 7 rounds. Let z& and zF be the left and
right halves of the plaintext, respectively, each of
n/2 bits. The round function g operates as follows:

L _ _R
i =% 1

R R L
Z[ = ﬂkls ZL—].) + Zi_l?

and the ciphertext is the concatenation of z* and
zL. Here fcan be any function taking as arguments
an n/2-bit text and a round key %; and producing
n/2 bits. ‘+’ is a commutative group operation on
the set of n/2-bit blocks. If not specified otherwise,
it will be assumed that ‘+’ is bitwise addition mod-
ulo 2 (or in other terms, the exclusive-or operation
denoted by @). Also, variants where the texts are
split into two parts not of equal lengths and vari-
ants where the texts are split into more than two
parts have been suggested.

Two of the most important block ciphers are the
Feistel cipher Data Encryption Standard (DES)
[35] and the SP-network Advanced Encryption
Standard (Rijndael/AES) [37].

In the following e;(-) and d;(-) denote, respec-
tively the encryption operation and the decryption
operation of a block cipher of block length n using
the «-bit key k.

We shall now describe Shannon’s model which is
standard in secret-key cryptology. The sender and
the receiver share a common key &, which has been
transmitted over a secure channel. The sender en-
crypts a plaintext x using the secret key £ and
sends the ciphertext y over an insecure channel
to the receiver, who restores y into x using k. The
attacker has access to the insecure channel and
can intercept the ciphertexts (cryptograms) sent
from the sender to the receiver. To avoid an at-
tacker to speculate in how the legitimate parties
have constructed their common key, the following
assumption is often made.

ASSUMPTION 1. All keys are equally likely and a
key k is always chosen uniformly at random.

Also it is often assumed that all details about the
cryptographic algorithm used by the sender and
receiver are known to the attacker, except for the
value of the secret key. Assumption 2 is known as
Kerckhoffs’s assumption (see [17] or maxims).

ASSUMPTION 2. The enemy cryptanalyst knows all
details of the enciphering process and deciphering
process except for the value of the secret key.

The possible attacks against a block cipher are

classified as follows, where A is the attacker.

Ciphertext-only attack. A intercepts a set of ci-
phertexts.

Known plaintext attack. A obtains x1,xs, ..., X
and y1, y2,...,Ys, a set of s plaintexts and the
corresponding ciphertexts.

Chosen plaintext attack. A chooses a priori a set
of s plaintexts x1, x2, . .., x; and obtains in some
way the corresponding ciphertexts y1, yo, ..., ¥s.

Adaptively chosen plaintext attack. A chooses a set
of plaintexts x1, xs, . . ., x; interactively as he ob-
tains the corresponding ciphertexts y1, yo, .. ., ¥s.

Chosen ciphertext attacks. These are similar to
those of chosen plaintext attack and adaptively
chosen plaintext attack, where the roles of plain-
texts and ciphertexts are interchanged.

Also, one can consider any combination of the
above attacks. The chosen text attacks are obvi-
ously the most powerful attacks. In many appli-
cations they are however also unrealistic attacks.
If the plaintext space contains redundancy (see
Information Theory),! it may be hard for an at-
tacker to ‘trick’ a legitimate sender into encrypt-
ing nonmeaningful plaintexts and similarly hard
to get ciphertexts decrypted, which do not yield
meaningful plaintexts. But if a system is secure
against an adaptively chosen plaintext/ciphertext
attack, then it is also secure against all other
attacks. An ideal situation for a designer would
be to prove that his system is secure against an
adaptively chosen text attack, although an at-
tacker may never be able to mount more than a
ciphertext-only attack.

The unicity distance of a block cipher is the
smallest integer s such that essentially only one
value of the secret key £ could have encrypted a
random selection of s plaintext blocks to the corre-
sponding ciphertext blocks. The unicity distance
depends on both the key size and on the redun-
dancy in the plaintext space. However, the unic-
ity distance gives no indication of the computa-
tional difficulty in breaking a cipher, it is merely
a lower bound on the amount of ciphertext blocks
needed in a ciphertext-only attack to be able to (at
least in theory) identify a unique key. Let x and n
be the number of bits in the secret key respectively
in the plaintexts and ciphertexts and assume that
the keys are always chosen uniformly at random.
In a ciphertext-only attack the unicity distance
is defined as n, = «/(nrg), where ry, is the redun-
dancy of the plaintexts, see e.g., [44]. The concept
can be adapted also to the known or chosen plain-
text scenarios. In these cases the redundancy of
the plaintexts from the attacker’s point of view is
100%. The unicity distance in a known or chosen
plaintext attack is n, = [«/n].

I Redundancy is an effect of the fact that certain sequences of
plaintext characters appear more frequently than others.



The results of the cryptanalytic effort of the at-

tacker A can be grouped as follows [21].

Total break. A finds the secret key k.

Global deduction. A finds an algorithm F, func-
tionally equivalent to ep(-) (or dp(-)) without
knowing the key k.

Local deduction. A finds the plaintext (ciphertext)
of an intercepted ciphertext (plaintext), which
he did not obtain from the legitimate sender.

Distinguishing algorithm. A is given access to a
black-box containing either the block cipher for
a randomly chosen key or a randomly chosen
permutation. He is able to distinguish between
these two cases.

Clearly, this classification is hierarchical, that
is, if a total break is possible, then a global deduc-
tion is possible and so on.

CRYPTANALYSIS: We begin by listing some at-

tacks which apply to all block ciphers.

Exhaustive key search: this attack requires the
computation of about 2¢ encryptions and re-
quires n, ciphertexts (ciphertext-only attack) or
n, plaintext/ciphertext pairs (known and chosen
plaintext attack), where n, and n, are the unic-
ity distances, cf. above.

Table attack: encrypt in a precomputation phase a
fixed plaintext x under all possible keys, sort,
and store all ciphertexts. Thereafter, a total
break is possible requiring one chosen plaintext.

Dictionary attack: intercept and store all possible
plaintext/ciphertext pairs. The running time of
a deduction is the time of one table look-up.

Matching ciphertext attack: this attack applies to
encryption using the (ecb), (cbe), and (cfb) modes
of operation, see modes of operation for a block
cipher or [40]. Collect s ciphertext blocks and
check for collisions. For example, if y;, y; are n-
bit blocks encrypted (using the same key) in the
(cbc) mode, then if y; = y;, then ex(x; ® y;—1) =
er(x; ®yj_1) = yi-1 ®yj-1 = x; ® x;, thus infor-
mation about the plaintexts is leaked. With s ~
22 the probability of finding matching cipher-
texts is about 1/2, see birthday paradox.

Time-memory trade-off attack [14]: let us assume
for the sake of exposition that the key space
of the attacked cipher equals the ciphertext
space, that is, x = n. Fix some plaintext block
x9. Define the function flz) =e,(xy). Select m
randomly chosen values 2°, ...,z""1. For each

Jj€{0,...,m}compute the values 2{ = ﬂz{_l)for

i=1,...,t,wherez/ = zé; store the pairs (start
and end results) (), 2)) for j=0,...,m in a ta-
ble T and sort the elements on the second com-
ponents.
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Subsequently, imagine that an attacker has in-
tercepted the ciphertext y = ep(xg). Let wo = y and
check if wy is a second component in 7. If, say,
wo = 2, the attacker can find a candidate for the
key %k by computing forward from z{. If this does
not lead to success, compute w; = flw;_1) and re-
peat the above test for w; fori =1,2,...,¢.

A close analysis [14] shows that if m and ¢ are
chosen such that m¢2 ~ 2¢, there is a probability of
about mt /2¢ that in the above computations of {zf}
the secret key has been used. If this is the case, the
attack will find the secret key. If it is not the case,
the attack fails. The probability of success can be
increased by repeating the attack, e.g., with 2+/3
iterations each time with m = ¢ = 2/3 one obtains
a probability of success of more than 1/2.

In summary, with « = n the attack finds the se-
cret key with good probability after 22¢</3 encryp-
tions using 22¢/3 words of memory. The 22¢/3 words
of memory are computed in a preprocessing phase,
which takes the time of about 2 encryptions.

To estimate the complexity of a cryptanalytic at-
tack, one must consider at least the time it takes,
the amount of data that is needed, and the storage
requirements. For an n-bit block cipher the follow-
ing complexities should be considered.

Data complexity: the amount of data needed as in-
put to an attack. Units are measured in blocks
of length n.

Processing complexity: the time needed to perform
an attack. Time units are measured as the num-
ber of encryptions an attacker has to do himself.

Storage complexity: the words of memory needed
to do the attack. Units are measured in blocks
of length n.

The complexity of an attack is often taken as the
maximum of the three complexities above; how-
ever, in most scenarios the amount of data en-
crypted with the same secret key is often limited
and for most attackers the available storage is
small.

Tterated Attacks

Let x and y denote the plaintext and the cipher-
text, respectively. In most modern attacks on iter-
ated ciphers, the attacker repeats his attack for all
possible values of (a subset of) the bits in the last-
round key. The idea is that when he guesses the
correct values of the key bits, he can compute the
value of some bits of the ciphertexts before the last
round, whereas when he guesses wrongly, these
bits will correspond to ciphertext bits encrypted
with a wrong key. If one can distinguish between
these two cases, one might be able to extract bits of
the last-round key. The wrong key randomization
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hypothesis, which is often used, says that when
the attacker guesses a wrong value of the key, the
resulting values are random and uniformly dis-
tributed. If an attacker succeeds in determining
the value of the last-round key, he can peel off one
round of the cipher and do a similar attack on a
cipher one round shorter to find the second-last
round key, etc. In some attacks it is advantageous
to consider the first-round key instead of the last-
round key or both at the same time, depending on
the structure of the cipher, the number of key bits
involved in each round, etc.

The two most general attacks on iterated ci-
phers are linear cryptanalysis and differential
cryptanalysis.

Linear Cryptanalysis

Linear cryptanalysis [30,34] is a known plaintext
attack. Consider an iterated cipher, cf. (1). Then a
linear approximation over s rounds (or an s-round
linear hull) is

(zi ) ®(zi4s - B) =0, (2)

which holds with a certain probability p, where
Zi, 2Zi1s, o, B are n-bit strings and where ‘’ denotes
the dot (or inner) product modulo 2. The strings
a, B are also called masks. The quantity |p — 1/2|
is called the bias of the approximation. The ex-
pression with a ‘1’ on the right side of (2) will have
a probability of 1 — p, but the biases of the two ex-
pressions are the same. The linear round approx-
imations are usually found by combining several
one-round approximations under the assumption
that the individual rounds are mutually indepen-
dent (for most ciphers this can be achieved by
assuming that the round keys are independent).
The complexity of a linear attack is approximately
|p — 1/2|72. It was confirmed by computer exper-
iments that the wrong key randomization hy-
pothesis holds for the linear attack on the DES
(see Data Encryption Standard). The attack on
the DES was implemented in 1994, required a
total of 243 known plaintexts [31] and in 2002
was the fastest, known key-recovery attack on the
DES. Linear cryptanalysis for block ciphers gives
further details of the attack.

Differential Cryptanalysis

Differential cryptanalysis [3] is a chosen plaintext
attack and was the first published attack which
could (theoretically) recover DES keys in time less
than that of an exhaustive search for the key. In
a differential attack one exploits that for certain
input differences the distribution of output differ-

ences of the nonlinear components is nonuniform.
A difference between two bit strings, x and x’
of equal length, is defined in general terms as
Ax =x ® (x')~1, where ® is a group operation on
bit strings and where the superscript ~! denotes
the inverse element. Consider an iterated cipher,
cf. (1). The pair (Azg, Az;) is called an s-round
differential [27]. The probability of the differen-
tial is the conditional probability that given an
input difference Azy in the plaintexts, the differ-
ence in the ciphertexts after s rounds is Az;. Ex-
periments have shown that the number of chosen
plaintexts needed by the differential attack in gen-
eral is approximately 1/p, where pis the probabil-
ity of the differential being used. For iterated ci-
phers, one often specifies the expected differences
after each round of encryption. Such a structure
over s rounds, i.e., (Azg, Az1,..., Azg_1, AzZ), 1S
called an s-round characteristic. The differential
attack is explained in more details in differential

cryptanalysis.
Extensions, Generalization, and Variations

The differential and linear attacks have spawned
a lot of research in block cipher cryptanalysis and
several extensions, generalizations, and variants
of the differential and linear attacks have been
developed. In [15] it was shown how to combine
the techniques of differential and linear attacks.
In particular, an attack on the DES reduced to
eight rounds was devised, which on input only 512
chosen plaintexts finds the secret key. In [47] a
generalization of both the differential and linear
attacks, known as statistical cryptanalysis, was in-
troduced. It was demonstrated that this statisti-
cal attack on the DES includes the linear attack
by Matsui but without any significant improve-
ment. In [18] an improved linear attack using mul-
tiple linear approximations was given. In [24] a
linear attack is shown using nonlinear approxi-
mations in the outer rounds of an iterated cipher.
In [12,13] two generalizations of the linear attack
were given.

A dth order differential [26] is the difference be-
tween two (d — 1)th order differentials and is a
collection of 2% texts, where a first-order differen-
tial is what is called a differential above. The main
idea in the higher order differential attack is the
fact that a dth order differential of a function of
maximum algebraic degree d is a constant. Conse-
quently, a (d + 1)th order differential of the func-
tion is zero. In [16,22] these attacks were applied
to various ciphers.

The boomerang attack [50] is a clever applica-
tion of a second-order differential. Boomerangs are



particularly effective when one can find a good
differential covering the first half of the encryp-
tion operation and a good differential covering the
first half of the decryption operation. More details
of the attack can be found in boomerang attack.
Let {ag, a1, ..., a5} be an s-round characteristic.
Then {og, &}, ..., a;} is called a truncated charac-
teristic, if «] is a subsequence of «;. Truncated
characteristics were used to some extent in [3].
Note that a truncated characteristic is a collec-
tion of characteristics and therefore reminiscent
of a differential. A truncated characteristic con-
tains all characteristics {«g, of, ..., «,} for which
trunc(a)) = «, where trunc(x) is a truncated value
of x not further specified here. The notion of trun-
cated characteristics extends in a natural way to
truncated differentials introduced in [22].

Other Attacks

Integral cryptanalysis [5, 25] can be seen as a
dual to differential cryptanalysis and it is the best
known attack on the advanced encryption stan-
dard. The attack is explained in more details in
multiset attacks. In the interpolation attack [16]
one expresses the ciphertext as a polynomial of the
plaintext. If this polynomial has a sufficiently low
degree, an attacker can reconstruct it from known
(or chosen) plaintexts and the corresponding ci-
phertexts. In this way, he can encrypt any plain-
text of his choice without knowing the (explicit)
value of the secret key, see interpolation attack for
more details. There has been a range of other cor-
relation attacks most of which are relative to the
attacked cipher, but which all exploit the nonuni-
formity of certain bits of plain- and ciphertexts
[2,8,11,19,23,47].

Key Schedule Attacks

One talks about weak keys for a block cipher, if
there is a subspace of keys relative to which a cer-
tain attack can be mounted successfully, such that
for all other keys the attack has little or zero prob-
ability of success. If there are only a small number
of weak keys, they pose no problem for applications
of encryption if the encryption keys are chosen uni-
formly at random. However, when block ciphers
are used in other modes, e.g., for hashing, these
attacks play an important role as demonstrated
in [6,42].

One talks about related keys for a block cipher,
if for two (or more) keys £ and k* of a certain
relation, there are certain (other) relations be-
tween the two (or more) encryption functions ey (-)
and eg-(-), which can be exploited in cryptanalytic
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attacks. There are several variants of this attack
depending on how powerful the attacker A is as-
sumed to be. One distinguishes between whether
A gets encryptions under one or under several keys
and whether there is a known or chosen relation
between the keys (see related key attack).

The slide attack [4] applies to iterated ciphers
where the list of round keys has a repeated pat-
tern, e.g., if all round functions are identical, there
are very efficient attacks.

BOUNDS OF ATTACKS: A motivation for the
Feistel cipher design is the results by Luby and
Rackoff (see Luby-Rackoff cipher or [28]). They
showed how to build a 2n-bit pseudorandom per-
mutation from a pseudorandom n-bit function
using the Feistel construction. For a three-round
construction they showed that under a chosen
plaintext attack, an attacker needs at least 27%/2
chosen texts to distinguish the Feistel construc-
tion from a random 2n-bit function. Under a
combined chosen plaintext and chosen ciphertext
attack, this construction is however easily distin-
guished from random. For a four-round construc-
tion it was shown that even under this strong at-
tack, an attacker needs at least 2%/2 chosen texts to
distinguish the construction from a random 2n-bit
function.

In the decorrelation theory [48] one attempts to
distinguish a given n-bit block cipher from a ran-
domly chosen n-bit permutations. Using particu-
lar well-defined metrics, this approach is used to
measure the distance between a block cipher and
randomly chosen permutations. One speaks about
decorrelation of certain orders depending on the
type of attack one is considering. In [49] it was
shown how this technique can be used to prove
resistance against elementary versions of differ-
ential and linear cryptanalysis.

Resistance Against Differential
and Linear Attacks

First it is noted that one can unify the com-
plexity measures in differential and linear crypt-
analysis. Let p; be the probability of a linear
approximation for an iterated block cipher, then
define ¢ = (2p;, — 1)? [32]. Let q denote the high-
est such quantity for a one-round linear approxi-
mation. Denote by p the highest probability of a
one-round differential achievable by the cryptan-
alyst. It is possible to lower bound the probabili-
ties of all differentials and all hulls in an r-round
iterated cipher expressed in terms of p and ¢
[21, 32,40, 41]. The probabilities are taken as an
average over all possible keys. It has further been
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shown that the round functions in iterated ciphers
can be chosen in such a way that the probabili-
ties of the differentials and of the linear hulls are
small [39,40]. In this way it is possible to construct
iterated ciphers with a proof of security (as an
average over all possible keys) against differen-
tial and linear cryptanalysis. This approach was
used in the design of the block ciphers Misty1 [33]
and Kasumi (see Kasumi/Misty1 or [1]).

ENHANCING EXISTING CONSTRUCTIONS
Multiple Encryption

In a double encryption with two keys k1 and kg,
the ciphertext corresponding to x is y = ep, (ex, (x)).
However, regardless of how k1, ko are generated,
there is a meet-in-the-middle attack that breaks
this system with a few known plaintexts using
about 2! encryptions and 2¢ blocks of mem-
ory, that is, roughly the same time complexity as
key search in the original system. Assume some
plaintext x and its corresponding ciphertext y en-
crypted as above are given. Compute e,(x) for all
choices of the key k1 = i and store the results ¢; in
a table. Next compute di,(y) for all values of the
key k2 = jand check whether the results s; match
avalue in the table, that is, whether for some (i, j),
t; = s;. Bach such match gives a candidate £; =i
and kg = j for the secret key. The attack is re-
peated on additional pairs of plaintext—ciphertext
until only one pair of values for the secret key
remains suggested. The number of known plain-
texts needed is roughly 2« — n. There are vari-
ants of this attack with trade-offs between run-
ning time and the amount of storage needed [46].
In a triple encryption with three independent keys
k1, ke, and k3, the ciphertext corresponding to x
is ¥ = ep,(ep,(er,(x))). One variant of this idea is
well known as two-key triple encryption, proposed
in [45], where the ciphertext corresponding to x is
e, (dr,(er, (x))). Compatibility with a single encryp-
tion can be obtained by setting 2; = ko. However,
whereas triple encryption is provably as secure as
a single encryption, a similar result is not known
for two-key triple encryption. A two-key triple en-
cryption scheme with a proof of security appeared
in [7].

Key-Whitening

Another method of increasing the key size is by
key-whitening. One approach is the following: y =
er(x @ k1) ® ko, where k is a k-bit key, and k1 and ks
are n-bit keys. Alternatively, 21 = k2 may be used.

It was shown [20] that for attacks not exploit-
ing the internal structure, the effective key size is
k 4+ n — logy m bits, where m is the maximum num-
ber of plaintext/ciphertext pairs the attacker can
obtain. (This method applied to the DES is named
DES-X and attributed to Ron Rivest.)

Lars R. Knudsen
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BLOWFISH

Blowfish [3] is a 64-bit block cipher designed by
Bruce Schneier and published in 1994. It was in-
tended to be an attractive alternative to DES (see
Data Encryption Standard) or IDEA. Today, the
Blowfish algorithm is widely used and included
in many software products.

Blowfish consists of 16 Feistel-like iterations.
Each iteration operates on a 64-bit datablock, split
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Fig. 1. One round of Blowfish

into two 32-bits words. First, a round key is XORed
to the left word. The result is then input to four
key-dependent 8 x 32-bit S-boxes, yielding a 32-
bit output word which is XORed to the right word.
Both words are swapped and then fed to the next
iteration.

The use of key-dependent S-boxes distinguishes
Blowfish from most other ciphers, and requires
a rather complex key-scheduling algorithm. In
a first pass, the lookup tables determining the
S-boxes are filled with digits of 7, XORed with
bytes from a secret key which can consist of 32—
448 bits. This preliminary cipher is then used to
generate the actual S-boxes. Although Blowfish
is one of the faster block ciphers for sufficiently
long messages, the complicated initialization pro-
cedure results in a considerable efficiency degra-
dation when the cipher is rekeyed too frequently.
The need for a more flexible key schedule was one
of the factors that influenced the design of Twofish,
an Advanced Encryption Standard (see Rijndael/
AES) finalist which was inspired by Blowfish.

Since the publication of Blowfish, only a few
cryptanalytical results have been published. A
first analysis was made by Vaudenay [4], who re-
vealed classes of weak keys for up to 14 rounds
of the cipher. Rijmen [2] proposed a second-
order differential attack on a four-round variant of
Blowfish. In a paper introducing slide attacks [1],
Biryukov and Wagner highlighted the importance
of XORing a different subkey in each round of
Blowfish.

Christophe De Canniere
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BLS SHORT DIGITAL
SIGNATURES

It is well known that a digital signature scheme
that produces signatures of length ¢ can have se-
curity at most 2°. In other words, it is possible to
forge a signature on any message in time O(2¢) just
given the public key. It is natural to ask whether
we can construct signatures with such security,
i.e., signatures of length ¢ where the best algo-
rithm for creating an existential forgery (with con-
stant success probability) under a chosen message
attack takes time O(2°). Concretely, is there a sig-
nature scheme producing 80-bit signatures where
creating an existential forgery (with probability
1/2) takes time approximately 280?

DSS signatures and Schnorr signatures provide
security O(2¢) with signatures that are 4¢-bits
long. These signatures can be shortened [3] to
about 3.5¢-bits without much affect on security.
Hence, for concrete parameters, £ = 80, shortened
DSS signatures are 280-bits long.

Boneh et al. [2] describe a short signature
scheme where 170-bit signatures provide approx-
imately 28° security, in the random oracle model.
Hence, for ¢ = 80, these signatures are approxi-
mately half the size of DSS signatures with com-
parable security. The system makes use of a group
G where (i) the computational Diffie—-Hellman
problem is intractable, and (ii) there is an effi-
ciently computable, nondegenerate, bilinear map
e : G x G — G for some group G;. There are sev-
eral examples of such groups from algebraic ge-
ometry where the bilinear map is implemented
using the Weil pairing. Given such a group G of
prime order g, the digital signature scheme works
as follows:

Key Generation.

1. Pick an arbitrary generator g € G.

2. Pickarandoma €{l,...,q}andsety=g*€G.

3. Let H be a hash function H : {0, 1}* — G.
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Output (g, y, H) as the public key and (g, o, H)
as the private key.

Signing. To sign a message m € {0, 1}* using the
private key (g, o, H) output H(m)* € G as the
signature.

Verifying. To verify a message/signature pair
(m, s) €{0,1}* x G wusing the public key
(g,y, H) test if e(g, s) = e(y, H(m)). If so, accept
the signature. Otherwise, reject.

For a valid message/signature pair (m, s)
we have that s = H(m)* and therefore e(g,s) =
e(g, Hm)*) = e(g® H(m))= e(y, H(m)). The second
equality follows from the bilinearity ofe(, ). Hence,
avalid signature is always accepted. As mentioned
above, the system is existentially unforgeable un-
der a chosen message attack in the random or-
acle model, assuming the computational Diffie—
Hellman assumption holds in G. Observe that a
signature is a single element in G whereas DSS
signatures are pairs of elements. This explains the
reduction in signature length compared to DSS.

Recently, Boneh and Boyen [1] and Zhang
et al. [4] describe a more efficient system produc-
ing signatures of the same length as BLS. How-
ever, security is based on a stronger assumption.
Key generation is identical to the BLS system, ex-
cept that the hash function used is H : {0, 1}* —
Zq. A signature on a message m € {0,1}* is s =
gl/e+tHm) ¢ G To verify a message/signature pair
(m, s) test that e(ygH"™, s) = e(g, g). We see that
signature length is the same as in BLS signatures.
However since e(g, g) is fixed, signature verifica-
tion requires only one computation of the bilin-
ear map as opposed to two in BLS. Security of
the system in the random oracle model is based
on a nonstandard assumption called the #-Diffie—
Hellman-inversion assumption. Loosely speaking,
the assumption states that no efficient algorithm
given g,g% g%, ..., g% as input can compute
g'/*. Here t is the number of chosen message
queries that the attacker can make. Surprisingly,
avariant of this system can be shown to be existen-
tially unforgeable under a chosen message attack
without the random oracle model [1].

Dan Boneh
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BLUM INTEGER

A positive integer n is a Blum integer if it is the
product of two distinct primes p, ¢ where p=gq =
3 (mod 4). Blum integers are of interest in cryp-
tography because the mapping

x < x> mod n

is believed to be a trapdoor permutation (see
trapdoor one-way function) on the quadratic
residues modulo n. That is, exactly one of the four
square roots of a quadratic residue modulo a Blum
integer n is itself a quadratic residue. Inverting
the permutation is equivalent to factoring n, but
is easy given p and q. This fact is exploited in the
Blum-Blum-Shub PRNG.

The permutation can be inverted when the
prime factors p and ¢ are known by computing
both square roots modulo each factor, selecting
the square root modulo each factor which itself
is a square, then applying the Chinese remainder
theorem. Conveniently, the square roots modulo
the prime factors of a Blum integer can be com-
puted with a simple formula: the solutions of x? =
a (mod p) are given by x = +a»*V/4(mod p) when
p = 3 (mod 4). The appropriate square root can be
selected by computing the Legendre symbol.

See also modular arithmetic, prime number.

Burt Kaliski

BLUM-BLUM-SHUB
PSEUDORANDOM BIT
GENERATOR

The Blum-Blum-Shub (BBS) pseudorandom bit
generator [1] is one of the most efficient pseudo-
random number generators known that is prov-
ably secure under the assumption that factor-
ing large composites is intractable (see integer
factoring). The generator makes use of modular
arithmetic and works as follows:
Setup. Given a security parameter t € Z as input,
generate two random 7-bit primes p,q where

p=q =3 mod 4. Set N = pq € Z. Integers N of

this type (where both prime factors are distinct

and are 3 mod 4) are called Blum integers. Next
pick a random y in the group Z} and set s =
y2e Z3. The secret seed is (N, s). As we will see

below, there is no need to keep the number N

secret.

Generate. Given an input ¢ € Z and a seed (V, s)
we generate a pseudorandom sequence of length
£. First, set x;y =s. Then, fori =1, ..., ¢:

1. View x; as an integerin [0, N — 1] and let b; €

{0, 1} be the least significant bit of x;.

2. Set Xiy1 = xl2 € ZN.

The output sequence is b1bs - - - b, € {0, 1}%.

The generator can be viewed as a special case of
the general Blum—Micali generator [2]. To see this,
we show that the generator is based on a one-way
permutation (see one-way function and substitu-
tions and permutations) and a hard-core predicate
of that permutation. For an integer N let QRy =
(Z3,)? denote the subgroup of quadratic residues
in Zjy and let Fy:Zy — Zn denote the function
Fy(x) = x? € Zy. For Blum integers the function
Fy is a permutation (a one-to-one map) of the sub-
group of quadratic residues QRy. In fact, it is not
difficult to show that Fy is a one-way permuta-
tion of QR,, unless factoring Blum integers is easy.
Now that we have a one-way permutation we need
a hard-core bit of the permutation to construct a
Blum—Micali-type generator. Consider the predi-
cate B: QRy — {0, 1} that oninputx € QR views
x as an integer in [1, N] and outputs the least sig-
nificant bit of x. Blum, Blum, and Shub showed
that B(x) is a hard-core predicate of Fy assuming
it is hard to distinguish quadratic residues in Zy
from nonresidues in Zy with Jacobi symbol 1. Ap-
plying the Blum—Micali construction to the one-
way permutation Fy and the hard-core predicate
B produces the generator above. The general the-
orem of Blum and Micali now shows that the gen-
erator is secure assuming it is hard to distinguish
quadratic residues in Zy from nonresidues in Zy
with Jacobi symbol 1. Vazirani and Vazirani [5]
improved the result by showing that B(x)is a hard-
core predicate under the weaker assumption that
factoring random Blum integers is intractable.

One can construct many different hard-core
predicates for the one-way permutation Fy defined
above. Every such hard-core bit gives a slight vari-
ant of the BBS generator. For example, Hastad and
Naslund [3] show that for most 1 < j < logy N the
predicate B;(x) : QRy — {0, 1} that returns the jth
bit of x is a hard-core predicate of Fy assuming fac-
toring Blum integers is intractable. Consequently,
one can output bit j of x; at every iteration and
still obtain a secure generator, assuming factoring
Blum integers is intractable.




One can improve the efficiency of the gen-
eral Blum—Micali generator by outputting mul-
tiple simultaneously secure hard-core bits per
iteration. For the function Fy it is known that
the O(loglog N) least significant bits are si-
multaneously secure, assuming factoring Blum
integers is intractable. Consequently, the simu-
lator remains secure (asymptotically) if one out-
puts the O(loglog N) least significant bits of x; per
iteration.

Let I be the set of integers I = {1,..., N}. We
note that for a Blum integer N and a generator
g € Zy, Hastad et al. [4] considered the function
Gng : I — Zy defined by Gng(x) = g* € Zy. They
showed that half the bits of x € I are simultane-
ously secure for this function, assuming factoring
Blum integers is intractable. Therefore, one can
build a Blum—Micali generator from this function
that outputs (log N)/2 bits per iteration. The re-
sulting pseudorandom generator is essentially as
efficient as the BBS generator and is based on the
same complexity assumption.

Dan Boneh

References

[1] Blum, L., M. Blum, and M. Shub (1983). “Compari-
son of two pseudo-random number generators.” Ad-
vances in Cryptology—CRYPT(0’82, eds. Plenum D.
Chaum, R.L. Rivest, and A.T. Sherman. Springer-
Verlag, Berlin, 61-78.

[2] Blum, M. and S. Micali (1982). “How to generate
cryptographically strong sequences of pseudoran-
dom bits.” Proceedings of FOCS’82, 112-1117.

[3] Hastad, J. and M. Naslund (2004). “The secu-
rity of all RSA and discrete log bits.” Journal of
the ACM. Extended abstract in Proc. of FOCS’98,
510-521.

[4] Hastad, dJ., A. Schrift, and A. Shamir (1993). “The
discrete logarithm modulo a composite hides o(n)
bits.” Journal of Computer and System Sciences
(JCSS), 47, 376-404.

[6] Vazirani, U. and V. Vazirani (1984). “Efficient and
secure pseudo-random number generation.” Pro-
ceedings of FOCS’84, 458-463.

BLUM-GOLDWASSER
PUBLIC KEY ENCRYPTION
SYSTEM

The Blum-Goldwasser public key encryption
system combines the general construction of
Goldwasser—Micali [5] with the concrete Blum—
Blum—Shub pseudorandom bit generator [2] to
obtain an efficient semantically secure public key

Blum~Goldwasser public key encryption system 51

encryption whose security is based on the dif-

ficulty of factoring Blum integers. The system

makes use of modular arithmetic and works as
follows:

Key Generation. Given a security parameter €
7 as input, generate two random t-bit primes
p,q where p=qg =3mod 4. Set N=pq € Z.
The public key is N and private key is (p, q).

Encryption. To encrypt a message m =
mi...mg € {0, 1}%

1. Pick a random x in the group Z} and set x; =
x? e 7.

2. Fori =1,...,¢:

(a) View x; as an integer in [0, N — 1] and
let b; € {0, 1} be the least significant bit
ofxi.

(b) Setc; =m; @ b; € {0, 1}.

(c) Set ;41 = x? € ZY.

3. Output (c1, ..., ce, 2e41) € {0, 1}¢ x Zy as the
ciphertext.

Decryption. Given a ciphertext (c1,...,¢.,y) €
{0, 1}* x Zy and the private key (p, q) decrypt
as follows:

1. Since N is a Blum integer, ¢(N)/4 is odd
(see Euler’s totient function) and therefore
2¢*1 has an inverse modulo ¢(N)/4. Let ¢ =
(21~ mod (p(N)/4).

2. Compute x; = y* € Z%. Observe that if y €
(Z3,)? then xgzm) =y =y e 74,

3. Next, fori =1,...,¢:

(a) View x; as an integer in [0, N — 1] and
let b; € {0, 1} be the least significant bit
ofxi.

(b) Set m; =c¢; ® b; € {0, 1}.

(c) Set x;41 = x? € Zj.

4. Output (m1, ..., m,) € {0, 1}¢ as the plaintext.

Semantic security of the system (against a pas-
sive adversary) follows from the proof of secu-
rity of the Blum-Blum—Shub generator. The proof
of security shows that an algorithm capable of
mounting a successful semantic security attack is
able to factor the Blum integer N in the public
key.

We note that the system is XOR malleable:
given the encryption C = (cy, ..., ¢, y) of a mes-
sage m € {0, 1}¢ it is easy to construct an encryp-
tion of m @ b for any chosen b € {0, 1}* (without
knowing m). Let b = by ---b, € {0, 1}*. Simply set
C'=(1®Dby,...,ce Dby, y). Since the system is
XOR malleable it cannot be semantically secure
under a chosen ciphertext attack.

Interestingly, the same reduction given in the
proof of semantic security shows that a chosen ci-
phertext attacker can factor the modulus N and
therefore recover the private key from the public
key. Consequently, as it is, the system completely
falls apart under a chosen ciphertext attack. When
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using the system one must use a mechanism to
defend against chosen ciphertext attacks. For ex-
ample, Fujisaki and Okamoto [4] provide a gen-
eral conversion from semantic security to chosen
ciphertext security in the random oracle model.
However, in the random oracle model one can con-
struct more efficient chosen ciphertext secure sys-
tems that are also based on the difficulty of factor-
ing [1,3].

Dan Boneh
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BOLERO.NET

When exporters and importers wish to trade in
goods onboard a ship, they use a document of ti-
tle called a Bill of Lading (or B/L for short). It is
issued by the ship operator as a receipt for the
goods and, because he will only release the cargo
against production of this document, the B/L has
been used for centuries for trading and as financial
security.

Making the functionality of this document avail-
able by electronic means is an undertaking simi-
lar to that of putting share trading online, and it
is the job of bolero.net, a service operated since
1999 by the Through Transport Club, a mutual
marine insurer, and SW.LLF.T., the banks’ coop-
eratively owned data network operator. The ori-
gins of the project stem from the mid-1980s and

it has been known as Bolero since 1994, when an
early version was piloted in a project funded by the
European Commission.

Bolero.net handles not just Bs/L but all other
trade documentation too. However, it is the title
function of the B/L which gives rise to the most
interesting isuses.

In essence, the B/L is issued as a message from
the shipowner to the original cargo owner, digitally
signed and handled via bolero.net’s secure mes-
sage handling facility, the Core Messaging Plat-
form (CMP). The CMP, when sent a new B/L,
also passes a message to a bolero.net component
called the Title Registry (TR). The TR sets up a
new record in its database and from this point
on, it is the information about ownership held in
the TR which is ultimately authoritative in any
dispute.

When the electronic B/L is being traded, the TR
is updated through digitally signed messages from
the users via the CMP. The TR will only accept
instructions from the user currently recorded as
the “holder,” i.e., owner of the title being traded.
This is a system similar to that operated by most
dematerialized share trading schemes.

To enable electronic trading of negotiable docu-
ments such as the B/L, all you need is a database
operated by a trusted third party, and digital
signatures which can be verified by that party.
Bolero.net is that trusted third party, and it oper-
ates its own Certification Authority, though there
is a project under way to accept certificates from
other issuers in the future.

As the traders would also like to keep their in-
formation confidential, the communications are
handled as SSL protected exchanges (see Secure
Socket Layer). The legal security of the transac-
tion, i.e. the certainty that a trade carried out
over bolero.net will be treated as legally binding
by the courts, is provided via a multilateral user
contract, known as the Rule Book. All users are
bound by this contract and it creates a legal safety
net which ensures that the traditional function-
ality of the ancient B/L can still be provided by
electronic means.

For more information, see www.bolero.net and
www.bolerassociation.org

Peter Landrock

BOOLEAN FUNCTIONS

Boolean functions play a central role in the de-
sign of most symmetric cryptosystems and in their




security. In stream ciphers, they are usually used
to combine the outputs to several linear feedback
shift registers (see the corresponding entry and
Combination generator), or to filter (and combine)
the contents of a single one (see Filter generators).
The sequence of their output, during a certain
number of clock cycles, then produces the pseudo-
random sequence which is used in a Vernam cipher
(that is, which is bitwisely added to the plaintext
to produce the ciphertext). In block ciphers (see
Block cipher, Data Encryption Standard (DES),
Advanced Encryption Standard (Rijndael/AES)),
the S-boxes are designed by appropriate composi-
tion of nonlinear Boolean functions.

An n-variable Boolean function fis a function
from the set F3 of all binary vectors x = (x1, ..., x,)
oflength n to the field F» = {0, 1}. The number n of
variables is rarely large in practice. In the case
of stream ciphers, it is most often less than 10;
and the S-boxes used in most block ciphers are
concatenations of sub S-boxes on at most eight
variables. But determining and studying those
Boolean functions which satisfy some conditions
needed for cryptographic uses (see below) is not
feasible through an exhaustive computer inves-
tigation, since the number of n-variable Boolean
functions is too large when n > 6. However, clever
computer investigations are useful for imagining
or testing conjectures, and sometimes for generat-
ing interesting functions.

The Hamming weight wy(f) of a Boolean func-
tion f on Fy is the size of its support {x e
F3/ f(x) # 0}. The Hamming distance dg(f g) be-
tween two functions f and g is the size of the
set {x € Fy/ f(x) # g(x)}. Thus it equals the Ham-
ming weight wy(f® g) of the sum (modulo 2) of the
functions.

Every n-variable Boolean function can be repre-
sented with its truth table. But the representation
of Boolean functions, which is most usually used
in cryptography, is the n-variable polynomial rep-
resentation over Fy of the form

0= @ o (nxi),

I, ..., iel

where @ denotes the binary sum. The variables
X1,...,%, appear in this polynomial with expo-
nents smaller than or equal to 1 because, repre-
senting bits, they are equal to their own squares.
This polynomial representation is called the Al-
gebraic Normal Form, in brief, ANF (see also
Reed—Muller codes).

EXAMPLE: The three-variable function f whose
truth table equals
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2 X2 x3 | fx) |
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

has ANF: (1 ®x)1®xg)x3®x1(1Px2)xs D
X1X9X3 = X1X9X3 @D x2x3 @ x3. Indeed, the expres-
sion (1@ x1)(1 @ x2)x3, for instance, equals 1
if and only if 1®x; =1®x3 =x3 =1, that is,
(x1, 22, 23) = (0, 0, 1). o

A similar polynomial representation, called the
Numerical Normal Form, in which the coefficients
and the operation of summation take place in the
group of integers instead of F;, can also be used
for studying Boolean functions.

The ANF of every Boolean function exists and
is unique.

Two simple relations relate the truth table and

the ANF:
vxeFy, fo= @ ar 1)
ICsupp(x)
vIc{l,...,n}, ar = flx), (2)
xeFy / supp(x)CT
where supp(x) denotes the support {ic

{1,...,n}/x; =1} of x. Thus, the function is
the image of its ANF by the binary Modbius
transform, and vice versa.

The degree of the ANF is denoted by d° fand is
called the algebraic degree of the function (some
authors use also the term nonlinearity order). The
algebraic degree is an affine invariant in the fol-
lowing sense: two functions f and g are called
affinely (resp. linearly) equivalent if there exists
an affine (resp. a linear) automorphism (i.e., in-
vertible homomorphism) A of F3 such that g =
fo A. A mapping is called affine invariant if it is
invariant under affine equivalence.

The affine functions are those Boolean func-
tions with degrees 0 or 1 (thus, with the simplest
ANFs). Denoting by a - x the usual inner product
a-x=a1x1® - ®a,x, in F}, the general form
of an n-variable affine function is a - x ® a9, with
a e Fy; ag e Fy.

Another representation of Boolean functions
can be used: the trace representation. The vector
space Fy is endowed with the structure of the field
Fy.. Let us denote by ¢r the trace function from
Fy to Fy: tr(x) =x + 22 +x% + .- + 42" Every
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Boolean function on Fy: can be represented in the
form tr(P(x)), where x € F5., and where P(x) is a
polynomial on one variable over Fy., of degree at
most 2" — 1.

Almost all of the characteristics needed for
Boolean functions in cryptography can be ex-
pressed by means of the discrete Fourier trans-
forms of the functions. The discrete Fourier trans-
form (also called Hadamard transform) of a
Boolean function, or more generally of an integer-
valued function ¢ on Fy},is the integer-valued func-
tion ¢ defined on F} by

P = ) (—1

n
xeFj

3

There exists a simple divide-and-conquer butter-
fly algorithm to compute ¢, whose complexity is
O(n2m):

1. Write the table of the values of ¢ (its truth table
if ¢ is Boolean), the binary vectors of length n
being, say, in lexicographic order;

2. Let ¢ be the restriction of ¢ to {0} x FQ"_1 and
@1 its restriction to {1} x F2"’1; the table of ¢g
(resp. ¢1) corresponds to the upper (resp. lower)
half of the table of ¢; replace the values of ¢
by those of ¢y + ¢1 and those of ¢; by those of
Yo — ¢15

3. Apply recursively step 2 to ¢ and to ¢; (these
(n — 1)-variable functions taking the place of ).

At each recursion, the number of variables of the

functions decreases by 1. When the algorithm ends

(i.e., when it arrives to functions on one variable

each), the global table gives the values of ¢.

EXAMPLE: This algorithm, applied for computing
the Fourier transform of the three-variable func-
tion falready considered above, gives the follow-
ing table.

51w x| fw] | | Fw]
0O 0 O 0 0 0 3
0O o0 1 1 2 3| -3
0O 1 0 0 0 0 1
o 1 1 0 1 1] -1
1 0 O 0 0 0| -1
1 0 1 1 0| -1 1
1 1 O 0 0 0 1
1 1 1 1 -1 1] -1

For a given Boolean function f, the discrete
Fourier transform can be applied to f itself (no-
tice that f(0) equals the Hamming weight of
f). It can also be applied to the function f(x) =
(—1)/® (often called the sign function), which

gives:

?(u) — Z (_1)f(x)€Bx-u.

m
xeFy

We call ?the Walsh transform of f. We shall use
only this transform of Boolean functions in the se-
quel.

The discrete Fourier transform, as any other
Fourier transform, has numerous properties. The
two most important ones are the inverse Fourier

o~
=

relation: ¢ = 2" ¢, and Parseval’s relation:

YW =2" ) P

n n
uckj xeFy

Parseval’s relation applied to the Walsh transform
of a Boolean function fgives:

3 P =22,

n
uckj

The resistance of the diverse cryptosystems
implementing Boolean functions to the known
attacks can be quantified through some funda-
mental characteristics of the Boolean functions
used in them. The design of cryptographic func-
tions then needs to consider various characteris-
tics (depending on the choice of the cryptosystem)
simultaneously. Of course, these criteria are par-
tially in conflict with each other, and trade-offs are
necessary.

Criteria and Cryptographic
Characteristics

1. Cryptographic functions must have high al-
gebraic degrees, since all cryptosystems using
Boolean functions can be attacked if the func-
tions have low degrees.

For instance, in the case of combin-
ing functions, if n LFSRs having lengths
L4, ..., L, are combined by the function f(x) =
@Picq....mar ([Tier i), then the sequence pro-
duced by fcan be obtained by a LFSR of length
therefore to be high so that L can have a high
value (otherwise, the system does not resist the
Berlekamp—Massey attack [2]). In the case of
block ciphers, the use of Boolean functions of
low degrees makes effective the “higher differ-
ential attack.”

2. The output to any Boolean function f always
has correlation to certain linear functions of its
inputs. But this correlation should be small.
In other words, the minimum Hamming dis-
tance between fand all affine functions must be
high. Otherwise, an affine approximation of the
Boolean function can be used to build attacks on




any kind of system implementing the function
(see Linear cryptanalysis for block ciphers and
Linear cryptanalysis for stream ciphers). The
minimum distance between f and all affine
functions is called the nonlinearity of f and
denoted by N L(/) (see Nonlinearity of Boolean
functions for more details). It can be quantified
through the Walsh transform:

NL(f) = 2" — fmax | Fw).

Parseval’s relation then implies that for every
n-variable Boolean function f:

NE( f) < 2n—1 _ 2n/2—1'

. Cryptographic functions must be balanced
(their output must be uniformly distributed) for
avoiding statistical dependence between the in-
put and the output, which can be used in at-
tacks. Note that fis balanced if and only if
f(0)=0.

Moreover, any combining function fx) must

stay balanced if we keep constant some coor-
dinates x; of x (at most m of them, where m
is as large as possible). We say that fis then
m-resilient. More generally, a (non necessarily
balanced) Boolean function, whose output dis-
tribution probability is unaltered when any m
of the input bits are kept constant, is called
mth order correlation-immune (see Correlation
immune and resilient Boolean functions).
. The propagation criterion (PC), generalizing
the strict avalanche criterion (SAC), quanti-
fies the level of diffusion put in a cipher by a
Boolean function. This criterion is more rele-
vant to block ciphers. An n-variable Boolean
function satisfies the propagation criterion
PC(l) of degree [ if, for every vector x of Ham-
ming weight at most /, the derivative D, f(x) =
f(x)® f(x +a) is balanced (see Propagation
characteristics of Boolean functions).

By definition, SAC is equivalent to PC(1).

. Avector e € F is called a linear structure of an
n-variable Boolean function fif the derivative
D, f is constant. Boolean functions used in block
ciphers should avoid nonzero linear structures
(see [1]). A Boolean function admits a nonzero
linear structure if and only ifit is linearly equiv-
alent to a function of the form f(xq,...,x,) =
gxy,...,x,_1) ® e x, where ¢ € Fy.

. Other characteristics of Boolean functions have
been considered in the literature:

— The sum-of-squares indicator V(f)=

2
ZaEFZ” (erFzﬂ(_l)D” f(x)) and the abso-
lute indicator maxacpy. a0 | erF;(_l)Da f@)
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quantify the global diffusion capability of
the function (the lower they are, the better
is the diffusion);

— The maximum correlation between an
n-variable Boolean function [ and a
subset I of {1,...,n} equals Cr(I)=

27" max —1)f@ee®)  where F; is the
ey erF;( ) I

set of all n-variable Boolean functions
whose values depend on {x;,i € I} only. The
maximum correlation C(I) must be low for
every nonempty set I of small size, to avoid
nonlinear correlation attacks (note that mth
order correlation immunity corresponds to
an optimum maximum correlation to every
subset I of size at most m, if we consider only
affine approximations instead of all Boolean
approximations).

Claude Carlet
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BOOMERANG ATTACK

The boomerang attack is a chosen plaintext and
adaptive chosen ciphertext attack discovered by
Wagner [5]. It is an extension of differential at-
tack to two-stage differential-differential attack
which is closely related to impossible differential
attack as well as to the meet-in-the middle ap-
proach. The attack may use characteristics, dif-
ferentials as well as truncated differentials. The
attack breaks constructions in which there are
high-probability differential patterns propagating
half-way through the cipher both from the top and
from the bottom, but there are no good patterns
that propagate through the full cipher.

The idea of the boomerang attack is to find
good conventional (or truncated) differentials that
cover half of the cipher but cannot necessarily be
concatenated into a single differential covering the
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whole cipher. The attack starts with a pair of plain-
texts P and P’ with a difference A which goes
to difference A* through the upper half of the ci-
pher. The attacker obtains the corresponding ci-
phertexts C and C’, applies the difference V to ob-
tain ciphertexts D=C+V and D'=C'+V, and
decrypts them to plaintexts @ and @'. The choice
of V is such that the difference propagates to the
difference V* in the decryption direction through
the lower half of the cipher. For the right quar-
tet of texts, difference A* is created in the mid-
dle of the cipher between partial decryptions of D
and D’ which propagates to the difference A in the
plaintexts @ and @’'. This can be detected by the
attacker.

Moreover, working with quartets (pairs of pairs)
provides boomerang attacks with additional filtra-
tion power. If one partially guesses the keys of the
top round one has two pairs of the quartet to check
whether the uncovered partial differences follow
the propagation pattern, specified by the differen-
tial. This effectively doubles the attacker’s filtra-
tion power.

The attack was demonstrated with a practical
cryptanalysis of a cipher which was designed with
provable security against conventional differen-
tial attack [4], as well as on round-reduced ver-
sions of several other ciphers. The related method
of the inside out attack was given in the same pa-
per. Further refinements of the boomerang tech-
nique have been found in papers on so-called am-
plified boomerang and rectangle attacks [1,3]. In
certain cases a free round in the middle may be
gained due to a careful choice of the differences
coming from the top and from the bottom [2, 5].

Alex Biryukov
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BROADCAST ENCRYPTION

CONCEPT DEFINITION AND APPLICATIONS:
The concept of broadcast encryption deals with
methods that allow to efficiently transmit infor-
mation to a dynamically changing group of priv-
ileged users who are allowed to receive the data.
It is often convenient to think of it as a revoca-
tion scheme, which addresses the case where some
subset of the users are excluded from receiving the
information.

The problem of a center transmitting data to
a large group of receivers so that only a pre-
defined subset is able to decrypt the data is at
the heart of a growing number of applications.
Among them are pay-TV applications, multicast
(or secure group) communication, secure distribu-
tion of copyright-protected material (e.g., music),
digital rights management, and audio streaming.
Different applications impose different rates for
updating the group of legitimate users. Users are
excluded from receiving the information due to
payments, subscription expiration, or since they
have abused their rights in the past.

One special case is when the receivers are state-
less. In such a scenario, a (legitimate) receiver is
not capable of recording the past history of trans-
missions and change its state accordingly. Instead,
its operation must be based on the current trans-
mission and its initial configuration. Stateless re-
ceivers are important for the case where the re-
ceiver is a device that is not constantly on-line,
such as a media player (e.g., a CD or DVD player
where the “transmission” is the current disc [4,10],
a satellite receiver (GPS) and perhaps in multicast
applications).

Broadcast encryption can be combined with
tracing capabilities to yield trace-and-revoke
schemes. A tracing mechanism enables the efficient
tracing of leakage, specifically, the source of keys
used by illegal devices, such as pirate decoders or
clones. Trace-and-revoke schemes are of particu-
lar value in many scenarios: they allow to trace
the identity of the user whose key was leaked; in
turn, this user’s key is revoked from the system
for future uses.



What are the desired properties of a broadcast
encryption scheme? A good scheme is character-
ized by
® Low bandwidth—we aim at a small message

expansion, namely that the length of the en-

crypted content should not be much longer than
the original message.

® Small amount of storage—we would like the
amount of required storage (typically keys) at
the user to be small, and as a secondary objec-
tive the amount of storage at the server to be
manageable as well.

® Attentiveness—does the scheme require users
to be on-line “all the time?” If such a require-
ment does not apply, then the scheme is called
stateless.

® Resilience—we want the method to be resilient
to large coalitions of users who collude and
share their resources and keys.

In order to evaluate and compare broadcast en-
cryption methods, we define a few parameters. Let
N be the set of all users, IMV| =N, and R C N be
a group of |R| =r users whose decryption privi-
leges should be revoked. The goal of a broadcast
encryption algorithm is to allow a center to trans-
mit a message M to all users such that any user
u € N\ R can decrypt the message correctly, while
a coalition consisting of ¢ or fewer members of R
cannot decrypt it. The important parameters are
therefore r, ¢, and N.

A system consists of three parts: (1) akey assign-
ment scheme, which is an initialization method for
assigning secret keys to receivers that will allow
them to decrypt. (2) The broadcast algorithm—
given a message M and the set R of users to revoke
outputs a ciphertext message M’ that is broad-
cast to all receivers. (3) A decryption algorithm—
a (nonrevoked) user who receives ciphertext M’
should produce the original message M using its
secret information.

HISTORY OF THE PROBLEM: The issue of se-
cure broadcasting to a group has been investi-
gated earlier on, see for example [1]. The first
formal definition of the area of broadcast encryp-
tion, including parameterization of the problem
and its rigorous analysis (as well as coining the
term) was done by Fiat and Naor in [5] and has
received much attention since then; see for exam-
ple [2,6,8,9,11,13-15,18,19]. The original broad-
cast encryption method of [5] allows the removal
of any number of users as long as at most ¢ of them
collude. There the message length is O(t log®¢), a
user must store a number of keys that is logarith-
mic in ¢ and the amount of work required by the
useris O(r/¢) decryptions. The scheme can be used
in a stateless environment as it does not require
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attentiveness. On the other hand, in the stateful
case, gradual revocation of users is particularly
efficient.

The logical-tree-hierarchy (LKH) scheme, sug-
gested independently in the late 1990s by Wallner
et al. [18] and Wong et al. [19], is designed to
achieve secure group communication in a multi-
cast environment. Useful mainly in the connected
mode for multicast re-keying applications, it re-
vokes or adds a single user at a time, and up-
dates the keys of all remaining users. It requires
a transmission of 2log N keys to revoke a single
user, each user is required to store log N keys and
the amount of work each user should do is log N
encryptions (the expected number is O(1) for an
average user). These bounds are somewhat im-
proved in [2,3,12,16,17], but unless the storage
at the user is extremely high they still require a
transmission of length Q(r log N). This algorithm
may revoke any number of users, regardless of the
coalition size.

Luby and Staddon [11] considered the infor-
mation theoretic (see computational complexity,
information theory, and security) setting and de-
vised bounds for any revocation algorithms under
this setting. Garay et al. [6] introduced the no-
tion of long-lived broadcast encryption. In this sce-
nario, keys of compromised decoders are no longer
used for encryptions. The question they address is
how to adapt the broadcast encryption scheme so
as to maintain the security of the system for the
good users.

CPRM, which stands for content protection for
recordable media, [4] is a technology for protect-
ing content on physical media such as recordable
DVD, DVD Audio, Secure Digital Memory Card,
and Secure CompactFlash. It is one of the meth-
ods that explicitly considers the stateless scenario.
There, the message is composed of r log N encryp-
tions, the storage at the receiver consists of log NV
keys, and the computation at the receiver requires
a single decryption. It is a variant on the tech-
niques of [5].

The subset difference method for broadcast en-
cryption, proposed by Naor, Naor, and Lotspiech
[13, 14], is most appropriate in the stateless sce-
nario. It requires a message length of 2r — 1 (in
the worst case, or 1.38r in the average case) en-
cryptions to revoke r users, and storage of % logz N
keys at the receiver. The algorithm does not as-
sume an upper bound of the number of revoked
receivers, and works even if all r revoked users
collude. The key assignment of this scheme is com-
putational and not information theoretic, and as
such it outperforms an information theoretic lower
bound on the size of the message [11]. A rigor-
ous security treatment of a family of schemes,
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including the subset difference method, is pro-
vided in [14]. Halevy and Shamir [8] have sug-
gested a variant of subset difference called LSD
(layered subset difference). The storage require-
ments are reduced to O(logH‘E N) while the mes-
sage length is O(r/¢), providing a full spectrum
between the complete subtree and subset differ-
ence methods. A reasonable choice is ¢ = 2.

Both LKH and the subset difference methods
are hierarchical in nature and as such are partic-
ularly suitable to cases where related users must
all be revoked at once, for instance, all users whose
subscription expires on a certain day.

It is also important to realize that many imple-
mentations in this field remain proprietary and
are not published both for security reasons (not to
help the pirates) as well as for commercial reasons
(not to help the competitors).

CONSTRUCTIONS: A high level overview of three
fundamental broadcast encryption constructions
is outlined below. Details are omitted and can be
found in the relevant references. One technique
that is commonly used in the key assignment of
these constructions is the derivation of keys in a
tree-like manner: a key is associated with the root
of a tree and this induces a labeling of all the nodes
of the tree. The derivation is done based on the
technique first used by Goldreich, Goldwasser, and
Micali (GGM) [7].

Fiat—Naor Construction

The idea of the construction in [5] is to start with
the case where the coalition size (the number of
users who collude and share their secret informa-
tion) is ¢ and reduce it to the case where the coali-
tion size is 1, the basic construction. For this case,
suppose that there is a key associated with each
user; every user is given all keys except the one as-
sociated with it. (As an illustration, think of the
key associated with a user as written on its fore-
head, so that all other users except for itself can
see it.) To broadcast a message to the group N\ R,
the center constructs a broadcast key by Xoring
all keys associated with the revoked users R. Note
that any user u € A'\ R can reconstruct this key,
but a user u € R cannot deduce the key from its
own information. This naive key assignment re-
quires every user to store NV — 1 keys. Instead, by
deriving the keys in a GGM tree-like process, the
key assignment is made feasible by requiring ev-
ery user to store log N keys only.

The construction is then extended to handle the
case where up to ¢ users may share their secret

information. The idea then is to obtain a scheme
for larger ¢ by various partitions of the user set,
where for each such partition the basic scheme is
used.

Logical Key Hierarchy

The LKH (logical key hierarchy) scheme [18—20]
maintains a common encryption key for the active
group members. It assumes that there is an initial
set \ of N users and that from time to time an ac-
tive user leaves and a new value for the group key
should be chosen and distributed to the remain-
ing users. The operations are managed by a center
which broadcasts all the maintenance messages
and is also responsible for choosing the new key.
When some user u € N is revoked, a new group
key K’ should be chosen and all nonrevoked users
in A should receive it, while no coalition of the
revoked users should be able to obtain it; this is
called a leave event. At every point a nonrevoked
user knows the group key K as well as a set of
secret “auxiliary” keys. These keys correspond to
subsets of which the user is a member, and may
change throughout the lifetime of the system.

Users are associated with the leaves of a full bi-
nary tree of height log N. The center associates a
key K; with every node v; of the tree. At initial-
ization, each user u is sent (via a secret channel)
the keys associated with all the nodes along the
path connecting the leaf u to the root. Note that
the root key K is known to all users and can be
used to encrypt group communications.

In order to remove a user u from the group (a
leave event), the center performs the following op-
erations. For all nodes v; along the path from u
to the root, a new key K/ is generated. The new
keys are distributed to the remaining users as fol-
lows: let v; be a node on the path and v; be its
child on the path and v, its child that is not on the
path. Then K’ is encrypted using K} and K, (the
latter did not change), i.e., a pair of encryptions
(EK;(I{LT), Ex, (K))). The exception is if v; is the par-
ent of the leafu, in which case only a single encryp-
tion using the sibling of u is sent. All encryptions
are sent to all the users.

Subset Difference

The subset difference construction defines a col-
lection of subsets of users Sy, ..., Sy, S; € N. Each
subset S; is assigned a long-lived key Lj; a user u
is assigned some secret information I, so that ev-
ery member of S; should be able to deduce L; from
its secret information. Given a revoked set R, the
remaining users are partitioned into disjoint sets



Si,, ..., S, from the collection that entirely cover
them (every user in the remaining set is in at least
one subset in the cover) and a session key K is en-
crypted m times with L; , ..., L; . The message is
then encrypted with the session key K.

Again, users are associated with the leaves of a
full binary tree of height log N. The collection of
subsets Sy, ..., S, defined by this algorithm corre-
sponds to subsets of the form “a group of receivers
G1 minus another group Gs,” where Gy C G;. The
two groups G1, Ge correspond to leaves in two full
binary subtrees. Therefore, a valid subset Sis rep-
resented by two nodes in the tree (v;, v;) such that
v; is an ancestor of v; and is denoted as S; ;. A leaf
u is in §; ; iff it is in the subtree rooted at v; but
not in the subtree rooted at v}, or in other words
u € §; jiff v; is an ancestor of u but v; is not.

The observation is that for any subset R of re-
voked users, it is possible to find a set of at most
2r — 1 subsets from the predefined collection that
cover all other users N\ R.

A naive key assignment that assigns to each
user all long-lived keys of the subsets it belongs
to requires a user to store O(NN) key. Instead, this
information (or rather a succinct representation of
it) can be reduced to % log® N based on a GGM-like
tree construction; for details see [14].

Dalit Naor
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CZASAR CIPHER

Julius Caesar is reported to have replaced each
letter in the plaintext by the one standing three
places further in the alphabet. For instance, when
the key has the value 3, the plaintext word
cleopatra will be encrypted by the ciphertext
word fohrsdwud. Augustus allegedly found this
too difficult and always took the next letter. Break-
ing the Caesar cipher is almost trivial: there are
only 26 possible keys to check (exhaustive key
search) and after the first four or five letters are
decrypted the solution is usually unique.

The Caesar cipher is one of the most simple cryp-
tosystems, with a monoalphabetic encryption: by

CAMELLIA

Camellia[1]is a block cipher designed in 2000 by a
team of cryptographers from NTT and Mitsubishi
Electric Corporation. It was submitted to differ-
ent standardization bodies and was included in the
NESSTIE Portfolio of recommended cryptographic
primitives in 2003.

Camellia encrypts data in blocks of 128 bits and
accepts 128-bit, 192-bit, and 256-bit secret keys.
The algorithm is a byte-oriented Feistel cipher
and has 18 or 24 rounds depending on the key
length. The F-function used in the Feistel struc-
ture can be seen as a 1-round 8-byte substitution-
permutation (SP) network. The substitution layer

counting down in the cyclically closed ordering of
an alphabet, a specified number of steps.

Ceesar encryptions are special linear substi-
tution (see substitutions and permutations) with
n =1 and the identity as homogeneous part ¢.
Interesting linear substitutions with n > 2 have
been patented by Lester S. Hill in 1932.

Friedrich L. Bauer
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consists of eight 8 x 8-bit S-boxes applied in paral-
lel, chosen from a set of four different affine equiv-
alent transformations of the inversion function in
GF(28)(see Rijndael/AES). The permutation layer,
called the P-function, is a network of byte-wise
exclusive ORs and is designed to have a branch
number of 5 (which is the maximum for such a
network). An additional particularity of Camellia,
which it shares with MISTY1 and KASUMI (see
KASUMI/MISTY1), is the FL-layers. These lay-
ers of key-dependent linear transformations are
inserted between every six rounds of the Feistel
network, and thus break the regular round struc-
ture of the cipher.
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Fig. 1. Camellia: encryption for 128-bit keys and details of F-function
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In order to generate the subkeys used in the F-
functions, the secret key is first expanded to a 256-
bit or 512-bit value by applying four or six rounds
of the Feistel network. The key schedule (see block
cipher) then constructs the necessary subkeys by
extracting different pieces from this bit string.

The best attacks on reduced-round Camellia
published so far are square and rectangle attacks
(see integral attack and boomerang attack). The
nine-round square attack presented by Yeom et al.
[4] requires 25! chosen plaintexts and an amount
of work equivalent to 22°2 encryptions. The rectan-
gle attack proposed by Shirai [3] breaks ten rounds
with 2127 chosen plaintexts and requires 224! mem-
ory accesses. Hatano, Sekine, and Kaneko [2] also
analyze an 11-round variant of Camellia using
higher order differentials. The attack would re-
quire 2% chosen ciphertexts, but is not likely to
be much faster than an exhaustive search for the
key, even for 256-bit keys.

Note that more rounds can be broken if the
FL-layers are discarded. A linear attack on a 12-
round variant of Camellia without FL-layers is
presented in [3]. The attack requires 2! known
plaintexts and recovers the key after performing
a computation equivalent to 2247 encryptions.

Christophe De Canniere
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CAST

CAST is a design procedure for symmetric cryp-
tosystems developed by C. Adams and S. Tavares

in 1993 [1,2]. In accordance with this procedure,
a series of DES-like block ciphers was produced
(see Data Encryption Standard (DES)), the most
widespread being the 64-bit block cipher CAST-
128. The latest member of the family, the 128-bit
block cipher CAST-256, was designed in 1998 and
submitted as a candidate for the Advanced En-
cryption Standard (see Rijndael/AES).

All CAST algorithms are based on a Feistel
cipher (a generalized Feistel network in the case of
CAST-256). A distinguishing feature of the CAST
ciphers is the particular construction of the f-
function used in each Feistel round. The gen-
eral structure of this function is depicted in Fig-
ure 1. The data entering the ffunction is first
combined with a subkey and then split into a
number of pieces. Each piece is fed into a sepa-
rate expanding S-box based on bent functions (see
nonlinearity of Boolean functions). Finally, the
output words of these S-boxes are recombined one
by one to form the final output. Both CAST-128 and
CAST-256 use three different 32-bit f-functions
based on this construction. All three use the same
four 8 x 32-bit S-boxes but differ in the operations
used to combine the data or key words (the oper-
ations a, b, ¢, and d in Figure 1). The CAST ci-
phers are designed to support different key sizes
and have a variable number of rounds. CAST-128
allows key sizes between 40 and 128 bits and uses

| 32-bit data half |

Fig. 1. CAST’s f-function



12 or 16 rounds. CAST-256 has 48 rounds and sup-
ports key sizes up to 256 bits.

The first CAST ciphers were found to have some
weaknesses. Rijmen et al. [5] presented attacks
exploiting the nonsurjectivity of the ffunction in
combination with an undesirable property of the
key schedule. Kelsey et al. [3] demonstrated that
the early CAST ciphers were vulnerable to related
key attacks. Moriai et al. [4] analyzed simplified
versions of CAST-128 and presented a five-round
attack using higher order differentials.
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CBC-MAC AND VARIANTS

SIMPLE CBC-MAC: CBC-MAC is one of the old-
est and most popular MAC algorithms. A MAC
algorithm is a cryptographic algorithm that com-
putes a complex function of a plaintext and a se-
cret key; the resulting MAC value is typically ap-
pended to the plaintext to protect its authenticity.
CBC-MAC is a MAC algorithm based on a block
cipher; it is derived from the Cipher Block Chain-
ing (CBC) mode of operation, which is a mode for
encryption. CBC-MAC is very popular in financial
applications and smart cards.

In the following, the block length and key length
of the block cipher will be denoted by n and k& re-
spectively. The length (in bits) of the MAC value
will be denoted by m. The encryption and decryp-
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Fig. 1. CBC-MAC, where the MAC value is g(H;)

tion with the block cipher E using the key K will be

denoted by Ex(-) and Dxg(.), respectively. An n-bit

string consisting of zeroes will be denoted by 0".
CBC-MAC is an iterated MAC algorithm, which

consists of the following steps (see also Figure 1):

® Padding and splitting of the input. The goal of
this step is to divide the input into ¢ blocks of
length n; before this can be done, a padding al-
gorithm needs to be applied. The most common
padding method can be described as follows [12].
Let the message string before padding be x =
X1, X2, ...,%, With |x1] = |xo| = = |xp_1| =1
(here |x;| denotes the size of the string x; in bits).
If |x¢/| = n append an extra block x; ;1 consist-
ing of one one-bit followed by n — 1 zero bits,
suchthat |x; 1| = nandsett = ¢’ + 1;otherwise
append a one-bit and n — |x;/| — 1 zero bits, s.t.
|xy| = n and set t’ = ¢. A simpler padding algo-
rithm (also included in [12]) consists of append-
ing n — |x;| zero bits and setting ¢’ =¢. This
padding method is not recommended, as it al-
lows for trivial forgeries.

® CBC-MAC computation, which iterates the fol-
lowing operation:

Hi = EK(Hifl EBxi),

1<i<t.

The initial value is equal to the all zero string,
or Hy = 0" (note that for the CBC encryption
mode, a random value Hj is recommended).

® Qutput transformation. The MAC value is com-
puted as MACk(x) = g(H;), where g is the out-
put transformation.

The simplest construction is obtained when the
output transformation g() is the identity function.
Bellare et al. [4] have provided a security proof for
this scheme. Their proof is based on the pseudo-
randomness of the block cipher and requires that
the inputs are of fixed length. It shows a lower
bound for the number of chosen texts that are re-
quired to distinguish the MAC algorithm from a
random function, which demonstrates that CBC-
MAC is a pseudorandom function. Note that this is
a stronger requirement than being a secure MAC
as this requires just unpredictability or computa-
tion resistance. An almost matching upper bound
to this attack is provided by an internal collision
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attack based on the birthday paradox (along the
lines of Proposition 1 of MAC algorithms [6, 24]).
The attack obtains a MAC forgery; it requires a
single chosen text and about 22 known texts; for a
64-bit block cipher such as Data Encryption Stan-
dard (DES), this corresponds to 232 known texts.

If the input is not of fixed length, very simple
forgery attacks apply to this scheme:
® given MAC(x), one knows that MACg(x||(x &

MACk(x))) = MACk(x) (for a single block x);
® given MAC(x) and MAC(x'), one knows that

MACkg(x||(x’ ® MACk(x))) = MACg(x') (for a

single block x’).
® given MAC(x), MAC(x|y), and MAC(x’), one

knows that MAC(x'||y") = MAC(x|ly) if y =y &

MAC(x) ® MAC(x'), where y and y' are single

blocks.

A common way to preclude these simple forgery
attacks is to replace the output transform g by a
truncation to m < n bits; m = 32 is a very popular
choice for CBC-MAC based on DES (n = 64). How-
ever, Knudsen has shown that a forgery attack on
this scheme requires 2 - 2"~/2 chosen texts and
two known texts [16], which is only 2!7 chosen
texts for n = 64 and m = 32. Note that this is sub-
stantially better than an internal collision attack.
The proof of security for fixed length inputs still
applies however.

In order to describe attacks parameters in a
compact way, an attack is quantified by the four-
tuple [a, b, ¢, d ], where
® ¢ is the number off-line block cipher encipher-

ments,
® ) is the number of known text-MAC pairs,
® ¢ is the number of chosen text-MAC pairs, and
® ( is the number of on-line MAC verifications.
Attacks are often probabilistic; in that case the
parameters indicated result in a large success
probability (typically at least 0.5). As an exam-
ple, the complexity of exhaustive key search is
[2%, [k/m], 0, 0] and for a MAC guessing attack it
is [0, 0, 0, 2™]. The forgery attacks based on an in-
ternal collision for CBC-MAC as described above
have attack parameters [0,2%2, 1,0] if g is the
identity function and [0, 2,2 -2®™/2 0] if g is a
truncation to m bits.

VARIANTS OF CBC-MAC: As a first comment,
it should be pointed out that for most of these
schemes, a forgery attack based on internal col-
lisions applies with complexity [0, 2%/2, 1, 0] for
m =n and [0, 2%/2 min(2%/2,2"™) 0] for m <n
(Propositions 1 and 2 in MAC algorithms).

The EMAC scheme uses as output transforma-
tion g the encryption of the last block with a
different key. It was first proposed by the RIPE

Consortium in [27]; Petrank and Rackoff have pro-
vided a security proof in [23], which shows that
this MAC algorithm is secure with inputs of arbi-
trary lengths:

&(H;) = Ex(H;) = Ex(Eg(x; & H;—1)),

where K’ is a key derived from K.

A further optimization by Black and Rogaway
[5] reduces the overhead due to padding; it is
known as XCBC (or three-key MAC). XCBC uses a
k-bit block cipher key K; and two n-bit whitening
keys Ky and K3. It modifies the last encryption and
padding such that the number of blocks before and
after padding is equal or ¢ =¢'. If |x| = n, then
XOR the n-bit key K, to x;/; otherwise append a
one-bit and n — |xy| — 1 zero bits, s.t. |x;/| = n, and
then XOR the n-bit key K3 to x;. The OMAC al-
gorithm by Iwata and Kurosawa [13] reduces the
number of keys to one by choosing Ky = 2’ - Ex(0")
and K3 = ‘4’ - Ex(0") where ‘2’ and ‘4’ are two ele-
ments of the finite field GF(2") (see [13] for the
details of this representation) and “.” represents
multiplication in the finite field GF(2"). It is antic-
ipated that NIST will standardize this algorithm
under the name CMAC for use with AES.

RIPE-MAC [27] is a variant of EMAC with the
following iteration:

H;, =Ex(H,_1®x) ®x;,

1<i<t.

This increases the complexity to find collisions
even if one knows the key.

Because of the 56-bit key length, CBC-MAC
with DES no longer offers adequate security. Sev-
eral constructions exist to increase the key length
of the MAC algorithm. No lower bounds on the
security of these schemes against key recovery are
known.

A widely used solution is the ANSI retail MAC,
which first appeared in [3]. Rather than replac-
ing DES by triple-DES, one processes only the
last block with two-key triple-DES, which corre-
sponds to an output transformation g consisting
of a double-DES encryption:

&(H;) = Eg,(Dg,(H,)).

When used with DES, the key length of this
MAC algorithm is 112 bits. However, Preneel and
van Oorschot have shown that 2*/2 known texts
allow for a key recovery in only 3 - 2¥ encryptions,
compared to 2% encryptions for exhaustive key
search [25] (note that for DES n = 64 and £ = 56).
If m < n, this attack requires an additional 2"~™
chosen texts. The complexity of these attacks
is thus [2}*1,2%/2,0,0] and [2}F1,2%/2 2n—™ 0.
Several key recovery attacks require mostly MAC
verifications, with the following parameters:




[2¢,1,0,2¢] [20], [2¢*1, [(max(k,n)+ 1)/m],0,
[((k—n—m+1)/m]-2")] [18] and for m < n:
[2541,0,0, ([n/m] + 1) - 2+m)/2=1] [21].

The security of the ANSI retail MAC can be im-
proved at no cost in performance by introducing a
double DES encryption in the first and last itera-
tion; this scheme is know as MacDES [20]:

H, = Eg,(Ek,(X1)) and g(H;) = Eg,(H,).

Here K| is derived from K;. The best known
key recovery attack due to Coppersmith et al.
[8] has complexity [2¢*3, 27/2+1 35 .237/4 0], for
small s > 1; with truncation of the output to
m = n/2 bits, this complexity increases to [2¢+5 +
2k+2p (), 2n+3-p 9k+1] with space complexity 225,
These attacks assume that a serial number is in-
cluded in the first block; if this precaution is not
taken, key recovery attacks have complexities sim-
ilar to the ANSI retail MAC: [2%+2 27/2 2 0] and
[2k+21, 1, 2¥] [9].

Several attempts have been made to increase
the resistance against forgery attacks based on in-
ternal collisions. A first observation is that the use
of serial numbers is not sufficient [7].

RMAC, proposed by Jaulmes et al. [14], intro-
duces in the output transformation a derived key
K’ that is modified with a randomizer or “salt” R
(which needs to be stored or sent with the MAC
value):

g(H,;) = Exor(H,).

The RMAC constructions offer increased resis-
tance against forgery attacks based on internal
collisions, but it has the disadvantage that its
security proof requires resistance of the under-
lying block cipher against related key attacks.
A security analysis of this scheme can be found
in[17,19]. The best known attack strategy against
RMAC is to recover K': once K’ is known, the secu-
rity of RMAC reduces to that of simple CBC-MAC.
For m = n, the complexities are [2¢—5 4+ 2k~ 1,25,
2711 or [2F—s 4 2k-n 1,0,2°+"-1 4 27-1]  while
for m <n the complexities are [2F 4 2k
0,25, [n/m + 17 -20tm/2] and [2k—s + 2k 0,0,
[n/m+ 17 .20+tm/2 L 9stm=11 " A variant which
exploits multiple collisions has complexity [2¢~1/
(u/t),0,(t/e)2¢nt 0] withu =t +t(t — 1)/2 (for
m = n). These attacks show that the security level
of RMAC is smaller than anticipated. However,
when RMAC is used with three-key triple-DES,
the simple key off-setting technique is inse-
cure; [19] shows a full key recovery attack with
complexity [264, 28 28 256] which is much lower
than anticipated. RMAC was included in NIST’s
2002 draft special publication [22]; however, this
draft has been withdrawn.
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3GPP-MAC [1] uses a larger internal memory
of 2n bits, as it also stores the sum of the interme-
diate values of the MAC computation. The MAC
value is computed as follows:

MAC = g(Ex,(H, @ H> @ - -- Hy)).

Knudsen and Mitchell analyze this scheme in [18].
If g is the identity function, the extra computation
and storage does not pay off: there exist forgery
attacks that require only 2*/2 known texts, and
the complexity of key recovery attacks is similar
to that of the ANSI retail MAC. However, truncat-
ing the output increases the complexity of these
attacks to an adequate level. For the 3GPP appli-
cation, the 64-bit block cipher KASUMI is used
with a 128-bit key and with m = 32. The best
known forgery attack requires 2%® texts and the
best known key recovery attacks have complexi-
ties [2130, 248,232 0] and [2!%?, 3, 0, 264].

STANDARDIZATION: CBC-MAC is standardized
by several standardization bodies. The first stan-
dards included only simple CBC-MAC [2, 10]. In
1986, the ANSI retail MAC was added [3, 11].
The 1999 edition of ISO 9797-1 [12] includes sim-
ple CBC-MAC, EMAC, the ANSI retail MAC and
MacDES (and two other schemes which are no
longer recommended because of the attacks in
[15]). 3GPP-MAC has been standardized by 3GPP
[1]. It is anticipated that NIST will standardize
OMAC.

B. Preneel
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This is a binary coding of the International Tele-
type Alphabet No. 2. The six control characters of
the teletype machines are: o: Void, 1: Letter Shift,
2: Word Space, 3: Figure Shift, 4: Carriage Return,
5: Line Feed.
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CEPS STANDARD

The Common Electronic Purse Specifications
(CEPS) define an electronic purse program built
on the EMV specification. The CEPS scheme ex-
tends the EMV authentication architecture with a
certification authority (CA) and issuer certificates
to include the Acquirer side. The Acquirer is re-
sponsible for managing Point Of Sale (POS) trans-
actions using a Purchase Secure Application Mod-
ule (PSAM). The terminal (PSAM) authenticates




itself to the smart card and does so using a
method similar to the approach of EMV. On the
card is stored an issuer-side CA index, an issuer
certificate, and a card certificate which is trans-
mitted to the terminal. Using a stored issuer CA
certificate, the terminal verifies the issuer cer-
tificate and the card certificate. The terminal re-
sponds by generating a digital signature—using a
terminal private key—which is encrypted by the
card public key and transmitted to the card to-
gether with a corresponding terminal certificate
on the public key, an acquirer certificate, and an
acquirer-side CA index. As the card also has an
acquirer-side CA certificate stored, the terminal
can be properly authenticated.

In addition to the physical cards themselves,
the majority of the cryptographic mechanisms and
protocols comply with EMV (Personal Identifica-
tion Number (PIN), MAC algorithms, card com-
munication commands, public key cryptography,
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an identity for an entity, although other relevant
information may also be bound to these two pieces
of data such as a validity period, an identifier
for the algorithm for which the public key may
be used, and any policies or constraints on the
use of this certificate. Attribute certificates typi-
cally do not contain a public key, but bind other
information (such as roles, rights, or privileges)
to some representation of an identity for an en-
tity. Public-key certificates are used in protocols
or message exchanges involving authentication
of the participating entities, whereas attribute
certificates are used in protocols or message ex-
changes involving authorization decisions (see
authorization architecture) regarding the partic-
ipating entities.

Many formats and syntaxes have been defined
for both public-key certificates and attribute cer-
tificates, including X.509 [4], SPKI [7] (see security
standards activities), PGP [8], and SAML [6] (see

etc.). A few areas such as certain usages of sym-
metric cryptography are however at the (relative)
discretion of the card issuer.

Peter Landrock

CERTIFICATE

A certificate is a data structure signed by an en-
tity that is considered (by some other collection of
entities) to be authoritative for its contents. The
signature on the data structure binds the con-
tained information together in such a way that this
information cannot be altered without detection.
Entities that retrieve and use certificates (often
called “relying parties”) can choose to rely upon
the contained information because they can de-
termine whether the signing authority is a source
they trust and because they can ensure that the
information has not been modified since it was cer-
tified by that authority.

The information contained in a certificate de-
pends upon the purpose for which that certificate
was created. The primary types of certificates are
public-key certificates (see public-key infrastruc-
ture) and attribute certificate, although in prin-
ciple an authority may certify any kind of infor-
mation [1-3, 5]. Public-key certificates typically
bind a public key pair! to some representation of

1 The identity is bound explicitly to the public key, but implic-
itly to the private key as well. That is, only the public key is
actually included in the certificate, but the underlying assump-
tion is that the identified entity is the (sole) holder of the cor-
responding private key; otherwise, relying parties would have
no reason to use the certificate to encrypt data for, or verify
signatures from, that entity.

privacy and also key management for a high-level
overview of the X.509 certificate format). Manage-
ment protocols have also been specified for the
creation, use, and revocation of (typically X.509-
based) public-key certificates.

Carlisle Adams
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CERTIFICATE
MANAGEMENT

Certificate management is the management of
public-key certificates, covering the complete life
cycle from the initialization phase, to the issued
phase, to the cancellation phase. See key manage-
ment for details.

Carlisle Adams

CERTIFICATE OF
PRIMALITY

A certificate of primality (or prime certificate) is a
small set of values associated with an integer that
can be used to efficiently prove that the integer is
a prime number. Certain primality proving algo-
rithms, such as Elliptic Curves for Primality Prov-
ing, generate such a certificate. A certificate of pri-
mality can be independently verified by software
other than the one that generated the certificate.
This is useful in detecting any possible bugs in the
implementation of a primality proving algorithm.

Anton Stiglic

CERTIFICATE
REVOCATION

A certificate (see certificate and certification
authority) is a binding between a name of an entity
and that entity’s public key (see public key crypto-
graphy). Normally, this binding is valid for the full
lifetime of the issued certificate. However, circum-
stances may arise in which an issued certificate
should no longer be considered valid, even though
the certificate has not yet expired. In such cases,
the certificate may need to be revoked. Reasons
for revocation vary, but they may involve anything
from a change in job status to a suspected private-
key compromise. Therefore, an efficient and reli-
able method must be provided to revoke a public-
key certificate before it might naturally expire.
Certificates must pass a well-established vali-
dation process before they can be used. Part of that
validation process includes making sure that the
certificate under evaluation has not been revoked.
Certification Authorities (CAs) are responsible for
making revocation information available in some
form or another. Relying parties (users of a certifi-
cate for some express purpose) must have a mecha-
nism to either retrieve the revocation information

directly, or rely upon a trusted third party to re-
solve the question on their behalf.

Certificate revocation can be accomplished in a
number of ways. One class of methods is to use
periodic publication mechanisms; another class
is to use online query mechanisms to a trusted
authority. A number of examples of each class will
be given in the sections below.

PERIODIC PUBLICATION MECHANISMS: A va-
riety of periodic publication mechanisms exist.
These are “prepublication” techniques, character-
ized by issuing the revocation information on a
periodic basis in the form of a signed data struc-
ture. Most of these techniques are based on a data
structure referred to as a Certificate Revocation
List (CRL), defined in the ISO/ITU-T X.509 In-
ternational Standard. These techniques include
CRLs themselves, Certification Authority Revoca-
tion Lists (CARLs), End-entity Public-key certifi-
cate Revocation Lists (EPRLs), CRL Distribution
Points (CDPs), Indirect CRLs, Delta CRLs and In-
direct Delta CRLs, Redirect CRLs, and Certificate
Revocation Trees (CRTs).

CRLs are signed data structures that contain
a list of revoked certificates; the digital signature
appended to the CRL provides the integrity and
authenticity of the contained data. The signer of
the CRL is typically the same entity that signed
the issued certificates that are revoked by the
CRL, but the CRL may instead be signed by an
entity other than the certificate issuer.

Version 2 of the CRL data structure defined by
ISO/ITU-T (the X.509v2 CRL) contains a powerful
extension mechanism that allows additional infor-
mation to be defined and placed in the CRL within
the scope of the digital signature. Lacking this,
the version 1 CRL has scalability concerns and
functionality limitations in many environments.
Some of the extensions that have been defined and
standardized for the version 2 CRL enable great
flexibility in the way certificate revocation is per-
formed, making possible such techniques as CRL
Distribution Points, Indirect CRLs, Delta CRLs,
and some of the other methods listed above.

The CRL data structure contains a version num-
ber (almost universally version 2 in current prac-
tice), an identifier for the algorithm used to sign
the structure, the name of the CRL issuer, a pair
of fields indicating the validity period of the CRL
(“this update” and “next update”), the list of re-
voked certificates, any included extensions, and
the signature over all the contents just mentioned.
At a minimum, CRL processing engines are to as-
sume that certificates on the list have been re-
voked, even if some extensions are not understood,



and take appropriate action (typically, not rely
upon the use of such certificates in protocols or
other transactions).

Extensions in the CRL may be used to modify
the CRL scope or revocation semantic in some way.
In particular, the following techniques have been
defined in X.509.
® An Issuing Distribution Point extension and/or

a CRL Scope extension may be used to limit the

CRL to holding only CA certificates (creating a

CARL) or only end-entity certificates (creating

an EPRL).
® A CRL Distribution Point (CDP) extension par-

titions a CRL into separate pieces that together
cover the entire scope of a single complete CRL.

These partitions may be based upon size (so that

CRLs do not get too large), upon revocation rea-

son (this segment is for certificates that were

revoked due to key compromise; that segment is
for revocation due to privilege withdrawn; and
so on), or upon a number of other criteria.

® The Indirect CRL component of the Issuing Dis-
tribution Point extension can identify a CRL as
an Indirect CRL, which enables one CRL to con-
tain revocation information normally supplied
from multiple CAs in separate CRLs. This can
reduce the number of overall CRLs that need to
be retrieved by relying parties when performing
the certificate validation process.

® The Delta CRL Indicator extension, or the Base

Revocation Information component in the CRL

Scope extension, can identify a CRL as a Delta

CRL, which allows it to contain only incremen-

tal revocation information relative to some base

CRL, or relative to a particular point in time.

Thus, this (typically much smaller) CRL must

be used in combination with some other CRL

(which may have been previously cached) in or-

der to convey the complete revocation informa-

tion for a set of certificates. Delta CRLs allow
more timely information with lower bandwidth
costs than complete CRLs. Delta CRLs may also
be Indirect, through the use of the extension
specified above.

® The CRL Scope and Status Referral extensions
may be used to create a Redirect CRL, which al-

lows the flexibility of dynamic partitioning of a

CRL (in contrast with the static partitioning of-

fered by the CRL Distribution Point extension).
Finally, a Certificate Revocation Tree is a revoca-
tion technology designed to represent revocation
information in a very efficient manner (using sig-
nificantly fewer bits than a traditional CRL). It is
based on the concept of a Merkle hash tree, which
holds a collection of hash values in a tree struc-
ture up to a single root node, which is signed for
integrity and authenticity purposes.
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ONLINE QUERY MECHANISMS: Online query
mechanisms differ from periodic publication
mechanisms in that both the relying party and
the authority with respect to revocation informa-
tion (i.e., the CA or some designated alternative)
must be online whenever a question regarding
the revocation status of a given certificate needs
to be resolved. With periodic publication mecha-
nisms, revocation information can be cached in
the relying party’s local environment or stored in
some central repository, such as an LDAP direc-
tory. Thus, the relying party may work offline (to-
tally disconnected from the network) at the time
of certificate validation, consulting only its local
cache of revocation information, or may go online
only for the purpose of downloading the latest re-
vocation information from the central repository.
As well, the authority may work offline when cre-
ating the latest revocation list and go online peri-
odically only for the purpose of posting this list to
a public location.

An online query mechanism is a protocol
exchange—a pair of messages—between a rely-
ing party and an authority. The request message
must indicate the certificate in question, along
with any additional information that might be rel-
evant. The response message answers the ques-
tion (if it can be answered) and may provide sup-
plementary data that could be of use to the relying
party. In the simplest case, the requester asks the
most basic question possible for this type of pro-
tocol: “has this certificate been revoked?” In other
words, “if I was using a CRL instead of this online
query mechanism, would this certificate appear
on the CRL?” The response is essentially a yes or
no answer, although an answer of “I don’t know”
(i.e., “unable to determine status”) may also be re-
turned. The IETF PKIX Online Certificate Status
Protocol (OCSP) was created for exactly this pur-
pose and has been successfully deployed in a num-
ber of environments worldwide.

However, the online protocol messages can be
richer than the exchange described above. For ex-
ample, the requester may ask not for a simple revo-
cation status, but for a complete validation check
on the certificate (i.e., is the entire certificate path
“good,” according to the rules of a well-defined path
validation procedure). This is known as a Dele-
gated Path Validation (DPV) exchange. Alterna-
tively, the requester may ask the authority to find
a complete path from the certificate in question
to a specified trust anchor, but not necessarily to
do the validation—the requester may prefer to do
this part itself. This is known as a Delegated Path
Discovery (DPD) exchange. The requirements for
a general DPV/DPD exchange have been pub-
lished by the IETF PKIX Working Group and a
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general, flexible protocol to satisfy these require-
ments (the Simple Certificate Validation Protocol,
SCVP) is currently undergoing development in
that group.

OTHER REVOCATION OPTIONS: It is important
to note that there are circumstances in which the
direct dissemination of revocation information to
the relying party is unnecessary. For example,
when certificates are “short-lived”—that is, have a
validity period that is shorter than the associated
need to revoke them—then revocation information
need not be examined by relying parties. In such
environments, certificates may have a lifetime of
a few minutes or a few hours and the danger of a
certificate needing to be revoked before it will nat-
urally expire is considered to be minimal. Thus,
revocation information need not be published at
all.

Another example environment that can func-
tion without published revocation information is
one in which relying parties use only brokered
transactions. Many financial institutions operate
in this way: online transactions are always bro-
kered through the consumer’s bank (the bank that
issued the consumer’s certificate). The bank main-
tains revocation information along with all the
other data that pertains to its clients (account
numbers, credit rating, and so on). When a trans-
action occurs, the merchant must always go to
its bank to have the financial transaction autho-
rized; this authorization process includes verifica-
tion that the consumer’s certificate had not been
revoked, which is achieved through direct inter-
action between the merchant’s bank and the con-
sumer’s bank. Thus, the merchant itself deals only
with its own bank (and not with the consumer’s
bank) and never sees any explicit revocation infor-
mation with respect to the consumer’s certificate.

FURTHER READING: A survey of the various re-
vocation techniques can be found in Chapter 8 of
[1]. See also [2] for a good discussion of the many
options in this area. The X.509 Standard [3] con-
tains detailed specifications for most of the pe-
riodic publication mechanisms. For online query
mechanisms, see the OCSP [4] and DPV/DPD Re-
quirements [5] specifications.
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CERTIFICATION
AUTHORITY

A Certification Authority! (CA) in a Public-Key
Infrastructure (PKI)is an authority that is trusted
by some segment of a population of entities—or
perhaps by the entire population—to validly per-
form the task of binding public key pairs to iden-
tities. The CA certifies a key pair/identity binding
by digitally signing (see digital signature scheme)
a data structure that contains some representa-
tion of the identity of an entity (see identification)
and the entity’s corresponding public key. This
data structure is called a “public-key certificate”
(or simply a certificate, when this terminology will
not be confused with other types of certificates,
such as attribute certificates).

Although the primary and definitional duty of
a CA is to certify key pair/identity bindings, it
may also perform some other functions, depend-
ing upon the policies and procedures of the PKI in
which it operates. For example, the CA may gen-
erate key pairs for entities upon request; it may
store the key history for each entity in order to
provide a key backup and recovery service; it may
create identities for its subject community; and it
may publicly disseminate revocation information
for the certificates that it has issued. Alternatively,
some or all these functions may be performed by
other network entities that may or may not be
under the explicit control of the CA, such as key
generation servers, backup and recovery services,
naming authorities, and on-line certificate status
protocols (OCSP) responders.

L A CA is often called a “Certificate Authority” in the popular
press and other literature, but this term is generally discour-
aged by PKI experts and practitioners because it is somewhat
misleading: a CA is not an authority on certificates as much as
it is an authority on the process and act of certification. Thus,
the term “Certification Authority” is preferred.



The roles and duties of a CA have been spec-
ified in a number of contexts [1-5], along with
protocols for various entities to communicate with
the CA. As one example, the IETF PKIX Working
Group (see security standards activities) has sev-
eral standards-track specifications that are rele-
vant to a CA operating in the context of an Internet
PKI; see http:/www.ietf.org/html.charters/pkix-
charter.html for details.
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CERTIFIED MAIL

Certified mail is the fair exchange of secret data
for a receipt. It is the most mature instance of fair
exchange that has been standardized in [4]: the
players in a certified mail system are at least one
sender Sand one receiver R. Depending on the pro-
tocols used and the service provided, the protocol
may involve one or more trusted third parties
(TTPs) T. If reliable time stamping is desired, ad-
ditional time-stamping authorities 7'S may be in-
volved, too. For evaluating the evidence produced,
a verifier V can be invoked after completion of
the protocol. Sending a certified mail includes sev-
eral actions [4]. Each of these actions may be dis-
putable, i.e., may later be disputed at a verifier,
such as a court (see Figure 1): a sender composes

sender: TTP TTP recipient:
1 n
origin transport transport receipt
submission delivery

Fig. 1. Framework for Certified Mail [4]: players and
their actions
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Sender S TTP Recipient R

signg(Ex(m))

signg(E,(m))

k

_—

signr(k) signr(k)

— _—

Fig. 2. Sketch of the protocol proposed in [7] (E; denotes
symmetric encryption)

a signed message (nonrepudiation of origin) and
sends it to the first TTP (nonrepudiation of sub-
mission). The first TTP may send, it to additional
TTPs (nonrepudiation of transport) and finally to
the recipient (nonrepudiation of delivery, which is
a special case of nonrepudiation of transport). The
recipient receives the message (nonrepudiation of
receipt).

Like fair exchange and contract signing proto-
cols, early research focused on two-party proto-
cols [3, 5] fairly generating nonrepudiation of re-
ceipt tokens in exchange of the message. Like
generic fair exchange, two-party protocols either
have non-negligible failure probability or do not
guarantee termination within a fixed time.

Early work on fair exchange with inline TTP
was done in [8]. Optimistic protocols have been
proposed in [1,2]. A later example of a protocol us-
ing an in-line TTP is the protocol proposed in [7].
The basic idea is that the parties first exchange
signatures under the encrypted message. Then,
the third party signs and distributes the key. The
signature on the encrypted message together with
the signatures on the key then forms the nonrepu-
diation of origin and receipt tokens. The protocol
is sketched in Figure 2.
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CHAFFING AND
WINNOWING

Chaffing and winnowing introduced by Ron Rivest
[3]is a technique that keeps the contents of trans-
mitted messages confidential against eavesdrop-
pers without using encryption. Chaffing and win-
nowing was meant as a liberal statement in the
debate about cryptographic policy in the 1990s as
to whether law enforcement should be given au-
thorized surreptitious access to the plaintext of
encrypted messages. The usual approach proposed
for such access was “key recovery,” where law en-
forcement has a “back door” that enables them to
recover the decryption key. Chaffing and winnow-
ing was meant to obsolete this approach of key
recovery because it reveals a technique of keeping
messages confidential without using any decryp-
tion keys.

Here is how chaffing and winnowing works. A
sender using the chaffing technique needs to agree
with the intended recipient on an authentication
mechanism, e.g., a message authentication code
(see MAC algorithms) such as HMAC, and needs
to establish an authentication key with the recip-
ient. In order to send a message, the sender takes
two steps:

Authentication: Breaks the message up into pac-
kets, numbers the packets consecutively, and au-
thenticates each packet with the authentication
key. The result is a sequence of “wheat” packets,
i.e., those making up the intended message.

Chaffing: Fabricates additional dummy packets
independent of the intended packets. Produces
invalid MACs for the dummy packets, for exam-
ple by choosing their MACs at random. These
are the “chaff” packets, i.e., those used to hide
the wheat packets in the stream of packets.
The sender sends all packets (wheat and chaff)

intermingled in any order to the recipient. The

recipient filters those packets containing a valid

MAC (this is called winnowing), sorts them by

packet number, and reassembles the message. An
eavesdropper instead could not distinguish valid
from invalid MACs because the required authen-
tication key is only known to the sender and the
recipient.

The problem of providing confidentiality by
chaffing and winnowing is based on the eavesdrop-
per’s difficulty of distinguishing chaff packets from
wheat packets. If the wheat packets each contain
an English sentence, while the chaff packets con-
tain random bits, then the eavesdropper will have
no difficulty in detecting the wheat packets. On the
other hand, if each wheat packet contains a single
bit, and there is a chaff packet with the same serial
number containing the complementary bit, then
the eavesdropper will have a very difficult (essen-
tially impossible) task. Being able to distinguish
wheat from chaff would require him to break the
MAC algorithm and/or know the secret authen-
tication key used to compute the MACs. With a
good MAC algorithm, the eavesdropper’s ability to
winnow is nonexistant, and the chaffing process
provides perfect confidentiality of the message
contents.

If the eavesdropper is as strong as some law en-
forcement agency that may monitor the main hubs
of the Internet and may even have the power to
force a sender to reveal the authentication key
used, then senders could use alternative wheat
messages instead of chaff. For an intended mes-
sage the sender composes an innocuous looking
cover message. The intended wheat message is
broken into packets using the authentication key
as described above. The cover wheat message is
also broken into packets using a second authen-
tication key that may or may not be known to
the recipient. In this way, the sender could use
several cover wheat messages for each intended
wheat message. If the sender is forced to reveal
the authentication key he used, he could reveal
the authentication key of one of the cover wheat
messages. Thus, he could deliberately “open” a
transmitted message in several ways. This con-
cept is similar to deniable encryption proposed by
Canetti et al. [1].

In order to reduce the apparent overhead in
transmission bandwidth, Rivest suggested that
the chaffing could be done by an Internet Ser-
vice Provider rather than by the sender himself.
The ISP could then multiplex several messages,
thus using the wheat packets of one message as
chaff packets of another message and vice versa.
He suggested other measures for long messages
such that the relative number of chaff packets
can be made quite small, and the extra bandwidth
required for transmitting chaff packets might be
insignificant in practice.




Instead of message authentication codes,
senders could also use an undeniable signature
scheme, which produces signatures that can only
be verified by the intended recipients [2].
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CHALLENGE-RESPONSE
IDENTIFICATION

In its simplest form, an identification protocol in-
volves the presentation or submission of some in-
formation (a “secret value”) from a claimant to
a verifier (see Identification). Challenge-response
identification is an extension in which the infor-
mation submitted by the claimant is the function
of both a secret value known to the claimant (some-
times called a “prover”), and a challenge value re-
ceived from the verifier (or “challenger”).

Such a challenge—response protocol proceeds as
follows. A verifier V generates and sends a chal-
lenge value ¢ to the claimant C. Using his/her se-
cret value s and appropriate function f(), C com-
putes the response value v = f(c, s), and returns v
to V. V verifies the response value v, and if success-
ful, the claim is accepted. Choices for the challenge
value ¢, and additionally options for the function
fO and secret s are discussed below.

Challenge-response identification is an im-
provement over simpler identification because it
offers protection against replay attacks. This is
achieved by using a challenge value that is time-
varying. Referring to the above protocol, there are
three general types of challenge values that might
be used. The property of each is that the challenge
value is not repeatedly sent to multiple claimants.
Such a value is sometimes referred to as a nonce,
sinceitis a value that is “not used more than once.”

Challenge-response identification 73

The challenge value could be a randomly gen-
erated value (see Random bit generation (hard-
ware)), in which case V would send a random value
¢ to C. Alternatively, the challenge value might be
a sequence number, in which case the verifier V
would maintain a sequence value corresponding
to each challenger. At each challenge, the stored
sequence number would be increased by (at least)
1 before sending to the claimant. Finally, the chal-
lenge value might be a function of the current time.
In this case, a challenge value need not be sent
from V to C, but could be sent by C, along with
the computed verifier. As long as the time cho-
sen was within an accepted threshold, V would
accept.

There are three general classes of functions
and secret values that might be used as part
of a challenge-response protocol. The first is
symmetric-key based in which the claimant C and
verifier V a priori share a secret key K. The func-
tion A) is a symmetric encryption function (see
Symmetric Cryptosystem), a hash function, or a
Message Authentication Code (see MAC algori-
thms). Both Kerberos (see Kerberos authentica-
tion protocol) and the Needham—Schroeder pro-
tocol are examples of symmetric-key based
challenge-response identification. In addition, the
protocols of ISO/TEC 9798-2 perform identification
using symmetric key techniques.

Alternatively, a public key based solution may
be used. In this case, the claimant C has the pri-
vate key in a public key cryptosystem (see Pub-
lic Key Cryptography). The verifier V possesses a
public key that allows validation of the public key
corresponding to C’s private key. In general, C uses
public key techniques (generally based on number-
theoretic security problems) to produce a value v,
using knowledge of his/her private key. For exam-
ple, V might encrypt a challenge value and send
the encrypted text. C would decrypt the encrypted
text and return the value (i.e., the recovered plain-
text) to V (note that in this case it would only
be secure to use a random challenge, and not a
sequence number or time-based value). Alterna-
tively, V might send a challenge value to C and ask
C to digitally sign and return the challenge (see
Digital Signature Schemes). The Schnorr identi-
fication protocol is another example of public key
based challenge—response identification.

Finally, a zero-knowledge protocol can be used
(see Zero-Knowledge). In this case, the challenger
demonstrates knowledge of his/her secret value
without revealing any information (in an infor-
mation theoretic sense—see “information theo-
retic security” in glossary) about this value. Such
protocols typically require a number of “rounds”
(each with its own challenge value) to be executed
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before a claimant may be successfully verified (see
Zero-Knowledge and Identification).
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CHAUM BLIND SIGNATURE
SCHEME

The Chaum Blind Signature Scheme [3,4] was the
first blind signature scheme proposed in the pub-
licly available literature. It was proposed by David
Chaum and is based on the RSA signature scheme
using the fact that RSA is an automorphism on
2, the multiplicative group of units modulo an
RSA integer n = pg, where n is the public mod-
ulus and p,q are safe RSA prime numbers. The
tuple (n, e) is the public verifying key, where e is a
prime between 216 and ¢(n) = (p — 1)(g — 1), and
the tuple (p, g, d) is the corresponding private key
of the signer, where d = e~ mod ¢(n) is the sign-
ing exponent. The signer computes signatures by
raising the hash value H(m) of a given message m
to the dth power modulo n, where H(.) is a pub-
licly known collision resistant hash function. A re-
cipient verifies a signature s for message m with
respect to the verifying key (n, e) by the following
equation: s* = H(m) (mod n).

When a recipient wants to retrieve a blind sig-
nature for some message m/, he chooses a blinding
factor b € Z, and computes the auxiliary message
m = b*H(m') mod n. After passing m to the signer,
the signer computes the response s = m? mod n
and sends it back to the recipient. The recipient
computes a signature s’ for the intended message
m’ as follows: s’ = sb~! mod n. This signature s’
is valid for m’ with respect to the signer’s public
verifying key y because

s = (sb7 1)y
— (mip-Ly
— mdepe
=mb~*
=b°H(m')b™*
= H(m') (mod n).

(1)

(Note how the above-mentioned automorphism of
RSA is used in the third rewriting.) It is conjec-

tured that the Chaum Blind Signature Scheme is
secure against a one-more-forgery, although this
has not been proven under standard complex-
ity theoretic assumptions, such as the assump-
tion that the RSA verification function is one-way.
The fact that the Chaum Blind Signature Scheme
has resisted one-more-forgeries for more than
20 years led Bellare et al. [1] to isolate a nonstan-
dard complexity theoretic assumption about RSA
signatures that is sufficient to prove security of
the Chaum Blind Signature in the random oracle
model, i.e., by abstracting from the properties of
any hash function H(-) chosen. They came up with
a class of very strong complexity theoretic assump-
tions about RSA, which they called the one-more-
RSA-inversion assumptions (or problems).

The Chaum Blind Signature Scheme achieves
unconditional blindness [3] (see Blind Signature
Scheme). That is if a signer produces signatures
$1,...,8, for n € IN messages my, ..., m, chosen
by a recipient, and the recipient later shows the
resulting n pairs (m,s}),...,(m),s,) in random
order to a verifier, then the collaborating signer
and verifier cannot decide with better probability
than pure guessing which message—signature pair
(mj,s;) (1 <i <n) resulted in which message—
signature pair (m, s7) (1 < j < n).

Analogous to how Chaum leveraged the auto-
morphism underlying the RSA signature scheme
to construct a blind signature scheme, other dig-
ital signature schemes have been extended into
blind signature schemes as well: Chaum and
Pedersen [5] constructed blind Schnorr signa-
tures [12]. Camenisch et al. [2] constructed blind
Nyberg—Rueppel signatures [9] and blind signa-
tures for a variant of DSA [8]. Horster et al. [7]
constructed blind ElGamal digital signatures [6],
and Pointcheval and Stern [10, 11] constructed
blind versions of certain adaptations of Schnorr
and Guillou—Quisquater signatures.
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CHINESE REMAINDER
THEOREM

The Chinese remainder theorem (CRT) makes
it possible to reduce modular arithmetic calcula-
tions with large moduli to similar calculations for
each of the factors of the modulus. At the end, the
outcomes of the subcalculations need to be pasted
together to obtain the final answer. The big advan-
tage is immediate: almost all these calculations
involve much smaller numbers.

For instance, the multiplication 24 x 32
(mod 35) can be found from the same multiplica-
tion modulo 5 and modulo 7, since 5 x 7 = 35 and
these numbers have no factor in common. So, the
first step is to calculate:

24 x 32=4x2=8=3 (mod 5),
24 x 32=3x4=12=5 (mod 7).

The CRT, explained for this example, is based on
a unique correspondence (Figure 1) between the

3 2
8 _ .0 (mod7)
21= {1 (mod 5)
1 (mod 7)
15= {0 (mod 5) 0
10
6 1
11
5 2
< 4 -3

Fig. 1. The Chinese remainder theorem reduces a calculation modulo 35 to two calculations, one modulo 5 and the

other modulo 7
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integers 0, 1, ..., 34 and the pairs (¢, v) with 0 <
u<5and 0 <v < 7. The mapping fromi, 0 <i <
35, to the pair (u,v) is given by the reduction of
i modulo 5 and modulo 7, so i =24 is mapped
to (u,v) = (4, 3). The mapping from (u,v) back
to i is given by i =21 x u + 15 x v. The multi-
plier a =21 (mod 35) can be obtained from a =
(v"1mod u) x v, which is the solution of the two
relations ¢ =1 (mod ©) and a = 0 (mod v). The
multiplier b = 15 (mod 35) can be determined
similarly. It follows that the answer of the mul-
tiplication above is given by 21 x 3+ 15 x 5=
33 (mod 35).

The CRT finds applications in implementa-
tions of the RSA public-key encryption system,
where one has to work with very large moduli
that are the product of two prime numbers. Also
Pohlig—Hellmann’s method for taking discrete log-
arithms relies on the CRT (see discrete logarithm
problem).

The CRT can be generalized to more than
two factors and solves in general system of lin-
ear congruence relations of the form a;x = b;
(mod m;),1 <i <k, where the greatest common
divisor of a; and m; should divide b; for each
1<ic<k.
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CHOSEN CIPHERTEXT
ATTACK

Chosen ciphertext attack is a scenario in which
the attacker has the ability to choose ciphertexts
C; and to view their corresponding decryptions—
plaintexts P,. It is essentially the same scenario
as a chosen plaintext attack but applied to a de-
cryption function, instead of the encryption func-
tion. The attack is considered to be less practical in
real life situations than chosen plaintext attacks.
However, there is no direct correspondence be-
tween complexities of chosen plaintext and chosen
ciphertext attacks. A cipher may be vulnerable to
one attack but not to the other attack or the other
way around. Chosen ciphertext attack is a very
important scenario in public key cryptography,
where known plaintext and even chosen plain-
text scenarios are always available to the at-
tacker due to publicly known encryption key. For

example, the RSA public-key encryption system
is not secure against adaptive chosen ciphertext
attack [1].

Alex Biryukov
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CHOSEN PLAINTEXT
ATTACK

Chosen plaintext attack is a scenario in which
the attacker has the ability to choose plaintexts
P, and to view their corresponding encryptions—
ciphertexts C;. This attack is considered to be
less practical than the known plaintext attack,
but still a very dangerous attack. If the cipher is
vulnerable to a known plaintext attack, it is au-
tomatically vulnerable to a chosen plaintext at-
tack as well, but not necessarily the opposite. In
modern cryptography differential cryptanalysis is
a typical example of a chosen plaintext attack.
It is also a rare technique for which conver-
sion from chosen plaintext to known plaintext
is possible (due to its work with pairs of texts).
If a chosen plaintext differential attack uses m
pairs of texts for an n bit block cipher, then
it can be converted to a known-plaintext attack
which will require 27/2+/2m known plaintexts, due
to birthday paradox-like arguments. Furthermore
as shown in [1] the factor 2*/2 may be considerably
reduced if the known plaintexts are redundant (for
example for the case of ASCII encoded English
text to about 272 where r is redundancy of the
text), which may even lead to a conversion of dif-
ferential chosen-plaintext attack into a differen-
tial ciphertext-only attack.
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CHOSEN PLAINTEXT AND
CHOSEN CIPHERTEXT
ATTACK

In this attack the attacker is allowed to combine
the chosen plaintext attack and chosen ciphertext
attack together and to issue chosen queries both
to the encryption and to the decryption functions.

Alex Biryukov

CIPHERTEXT-ONLY
ATTACK

The ciphertext-only attack scenario assumes
that the attacker has only passive capability
to listen to the encrypted communication. The
attacker thus only knows ciphertexts C;,i =
1,..., N, but not the corresponding plaintexts.
He may however rely on certain redundancy as-
sumptions about the plaintexts, for example that
the plaintext is ASCII encoded English text. This
scenario is the weakest in terms of capabilities
of the attacker and thus it is the most practi-
cal in real life applications. In certain cases con-
version of a known plaintext attack [2] or even
chosen plaintext attack [1] into a ciphertext-only
attack is possible.
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CLAW-FREE

A pair of functions fand g is said to be claw-free
or claw-resistant if it is difficult to find inputs x, y
to the functions such that

fle) = gy).

Such a pair of inputs is called a claw, describing
the two-pronged inverse.
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The concept of claw-resistance was introduced
in the digital signature scheme of Goldwasser
et al. [3], which was based on claw-free trapdoor
permutations (see trapdoor one-way function and
substitutions and permutations). Damgard [1]
showed that claw-free permutations (without the
trapdoor) could be employed to construct collision-
resistant hash functions (see also collision
resistance).

Recently, Dodis and Reyzin have shown that the
claw-free property is essential to obtaining good
security proofs for certain signature schemes [2].
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CLIP SCHEME

Clip is MasterCard’s instantiation of the Common
Electronic Purse Specifications (see CEPS). As de-
fined by CEPS standard, the physical infrastruc-
ture and logical methods such as smart cards, ter-
minals, and cryptographic mechanisms are based
upon the EMV standard with minor deviations.
The amount involved in a purchase is debited di-
rectly on the card, and hence an additional layer
of security is applied for the terminal to strongly
authenticate itself to the card.

Peter Landrock

CLOCK-CONTROLLED
GENERATOR

Let us consider a scheme that involves several reg-
isters and produces one output sequence. Based on
some clocking mechanism, the registers go from
one state to another, thereby producing an output
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bit. We can choose whether or not to synchronize
these registers. In the second case, the output of
the scheme will be more nonlinear than in the first
case.

We will consider here registers whose clock
is controlled by some events. The best studied
case is the one of Linear Feedback Shift Registers
(LFSR), but this concept could be applied also to
Nonlinear Feedback Shift Registers (NLFSR).

So, the main idea here is that we have, for ex-
ample, two LFSRs, say R; and Rg, and that the
output of R; will determine the clocking of Rj.
For example, if R; outputs a 1, then clock R,
twice, and if R; outputs a 0, then clock Rs three
times. The output of the scheme could be the one
of Rz .

- R, output

Some particular examples of such generators
have been studied. We will mention here the al-
ternating step generator, and the shrinking gener-
ator. We can also remark that a LFSR can man-
age its clocking by itself, since some of its internal
bits can be chosen to determine its clocking; an
example is the self-shrinking generator.

The alternating step generator consists of three
LFSRs, say R, Ry, and R;. The role of Ris to deter-
mine the clocking of both Ry and R;. If R outputs
a 0, then only R is clocked, and if R outputs a 1,
then only R; is clocked. At each step, a LFSR that
is not clocked outputs the same bit as previously
(a 0 if there is no previous step). So, at each step
both Ry and R; output one bit each, but only one
of them has been clocked. The output sequence of
the scheme is obtained by XORing those two bits.

clock
o Ro
0!
clock -~~~ R e 6}—» output
— R,
clock

EXAMPLE. Let us suppose that R and R; are of
length 2 and have period 3; the feedback rela-
tion for R is s;41 =s; +s;-1. For Ry, let us con-
sider s; 11 = s + s;_1; Ro has length 3, and its feed-
back relation is s; 11 = s; + s¢_2. Then we have for

example (the first row corresponds to the initial-
ization; the internal states are of the form s;s;_1
OT S¢S¢-18¢t-2):

R R, R,
State Output State Output State Output Output

11 010 01

01 1 010 0 10 1 1
10 1 010 0 11 0 0
11 0 001 0 11 0 0
01 1 001 0 01 1 1
10 1 001 0 10 1 1
11 0 100 1 10 1 0
01 1 100 1 11 0 1
10 1 100 1 01 1 0

Some studies have been performed on the
properties of the output sequence (period, linear
complexity, etc.), according to the nature of the
sequences associated with R, Ry, and R;. A
survey of techniques for attacking clock-controlled
generators is given in [3], and more recent results
are discussed in [1,2,4,5].

Caroline Fontaine
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CLOSEST VECTOR
PROBLEM

The Closest Vector Problem (CVP) is a computa-
tional problem on lattices closely related to SVP
(see Shortest Vector Problem). Given a lattice £
and a target point x, CVP asks to find the lat-
tice point closest to the target. As for SVP, CVP
can be defined with respect to any norm, but the
Euclidean norm is the most common (see the entry
lattice for a definition). A more relaxed version of
the problem (used mostly in computational com-
plexity) only asks to compute the distance of the
target from the lattice, without actually finding
the closest lattice vector.

CVP has been studied in mathematics (in the
equivalent language of quadratic forms) since the
nineteenth century. One of the first references to
CVP (under the name “Nearest Vector Problem”)
in the computer science literature is [11], where
the problem is shown to be NP-hard to solve
exactly.

Many applications of the CVP only require find-
ing a lattice vector that is not too far from the
target, even if not necessarily the closest. A g-
approximation algorithm for CVP finds a lattice
vector within distance at most g times the dis-
tance of the optimal solution. The best known
polynomial-time algorithms to solve CVP due to
Babai [2] and Kannan [7] are based on lattice
reduction, and achieve approximation factors that
(in the worst case) are essentially exponential in
the dimension of the lattice. In practice, heuris-
tics approaches (e.g., the “embedding technique,”
see lattice reduction) seem to find relatively good
approximations to CVP in a reasonable amount
of time when the dimension of the lattice is suffi-
ciently small.

CVP is widely regarded, both in theory and in
practice, as a considerably harder problem than
SVP. CVP is known to be NP-hard to solve ap-
proximately within any constant factor or even
some slowly increasing subpolynomial function
(see polynomial time) of the dimension n [1, 3].
However, CVP is unlikely to be NP-hard to ap-
proximate within small polynomial factors g =
O(/n/logn) [5]. Goldreich et al. [6] showed that
any algorithm to efficiently approximate CVP can
be used to efficiently approximate SVP within the
same approximation factor and with essentially
the same computational effort, formalizing the in-
tuition that CVP is not an easier (and is a possibly
harder) problem than SVP.

CVP is the basis of various cryptosystems (see
lattice based cryptography) where the decryption
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process corresponds roughly to a CVP computa-
tion. These cryptosystems are based on the fact
that any lattice admits many different represen-
tations (e.g., it can be represented by different
bases), and some of them may have better geomet-
ric properties than others, so that they can be used
as a decryption trapdoor. However, there are lat-
tices [4, 8, 10] that admit no good representation,
i.e., solving CVP (even approximately) is NP-hard
no matter which basis (or other auxiliary informa-
tion) is given. Therefore, the CVP instances used
by lattice based cryptosystems (for which CVP can
be efficiently solved using the decryption key) are
conceivably easier than general CVP instances.

CVP has many applications in computer science,
besides cryptography, and finding a good CVP ap-
proximation algorithm with approximation fac-
tors that grow as a polynomial in the dimension
of the lattice is one of the major open problems
in the area. For further information about CVP
and other computational problems on lattices, the
reader is referred to the book [9].

Daniele Micciancio
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CODEBOOK ATTACK

A codebook attack is an example of a known
plaintext attack scenario in which the attacker is
given access to a set of plaintexts and their corre-
sponding encryptions (for a fixed key): (P, C;),i =
1,..., N. These pairs constitute a codebook which
someone could use to listen to further communica-
tion and which could help him to partially decrypt
the future messages even without the knowledge
of the secret key. He could also use this knowledge
in a replay attack by replacing blocks in the com-
munication or by constructing meaningful mes-
sages from the blocks of the codebook. Codebook
attack may even be applied in a passive traffic
analysis scenario, i.e., as a ciphertext-only attack,
which would start with frequency analysis of the
received blocks and attempts to guess their mean-
ing. Ciphers with small block size are vulnera-
ble to the Codebook attack, especially if used in
the simplest Electronic Codebook mode of opera-
tion. Already with N = 22 known pairs, where
n is the block size of the cipher, the attacker has
good chances to observe familiar blocks in the fu-
ture communications of size 0O(2%/2), due to the
birthday paradox. If communication is redundant,
the size of the codebook required may be even
smaller. Modern block ciphers use 128-bit block
size to make such attacks harder to mount. A
better way to combat such attacks is to use chain-
ing modes of operation like Cipher-Block Chain-
ing mode (which makes further blocks of cipher-
text dependent on all the previous blocks) together
with the authentication of the ciphertext.

Alex Biryukov

COLLISION ATTACK

A collision attack exploits repeating values that
occur when a random variable is chosen with re-
placement from a finite set S. By the birthday
paradox, repetitions will occur after approxi-
mately /|S] attempts, where |.S| denotes the size
of the set S. Many cryptographic attacks are based
on collisions.

The most obvious application of a collision at-
tack is to find collisions for a cryptographic hash
function. For a hash function with an n-bit result,
an efficient collision search based on the birthday
paradox requires approximately 2"/2 hash func-
tion evaluations [10]. For this application, one can
substantially reduce the memory requirements
(and also the memory accesses) by translating the
problem to the detection of a cycle in an iterated
mapping [7]. Van Oorschot and Wiener propose an
efficient parallel variant of this algorithm [9]. In
order to make a collision search infeasible for the
next 15-20 years, the hash result needs to be
180 bits or more. A collision attack can also play
a role to find (second) preimages for a hash func-
tion: if one has 2"/2 values to invert, one expects to
find at least one (second) preimage after 2/2 hash
function evaluations.

An internal collision attack on a MAC algorithm
exploits collisions of the chaining variable of a
MAC algorithm. It allows for a MAC forgery. As
an example, a forgery attack for CBC-MAC and
variants based on an n-bit block cipher requires at
most 2"/2 known texts and a single chosen text [6].
For some MAC algorithms, such as MAA, internal
collisions can lead to a key recovery attack [5].

A block cipher should be a one-way function
from key to ciphertext (for a fixed plaintext). If the
same plaintext is encrypted using 2#/2 keys (where
k is the key length in bits), one expects to recover
one of the keys after 2¥/2 trial encryptions [1]. This
attack can be precluded by the mode of operation;
however, collision attacks also apply to these
modes. In the Cipher Block Chaining (CBC) and
Cipher FeedBack (CFB) mode of an n-bit block
cipher, a repeated value of an n-bit ciphertext
string leaks information on the plaintext [3,4] (see
block ciphers for more details).

For synchronous stream ciphers that have a
next state function that is a random function
(rather than a permutation), one expects that the
key stream will repeat after 27/2 output symbols,
with m being the size of the internal memory in
bits. Such a repetition leaks the sum of the corre-
sponding plaintexts, which is typically sufficient
to recover them. This attack applies to a variant
of the Output FeedBack (OFB) mode of a block




cipher where less than n output bits are fed back
to the input. If exactly n bits are fed back as spec-
ified by the OFB mode, one expects a repetition
after the selection of 2%/2 initial values.

The best generic algorithm to solve the discrete
logarithm problem in any group G requires time
O(,/p) where p is the largest prime dividing
the order of G [8]; this attack is based on colli-
sions.

In many cryptographic protocols, e.g., entity
authentication protocols, the verifier submits a
random challenge to the prover. If an n-bit chal-
lenge is chosen uniformly at random, one expects
to find a repeating challenge after 2"/2 runs of the
protocol. A repeating challenge leads to a break of
the protocol.

A meet-in-the-middle attack is a specific vari-
ant of a collision attack which allows to cryptana-
lyze some hash functions and multiple encryption
modes (see block ciphers).

A more sophisticated way to exploit collisions
to recover a block cipher key or to find (second)
preimages is a time-memory trade-off [2].

B. Preneel
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COLLISION RESISTANCE

Collision resistance is the property of a hash func-
tion that it is computationally infeasible to find
two colliding inputs. This property is related to
second preimage resistance, which is also known
as weak collision resistance. A minimal require-
ment for a hash function to be collision resistant
is that the length of its result should be 160 bits
(in 2004). A hash function is said to be a colli-
sion resistant hash function (CRHF) if it is a col-
lision resistant one-way hash function (OWHF)
(see hash function). The exact relation between
collision resistance, second preimage resistance,
and preimage resistance is rather subtle, and de-
pends on the formalization of the definition: it
is shown in [8] that under certain conditions,
collision resistance implies second preimage res-
istance and preimage resistance.

In order to formalize the definition of a collision
resistant hash function (see [1]), one needs to in-
troduce a class of functions indexed by a public
parameter, which is called a key. Indeed, one can-
not require that there does not exist an adversary
who can produce a collision for a fixed hash func-
tion, since any simple adversary who stores two
short colliding inputs for a function would be able
to output a collision efficiently. Introducing a class
of functions solves this problem, since an adver-
sary cannot store a collision for each value of the
key (provided that the key space is not too small).

For a hash function with an n-bit result, an ef-
ficient collision research based on the birthday
paradox requires approximately 2%/2 hash func-
tion evaluations. One can substantially reduce the
memory requirements (and also the memory ac-
cesses) by translating the problem to the detec-
tion of a cycle in an iterated mapping. This was
first proposed by Quisquater and Delescaille [6].
Van Oorschot and Wiener propose an efficient par-
allel variant of this algorithm [10]; with a US$ 10
million machine, collisions for MD5 (with n = 128)
can be found in 21 days in 1994, which corresponds
to 5 hours in 2004. In order to make a collision
search infeasible for the next 15-20 years, the
hash result needs to be 180 bits or more.
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Second preimage resistance and collision resis-
tance of hash functions have been introduced by
Rabin in [7]; the attack based on the birthday
paradox was first pointed out by Yuval [11]. Fur-
ther work on collision resistance can be found in
[1-5,9,12]. For an extensive discussion of the re-
lation between collision resistance and (second)
preimage resistance, the reader is referred to
Rogaway and Shrimpton [8].

B. Preneel
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COMBINATION
GENERATOR

A combination generator is a running-key genera-
tor for stream cipher applications. It is composed
of several linear feedback shift registers (LFSRs)
whose outputs are combined by a Boolean function
to produce the keystream. Then, the output se-
quence (st)>o of a combination generator com-
posed of n LFSRs is given by

1,2
st = fluy,uy, ...,

uy), vt > 0,

where (ul);9 denotes the sequence generated by
the ith constituent LFSR and fis a function of
n variables. In the case of a combination genera-
tor composed of n LFSRs over F,, the combining
function is a function from F} into F,,.

The combining function f should obviously be
balanced, i.e., its output should be uniformly dis-
tributed. The constituent LFSRs should be cho-
sen to have primitive feedback polynomials (see
primitive element) for ensuring good statistical
properties of their output sequences (see Linear
Feedback Shift Register for more details).

The characteristics of the constituent LFSRs
and the combining function are usually publicly
known. The secret parameters are the initial
states of the LFSRs, which are derived from the se-
cret key of the cipher by a key-loading algorithm.
Therefore, most attacks on combination genera-
tors consist in recovering the initial states of all
LFSRs from the knowledge of some digits of the
sequence produced by the generator (in a known
plaintext attack), or of some digits of the cipher-
text sequence (in a ciphertext only attack). When
the feedback polynomials of the LFSR and the
combining function are not known, the reconstruc-
tion attack presented in [2] enables to recover the
complete description of the generator from the
knowledge of a large segment of the ciphertext
sequence.

STATISTICAL PROPERTIES OF THE OUTPUT
SEQUENCE: The sequence produced by a combi-
nation generator is a linear recurring sequence.



Its period and its linear complexity can be de-
rived from those of the sequences generated by
the constituent LFSRs and from the algebraic nor-
mal form of the combining function (see Boolean
function). Indeed, if we consider two linear recur-
ring sequences u and v over F, with linear com-
plexities A(u) and A(v), we have the following
properties:

® The linear complexity of the sequence u + v =

(u; + v )r>0 satisfies

Au+v) < A(u) + AV),

with equality if and only if the minimal poly-
nomials of u and v are relatively prime. More-
over, in the case of equality, the period of u + v
is the least common multiple of the periods of u
and v.

® The linear complexity of the sequence uv =
(w0 )0 satisfies

Aluv) < A(w)A(v),

where equality holds if the minimal polynomials
of u and v are primitive and if A(u) and A(v)
are distinct and greater than 2. Other general
sufficient conditions for A(uv) = A(w)A(V) can
be found in [3-5].
Thus, the keystream sequence produced by a com-
bination generator composed of n binary LFSRs
with primitive feedback polynomials which are
combined by a Boolean function fsatisfies the fol-
lowing property proven in [5]. If all LF'SR lengths
Lq,..., L, are distinct and greater than 2 (and if
all LFSR initializations differ from the all-zero
state), the linear complexity of the output se-
quence s is equal to

f(L1,La, ..., L),

where the algebraic normal form of f is evalu-
ated over integers. For instance, if four LFSRs of
lengths L4, ..., Ly satisfying the previous condi-
tions are combined by the Boolean function x;xs +
X9X3 + x4, the linear complexity of the resulting se-
quence is LiLg + LoL3 + L4. Similar results con-
cerning the combination of LFSRs over F, can be
found in [5] and [1]. A high linear complexity is a
desirable property for a keystream sequence since
it ensures that the Berlekamp—Massey algorithm
becomes computationally infeasible. Thus, the
combining function fshould have a high algebraic
degree (the algebraic degree of a Boolean func-
tion is the highest number of terms occurring in a
monomial of its algebraic normal form).

KNOWN ATTACKS AND RELATED DESIGN CRI-
TERIA: Combination generators are vulnerable
to the correlation attack and its variants called
fast correlation attacks. In order to make these
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attacks infeasible, the LFSR feedback polynomi-
als should not be sparse. The combining func-
tion should have a high correlation-immunity or-
der, also called resiliency order when the involved
function is balanced (see correlation-immune and
resilient Boolean function). But, there exists a
trade-off between the correlation-immunity order
and the algebraic degree of a Boolean function.
Most notably, the correlation-immunity of a bal-
anced Boolean function of n variables cannot ex-
ceed n — 1 — deg(f), when the algebraic degree of
f, deg(f), is greater than 1. Moreover, the complex-
ity of correlation attacks and of fast correlation
attacks also increases with the nonlinearity of
the combining function (see correlation attack).
The trade-offs between high algebraic degree, high
correlation-immunity order, and high nonlinear-
ity can be circumvented by replacing the com-
bining function by a finite state automaton with
memory. Examples of such combination genera-
tors with memory are the summation generator
and the stream cipher EQ used in Bluetooth.

Anne Canteaut
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COMMITMENT

COMMITMENT: A commitment scheme is a two-
phase cryptographic protocol between two parties,
a sender and a receiver, satisfying the following
constraints. At the end of the Commit phase the
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| owe you
$100.

<

Fig. 1. Committing with an envelope

sender is committed to a specific value (often a
single bit) that he cannot change later on (Com-
mitments are binding) and the receiver should
have no information about the committed value,
other than what he already knew before the pro-
tocol (Commitments are concealing). In the Un-
veil phase, the sender sends extra information
to the receiver that allows him to determine the
value that was concealed by the commitment.
Bit commitments are important components of
zero-knowledge protocols [4, 16], and other more
general two-party cryptographic protocols [19].

A natural intuitive implementation of a com-
mitment is performed using an envelope (see
Figure 1). Some information written on a piece of
paper may be committed to by sealing it inside
an envelope. The value inside the sealed envelope
cannot be guessed (envelopes are concealing) with-
out modifying the envelope (opening it) nor the
content can be modified (envelopes are binding).

Unveiling the content of the envelope is
achieved by opening it and extracting the piece
of paper inside (see Figure 2).

The terminology of commitments, influenced by
the legal vocabulary, first appeared in the contract
signing protocols of Even [14], although it seems
fair to attribute the concept to Blum [3] who im-
plicitly uses it for coin flipping around the same
time. In his Crypto 81 paper, Even refers to Blum’s
contribution saying: In the summer of 1980, in
a conversation, M. Blum suggested the use of
randomization for such protocols. So apparently
Blum introduced the idea of using random hard
problems to commit to something (coin, contract,
etc.). However, one can also argue that the earlier
work of Shamir et al. [26] on mental poker implic-
itly used commitments as well, since in order to
generate a fair deal of cards, Alice encrypts the
card names under her own encryption key, which
is the basic idea for implementing commitments.

| owe you
$100.

Fig. 2. Unveiling from an envelope



Under such computational assumptions, com-
mitments come in two dual flavors: binding
but computationally concealing commitments and
concealing but computationally binding commit-
ments.

Commitments of the first type may be achieved
from any one-way function [18,24] while those of
the second type may be achieved from any one-
way permutation (or at least regular one-way func-
tion) [25] or any collision-free hash function [17]
(see also collision resistance and hash function).
It is still an open problem to achieve commit-
ments of the second type from one-way functions
only.

A simple example of a bit commitment of the
first type is obtained using the Goldwasser—Micali
probabilistic encryption scheme with one’s own
pair of public keys (n, q) such that n is an RSA
modulus (see RSA public key encryption) and ¢
a random quadratic nonresidue modulo n with
Jacobi symbol +1 (see also quadratic residue). Un-
veiling is achieved by providing a square root
of each quadratic residue and of quadratic non-
residue multiplied by g. A similar example of a bit
commitment of the second type is constructed from
someone else’s pair of public keys (n, r) such that
n is an RSA modulus and r a random quadratic
residue modulo n. A zero bit is committed using a
random quadratic residue mod n while a one bit is
committed using a random quadratic residue mul-
tiplied by r modulo n. Unveiling is achieved by pro-
viding a square root of quadratic residues commit-
ting to a zero and of quadratic residues multiplied
by r used to commit to a one.

Unconditionally binding and concealing com-
mitments can also be obtained under the assump-
tion of the existence of a binary symmetric channel
[10] and under the assumption that the receiver
owns a bounded amount of memory [6]. In multi-
party scenarios [2, 8, 16], commitments are usu-
ally achieved through Verifiable Secret Sharing
Schemes [9]. However, the two-prover case [1] does
not require the verifiable property because the
provers are physically isolated from each other
during the life span of the commitments.

In a quantum computation model (see quantum
cryptography) it was first believed that commit-
ment schemes could be implemented with uncon-
ditional security for both parties [5] but it was
later demonstrated that if the sender is equipped
with a quantum computer, then any uncondition-
ally concealing commitment cannot be binding
[22,23].

Commitments exist with various extra prop-
erties: chameleon/trapdoor commitments [1, 15],
commitments with equality (attributed to Bennett
and Rudich in [11, 20]), nonmalleable commit-
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ments [13] (with respect to unveiling [12]),
mutually independent commitments [21], and uni-
versally composable commitments [7].

Claude Crépeau
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COMMON CRITERIA

The Common Criteria (CC) is meant to be used as
the basis for evaluation of security properties of
IT products and systems. The objective desired is
that by establishing a common base for criteria,
the evaluation results of an IT product will be of
more value to a wider audience.

The goal is for Common Criteria to permit com-
parability of products based on the results of inde-
pendent security evaluations for various products
evaluated by separate organizations in different
countries. The vision is that by providing a com-
mon set of requirements for the security functions
of IT products, and a common set of assurance
measurements applied to them that the evalua-
tion process will establish a level of confidence in
the knowledge and trust of the evaluated prod-
ucts. The evaluation results may help consumers
to determine whether an IT product or system
is appropriate for their intended application and
whether the security risks implicit in its use are
acceptable.

Common Criteria is not a security specification
that prescribes specific or necessary security func-
tionality or assurance. Therefore, it is not intended
to verify the quality or security of cryptographic
implementations. In general, products that re-
quire cryptography are often required to attain
a FIPS 140-2 validation for their cryptographic
functionality before the common criteria evalua-
tion can be completed. There are security products
that are very important to security but may not in-
corporate cryptography as a part of their function-
ality. Examples include operating systems, fire-
walls, and IDS systems. Common Criteria is a
methodology to gain assurance that a product is
actually designed and subsequently performs ac-
cording to the claims in the product’s “Security
Target” document. The level of assurance (EAL)
can be specified to one of seven levels described
later.

The Common Criteria specification has been
published as International Standard ISO/IEC
15408:1999. It is sometimes also published in



formats specific to a given country that facilities
use in their individual test scheme. The content
and requirements are intended to be identical.
Seven governmental organizations, which are
collectively called “the Common Criteria Project
Sponsoring Organizations,” were formed to de-
velop the standard and program. The countries
and organizations are:
® Canada: Communications Security Establish-
ment
® France: Service Central de la
Systmes dInformation
® Germany: Bundesamt fr Sicherheit in der
Informationstechnik
® Netherlands: Netherlands National Commu-
nications Security Agency
® United Kingdom: Communications-Electro-
nics Security Group
® United States: National Institute of Standards
and Technology
® United States: National Security Agency
The Common Criteria Project Sponsoring Orga-
nizations approved the licensing and use of CC
v2.1 to be the basis of ISO 15408. Because of its
international basis, certifications under Common
Criteria are under a “Mutual Recognition Agree-
ment.” This is an agreement that certificates is-
sued by organizations under a specific scheme will
be accepted in other countries as if they were eval-
uated under their own schemes. The list of coun-
tries that have signed up to the mutual recognition
have grown beyond just the original sponsoring or-
ganizations.
Common Criteria incorporates a feature called
a Protection Profile (PP). This is a document that
specifies an implementation-independent set of se-
curity requirements for a category of products (i.e.,
Traffic Filters or smart cards) that meet the needs
of specific consumer groups, communities of inter-
est, or applications. Protection Profiles are consid-
ered a product in themselves, and are evaluated
and tested for compliance to Common Criteria,
just as a functional product would. Before a prod-
uct can be validated using common criteria to a
given protection profile (or a combination of them),
the Protection Profiles have to be evaluated and is-
sued certificates of compliance. Instead of the Se-
curity Target (a required document) referring to
a protection profile for a set of security function-
ality and assurance criteria, it is acceptable for
the product Security Target to independently state
the security functionality and assurance level to
which the product will be evaluated. The limita-
tion is that this restricts the ability of product
consumers or users to readily compare products
of similar functionality.

Scurit des
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EAL1. The objective for evaluation assurance level
1 (EAL1) is described as “functionally tested” is
to confirm that the product functions in a man-
ner consistent with its documentation, and that
it provides useful protection against identified
threats.

EAL1 is applicable where some confidence in
correct operation is required, but the threats to
security are not viewed as serious. The evalua-
tion will be of value where independent assur-
ance is required to support the contention that
due care has been exercised with respect to the
protection of personal or similar information.

EAL1 provides an evaluation of the product
as made available to the customer, including in-
dependent testing against a specification, and
an examination of the guidance documentation
provided. It is intended that an EAL1 evalua-
tion could be successfully conducted without as-
sistance from the developer of the product, and
for minimal cost and schedule impact.

EAL2. The objective for evaluation assurance
level 2 (EAL2) is described as “structurally
tested.”

EAL2 requires the cooperation of the devel-
oper in terms of the delivery of design infor-
mation and test results, but should not demand
more effort on the part of the developer than is
consistent with good commercial practice, and
therefore, should not require a substantially in-
creased investment of cost or time.

EAL2 is applicable in those circumstances
where developers or users require a low to mod-
erate level of independently assured security
but does not require the submission of a com-
plete development record by the vendor. Such a
situation may arise when securing legacy sys-
tems, or where access to the developer may be
limited.

EALS3. The objectives for evaluation assurance
level 3 (EAL3) are described as “methodically
tested and checked.”

EAL3 permits a conscientious developer to
gain maximum assurance from positive secu-
rity engineering at the design stage without
substantial alteration of existing sound devel-
opment practices.

EALS3 is applicable in those circumstances
where developers or users require a moderate
level of independently assured security, and re-
quire a thorough investigation of the product
and its development without substantial re-
engineering.

EAL4. The objectives for evaluation assurance
level 4 (EAL4) are described as “methodically
designed, tested, and reviewed.”
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EALA4 permits a developer to gain maximum
assurance from positive security engineering
based on good commercial development prac-
tices, which, though rigorous, do not require sub-
stantial specialist knowledge, skills, and other
resources.

EALA is therefore applicable in those circum-
stances where developers or users require a
moderate to high level of independently assured
security in conventional commodity products
and are prepared to incur additional security-
specific engineering costs.

EALS5. The objectives for evaluation assurance
level 5 (EAL5) are described as “semiformally
designed and tested.”

EALS5 permits a developer to gain maximum
assurance from security engineering based upon
rigorous commercial development practices sup-
ported by moderate application of specialist se-
curity engineering techniques. Such a product
will probably be designed and developed with
the intent of achieving EAL5 assurance. It is
likely that the additional costs attributable to
the EALS5 requirements, relative to rigorous de-
velopment without the application of specialized
techniques, will not be large.

EALS5 is therefore applicable in those circum-
stances where developers or users require a
high level of independently assured security in
a planned development and require a rigorous
development approach without incurring unrea-
sonable costs attributable to specialist security
engineering techniques.

EALG6. The objectives for evaluation assurance
level 6 (EALG) are described as “semiformally
verified design and tested.”

EALG6 permits developers to gain high assur-
ance from application of security engineering
techniques to a rigorous development environ-
ment in order to produce a premium product for
protecting high value assets against significant
risks.

EALSG is therefore applicable to the develop-
ment of security product for application in high-
risk situations where the value of the protected
assets justifies the additional costs.

EAL?7. The objectives of evaluation assurance level
7 (EAL7) are described as “formally verified de-
sign and tested.”

EALT7is applicable to the development of secu-
rity products for application in extremely high-
risk situations and/or where the high value of
the assets justifies the higher costs. Practical
application of EAL7 is currently limited to prod-
ucts with tightly focused security functionality
that is amenable to extensive formal analysis.

Common Criteria is documented in a family of

three interrelated documents:

1. CC Part 1: Introduction and general model

2. CC Part 2: Security functional requirements

3. CC Part 3: Security assurance requirements.
The managed international homepage of the Com-
mon Criteria is available at www.commoncriteria
.org. The homepage for US based vendors and
customers is managed by NIST at http://csrc.nist
.gov/cc.

Part 1, introduction and general model, is the
introduction to the CC. It defines general con-
cepts and principles of IT security evaluation and
presents a general model of evaluation. Part 1 also
presents constructs for expressing IT security ob-
jectives, for selecting and defining IT security re-
quirements, and for writing high-level specifica-
tions for products and systems. In addition, the
usefulness of each part of the CC is described in
terms of each of the target audiences.

Part 2, security functional requirements, estab-
lishes a set of functional components as a standard
way of expressing the functional requirements for
Targets of Evaluation. Part 2 catalogs the set of
functional components, families, and classes.

Part 3, security assurance requirements, estab-
lishes a set of assurance components as a standard
way of expressing the assurance requirements for
Targets of Evaluation. Part 3 catalogs the set of
assurance components, families, and classes. Part
3 also defines evaluation criteria for Protection
Profiles and Security Targets and presents eval-
uation assurance levels that define the predefined
CC scale for rating assurance for Targets of Eval-
uation, which is called the Evaluation Assurance
Levels.

Each country implements its own scheme of
how it will implement the Common Evaluation
Methodology for Information Technology Security.

Tom Caddy

COMMUNICATION
CHANNEL ANONYMITY

Communication channel anonymity or relation-
ship anonymity [4]is achieved in a messaging sys-
tem if an eavesdropper who picks up messages
from the communication line of a sender and the
communication line of a recipient cannot tell with
better probability than pure guess whether the
sent message is the same as the received message.
During the attack, the eavesdropper may also lis-
ten on all communication lines of the network, and



he may also send and receive his own messages.
It is clear that all messages in such a network
must be encrypted to the same length in order
to keep the attacker from distinguishing different
messages by their content or length.

Communication channel anonymity implies ei-
ther sender anonymity or recipient anonymity [4].

Communication channel anonymity can be
achieved against computationally restricted
eavesdroppers by MIX networks [1] and against
computationally unrestricted eavesdroppers by
DC networks [2, 3].

Note that communication channel anonymity
is weaker than communication link unobservabil-
ity, where the attacker cannot even determine
whether or not any message is exchanged between
any particular pair of participants at any point of
time. Communication link unobservability can be
achieved with MIX networks and DC networks by
adding dummy traffic.

Gerrit Bleumer
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COMPROMISING
EMANATIONS

Computer and communications devices emit nu-
merous forms of energy. Many of these emissions
are produced as unintended side effects of nor-
mal operation. For example, where these emis-
sions take the form of radio waves, they can
often be observed interfering with nearby radio
receivers. Some of the unintentionally emitted en-
ergy carries information about processed data.
Under good conditions, a sophisticated and well-
equipped eavesdropper can intercept and analyze
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such compromising emanations to steal informa-
tion. Even where emissions are intended, as is
the case with transmitters and displays, only a
small fraction of the overall energy and infor-
mation content emitted will ever reach the in-
tended recipient. Eavesdroppers can use special-
ized more sensitive receiving equipment to tap
into the rest and access confidential information,
often in unexpected ways, as some of the following
examples illustrate.

Much knowledge in this area is classified mili-

tary research. Some types of compromising ema-
nations that have been demonstrated in the open
literature include:
® Radio-frequency waves radiated into free space
Radio-frequency waves conducted along cables
Power-supply current fluctuations
Vibrations, acoustic and ultrasonic emissions
High-frequency optical signals.
They can be picked up passively using directional
antennas, microphones, high-frequency power-
line taps, telescopes, radio receivers, oscilloscopes,
and similar sensing and signal-processing equip-
ment. In some situations, eavesdroppers can ob-
tain additional information by actively directing
radio waves or light beams toward a device and
analyzing the reflected energy.

Some examples of compromising emanations
are:
® Electromagnetic impact printers can produce

low-frequency acoustic, magnetic, and power-

supply signals that are characteristic for each
printed character. In particular, this has been
demonstrated with some historic dot-matrix
and “golfball” printers. As a result, printed text
could be reconstructed with the help of power-
line taps, microphones, or radio antennas. The
signal sources are the magnetic actuators in
the printer and the electronic circuits that drive
them.

® Cathode-ray tube (CRT) displays are fed with
an analog video signal voltage, which they am-

plify by a factor of about 100 and apply it to a

control grid that modulates the electron beam.

This arrangement acts, together with the video

cable, as a parasitic transmission antenna. As

a result, CRT displays emit the video signal as

electromagnetic waves, particularly in the VHF

and UHF bands (30 MHz to 3 GHz). An AM ra-
dio receiver with a bandwidth comparable to the
pixel-clock frequency of the video signal can be
tuned to one of the harmonics of the emitted sig-
nal. The result is a high-pass filtered and recti-
fied approximation of the original video signal.

It lacks color information and each vertical edge

appears merely as a line. Figure 1 demonstrates



90 Compromising emanations

The quick brown tox

Tty i ey 1o

Fig. 1. The top image shows a short test text displayed on a CRT monitor. In the bottom image, the compromising
emanation from this text was picked up with the help of an AM radio receiver (tuned at 450 MHz, 50 MHz
bandwidth) and a broadband UHF antenna. The output was then digitized, averaged over 256 frames to reduce
noise, and finally presented as a reconstructed pixel raster

that text characters remain quite readable after
this distortion. Where the display font and char-
acter spacing are predictable, automatic text
recognition is particularly practical. For older,
1980s, video displays, even modified TV sets,
with deflection frequencies adjusted to match
those of the eavesdropped device, could be used
to demonstrate the reconstruction of readable
text at a distance [7]. In modern computers,
pixel-clock frequencies exceed the bandwidth of
TV receivers by an order of magnitude. Eaves-
dropping attacks on these require special re-
ceivers with large bandwidth (50 MHz or more)
connected to a computer monitor or high-speed
signal-processing system [3].

CRT displays also leak the video signal as a
high-frequency fluctuation of the emitted light.
On this channel, the video signal is distorted
by the afterglow of the screen phosphors and
by the shot noise that background light contri-
butes. It is possible to reconstruct readable
text from screen light even after diffuse reflec-
tion, for example from a user’s face or a wall.
This can be done from nearby buildings using
a telescope connected to a very fast photosen-
sor (photomultiplier tube). The resulting signal
needs to be digitally processed using periodic-
averaging and deconvolution techniques to be-
come readable. This attack is particularly feasi-
ble in dark environments, where light from the
target CRT contributes a significant fraction of
the overall illumination onto the observed sur-
face. Flat-panel displays that update all pixels
in a row simultaneously are immune from this
attack [2].

Some flat-panel displays can be eavesdropped
via UHF radio, especially where a high-speed
digital serial connection is used between the
video controller and display. This is the case,
for example, in many laptops and with modern
graphics cards with a Digital Visual Interface

(DVI) connector. To a first approximation, the
signal picked up by an eavesdropping receiver
from a Gbit/s serial video interface cable indi-
cates the number of bit transitions in the data
words that represent each pixel color. For ex-
ample, text that is shown in foreground and
background colors encoded by the serial data
words 10101010 and 00000000, respectively,
will be particularly readable via radio emana-
tions [3].

Data has been eavesdropped successfully from
shielded RS-232 cables several meters away
with simple AM shortwave radios [5]. Such
serial-interface links use unbalanced transmis-
sion. Where one end lacks an independent earth
connection, the cable forms the inductive part
of a resonant circuit that works in conjunction
with the capacitance between the device and
earth. Each edge in the data signal feeds into
this oscillator energy that is then emitted as a
decaying high-frequency radio wave.

Line drivers for data cables have data-
dependent power consumption, which can af-
fect the supply voltage slightly. This in turn
can cause small variations in the frequency
of nearby oscillator circuits. As a result, the
electromagnetic waves generated by these os-
cillators broadcast frequency-modulated data,
which can be picked up with FM radios [5].
Where several cables share the same conduit,
capacitive and inductive coupling occurs. This
can result in crosstalk from one cable to the
other, even where the cables run parallel for
just a few meters. With a suitable ampli-
fier, an external eavesdropper might discover
that the high-pass filtered version of a signal
from an internal data cable is readable, for
example, on a telephone line that leaves the
building.

Devices with low-speed serial ports, such
as analog telephone modems with RS-232



interface, commonly feature light-emitting
diodes (LEDs) that are connected as status in-
dicators directly to data lines. These emit the
processed data optically, which can be picked up
remotely with a telescope and photo sensor [4].
Such optical compromising emanations are in-
visible to the human eye, which cannot perceive
flicker above about 50 Hz. Therefore, all opti-
cal data rates above 1 kbit/s appear as constant
light.
® The sound of a keystroke can identify which key
on a keyboard was used. Just as guitar strings
and drums sound very different depending on
where they are hit, the mix of harmonic fre-
quencies produced by a resonating circuit board
on which keys are mounted varies with the
location of the keystroke. Standard machine-
learning algorithms can be trained to distin-
guish, for a specific keyboard model, keys based
on spectrograms of acoustic keystroke record-
ings [1].
® Smart cards are used to protect secret keys
and intermediate results of cryptographic com-
putations from unauthorized access, especially
from the cardholder. Particular care is neces-
sary in their design with regard to compro-
mising emanations. Due to the small package,
eavesdropping sensors can be placed very close
to the microprocessor, to record, for example,
supply-current fluctuations or magnetic fields
that leak information about executed instruc-
tions and processed data. The restricted space
available in an only 0.8 mm thick plastic card
makes careful shielding and filtering difficult.
See also smartcard tamper resistance.
Video signals are a particularly dangerous type
of compromising emanation due to their periodic
nature. The refresh circuit in the video adapter
transmits the display content continuously, re-
peated 60-90 times per second. Even though the
leaked signal power measures typically only a few
nanowatts, eavesdroppers can use digital signal-
processing techniques to determine the exact rep-
etition frequency, record a large number of frames,
and average them to reduce noise from other ra-
dio sources. As frame and pixel frequencies differ
by typically six orders of magnitude, the averag-
ing process succeeds only if the frame rate has
been determined correctly within at least seven
digits precision. This is far more accurate than
the manufacturing tolerances of the crystal oscil-
lators used in graphics adapters. An eavesdropper
can therefore use periodic averaging to separate
the signals from several nearby video displays,
even if they use the same nominal refresh fre-
quency. Directional antennas are another tool for
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separating images from several computers in a
building.

RF video-signal eavesdropping can be easily
demonstrated with suitable equipment. Even in a
noisy office environment and without directional
antennas, reception across several rooms (5-20
meters) requires only moderate effort. Larger
eavesdropping distances can be achieved in the
quieter radio spectrum of a rural area or with
the help of directional antennas. Eavesdropping
of nonperiodic compromising signals from modern
office equipment is usually only feasible where a
sensor or accessible conductor (crosstalk) can be
placed very close to the targeted device. Where an
eavesdropper can arrange for special software to
be installed on the targeted computer, this can be
used to deliberately modulate many other emis-
sion sources with selected and periodically re-
peated data for easier reception, including system
buses, transmission lines, and status indicators.

Compromising radio emanations are often
broadband impulse signals that can be received at
many different frequencies. Eavesdroppers tune
their receivers to a quiet part of the spectrum,
where the observed impulses can be detected with
the best signal-to-noise ratio. The selected receiver
bandwidth has to be small enough to suppress the
powerful signals from broadcast stations on neigh-
boring frequencies and large enough to keep the
width of detected impulses short enough for the
observed data rate.

Electromagnetic and acoustic compromising
emanations have been a concern to military orga-
nizations since the 1960s. Secret protection stan-
dards (TEMPEST ) have been developed. They de-
fine how equipment used to process critical secret
information must be shielded, tested, and main-
tained. Civilian radio-emission limits for comput-
ers, such as the CISPR 22 and FCC Class B regula-
tions, are only designed to help avoid interference
with radio broadcast services at distances more
than 10 meters. They do not forbid the emission of
compromising signals that could be picked up at
a quiet site by a determined receiver with direc-
tional antennas and careful signal processing sev-
eral hundred meters away. Protection standards
against compromising radio emanations therefore
have to set limits for the allowed emission power
about a million times (60 dB) lower than civil-
ian radio-interference regulations. Jamming is an
alternative form of eavesdropping protection, but
this is not preferred in military applications where
keeping the location of equipment secret is an ad-
ditional requirement.

Markus Kuhn
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COMPUTATIONAL
COMPLEXITY

Computational complexity theory is the study of
the minimal resources needed to solve compu-
tational problems. In particular, it aims to dis-
tinguish between those problems that possess
efficient algorithms (the “easy” problems) and
those that are inherently intractable (the “hard”
problems). Thus computational complexity pro-
vides a foundation for most of modern cryptog-
raphy, where the aim is to design cryptosystems
that are “easy to use” but “hard to break.” (See

security.)

RUNNING TIME: The most basic resource studied
in computational complexity is running time—the
number of basic “steps” taken by an algorithm.
(Other resources, such as space (i.e., memory us-
age), are also studied, but we will not discuss them
here.) To make this precise, one needs to fix a
model of computation (such as the Turing ma-
chine), but here we will informally think of it as the

number of “bit operations” when the input is given
as a string of 0’s and 1’s. Typically, the running
time is measured as a function of the input length.
For numerical problems, we assume the input is
represented in binary, so the length of an integer
N is roughly logy N. For example, the elementary-
school method for adding two n-bit numbers has
running time proportional to n. (For each bit of
the output, we add the corresponding input bits
plus the carry.) More succinctly, we say that addi-
tion can be solved in time “order n,” denoted O(n)
(see O-notation). The elementary-school multipli-
cation algorithm, on the other hand, can be seen to
have running time O(n?). In these examples (and
in much of complexity theory), the running time
is measured in the worst case. That is, we mea-
sure the maximum running time over all inputs of
length n.

PoLYNOMIAL TIME: Both the addition and multi-
plication algorithms are considered to be efficient,
because their running time grows only mildly with
the input length. More generally, polynomial time
(running time O(n°) for a constant c) is typically
adopted as the criterion of efficiency in computa-
tional complexity. The class of all computational
problems possessing polynomial-time algorithms
is denoted P.! Thus ADDITION and MULTIPLICATION
are in P, and more generally we think of P as iden-
tifying the “easy” computational problems. Even
though not all polynomial-time algorithms are fast
in practice, this criterion has the advantage of ro-
bustness: the class P seems to be independent of
changes in computing technology. P is an exam-
ple of a complexity class—a class of computational
problems defined via some algorithmic constraint,
which in this case is “polynomial time.”

In contrast, algorithms that do not run in poly-
nomial time are considered infeasible. For ex-
ample, consider the ¢rial division algorithms for
integer factoring or primality testing (see prime
number). For an n-bit number, trial division can
take time up to 2"/2, which is exponential time
rather than polynomial time in n. Thus, even
for moderate values of n (e.g., n = 200) trial di-
vision of n-bit numbers is completely infeasible
for present-day computers, whereas addition and
multiplication can be done in a fraction of a sec-
ond. Computational complexity, however, is not
concerned with the efficiency of a particular algo-
rithm (such as trial division), but rather whether a
problem has any efficient algorithm at all. Indeed,

1 Typically, P is defined as a class of decision problems (i.e.,
problems with a yes/no answer), but here we make no such
restriction.



for primality testing, there are polynomial-
time algorithms known (see prime number), so
PRIMALITY is in P. For integer factoring, on the
other hand, the fastest known algorithm has run-
ning time greater than 27" which is far from
polynomial. Indeed, it is believed that FACTORING
is not in P; the RSA and Rabin cryptosystems
(see RSA public-key encryption, RSA digital sig-
nature scheme, Rabin cryptosystem, Rabin signa-
ture scheme) rely on this conjecture. One of the
ultimate goals of computational complexity is to
rigorously prove such lower bounds, i.e., establish
theorems stating that there is no polynomial-time
algorithm for a given problem. (Unfortunately, to
date, such theorems have been elusive, so cryp-
tography continues to rest on conjectures, albeit
widely believed ones. More on this is given below.)

POLYNOMIAL SECURITY: Given the above associ-
ation of “polynomial time” with feasible computa-
tion, the general goal of cryptography becomes to
construct cryptographic protocols that have poly-
nomial efficiency (i.e., can be executed in poly-
nomial time) but super-polynomial security (.e.,
cannot be broken in polynomial time). This guar-
antees that, for a sufficiently large setting of the
security parameter (which roughly corresponds to
the input length in complexity theory), “breaking”
the protocol takes much more time than using the
protocol. This is referred to as asymptotic security.

While polynomial time and asymptotic security
are very useful for the theoretical development of
the subject, more refined measures are needed to
evaluate real-life implementations. Specifically,
one needs to consider the complexity of using and
breaking the system for fixed values of the input
length, e.g., n = 1000, in terms of the actual time
(e.g., in seconds) taken on current technology (as
opposed to the “basic steps” taken on an abstract
model of computation). Efforts in this direction
are referred to as concrete security. Almost all
results in computational complexity and cryp-
tography, while usually stated asymptotically,
can be interpreted in concrete terms. However,
they are often not optimized for concrete security
(where even constant factors hidden in O-notation
are important).

Even with asymptotic security, it is some-
times preferable to demand that the growth of
the gap between the efficiency and security of
cryptographic protocols is faster than polynomial
growth. For example, instead of asking simply for
super-polynomial security, one may ask for expo-
nential security (i.e., cannot be broken in time 2"¢
for some € > 0). Based on the current best known
algorithms, it seems that FACTORING may have
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exponential hardness and hence the cryptographic
protocols based on its hardness may have exponen-
tial security.?

COMPLEXITY-BASED CRYPTOGRAPHY: As de-
scribed above, a major aim of complexity theory
is to identify problems that cannot be solved in
polynomial time and a major aim of cryptography
is to construct protocols that cannot be broken in
polynomial time. These two goals are clearly well-
matched. However, since proving lower bounds (at
least for the kinds of problems arising in cryptog-
raphy) seems beyond the reach of current tech-
niques in complexity theory, an alternative ap-
proach is needed.

Present-day complexity-based cryptography
therefore takes a reductionist approach: it at-
tempts to relate the wide variety of complicated
and subtle computational problems arising in
cryptography (forging a signature, computing
partial information about an encrypted message,
etc.) to a few, simply stated assumptions about the
complexity of various computational problems.
For example, under the assumption that there is
no polynomial-time algorithm for FACTORING (that
succeeds on a significant fraction of composites
of the form n = pqg), it has been demonstrated
(through a large body of research) that it is
possible to construct algorithms for almost all
cryptographic tasks of interest (e.g., asymmetric
cryptosystems, digital signature schemes, secure
multiparty computation, etc.). However, since the
assumption that FACTORING is not in P is only a
conjecture and could very well turn out to be false,
it is not desirable to have all of modern cryptog-
raphy to rest on this single assumption. Thus
another major goal of complexity-based cryptogra-
phy is to abstract the properties of computational
problems that enable us to build cryptographic
protocols from them. This way, even if one problem
turns out to be in P, any other problem satisfying
those properties can be used without changing
any of the theory. In other words, the aim is to
base cryptography on assumptions that are as
weak and general as possible.

Modern cryptography has had tremendous suc-
cess with this reductionist approach. Indeed, it
is now known how to base almost all basic cryp-
tographic tasks on a few simple and general
complexity assumptions (that do not rely on the

2 In cryptography, a slightly different definition of exponential
hardness is typically employed, with exponential security (com-
pare exponential time) only referring to protocols that cannot be
broken in time 2¢" for some > 0. Accordingly, in cryptography,
FACTORING is typically considered to provide subexponential se-
curity (compare subexponential time).
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intractability of a single computational problem,
but may be realized by any of several candidate
problems). Among other things, the text below dis-
cusses the notion of a reduction from complex-
ity theory that is central to this reductionist ap-
proach, and the types of general assumptions, such
as the existence of one-way functions, on which
cryptography can be based.

REDUCTIONS: One of the most important notions
in computational complexity, which has been in-
herited by cryptography, is that of a reduction be-
tween computational problems. We say that prob-
lem IT reduces to problem I if IT can be solved in
polynomial time given access to an “oracle” that
solves I' (i.e., a hypothetical black box that will
solve ' on instances of our choosing in a single
time step). Intuitively, this captures the idea that
problem IT is no harder than problem I". For a sim-
ple example, let us show that PRIMALITY reduces to
FACTORING.? Suppose we have an oracle that, when
fed any integer, returns its prime factorization in
one time step. Then we could solve PRIMALITY in
polynomial time as follows: on input N, feed the
oracle with N, output “prime” if the only factor re-
turned by the oracle is N itself, and output “com-
posite” otherwise.

It is easy to see that if problem IT reduces to
problem I', and I' € P, then IT € P: if we substi-
tute the oracle queries with the actual polynomial-
algorithm for I', we obtain a polynomial-time al-
gorithm for I1. Turning this around, IT ¢ P implies
that I ¢ P. Thus, reductions provide a way to use
an assumption that one problem is intractable to
deduce that other problems are intractable. Much
work in cryptography is based on this paradigm:
for example, one may take a complexity assump-
tion such as “there is no polynomial-time algo-
rithm for FACTORING” and use reductions to deduce
statements such as “there is no polynomial-time
algorithm for breaking encryption scheme X.” (As
discussed later, for cryptography, the formaliza-
tions of such statements and the notions of reduc-
tion in cryptography are more involved than sug-
gested here.)

NP: Another important complexity class is NP.
Roughly speaking, this is the class of all compu-
tational problems for which solutions can be veri-
fied in polynomial time.* For example, given that

3 Of course, this reduction is redundant given that PRIMAL-
ITY is in P, but suppose for a moment that we did not know
this.

4 NP stands for nondeterministic polynomial time. Like P, NP
is typically defined as a class of decision problems, but again
that constraint is not essential for our informal discussion.

PrIMALITY is in P, we can easily see that FACTORING
is in NP: to verify that a supposed prime factoriza-
tion of a number N is correct, we can simply test
each of the factors for primality and check that
their product equals N. NP can be thought of as
the class of “well-posed” search problems: it is not
reasonable to search for something unless you can
recognize when you have found it. Given this natu-
ral definition, it is not surprising that the class NP
has taken on a fundamental position in computer
science.

It is evident that P € NP, but whether or not
P = NP is considered to be one of the most im-
portant open problems in mathematics and com-
puter science.? It is widely believed that P # NP;
indeed, we have seen that FACTORING is one candi-
date for a problem in NP \ P. In addition to FAc-
TORING, NP contains many other computational
problems of great importance, from many disci-
plines, for which no polynomial-time algorithms
are known.

The significance of NP as a complexity class is
due in part to the NP-complete problems. A com-
putational problem IT is said to be NP-complete
if [T € NP and every problem in NP reduces to
1. Thus the NP-complete problems are the “hard-
est” problems in NP, and are the ones most likely
to be intractable. (Indeed, if even a single prob-
lem in NP is not in P, then all the NP-complete
problems are not in P.) Remarkably, thousands of
natural computational problems have been shown
to be NP-complete. (See [1].) Thus, it is an ap-
pealing possibility to build cryptosystems out of
NP-complete problems, but unfortunately, NP-
completeness does not seem sufficient for crypto-
graphic purposes (as discussed later).

RANDOMIZED ALGORITHMS: Throughout cryp-
tography, it is assumed that parties have the abil-
ity to make random choices; indeed this is how one
models the notion of a secret key. Thus, it is natu-
ral to allow not just algorithms whose computation
proceeds deterministically (as in the definition of
P), but also consider randomized algorithms—
ones that may make random choices in their com-
putation. (Thus, such algorithms are designed to
be implemented with a physical source of random-
ness. See random bit generation (hardware).)
Such a randomized (or probabilistic) algorithm
A is said to solve a given computational problem
if on every input x, the algorithm outputs the cor-
rect answer with high probability (over its random

5 The significance of P versus NP in mathematics comes from
the fact that it is equivalent to asking whether we can find
short mathematical proofs efficiently.



choices). The error probability of such a random-
ized algorithm can be made arbitrarily small by
running the algorithm many times. For exam-
ples of randomized algorithms, see the probabilis-
tic primality tests in the entry on prime number.
The class of computational problems having
polynomial-time randomized algorithms is de-
noted BPP.% A widely believed strengthening of
the P # NP conjecture is that NP £ BPP.

P VERSUS NP AND CRYPTOGRAPHY: The
assumption P = NP (and even NP ¢ BPP) is nec-
essary for most of modern cryptography. For exam-
ple, take any efficient encryption scheme and con-
sider the following computational problem: given
a ciphertext C, find the corresponding message M
along with the key K and any randomization R
used in the encryption process. This is an NP prob-
lem: the solution (M, K, R) can be verified by re-
encrypting the message M using the key K and the
randomization R and checking whether the result
equals C. Thus, if P = NP, this problem can be
solved in polynomial time, i.e. there is an efficient
algorithm for breaking the encryption scheme.”
However, the assumption P # NP (or even NP ¢
BPP) does not appear suffcient for cryptography.
The main reason for this is that P # NP refers
to worst-case complexity. That is, the fact that a
computational problem IT is not in P only means
that for every polynomial-time algorithm A, there
exist inputs on which A fails to solve I1. However,
these “hard inputs” could conceivably be very rare
and very hard to find. Intuitively, to make use of
intractability (for the security of cryptosystems),
we need to be able to efficiently generate hard in-
stances of an intractable computational problem.

ONE-WAY FUNCTIONS: The notion of a one-way
function captures the kind of computational in-
tractability needed in cryptography. Informally, a
one-way function is a function fthat is “easy to
evaluate” but “hard to invert.” That is, we require
that the function fcan be computed in polynomial
time, but given y = f(x), it is intractable to recover
x. It is required that the difficulty of inversion
holds even when the input x is chosen at random.
Thus, we can efficiently generate hard instances

6 BPP stands for “bounded-error probabilistic polynomial
time.”

7 Technically, to conclude that the cryptosystem is broken re-
quires that the message M is uniquely determined by cipher-
text C. This will essentially be the case for most messages if the
message length is greater than the key length. (If the message
length is less than or equal to the key length, then there exist
encryption schemes that achieve information-theoretic secu-
rity (for a single encryption, e.g., the one-time pad), regardless
of whether or not P = NP.)
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of the problem “find a preimage of y,” by selecting
x at random and setting y = f(x). (Note that we
actually generate a hard instance together with a
solution; this is another aspect in which one-way
functions are stronger than what follows from P £
NP.) To formalize the definition, we need the con-
cept of a negligible function. A function ¢ : N —
[0, 1] is negligible if for every constant c, there is
an ng such that €(n) < 1/n¢ for all n > ng. That is,
€ vanishes faster than any polynomial. Then we
have:

DEFINITION 1 (one-way function). A one-to-one

function f is one-way if it satisfies the following

conditions.

1. (Easy to evaluate). f can be evaluated in polyno-
mial time.

2. (Hard to invert). For every probabilistic
polynomial-time algorithm A, there is a negli-
gible function € such that

PriA(f(X)) = X1 < en),

where the probability is taken over selecting an
input X of length n uniformly at random and
the random choices of the algorithm A.

For simplicity, we have only given the definition
for one-to-one one-way functions. Without the one-
to-one constraint, the definition should refer to the
problem of finding some preimage of f(X), i.e., re-
quire the probability that A(f(X)) € f1(f(X)) is
negligible.?

The input length n can be thought of as corre-
sponding to the security parameter (or key length)
in a cryptographic protocol using f. If f is one-way,
we are guaranteed that by making n sufficiently
large, inverting ftakes much more time than eval-
uating f. However, to know how large to set n in an
implementation requires a concrete security ana-
logue of the above definition, where the maximum
success probability € is specified for A with a par-
ticular running time on a particular input length
n, and a particular model of computation.

The “inversion problem” is an NP problem (to
verify that X is a preimage of Y, simply evaluate
fiX) and compare with Y.) Thus, if NP € BPP
then one-way functions do not exist. However, the
converse is an open problem, and proving it would
be a major breakthrough in complexity theory. For-
tunately, even though the existence of one-way
functions does not appear to follow from NP ¢
BPP, there are a number of natural candidates
for one-way functions.

8 For technical reasons, we also need to require that f does
not shrink its input too much, e.g. that the length of | f(x)| and
length of |x| are polynomially related (in both directions.)
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SOME CANDIDATE ONE-WAY FUNCTIONS:
These examples are described informally, and
may not all match up perfectly with the sim-
plified definition above. In particular, some are
actually collections of one-way functions F = {f; :
D; — R;},in the functions f are parameterized by
an index i that is generated by some randomized
algorithm.?

1. (Multiplication) f(p,q)= p-q, where p and
g are primes of equal length. Inverting f is
the FACTORING problem (see integer factoring),
which indeed seems intractable even on ran-
dom inputs of the form p-q.

2. (Subset Sum)  f(x1,...,%,,8) = (x1, ..., x,,
Y icsXi). Here each x; is an n-bit integer and
S C [n]. Inverting fis the SUBSET SuM problem
(see knapsack cryptographic schemes). This
problem is known to be NP-complete, but for
the reasons discussed above, this does not
provide convincing evidence that fis one-way
(nevertheless it seems to be so).

3. (The Discrete Log Collection) fg(x)=g7,
where G is a cyclic group (e.g., G = Z;, for prime
p),gisageneratorof G,andx € {1, ..., |G| — 1}.
Inverting f; . is the DISCRETE LOG problem (see
discrete logarithm problem), which seems in-
tractable. This (like the next two examples) is
actually a collection of one-way functions, pa-
rameterized by the group G and generator g.

4. (The RSA Collection) f, .(x) = x° mod n, where
n is the product of two equal-length primes, e
satisfies ged(e, ¢(n)) = 1, and x € Z;. Inverting
. is the RSA problem.

5. (Rabin’s Collection) (see Rabin cryptosystem,
Rabin digital signature scheme). £(x) = x% mod
n, where n is a composite and x € Z*. Inverting
. is known to be as hard as factoring n.

6. (Hash Functions and Block Ciphers). Most
cryptographic hash functions seem to be finite
analogues of one-way functions with respect to
concrete security. Similarly, one can obtain can-
didate one-way functions from block ciphers,
say by defining f(K ) to be the block cipher ap-
plied to some fixed message using key K.

In a long sequence of works by many re-
searchers, it has been shown that one-way func-
tions are indeed the “right assumption” for
complexity-based cryptography. On one hand, al-
most all tasks in cryptography imply the ex-
istence of one-way functions. Conversely (and
more remarkably), many useful cryptographic
tasks can be accomplished given any one-way
function.

9 Actually, one can convert a collection of one-way functions
into a single one-way function, and conversely. See [3].

THEOREM 1. The existence of one-way functions is

necessary and sufficient for each of the following:

® The existence of commitment schemes

® The existence of pseudorandom number genera-
tors

® The existence of pseudorandom functions

The existence of symmetric cryptosystems

The existence of digital signature schemes.

These results are proven via the notion of re-
ducibility mentioned above, albeit in much more
sophisticated forms. For example, to show that the
existence of one-way functions implies the exis-
tence of pseudorandom generators, one describes
a general construction of a pseudorandom gener-
ator G from any one-way function f. To prove the
correctness of this construction, one shows how to
“reduce” the task of inverting the one-way func-
tion fto that of “distinguishing” the output of the
pseudorandom generator G from a truly random
sequence. That is, any polynomial-time algorithm
that distinguishes the pseudorandom generator
can be converted into a polynomial-time algorithm
that inverts the one-way function. But if fis one-
way, it cannot be inverted, so we conclude that the
pseudorandom generator is secure. These reduc-
tions are much more delicate than those arising
in, say, the NP-completeness, because they involve
nontraditional computational tasks (e.g., inver-
sion, distinguishing) that must be analyzed in the
average case (i.e., with respect to non-negligible
success probability).

The general constructions asserted in Theorem
1 are very involved and not efficient enough to
be used in practice (though still polynomial time),
so it should be interpreted only as a “plausibil-
ity result.” However, from special cases of one-
way functions, such as one-way permutations (see
one-way function) or some of the specific candidate
one-way functions mentioned earlier, much more
efficient constructions are known.

TRAPDOOR FUNCTIONS: For some tasks in
cryptography, most notably public-key encryption
(see public-key cryptography), one-way functions
do not seem to suffice, and additional proper-
ties are used. One such property is the trap-
door property, which requires that the function
can be easily inverted given certain “trapdoor
information.” We do not give the full definition
here, but just list the main properties. (See also
trapdoor one-way function.)

DEFINITION 2 (trapdoor functions, informal).
A collection of one-to-one functions F = {f; : D; —
R;} is a collection of trapdoor functions if



1. (Efficient generation). There is a probabilistic
polynomial-time algorithm that, on input a se-
curity parameter n, generates a pair (i, t;), where
I is the index to a (random) function in the
family and t; is the associated “trapdoor infor-
mation.”

2. (Easy to evaluate). Given i and x € D;, one can
compute f;(x)in polynomial time.

3. (Hard to invert). There is no probabilistic
polynomial-time algorithm that on input (i,
fi(x)) outputs x with non-negligible probability.
(Here, the probability is taken overi, x € Di, and
the coin tosses of the inverter.)

4. (Easy to invert with trapdoor). Given t; and
fi(x), one can compute x in polynomial time.

Thus, trapdoor functions are collections of one-
way functions with an additional trapdoor prop-
erty (Item 4). The RSA and Rabin collections
described earlier have the trapdoor property. Spe-
cifically, they can be inverted in polynomial time
given the factorization of the modulus n.

One of the main applications of trapdoor func-
tions is for the construction of public-key encryp-
tion schemes.

THEOREM 2. If trapdoor functions exist, then

public-key encryption schemes exist.

There are a number of other useful strength-
enings of the notion of a one-way function, dis-
cussed elsewhere in this volume: claw-free per-
mutations, collision-resistant hash functions (see
collision resistance), and universal one-way hash
functions.

OTHER INTERACTIONS WITH CRYPTOGRAPHY:
The interaction between computational complex-
ity and cryptography has been very fertile. Above,
we have described the role that computational
complexity plays in cryptography. Conversely,
several important concepts that originated in
cryptography research have had a tremendous im-
pact on computational complexity. Two notable ex-
amples are the notions of pseudorandom number
generators and interactive proof systems. For
more on these topics and the resulting develop-
ments in computational complexity, see [2].

FURTHER READING: Above, we have touched
upon only a small portion of computational com-
plexity, and even in the topics covered, many im-
portant issues were ignored (not to mention histor-
ical references). Thus, we refer the reader to the
text [3] for more on computational complexity as
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it relates to cryptography, and the texts [4, 5] for
other aspects of complexity theory.

Salil Vadhan
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CONTRACT SIGNING

A contract is a nonrepudiable agreement on a
given contract text, i.e., a contract can be used to
prove agreement between the signatories to any
verifier. A contract signing scheme [4] is used to
fairly compute a contract such that, even if one of
the signatories misbehaves, either both or none of
the signatories obtain a contract. Contract signing
generalizes fair exchange of signatures: a contract
signing protocol does not need to output signa-
tures but can define its own format instead. Con-
tract signing can be categorized by the properties
of fair exchange (like abuse-freeness) as well as
the properties of the nonrepudiation tokens it pro-
duces (like third-party time stamping of the con-
tract). Unlike agreement protocols, contract sign-
ing needs to provide a nonrepudiable proof that an
agreement has been reached.

Early contract signing protocols were either
based on an in-line Trusted Third Party [8], grad-
ual exchange of secrets [5], or gradual increase
of privilege [3]. Like fair exchange protocols, two-
party contract signing protocols either do not guar-
antee termination or may else produce a partially
signed contract. As a consequence, a trusted third
party is needed for most practical applications.
Optimistic contract signing [7] protocols optimize
by involving this third-party only in case of excep-
tions. The first optimistic contract signing scheme
has been described in [6]. An optimistic contract
signing scheme for asynchronous networks has
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Signatory A

Signatory B

my := sign4(“my”, tyam, TTP, A, B, Cp)

?
CA = CB'7

my = signg(*my’, my)

if m,: output m,
elseif no my: abort

mg 1= sign,(“my’, my)

if m,: output m,
else: continue

Signatory A TTPT Signatory B
my = signg(*my, m)
- "
check
mg 1= signy(“mg’, m)ms = signr(*mg’, my)
output mg output mg

Fig. 1. Sketch of an optimistic synchronous contract signing protocol [7]

been described in [1]. An example for a multiparty
abuse-free optimistic contract signing protocol has
been published in [2]. A simple optimistic con-
tract signing protocol for synchronous networks is
sketched in Figure 1: party A sends a proposal,
party B agrees, and party A confirms. If party
A does not confirm, B obtains its contract from
the TTP. (Note that the generic fair exchange pro-
tocol (see fair exchange) can be adapted for con-
tract signing, too, by using a signature under C as
itemy, using (C, X) as description descy, and using
the signature verification function as the verifica-
tion function.)

Matthias Schunter
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CONTROL VECTORS

A method introduced—and patented in a number
of application scenarios—by IBM in the 1980s for
the control of cryptographic key usage. The basic
idea is that each cryptographic key has an asso-
ciated control vector, which defines the permitted
uses of the key within the system, and this is en-
forced by the use of tamper resistant hardware. At
key generation, the control vector is cryptograph-
ically coupled to the key, e.g., by XOR-ring the key
with the control vector before encryption and dis-
tribution. Each encrypted key and control vector
is stored and distributed within the cryptographic
system as a single token.



As an example, nonrepudiation may be achieved
between two communicating hardware boxes by
the use of a conventional MAC algorithms using
symmetric methods. The communicating boxes
would share the same key, but whereas one box
would only be allowed to generate a MAC with
that key, the other box would only be able to ver-
ify a MAC with the same key. The transform of
the same key from, e.g., MAC-generation to MAC-
verification is known as key translation and needs
to be carried out in tamper resistant hardware as
well. Similarly the same symmetric key may be
used for encryption only enforced by one control
vector in one device and for decryption only en-
forced by a different control vector in a different
device.

Peter Landrock

COPY PROTECTION

Copy protection attempts to find ways which limit
the access to copyrighted material and/or inhibit
the copy process itself. Examples of copy protec-
tion include encrypted digital TV broadcast, access
controls to copyrighted software through the use of
license servers or through the use of special hard-
ware add-ons (dongles), and technical copy protec-
tion mechanisms on the media.

Copy protection mechanisms can work pro-
actively by aiming to prevent users from accessing
copy protected content.

For content that is distributed on physical me-
dia such as floppy disks, digital audio tape (DAT),
CD-ROM or digital versatile disk (DVD), copy pro-
tection can be achieved by master copy control and
copy generation control:

Master copy control: If consumers are not al-
lowed to even make backup copies of their mas-
ter media, then one can mark the master media
themselves in addition to or instead of marking
the copyrighted content. This was an inexpen-
sive and common way to protect software dis-
tributed for example on floppy disks. One of the
sectors containing critical parts of the software
was marked as bad such that data could be read
from that sector, but could not be copied to an-
other floppy disk.

Copy generation control: If consumers are al-
lowed to make copies of their master copy, but
not of copies of the master copy, then one needs
to establish control over the vast majority of con-
tent recorders, which must be able to effectively
prevent the making of unauthorized copies.
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This approach is somewhat unrealistic because
even a small number of remaining unregistered
recorders can be used by organized hackers to
produce large quantities of pirated copies.
Instead of protecting the distribution media of
digital content, one can protect copyrighted digi-
tal content itself by marking copyrighted content
and enforcing playback control by allowing only
players that interpret these copyright marks ac-
cording to certain access policies (access control).

This approach works for digital content that is be-

ing distributed on physical media as well as being

broadcast or distributed online. It is an example
of a digital rights management system (DRMS).

Mark copyrighted content: If consumers are
allowed to make a few backup copies for their
personal use, then the copyrighted digital con-
tent itself can be marked as copy protected in
order to be distinguishable from unprotected
digital content. The more robust the marking,
i.e., the harder it is to remove it without signif-
icantly degrading the quality of the digital con-
tent, the stronger copy protection mechanism
can be achieved.

Playback control: Players for copyrighted con-
tent need to have a tamper resistant access cir-
cuitry that is aware of the copy protection mark-
ing, or players need to use online license servers
to check the actual marks. Before converting
digital content into audible or visible signals,
the player compares the actual marking against
the licenses or tickets, which are either built into
their access circuitry or retrieved from a license
server online, and stops if the former does not
match the latter. The exact behavior of playersis
determined by access policies. There can be dif-
ferent kinds of tickets or licenses. Tickets of one
kind may represent the right of ownership of a
particular piece of content, i.e., the piece of con-
tent can be played or used as many times as the
owner wishes. Tickets of another kind may rep-
resent the right of one-time play or use (pay-per-
view). Other kinds of tickets can be defined. The
more tamper resistant the access circuitry is or
the more protected the communication with the
license server and the license server itself, the
stronger the copy protection mechanism that
can be achieved.

Marking of copyrighted content can use anything

from simple one-bit marks to XrML tags to sophis-

ticated watermarking techniques. An example of
the former is to define a new audio file format, in
which the mark is a part of the header block but
is not removable without destroying the original
signal, because part of the definition of the file for-
mat requires the mark to be therein. In this case
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the signal would not really be literally “destroyed”
but any application using this file format would
not touch it without a valid mark. Some electronic
copyright management systems (ECMS) propose
mechanisms like this. Such schemes are weak as
anyone with a computer or a digital editing work-
station would be able to convert the information to
another format and remove the mark at the same
time. Finally this new audio format would be in-
compatible with the existing one. Thus the mark
should really be embedded in the audio signal.
This is very similar to S.C.M.S. (Serial Code Man-
agement System). When Phillips and Sony intro-
duced the “S/PDIF” (Sony/Phillips Digital Inter-
change Format), they included the S.C.M.S. which
provides a way copies of digital music are regu-
lated in the consumer market. This information is
added to the stream of data that contains the mu-
sic when one makes a digital copy (a “clone”). This
is in fact just a bit saying: digital copy prohibited
or permitted. Some professional equipment are ex-
empt from having S.C.M.S. With watermarking
however, the copy control information is part
of the audiovisual signal and aims at surviv-
ing file format conversion and other transfor-
mations.

An alternative to marking is containing copy-
righted content. With this approach, the recording
industry encrypts copyrighted digital content un-
der certain encryption keys such that only players
with appropriate decryption keys can access and
playback the content.

Encrypt copyrighted content: The copyrighted
digital content itself is encrypted in order to
be accessible by authorized consumers only.
The more robust the encryption, the stronger
the copy protection mechanism that can be
achieved.

Playback control: Players for copyrighted con-
tent need to have a tamper resistant access cir-
cuitry that is aware of certain decryption keys
that are necessary to unlock the contents the
consumer wants to be played. Before converting
digital content into audible or visible signals,
the player needs to look up the respective de-
cryption keys, which are either built into the
access circuitry of the player or are retrieved
from a license server online. The exact behav-
ior of players is determined by access policies.
There can be different kinds of decrypting keys.
Decrypting keys of one kind may represent the
right of ownership of a particular piece of con-
tent, i.e., the piece of content can be played or
used as many times as the owner wishes. Tick-
ets of another kind may represent the right
of one-time play or use (pay-per-view). Other

kinds of decryption keys can be defined. The

more tamper resistant the access circuitry or the

more protected the communication with the li-

cense server and the license server itself, the

stronger the copy protection mechanism that
can be achieved.

In order to effectively prevent consumers from

copying digital content protected in this way, the

players must not allow consumers to easily ac-
cess the decrypted digital content. Otherwise, the
containing approach would not prevent consumers
from reselling, trading, or exchanging digital con-
tent at their discretion. As a first line of protection,
players should not provide a high quality output
interface for the digital content. A stronger level
of protection is achieved if the decryption mecha-
nism is integrated into the display, such that pi-
rates would only obtain signals of degraded qual-
ity. The content scrambling system (CSS) used for
digital versatile disks (DVDs) [2] is an example of
the containing approach: in CSS, each of n manu-
facturers (n being several hundreds by 2002) has
one or more manufacturer keys, and each player
has one or more keys of its manufacturer built in.

Each DVD has its own disk key dk, which is stored

n times in encrypted form, once encrypted under

each manufacturer key. The DVD content is en-

crypted under respective sector keys, which are
all derived from the disk key dk.

Copy protection mechanisms can also work
retroactively by deterring authorized users from
leaking copies to unauthorized users. This ap-
proach requires solving the following two prob-
lems.

Mark copy protected content individually:
Copy protected digital content carries informa-
tion about its origin, i.e. the original source, au-
thor, distributor, etc. in order to allow to trace
its distribution and spreading. It is like em-
bedding a unique serial number in each autho-
rized copy of protected content. The more ro-
bust the embedded marking, i.e., the harder it
is to remove it without significantly degrading
the quality of the digital content, the stronger
the copy protection mechanism that can be
achieved.

Deter from unauthorized access: Players need
to have no tamper resistant access circuitry nor
online access to license servers. Instead, each
customer who receives an authorized copy is
registered with the serial number of the copy
provided. The marking serves as forensic ev-
idence in investigations to figure out where
and when unauthorized copies of original con-
tent have surfaced. This retroactive approach
can be combined with the above mentioned




proactive approach by using the embedded se-

rial numbers as individual watermarks, which

are recognized by players for the respective

content.
This approach can use anything from hidden
serial numbers to sophisticated fingerprinting
techniques. Fingerprints are characteristics of an
object that tend to distinguish it from other simi-
lar objects. They enable the owner to trace autho-
rized users distributing them illegally. In the case
of encrypted satellite television broadcasting, for
instance, users could be issued a set of keys to de-
crypt the video streams and the television station
could insert fingerprint bits into each packet of
the traffic to detect unauthorized uses. If a group
of users give their subset of keys to unauthorized
people (so that they can also decrypt the traffic), at
least one of the key donors can be traced when the
unauthorized decoder is captured. In this respect,
fingerprinting is usually discussed in the context
of the traitor tracing problem.

Copy protection is inherently difficult to achieve
in open systems for at least two reasons:

The requirements on watermarking are contra-
dictory. In order to build an effective large-scale
copy protection system, the vast majority of avail-
able players had to be equipped with some kind
of tamper resistant circuitry or had online ac-
cess to some license servers. Such circuitry had
to be cheap and be integrated right into the play-
ers, and such online service had to be cheap
and conveniently fast. Otherwise, the watermark-
ing had no chance to gain any significant mar-
ket share. However, tamper resistant hardware
is expensive, so the cost per player limits the
strength of the tamper resistance of its access cir-
cuitry. Online services incur communication costs
on consumers and do not give them the indepen-
dence and speed of offline access circuitry. The
way how the CSS used for DVDs was “hacked” is
just one more incident demonstrating the contra-
dicting requirements: since the encryption mech-
anism was chosen to be a weak feedback shift
register cipher, it was only a matter of time un-
til a program called DeCSS surfaced, which can
decipher any DVD. The access circuitry of play-
ers into which the deciphering algorithm is built
was not well protected against reverse engineer-
ing the algorithm, and hence, the secret algorithm
leaked, and with it the DVD keys one by one. The
watermarking scheme of the Secure Digital Mu-
sic Initiative (SDMI) [7], (a successor of MP3) was
broken by Fabien Petitcolas [6]. Later, a public
challenge of this watermarking scheme was bro-
ken by Felten et al. [3]. The SDMI consortium felt
this piece of research might jeopardize the consor-
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tium’s reputation and revenue so much that the
SDMI consortium threatened to sue the authors
if they would present their work at a public con-
ference. Attacks on various other copy protection
mechanisms have been described by Anderson in
Section 20.3.30 of [1].

The requirements on fingerprinting are contra-
dictory as well. On one hand the broadcaster or
copyright holder may want to easily recognize the
fingerprint, preferably visually. This allows easy
tracing of a decoder that is used for illegal pur-
poses. This approach is very similar to the com-
monly used watermarking by means of the logo of a
TV station that is continuously visible in one of the
corners of the screen. On the other hand, the fin-
gerprint should be hidden, in order not to disturb
paying viewers with program-unrelated messages
on their screen, or to avoid any pirate detecting
and erasing the fingerprint electronically. In the
latter case, one may require specific equipment to
detect and decode a fingerprint.

Despite the inherent technical difficulties to
build effective large-scale copy protection systems,
the content industries (TV producers, movie mak-
ers, audio makers, software companies, publish-
ers) have and will continue to have a strong inter-
est in protecting their revenues against pirates.
They are trying to overcome the contradictory
requirements mentioned above by two comple-
menting approaches: they try to control the en-
tire market of media players and recorders by
contracting with the large suppliers. While they
opt for relatively weak but inexpensive access cir-
cuitry for these players, they compensate for the
weakness by promoting suitable laws that deter
consumers from breaking this access circuitry or
resorting to unauthorized players, or using unau-
thorized recorders. An example for trying to make
secure access circuitry pervasive in the PC market
is the trusted computing platform alliance (TCPA)
[8]. An example of such legislative initiative is
the digital millenium copyright act (DMCA) [4] in
the United States. It prohibits the modification of
any electronic copyright arrangement information
(CMI) bundled with digital content, such as details
of ownership and licensing, and outlaws the man-
ufacture, importation, sale, or offering for sale of
anything primarily designed to circumvent copy-
right protection technology.

It is clear that the issue of copy protection is a
special case of the more general issue of digital
rights management (DRM). Both issues bear the
risk of a few companies defining the access poli-
cies, which are enforced by the players and thus
determine what and how a vast majority of peo-
ple would be able to read, watch, listen to, or work
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with. A moderate overview of the hot debate about
content monopolies, pricing, free speech, demo-
cratic, privacy, and legislative issues, etc. is found
at [5].

Gerrit Bleumer
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CORRECTING-BLOCK
ATTACK

This attack can find collisions or (second) preim-
ages for certain classes of hash functions. It con-
sists of substituting all blocks of the input except
for one or more blocks. This attack often applies to
the last block and is then called a correcting-last-
block attack, but it can also apply to the first block
or to some blocks in the middle. For a preimage at-
tack, one chooses an arbitrary message X and finds
one or more correcting blocks Y such that A(X|Y)
takes a certain value (here | denotes concatena-
tion). For a second preimage attack on the target
message X|Y, one chooses X' and searches for one
or more correcting blocks Y’ such that A(X'||Y’) =
h(X]Y) (note that one may select X’ = X). For a col-
lision attack, one chooses two arbitrary messages
X and X’ with X’ # X; subsequently one searches
for one or more correcting blocks denoted by Y and
Y’, such that A(X'||Y) = h(X]Y).

The hash functions based on algebraic struc-
tures are particularly vulnerable to this attack,
since it is often possible to invert the compres-
sion function using algebraic manipulations [9].
A typical countermeasure to a correcting-block at-
tack consists of adding redundancy to the message
blocks in such a way that it becomes computation-
ally infeasible to find a correcting block with the
necessary redundancy. The price paid for this so-
lution is a degradation of the performance.

A first example is a multiplicative hash pro-
posed by Bosset in 1977 [1], based on GL2(GF(p)),
the group of 2 x 2 invertible matrices over
the finite field GF(p), with p =10007. Camion
showed how to find a second preimage using a
correcting-block attack that requires 48 correcting
blocks of 6 bits each [2].

In 1984 Davies and Price [4] proposed a hash
function with the following compression func-
tion f:

f: (H; 1 @Xi)z mod N,

where X; is the message block, H;_; is the chain-
ing variable, and N is an RSA modulus (see RSA
digital signature scheme). In order to preclude a
correcting block attack, the text input is encoded
such that the most (or least) significant 64 bits
of each block are equal to 0. However, Girault
[5] has demonstrated that a second preimage can
be found using the extended Euclidean algorithm
(see Euclidean algorithm); improved results can
be found in [6].

The 1988 scheme of CCITT X.509 Annex D [8]
tried to remedy this approach by distributing the
redundancy (one nibble in every byte). However,
Coppersmith [3] applied a correcting-block attack
to find two distinct messages X and X’ such that

MX') =256 h(X).

This is a highly undesirable property, which
a.o. implies that this hash function cannot be
used in combination with a multiplicative digital
signature scheme such as RSA. In 1998, ISO has
adopted two improved schemes based on modular
arithmetic (ISO/IEC 10118-4 Modular Arithmetic
Secure Hash, MASH-1 and MASH-2 [7]), which so
far have resisted correcting-block attacks.

B. Preneel
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CORRELATION ATTACK
FOR STREAM CIPHERS

The correlation attack for stream ciphers was pro-
posed by Siegenthaler in 1985. It applies to any
running-key generator composed of several linear
feedback shift registers (LFSRs). The correlation
attack is a divide-and-conquer technique: it aims
at recovering the initial state of each constituent
LFSRs separately from the knowledge of some
keystream bits (in a known plaintext attack).
A similar ciphertext only attack can also be
mounted when there exists redundancy in the
plaintext (see [3]).

The original correlation attack presented in [3]
applies to some combination generators composed
of n LFSRs of lengths Lq,...,L,. It enables to
recover the complete initialization of the gen-
erator with only ) 7, (2Li — 1) trials instead of
the []7_, (2% — 1) tests required by an exhaus-
tive search. Some efficient variants of the origi-
nal correlation attack can also be applied to other
keystream generators based on LFSRs, like filter
generators (see fast correlation attack for details).
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ORIGINAL CORRELATION ATTACK ON CoOM-
BINATION GENERATORS: The correlation attack
exploits the existence of a statistical dependence
between the keystream and the output of a single
constituent LFSR. In a binary combination gener-
ator, such a dependence exists if and only if the
output of the combining function f is correlated to
one of its inputs, i.e., if

pi=Prlflxy, ... x) #x]# %

for some i, 1 <i < n. It equivalently means that
the keystream sequence s = (s;);>¢ is correlated to
the sequence u = (u;);>o generated by the ith con-
stituent LFSR. Namely, the correlation between
both sequences calculated on N bits

N-1
Z(_l)st-&-ut mod 2

t=0

(where the sum is defined over real numbers)
is a random variable which is binomially dis-
tributed with mean value N(1 —2p;) and with
variance 4Np;(1 — p;) (when N is large enough).
It can be compared to the correlation between
the keystream s and a sequence r = (r;);>¢ in-
dependent of s (i.e., such that Pr[s; #r;]1=1/2).
For such a sequence r, the correlation between s
and r is binomially distributed with mean value 0
and with variance N. Thus, an exhaustive search
for the initialization of the ith LFSR can be per-
formed. The value of the correlation enables to dis-
tinguish the correct initial state from a wrong one
since the sequence generated by a wrong initial
state is assumed to be statistically independent of
the keystream. Table 1 gives a complete descrip-
tion of the attack.

In practice, an initial state is accepted if the
magnitude of the correlation exceeds a certain

Table 1. Correlation attack

Input. sos; ...sy_1, N keystream bits,
D= Priflen, ... x,) #x]#1/2.
Output. u ...uz,_1, the initial state of the i-th
constituent LFSR.
For each possible initial state v, ...uz,_;
Generate the first N bits of the sequence u
produced by the ith LFSR from the chosen
initial state.
Compute the correlation between sgs; ...sy_1
and
UoUy ... UN-1:

N-1
a «— Z(_l)st+ut mod 2
i=0

If « is close to N(1 — 2p;)
return Uoly ... UL, 1
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decision threshold which is deduced from the ex-
pected false alarm probability Pr and the non-
detection probability P, (see [3]). The required
keystream length N depends on the probabil-
ity p; and on the length L; of the involved LFSR:
for B, =13x10"% and Py=2"%, the attack
requires

JIn@E ) +3/2p 0=\
N~
V2(p; — 0.5)

running-key bits. Clearly, the attack performs
2Li—1 trials on average where L; is the length of
the target LFSR. The correlation attack only ap-
plies if the probability p; differs from 1/2.

CORRELATION ATTACK ON OTHER KEY
STREAM GENERATORS: More generally, the cor-
relation attack applies to any keystream genera-
tor as soon as the keystream is correlated to the
output sequence u of a finite state machine whose
initial state depends on some key bits. These key
bits can be determined by recovering the initial-
ization of u as follows: an exhaustive search for
the initialization of u is performed, and the cor-
rect one is detected by computing the correlation
between the corresponding sequence u and the
keystream.

CORRELATION ATTACK ON COMBINATION
GENERATORS INVOLVING SEVERAL LFSRS:
For combination generators, the correlation at-
tack can be prevented by using a combining func-
tion f whose output is not correlated to any of
its inputs. Such functions are called first-order
correlation-immune (or 1-resilient in the case
of balanced functions). In this case, the run-
ning key is statistically independent of the out-
put of each constituent LFSR; any correlation
attack should then consider several LFSRs si-
multaneously. More generally, a correlation at-
tack on a set of 2 constituent LFSRs, namely
LFSR i,..., LFSR i, exploits the existence of
a correlation between the running-key s and
the output u of a smaller combination genera-
tor, which consists of the £ involved LFSRs com-
bined by a Boolean function g of £ variables (see
Figure 1). Since Prls; # u;]1 =Prl[f(xy,...,x,) #
g(x;,, ..., x;)] = pg, this attack only succeeds when
Ps # 1/2. The smallest number of LFSRs that
can be attacked simultaneously is equal to m +
1 where m is the highest correlation-immunity
order of the combining function. Moreover, the
Boolean function g of (m + 1) variables which pro-
vides the best approximation of f is the affine

LFSR 1

LFSR 2 |—>\ s

. f
LFSR n L

_,| correlation —>
LFSR j ~d
u

: g

LFSR iy -l

Fig. 1. Correlation attack involving several constituent
LFSRs of a combination generator

function Z’]";ll x;; + ¢ [1,4]. Thus, the most effi-
cient correlation attacks that can be mounted rely
on the correlation between the keystream s and
the sequence u obtained by adding the outputs
of LFSRs i1,is,...,im.1. This correlation corres-

ponds to

1
2
where n is the number of variables of the combin-
ing function, ¢ is the n-bit vector whose ith com-
ponent equals 1 if and only if i € {i1,i2, ..., imq1}
and [ denotes the Walsh transform of f (see
Boolean functions). In order to increase the com-
plexity of the correlation attack, the combining
function used in a combination generator should
have a high correlation-immunity order and a high
nonlinearity (more precisely, its Walsh coefficients
f(t) should have a low magnitude for all vec-
tors ¢ with a small Hamming weight). For an m-
resilient combining function, the complexity of the
correlation attack is 2L+t +lia Tt can be sig-
nificantly reduced by using some improved algo-
rithms, called fast correlation attacks.

1 ~
Pris; #u:l= - — W|f(t)|,

Anne Canteaut
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CORRELATION IMMUNE
AND RESILIENT BOOLEAN
FUNCTIONS

Cryptographic Boolean functions must be bal-
anced (i.e., their output must be uniformly
distributed) for avoiding statistical dependence
between their input and their output (such sta-
tistical dependence can be used in attacks).

Moreover, any combining function f(x) (see
combination generator), used for generating the
pseudorandom sequence in a stream cipher, must
stay balanced if we keep constant some coordi-
nates x; of x (at most m of them, where m is aslarge
as possible). We say that fis then m-resilient. More
generally, a (non necessarily balanced) Boolean
function, whose output distribution probability is
unaltered when any m of its input bits are kept
constant, is called mth order correlation-immune.
The notion of correlation-immune function is re-
lated to the notion of orthogonal array (see [1]).
Only resilient functions are of practical interest
as cryptographic functions.

The notion of correlation immunity was intro-
duced by Siegenthaler in [5]; it is related to an
attack on pseudorandom generators using com-
bining functions: if such combining function fis
not mth order correlation-immune, then there ex-
ists a correlation between the output of the func-
tion and (at most) m coordinates of its input; if
m is small enough, a divide-and-conquer attack
due to Siegenthaler (see correlation attack for
stream ciphers) and later improved by several au-
thors (see fast correlation attack) uses this weak-
ness for attacking the system.

The maximum value of m such that fis m-
resilient is called the resiliency order of f.

Correlation immunity and resiliency can be
characterized through the Walsh transform
flu) = erpg(—l)ﬂx}@x'”, see [3]: fis mth order
correlation-immune if and only if f(x) = 0 for all
u € Fy" such that 1 <wg(u) <m, where wy de-
notes the Hamming weight (that is, the num-
ber of nonzero coordinates); and it is m-resilient
if and only if f(u) =0 for all u € F»" such that
wg(u) < m.

It is not sufficient for a combining function f,
used in a stream cipher, to be m-resilient with
large m. As any cryptographic function, it must
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also have high algebraic degreed o fand high non-

linearity N L(f) (see Boolean functions). There are

necessary trade-offs between the number of vari-
ables, the algebraic degree, the nonlinearity, and
the resiliency order of a function.

— Siegenthaler’s bound [5] states that any m-
resilient function (0 < m < n — 1) has algebraic
degree smaller than or equal to n —m — 1 and
that any (n — 1) resilient function is affine
(Siegenthaler also proved that any n-variable
mth order correlation-immune function has de-
gree at most n — m).

— The values of the Walsh transform of an n-
variable, m-resilient function are divisible by
2m+2 if m <n — 2, cf. [4] (and they are divisi-

ble by 2m+2+LnTm2J if fhas degree d, see [2]).
These divisibility bounds have provided non-
trivial upper bounds on the nonlinearities of re-
silient functions [2, 4], also partially obtained
in [6, 7]. The nonlinearity of any m-resilient
function is upper bounded by 2"~1 — 27+1 This
bound is tight, at least when m > 0.6n, and any
m-resilient function achieving it also achieves
Siegenthaler’s bound (see [6]).
High order resilient functions with high degrees
and high nonlinearities are needed for applica-
tions in stream ciphers.

ExXAMPLE [1]. Let r be a positive integer smaller
than n; denote n —r by s; let g be any Boolean
function on F5° and let ¢ be a mapping from F»*® to
Fy". Define the function:

. y) =x- () @g(y) = Priti(y) ® g(y),

i=1
(2)

where ¢;(y)is theith coordinate of ¢(y). Then, if ev-
ery element in ¢(F#5°) has Hamming weight strictly
greater than &, then f; ; is m-resilient withm > k.
In particular, if ¢(F»°) does not contain the null
vector, then f , is balanced.

x € By, y € By,

Examples of m-resilient functions achieving the
best possible nonlinearity 2"~! — 2”+1 (and thus
the best degree) have been obtained forn < 10 and
for every m > 0.6n (n being then not limited, see
[6]). They have been constructed by using the fol-
lowing methods permitting to construct resilient
functions from known ones:
® [1 5] Let g be a Boolean function on Fy".
Consider the Boolean function on Fy"!:
flx1, ..., %, Xng1) = 8(x1, ..., %) ® xp41. Then,
NL(f)=2NL(g) anddo f=dogifdog> 1.

If g is m-resilient, then fis (m + 1)-resilient.
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® [5] Let g and & be two Boolean functions on
Fy". Consider the function f(x1,...,%,, Xpe1) =
X181, ..., %) D (xpp1 ® Dh(xy,...,x,) on
Fy"t!. Then, NL; > NLg + N Lj, (moreover, if g
and A are such that, for every word a, at least
one of the numbers g(a), A(a) isnull, then N'L(f)
equals 2" 1 + min(NL(g), NL(h))).

If the algebraic normal forms of g and 2 do
not have the same monomials of highest degree,
thend o f=1+4+max(d og,d oh).

If g and h are m-resilient, then f is m-
resilient (moreover, iffor everya € F>" of weight
m + 1, we have g(a) + h(a) =0, then fis (m +
1)-resilient; this happens with A(x) = g(x; ®
1,...,x,® 1)@ e, where ¢ = m mod 2, see [1]).

® [6] Let g be any Boolean function on Fy".
Define the Boolean function f on F,"'! by
Fx1, o X, Xpg1) = Xnp1 81, ... X1, X D
Xpy1). Then, NL(H=2NL(g) and do f=
dog if dog=>1. If g is m-resilient, then
[ is m-resilient (and it is (m + 1)-resilient
if glay,...,a,-1,1) is null for every vector
(@i, ...,a,_1) of weight at most m).

Claude Carlet
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COVERT CHANNELS

Lampson [8, p. 614] informally specified a special
type of communication being:

Covert channels, i.e. those not intended for in-
formation transfer at all, such as the service
program’s effect on the system load.

A more general definition can be found in [14,
p. 110].

Covert channels often involve what is called tim-
ing channels and storage channels. An example
of a timing channel is the start-time of a pro-
cess. The modulation of disc space is an example
of a storage channel. Methods that describe how
covert channels can be fought can, e.g., be found
in [9]. For more information about covert channels,
see [1].

Simmons [10] introduced the research on covert
channels to the cryptographic community by in-
troducing a special type of channel, which he
called a subliminal channel. (Simmons did not
regard these channels as fitting the definition
of a covert channel.) He observed that covert
data could be hidden within the authenticator
of an authentication code [10]. The capacity of
this channel was not large (a few bits per au-
thenticator), but as Simmons disclosed 10 years
later [12, pp. 459-462] (see also [13]), the poten-
tial impact on treaty verification and on the na-
tional security of the USA could have been catas-
trophic.

In 1987 the concept of subliminal channel was
extended to be hidden inside a zero-knowledge
interactive proof [6]. The concept was generalized
to a hidden channel inside any cryptographic sys-
tem [3,4]. Mechanisms to protect against sublim-
inal channels were also presented [3,4] and rein-
vented 5 years later [11]. Problems with some of
these solutions were discussed in [5] (see [2]) for a
more complete discussion.

A subliminal channel in a key-distribution
scheme (see key management) could undermine
key escrow, as discussed in [7]. Kleptography is
the study of how a designer, making a black box
cipher, can leak the user’s secret key subliminally
to the designer (see, e.g., [15]).

Yvo Desmedt
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CPS, CERTIFICATE
PRACTICE STATEMENT

A Certification Authority (CA) describes in a Cer-
tificate Practice Statement (CPS) the procedures
and practices that it employs when managing cer-
tificates (issuing, revoking, renewing, and rekey-
ing). The CPS describes manual processes for se-
curely operating the CA and contains information
on cryptographic aspects, including management
of the keys used by the CA (see also key manage-
ment). The certificate authority documents in its
CPS that it manages certificates according to some
certificate policy (see trust model). The certificate
policy lists the requirements for the management
of certificates by the CA and defines the applica-
bility of a certificate issued under this policy. The
policy might for example indicate that the certifi-
cate may be used for authenticating the subject
(holder) in certain types of business transactions.
The certificate policy under which a certificate
is issued may be indicated in the certificate. For
X.509 certificates a specific extension is defined for
this purpose. This information allows relying par-
ties to decide whether the certificate may be used
in a given situation without knowing the CPS of
the CA issuing the certificate.

Whereas the policy lists the requirements for
the CA, the CPS describes how the CA meets these
requirements. Thus the two documents will often
have similar structures. The certificate policy may
in particular define the rules for approving that a
given CPS satisfies the policy and for validating
that the CA continuously follows the CPS. It may,
for example, be required that an independent au-
ditor initially approves that the CPS complies with
the certificate policy and yearly reviews the pro-
cedures actually followed by the CA against the
CPS.

As a consequence, different certification author-
ities following different certificate practice state-
ments may issue certificates under the same policy
as long as their CPS satisfies the policy.

Torben Pedersen
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CRAMER~-SHOUP PUBLIC
KEY SYSTEM

The Cramer—Shoup cryptosystem [6, 8] is the first
public-key cryptography system that is efficient
and is proven to be chosen ciphertext secure with-
out the random oracle model using a standard
complexity assumption. Before describing the sys-
tem we give a bit of history.

The standard notion of security for a public-key
encryption system is known as semantic security
under an adaptive chosen ciphertext attack and
denoted by IND-CCA2. The concept is due to
Rackoff and Simon [12] and the first proof that
such systems exist is due to Dolev et al. [9]. Several
efficient constructions for IND-CCA2 systems exist
in the random oracle model. For example, OAEP is
known to be IND-CCA2 when using the RSA trap-
door permutation [2, 10]. Until the discovery of
the Cramer—Shoup system, there were no effi-
cient IND-CCA2 systems that are provably se-
cure under standard assumptions without random
oracles.

The Cramer—Shoup system makes use of a
group G of prime order q. It also uses a hash
function H:G?® — Z, (see also modular arith-
metic). We assume that messages to be encrypted
are elements of G. The most basic variant of the
systems works as follows:

Key Generation. Pick an arbitrary generator g

of G. Pick a random w in ZZ and random x1, x2,

Y1, Y2, 2 in Zq- Set’g = gw, e = gxlgxz’ f: gylgyzv
h = g*. The public key is (g,8,¢, [ g,G,q, H)
and the private key is (x1, x2, y1, ¥2, 2, G, q, H).
Encryption. Given the public key
(g,8,e, fh,G,q, H) and a message m < G:
1. Pick a random u in Z,.
2. Seta=g%a=8g%c=h*-m,v=H(,da,c),
d=e"f",
3. The ciphertext is C = (a,d,c,d) € G*.
Decryption. To decrypt a ciphertext C =
(a,d,c,d) using the private key (x1, x2, y1, y2,
z,G,q, H):
1. Test that a, d, ¢, d belong to G; output ‘reject’
and halt if not.
2. Compute v = H(a,d,c) € Z;. Test that d =
a*1tgrtuyzs gutput ‘reject’ and halt if not.
3. Compute m = c/a® € G and output m as the
decryption of C.

Cramer and Shoup prove that the system is
IND-CCA2 if the DDH assumption [3] (see Deci-
sional Diffie—Hellman problem) holds in G and
the hash function H is collision resistant. They
show that if a successful IND-CCA2 attacker ex-
ists, then (assuming H is collision resistant) one
can construct an algorithm B, with approximately
the same running as the attacker, that decides if
a given 4-tuple g, 8, a,d € G is arandom DDH tu-
ple or a random tuple in G*. Very briefly, Algo-
rithm B works as follows: it gives the attacker
a public key for which B knows the private key.
This enables B to respond to the attacker’s de-
cryption queries. The given 4-tuple is then used to
construct the challenge ciphertext given to the at-
tacker. Cramer and Shoup show that if the 4-tuple
is a random DDH tuple, then the attacker will win
the semantic security game with non-negligible
advantage. However, if the input 4-tuple is a ran-
dom tuple in G*, then the attacker has zero advan-
tage in winning the semantic security game. This
behavioral difference enables B to decide whether
the given input tuple is a random DDH tuple
or not.

We briefly mention a number of variants of the
system. Ideally, one would like an IND-CCA2 sys-
tem that can be proven secure in two different
ways: (i) without random oracles it can be proven
secure using the decisional Diffie—-Hellman as-
sumption, and (ii) with random oracles it can be
proven secure using the much weaker computa-
tional Diffie—-Hellman assumption. For such a sys-
tem, the random oracle model provides a hedge in
case the DDH assumption is found to be false. A
small variant of the Cramer—Shoup system above
can be shown to have this property [8].

Occasionally, one only requires security against
a weak chosen ciphertext attack in which the at-
tacker can only issue decryption queries before be-
ing given the challenge ciphertext [1,11]. A sim-
pler version of the Cramer—Shoup system, called
CS-Lite, can be shown to be secure against this
weaker chosen ciphertext attack assuming DDH
holds in G. This variant is obtained by computing
d as d = e". There is no need for yi, ys, f or the
hash function H. When decrypting we verify that
d = a™@4* in step 2.

Finally, one may wonder how to construct
efficient IND-CCA2 systems using an assump-
tion other than DDH. Cramer and Shoup [7]
showed that their system is a special case of a
more general paradigm. Using this generaliza-
tion they construct a CCA2 system based on the
Quadratic Residuosity assumption modulo a com-
posite. They obtain a more efficient system us-
ing a stronger assumption known as the Pal-
lier assumption. Other constructions for efficient




IND-CCA2 systems are given in [4,5]. Finally, we
note that Sahai and Elkind [13] show that the
Cramer—Shoup system can be linked to the Naor—
Yung double encryption paradigm [11].

Dan Boneh
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CREDENTIALS

In a general sense, credentials are something that
gives a title to credit or confidence. In computer
systems, credentials are descriptions of privileges
that are issued by an authority to a subject. The
privilege may be an access right, an eligibility,
or membership (see also privilege management
and access control). Examples from real life are
driver’s licenses, club membership cards, or pass-
ports. A credential can be shown to a verifier in or-
der to prove one’s eligibility or can be used toward
a recipient in order to exercise the described privi-
lege or receive the described service. The integrity
of a credential scheme relies on the verifiers being
able to effectively check the following three condi-
tions before granting access or providing service:
1. The credential originates from a legitimate au-
thority. For example, the alleged authority is
known or listed as an approved provider of cre-
dentials for the requested service.
2. The credential is legitimately shown or used by
the respective subject.
3. The privilege described is sufficient for the ser-
vice requested.
In centralized systems, credentials are called ca-
pabilities, i.e., descriptions of the access rights
to certain security critical objects (see access
control). The centralized system manages the is-
suing of capabilities to subjects through a trusted
issuing process, and all attempts of subjects to ac-
cess objects through a trusted verifier, i.e., the ac-
cess enforcement mechanism. If the subject has
sufficient capabilities assigned, it is allowed to ac-
cess the requested object, otherwise the access is
denied. The capabilities and their assignment to
subjects are stored in a central trusted repository,
where they can be looked up by the access enforce-
ment mechanism. Thus, in centralized systems,
the integrity requirements 1, 2, 3 are enforced by
trusted central processes.
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In distributed systems there are autonomous
entities acting as issuing authorities, as users who
get credentials issued or show/use credentials, or
as verifiers. Distributed credentials need to sat-
isfy the above integrity requirements even in the
presence of one or more cheating users, possi-
bly collaborating. In addition, one can be inter-
ested in privacy requirements of users against
cheating issuers and verifiers, possibly collabo-
rating. David Chaum introduced credentials in
this context of distributed systems in [8]. Dis-
tributed credentials have been proposed to repre-
sent such different privileges as electronic cash,
passports, driver’s licenses, diplomas, and many
others. Depending on what privilege a credential
represents, its legitimate use must be restricted
appropriately (see integrity requirement 3 above).
The following atomic use restrictions have been
considered in the literature.

Nontransferable credentials cannot be (suc-
cessfully) shown by subjects to whom they have
not been issued in the first place. Such creden-
tials could represent nontransferable privileges
such as diplomas or passports.

Revocable credentials cannot be (successfully)
shown after they have expired or have been
revoked. Such credentials could represent re-
vocable privileges such as driver’s licenses or
public key certificates commonly used in public
key infrastructures (PKI).

Consumable credentials cannot be (success-
fully) shown after they have been used a spec-
ified number of times. Such credentials could
represent privileges that get consumed when
you use them, e.g., electronic cash.

More complex use restrictions can be defined

by combining these atomic use restrictions in

Boolean formulae. For example, revocable non-

transferable credentials could be used as driver’s

licenses that expire after a specified period of, e.g.,

2 years.

A credential scheme is called online if its cre-
dentials can be shown and used only by involv-
ing a central trusted authority that needs to clear
the respective transactions. If the holder and ver-
ifier can do so without involving a third party, the
credentials scheme is called offline. Online cre-
dential schemes are regarded as more secure for
the issuers and verifiers, while offline credential
schemes are regarded as more flexible and conve-
nient to customers.

Credentials and their use could carry a lot of per-
sonal information about their holders. For exam-
ple, consider an automated toll system that checks
the driver’s license of each car driver frequently
but conveniently via wireless road check points.

Such a system would effectively ban drivers with-
out a valid license, but it could also effectively
monitor the moving of all honest drivers. Consid-
erations like this led Chaum [8] to look for privacy
in credentials:

Unlinkable credentials can be issued and
shown/used in such a way that even a coalition
of cheating issuers and verifiers has no chance
to determine which issuing and showing/using
or which two showings/usings originate from the
same credential (see unlinkability).

Unlinkable credentials also leave the holders
anonymous, because if transactions on the same
credential cannot be linked, neither can such
transactions be linked to the credential holder’s
identity. (Otherwise, they were no longer unlink-
able.)

In the cryptographic literature, the term cre-
dential is most often used for nontransferable
and unlinkable credentials, i.e., those that are
irreversibly tied to human individuals, and pro-
tecting the privacy of users. Numerous crypto-
graphic solutions have been proposed both for con-
sumable credentials and for personal credentials
alike. Chaum et al. [14] kicked off the develop-
ment of consumable credentials. Improvements
followed by Chaum et al. [10-12], Chaum and
Pedersen [15], Cramer and Pedersen [17], Brands
[2], Franklin and Yung[21], and others. Brands so-
lution achieves overspending prevention by using
a wallet-with-observer architecture (see [19] and
electronic wallet), overspender detection without
assuming tamper resistant hardware, and uncon-
ditional unlinkability of payments also without
assuming tamper resistant hardware. Brands so-
lution satisfied almost all requirements that had
been stated by 1992 for efficient offline consum-
able credentials (e-cash) in a surprisingly efficient
way.

Naccache and von Solms [23] pointed out later
that unconditional unlinkability (which implies
payer anonymity) might be undesirable in practice
because it would allow blackmailing and money
laundering. They suggested to strive for a better
balance between the individuals’ privacy and law
enforcement. This work triggered a number of pro-
posals for consumable credentials with anonymity
revocation by Stadler et al. [24], Brickell et al. [4],
Camenisch et al. [7], and Frankel et al. [20].

About the same amount of work has been
done on developing personal credential schemes.
Quite surprisingly, the problem of nontransfer-
ability between cheating collaborating individu-
als was neglected in many of the early papers
by Chaum and Evertse [8,9, 13] and Chen [16].
Chen’s credentials are more limited than Chaum’s




and Evertse’s because they can be shown only
once. Damard [18] stated nontransferability as a
security requirement but the proposed solution
did not address nontransferability. Chaum and
Pedersen [15] introduced the wallet-with-observer
architecture and proposed personal credentials to
be kept inside wallet databases, i.e., decentral-
ized databases keeping all the privileges of their
respective owners. Their proposal only partially
addressed nontransferability by suggesting “dis-
tance bounding protocols” (Brands and Chaum [3])
in order to ensure the physical proximity of a
wallet-with-observer during certain transactions.
Distance bounding protocols can prevent Mafia
frauds, where the individual present at an organi-
zation connects her device online to the wallet of
another remote individual who holds the required
credential and then diverts the whole communica-
tion with the organization to that remote wallet.
Distance bounding cannot, however, discourage
individuals from simply lending or trading their
wallets. Lysyanskaya et al. [22] proposed a general
scheme based on one-way functions and general
zero-knowledge proofs, which is impractical, and
a practical scheme that has the same limitations
as Chen’s: credentials can be shown only once.

The fundamental problem of enforcing non-
transferability is simply this: the legitimate use
of personal credentials (in contrast to consumable
credentials) can neither be detected nor prevented
by referring only to the digital activity of individ-
uals. There must be some mechanism that can
distinguish whether the individual who shows a
personal credential is the same as the individ-
ual to whom that credential has been issued be-
fore. Since personal devices as well as personal
access information such as PINs and passwords
can easily be transferred from one individual to
another, there is no other way to make this dis-
tinction but by referring to hardly transferable
characteristics of the individuals themselves, for
example, through some kind of (additional) bio-
metric identification (see biometrics) of individu-
als. Then, illegitimate showing can be recognized
during the attempt and thus can be prevented
effectively, however, at the price of assuming
tamper resistant biometric verification hardware.
Bleumer proposed to enhance the wallet-with-
observer architecture of Chaum and Pedersen [15]
by a biometric recognition facility embedded into
the tamper resistant observer in order to achieve
transfer prevention [1].

Camenisch and Lysyanskaya [5] have proposed
a personal credential scheme which enforces non-
transferability by deterring individuals who are
willing to transfer, pool, or share their creden-

Credentials 111

tials. Individuals must either transfer all their
credentials or none (all-or-nothing nontransfer-
ability). They argue that even collaborating at-
tackers would refrain from granting each other
access to their credit card accounts, when they
are collaborating only to share, e.g., a driver’s li-
cense. Obviously, this deterrence from not trans-
ferring credentials is quickly neutralized if two or
more participants mutually transfer credentials
to each other. If any of them misuses a credit card
account of the other, he may experience the same
kind of misuse with his own credit card account as
a matter of retaliation. It appears as if this con-
cept promotes and protects closed groups of crim-
inal credential sharers. In addition, it would be
hard in practice to guarantee that for each in-
dividual the risk of sharing any particular cre-
dential is significantly higher than the respective
benefits. Thus, for most real-world applications
such as driver’s licenses, membership cards, or
passports, this deterrence approach to nontrans-
ferability would face severe acceptance problems
from the issuers’ and verifiers’ perspective. Their
scheme also supports anonymity revocation as an
option, but at the cost of about a 10-fold increase
of computational complexity. Subsequent work by
Camenisch and Lysyanskaya [6] also shows how
to revoke their anonymous credentials on demand.
The price of this feature is an even higher compu-
tational complexity of the showing of credentials.

It appears that detecting a cheating individ-
ual who has lent his personal credentials to an-
other individual, or who has borrowed a personal
credential from another individual is technically
possible, but is often unacceptable in practice.
Unauthorized access may lead to disastrous or
hard-to-quantify damage, which cannot be com-
pensated after the access has been made regard-
less how individuals are persecuted and what
measures of retaliation are applied.

The wisdom of more than 20 years of research
on credentials is that in offline consumable creden-
tials overspender detection can be achieved by dig-
ital means alone while overspending prevention
can only be achieved by relying on tamper resis-
tant hardware. In online consumable credentials,
both overspender detection and overspending pre-
vention can be achieved without relying on tamper
resistant hardware.

In personal credentials, one is interested in
transfer prevention, which we have called non-
transferability. Considering a separate integrity
requirement of transferer detection makes lit-
tle sense in most applications because the po-
tential damage caused by illegitimately trans-
ferring credentials is hard to compensate for.
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Nontransferability can be achieved in a strict
sense only by relying on tamper resistant biomet-
ric verification technology, regardless if it is an
online or offline scheme. Nontransferability can
be approximated by deterrence mechanisms inte-
grated into the personal credential schemes, but it
remains to be analyzed for each particular appli-
cation how effective those deterrence mechanisms
can be.

Gerrit Bleumer
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CROSS-CORRELATION

Let {a;} and {b;} be two sequences of period n (so
a; = a;p, and by, = by, for all values of ¢) over an
alphabet being the integers mod g (see modular
arithmetic). The cross-correlation between the se-
quences {a;} and {b;} at shift z is defined as

n—1
C(T) — Z a)aH—r*bt ,
t=0

where w is a complex gth root of unity. Note that
in the special case of binary sequences, ¢ = 2 and
w=-—1.

In the special case when the two sequences are
the same, the cross-correlation is the same as
the auto-correlation. Many applications in stream
ciphers and communication systems require large
families of cyclically distinct sequences with a low
maximum nontrivial value of the auto- and cross-
correlation between any two sequences in the
family.

Tor Helleseth
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CRYPTANALYSIS

Cryptanalysis is the discipline of deciphering a ci-
phertext without having access to the keytext (see
cryptosystem), usually by recovering more or less
directly the plaintext or even the keytext used, in
cases favorable for the attacker by reconstructing
the whole cryptosystem used. This being the worst
case possible for the attacked side, an acceptable
level of security should rest completely in the key
(see Kerckhoffs’ and Shannon’s maximes). “A sys-
tematic and exact reconstruction of the encryp-
tion method and the key used” (Hans Rohrbach,
1946) is mandatory if correctness of a cryptana-
lytic break is a to be proved, e.g., when a cryptan-
alyst is a witness to the prosecution.

TERMINOLOGY: Cryptanalysis can be passive,
which is the classical case of intercepting the mes-
sage without giving any hint that this was done,
or active, which consists of altering the message
or retransmitting it at a later time, or even of in-
serting own messages (some of these actions may
be detected by the recipient).

A compromise is the loss (or partial loss) of se-
crecy of the key by its exposure due to crypto-
graphic faults. We shall describe various kinds of
key compromises.

A plaintext-ciphertext compromise is caused by
a transmission of a message in ciphertext followed
(e.g., because the transmission was garbled) by
transmission of the same message in plaintext. If
information on the encryption method is known
or can be guessed, this results in exposure of the
key. This attack may be successful for a plaintext
of several hundred characters.

A plaintext-plaintext compromise is a transmis-
sion of two isologs, i.e., two different plaintexts,
encrypted with the same keytext. If the encryp-
tion method is such that the encryption steps form
a group (see key group and pure crypto-system),
then a “difference” p; — ps of two plaintexts py, po
and a “difference” ¢; — co of two plaintexts c1, co
may be defined and the role of the keytext is can-
celled out: ¢; — ca = p; — po. Thus, under suitable
guesses on the plaintext language involved, e.g.,
on probable words and phrases, a “zig-zag” method
(see below), decomposing c; — cg, gives the plain-
texts and then also the keytext. This compromise
is not uncommon in the case of a shortage of key-
ing material. It is even systemic if a periodic key
is used.

A ciphertext-ciphertext compromise is a trans-
mission of two isomorphs, i.e., the same plain-
text, encrypted with two different keytexts.
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Exchanging the role of plaintext and keytext, this
caseisreduced to and can be treated as a plaintext-
plaintext compromise. This compromise is even
systematic in message sets, where the same mes-
sage is sent in different encryption to many
places, such as it is common in public key crypto-
systems.

One speaks of a brute force attack or exhaus-
tive key search if all possible keytexts are tried
out to decrypt a ciphertext (knowing or guessing
the cryptosystem used). At present, with the still
growing speed of supercomputers, every 10 years
the number of trial and error steps that is feasible
is increased by a factor of roughly 2°.

Further commonly used terminology will be
given now. In a ciphertext-only attack, only one
or more ciphertexts under the same keytext
are known. In a known-plaintext attack one
knows one or more matching pairs of plaintext—
ciphertext. Frequently, this attack is carried out
with rather short fragments of the plaintext
(e.g., probable words and phrases). In a chosen-
plaintext attack one can choose plaintexts and
obtain the corresponding ciphertexts. Sometimes
this can be done with the proviso that the plain-
texts may be chosen in a way that depends on
the previous encryption outcomes. How to foist the
plaintext on the adversary is not a cryptographer’s
problem, but is a problem of misleading the adver-
sary and is to be executed by the secret services.
Finally, in a chosen-ciphertext attack there is the
possibility to choose different ciphertexts to be de-
crypted, with the cryptanalyst having access to the
decrypted plaintext. An example may be the inves-
tigation of a tamperproof decryption box, with the
hope of finding the key.

STATISTICAL APPROACHES TO CLASSICAL
CRYPTOSYSTEMS: We shall now discuss some
statistical methods that can be used by the
cryptanalist.

an example: the frequency profile of the English
language looks like

abcdefghijkImnopgrstuvwxyz

If a ciphertext of 349 characters has the follow-
ing distribution:

10536910954 9102123 18 810413 40192224180 4
ABCDEFGHIJKLMNOPQRSTUVWXYZ

it is easy to guess a Caesar encryption that counts
down three letters in the standard alphabet: a =
D,b=E,c=F,..., z=C. More difficult is the
situation if a mixed alphabet is to be expected.
Then the first step is to group the letters in cliques:
the most frequent ones, the very rare ones, and
some in between

{etaoin} {srh} {ld} {cumfpgwyb} {vk} {xjqz},

and to refine the decryption within these cliques
by trial and error.

Depth is a notion used in connection with the
cryptanalysis of polyalphabetic encryptions. It
means the arrangement of a number of ciphertexts
supposedly encrypted with the same keytext—for
periodic polyalphabetic encryption broken down
according to the assumed period.

Example: a depth of five lines:

TCCVL ESKPT XMPVW HYMVG XBORV CWARF
VLLBV CKWFP EHECF CGNZE KKKVI HDDID
MYYRD MJ WMC UI GLO KMX LR EWHXM TJ HAS
BKQTZ BZ WKW ZXGZO VT BAT KWMGM RJ KLP
MYYVH BWJ DX CPCZO HV TSI VME BS OHRATU.

Frequency matching is a cryptanalytic method
for breaking monoalphabetic (Ceesar type) encryp-
tions. One determines the frequency of the char-
acters in a ciphertext and compares them with the
frequency of the characters in a language known
or assumed to be used for the plaintext. To give

The lines of a depth are isologs: they are en-
crypted with the same key text and represent a
plaintext—plaintext compromise.

By forming differences of the elements in se-
lected columns, a reduction of depth to a monoal-
phabetic (Ceesar type) encryption is accomplished.



This makes it possible to derive the keytext

TRUTH ISSOP RECIO USTHA TITNE EDSAB

which decrypts the depth (by of the
Vigenere table) to

means

etver
rcrie
looki
rotti
celoo

ali ce wasbe ginni
curio user a ndcur
theyw erei n deeda
itwas t hewh itera
theca terpi llara

ytire
dalic
ngpar
ngslo
kedat.

ngtog
iouse
queer
bbitt
ndali

Forming a depth is possible as soon as the value
of the period of the periodic polyalphabetic encryp-
tion has been found, for instance by the Kasiski
method below. Forming a depth is not possible,
if the key is non-periodic. But even for periodic
polyalphabetic encryptions, forming a depth of suf-
ficiently many elements (usually more than six) is
not possible if the keytext is short enough.

When the alphabets used in a polyalphabetic
periodic substitution are a mixed alphabet and a
shifted version of it, symmetry of position is the
property that for any pair of letters their distance
is the same in all rows of the encryption table.
For a known period, it may allow, after forming a
depth, the complete reconstruction of the substi-
tution (Auguste Kerckhoffs, 1883).

Kasiski’s method. If in a periodic polyalphabetic
encryption the same plaintext sequence of char-
acters happens to be encrypted with the same
sequence of key characters, the same ciphertext
sequence of characters will occur. Thus, in order
to determine the period of a periodic polyalpha-
betic encryption, the distance between two “par-
allels” in the ciphertext (pairs, triples, quadru-
ples etc. of characters) is to be determined; the
distance of genuine parallels will be a multiple
of the period. The greatest common divisor of
these distances is certainly a period—it may, how-
ever, not be the smallest period. Moreover, the pe-
riod analysis may be disturbed by faked parallels.
Kasiski developed this fundamental test for key
periodicity in 1863 and shattered the widespread
belief that periodic polyalphabetic encryption is
unbreakable.

The Kappa test is based on the relative fre-
quency «(T,T") of pairs of text segments T =
(t1,t2,t3, ..., ta), T =(t].ty.t5, ..., ty) of equal
length, M > 1, with the same characters at the
same positions (that is why this method is also
called the index of coincidence, often abbreviated
to I.C., William F. Friedman, 1925). The value
of Kappa is rather typical for natural languages,
since the expected value of «(T,T") is YN, P2,
where p; is the probability of occurrence of the
ith character of the vocabulary to which T and 7"
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belong. For sufficiently long texts, it is statistically
roughly equal to 1/15 = 6.67% for the English lan-
guage and 1/12.5 = 8% for the French language
and the German language. Most importantly, it
remains invariant if the two texts are polyalpha-
betically encrypted with the same keytext. If, how-
ever, they are encrypted with different keytexts
or with the same key sequence, but with differ-
ent starting positions, the character coincidence
is rather random and the value of Kappa is sta-
tistically close to 1/N, where N is the size of the
vocabulary. The Kappa test applied to a ciphertext
C and cyclically shifted versions C® of the cipher-
text, where u denotes the number of shifts, yields
the value «(C, C™). If the keytext is periodic with
period d, then for u = d and for all multiples of d,
a value significantly higher than 1/N will occur,
while in all other cases a value close to 1/N will be
found. This is the use of the Kappa examination
for finding the period; it turned out to be a more
accurate instrument than the Kasiski method.

The Kappa test may also be used for adjust-
ing two ciphertexts C, C’ which are presumably
encrypted with the same keytext, but with dif-
ferent starting positions (called superimposition).
By calculating «(C™, "), a shift d, determined
as a value of u, for which «(C®,C’) is high,
brings the two ciphertexts C? and C’ “in phase”,
i.e., produces two isologs. In this way, a depth of
n texts can be formed by superimposition from
a ciphertext—ciphertext compromise of n cipher-
texts.

The De Viaris attack is a cryptanalytic method
invented by Gaétan Henri Léon de Viaris in 1893
to defeat a polyalphabetic cryptosystem proposed
by Etienne Bazeries, in which the alphabets did
not form a Latin square. (A Latin square for a vo-
cabulary of N characters is an N x N matrix over
this alphabet such that each character occurs just
once in every line and in every column.)

Pattern finding is a cryptanalytic method that
can be applied to monoalphabetic encryptions. It
makes use of patterns of repeated symbols. For ex-
ample, the pattern 1211234322 with “signature”
4 + 3 4+ 2 + 1 (four twos, three ones, two threes and
one four) most likely allows in English nothing
but peppertree, the pattern 1213143152 with the
signature 4 + 2 + 2 4+ 1 + 1 nothing but initiation
(Andree 1982, based on Merriam-Webster’s Dictio-
nary).

Noncoincidence exhaustion. Some cryptosys-
tems show peculiarities: genuine self-reciprocal
permutations never encrypt a letter by itself. Porta
encryptions even always encrypt a letter from the
first half of the alphabet by a letter from the
second half of the alphabet and vice versa. Such
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properties may serve to exclude many positions
of a probable word (a probable word is a word or
phrase that can be expected to be present in a mes-
sage according to the context; it may form the basis
for a known-plaintext attack).

Zig-zag exhaustion. For encryptions with a key
group (see key), the difference of two plaintexts
is invariant under encryption: it equals the dif-
ference of the corresponding ciphertexts. Thus in
case of a plaintext—plaintext compromise (with a
depth of 2), the difference of the ciphertexts can be
decomposed into two plaintexts by starting with
probable words or phrases in one of the plaintexts
and determining the corresponding plaintext frag-
ment in the other plaintext, and vice versa. This
may lead in a zig-zag way (“cross-ruff”) to complete
decryption.

Theoretically, the decomposition is unique pro-
vided the sum of the relative redundancies of the
two texts is at least 100%. For the English lan-
guage, the redundancy (see information theory) is
about 3.5 [bit/char] or 74.5% of the value 4.7 ~
logy26 [bit/char].

Multiple anagramming is one of the very few
general methods for dealing with transposition ci-
phers, requiring nothing more than two plaintexts
of the same length that have been encrypted with
the same encryption step (so the encrypting trans-
position steps have been repeated at least once).
Such a plaintext—plaintext compromise suggests a
parallel to Kerkhoffs’ method of superimposition.
The method is based on the simple fact that equal
encryption steps perform the same permutation of
the plaintext letters. The ciphertexts are therefore
written one below the other and the columns thus
formed are kept together.

Friedrich L. Bauer
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CRYPTO MACHINES

These are machines for automatic encryption us-
ing a composition of mixed alphabet substitutions
often performed by means of rotors. Examples
are: Enigma (Germany), Hebern Electric Code
Machine (USA), Typex (Great Britain), SIGABA =
M-134-C (USA), and NEMA (Switzerland).

Rotor: wheel, sitting on an axle and having on
both sides a ring of contacts that are internally
wired in such a way that they implement a per-
mutation.

The Enigma machine (Figures 1 and 2) was in-
vented by the German Arthur Scherbius. In 1918,
he filed a patent application for an automatic,
keyboard-operated electric encryption machine
performing a composition of a fixed number of
polyalphabetic substitution (see substitutions and
permutations) steps (four in the early commercial
models) with shifted mixed alphabets performed
by wired keying wheels (called rotors).

The key sequence was generated by the cyclo-
metric, “counter-like” movement of the wheels.
The fixed substitutions of the rotors were to be
kept secret, the starting point of the key sequence
was to be changed at short intervals. Later “im-
provements” were a reflector (Willi Korn, 1925)
which made the encryption self-reciprocal (and
opened a way of attack) and (by request from
the German Armed Forces Staff) a plugboard per-
forming a substitution that could be changed at

+4V

Fig. 1. Electric current through a three-rotor Enigma



Fig. 2. Cipher machine Enigma (four-rotor version)

short intervals (which in fact helped to avoid cer-
tain manifest attacks). The German Wehrmacht
Enigma had three rotors (to be selected out of up
to eight) and a reflector (to be selected out of two).
In the Navy variant of 1942 the reflector was not
fixed. Certain weaknesses of the Enigma encryp-
tion were not caused by the machine itself, but by
cryptographic blunders in operating it.

An exceptional role was played by the German
Abwehr, the Intelligence Service of the German
Armed Forces, as far as ENIGMA goes: It used a
variant of the old ENIGMA D with a pinion/tooth
wheel movement of the rotors, with 11, 15, and 17
notches on the wheels (‘11-15-17 ENIGMA’), and
naturally without plugboard—following rather
closely Willi Korn’s German Patent No. 534 947,
filed November 9, 1928, US Patent No. 1,938,028
of 1933.

A few specimens of a three-rotor-ENIGMA
(‘ENIGMA T°), likewise without plugboard, but
with five-notched rotors, were destined for the
Japanese Navy, but did not get out of the harbor
and were captured by the Allies near Lorient, in
Brittany.

In England, too, rotor machines were built dur-
ing the Second World War: TYPEX was quite
an improved ENIGMA (instead of the plugboard
there was an entrance substitution performed by
two fixed rotors which was not self-reciprocal).

In the USA, under the early influence of William
Friedman (1891-1969) and on the basis of the
Hebern development, there was in the early 1930s
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a more independent line of rotor machines, lead-
ing in 1933 to the M-134-T2, then to the M-134-A
(SIGMYC), and in 1936 to the M-134-C (SIGABA)
of the Army, named CSP889 (ECM Mark II) by the
Navy. The Germans obviously did not succeed in
breaking SIGABA, which had five turning cipher
rotors with irregular movement. It had been made
watertight by Frank Rowlett (1908-1998), an aide
of Friedman since 1930.

An interesting postwar variant of the ENIGMA
with seven rotors and a fixed reflector was built
and marketed by the Italian company Ottico Mec-
canica Italiana (OMI) in Rome.

The Swiss army and diplomacy used from 1947
on an ENIGMA variant called NEMA (‘Neue Mas-
chine’) Modell 45. It was developed by Hugo
Hadwiger (1908-1981), Heinrich Weber (1908—
1997), and Paul Glur, and built by Zellweger A.G.,
Uster. It had ten rotors, six of which were active
ones, while the others served for rotor movement
only. The use of a reflector was unchanged.

Based on US-American experiences and simi-
lar to TYPEX was the rotor machine KL-7 of the
NATO, in use until the 1960s.

The Swedish inventor Boris Hagelin created the
Hagelin machine (Figure 3) in 1934. It was an

e
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Fig. 3. The M-209 Hagelin machine
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automatic mechanical encryption machine, with
alphabet-wheel input and a printing device, per-
forming by a “lug cage” adder a Beaufort substi-
tution (see Beaufort encryption) controlled by five
keying wheels with 17, 19, 21, 23, and 25 teeth
according to a pre-chosen “step figure.” The lug
matrix and the step figure can be changed by acti-
vating suitable pins. This model, called C-35, was
followed by a C-36, with six keying wheels and 17,
19, 21, 23, 25, and 26 teeth. Under the cover name
M-209, C-36 was built by Smith-Corona for the US
Army, Navy and Air Forces, altogether accounting
for 140 000 machines. The Hagelin machines were
less secure than the Enigma.

Friedrich L. Bauer
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CRYPTOLOGY

Cryptology is the discipline of cryptography and
cryptanalysis and of their interaction. Its aim is
secrecy or confidentiality: the practice of keep-
ing secrets, maintaining privacy, or concealing
valuables. A further goal of cryptology is in-
tegrity and authenticity, usually given by a mes-
sage authentication code (see MAC algorithms) or
digital signature unique to the sender and serving
for his identification.

Cryptography: the discipline of writing a message
in ciphertext (see cryptosystem), usually by a
translation from plaintext according to some
(frequently changing) keytext, with the aim of
protecting a secret from adversaries, intercep-
tors, intruders, interlopers, eavesdroppers, op-
ponents or simply attackers, opponents, ene-
mies. Professional cryptography protects not
only the plaintext, but also the key and more
generally tries to protect the whole crypto-
system.

Steganography: counterpart of cryptography, com-
prising technical steganography (working with
invisible inks and hollow heels, etc.) and linguis-
tic steganography, the art of hiding information
by linguistic means. Of the later, we mention
semagrams, open code, comprising jargon code
(masked secret writing, e.g., cues), and conceal-
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Fig. 1. Semagram. The message is in Morse code, formed
by the short and long stalks of grass to the left of
the bridge, along the river bank and on the garden
wall. It reads: “compliments of CPSA MA to our chief
Col. Harold R. Shaw on his visit to San Antonio May
11, 1945.” (Shaw had been head of the Technical Oper-
ations Division of the US government’s censorship divi-
sion since 1943)

ment ciphers (veiled secret writings, like the
null cipher and grilles (see substitutions and
permutations)). Linguistic steganography has
close connections with cryptography, e.g., the
uses of grilles and transposition ciphers (see
substitutions and permutations) are related.

Semagram: a picture or grapheme hiding a mes-
sage behind innocent looking, frequently minute
graphic details (Figure 1).

Open code: a class of linguistic steganography, se-
lected words or phrases made to appear innocent
in the surrounding text.

Cue: a short, prearranged jargon-code message,
usually a word or phrase. The importance of the
message is strongly linked to the time of trans-
mission. Famousis the encrypted Japanese mes-
sage HIGASHI NO KAZE AME (“east wind, rain”) on
December 7, 1941, a cue with the meaning “war
with the USA.”

Null cipher, where only certain letters are sig-
nificant (the others being nulls):

® encryption rules of the type “the nth charac-
ter after a particular character,” specifically “the
next character after a space” (acrostics),

® or rules for inserting a null between syllables
(Tut Latin: TUT) or after phonetic consonants
(Javanais: chaussure —> CHAVAUSSAVURAVE)

® or rules for suffixing nulls, e.g.,, un fou —
UNDREQUE FOUDREQUE (Metz 1670), also com-
bined with shuffling of some letters (largonjem:




boucher — LOUCHERBEM, pig Latin: third —
IRDTHAY);

® a borderline case is pure transposition: revers-
ing letters of a word (back slang), e.g., tobacco
> OCCABOT).
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CRYPTOSYSTEM

A cryptosystem (or cipher system) is a system con-
sisting of an encryption algorithm, a decryption
algorithm, and a well-defined triple of text spaces:
plaintexts, ciphertexts, and keytexts. For a given
keytext the encryption algorithm will map a plain-
text to a (usually uniquely determined) ciphertext.
For the corresponding keytext, the decryption al-
gorithm will map the ciphertext to the (usually
uniquely determined) plaintext. The cryptosystem
may be performed by hand methods (“hand ci-
pher”), by machine methods (“machine cipher”),
or by software (see also Shannon’s model).

Plaintext: text in an open language that is com-
monly understood among a larger group of peo-
ple.

Ciphertext: text (“cryptogram”) in a secret lan-
guage that is understood only by few, autho-
rized people, usually after decryption by hand or
machine.

We mention two special properties: an endomor-
phic cryptosystem is a cryptosystem with iden-
tical plaintext and ciphertext space. Example:
{a,b,c,...,z} — {a,b,c, ..., z}. Apure cryptosys-
tem is a cryptosystem that has the following prop-
erty: whenever enciphering &, with key %, followed
by deciphering D; with key j, followed by encipher-
ing &; with key i is performed, there is a key ¢
such that & has the same effect: £D;&, = &. In
a pure cryptosystem, the mappings D;& (“& fol-
lowed by D;”) form a group, with D, &, being the
identity.

An endomorphic cryptosystem is pure if and
only if its encipherings are closed under compo-
sition (Shannon), that is if its keys form a group,
the key group (see key).

Friedrich L. Bauer
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CRYPTREC

CRYPTREC was initially an abbreviation of
Cryptography Research and Evaluation Commit-
tee, which was set up in 2000 by METI (Ministry
of Economy, Trade and Industry, Japan) for the
purpose of evaluating cryptographic techniques to
assure their security for e-Government applica-
tions. However, since the CRYPTREC Advisory
Committee was founded by MPHPT (Ministry
of Public Management, Home Affairs, Posts and
Telecommunications, Japan) and METT in 2001 to
perform a policymaking study on the application of
cryptographic techniques, it has been interpreted
as the name of the organization of committees
involved in the project for evaluation of crypto-
graphic techniques available for the Japanese e-
Government. The project itself is now referred
to as CRYPTREC. From 2000 to 2002 the main
goal of CRYPTREC was to publish a list of recom-
mended ciphers for e-Government use. In March
2003 the list was published and established as
the guiding principle in the usage of cryptographic
techniques in the Japanese government ministries
and agencies.

EVALUATION TARGETS: In the fiscal years 2000
and 2001, CRYPTREC Evaluation Commit-
tee called for the submission of the cryptographic
techniques in order to compile a list of crypto-
graphic techniques that could be employed for e-
Government. In the public request for proposals,
the CRYPTREC Evaluation Committee did not
impose any restrictions on the national origin or
the organization of the applicant in order to pro-
vide an opportunity for impartial evaluation for
all applicants.

The CRYPTREC Evaluation Committee
specified several cryptographic techniques as
“indispensable cryptographic techniques.” The
CRYPTREC Evaluation Committee also evalu-
ated several cryptographic techniques as “specific
evaluation” target ciphers for special reasons such
as requests from standardization organizations
and the Law concerning Electronic Signatures
and Certification.

Basically, the evaluation targets can be catego-
rized into the following three types: “submitted
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cryptographic techniques,” “cryptographic tech-
niques for specific evaluation,” and “indispensable
cryptographic techniques.”

Submitted Cryptographic Techniques

Cryptographic techniques in the categories of
(1) digital signature, authentication, confidential-
ity, and key agreement for public-key cryptogra-
phy, (2) 64-bit block ciphers, 128-bit block ciphers,
and stream ciphers for symmetric-key cryptogra-
phy, and (3) hash functions and pseudorandom
number generators were sought for evaluation.
The applicants who submitted techniques were
asked to make their cryptographic techniques
procurable by the end of the fiscal year 2002.
CRYPTREC Evaluation Committee received a to-
tal of 63 applications in both fiscal years 2000 and
2001.

Indispensable Cryptographic Techniques

In addition to the cryptographic techniques sub-
mitted by the applicants, the CRYPTREC Evalua-
tion Committee has selected techniques that were
considered to be indispensable in the construc-
tion of e-Government systems. Such cryptographic
techniques must have either comparatively long
track records of use and evaluation, or have a long
history of usage. These targets were selected for
evaluation as “indispensable cryptographic tech-
niques” whether or not an applicant submitted
them.

Cryptographic Techniques for
Specific Evaluation

“Cryptographic techniques for specific evaluation”
are the cryptographic techniques that were eval-
uated by CRYPTREC on the basis of a special re-
quest, independent of their submission by an ap-
plication and independent from a specification as
“indispensable cryptographic techniques.” Crypto-
graphic techniques for specific evaluation in the
fiscal years 2000 and 2001 are classified into
the following three categories: (1) cryptographic
techniques specified in Guidelines on the Law
concerning Electronic Signatures and Certifica-
tion Services, (2) cryptographic techniques used in
SSL3.0/TLS1.0, and (3) contributions to ISO/IEC
JTC1/SC27.

EVALUATION AND SELECTION OF CRYPTO-
GRAPHIC TECHNIQUES: CRYPTREC has per-
formed security evaluations in order to select

cryptographic techniques that satisfy the level of
security sufficient for e-Government usage. CRYP-
TREC has also performed software and hardware
implementation evaluations to measure the pro-
cessing speed and amount of system resources
required.

In order to ensure that the technical evalu-
ations are impartial and adequate, CRYPTREC
has requested several specialists, besides its own
members, to conduct evaluations (referred to as
external evaluations).

In order to ensure that evaluations are fair for
all the cryptographic techniques in the same cat-
egory, CRYPTREC has applied the same evalua-
tion methods as much as possible to allow relative
comparisons.

Evaluation Items

The evaluation in CRYPTREC progressed gradu-
ally and in parallel to get a good understanding
of algorithm properties and characteristics such
as security and performance; the evaluation also
assessed how easy it was to develop efficient im-
plementations. There were four stages of the eval-
uation:

(1) Screening evaluation. Submitted documents
were studied to investigate whether the tar-
get cryptographic technique had any problems
in the design concept, design policies, security,
or implementation.

(2) Full evaluation. The following items were in-
vestigated: (a) whether known attacks are ap-
plicable or not, (b) computational cost required
for a known attack to succeed, (c) validity of
provable security, (d) validity of parameter/
key generating methods, (e) selection of auxil-
iary functions and methods used to implement
them in the scheme, (f) anticipated problems
of submitted cryptographic techniques in real
systems, and (g) whether any attack can be
mounted or not using the evaluators’ expertise.

The techniques were also compared with
other cryptographic techniques in order to as-
sess relative strengths and weaknesses.

(3) Software implementation evaluation. The com-
patibility and portability with respect to
computing resources and environments was
verified by checking whether the software op-
erated as described in the submitted docu-
ments in the following environments: (a) gen-
eral PC environment, (b) most popular server
environment, and (¢) high-performance, high-
end environment.

(4) Hardware implementation evaluation. It was
investigated whether a third party could



design the hardware using the submitted doc-
uments only.

Evaluation Criteria

The following criteria were set for evaluation
of cryptographic techniques according to the
categories.

(1) Public-key cryptographic techniques. If a
public-key cryptographic technique has a solid
track record of operation and evaluation over a
relatively long period of time and its specifica-
tions cannot be changed easily from the stand-
point of interoperability, the following condi-
tions must be satisfied:

(a) The cryptographic techniques must have
been evaluated and researched thoroughly
by a number of researchers.

(b) No security problem has been reported in
a realistic system.

Relatively new public-key cryptographic
techniques were required to have at least
“provable security.” A comprehensive secu-
rity evaluation was carried out in addition
to checking the provable security, including
issues such as the validity of number theo-
retic problems, the method of selecting recom-
mended parameters, and the method of using
auxiliary functions in a scheme.

(2) Symmetric cryptography techniques. Sym-
metric-key cryptographic techniques must
satisfy either of the following conditions:

(a) Even with the best attacking technique
available to date, a computational cost
of 2128 or more (i.e., exhaustive search
for a secret key) is required to break
symmetric-key cryptographic techniques.
It is necessary to show at the techniques
are secure against typical cryptanalytic at-
tacks such as differential and linear crypt-
analysis.

(b) Widely used symmetric-key cryptographic
techniques that have been evaluated in de-
tails and have no security problems in a
realistic system are selected. In this case,
a computational cost of 21 or more is re-
quired to break them.

(3) Hash functions. Hash functions must satisfy
either of the following conditions:

(a) Even with the best attacking technique
available to date, the computational cost
to find the input value for a specific output
value is not less than the computational
cost required for an exhaustive search.
Also, even if the best attacking technique is
used, the computational cost to find a pair
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of different input values with the same out-
put value is 228 or more.

(b) Widely used hash functions that have no
security problems in realistic systems and
with a hash length of 160 bits or more are
selected.

(4) Pseudorandom number generators: Pseudo-
random number generators must satisfy all
the following conditions:

(a) The statistical properties are close to that
of a true random number. A past or future
unknown output bit is hard to predict from
the known output bit history.

(b) The seed size must be large enough to be
secure against an exhaustive key search
of the system that uses a pseudorandom
number generator.

(¢) The statistical properties of pseudorandom
number generators must pass a typical sta-
tistical test suite for randomness such as
SP800-22.

Requirements for the Draft of the
e-Government Recommended
Ciphers List

The CRYPTREC Advisory Committee has re-
quested the CRYPTREC Evaluation Committee to
evaluate the candidates for e-Government ciphers,
cryptographic techniques that allow authentica-
tion, key agreement, confidentiality, and electronic
signature functions in the e-Government sys-
tem, and prepare an e-Government recommended
ciphers list considering the following three
points:

(1) Select several cryptographic techniques with
sufficient security for use in the e-Government
system (security guaranteed roughly 10
years).

(2) Select for each category at least one crypto-
graphic technique that is being-incorporated
or likely to be incorporated in commercial soft-
ware (to be used by the general public).

(3) Confirm the specifications of cryptographic
techniques recommended for e-Government to
guarantee that ciphers satisfying these speci-
fications can be procured.

E-GOVERNMENT RECOMMENDED CIPHERS
LIST: As a three-year comprehensive project, the
“e-Government recommended ciphers list
(draft)” authored by the CRYPTREC Evaluation
Committee was submitted to the CRYPTREC
Advisory Committee for review. Then, MPHPT
and METI invited comments from the general
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Table 1. e-Government recommended ciphers list (draft) (prepared in November 2002)

Category Name

Public-key Signature DSA
ciphers ECDSA
RSASSA-PKCS1-vl 5
RSA-PSS

Confidentiality RSA-OAEP
RSAES-PKCS1-v1 5!

Key agreement DH
ECDH
PSEC-KEM?

Symmetric-key 64-bit block ciphers? CIPHERUNICORN-E
ciphers Hierocrypt-L1
MISTY1
3-key Triple DES*
128-bit block ciphers AES

Camellia
CIPHERUNICORN-A
Hierocrypt-3
SC2000

Stream ciphers MUGI
MULTI-S01
128-bit RC45°

Others Hash function RIPEMD-160°

SHA-1¢

SHA-256

SHA-384

SHA-512

Pseudorandom number PRNG based on SHA-1 in ANSI X9.42-2001 Annex C.1
generator’ PRNG based on SHA-1 for general purpose in FIPS 186-2

(+ change notice 1) Appendix 3.1

PRNG based on SHA-1 for general purpose in FIPS 186-2
(+ change notice 1) revised Appendix 3.1

Notes:

1 Use of this is permitted for the time being because it was used in SSL3.0/TLS1.0.

2 On the assumption that this is used in the KEM (Key Encapsulation Mechanism)-DEM (Data Encapsulation
Mechanism) construction.

When constructing a new e-Government system, 128-bit block ciphers are preferable if possible.

Using 3-key Triple DES is permitted for the time being under the following conditions:

(1) It is specified as FIPS 46-3.

(2) It is positioned as the de facto standard.

5 It is assumed that the 128-bit RC4 will be used only in SSL3.0/TLS(1.0 or later). If any other cipher listed
above is available, it should be used instead.

If any hash functions with a longer hash value are available when constructing a new e-Government system,
it is preferable that a 256-bit (or more) hash function be selected. However, this does not apply in cases where
the hash function to be used has already been designated according to the public-key cryptographic
specifications.

Since pseudorandom number generators do not require interoperability due to their usage characteristics, no
problems will be created by using a cryptographically secure pseudorandom number generating algorithm.
Therefore, these algorithms are examples.

3
4

public. Finally, the draft was authorized as the remind uses that some cryptographic techniques
“e-Government recommended ciphers list”. require in employing them for e-Government ap-

In Table 1, we show the e-Government rec- plications. For more details, the reader is referred
ommended ciphers list. The notes are added to tothe CRYPTREC Web site [1].



OTHER ACTIVITIES

Revision of Guidelines on the Law
Concerning Electronic Signatures
and Certification Services

Guidelines on the Law concerning Electronic Sig-
natures and Certification Services were revised
corresponding to the CRYPTREC evaluation re-
sults in the fiscal year 2001.

SSL/TLS Evaluation Report

CRYPTREC evaluated the security of SSL/TLS
(see Secure Socket Layer (SLS) and Transport
Layer Security (TLS)) and reported as follows:
SSL/TLS is secure against all known attacks. Us-
ing SSL/TLS, one needs to ensure that patches
are applied and that parameters are properly se-
lected. SSL/TLS is considered to offer an adequate
security level for practical use. The functionality
of TLS is still being extended. New security weak-
nesses can emerge as a result of these extensions.
Therefore, it is necessary to monitor the status
and progress of TLS and to keep investigating its
security.

Publicizing External Evaluation Reports

CRYPTREC considers it important to publicize
the cryptographic technique evaluation results in
order to improve the reliability of security evalu-
ations. All external evaluation reports that were
compiled as a part of the evaluation activities of
CRYPTREC are available on the CRYPTREC Web
site [1].

Monitoring and Other Evaluations

After publishing the e-Government recommended
ciphers list, the main responsibility of CRYPTREC
has moved to monitoring the security of crypto-
graphic techniques in the list. CRYPTREC also
has started the evaluation of cryptographic mod-
ules and protocols.

Hideki Imai
Atsuhiro Yamagishi
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CUT-AND-CHOOSE
PROTOCOL

CUT-AND-CHOOSE PROTOCOLS: A cut-and-
choose protocol is a two-party protocol in which
one party tries to convince another party that
some data he sent to the former was honestly con-
structed according to an agreed upon method. Im-
portant examples of cut-and-choose protocols are
interactive proofs [4], interactive arguments [1],
zero-knowledge protocols [1, 3,4] and witness in-
distinguishable and witness hiding protocols [2]
for proving knowledge of a piece of information
that is computationally hard to find. Such a pro-
tocol usually carries a small probability that it is
successful despite the fact that the desired prop-
erty is not satisfied.

The very first instance of such a cut-and-choose
protocol is found in the protocol of Rabin [5] where
the cut-and-choose concept is used to convince a
party that the other party sent him an integer n
that is a product of two primes p, q, each of which
is congruent to 1 modulo 4. Note that this protocol
was NOT zero-knowledge.

The expression cut-and-choose was later intro-
duced by Chaum [1] in analogy to a popular cake
sharing problem: given a complete cake to be
shared among two parties distrusting each other
(for reasons of serious appetite). A fair way for
them to share the cake is to have one of them cut
the cake in two equal shares, and let the other one
choose his favourite share. This solution guaran-
tees that it is in the former’s best interest to cut

the shares as evenly as possible.

Claude Crépeau
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CYCLIC CODES

INTRODUCTION: For a general presentation of
cyclic codes, our main reference is the Handbook
of Coding Theory, especially the first chapter [4]
(but also Chapters 11, 13, 14, and 19).

Cyclic codes were introduced as a particular
practical class of error-correcting codes (ECC).
Codes are devoted to the following fundamental
problem: how to determine what message has been
sent when only an approximation is received, due
to a noisy communication channel. Cyclic codes
belong to the class of block codes since here all
messages have the same length . Each of them
is encoded into a codeword of length n =k +r. A
t-error-correcting code is a well-chosen subset C of
A" Its elements are called codewords and have the
property that each pair of them differs in at least
2t + 1 coordinates. If the noisy channel generates
not more than ¢ errors during one transmission,
the received vector will still lie closer to the orig-
inally transmitted codeword than any other code-
word. This means that code C is able to correct ¢
positions in each codeword.

A codeword will be denoted by

c=(co,cC1,...,Cn-1), ¢ € A

When the encoder is systematic, the first £ sym-
bols are called information symbols (they are the
message) and the last » symbols are the redun-
dancy symbols (added to help recover the mes-
sage if errors occur). We consider here linear codes,
meaning that A is a finite field and that C is a
k-dimensional linear subspace of A".

The (Hamming) distance between two code-
words, ¢ and ¢/, is defined by:

d(e,c¢')=card {i €[0,n —1]|¢; #c}}.

The minimum distance d of a code C is the small-

est distance between different codewords; it de-
termines the error correcting capabilities of C. In-
deed, C can correct ¢ = |(d — 1)/2] errors. Since
we focus on cyclic codes and on the most useful of
them, the alphabet A will be a finite field F, of
characteristic 2, i.e., ¢ = 2¢ for some integere > 1.
Moreover, the length of the codes will be generally
2™ — 1, where e divides m; these codes are said
primitive.

DEFINITION 1. Consider the linear space ¥y of all
n-tuples over the finite field F,. An [n, k,d] linear
code C over F, is a k-dimensional subspace of Fy,
with minimum distance d.

By definition, a k-dimensional linear code C is
fully determined by a basis over F,. When we put
the % vectors of a basis asrowsinak x n matrix G,
we get a generator matrix of C. Indeed, C is given
by {avG |a € Fg}.

The Hamming weight wt(u) of any word u in
F} is the number of its nonzero coordinates. Note
that wt¢(u) = d(u, 0). Obviously, for linear codes,
the minimum distance is exactly the minimum
weight of nonzero codewords.

PROPOSITION 1. Let C be any [n, k, d] linear code
over Fy. Then

d = min{wt(e) | ¢ € C \ {0}}.
The dual code of C is the [n, n — k] linear code:
Clz{yeFZ |c-y=0, forall ¢ e C},

where “” denotes the ordinary inner product of
vectors:c-y = Z;:Ol ¢;y;. An (n — k) x n generator
matrix of C* is called a parity check matrix H for
C. Note that C = {y e F} | Hy" = 0"}

When studying cyclic codes, it is convenient
to view the labeling of the coordinate posi-
tions 0,1,...,n—1 as integers modulo n (see
modular arithmetic). In other words, viewing
these coordinate positions as forming a cycle with
n — 1 being followed by 0.

DEFINITION 2. A linear code C of length n over
F, is cyclic if and only if it satisfies for all ¢ =
co--Cp9oCp_1inC:

(coy ... Cn-9,cp-1) € C = (cy-1,C0,...,cn-2) € C.
The vector ¢,_1cq - - - Cp_2 is obtained from ¢ by the
cyclic shift of coordinates i — i + 1.

ExAMPLE 1. The generator matrix G below defines
an [8, 4, 2] binary cyclic code (Iength 8, dimension



4, and minimum weight 2):

10001000
lo1000100
9=100100010
00010001

Cyclic codes are some of the most useful
codes known. The involvement of Reed—Solomon
(RS) codes and of Bose—-Chaudhury—Hocquen-
ghem (BCH) codes in a number of applications is
well known. On the other hand, the Golay codes
and the Reed—Muller (RM) codes, which are fun-
damental linear codes, can be represented as cyclic
codes.

CONSTRUCTIVE DEFINITION: It seems difficult
to construct a cyclic code C by means of Definition
2. So, useful definitions of cyclic codes are now con-
sidered.

An efficient definition is established by identify-
ing each vector ¢ = (cg, c1, . .., ¢,_1) with the poly-
nomial e(x) =cop+cix+---+c¢,_12" L. The fact
that C is invariant under a cyclic shift is then ex-
pressed as follows:

c(x) e C = xc(x) (mod x™ —1) e C.

Thus the proper context for studying cyclic codes
of length n over Fy, is the residue class ring

R = Fg[X1/(x" — 1).

It is well known that R, is a principal ideal ring.
This means that any ideal I in R, is generated
by a single element g in I, i.e., I = {ag | a € R,}.
(An ideal in R, is a subset I of R, satisfying the
properties: (1) for all i1,i5in I alsoi; —i; € I and
(2)foranyi € I anda € R, alsoai € 1.)

An alternative definition of a cyclic code can now
be given.

DEFINITION 3. A cyclic code C of length n over F,
is a principal ideal of the ring R,. The codewords
are polynomials in F[x] of degree less than n. Mul-
tiplication is carried out modulo x" — 1.

The next theorem, which is given in [4, Theorem
5.2], allows to determine the main parameters of
any cyclic code of R,. We first recall some basic
definitions.

DEFINITION 4. Let o be a primitive nth root of
unity in some extension field of F,. This means
that 1, «a, ..., a" ! are all different and o™ = 1. For
each integer s with 0 <s < n, denote by cl(s) the
g-cyclotomic coset of s modulo n:

cl(s) ={s,qs, ...,qm_ls (mod n)},
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where m is the smallest positive integer such that
n divides ¢™ — 1 (so o € Fgm).
The minimal polynomial of «® over Fy is

Myx)= ] x—e.

iecl(s)

where the o,i € cl(s), are called the conjugates
of af.

If w is a primitive element of Fy», then one can
takea = 09" ~V/" Note that M,:(x)is a polynomial
over F, while « € Fyn.

THEOREM 1. Let C be a nonzero cyclic code of
length n over F,. There exists a polynomial g(x) €
C, called the generator polynomial of C, with the
following properties:
(1) g(x) is the unique monic polynomial of mini-
mum degree in C;
(i) g(x) is a generator of the ideal C in R,:

C = (g(x)) = {a(x)g(x) (mod x™ — 1) |
a(x) € Fylxl};
(ii1) g(x) divides x™ — 1.
Letr = deg(g), and let g(x) = Y _, gix' where
gr = 1. Then

(iv) the dimension of C is k = n — r; moreover the
polynomials

gx), xg(x), ..., x* Lg(x)

form a basis of C. The corresponding generator
matrix is given by:

go &1 gw-r 0 - 0

0 g &1 8n—t 0
G=| . . . .

o --- 0 8o 81 Sn—k

(v) Let a be a primitive nth root of unity in some
extension field of Fy. Denote by M,s the mini-
mal polynomial of «® over Fy; then

g) =] | Mus(x)

sel

where I is a subset of representatives of the
g -cyclotomic cosets modulo n.

The dual code of any cyclic code is cyclic too. The
description of C* can be directly obtained from
Theorem 1.

COROLLARY 1. Let C be a cyclic code of length n
over F,, with generator polynomial g(x). Let h(x)
denote the parity check polynomial of C, defined by
x" — 1 = h(x)g(x). Then the generator polynomial
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of C* is the polynomial

- k
h(x) = ;Cl—h(x‘l), where k = n — deg(g).

0
ExaMPLE 2. Construction of the binary Hamming
code of length n = 15.

2 —1 =@t + 2%+ D + 0 + D + 23
+x? 42+ Dx+ D 4+x+1).

Since x* 4+ x + 1 is a primitive polynomial (mean-
ing that its zeros are primitive elements), its root
a is a generator of the cyclic group of the field Fg.
The polynomial x* + x + 1 is the minimal polyno-
mial of @ and has « and its conjugates as zeros.
Consider the cyclic code C with generator polyno-
mial:

gx) = (x — a)x — a®)x — at)x — o)
—xt+x+1.

The dimension of C is 15 — deg(g) = 11. Thus the
code C is a [15, 11, 3] cyclic code. The minimum
distance of C is exactly 3 since wt(g) = 3 and no
smaller weight can appear, as can be checked us-
ing a generator matrix G of C. According to Theo-
rem 1, G is an 11 x 15 binary matrix whose lines
are g(x)

‘xO xl x2 x3 x4 x5 x6 x7 x8 x9 xlO xll x12 x13 x14

gx))11 001000000 0 0 0 O

and the 10 shifts of g(x). The parity check polyno-
mial of C and the generator polynomial of C* are
given by:

15
xP -1
h(x)=47
xt+x+1
=l 4+ "+ x5+ a2+ + 1
resp.

1
h(x) = Z hyp_ix’
i=0

=M a0 pa® a8 a1
We then obtain a parity check matrix for C:

|x° 2l a2 a3 x4 o8 6 5T 8 59 510 H11 412 413 x14|

1001101011110 00
0100110101111 0 0|
00100110101 1110
000100110101 11

We explained here, by means of an example, the
general definition of the binary Hamming code of
length 2™ — 1. It is a code whose parity check ma-
trix has as columns all the nonzero vectors of F7'.
Itisa[2™ —1,2™" —m — 1, 3] code.

SOME CycLIC CODES: From now on ¢ = 2¢ and
n=q™ — 1. Let C be any cyclic code of length n
over F, with generator polynomial g(x). The roots
of g(x) are called the zeros of the cyclic code C.
Thus, the code C is fully defined by means of its
zero’s set; this leads to the classical definition of
the BCH codes and of other important families.

DEFINITION 5. Let ¢ = 2 and n = 2™ — 1; denote
by a a primitive nth root of unity in Fon. Let § be
an integer with 2 < § < n.

The binary BCH code of length n and de-
signed distance § is the cyclic code with zero’s set:
a, o2, ..., o’ 1 and their conjuguates. In other
words, the generator polynomial of this code is

g(x) =1 em{M,(x), M2(x), ..., M, 1(x)}.

ExAMPLE 3. Binary BCH codes of length 15. Asin
Example 2, we denote by « any root of the primi-
tive polynomial x* + x + 1. Now the factorization
of x5 — 1 into minimal polynomials is as follows:

P -1l=(-Da*+x+DG*+2°+22+x+1)
M(a)

+x+D*+22+1) .
M(a5)

M(a®)

M)

There are three nontrivial BCH codes, whose

zero’s sets S; are as follows:

® S;={a'|i=1,2 4,8} for the [15,11,3] BCH
code;

® S5 =S3Uf{a |i=3,6,9,12} for the [15,7,5]
BCH code;

® S;=S5U{a! |i =5,10} for the [15,5,7] BCH
code.

For these codes, the designed distance § is exactly

the minimum distance; this property does not hold

for any BCH code.

DEFINITION 6. A Reed—Solomon code over F; is a
BCH code of length n = q — 1.

RS codes appear in several cryptosystems. They
determine, for instance, some secret-sharing sch-
emes [3]. It is important to note that for RS codes,
the designed distance is exactly the minimum
distance. Moreover, the RS code with designed dis-
tance§isan[n, k, 5] code withk =n — § + 1. Since
this £ attains the maximum value by the Single-
ton bound (see [4]), one says that RS codes are
maximum distance separable (MDS) code.

DEFINITION 7. Let a be a primitive root of Fon.
Any integer s € [0, 2™ — 1] can be identified by its



binary expansion in FJ':
m—1 )
s = ZsiZ‘, s; €{0,1} = s =(sg,...,Sm_1)
i=0

The cyclic Reed—Muller code of length 2™ — 1 and
order r, usually denoted by R*(r, m), is the binary
cyclic code with zero set:

S ={ad’| 1<wts)<m-—r},

where wt(s) is the Haomming weight of s.

Note that if one extends all codewords in the
cyclic Reed—Muller code above with an overall-
parity check symbol, one obtains the regular
Reed—Muller code.

Binary cyclic codes are related to the study
and the construction of cryptographic primitives,
mainly through Reed—Muller codes because of the
large field of applications of Boolean functions and
binary sequences in cryptography. They play a
role in the study of cryptographic mapping on fi-
nite fields in general. One well-known application
is the construction of almost bent (AB) mappings
(see nonlinearity of Boolean functions), which re-
sist both differential and linear cryptanalysis[1,2]
(see next example). These connections are more
explicit when using the trace representation of bi-
nary codewords of length n = 2™ — 1. We now la-
bel the coordinate positions by o, o!,..., «"1,
where « is a primitive nth root of unity. Let c(x)
be any codeword of some binary cyclic code C of
length n. Define

n—1
Te(x) =) el ).

s=0

(1

This commonly known Fourier transform of ¢ is
called the Mattson—Solomon polynomial of ¢ in al-
gebraic coding theory. It follows that Ti(a/) = c;
and T;(x) is a sum of traces from some subfields of
Fzm to F2.

The mapping x — T¢(x) is a Boolean function.
On the other hand, any binary sequence of pe-
riod n can be represented in this way (see entries
Boolean functions and Sequences).
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ExXAMPLE 4. Consider any binary cyclic code of
length n =2" —1 whose generator polynomial
is the product of two minimal polynomials,
say M, (x)Mys(x). These codes are said to be
cyclic codes with two zeros and usually denoted
by C;s.

Now assume that r =1 and ged(s, 2™ — 1) = 1.
Then Ci; is an [n,2m,d] cyclic code; the dual
of C1 is a cyclic code which has two nonzeros
only: «”! and o~ (apart from their conjugates).
According to (1), Cfs is the set of binary codewords
of length n defined as follows: each pair (a, b) of
elements of Fo» provides the ordered sequence of
values

xe{l,a ..., a1} — Tr(ax + bx®),

where the Trace function Tr is defined by Tr(8) =
B+ B2+ + 2. The power function x > x° is
a permutation on For. It is said to be almost per-
fect nonlinear [1] when C;; has minimum dis-
tance 5. It is said to be an AB function when the
nonzero weights of codewords of Cfs are either

2m=1 or 2m—1 4 2m=1/2. this is possible for odd m
only.

Pascale Charpin
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DATA ENCRYPTION
STANDARD (DES)

The Data Encryption Standard (DES) [31] has
been around for more than 25 years. During this
time the standard was revised three times: as
FIPS-46-1 in 1988, as FIPS-46-2 in 1993 and
as FIPS-46-3 in 1999. DES was an outcome of a
call for primitives in 1974, which did not result
in many serious candidates except for a prede-
cessor of DES, Lucifer [15, 36] designed by IBM
around 1971. It took another year for a joint IBM—
NSA effort to turn Lucifer into DES. The struc-
ture of Lucifer was significantly altered: since
the design rationale was never made public and
the secret key size was reduced from 128-bit to
56-bits, this initially resulted in controversy, and
some distrust among the public. After some de-
lay, FIPS-46 was published by NBS (National
Bureau of Standards)—now NIST (National In-
stitute of Standards and Technology)—on Jan-
uary 15, 1977 [31] (see [35] for a discussion of the
standardization process).

However, in spite of all the controversy it is hard
to underestimate the role of DES [31]. DES was
one of the first commercially developed (as opposed
to government developed) ciphers whose structure
was fully published. This effectively created a com-
munity of researchers who could analyse it and
propose their own designs. This lead to a wave of
public interest in cryptography, from which much
of the cryptography as we know it today was born.

DESCRIPTION OF DES: The Data Encryption
Standard, as specified in FIPS Publication 46-
3 [31], is a block cipher operating on 64-bit data
blocks. The encryption transformation depends on
a 56-bit secret key and consists of sixteen Feistel
iterations surrounded by two permutation layers:
an initial bit permutation IP at the input, and its
inverse IP~! at the output. The structure of the
cipher is depicted in Figure 1. The decryption pro-
cess is the same as the encryption, except for the
order of the round keys used in the Feistel iter-
ations. As a result, most of the circuitry can be
reused in hardware implementations of DES.
The 16-round Feistel network, which consti-
tutes the cryptographic core of DES, splits the 64-
bit data blocks into two 32-bit words (denoted by
Ly and Ry). In each iteration (or round), the second

word R; is fed to a function f and the result is

added to the first word L;. Then both words are

swapped and the algorithm proceeds to the next
iteration.

The function f is key-dependent and consists
of four stages (see Figure 2). Their description is
given below. Note that all bits in DES are num-
bered from left to right, i.e., the leftmost bit of a
block (the most significant bit) is bit 1.

1. Expansion (E). The 32-bit input word is first
expanded to 48 bits by duplicating and reorder-
ing half of the bits. The selection of bits is spec-
ified by Table 1. The first row in the table refers
to the first 6 bits of the expanded word, the sec-
ond row to bits 7-12, and so on. Thus bit 41 of
the expanded word, for example, gets its value
from bit 28 of the input word.

2. Key mixing. The expanded word is XORed
with a round key constructed by selecting 48
bits from the 56-bit secret key. As explained be-
low, a different selection is used in each round.

| INPUT |

(INITIAL PERMUTATION)

i ¥
Tweur Lt Q o,
£ ®
| L=Ry

PREOUTPUT [Ry5=Lis @ f(Rys, Kio) Lig=Rys |
| I

[+

(INVERSE INITIAL PERM)

| OUTPUT |

Fig. 1. The encryption function
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R (32 BITS)

K (48 BITS)

32 BITS

Fig. 2. The function f

3. Substitution. The 48-bit result is split into
eight 6-bit words which are substituted in eight
parallel 6 x 4-bit S-boxes. All eight S-boxes,
called Si, Ss, ..., Sg, are different but have the
same special structure, as appears from their
specifications in Table 2. Each row of the S-
box tables consists of a permutation of the 4-bit
values 0, ..., 15. The 6-bit input word is sub-
stituted as follows: first a row is selected ac-
cording to the value of the binary word formed
by concatenating the first and the sixth input
bit. The algorithm then picks the column given
by the value of the four middle bits and outputs
the corresponding 4-bit word.

4. Permutation (P). The resulting 32 bits are re-
ordered according to a fixed permutation spec-
ified in Table 1 before being sent to the output.
As before, the first row of the table refers to the
first four bits of the output.

The selection of key bits in each round is deter-
mined by a simple key scheduling algorithm. The
algorithm starts from a 64-bit secret key which in-
cludes 8 parity bits that are discarded after verifi-
cation (the parity of each byte needs to be odd). The
remaining 56 secret key bits are first permuted

Table 1. Expansion E and permutation P

E P
32 1 2 3 4 5 16 7 20 21
4 5 6 7 8 9 29 12 28 17
8 9 10 11 12 13 1 15 23 26
12 13 14 15 16 17 5 18 31 10
16 17 18 19 20 21 2 8 24 14
20 21 22 23 24 25 32 27 3 9
24 25 26 27 28 29 19 13 30 6
28 29 30 31 32 1 22 11 4 25

according to a permutation PC; (see Table 4). The
result is split into two 28-bit words Cy and Dy,
which are cyclically rotated over 1 position to the
left after rounds 1, 2, 9, 16, and over 2 positions af-
ter all other rounds (the rotated words are denoted
by C; and D;). The round keys are constructed
by repeatedly extracting 48 bits from C; and D;
at 48 fixed positions determined by a table PCs
(see Table 4). A convenient feature of this key
scheduling algorithm is that the 28-bit words C
and D, are rotated over exactly 28 positions after
16 rounds. This allows hardware implementations
to efficiently compute the round keys on-the-fly,
both for the encryption and the decryption.

CRYPTANALYSIS OF DES: DES has been sub-
ject to very intensive cryptanalysis. Initial at-
tempts [16] did not identify any serious weak-
nesses except for the short key-size. It was noted
that DES has a complementation property, i.e.,
given an encryption of the plaintext P into the
ciphertext C under the secret key K: Ex(P) = C,
one knows that the complement of the plaintext
will be encrypted to the complement of the cipher-
text under the complement of the key: Ezx(P) =
C (by complement we mean flipping of all the
bits). Another feature was the existence of four
weak keys, for which the cipher is an involution:
Ex(Ex(m)) = m (for these keys the contents of the
key-schedule registers C and D is either all zeros
or all ones), and six additional pairs of semi-weak
keys for which Ex1(Ege(m)) = m. The complemen-
tation and the weak-key properties are the result
of interaction of the key-schedule, which splits the
key-bits into two separate registers and the Feistel
structure of the cipher. A careful study of the cycle
structure of DES for weak and semi-weak keys has
been given by Moore and Simmons [30]. See the
book of Davies and Price [11] for a more detailed
account on these and other features of DES iden-
tified prior to 1989. The properties of the group
generated by DES permutations have also been
studied intensively. Coppersmith and Grossman
have shown [9] that in principle DES-like com-
ponents can generate any permutation from the
alternating group Ass: (all even permutations, i.e.,
those that can be represented with an even num-
ber of transpositions). However, DES implements
only 256 permutations, which is a tiny fraction of
all the even permutations. If the set of 256 DES
permutations was closed under composition, then
multiple encryption as used, for example in Triple-
DES would be equivalent to single encryption and
thus would not provide any additional strength.
A similar weakness would be present if the size
of the group generated by the DES permutations
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Table 2. DES S-boxes

S 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 14 4 13 1 2 15 1 8 3 10 6 1 5 9 0 7
1: 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2: 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3: 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S$: o 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15
0: 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1: 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2: 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3: 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
Ss : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1: 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2: 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3: 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
Sy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1: 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2: 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3: 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
Ss : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1: 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2: 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3: 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
Se : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1: 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2: 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3: 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1: 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2: 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3: 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
Ss : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0: 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1: 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2: 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3: 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Table 3. Initial and final permutations

P

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N OTW 00O RN

Ip1
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 4. DES key schedule bit selections

PCl PCZ
57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 3 28 15 6 21 10
10 2 59 51 43 35 27 23 19 12 4 26 8
19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55
7 62 54 46 38 30 22 30 40 51 45 33 48
14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32

were small. Using the special properties of the
weak keys it has been shown that DES generates
a very large group, with a lower-bound of 22499
permutations [7, 8], which is more than enough
to make the closure attacks [18] impractical.

In the two decades since its design three impor-
tant theoretical attacks capable of breaking the
cipher faster than exhaustive search have been
discovered: differential cryptanalysis (1990) [5],
linear cryptanalysis (1993) [22], and the improved
Davies’ attack [3,12]. An interesting twist is that
differential cryptanalysis was known to the de-
signers of DES and DES was constructed in par-
ticular to withstand! this powerful attack [8]. This
explains why the cipher’s design criteria were kept
secret. Many of these secrets became public with
the development of differential cryptanalysis and
were later confirmed by the designers [33]. Both
differential and linear attacks as well as Davies’
attack are not much of a threat to real-life applica-
tions since they require more than 24° texts for the
analysis. For example: a linear attack requires 243
known plaintexts to be encrypted under the same
secret key. If the user changes the key every 235
blocks the success probability of the attack would

1 Note that DES is strong but not optimal against linear crypt-
analysis or improved Davies’ attack, for example simple re-
ordering of the S-boxes would make the cipher less vulnerable
to these attacks without spoiling its strength against the dif-
ferential attack [24]. This could indicate that the designers of
DES did not know about such attacks.

be negligible. Nevertheless, linear attacks were
tested [23] in practice, run even slightly faster
than theoretically predicted [17], and can poten-
tially use twice less data in a chosen plaintext sce-
nario [20]. In the case of the differential attack 247
chosen plaintexts are required, though the attack
would still work if the data is coming from up to
233 different keys. However, the huge amount of
chosen plaintext makes the attack impractical. In
the case of Davies’ attack the data requirement is
250 known plaintexts, which is clearly impractical.

Although differential and linear attacks are
hard to mount on DES, they proved to be very pow-
erful tools for cryptanalysis; many ciphers which
were not designed to withstand these attacks have
been broken, some even with practical attacks. See
for example the cipher FEAL [28, 29, 34]. In fact
both attacks have been discovered while studying
this cipher [4,25], which was proposed as a more
secure alternative to DES.

Exhaustive key search currently remains the
biggest threat to the security of DES [31]. It was
clear from the very beginning that a 56-bit key
can be found in practical time by using a practi-
cal amount of resources. In 1977 a design for a
key-search machine was proposed by Diffie and
Hellman [13] with a cost of US$ 20 million and
the ability to find a solution in a single day.
Later Hellman proposed a chosen plaintext time-
memory tradeoff approach, which would allow to
build an even cheaper machine, assuming that




a precomputation of 2°¢ encryption steps is done

once for a single chosen plaintext. An effective and
complete ASIC design for a key-search machine
has been proposed by Wiener in 1993 [38]. It was
shown that the US$ 1 million machine would run
through the full key-space in 7 hours. It became
clear in 1993 that DES had to be upgraded to
triple-DES or be replaced; however NIST decided
to reconfirm the FIPS standard a second time in
1993 for another five years (as FIPS 46-2). In 1998
the Electronic Frontier Foundation (EFF) built a
working dedicated hardware machine which cost
less than US$ 250,000 and could run through the
full key-space in four days [14]. In a parallel de-
velopment it was shown that a network of tens of
thousands of PCs (a computational power easily
available to a computer virus, for example) could
do the same work in several weeks. At that time
the AES competition had been started. As a re-
sult of this effort DES has been replaced by a
successor, AES, which is based on a 128-bit block
128/192/256-bit key cipher Rijndael/AES.

EXTENSIONS OF DES: So where is DES to-
day? DES is not obsolete. Due to substantial
cryptanalytic effort and the absence of any practi-
cal cryptanalytic attack, the structure of DES has
gained public trust. There have been several pro-
posals to remedy the short key size problem plagu-
ing the cipher:

e Triple-DES (Diffie-Hellman [13]). The idea
is to multiple encrypt the block using DES three
times with two or three different keys. This
method gains strength both against cryptan-
alytic attacks as well as against exhaustive
search. It is weak against related key attacks,
however, and the speed is three times slower
than single DES [31]. A two-key variant in the
form of Encrypt-Decrypt-Encrypt (E-D-E), i.e.,
Ex,(Dg,(Ek,(m))) has been proposed by IBM
(Tuchman, 1978) and is still in wide use by the
banking community. The convenience of this op-
tion is that it is backward compatible with a sin-
gle DES encryption, if one sets K; = Kp.

® Independent subkeys (Berson [1]). The idea
is to use independently generated 48-bit sub-
keysin each round. The total key-size is 768 bits,
which stops the exhaustive search attack. How-
ever, the cryptanalytic attacks like differential
or linear do work almost as good as for DES [31].
The speed of this proposal is as for single DES,
but it has a slower key-schedule.

® Slow key-schedule (Quisquater et al. [32]
or Knudsen [10]). Exhaustive search is
stopped by loosing key-agility of a cipher.
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o DES-X (Rivest, 1984). The idea is to XOR addi-
tional 64-bits of secret key material at the input
and at the output of the cipher. See the article
on DES-X for more details. This is very effective
against exhaustive search, but does not stop old
cryptanalytic attacks on DES, and allows new
related key attacks. This approach allows the
reuse of old hardware. The speed is almost the
same as that of a single DES.

® Key-dependent S-boxes (Biham-
Biryukov [2]). The idea is similar to DES-X,
but the secret key material is XORed before
and after the S-boxes. S-boxes are reordered to
gain additional strength. The result is secure
against exhaustive search and improves the
strength against cryptanalytic attacks (with
the exception of related key attacks). This
approach applies to software or to hardware
which permits the loading of new S-boxes.
The speed is the same as that of a single
DES.

As of today two-key and three-key triple DES
is still in wide use and is included in NIST
(FIPS 46-3, the 1999 edition [31]) and ISO stan-
dards. However, two-key triple DES variants are
not recommended for use due to dedicated meet-
in-the-middle attack by Oorschot and Wiener [37]
with complexity 2120-18" steps given O(n) known
plaintexts and memory. For example, if n = 24,
complexity of attack is 280 steps. This attack
is based on an earlier attack by Merkle and
Hellman [27] which required 2%¢ chosen plain-
texts, steps, and memory. These attacks are hard
to mount in practice, but they are an important
certificational weakness.

The recommended usage mode for triple-DES
is Encrypt-Encrypt-Encrypt (E-E-E) (or Encrypt-
Decrypt-Encrypt (E-D-E)) with three indepen-
dently generated keys (i.e. 168 key bits in to-
tal), for which the best attacks are the classical
meet-in-the-middle attack with only three known
plaintexts, 26 words of memory and 2! analysis
steps; and the attack by Lucks [21] which requires
2198 time steps and 2% known plaintexts. These
attacks are clearly impractical.

The DES-X alternative is also in popular use due
to its simplicity and almost no speed loss. Thor-
ough analysis of a generic construction is given
in [19] and the best currently known attack is a
slide attack [6] with complexity of n known plain-
texts and 21211987 analysis steps (for example: 233
known plaintexts and memory and 287 analysis
steps).

Alex Biryukov
Christophe De Canniere
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DATA REMANENCE

Data remanence is the ability of computer memory
to retain previously stored information beyond its
intended lifetime. With many data storage tech-
niques, information can be recovered using spe-
cialized techniques and equipment even after it
has been overwritten. Examples:
® Write heads used on exchangeable media (e.g.,
floppy disks, magstripe cards) differ slightly in
position and width due to manufacturing toler-
ances. As a result, one writer might not over-
write the entire area on a medium that had
previously been written to by a different de-
vice. Normal read heads will only give access to
the most recently written data, but special high-
resolution read techniques (e.g., magnetic-force
microscopy) can give access to older data that
remains visible near the track edges.
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Even with a perfectly positioned write head,
the hysteresis properties of ferromagnetic me-
dia can result in a weak form of previous data
to remain recognizable in overwritten areas.
This allows the partial recovery of overwrit-
ten data, in particular with older low-density
recording techniques. Protection measures that
have been suggested in the literature against
such data remanence include encryption, mul-
tiple overwriting of sensitive data with alter-
nating or random bit patterns, the use of spe-
cial demagnetization (“degaussing”) equipment,
or even the physical destruction (e.g., shred-
ding, burning) of media at the end of its life
time.

The CMOS flip-flop circuits used in static RAM
have been observed to retain data for minutes,
at low temperatures in some cases even for
hours, after the supply voltage has been re-
moved [4]. The data remanence of RAM can po-
tentially be increased where memory cells are
exposed to constant data for extended periods
of time or in the presence of ionizing radia-
tion (“burn in”). Protection measures that are
used in some commercial security modules in-
clude sensors for low temperature and ioniz-
ing radiation. These have to be connected to
battery-powered alarm circuits that purge se-
curity RAM instantly in unusual environments.
Another protection technique inverts or rotates
bit patterns every few seconds, to avoid long-
term exposure of memory cells to a constant
value (“RAM saver”).

File and database systems do not physically
overwrite (“purge”) data when it is deleted by
the user, unless special data purging functions
designed for security applications are used.
When objects are deleted, normally their stor-
age area is only marked as available for real-
location. This leaves deleted data available for
recovery with special undelete software tools,
until the time when the respective memory lo-
cation is needed to store new data.

Markus Kuhn
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DAVIES-MEYER
HASH FUNCTION

The Davies—Meyer hash function is a construction
for a hash function based on a block cipher, where
the length in bits of the hash result is equal to the
block length of the block cipher. A hash function
is a cryptographic algorithm that takes input
strings of arbitrary (or very large) length and
maps these to short fixed length output strings.
The Davies—Meyer hash function is an unkeyed
cryptographic hash function which may have the
following properties: preimage resistance, second
preimage resistance and collision resistance;
these properties may or may not be achieved de-
pending on the properties of the underlying block
cipher.

In the following, the block length and key length
of the block cipher will be denoted with n and &
respectively. The encryption with the block cipher
E using the key K will be denoted with Ex(-).

The Davies—Meyer scheme is an iterated hash
function with a compression function that maps
k + n bits to n bits:

H; = Ex,(H_1) & X;. (1)

By iterating this function in combination with
MD-strengthening (see hash functions) one can
construct a hash function based on this compres-
sion function; this hash function is known as the
Davies—Meyer hash function. It has been shown
by Black and Rogaway [1] that in the black-box
cipher model, if £ > n finding a (second) preim-
age requires approximately 2" encryptions and
finding a collision requires approximately 27%/2
encryptions.

In order to achieve an acceptable security level
against (2nd) preimage attacks, the block length
n needs to be at least 80 bits (in 2004); for collision
resistance, the block length should be at least
160 bits (in 2004). This means that this scheme
should not be used with 64-bit block ciphers (e.g.,
CAST-128, Data Encryption Standard (DES),
FEAL, GOST, IDEA, KASUMI/MISTY1); it
should only be used for (2nd) preimage resistance
with 128-bit block ciphers (e.g., Rijndael/AES,
Camellia, CAST-256, MARS, RC6, TWOFISH,

and SERPENT). Very few 256-bit block ciphers
exist; one exception is the 256-bit version of RC6.

It is also important to note that a block cipher
may have properties which pose no problem at all
when they are used only for encryption, but which
may result in the Davies—Meyer construction of
the block cipher to be insecure [3, 4]. A typical
example are the complementation property and
weak keys of DES; it is also clear that the Davies—
Meyer construction based on DES-X is highly inse-
cure. The fact that the key is known to an opponent
may also result in security weaknesses (e.g., differ-
ential attacks of Rijmen and Preneel [5]). Hirose
defines a block cipher secure against a known
plaintext attack for which the Davies—Meyer hash
function is not 2nd preimage resistant [2].

Since there are very few block ciphers with a
256-bit block length, the Davies—Meyer construc-
tion is rarely used to obtain collision resistant
hash functions. However, this construction is very
popular in custom designed hash functions such
as MD4, MD5, and the SHA family. Indeed, the
compression functions of these hash functions are
designed using an internal block cipher struc-
ture; the compression functions are made non-
invertible by applying the Davies—Meyer construc-
tion to these internal block ciphers.

Bart Preneel
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DC NETWORK

The DC-Network is a synchronous network pro-
tocol by which the participants can broadcast
messages anonymously and unobservably (see
anonymity). A DC-Network can achieve sender
and recipient anonymity even against computa-
tionally unrestricted attackers. The DC-Network
protocol itself requires a network with a broad-
cast service. It was invented by David Chaum in

1984 [2—4] (hence the name DC-Network) and was

somewhat re-discovered by Dolev and Ostrovsky

in [5]. Messages can be addressed to one or more
intended participants by encrypting them with
their respective public encryption keys.

The basic DC-Network protocol allows one par-
ticipant at a time to broadcast a message. In or-
der to allow each participant to send at any time,
the broadcast channel of the basic DC-Network
needs to be allocated in a randomized fashion to
all requesting senders. This can be achieved by
well known contention protocols such as (slotted)
ALOHA [8].

Consider the basic DC-Network protocol of n
participants: P;, Ps, ..., P,. Messages are strings
of k& bits. As a preparation, all participants agree
on pairwise symmetric keys, i.e., randomly chosen
bitstrings of & bit length. Let us denote the key
between P, and P; as k; j. Assume participant P,
wants to send a message m anonymously to all
other participants (anonymous broadcast). This
can be achieved by the basic DC-Network proto-
col, which works as follows:

Compute partial sums: Each participant P, (1 <
i < n) computes the XOR sum s; of all the keys
ki j (1 < j < n)it has exchanged with each other
participant P; (j# i), such that s; =3 . ki ;.
Participant P; also adds his message m into his
partial sum such that sy =m + 3 ., ki ;.

Broadcast partial sums: Each participant P
broadcasts its partial sum s;.

Compute global sum: Each participant P,
computes the global sum s=3Y ;s;=m+
> =12z kij=m in order to recover the mes-
sage m. Note that because %; ; = &, all the keys
cancel out leaving only m standing out of the
global sum.

The basic DC-Network protocol is computationally

efficient but requires n reliable broadcasts for each

message, and even more in case of resolving mes-
sage collisions where two or more participants are
sending their messages in the same round.

The basic DC-Network protocol runs on any
network architecture. If all participants are hon-
est, everyone obtains the message m. Chaum
[4] has proved that the basic DC-Network pro-

DC Network 137

tocol achieves sender anonymity and recipient
anonymity even against computationally unre-
stricted attackers. However, the proof for recipi-
ent anonymity implicitly assumes that the partial
sums are broadcast reliably, i.e., each message of
an honest participant is broadcast to all partici-
pants without being modified [9].

DC-Network is the continued execution of the
basic DC-Network protocol. In this case, uncondi-
tional sender anonymity can be maintained only
by using fresh pairwise keys in each round, which
is a similar situation as for the one-time pad (see
key). Waidner has proposed to choose the pairwise
keys for each round of the basic DC-Network pro-
tocol based on a pseudo-random number generator
seeded with a selection of messages exchanged in
previous rounds of the basic DC-Network proto-
col. This is more practical, but results in sender
anonymity that holds only against computation-
ally restricted attackers [9].

The core idea behind the DC-Network is to sub-
stantially involve more participants in each com-
munication than just the intended sender and
recipient in order to conceal their sending and
receiving within the set of participants. This ap-
proach introduces an inevitable vulnerability in
case not all of the participants honestly follow the
protocol. In fact, the service of a DC-Network can
be easily disrupted by one or more cheating par-
ticipants, who either stop sending their partial
sums or sending wrong partial sums or sending too
many messages (denial-of-service attack). Disrup-
tions of the DC-Network have been considered by
Chaum [1], Bos and den Boer [4] and Waidner [9].

The key graph of a DC-Network is the graph
where each participant is represented by a vertex
and each pairwise key k; ; is represented by an
edge connecting the vertices representing P, and
P;. If the key graph is complete as in the exam-
ple above, no coalition of non-senders except all
of them together gains any information about who
sent m. Less complete key graphs can be used in or-
der to reduce the amount of pairwise keys. On the
other hand, the less complete the key graph is cho-
sen, the more vulnerable the basic DC-Network
protocol is against cheating participants who may
collude and exchange their views in and after the
basic DC-Network protocol in order to strip away
the honest participants’ anonymity. Collusions of
cheating participants can be represented in the
key graph by eliminating their mutual pairwise
keys. That is if P, P; are cheating, then we re-
move the key k; ; from the key graph, which may
lead to an unconnected graph. Any participant
represented by an unconnected vertex is entirely
stripped of its anonymity. Such a participant is
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fully observable by the collusion of cheating partic-
ipants. It is worth noting that the key graph can be
chosen independently of the underlying network
topology (ring, star, bus, etc.).

Waidner points out in [9] that reliable broadcast
is probably an unrealistic assumption because it
cannot be achieved by cryptographic means alone
as thereis no byzantine agreement against compu-
tationally unrestricted active attackers who may
arbitrarily control many participants [6]. Further-
more, Waidner has shown how to achieve recipient
anonymity against computationally unrestricted
active attackers by replacing the reliable broad-
cast by a fail-stop broadcast, where honest partic-
ipants stop as soon as they receive inconsistent in-
puts. Fail-stop broadcast can be realized by O(n)
messages, each signed by an unconditionally se-
cure authentication code, or more efficiently by a
fail-stop signature [10].

Interestingly, no widely accepted formal defi-
nitions of sender and recipient anonymity in a
network, i.e., continued transmission service, has
come up yet. Thus, a fully formal treatment of DC-
Network protocols is not possible to date. A new
approach in this direction was proposed by Schnei-
der and Sidiropoulos [7] based on the CSP process
algebra (Communicating Sequential Processes).

Compared to MIX-Networks, DC-Networks
achieve sender anonymity even against computa-
tionally unrestricted active attackers, while MIX
networks only achieve sender anonymity against
computationally restricted attackers.

Gerrit Bleumer
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DEBRUIJN SEQUENCE

A k-ary deBruijn sequence of order n is a se-
quence of period A" which contains each k-
ary n-tuple exactly once during each period.
DeBruijn sequences are named after the Dutch
mathematician Nicholas deBruijn. In 1946 he dis-
covered a formula giving the number of k-ary de-
Bruijn sequences of order n, and proved that it
is given by ((k — 1))F"" . k¥"'=n_ The result was,
however, first obtained more than 50 years ear-
lier, in 1894, by the French mathematician C. Flye-
Sainte Marie.

For most applications binary deBruijn se-
quences are the most important. The number of
binary deBruijn sequences of period 2" is 22" —",
An example of a binary deBruijn sequence of pe-
riod 2% = 16 is {s;} = 0000111101100101. All bi-
nary 4-tuples occur exactly once during a period
of the sequence. In general, binary deBruijn se-
quences are balanced, containing the same num-
ber of 0’s and 1’s in a period, and they satisfy many
randomness criteria, although they may be gen-
erated using deterministic methods. They have
been used as a source of pseudo-random num-
bers and in key-sequence generators of stream
ciphers.



A deBruijn sequence can be generated by a
nonlinear feedback function in n-variables. From
the initial state (sg, s1, ..., s,-1) and a nonlinear
Boolean function f(zg, z1, ..., 2,_1) one can gener-
ate the sequence

st+n = f(st9 St+]_, ceey 3t+n—1),

This can be implemented using an n-stage non-
linear shift register. For example the binary de-
Bruijn sequence above of period 16 = 2* can be
generated by s;.4 = f(s;, S¢11, St 42, S¢+3), using the
initial state (0000) and the Boolean function

(20,21, 22,23) = 1+ 20 + 21 + 212223.

The binary deBruijn graph B, of order n is a
directed graph with 2" nodes, each labeled with
a unique binary n-tuple and having an edge from
node S=(sg,S1,...,8,-1) to T = (¢g, t1, ..., t,_1) if
and only if (s1, s, ..., Sp_1) = (¢0, 1, ..., ty_2). The
successive n-tuples in a deBruijn sequence there-
fore form a Hamiltonian cycle in the deBruijn
graph, meaning that a full cycle visits each node
exactly once.

There are many algorithms for constructing de-
Bruijn sequences. The following is perhaps one of
the easiest to describe. Start with n zeros and ap-
pend a one whenever the n-tuple thus formed has
not appeared in the sequence so far, otherwise ap-
pend a zero. The sequence of length 2¢ = 16 above
is an example of a deBruijn sequence constructed
in this way. It is known that the decision of which
bit to select next can be based on local considera-
tions and storage requirements can be reduced to
only 3n bits.

Any Boolean function fsuch that the mapping

(20,21, .-+ 2n-1) = (21,22, ..., Zn_1,

f(z()a 217 AR ] zn—l))

is a permutation of the set of binary n-tuples is
called a nonsingular Boolean function. It can be
written in the form,

f(zo,21,...,20—1) =20 + 8(21,22, ..., Zn—1)

(mod 2).

The truth table of a Boolean function [(z,
z1,...,2n-1) 1s a list of the values of f(zg, z1, ...,
z,—1) for all binary n-tuples. The weight of the
truth table of fis the number of ones in this list.

Large classes of deBruijn sequences can be con-
structed by starting with a nonsingular Boolean
function f that decomposes the deBruijn graph
into several shorter disjoint cycles and then join-
ing the cycles one by one until one arrives at a de-
Bruijn sequence. To join two cycles one can find an
n-tuple (2o, z1, ..., 2,_1) on a cycle (where we have

fort =0,1,2,....
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(z1,22,...,2n-1, (20,21, ...,2,-1)) on the same cy-
cle) and (z1,292,...,2n-1, 1+ f(20,21,...,2,-1)) OD
a different cycle. Then the two cycles will be joined
after changing(complementing) g(z1, 29, ...,2,-1)
(leading to two changes of the truth table of /).

One common starting function is the non-
singular function corresponding to g =0, i.e,
f(z0,21,...,2,-1) = 20, that is known to decom-
pose B, into the Pure Circulating Register(PCR),
consisting of all cycles of period dividing n.
This is known to contain Z(n) = 13", ¢(d)2"/?
cycles. For n = 4 the PCR consists of the cycles
(0), (1), (01), (0001), (0011), and (0111). Another
popular starting function is the Complemen-
tary Circulating Register(CCR) correspond-
ing to g=1, ie, [f(z0,21,...,2n-1)=20+1
(mod 2). This is known to contain Z*(n)=
32(n) — 3= Y o, $(2d)2* cycles.

Another method to construct deBruijn se-
quences is to use recursive algorithms. There exist
algorithms that take as input two deBruijn se-
quences of period 2"~ and produce a deBruijn se-
quence of period 2".

The linear complexity of a deBruijn sequence is
defined as the length of the shortest linear shift
register that can be used to generate the sequence.
The linear complexity L of a binary deBruijn se-
quence of period 2", n > 3, satisfies the double in-
equality,

2 lyin<L<2'—1.

There exist deBruijn sequences that meet the
upper and lower bounds with equality.

The quadratic complexity of a deBruijn sequence
is the length of the shortest shift register that gen-
erates the sequence where the feedback function f
is allowed to have quadratic terms. The quadratic
complexity @ of a binary deBruijn sequence of pe-
riod 2", n > 3, satisfies the double inequality

n+2§Q§2n—<g>—1.

It is known that for any nonsingular Boolean
function f, the number of cycles that it decomposes
B, into has the same parity as the weight of the
truth table of g. Therefore for a deBruijn sequence
the truth table of g has odd weight. It is further
known that for a deBruijn sequence, the weight w
of the truth table of g obeys,

Zn)—1<w <21 - Z*(n) + 1.

The lower bound can be achieved by starting
with the PCR and joining cycles one at a time un-
til we arrive at a deBruijn sequence. Each joining
step will in this case increase the weight of the
truth table of g by 1. Similarly we can construct
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deBruijn sequences of maximal weight by start-
ing with the CCR and joining the cycles one by
one, each joining step will in this case reduce the
weight of the truth table of g by 1. For valuesn < 7
the number of deBruijn sequences of each possible
weight of the truth table of g is known.

Tor Helleseth
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DECISIONAL DIFFIE-
HELLMAN ASSUMPTION

The difficulty in computing discrete logarithms in
some large finite groups has been the basis for
many cryptographic schemes and protocols in the
past decades, starting from the seminal Diffie—
Hellman key agreement protocol [8], and continu-
ing with encryption and digital signature schemes
with a variety of security properties, as well as
protocols for numerous other applications. Ideally,
we would have liked to prove unconditional state-
ments regarding the computational difficulty in
computing discrete logarithms. However, since the
current state of knowledge does not allow us to
prove such claims, we formulate instead mathe-
matical assumptions regarding the computational
difficulty of this set of problems, and prove prop-
erties of the protocols we develop based on these
assumptions.

A first assumption that is closely related to
the Diffie-Hellman key exchange is the Compu-
tational Diffie-Hellman assumption (see Diffie—
Hellman problem for more detail):

The Computational Diffie-Hellman (CDH)
Problem: Given a group G, a generator g of G,
and two elements ¢ = g*,b = g¥ € G, where x
and y are unknown, compute the valuec = g% ¢
G.

The Computational Diffie-Hellman (CDH)
Assumption: Any probabilistic polynomial
time algorithm solves the CDH problem only
with negligible probability.

Notes:
(1) The probability is taken over the random
choices of the algorithm. The probability is

said to be negligible if it decreases faster than
any inverse polynomial in the length of the
input.

(2) As usual, the algorithm must run in time that
is polynomial in the length of its input, namely
in time that is polylogarithmic in the size of G.
Also, a solution to the CDH problem is an al-
gorithm that works for all inputs. Thus, the
CDH assumption implies that there exists an
infinite sequence of groups G for which no poly-
time algorithm can solve the CDH problem
with probability that is not negligible. (Still,
it is stressed that there exist infinite families
of groups for which the CDH problem is in fact
easy.)

(8) The assumption can be made with respect
either to uniform-complexity or non-uniform
complexity algorithms (i.e., circuit fami-
lies.)

Indeed, the CDH assumption is very basic in
cryptography. However, in many cases researchers
were unable to prove the desired security prop-
erties of protocols based on the CDH assumption
alone. (A quintessential example is the Diffie—
Hellman key exchange protocol itself.) Further-
more, it appears that, at least in some groups, the
CDH assumption captures only a mild flavor of
the intractability of the Diffie—-Hellman problem.
Therefore the Decisional Diffie-Hellman assump-
tion was formulated, as follows:

The Decisional Diffie-Hellman (DDH) Prob-
lem: Given a group G, a generator g of GG, and
three elements a, b, ¢ € G, decide whether there
exist integers x, y such that a = g*, b = g7, and
c=g"v.

The Decisional Diffie-Hellman (DDH) As-
sumption (Version I): Any probabilistic poly-
nomial time algorithm solves the DDH problem
only with negligible probability.

The above formulation of the DDH assumption
treats the problem as a worst-case computational
problem (that is, an algorithm that solves the prob-
lem must work on all inputs. This formalization
provides a useful comparison with the CDH prob-
lem. A much more useful alternative formulation
of the DDH assumption only discusses the case
where the inputs are taken from certain distribu-
tions. It is stated as follows:

The Decisional Diffie-Hellman (DDH) As-
sumption (Version II): The following two dis-
tributions are computationally indistinguish-
able:
®Ggg.g.8”
® Ggg.g.g
where g is a generator of group G and «, y, z are
chosen at random from {1, ..., |G|}.



Note: More formally, the above two distributions
are actually two distribution ensembles, namely
two families of distributions where each distribu-
tion in a family is parameterized by the group G
and the generator g. Recall that two distribution
ensembles are computationally indistinguishable
if, given a set of parameters (in our case, given G
and g), no polytime algorithm can tell whether its
input is drawn from the first ensemble or from the
second. See more details in [10].

This version is useful since it asserts that, even
when g* and g” are known, the value g*¥ appears
to be a “freshly chosen” random and indepen-
dent number for any computationally bounded at-
tacker. This holds in spite of the fact that the value
g% is uniquely determined by g* and g?, thus its
“entropy” (in the information-theoretic sense) is in
fact zero. As shown in [12,14], the two versions of
the DDH assumption are equivalent. (Essentially,
equivalence holds due to the random self reducibil-
ity property of the discrete logarithm problem.)

Clearly, the DDH assumption implies the CDH
assumption. Furthermore, it appears to be consid-
erably stronger. In fact, there are groups where
DDH is clearly false, but CDH may still hold. Still,
there exist groups where DDH is believed to hold,
for instance multiplicative groups of large prime
order. A quintessential example is the subgroup
of size q of Z,, (see modular arithmetic) where p =
2q + 1 and p, q are primes. (In this case the larger
prime p is called a safe prime, and the smaller
prime q is called a Sophie-Germain prime.)

Note: To see an example of a family of groups
where DDH does not hold but CDH may still
hold, consider a group G where it is easy to check
whether an element is a quadratic residue (e.g., let
G = Z, where pis prime and |Z}| = p — 1is even).
Here, the CDH assumption may hold, yet DDH is
false: If the input is drawn from G, g, g%, g%, g
then it is never the case that the last element is
a quadratic non-residue but the preceding two el-
ements are quadratic residues. In contrast, if the
input is taken from G, g, g%, g7, g7 then the above
event happens with significant probability. Other
examples of such groups also exist. Here let us
mention in particular the case of bilinear and mul-
tilinear pairings in Elliptic-Curve groups, which
have been recently shown to be useful in cryptog-
raphy. See identity based cryptosystem and for ex-
ample [3].

SOME APPLICATIONS OF DDH: The DDH as-
sumption proves to be very useful in cryptographic
analysis of protocols. It is immediate to show based
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on DDH that the Diffie-Hellman key exchange
results in a “semantically secure” key, i.e., a key
that is indistinguishable from random. (It is not
known how to prove this statement based on CDH
alone.) Similarly, it implies the semantic security
of ElGamal public key encryption. In addition, it
is used in proving the security of efficient pseudo-
random functions [12], chosen-ciphertext-secure
encryption [6], commitment and zero-knowledge
protocols [7,13], and many more.

VARIANTS OF DDH: The DDH assumption is
only one of many assumptions that can be made on
the intractability of the discrete logarithm prob-
lem. Several variants have been considered in
the literature, some of which are stronger (allow-
ing to prove stronger security properties of pro-
tocols), and some are weaker (and are believed to
hold even in cases where DDH does not). Of the
stronger ones, let us mention variants that allow
the exponents x, y to be chosen from distributions
other than uniform (or even in a semi-adversarial
way) [5]. Other stronger variants are formalized
in [3,9,11]. Of the weaker ones, we mention vari-
ants that give the distinguisher access only to a
hashed version of the last element (either g or
g% eg., [1].

BIBLIOGRAPHIC NOTE: The DDH assumption is
implicit in many early works based on the Diffie—
Hellman problem (starting with [8]). To the best of
our knowledge, it was first formalized by Brands
in [4] (in the context of undeniable signatures). It
was further studied in [12,14] and is widely used
since. For further reading, see Boneh’s survey [2].

Ran Canetti
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DECRYPTION EXPONENT

The exponent d in the RSA private key (n, d). See
RSA public key encryption.

Burt Kaliski

DENIABLE ENCRYPTION

Suppose Alice sends a message to Bob in an
informal chat conversation. If a typical encryp-
tion scheme as the E1Gamal public key encryption
scheme or Rijndael/AES is used, an authority can
ask Alice to reveal what she sent Bob. Indeed, in
the case of ElGamal, when Alice sends (Cy, Cs) =
(g", my") and is forced to reveal her randomness r
used, anybody can obtain m. So, one can view the
ciphertext as some commitment to the message. In
the case of AES, when Alice is forced to reveal the
key she shares with Bob, the authority again can
obtain the message. (Using zero-knowledge, Alice
is not required to reveal the key.)

The goal of deniable encryption [1] is that Alice
can send a private message to Bob, without hav-
ing the ciphertext result in a commitment. This
can be viewed as allowing her to deny having sent
a particular message. A scheme satisfying this
condition is called a sender-deniable encryption
scheme.

There is a similar concern from Bob’s viewpoint.
Can Bob be forced to open the received cipher-
text? Again if the ElGamal public key encryption
scheme is used, then using his secret key, Bob can
help the authority to decipher the message. So,
Bob “cannot deny” having received the message.
A scheme that solves this issue is called a receiver-
deniable encryption scheme.

An example of a sender-deniable scheme ex-
plained informally, works as follows. Suppose
the sender (Alice) and the receiver (Bob) have
agreed on some pseudorandomness, such that
both can distinguish it from true randomness.
When Alice wants to send a message bit 1, she
will send some pseudorandom string, otherwise
she sends true randomness. Since the authority
cannot distinguish the pseudorandom from the
real random, Alice can pretend she sent the op-
posite bit of what she did. For further details,
see [1].

Canetti—-Dwork—Naor—Ostrovsky demonstrated
that a sender-deniable encryption scheme can
be transformed into a receiver-deniable one, as
follows:

Step 1. The receiver (Bob) sends the sender (Alice)
a random r using a sender-deniable encryption
scheme.

Step 2. The sender Alice sends Bob the ciphertext
r & m, where @ is the exor.

A receiver-deniable scheme can also be trans-

formed into a sender deniable one, as explained

in [1].

Yvo Desmedt
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DENIAL OF SERVICE

In the most literal sense, whenever a legitimate
principal is unable to access a resource for any
reason, it can be said that a denial of service has
occurred. In common practice, however, the term
Denial of Service (DoS) is reserved only to refer to
those times when an interruption in availability is
the intended result of a deliberate attack [3]. Of-
ten, especially in the press, DoS is used in an even
more narrow sense, referring specifically to remote
flooding attacks (defined below) against network
services such as web servers. When attempting
to prevent access to a target service, the target
itself can be attacked, or, equally effectively, an-
other service upon which the target depends can
be attacked. For example, to cause a DoS of a web
server, the server program could be attacked, or
the network connection to the server could be at-
tacked instead.

DoS attacks can be categorized as either /lo-
cal Denial of Service attacks or remote Denial of
Service attacks. Local DoS attacks are a type of
privilege escalation, where a principal with legit-
imate access to a service is able to deny others
access to it. In many older UNIX-like operating
systems, for example, when a user goes to change
their password, the system first locks the global
password file before asking the user for their new
password; until the user enters their new pass-
word, the file remains locked and no other users
are able to change passwords. Remote DoS at-
tacks, on the other hand, often require no spe-
cial rights for the attacker, or are against ser-
vices which do not require any authentication at
all. Flooding a web server with millions of re-
quests is an example of a common remote DoS
attack.

Some DoS attacks, referred to as logic attacks
in [7], work by exploiting programming bugs in
the service being attacked, causing it to immedi-
ately exit or otherwise stop responding. Examples
of these types of attacks include the Windows 95
Ping-of-Death, BIND nameserver exit-on-error at-
tacks, and countless buffer overflow attacks which
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crash, but do not compromise,! services. These

kinds of DoS attacks are the easiest to prevent,
since the attack is caused by invalid behavior that
would not be expected from legitimate principals.
By fixing bugs and more carefully filtering out bad
input, these types of DoS attacks can be prevented.
The attacks are also very asymmetric however,
making them very dangerous until all vulnerable
services have been upgraded. With these attacks,
very little effort on the part of the attacker (a sin-
gle malformed message typically) leads to a com-
plete Denial of Service. An attacker with limited
resources is able to quickly cause a great deal of
damage with these attacks.

In contrast, flooding DoS attacks work by con-
suming limited resources on the server. Resources
commonly targeted by these attacks include mem-
ory, disk space, CPU, and network bandwidth.
Simple local DoS attacks such as acquiring and
never releasing a shared lock also fall into this
group. With these attacks, the problem lies in the
rate the attacker does something, not in what they
do. These attacks take a normal, acceptable activ-
ity such as forking a new process or requesting a
web page, and raise it to an attack by performing
the activity to excess.

Because these attacks involve behavior that
would normally be perfectly acceptable, there is
typically no way to tell with certainty that a re-
quest to a service is part of an attack. In some
cases, particularly local DoS attacks, the consump-
tion of resources can be limited by placing caps
on how much of the resource any single user can
consume. Limits can be placed on how much mem-
ory, disk space, or CPU a single user can use, and
timeouts can be set whenever an exclusive lock
is given out. The difficulty with using limits to
prevent these attacks is that if a user needs to
exceed one of these caps for legitimate purposes,
they are unable to; the solution to the first DoS
attack causes a Denial of Service of a different
kind. Because most solutions to flooding attacks
rely on some heuristic to determine when behavior
is malicious, there are always some false positives
which cause the prevention to be a DoS itself.

As with logic attacks, some flooding attacks are
also highly asymmetric. In particular, many stan-
dard protocols (such as IP, TCP (see firewall) and
SSL/TLS (see Secure Socket Layer and Transport
Layer Security)) allow for asymmetric attacks be-
cause they require the service to keep state or
perform expensive computations for the attacker.

1 Technically, if an attack’s primary purpose is to compromise
a service, and, as a side effect, it crashes the service, this is not
considered a DoS attack [3].
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If an attacker begins many protocol sessions but
never completes them, resources can quickly be
exhausted. TCP SYN flood and incomplete IP
fragment attacks both work by exhausting avail-
able buffers within the server’s networking stack.
When beginning SSIL/TLS sessions the server
must perform CPU-intensive public key crypto-
graphy operations which take orders of magni-
tude longer than it takes an attacker to send a re-
quest. To remove the asymmetry of these attacks,
techniques that reduce or remove the state the
server must keep [6] or force the client to perform a
comparable amount of computation [1] have been
proposed.

Flooding attacks which have similar resource
requirements for the attacker and victim comprise
the final group of common DoS attacks. While the
previous attacks described have had an element
of skill to them, finding and exploiting some pro-
gramming error or imbalance in protocol design,
these attacks are nothing more than a shoving
match, with the participant with the most of the
resource in question winning. Smurf attacks and
DNS flooding are well known examples of these
brute-force DoS attacks.

Often, the attacker does not have an excess of
the resource (usually network bandwidth) them-
selves. Instead, to carry out their attack they first
compromise a number of other hosts, turning them
into zombies, and then have their zombies attack
the service simultaneously. This type of attack is
known as a Distributed Denial of Service (DDoS)
attack, and has proven very effective in the past
against a number of popular and very well con-
nected Internet servers such as Yahoo! and eBay.

With all types of remote flooding attacks, if the
source of the flood can be identified, it can be
blocked with minimal disruption to non-attack
traffic. With DDoS attacks, this identification is
the main difficulty, since no single zombie pro-
duces an exceptionally large number of requests.
Blocking the wrong source results in a DoS it-
self. Further complicating identification, many at-
tackers mask themselves by forging, or spoofing,
the source of requests. Traceback techniques [2, 8]
can be used to identify the true source, but their
accuracy degrades as more sources are present.
Egress filtering, which blocks packets from leaving
edge networks if they claim to have not originated
from that network, can prevent spoofing. Unfortu-
nately, all networks must employ egress filtering
before it is an adequate solution. Since most DoS
attacks employ spoofing, Backscatter analysis [7]
actually takes advantage of it, looking at replies
from victims to the spoofed sources to determine
world-wide DoS activity.

Once the true source of a flood has been iden-
tified, filters can be installed to block the attack.
With bandwidth floods in particular, this block-
ing may need to occur close to the attacker in the
network in order to fully block the DoS. This can
either be arranged manually, through cooperation
between network administrators, or automatically
through systems like Pushback [5].

As seen above, many Denial of Service attacks
have no simple solutions. The very nature of
openly accessible services on the Internet leaves
them vulnerable from these attacks. It is an inter-
esting and rapidly evolving type of security attack.
The list of resources at [4] is updated periodically
with pointers to new attacks and tools for protect-
ing services, and makes a good starting point for
further exploring the causes and effects of DoS at-
tacks, and the state of the art techniques in dealing
with them.

Eric Cronin
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DERIVED KEY

A derived key is a key, which may be calculated
(derived) by a well-defined algorithm from a in-
put consisting of public as well as secret data. As
an example, the initial secret data might be a ran-
dom seed, i.e., a string of random bits (see modular
arithmetic), which is then exponentiated modulo,



e.g., an RSA-modulus (say both of length 1024, see
RSA public key encryption), after which the de-
rived key may be the lower 128 bits of the result
R (current seed), which is kept and exponentiated
again for the derivation of the next key. The advan-
tage is that if two parties share the same initial
seed, they may independently of each other calcu-
late identical derived keys by keeping track of the
number of iterations.

Peter Landrock

DESIGNATED CONFIRMER
SIGNATURE

Designated confirmer signatures (or sometimes
simply ‘confirmer signatures’) are digital signa-
tures that can be verified only by some help of a
semi-trusted designated confirmer. They were in-
troduced by Chaum in [3] as an improvement of
convertible undeniable signatures. Unlike an or-
dinary digital signature that can be verified by
anyone who has access to the public verifying key
of the signer (universal verifiability), a designated
confirmer signature can only be verified by engag-
ing in a—usually interactive—protocol with the
designated confirmer. The outcome of the protocol
is an affirming or rejecting assertion telling the
verifier whether the signature has originated from
the alleged signer or not.

The main difference to (convertible) undeni-
able signatures is that the capabilities to pro-
duce signatures and to confirm signatures are laid
into different hands, which has several advan-
tages. Designated confirmer signatures improve
the availability and reliability of the confirma-
tion services for verifiers. Verifiers can rely on
a designated confirmer instead of having to rely
on the signers themselves. The designated con-
firmer can be organized as one or more author-
ities with a higher availability than each signer
can afford to provide, and the designated con-
firmer can provide confirmation services according
to a clearly stated confirmation policy, which can
also be subject to independent audit on a regular
basis. In practice, a designated confirmer would
conceivably contract multiple signers and provide
confirmation services to all their respective veri-
fiers. Another way of increasing the availability of
the confirmation services is by using an undeni-
able signature scheme with distributed provers as
proposed by Pedersen [7]. Another advantage of
designated confirmer signatures is that they alle-
viate the problem of coercable signers. In undeni-
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able signature schemes, the signer may be black-

mailed or bribed to confirm or disavow an alleged

signature. This may be harder to accomplish with

a designated confirmer organized as an authority

with proper checks and balances.

Designated confirmer signatures are a useful
tool to construct protocols for contract signing [1].
The trusted third party in contract signing takes
the role of a designated confirmer. Each partici-
pant produces a designated confirmer signature
of his statement and distributes it to all other par-
ticipants and to the trusted third party. After the
trusted third party has collected the statements
and corresponding designated confirmer signa-
tures from all participants, it converts them into
ordinary digital signatures and circulates them to
all participants according to a predefined policy.
Designated confirmer signatures are also useful to
construct verifiable signature sharing schemes [4].

A designated confirmer signature scheme has
three operations: (i) An operation for generating
double key pairs, one key pair of a private signing
key with a public verifying key and another key
pair of a private confirmer key with a public con-
firmer key, (ii) an operation for signing messages,
and (iii) a confirming operation for proving signa-
tures valid (confirmation) or invalid (disavowal).
The private signing key is known only to the
signer, the private confirmer key is known only to
the confirmer, and the public verifying key as well
as the public confirmer key are publicly accessi-
ble through authenticated channels, e.g., through
a public key infrastructure (PKI). The signing op-
eration is between a signer using the private sign-
ing key and a verifier using the public verifying
key. The verifying operation is between the des-
ignated confirmer using its private confirmer key
and a verifier using the public confirmer key. Fur-
thermore, there is (iv) an individual conversion op-
eration for converting individual designated con-
firmer signatures into ordinary digital signatures,
and (v) a universal verifying operation to verify
such converted signatures.

The characteristic security requirements of a
designated confirmer signature scheme are sim-
ilar to those of a convertible undeniable signature
scheme [2]:

Unforgeability: Resistance against existential
forgery under adaptive chosen message attacks
by computationally restricted attackers.

Invisibility: A cheating verifier, given a signer’s
public verifying key, public confirmer key, a
message, a designated confirmer signature and
oracle access to the signer, cannot decide with
probability better than pure guessing whether
the signature is valid for the message with
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respect to the signer’s verifying key or not. (This

implies non-coercibility as described above.)

Soundness: A cheating designated confirmer
cannot misuse the verifying operation in order
to prove a valid signature to be invalid (non-
repudiation), or an invalid signature to be valid
(false claim of origin).

Non-transferability: A cheating verifier obtains
no information from the confirming operation
that allows him to convince a third party that
the alleged signature is valid or invalid, regard-
less if the signature is valid or not.

Validity of Conversion: A cheating designated
confirmer with oracle access to a signer cannot
fabricate a converted signature valid for a mes-
sage m with respect to the signer’s public veri-
fying key unless that signer has produced a des-
ignated confirmer signature for m before.

Practical constructions have been proposed by
Chaum [3], Okamoto [6], Michels and Stadler [5],
and by Camenisch and Michels [2]. All of them pro-
pose an individual conversion operation, but none
of them discusses a universal conversion opera-
tion analogous to that of convertible undeniable
signatures. Michels and Stadler [5] have dis-
cussed designated confirmer signatures that can
be converted into well known ordinary signatures
such as RSA digital signatures, Schnorr digital
signatures, Fiat and Shamir signatures, or ElGa-
mal digital signatures.

Designated confirmer signatures are a rela-
tively young concept, which have not yet been
blended with other interesting types of sig-
nature schemes such as threshold signatures,
group signatures, or fail-stop signatures.

Gerrit Bleumer
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DES-X (OR DESX)

DES-X is a 64-bit block cipher with a 2 x 64 +
56 = 184-bit key, which is a simple extension of
DES (see Data Encryption Standard). The con-
struction was suggested by Rivest in 1984 in or-
der to overcome the problem of the short 56-
bit key-size which made the cipher vulnerable
to exhaustive key search attack. The idea is just
to XOR a secret 64-bit key K1 to the input of
DES and to XOR another 64-bit secret key K2
to the output of DES: C = K2 ® DESk(P & K1).
The keys K1, K2 are called whitening keys and
are a popular element of modern cipher design.
The construction itself goes back to the work of
Shannon [6, p. 713], who suggested the use of a
fixed mixing permutation whose input and out-
put are masked by the secret keys. This construc-
tion has been shown to have provable security by
Even—Mansour [2] if the underlying permutation
is pseudorandom (i.e., computationally indistin-
guishable from a random permutation). A thor-
ough study of DES-X was given in the work of
Kilian—Rogaway [3], which builds on [2] and uses a
blackbox model of security. Currently, the best at-
tack on DES-X is a known-plaintext slide attack
discovered by Biryukov—Wagner [1] which has
complexity of 232 known plaintexts and 2875 time
of analysis. Moreover the attack is easily con-
verted into a ciphertext-only attack with the same
data complexity and 2% offline time complexity.
These attacks are mainly of theoretical interest
due to their high time complexities. However, the
attack is generic and would work for any cipher F
used together with post- and pre-whitening with




complexity 2+1/2 known plaintexts and 2¢++1/2
time steps (here n is the block size, and % is the key-
size of the internal cipher F). A related key-attack
on DES-X is given in [4]. Best conventional at-
tack, which exploits the internal structure of DES,
would be a linear cryptanalysis attack, using 26!
known plaintexts [3].

Alex Biryukov
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DICTIONARY ATTACK (I)

Dictionary attack is an exhaustive cryptanaly-
sis approach in which the attacker computes
and stores a table of plaintext—ciphertext pairs
(P, C; = Ek,(P), K;) sorted by the ciphertexts C;.
Here the plaintext P is chosen in advance among
the most often encrypted texts like “login:”, “Hello
John”, etc. and the key runs through all the pos-
sible keys K;. If P is encrypted later by the user
and the attacker observes its resulting ciphertext
C;, the attacker may search his table for the corre-
sponding ciphertext and retrieve the secret key K.

The term dictionary attack is also used in the
area of password guessing, but with a different
meaning.

Alex Biryukov
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DICTIONARY ATTACK (II)

A dictionary attack is a password [1] guessing
technique in which the attacker attempts to de-
termine a user’s password by successively trying
words from a dictionary (a compiled list of likely
passwords) in the hope that one of these pass-
word guesses will be the user’s actual password.
In practice, the attacker’s dictionary typically is
not restricted to words from a traditional natural-
language dictionary, but may include one or more
of the following:
® variations on the user’s first or last name, ini-
tials, account name, and other relevant per-
sonal information (such as address and tele-
phone number, pet’s name, and so on);
® words from various databases such as male and
female names, places, cartoon characters, films,
myths, and books;
® spelling variations and permutations of the
above words, such as replacing the letter “o”
with the number “0”, using random capitaliza-
tion, and so on;
® common word pairs.
Dictionary attacks can be quite successful in many
environments because of the tendency of users to
make poor password choices (unfortunately, pass-
words that are easily memorized by a legitimate
user are also easily guessed by an attacker). These
attacks can be performed in online mode (trying
successive passwords until a login is successful) or
offline mode (hashing or encrypting a dictionary of
words and looking for any matches in a copied sys-
tem file of hashed or encrypted user passwords).
Server limits on the number of unsuccessful login
attempts can help to thwart online attacks and the
use of “salt” [see salt] can help to thwart offline
attacks.

Carlisle Adams
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DIFFERENTIAL
CRYPTANALYSIS

Differential cryptanalysis is a general technique
for the analysis of symmetric cryptographic
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primitives, in particular of block ciphers and hash
functions. It was first publicized in 1990 by Biham
and Shamir [3, 4] with attacks against reduced-
round variants of the Data Encryption Standard
(DES) [14], and followed in 1991 by the first attack
against DES which was faster than exhaustive
key search [6].

Let P be a plaintext, and let C be the cor-
responding ciphertext encrypted under the (un-
known) key K, such that C = Ex(P). Let P* be a
second plaintext, and let C* be the corresponding
ciphertext under the same (unknown) key K, C* =
Ex(P*). We define the difference of the plaintexts
as P’ = P ® P*, and the difference of the cipher-
texts as C' = C & C*. Also for any intermediate
data X during encryption (for example, the data
after the third round, or the input to some opera-
tion in the fifth round), let the corresponding data
during the encryption of P* be denoted by X*, and
let the difference be X' = X ¢ X*.

Differential cryptanalysis studies the differ-
ences, usually by means of exclusive-or (XOR), as
they evolve in the various rounds and various oper-
ations of the cipher. Linear and affine operations
do not affect the differences, or affect the differ-
ences in a predictable way: bit-permutation op-
erations (that reorder the bits of the data X to
P(X)) reorder the differences in the same way (i.e.,
to P(X') = P(X) ® P(X*)); selections (that select
some of the bits of the data) also select the bits
of the differences; and XOR operations of two val-
ues X @Y, also XOR the differences of the values
to X Y =(XY)® (X*®Y*). Animportant ob-
servation is that mixing subkeys into the data
may be discarded by means of differences: if the
mixing of subkeys to the data is performed us-
ing an XOR operation by Y = X @ K, then in the
second encryption it is Y* = X* @ K, and the out-
put difference of the key mixingis Y =Y ® Y* =
(X® K)o (X*® K) = X, which is independent of
the subkey. Key mixings may thus be ignored in
the predictions of the differences.

For non-linear operations (such as S boxes) we
can also study the evolvement of the differences.
Certainly, when the difference of the input is 0,
the two inputs are equal, and thus also the two
outputs are equal, having a difference 0 as well.
When the input difference is nonzero, we cannot
predict the output difference, as it may have many
different output differences for any input differ-
ence. However, it is possible to predict statistical
information on the output difference given the in-
put difference. Take for example S box S1 of DES.
This S box has 6 input bits and 4 output bits.
For each input difference X' there are 64 possi-
ble pairs of inputs with this difference (for any

possible input X, the second input is computed
by X* = X @ X'). These 64 pairs may have vari-
ous output differences. The main observation is
that the output differences are not distributed uni-
formly. For example, for the input difference 34,
(the subscript x denotes that the number is in
hexadecimal notation), no pair has output differ-
ence 0, nor 5 nor 6, and several other output dif-
ferences; two pairs have output difference 4, eight
pairs have output difference 1, and 16 of the 64
pairs with this input difference have output dif-
ference 2. For this input difference, a cryptanalyst
can thus predict with probability 1/4 that the out-
put difference is 2. A difference distribution table
of an S box (or operation) is a table that lists the
number of pairs which fulfill the input and out-
put differences for each possible input and output
differences, where the rows denote all the possi-
ble input differences, the columns all the output
differences, and each entry contains the number
of pairs with the corresponding differences. In the
example above, the difference distribution table of
S1 of DES has value 16 in row 34, column 2.

Differential cryptanalysis defines characteris-
tics that describe possible evolvements of the dif-
ferences through the cipher. Each characteristic
has a plaintext difference for which it predicts the
differences in the following rounds. A pair of plain-
texts for which the differences of the plaintexts
and the intermediate data (when encrypted under
the used key) are exactly as predicted by the char-
acteristic are called right pairs (all other pairs are
called wrong pairs). The probability that a char-
acteristic succeeds to predict the differences (i.e.,
that a random pair is a right pair, given that the
plaintext difference is as required by the charac-
teristic) depends on the probabilities induced by
the input and output differences for each S box
(or each operation), where the total probability is
the product of the probabilities of the various op-
erations (assuming that the probabilities are inde-
pendent, which is usually the case; otherwise the
product is usually a good approximation for the
probability).

Given the expected difference for the intermedi-
ate data before the last round (or more generally
in some round near the end of the cipher), it may
be possible to deduce the unknown key by a sta-
tistical analysis. The attack is a chosen plaintext
attack that is performed in two phases: In the data
collection phase the attacker requests encryption
of a large number of pairs of plaintexts, where the
differences of all the plaintext pairs are selected
to have the plaintext difference of the character-
istic. In the data analysis phase the attacker then
recovers the key from the collected ciphertexts.




Assume that the probability of the characteristic
is p (i.e., a fraction p of the pairs are expected to
be right pairs). It is then expected that for a frac-
tion p of the pairs, the difference of the data before
the last round is as predicted by the characteristic.
An (inefficient) method for deriving the subkey of
the last round is then to try all the possibilities
of the subkey of the last round. For each possible
subkey partially decrypt all the ciphertexts by one
round, and for each pair compute the differences
of the data before the last round, by XORing the
data resulting from the partial decryptions. For
wrong guesses of the subkey it is expected that
the difference predicted by the characteristic ap-
pears rarely, and for the correct value of the sub-
key it is expected that this difference appears for
a fraction p or more of the pairs (as there is a frac-
tion of about p of right pairs that are assured to
suggest this difference, and as wrong pairs may
also suggest this difference). In particular, if the
probability p is not too low, it is expected that the
correct subkey is the one which gives the expected
difference most frequently. It should be noted that
the derivation of the last subkey is usually much
more efficient than (but equivalent in results to)
this described algorithm, using the information of
the input and output differences for each S box
(or operation) in the last round. It should also be
noted that in many cases characteristics shorter
by more than one round than the cipher (usually
up to three rounds shorter) can also be used for
differential attacks.

Differential cryptanalysis usually requires a
small multiple of 1/p pairs of chosen plaintexts,
when using a characteristic with probability p,
in order to ensure that sufficiently many right
pairs appear in the data. This amount of encrypted
data may be very large (about 247 chosen plaintext
blocks in the case of DES), making the complexity
of the data collection phase larger than the com-
plexity of the data analysis phase in most cases.
The large number of chosen plaintexts may by it-
self make the attack impractical, as it transfers
the responsibility of computing the major part of
the attack from the attacker to the attacked party,
who is required to encrypt a large number of cho-
sen plaintexts for the attacker to be able to mount
his attack. It is therefore common in such cases to
quote the complexity of a differential attack to be
the number of required chosen plaintexts.

After the publication of the differential crypt-
analysis attack on DES, whose complexity is 247
(it requires 247 chosen plaintexts and the time of
analysis is less than 24°), IBM announced that
they were aware of differential cryptanalysis when
they designed DES, and actually designed it to
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withstand differential attacks. Moreover, differen-
tial attacks (to which they called the T' method)
were classified as top secret for purposes of US
national security, and IBM were requested by the
NSA not to publish any information on them.

There are various improvements of differential
cryptanalysis aimed to reduce the complexity of
differential attacks. One simple method is a combi-
nation of several characteristics in a single larger
structure. In case two characteristics are used,
such a structure is called a quartet. It contains
four plaintexts of the form P, P& Ql, P& Q2
P @ Q1 & Q2, for the plaintexts differences Q2 and
Q2. It can easily be seen that in such a quartet
each difference appears twice: the first difference
appears as the difference of the first two plain-
texts, and also as the difference of the other two
plaintexts; the second difference appears as the
difference of the first and third plaintexts, and also
as the difference of the second and fourth plain-
texts. Thus, a total of four pairs are contained in
a quartet; without using quartets only two pairs
are contained in the same number of plaintexts.
Larger structures of eight plaintexts using three
different characteristics contain 12 pairs. Such
structures are useful when there are several high-
probability characteristics that can be used for an
attack, as if the second best characteristic has a
relatively low probability, the benefit of getting
pairs with such a difference is quite low.

Another improvement (which was also men-
tioned in the original publication on differential
cryptanalysis) is using an extended form of differ-
ences, in which not all the bits of the difference
are fixed. This type of differences was later called
truncated differences [10]. An important type of
truncated differences (in most cases truncated dif-
ferences refer to this type) is the word-wise trun-
cated differences. Word-wise truncated differences
are differences in which the difference itselfis not
considered, but instead the differences are divided
into two classes, namely zero differences and non-
zero differences. In these cases the data blocks
are divided to words (either 8-bit bytes, or 16-bit
words, or words of a different size depending on
the native structure of the cipher), and the anal-
ysis only considers whether the difference of a
word is expected to be zero or not. Such consid-
eration is useful when non-zero differences evolve
to other (unknown in advance) non-zero differ-
ences, so that the information on the zero/non-
zero difference evolve through many rounds of the
cipher.

A third extension defines non-XOR differences,
such as subtraction of integers (useful for cases
where the native operation in the cipher is
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addition), or differences of division modulo a prime
(useful for cases where the native operation in the
cipher is multiplication modulo a prime, such as
in IDEA [11]). Also a combination of different dif-
ferences for different parts of the block, or for dif-
ferent rounds of the cipher is considered. For such
cases, difference distribution tables where the in-
put differences are defined with one operation and
the output differences with another, are very use-
ful (especially when the operation natively trans-
forms one operation to another, such as in cases of
exponentiation S boxes, or logarithm S boxes).

Higher-order differences [12] consider deriva-
tives of a second or a higher order. Higher-order
differences are shown successful in several cases
where differential cryptanalysis is not applicable
due to low probabilities of characteristics; in some
of these cases higher-order differences prove the
most successful attack. However, higher-order at-
tacks are successful mainly against ciphers with
a small number of rounds.

It was also observed that in most differential
attacks, the intermediate differences predicted by
the characteristics are not used, and thus can be
ignored [11]. In such cases, the considered dif-
ferences are only the plaintext differences and
the difference after the final round of the char-
acteristic. In most cases there are many different
characteristics with the same plaintext difference
and the same final difference; these characteris-
tics sum up to one differential, whose probability
is the sum of their probabilities.

The major method for protection against differ-
ential cryptanalysis is by bounding the probabil-
ity of the best characteristic (or differential) to be
very low. Whenever the designer wishes to prove
that differential cryptanalysis is not applicable,
he bounds the probability p of the best character-
istic (or differential) such that 1/p is larger than
the required complexity, or even larger than the
size of the plaintext space (in which case even
choosing the whole plaintext space is not sufficient
for mounting an attack). These bounds were for-
malized into various theories of provable security
against differential cryptanalysis.

A specially interesting theory for provable se-
curity against differential cryptanalysis (and also
linear cryptanalysis) is the theory of decorrela-
tion [16], which makes it possible to prove security
of block ciphers against certain (restricted) kinds
of attacks, including basic variants of differential
and linear cryptanalysis.

Although the usual claims for security against
differential cryptanalysis say that the probabil-
ities of the highest-probability differentials are
very low, and thus differential attacks require

a huge amount of data and complexity, it was
observed that even differentials with probability
zero (i.e., that cannot occur—there are no right
pairs under any key) can be used for attacks [1,9].
This kind of attacks is called differential crypt-
analysis using impossible differentials (or shortly
impossible cryptanalysis). The main idea is to se-
lect a large set of pairs with the plaintext differ-
ence of an impossible differential with n — 1 (or
slightly less) rounds, where n is the number of
rounds of the block cipher, and to try all the pos-
sible subkeys of the extra round(s). If it appears
that for some value of the subkey, decryption of
the ciphertexts by one round (or the few rounds)
leads to the impossible difference in any one of
the pairs, then we are assured that the subkey is
wrong, and thus can be discarded. After discarding
sufficiently many subkeys, the attacker reduces
his list of possible values of the subkeys to a short
list (or even to one subkey), and he is assured that
the correct subkey is in the list. Depending on the
design of the cipher and the key schedule, for some
ciphers it would be more efficient to try reducing
the number of possible subkeys to 1 (i.e., only the
correct subkey), while for others it would be more
efficient to reduce the size of the short list to some
larger size, and then perform an exhaustive search
of the remaining possible keys.

There are also attacks that use differentials as
their building blocks, while combining differen-
tials in various ways. The most promising ones
are boomerang [17], amplified boomerang [8], and
rectangle [2] attacks. The main idea in all these at-
tacks are the combination of four plaintexts, which
for simplicity of description we assume are located
on the corners of a square, where one short differ-
ential is used in both pairs for the first few rounds
(the horizontal edges), while a second short differ-
ential is used for the rest of the rounds but on the
orthogonal pairs (the vertical edges). Although the
probabilities of the total structure are p?q? where
p and ¢ are the probabilities of the two differen-
tials, it appears that it is much easier in various
cases to find good short differentials, than to find
one full differential of a comparable probability.

Although differential cryptanalysis is basically
a chosen plaintext attack (as the attacker needs
to choose the plaintext differences), the attacker
usually does not need to choose the exact values
of the plaintexts. This observation allows conver-
sion of chosen plaintext differential cryptanaly-
sis attacks into known plaintext attacks [3], using
the fact that in a sufficiently large set of random
plaintexts there are many pairs whose difference
is as required by the chosen plaintext attack. Once
these pairs of plaintexts are identified, the original



chosen plaintext attack may be performed on these
pairs. This variant usually requires a huge num-
ber of known plaintexts, which is about vm2n+1
where n is the size of the plaintext in bits and m is
the number of chosen plaintext pairs required by
the chosen plaintext attack. On some ciphers this
is the best published known-plaintext attack.

In some cases it is also possible to convert dif-
ferential cryptanalysis to ciphertext-only attacks.
For more information on these conversions see [7].

Differential cryptanalysis was originally devel-
oped on FEAL-8 [13,15], a block cipher which was
claimed to be faster and more secure than DES.
It was then generalized and extended to DES and
other schemes. Feal-8 was broken using a few hun-
dred chosen plaintexts. Given the corresponding
ciphertexts, it takes less than a minute on a per-
sonal computer to recover the key [5]. The first
results on DES [4] showed that DES reduced to
15 rounds was vulnerable to a differential attack,
while the full 16-round DES required 25 chosen
plaintexts for a successful attack, whose genera-
tion is slower than exhaustive search. In the fol-
lowing year an improvement of the technique was
invented [6]. The main trick in the improved at-
tack was the ability to receive the first round for
free, using large specially designed structures, set-
ting the characteristic from the second round on.
This improvement made it possible to apply the
15-round attack on the full 16 rounds. Another im-
provement allowed to find the key when the first
right pair is analyzed, rather than to wait till suffi-
ciently many right pairs are found. This improve-
ment is applicable when the attack considers all
the key bits (or almost all the key bits) in a sin-
gle counting phase. As a result, the improved at-
tack could analyze the full 16-round DES given 247
chosen plaintext and their corresponding cipher-
texts, whose complexity of analysis was smaller
than 240,
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DIFFERENTIAL-LINEAR
ATTACK

Differential-Linear attack is a chosen plaintext
two-stage technique of cryptanalysis (by analogy
with two-stage rocket technology) in which the
first stage is covered by differential cryptanalysis,
which ensures propagation of useful properties
midway through the block cipher. The second
stage is then performed from the middle of
the cipher and to the ciphertext using linear
cryptanalysis. The technique was discovered and
demonstrated on the example of 8-round DES
(see Data Encryption Standard) by Langford and
Hellman [4]. Given a differential characteristic
with probability p for the rounds 1,...,i and the
linear characteristic with bias q for the rounds
i+1,..., R, the bias of resulting linear approx-
imation would be 1/2 4+ 2pg? and the data com-
plexity of the attack will be O(p~2q~%) [3, p. 65].
Thus the attack would be useful only in special
cases when there are good characteristics or linear
approximations half-way through the cipher, but
no good patterns for the full cipher. Their attack
enhanced with such refinements as packing data
into structures and key-ranking (or list decoding)
can recover 10-bits of the secret key for 8-round
DES using 512 chosen plaintexts. In [1] the same
technique is used to break 8-round FEAL with 12
chosen plaintexts and expensive analysis phase.
Further applications and refinements of the tech-
nique are given in [2].
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DIFFERENTIAL POWER
ANALYSIS

Differential Power Analysis utilizes power con-
sumption of a cryptographic device such as a
smartcard as side-channel information. In Simple
Power Analysis (SPA) an attacker directly ob-
serves a device’s power consumption. It is known
that the amount of power consumed by the device
varies depending on the data operated on and the
instructions performed during different parts of
an algorithm’s execution. Define a power trace as
a set of power consumption measurements during
a cryptographic operation. By simply examining
power traces, it is possible to determine major
characteristic details of a cryptographic device
and the implementation of the cryptographic algo-
rithm being used. SPA can therefore be used to dis-
cover implementation details, such as DES rounds
(see Data Encryption Standard) and RSA opera-
tions (see RSA public key encryption). Moreover,
SPA can reveal differences between multiplication
and squaring operations, which can be used to
recover the private key in RSA implementations.
SPA can also reveal visible differences within
permutations and shifts in DES implementations,
which might lead to recovering the secret DES
key.

While SPA attacks use primarily visual inspec-
tion to identify relevant power fluctuations, Dif-
ferential Power Analysis (DPA) exploits character-
istic behavior (e.g., power consumption behavior
of transistors and logic gates) [2]. DPA uses an
attacking model and statistical analysis to ex-
tract hidden information from a large sample of
power traces obtained during “controlled” crypto-
graphic computations. In case of SPA, direct ob-
servations of a device’s power consumption would
not allow identifying the effects of a single tran-
sistor switching. The use of statistical methods
in a controlled DPA environment allows iden-
tifying small differences in power consumption,
which can be used to recover specific information




such as the individual bits in a secret key.
This means secret key material can be recovered
from tamper-resistant devices such as smartcards
(smartcard tamper resistance). To execute an at-
tack based on DPA, an attacker does not need to
know as many details about how the algorithm is
implemented.

The basis of a DPA attack is the use of an
abstract model based on the power consumption
characteristics of the logic that includes the noise
components. When measuring the power con-
sumption, various noise components are superim-
posed on the power traces. The main noise sources
are external, intrinsic, quantization and algorith-
mic noise. Intrinsic and quantization noise are
small compared to the power consumption. The ex-
ternal noise can be reduced by careful use of the
measurement equipment. The algorithmic noise
can be averaged out by the DPA strategy itself.
To reduce the influence of noise in DPA one can
increase the number of samples required to detect
variations. Analysis can take place in the time and
frequency domain.

The basis DPA technique is as follows. Assume
that a sufficient number N of random power traces
have been collected (e.g., N samples of cipher-
texts obtained using the same encryption key).
Each power trace is a collection of power samples
PS(n, t), which represent the power consumption
at time ¢ in trace n as the sum of the power dis-
sipated by all circuitry. In practice, the number
of measurements ¢ in each power trace depends
on the sampling rate and the memory capacity as
well as the duration of the cryptographic opera-
tion. Next, partition the power samples PS(n, )
into two sets Sy and S; according to the outcome
0 or 1 of a partitioning or discrimination function
D. The outcome value of the partitioning function
D can be simply the value of a specific ciphertext
bit. In general, the size of set Sy will be roughly
the same as the size of S;. Next, compute the av-
erage power signal for each set Sat time ¢. By sub-
tracting the two averages, we obtain the DPA bias
signal B(t). Selecting an appropriate D-function
will result in a DPA bias signal that an attacker
can use to verify guesses of the secret key. The
D-function is chosen such that at some point dur-
ing implementation the device needs to calculate
the value of this bit. When this occurs or any time
data containing this bit is manipulated, there will
be a slight difference in the amount of power dis-
sipated depending on whether this bit is a zero
or a one. Let € denote this difference, and the in-
struction manipulating the D-bit occurs at time
t’, then the value ¢ is equal to the expectation
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difference

E[S|(D=0)]—-E[S|(D=1)], fort =t

When ¢ # ¢’ the device is manipulating bits other
than the D-bit, and assuming that the power
dissipation is independent of the D-bit, the differ-
ence in expectation of the two sets equals zero for
sufficiently large N. Thus the bias function B(¢)
will show power spikes of height € at times ¢’ and
will appear flat at all other times. If the proper
D-function was chosen, the bias signal will show
spikes whenever the D-bit was manipulated and
otherwise the resulting B(¢) will not show any
bias. Using this approach an attacker can verify
guesses for the hidden key bit information using
the D-function. Repeating this approach for dif-
ferent D-bits, the secret key can be obtained bit by
bit.

Variants or improvements of the classical DPA
attack exist that use signals from multiple
sources, use different measuring techniques, com-
bine signals with different temporal offsets, use
specific and more powerful differential functions,
and apply more advanced signal processing func-
tions and models. To enlarge the peak, a multiple-
bit attack can be used.

A DPA attack involves hundreds to thousands
of samples. After processing and statistical analy-
sis, the DPA process can reconstruct the full secret
or private key within several minutes. The whole
process is easy to implement and requires only
standard measurement equipment, which cost lies
between a few hundred to a few thousand dollars.
DPA attacks are non-invasive, which makes them
difficult to detect. DPA requires little or no infor-
mation about the target device and can be auto-
mated. DPA and SPA has successfully been ap-
plied to attack a large number of smartcards and
PCMCIA cards [3]. See [1] for an approach how to
counteract Power Analysis attacks.
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DIFFIE-HELLMAN
KEY AGREEMENT

The Diffie—-Hellman protocol is a type of key agree-
ment protocol. It was originally described in Diffie
and Hellman’s seminal paper on public key cryp-
tography.

This key agreement protocol allows Alice and
Bob to exchange public key values, and from these
values and knowledge of their own corresponding
private keys, securely compute a shared key K, al-
lowing for further secure communication. Know-
ing only the exchanged public key values, an eav-
esdropper is not able to compute the shared key.

As a preamble to the protocol, the following pub-
lic parameters are assumed to exist (see Number
Theory): a large prime number p such that dis-
crete logarithms in the multiplicative group of in-
tegers from 1 to p — 1 (Z;) are intractable; and a
generator g of Z;. Alice randomly selects a value
0 < a < p—1 and computes r = g% mod p. Alice
sends r to Bob. Similarly, Bob selects a value 0 < b
< p — 1 and computes s = g” mod p. Bob sends s to
Alice. Given a and s, Alice computes K = s* mod
p =g (mod p). Similarly, given b and r, Bob com-
putes K = r® mod p = g% (mod p). Thus, Alice and
Bob are able to compute the same key value, K.

Now consider the information available to an
eavesdropper. This includes g, p,r and s. Thus,
the eavesdropper must attempt to compute K =
g% (mod p) given g mod p and g® mod p. This is
known as the decisional Diffie—Hellman problem
and for appropriately chosen g and p, it is believed
to be very difficult to solve.

Several variations to this simple protocol exist
(see Key Agreement). Of particular note is the fact
that the above protocol does not provide for the
authentication of Alice and Bob. The Station-to-
Station protocol provides one variation to this pro-
tocol that authenticates Alice and Bob.

Mike Just
Refferences

[1] Menezes, Alfred, Paul van Oorschot, and Scott
Vanstone (1997). Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton.

[2] Stinson, Douglas R. (1995). Cryptography: Theory
and Practice. CRC Press, Boca Raton.

DIFFIE-HELLMAN
PROBLEM

In their pioneering paper Diffie and Hellman [15]
proposed an elegant, reliable, and efficient way to
establish a common key between two communicat-
ing parties. In the most general settings their idea
can be described as follows (see Diffie—Hellman
key agreement for further discussion). Given a
cyclic group G and a generator g of G, two com-
municating parties Alice and Bob execute the fol-
lowing protocol:

® Alice selects secret x, Bob selects secret y;

® Alice publishes X = g*, Bob publishes Y = g7;
® Alice computes K = Y*, Bob computes K = X”.

Thus at the end of the protocol the values
X =g* and Y = g% have become public, while the
value K = Y* = XY = g supposedly remains pri-
vate and is known as the Diffie-Hellman secret key.

Thus the Diffie—Hellman Problem, DHP, with re-
spect to the group G is to compute g*¥ from the
given values of g* and g?.

Certainly, only groups in which DHP is hard are
of cryptographic interest. For example, if G is an
additive group of the residue ring Z,, modulo m,
see modular arithmetic, then DHP is trivial: using
additive notations the attacker simply computes
x = X/g (mod m) (because g is a generator of the
additive group of Z,,, we have ged(g, m) = 1) and
then K = xY (mod m).

On the other hand, it is widely believed that us-
ing multiplicative subgroups of the group of units
Z;, of the residue ring Z,, modulo m yields exam-
ples of groups for which DHP is hard, provided
that the modulus m is carefully chosen. This be-
lief also extends to subgroups of the multiplica-
tive group F; of a finite field F; of g elements. In
fact these groups are exactly the groups suggested
by Diffie and Hellman [15]. Although, since that
time the requirements on the suitable groups have
been refined and better understood, unfortunately
not too many other examples of “reliable” groups
have been found. Probably the most intriguing
and promising example, practically and theoret-
ically, is given by subgroups of point groups on
elliptic curves, which have been proposed for this
kind of application by Koblitz [24] and Miller [36].
Since the original proposal, many very important
theoretical and practical issues related to using
elliptic curves in cryptography have been investi-
gated, see [2,17]. Even more surprisingly, elliptic
curves have led to certain variants of the Diffie—
Hellman schemes, which are not available in sub-
groups of Fs or Z;,, see [5, 22, 23] and references
therein.




DirFiIE-HELLMAN AND DISCRETE LOGA-
RITHM PROBLEMS: It is immediate that if one
can find x from the given value of X = g*, that is,
solve the discrete logarithm problem, DLP, then
the whole scheme is broken. In fact, in our example
of a “weak” group G, this is exactly DLP which
can easily be solved. Thus DHP is not harder than
DLP. On the other hand, the only known (theo-
retical and practical) way to solve DHP is to solve
the associated DLP. Thus a natural question arises
whether DHP is equivalent to DLP or is strictly
weaker. The answer can certainly depend on the
specific group G.

Despite a widespread assumption that this in-
deed is the case, that is, that in any crypto-
graphically “interesting” group DHP and DLP
are equivalent, very few theoretical results are
known. In particular, it has been demonstrated
in [6, 31, 32] that, under certain conditions, DHP
and DLP are polynomial time equivalent. How-
ever, there are no unconditional results known in
this direction.

Some quantitative relations between complexi-
ties of DHP and DLP are considered in [13].

CRYPTOGRAPHICALLY INTERESTING GROUPS:
As we have mentioned, the choice of the group G is
crucial for the hardness of DHP (while the choice
of the generator g does not seem to be important at
all). Probably the most immediate choiceis G = [y,
thus g is a primitive element of IF,. However, one
can work in a subgroup of F; of sufficiently large
prime order ¢ (but still much smaller than ¢ and
thus more efficient) without sacrificing the secu-
rity of the protocol. Indeed, we recall that based on
our current knowledge we may conclude that the
hardness of DLP in a subgroup G C F} (at least for
some most commonly used types of fields; for fur-
ther discussion see discrete logarithm problem) is
majorised
1. by ¢Y2? where ¢ is the largest prime divisor of
#G, see [35,44];
2. by L,[1/2, 2Y/?] for a rigorous unconditional al-
gorithm, see [37];
3. by L, [1/3,(64/9)"/3] for the heuristic number
field sieve algorithm, see [39,40],
where as usual we denote by L.[t,y]
L-notation) any quantity of the form

(see

L.[t, y] = exp((y +0(1)) Jog x) (loglog x)*~%).

It has also been discovered that some special
subgroups of some special extension fields are
computationally more efficient and also allow one
to reduce the information exchange without sac-
rificing the security of the protocol. The two most
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practically and theoretically important examples
are given by LUC, see [3,43], and XTR, see [26—28],
protocols (see, more generally, subgroup crypto-
systems). Despite several substantial achieve-
ments in this area, these results are still to be
better understood and put in a more systematic
form [10].

One can also consider subgroups of the residue
ring Z} modulo a composite m > 1. Although they
do not seem to give any practical advantages (at
least in the original setting of the two party key
exchange protocol), there are some theoretical re-
sults supporting this choice, for example, see [1].

The situation is more complicated with sub-
groups of the point groups of elliptic curves, and
more generally of abelian varieties. For these
groups not only the arithmetic structure of the
cardinality G matters, but many other factors also
play an essential role, see [2,17,19, 20,25, 34, 38]
and references therein.

Bir SECURITY OF THE DIFFIE-HELLMAN
SECRET KEY: So far, while there are several
examples of groups in which DHP (like DLP) is
conjectured to be hard, as with other areas of cryp-
tography, the security relies on unproven assump-
tions. Nevertheless, after decades of exploration,
we have gained a reasonably high level of confi-
dence in some groups, for example, in subgroups of
[,. Of course, this assumes that p and #G are suf-
ficiently large to thwart the discrete logarithm at-
tack. Typically, nowadays, pis at least about 1024
bits, #G is at least about 160 bits. However, af-
ter the common key K = g* is established, only a
small portion of bits of K will be used as a common
key for some pre-agreed symmetric cryptosystem.

Thus, a natural question arises: Assume that
finding all of K is infeasible, is it necessarilly in-
feasible to find certain bits of K?

In practice, one often derives the secret key from
K via a hash function but this requires an addi-
tional function, which generally must be modeled
as a black box. Moreover, this approach requires a
hash function satisfying some additional require-
ments which could be hard to prove uncondition-
ally. Thus the security of the the obtained private
key relies on the hardness of DHP and some as-
sumptions about the hash function. Bit security
results allow us to eliminate the usage of hash
functions and thus to avoid the need to make any
additional assumptions.

For G =F;, Boneh and Venkatesan [8] have
found a very elegant way, using lattice basis reduc-
tion (see lattices), to solve this question in the affir-
mative, see also [9]. Their result has been slightly
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improved and also extended to other groups
in [21]. For the XTR version of DHP it has recently
been done in [30]. The results of these papers can
be summarized as follows: “error-free” recovery
of even some small portion of information about
the Diffie-Hellman secret key K = g is as hard
as recovering the whole key (cf. hard-core bit).
Including the case where the recovering al-
gorithm works with only some non-negligible
positive probability of success is an extremely im-
portant open question. This would immediately
imply that hashing K does not increase the se-
curity of the secret key over simply using a short
substring of bits of K for the same purpose, at least
in an asymptotic sense.

It is important to remark that these results
do not assert that the knowledge of just a few
bits of K for particular (g% g”) translates into the
knowledge of all the bits. Rather the statement
is that given an efficient algorithm to determine
certain bits of the common key corresponding to
arbitrary g* and g?, one can determine all of the
common key corresponding to particular g* and g7.

Another, somewhat dual problem involving
some partial information about K is studied
n [41]. It is shown in [41] that any polynomial
time algorithm which for given x and y produces a
list £ of polynomially many elements of #G where
K =g € L, can be used to design a polynomial
time algorithm which finds K unambiguously.

NUMBER THEORETIC AND ALGEBRAIC PROP-
ERTIES: As we have mentioned, getting rigorous
results about the hardness of DHP is probably in-
feasible nowadays. One can however study some
number theoretic and algebraic properties of the
map K : G x G — G given by K(g*, g¥) = g. This
is of independent intrinsic interest and may also
shed some light on other properties of this map
which are of direct cryptographic interest.

For example, many cryptographic protocols are
based on the assumption of hardness of the deci-
sional Diffie-Hellman problem, DDHP, rather
than DHP itself. Roughly speaking, DDHP is the
problem of deciding whether a triple (v, v, w) € G®
of random elements of G is of the form (g*, g%, g%)
for some x and y. Clearly, DDHP is no harder
than DHP, and it is believed that in fact it is no
easier, see [4]. Unfortunately there are no viable
approaches to a proof of this conjecture. Motivated
by this problem, in the series of works [11,12, 18]
several “statistical” results have been established,
which show that if G is a sufficiently large sub-
group of F}, then at least statistically the triples
(g, g%, g") behave as triples of random elements.

One can also study algebraic properties of the
set of points (g*,g”,g%) or even just (g% g*)
(which corresponds to the “diagonal” case x =
y). In particular one can ask about the degree
of polynomials F for which F(g*, g% g%) =0 or
F(g*, g¥)=g%or F(gx,gxz) =0or F(g*) =gx2 for
all or “many” x,y € G. Certainly it is intuitively
obvious that such polynomials should be of very
large degree and have a complicated structure.
It is useful to recall the interpolation attack on
block ciphers which is based on finding polyno-
mial relations of similar spirit. It has been shown
in [14] (as one would certainly expect) that such
polynomials are of exponentially large degree, see
also [42]. Several more results of this type can also
be found in [16,33,45].

Igor E. Shparlinski
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DIGITAL SIGNATURE
SCHEMES

Digital signature schemes are techniques to as-
sure an entity’s acknowledgement of having sent
a certain message. Typically, an entity has a pri-
vate key and a corresponding public key which
is tied to the entity’s name (see also public key
infrastructure). The entity generates a string
called signature which depends on the message to
sign and his private key.

The fact that the entity acknowledged, i.e. that
he signed the message, can be verified by any-
one using the entity’s public key, the message,
and the signature. Data authentication and sig-
nature schemes are sometimes distinguished in
the sense that in the latter, verification can be
done by anyone at any time after the generation
of the signature. Due to this property, the digital
signature scheme achieves non-repudiation prop-
erty, that is, a signer cannot later deny the fact of
signing.

Some examples of digital signature schemes are
RSA digital signature scheme, ElGamal digital
signature scheme, Rabin digital signature scheme,
Schnorr digital signature scheme, Digital Signa-
ture Standard, and Nyberg-Rueppel signature
scheme.

A digital signature scheme consists of three al-
gorithms, namely the key generation algorithm,
the signing algorithm and the verification algo-
rithm. The security of digital signature is argued
as follows: no adversary, without the knowledge
of the private key, can generate a message and a
signature that passes the verification algorithm.
(See forgery for more discussions on the secu-
rity of signatures.) There are two types of signa-
ture schemes, namely ‘with appendix’ and ‘with
message recovery’. In the former, the target mes-
sage is the input of the verification algorithm;
that is, the verifier must know the message in
advance to verify the signature. In the latter,
the target message is the output of the verifica-
tion algorithm, so the message does not need to
be sent with the signature. An example of the
former is the ElGamal digital signature scheme
and of the latter is the RSA digital signature
scheme.

Kazue Sako

DIGITAL SIGNATURE
STANDARD

The Digital Signature Standard (DSS), first pro-
posed by Kravitz [2] in 1991, became a US federal
standard in May 1994. It is published as Federal
Information Processing Letters (FIPS) 186. The
signature scheme is based on the ElGamal dig-
ital signature scheme and borrows ideas from
Schnorr digital signatures for reducing signature
size. We describe a slight generalization of the al-
gorithm that allows for an arbitrary security pa-
rameter, whereas the standard only supports a
fixed parameter. The signature scheme makes use
of modular arithmetic and works as follows:

Key Generation. Given two security parameters

7, A € Z (t > A) as input do the following:

1. Generate a random A-bit prime q.

2. Generate a random t-bit prime prime p such
that g divides p — 1.

3. Pick an element g € Z}, of order q.

4. Pick arandom integer « € [1, q] and compute
y=8" €L,

5. Let H be a hash function H: {0, 1}* — Z,.
The FIPS 186 standard mandates that H be
based on the SHA-1 cryptographic hash func-
tion.

6. Output the public key (p, q, g, y, H) and the
private key (p, q, g, a, H).

Signing. To sign a message m € {0, 1}* using the
private key (p, q, g, «, H) do:




1. Pick a random integer £ € [1,q — 1].
2. Compute r = (g* mod p) mod q. We view r as
an integer 0 <r <gq.
3. Compute s = £~ 1(H(m) + ar) mod q.
4. Output the pair (r,s) € Zj, as the signature
on m.
Verifying. To verify a message/signature pair
(m, (r,s)) using the public key (p, q, g, y, H) do:
1. Verify that 0 <r,s < q, otherwise reject the
signature.
2. Compute u; = H(m)/s modqg and ug =r/s
mod q.
3. Compute v = (g¥'y*2 mod p) mod q.
4. Accept the signature if r = v mod ¢. Other-
wise, reject.
We first check that the verification algorithm
accepts all valid message/signature pairs. For a
valid message/signature pair we have

gulyuz =gu1+au2 =g(H(m)+ar)/s =gk (mod p)

It follows that v = (g“1y“2> mod p) mod ¢ =r and
therefore a valid message/signature is always
accepted.

It is not clear how to analyze the security of this
algorithm. Even the random oracle model does not
seem to help since there is no hash function in the
algorithm that can be modelled as a random ora-
cle. It is believed that this is deliberate so that the
algorithm does not infringe on existing patents.
Security analysis for a generalization of DSS is
given in [1].

To discuss signature length we fix concrete
security parameters. At the present time the
discrete-logarithm problem in the cyclic group Z,
where p is a 1024-bit prime and is considered in-
tractable [3] except for a very well funded orga-
nization. DSS uses a subgroup of order g of Zj,.
When g is a 160-bit prime, the discrete log prob-
lem in this subgroup is believed to be as hard as
discrete-log in all of Z,. Hence, for the present dis-
cussion we assume p is a 1024-bit prime and ¢ is
a 160-bit prime. Since a DSS signature contains
two elements in Z, we see that, with these param-
eters, a DSS signature is 320-bits long. This is the
same length as a Schnorr signature. We note that
BLS short signatures are halfthe size and provide
comparable security.

Dan Boneh
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DIGITAL
STEGANOGRAPHY

INTRODUCTION: Steganography is the art and
science of hiding information by embedding mes-
sages within other, seemingly harmless messages.
Steganography means “covered writing” in Greek.
As the goal of steganography is to hide the pres-
ence of a message and to create a covert channel,
it can be seen as the complement of cryptography,
whose goal is to hide the content of a message.

A famous illustration of steganography is
Simmons’ “Prisoners’ Problem” [10]: Alice and Bob
are in jail, locked up in separate cells far apart
from each other, and wish to devise an escape
plan. They are allowed to communicate by means
of sending messages via trusted couriers, provided
they do not deal with escape plans. But the couri-
ers are agents of the warden Eve (who plays the
role of the adversary here) and will leak all com-
munication to her. If Eve detects any sign of con-
spiracy, she will thwart the escape plans by trans-
ferring both prisoners to high-security cells from
which nobody has ever escaped. Alice and Bob are
well aware of these facts, so that before getting
locked up, they have shared a secret codeword
that they are now going to exploit for embedding a
hidden information into their seemingly innocent
messages. Alice and Bob succeed if they can ex-
change information allowing them to coordinate
their escape and Eve does not become suspicious.

According to the standard terminology of in-
formation hiding [8], a legitimate communication
among the prisoners is called covertext, and a mes-
sage with embedded hidden information is called
stegotext. The distributions of covertext and ste-
gotext are known to the warden Eve because she
knows what constitutes a legitimate communica-
tion among prisoners and which tricks they ap-
ply to add a hidden meaning to innocent looking
messages.

The algorithms for creating stegotext with an
embedded message by Alice and for decoding the
message by Bob are collectively called a stegosys-
tem. A stegosystem should hide the embedded
message at least as well as an encryption scheme
since it may be enough for the adversary to learn
only a small amount of information about the
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embedded message to conclude that Alice and Bob
are conspiring. But steganography requires more
than that. The ciphertext generated by most en-
cryption schemes resembles a sequence of random
bits, and this is very likely to raise the suspicion
of Eve. Instead, stegotext should “look” just like
innocent covertext even though it contains a hid-
den message.

This intuition forms the basis of the recently de-
veloped formal approach to steganography [2,3,5,
6,11]. It views a stegosystem as a cryptosystem
with the additional property that its output, i.e.,
the stegotext, is not distinguishable from covertext
to the adversary.

Formally, a stegosystem consists of a triple of
algorithms for key generation, message encod-
ing, and message decoding, respectively. In the
symmetric-key setting considered here, the out-
put of the key generation algorithm is given only
to Alice and to Bob.

The covertext is modeled by a distribution C
over a given set C. The covertext may be given
explicitly as a list of values or implicitly as
an oracle that returns a sample of C upon re-
quest. A stegosystem that does not require explicit
knowledge of the covertext distribution is called
universal.

A more general model of a covertext channel has
also been proposed in the literature [5], which al-
lows to model dependencies among repeated uses
of the same covertext source. A channel consists
of an unbounded sequence of values drawn from
a set C whose distribution may depend in arbi-
trary ways on past outputs; access to the chan-
nel is given only by an oracle that samples from
the channel. The assumption is that the channel
oracle can be queried with an arbitrary prefix of
a possible channel output, i.e., its past “history,”
and it will return the next symbol according to
the channel distribution. In order to simplify the
presentation, channels are not considered further
here, but all definitions and constructions men-
tioned below can be readily extended to covertext
channels.

We borrow the complexity-theoretic notions of
probabilistic polynomial-time algorithms and neg-
ligible functions, in terms of a security parameter
n, from modern cryptography [4].

DEFINITION 1 (Stegosystem). Let C be a distri-

bution on a set C of covertexts. A stegosystem is a

triple of probabilistic polynomial-time algorithms

(SK, SE, SD) with the following properties:

® The key generation algorithm SKtakes as input
the security parameter n and outputs a bit string
sk, called the [stego] key.

® The steganographic encoding algorithm SE
takes as inputs the security parameter n, the
stego key sk and a message m < {0, 1}’ to be em-
bedded and outputs an element c of the cover-
text space C, which is called stegotext. The al-
gorithm may access the covertext distribution
C.

® The steganographic decoding algorithm SD
takes as inputs the security parameter n, the
stego key sk, and an element ¢ of the covertext
space C and outputs either a message m < {0, 1}/
or a special symbol 1. An output value of 1 in-
dicates a decoding error, for example, when SD
has determined that no message is embedded
inc.

For all sk output by SK(1") and for all m € {0, 1)},

the probability that SD(1", sk, SE(1",sk,m)) # m

must be negligible in n.

Note that the syntax of a stegosystem as defined
above is equivalent to that of a (symmetric-key)
cryptosystem, except for the presence of the cover-
text distribution. The probability that the decod-
ing algorithm outputs the correct embedded mes-
sage is called the reliability of a stegosystem.

DEFINING SECURITY: The security of a stegosys-

tem is defined in terms of an experiment that

measures the capability of the adversary to de-
tect the presence of an embedded message. In

a secure stegosystem, Eve cannot distinguish

whether Alice is sending legitimate covertext or

stegotext.

The attack considered here is a chosen-message
attack, where the adversary may influence the em-
bedded message but has otherwise no access to the
encoding and decoding functions. It parallels the
notion of a chosen-plaintext attack against a cryp-
tosystem.

Consider an adversary defined by a pair of algo-
rithms (SA;, SAs). The experiment consists of four
stages.

1. A key sk is generated by running the key gen-
eration algorithm SK.

2. Algorithm SA; is run with input the security
parameter n; it outputs a tuple (m*, s), where
m* € {0, 1)} is a message and s is some addi-
tional information which the algorithm wants
to preserve. SA; has access to the covertext dis-
tribution C.

3. A bit b is chosen at random and a challenge
covertext c* is determined depending on it:
If 6 =0 then c¢* < SE(sk,m*) (c* becomes a
steganographic encoding of m*) otherwise c* &
C (c* is chosen randomly according to C).



4. Algorithm SA; is run with inputs n, ¢*, m*, and
s, and outputs a bit b’. The goal of SA; is to guess
the value of b, i.e., to determine whether the
message m* has been embedded in ¢ or whether
¢ has simply been chosen according to C.

The adversary succeeds to distinguish stego-
text from covertext if b’ = b in the above experi-
ment. Since it is trivial to achieve Pr[d’ = b] = %,
what actually counts is the adversary’s advantage
above randomly guessing b. Formally, we define
the advantage of adversary (SA;, SAs) to be

Pr[sk < SK: (m*,s) < SA;(1™): b & {0, 1);
if b = 0 then ¢* < SE(1”, sk, m*)

1
else c* & C: SA,(1".¢*. m*.s) = b]

5"

Depending on the detection capabilities as-
cribed to the adversary in terms of its computa-
tional power, and depending on its advantage in
distinguishing stegotext from covertext, one ob-
tains the following security notions for stegosys-
tems:

Perfectly secure steganography: The adver-
sary is an arbitrary, unbounded algorithm and
has advantage equal to 0.

Statistically secure steganography: The ad-
versary is an arbitrary, unbounded algorithm
and has only negligible advantage (in n).

Computationally secure steganography:
The adversary is an arbitrary probabilistic,
polynomial-time computable algorithm and has
only negligible advantage in n.

The first two notions are collectively known
as information-theoretically secure steganography.
The third notion, computational security, is dis-
cussed further on (cf., security).

This discussion has so far assumed that the
sender and the receiver share the same secret key
before communicating (cf.,, symmetric cryptosys-
tem). Departing from that assumption, it is also
possible to define public-key steganography with
computational security. This notion is analogous
to public-key cryptography and is the subject of
Section D (cf., asymmetric cryptosystem).

For the scope of this survey, the adversary is lim-
ited to passive attacks (see cryptanalysis). In the
Prisoners Problem, this means that the couriers
may not change the messages communicated be-
tween Alice and Bob and that Eve may not send a
message generated by herself to Bob and observe
his reaction to it. However, the adversary may in-
fluence the messages to be embedded; for example,
the warden Eve may determine the details of Alice
and Bob’s escape plan by choosing to confine them
in particular cells.
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This survey is about the formal approach
to steganography and about stegosystems that
offer provable security. An overview of steganog-
raphy with heuristic security and of the his-
tory of steganography is given by Anderson and
Petitcolas [1].

What distinguishes steganography from other
forms of information hiding is the focus on
merely detecting the presence of a hidden message.
Watermarking and fingerprinting are two differ-
ent problems of information hiding, where the ex-
istence of a hidden message is public knowledge.
The focus in these areas is on hiding the mes-
sage in perceptual data from an observer that is
typically a human, and on embedding the mes-
sage robustly so that it cannot be removed without
significantly distorting the data itself. The differ-
ence between watermarking and fingerprinting is
that watermarking supplies digital objects with an
identification of origin and all objects are marked
in the same way; fingerprinting, conversely, at-
tempts to identify individual copies of an object
by means of embedding a unique marker in every
copy that is distributed to a user.

INFORMATION-THEORETICALLY SECURE STE-
GANOGRAPHY

DEFINITION 2 (Perfect Security). Given a cover-
text distribution C, a stegosystem (SK, SE, SD) is
called perfectly secure with respect to C if for
any adversary (SA;, SA) with unbounded compu-
tational power, the advantage in the experiment
above is equal to 0.

Perfect security for a stegosystem parallels
Shannon’s notion of perfect security for a cryp-
tosystem [9] (cf., Shannon’s model). The require-
ment that every adversary has no advantage im-
plies that the distributions of the challenge c* are
equal in the two cases where it was generated
from SE (when b = 0) and sampled from C (when
b = 1). Hence, the adversary obtains no informa-
tion about b because she only observes the chal-
lenge c¢* and the distribution of ¢* is statistically
independent of b. Perfectly secure stegosystems
were defined by Cachin [3].

Perfectly secure stegosystems exist only for a
very limited class of covertext distributions. For
example, if the covertext distribution is uniform,
the one-time pad is a perfectly secure stegosystem
as follows.

Assume the covertext C is uniformly distributed
over the set of n-bit strings for some positive n
and let Alice and Bob share an n-bit key sk
with uniform distribution. The encoding function
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computes the bitwise XOR of the n-bit mes-
sage m and sk, i.e., SE(1",sk,m) =m @ sk; Bob
can decode this by computing SD(1%, sk,c) =c &
sk. The resulting stegotext is uniformly dis-
tributed in the set of n-bit strings. The one-time
pad stegosystem is used like this in visual crypto-
graphy [7].

For covertext distributions that do not ad-
mit perfectly secure stegosystems, one may still
achieve the following security notion.

DEFINITION 3 (Statistical Security). Given a
covertext distribution C, a stegosystem (SK, SE,
SD) is called statistically secure with respect
to C if for all adversaries (SA;, SAy) with un-
bounded computational power, there exists a
negligible function € such that the advantage in
the experiment above is at most €(n).

Statistical security for stegosystems may equiv-
alently be defined by requiring that for any sk and
any m, the statistical distance between the proba-
bility distribution generated by SE(1", sk, m) and
the covertext distribution is negligible.

Definition 3 was first proposed by Katzenbeisser
and Petitcolas [6]. A very similar notion was de-
fined by Cachin [3], using relative entropy between
the stegotext and covertext distributions for quan-
tifying the difference between them.

Here is a simple example of a statistically se-
cure stegosystem, adopted from [3]. It is repre-
sentative for a class of practical stegosystems that
embed information in a digital image by modify-
ing the least significant bit of every pixel repre-
sentation [1]. Suppose that the cover space C is
the set of n-bit strings with (Cy, C1) being a parti-
tion of C and with distribution C such |Prlc < C :
ceCl—Prlc&LC:ce C1l| = 8(n) for some neg-
ligible 5. Then there is a stegosystem for a one-
bit message m using a one-bit secret key sk. The
encoding algorithm SE computes s < m @ sk and

outputs c £ ¢, Decoding works without error be-
cause m = 0 if and only if ¢ € Cy;. It is easy to see
that the encoding provides perfect secrecy for m
and that the stegosystem is statistically secure.
Note, however, that finding the partition for a
given distribution is an NP-hard combinatorial op-
timization problem.

There exist also statistically secure universal
stegosystems, where the covertext distribution is
only available as a sampling oracle. Information-
theoretically secure stegosystems suffer from the
same drawback as cryptosystems with uncondi-
tional security in the sense that the secret key may
only be used once. This is not the case for compu-
tational security considered next.

COMPUTATIONALLY SECURE STEGANO-
GRAPHY
DEFINITION 4. (Computational Security).

Given a covertext distribution C, a stegosystem
(8K, SE, SD) is called computationally secure with
respect to C if for all probabilistic polynomial-time
adversaries (SAi, SAg), there exists a negligi-
ble function ¢ such that the advantage in the
experiment above is at most €(n).

The notion was formalized independently by
Katzenbeisser and Petitcolas [6] and by Hopper,
Langford, and von Ahn [5]. The latter work also
presented the following construction of a com-
putationally secure, universal stegosystem. It il-
lustrates a popular encoding method that does
not rely on knowledge of the covertext distri-
bution, which is also used by some practical
stegosystems.

The encoding method is based on an algorithm
sample, which samples a covertext according to
C such that a given bit string b of length f=
O(log |C|) is embedded in it.

Algorithm sample
Input: security parameter n, a function
g : C — {0,1}f, andavalueb e {0,1}/
Output: a covertext x

1:j < 0

2: repeat

3: x & C

4: j<Jj+1

5:untilg(x) = b orj =n

6: return x

Intuitively, algorithm sample returns a cover-
text chosen from distribution C, but restricted to
that subset of C which is mapped to the given b
by g. sample may also fail and return a covertext
¢ with g(c) # b, but this happens only with negli-
gible probability in 7.

Suppose {G}} is a pseudorandom function fam-
ily indexed by %, with domain {0, 1} x C and range
{0, 1}7. (It can be thought of as a pair (G, G1)
of independent pseudorandom functions.) The se-
cret key of the stegosystem consists of a randomly
chosen k. The encoding algorithm SE(1", %k, m)
for an f-bit message m first “encrypts” m to
y < Gp(0,c0) ®m for a public constant ¢y € C.
Note that y is the ciphertext of a symmetric-key
encryption of m and is computationally indistin-
guishable from a random fbit string. This value
y is then embedded by computing a stegotext ¢ «
sample(n, Gi(1, -), y). It can be shown that when



C is sufficiently random, as measured in terms of
min-entropy, the output distribution of sample is
statistically close to C [2,5].

The decoding algorithm SD(1",k%,c) outputs
m’ < Gi(1,¢c) ® Gr(0, cp); it is easy to show that
m’ is equal to the message that was embedded us-
ing SE except with negligible probability.

This stegosystem is an extension of the example
given above for statistical security. In fact, when G
is a universal hash function and the encryption is
realized using a one-time pad, this is a universal
stegosystem with statistical security.

PUBLIC-KEY STEGANOGRAPHY: What if Alice
and Bob did not have the time to agree on a secret
key before being imprisoned? They cannot use any
of the stegosystems presented so far because that
would require them to share a common secret key.
Fortunately, steganography is also possible with-
out shared secrets, only with public keys, similar
to public-key cryptography. The only requirement
is that Bob’s public key becomes known to Alice in
a way that is not detectable by Eve.

Formally, a public-key stegosystem consists of
a triple of algorithms for key generation, message
encoding, and message decoding like a (secret-key)
stegosystem, but the key generation algorithm
now outputs a stego key pair (spk, ssk). The pub-
lic key spk is made available to the adversary and
is the only key needed by the encoding algorithm
SE. The decoding algorithm SD needs the secret
key ssk as an additional input.

DEFINITION 5 (Public-key Stegosystem). Let C

be a distribution on a set C of covertexts. A

public-key stegosystem is a triple of probabilistic

polynomial-time algorithms (SK, SE, SD) with the

following properties:

® The key generation algorithm SKtakes as input
the security parameter n and outputs a pair of
bit strings (spk,ssk), called the [stego] public
key and the [stego] secret key.

® The steganographic encoding algorithm SE
takes as inputs the security parameter n, the
stego public key spk and a message m € {0, 1}/
and outputs a covertext ¢ € C.

® The steganographic decoding algorithm SD
takes as inputs the security parameter n, the
stego secret key ssk, and a covertext ¢ € C, and
outputs either a message m € {0, 1} or a special
symbol L.

For all (spk, ssk) output by the key generation al-

gorithm and for all m € {0, 1)}, the probability that

SD(1", ssk, SE(1", spk, m)) # m must be negligi-

ble in n.
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Security is defined analogously to the experi-
ment of Section 2 with the difference that the
public key spk is additionally given to the ad-
versary algorithms SA; and SA; and that the
challenge covertext is computed using spk only.
With these modifications, a public-key stegosys-
tem (SK, SE, SD) is called secure against chosen-
plaintext attacks if it is computationally secure ac-
cording to Definition 4.

Secure public-key stegosystems can be con-
structed using the method of Section D, but with
the pseudorandom function Gy (which is used
for “encryption”) replaced by a public-key cryp-
tosystem that has almost uniform ciphertexts.
This property means that the output of the en-
cryption algorithm is computationally indistin-
guishable from a uniform bit string of the same
length.

The definition and several constructions of
public-key stegosystems have been introduced by
von Ahn and Hopper [11] and by Backes and
Cachin [2]. The latter work also goes beyond the
case of passive adversaries considered here and
models adaptive chosen-covertext attacks, which
are similar to adaptive chosen-ciphertext attacks
against public-key cryptosystems. Achieving secu-
rity against such attacks results in the strongest
security notion known today for public-key cryp-
tosystems and for public-key stegosystems.

As this brief survey of steganography shows,
the evolution of the formal approach to stegosys-
tems has gone through the same steps as the
development of formal models for cryptosystems.
The models and the formulation of correspond-
ing stegosystems that offer provable security have
greatly enhanced our understanding of this impor-
tant area of information security.

Christian Cachin
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DISCRETE LOGARITHM
PROBLEM

Let G be a cyclic group of order n, and g be a
generator for G. Given an element y € G, the dis-
crete logarithm problem is to find an integer x such
that

g =y.

The discrete logarithm problem has been of
particular interest since Diffie and Hellman (see
Diffie—Hellman key agreement) invented a cryp-
tographic system based on the difficulty of finding
discrete logarithms (a similar system was created
around the same time by Malcolm Williamson at
the Government Communications Headquarters
(GCHQ) in the UK, but not revealed until years
later). Given two people Alice and Bob who wish
to communicate over an insecure channel, each de-
cides on a private key x4 and xp. Alice sends g*4 to
Bob, and Bob sends g*5 to Alice. Each of them can
then raise the received message to their private

key to compute
(g5ay® = (g*B)a = g¥a*s,

An eavesdropper Eve who only knows g*4 and g*&
must figure out g*4*5, This is widely believed to
be difficult. Clearly if Eve can solve the discrete
logarithm problem, she can compute x4 and xg and
so break the system.

Other systems, such as the ElGamal digital
signature scheme and the Digital Signature Stan-
dard, also depend on the difficulty of solving the
discrete logarithm problem.

Pohlig and Hellman [9], and independently Sil-
ver, observed that if G has a subgroup of order
[, then by raising g and y to the (n//)th power we
may solve for x modulo /. Thus, the difficulty of the
discrete logarithm problem depends on the largest
prime factor of nn. For the rest of this article we will
assume that n is prime.

THE DISCRETE LOGARITHM PROBLEM IN DIF-
FERENT GROUPS: Any finite group may be used
for a Diffie-Hellman system, but some are more
secure than others. The main groups used are:

® The multiplicative subgroup of a finite field

GF(q), with ¢ a prime or a power of 2.
® The points on an elliptic curve E over a finite

field (see elliptic curves).
® The class group of a quadratic number field.

Finite fields GF(2") were popular into the 1980s,
but attacks by Blake, Fuji-Hara, Mullin and Van-
stone, and Coppersmith showed that the fields
were easier to attack than similarly-sized prime
fields. Index calculus attacks may also be applied
to prime fields.

Hafner and McCurley [6] gave a subexponen-
tial attack for class groups of imaginary quadratic
number fields, and Buchmann [2] extended this
to real quadratic and, conjecturally, higher-degree
number fields. Most elliptic curves, on the other
hand, have no known subexponential attacks. See
the entry on elliptic curve cryptography for more
details.

GENERIC ALGORITHMS FOR DISCRETE LOGA-
RITHMS: We will first consider generic algorithms,
which do not use any special information about the
group G, but only compose elements and check
for equality. Nechaev [7] and Shoup [15] showed
that generic algorithms must take Q(/n) time
(see O-notation). Shor [14] showed that a quantum
computer can solve a discrete logarithm problem
in any group in polynomial time, but whether a
sufficiently large quantum computer can be built
is still an open problem.



Shanks’ Baby Step—Giant Step Method

Shanks [13] gave the first algorithm better than
a brute-force search. Let m = [/n]. We construct
two tables, one starting at 1 and taking “giant
steps” of length m:

(m—1)m

1,g’",g2m,...,g

and one of “baby steps” of length one from y:

y,y8,y8%, ..., yg" L.

Sort these lists and look for a match. If we find
g™ = yg’/, then y = g™/, and so x = im — j. Any
x € [0, n — 1] may be written in this form for i, j <
m, so we are certain to find such a match.

The time for this algorithm is O(y/n) group op-
erations, plus the time to find collisions in the two
lists. This may be done either by sorting the lists
or using hash tables.

Pollard’s p Method

The drawback to Shanks’s algorithm is that it re-
quires O(y/n) space as well as time. Pollard [10]
gave two methods that use negligible space and
still run in O(y/n) time: the p method and the kan-
garoo method, which are discussed below. They are
not deterministic, but depend on taking pseudo-
random walks in G.

Divide the elements of GG into three subsets, Sy,
Sg and S3, say by the value of a hash of the ele-
ments modulo three. We define a walk by ho =1
and

hiy, ifh; €S
hi+1 = h?, ifhi € Sg
hig, ifhi € S3.

At each step we know

hi :gaiybi :gai+xbi

for some a;, b;. (In particular, we have (ag, bg) =
(0,0) initially, and (a;i1,b;41) = (a;,b; + 1),
(2a;, 2b;), or (a; + 1, b;), depending on the hash
value.) Eventually, this walk must repeat. If
h; = h;, we have

_aj—ai
b, —b;

If b; — b; is relatively prime to n (which is very
likely if n is prime), this gives us x.

Figure 1 illustrates the p method walk.

Rather than store all of the steps to detect
a collision, we may simultaneously compute #;
and hg;, and continue around the cycle until they
agree. Assuming that this map behaves as a ran-
dom walk, we will need O(,/n) steps to find a
repeat.

(mod n).

Discrete logarithm problem 165

hy
hy

hy
ho

Fig. 1. p method walk, with a collision at A3

Parallelized Collision Search

The p method has two main drawbacks. One is
that it is difficult to parallelize. Having & proces-
sors do random walks only results in an O(Vk)
speedup, since the different walks are indepen-
dent, and the probability of one of & cycles of length
[ having a collision is much less than one cycle of
length %I (see [8] for details). Another is that after
the collision occurs, many more steps around the
cycle are needed before the collision is detected.
Parallelized collision search [8] is a variant of the
o method which fixes both problems.

We designate a small fraction of elements of G
distinguished points, say if the last several bits of
the element are all zero. Then a walk will begin
at a random point, proceed as for the p method,
and end when we hit a distinguished point. We
save that point along with the starting point of
the path, and then begin a walk at a new ran-
dom point. When a distinguished point is hit for
the second time, we have a collision and with high
probability can determine x.

By picking the right fraction of elements of G to
be distinguished points, we may ensure that not
too much memory is needed to store the paths, and
not much time is wasted after a collision occurs.
Also, this algorithm may be trivially parallelized,
with a linear speedup.

Figure 2 shows this method.

[e]

\

/
j
P

Fig. 2. Parallelized collision search paths, with three
distinguished points and one collision

——0
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Wild kangaroo

Coalescence

Tame kangaroo

Fig. 3. Kangaroo method paths, with one distinguished
point and collision

Pollard’s Kangaroo Method

Another method due to Pollard also uses a ran-
dom walk in G. In this algorithm the steps are
limited: & — hg*®, where the hop length s(h) is
a pseudorandom function of 4 with values between
1 and /n.

The idea is to start from two points, say g
(the “tame” kangaroo, since we know its discrete
logarithm at all times) and y (the “wild” kangaroo),
and alternately take hops with length determined
by s(h). We will set “traps” when a kangaroo hits a
distinguished point. If the wild kangaroo and tame
kangaroo paths meet or “coalesce” at any point,
they will take the same hops from then on, and
any traps encountered by one after they coalesce
will also be encountered by the other. When one
reaches a trap that the other one hit, we have a
collision and can determine x.

The main advantage of the kangaroo method is
when x is known to be in a certain range, say [0, L]
for some L « |G|. In that case we may start the
tame kangaroo from g2, and the wild kangaroo
from y. We expect to find a collision before we get
far out of [0, L], and so this will take O(+/L) time.
See Figure 3 for an illustration.

SUBEXPONENTIAL METHODS: The lower bound
for generic algorithms means that to find a
faster algorithm we must use information about
the group. The main method for doing this is
called index calculus, and is described in this
section.

Index Calculus Methods

Let

L.lt, y] = e(y+o(1))(logx)t(loglogx)l"

for x — oo (see L-notation for further discussion).

This function interpolates between slow and fast

algorithms; L,.[1, y] ~ x¥ is exponential in logx

(see exponential time), while L.[0, y] ~ (logn)”

is polynomial (see polynomial time). All the al-

gorithms of the previous section are O(/n)=

L,[1,1/2]. With early index calculus methods we

may reduce this to L,[1/2, ¢], and the number field

sieve further improves this to L,[1/3, c] for appro-

priate constants c.

All index calculus algorithms for discrete loga-
rithms have three main parts:

1. Gather equations relating the discrete loga-
rithms of a factor base of “small” elements.

2. Solve a linear system to find the factor base dis-
crete logarithms.

3. To find the discrete logarithm of an element y,
reduce y to a product of elements in the factor
base.

The first step is the same as in integer factoring.
The second step is also done in factoring, but mod-
ulo 2 instead of modulo n. The third step is only
done for discrete logarithms, typically by multi-
plying y by random powers of g, and attempting
to express the result as a product of smaller num-
bers, possibly recursively breaking those numbers
into smaller ones until everything is in the factor
base.

The factor base is a set of elements such as
small primes or low-degree polynomials, such that
other elements have a reasonable chance of being
“smooth”: expressible as a product of these small
elements (see the entry on smoothness). To opti-
mize the algorithm we need to know the probabil-
ity of this happening; see the section on number
theory for more information.

Typically the first two steps require large com-
putations, and finding individual logarithms is
much quicker.

For additional technical details on these meth-
ods, please see the entry index calculus.

Discrete Logarithms in Prime Fields

Coppersmith, Odlyzko, and Schroppel gave an
L,[1/2, c] algorithm for prime fields GF(p), which
turned out to be special case of the Number Field
Sieve (using imaginary quadratic fields). In their
method there are two factor bases, one of small ra-
tional primes and another of small primes in the
imaginary quadratic field.



The Number Field Sieve, which is the fastest
known algorithm for factoring integers, may also
be applied to finding discrete logarithms [5, 12].
The factor base used consists of small rational
primes and representatives of small prime ideals
in a number field. The asymptotic complexity is
the same as for factoring. The sieving phase is the
same, but solving the linear system modulo p — 1
instead of modulo 2 makes discrete logarithms
harder than factoring problems of the same size.

Because the number field sieve works better for
special numbers (such as primes p=r¢+s for r
and s small), it has been suggested that the Dig-
ital Signature Standard could be given a “trap-
door” by using a prime for which the Number Field
Sieve runs faster than on a typical prime of that
size. However, in [4], it is shown that such trap-
doors may be detected, and that it is easy to spec-
ify primes which were clearly not chosen with a
trapdoor.

Discrete Logarithms in Fields
of Characteristic 2

Until the 1980s, fields GF(q) with ¢ = 2" received
the most attention, because of their applications
to shift registers and ease of implementation in
hardware. However, it turned out that attacks on
these fields ran much faster than prime fields, and
so few cryptosystems today depend on discrete log-
arithms in these fields.

Blake et al. [1] gave an attack which ran in time
L,[1/2, c]. Their factor base consists of polynomi-
als in GF(2)[x] of low degree. This was improved
by Coppersmith [3], who gave the first index calcu-
lus algorithm which runs in time L, [1/3, c]. It was
not realized until much later, but Coppersmith’s
method was a special case of the function field
sieve (see the entry sieving in function fields).

Other Fields

Schirokauer [11] has looked at GF(q) for ¢ = p™
with p > 2 and m > 1. By combining features of
the number field sieve and function field sieve, he
gives an algorithm which is conjectured to run in
L,[1/3,c] for some c for fields with ¢ — oo and
m > (log p)?> or m < (log p)/?2¢. In the “gap” be-
tween these constraints the algorithm is conjec-
tured to run in time L, [2/5, ¢'].

Recently Lenstra and Verheul invented a cryp-
tosystem called XTR, which depends on the secu-
rity of discrete logarithms in GF(p®), for p® ~ 1024
bits. Weber [17] has computed discrete logarithms
in fields GF(p?) for small p.
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ATTACKS ON ELLIPTIC CURVE DISCRETE
LOGARITHMS: The elliptic curve discrete loga-
rithm problem (ECDLP) was suggested as a ba-
sis for cryptosystems in 1985 by Neal Koblitz and
Victor Miller. Because no subexponential attack
was known for them, much shorter key sizes could
be used.

Since then, several attacks on special elliptic
curves have been developed, but no index calcu-
lus attack for general curves are known.

CHALLENGES AND ATTACKS: In 1989, Kevin
McCurley gave a challenge problem. Let g =
(749 —1)/6,and p = 2 x 739g + 1. McCurley gave
two numbers modulo p which equal 7* and 7% for
some x and y, and issued a challenge to find 7*.

The form of p was intended to make it easy to
show that p is prime and that 7 is a primitive
root modulo p. Unfortunately, soon afterwards the
number field sieve was discovered, which showed
that the special form of this p made the system
much less secure. The challenge was broken in
1998 by Weber and Denny [18] using the special
number field sieve.

Joux and Lercier found discrete logarithms
modulo a nonspecial 120-digit prime in 2001. For
fields of characteristic 2, the record is GF(26%7),
which was done in 2001 by Thomé [16].

In 1997 Certicom issued a series of ECDLP chal-
lenges. The problems ranged from easy (curves
over 79-bit fields), to very difficult (359-bit fields).
The largest challenge problem solved to date is a
curve over GF(p) for a 109-bit prime p by a group
at Notre Dame in 2002, using parallelized collision
search.

Daniel M. Gordon
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EO0 (BLUETOOTH)

EO is a stream cipher, designed especially for
Bluetooth communications (Bluetooth is a stan-
dard for wireless short-range connectivity, see [1]).
As usual for stream ciphers, the main point is the
keystream generation. For EO, it is derived from
the summation generator, with four input LFSRs
(see linear feedback shift register). The four LF-
SRs have lengths respectively, 25, 31, 33 and 39;
their feedback polynomials are all primitive, with
five nonzero terms. The global system looks like

where ¢ denotes the time, and the internal bits
satisfy (in the three first equations, the addition
is taken modulo 2; in the last one, it is the usual
integer addition, followed by a rounding off down-
wards):

z=xloxleox’oxiac
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More precise details can be found in [1].

Several studies and attacks have been proposed
[2, 3], but the more powerful is the one of Golic
et al. [5]; they proposed a linear cryptanalysis for
this cipher, based on the fact that the produced
keystream sequence is short and that the system is
frequently reinitialized. This attack is going with
a work factor of O(27°), with a precomputing stage
of complexity O(28). The authors suggest to rein-
force EO according to the improvement techniques
presented in [6].

A more recent paper, only available at the mo-
ment as a preprint, deals with an improvement of
this attack [4].

Caroline Fontaine
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EAVESDROPPER

An eavesdropper (see also Shannon’s model) is a
person or party who tries to get unauthorized ac-
cess to data, e.g. by breaking into a computer sys-
tem or tapping into a communication channel.
The use of a proper cryptosystem should make
it impossible for the eavesdropper to determine
the meaning of an intercepted message. Meaning-
ful plaintext has been replaced by unintelligible
ciphertext.

A common distinction is between passive eaves-
droppers, who only read or listen to the cipher-
text, and active eavesdroppers who may replace
a ciphertext by another one, retransmit a cipher-
text at a different moment, insert their own texts,
etc.

Jean-Jacques Quisquater
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ECC CHALLENGES

In 1997 Certicom [1] issued a series of elliptic

curve discrete logarithm problem (ECDLP) chal-

lenges. Each challenge asks for the solution of
an ECDLP instance in (P), where P is a point of
prime order n on an elliptic curve E defined over

a finite field IF,. The difficulty of the challenge is

measured by the bitlength of the order n.

The challenges are of three kinds. In the follow-
ing, ECCp-%£ denotes a randomly selected elliptic
curve over a prime field, ECC2-£ denotes a ran-
domly selected elliptic curve over a characteristic
two finite field Fo» where m is prime, and ECC2K-
k denotes a Koblitz curve (that is, an elliptic curve
whose defining equation has coefficients in the bi-
nary field Fy); & is the bitlength of n. In all cases,
the bitlength of the order of the underlying field is
equal to or slightly greater than % (so the elliptic
curves have prime order or almost prime order).
An underlined entry denotes that the challenge
has been solved as of April 2004.

1. Randomly generated curves over prime fields:
ECCp-79, ECCp-89, ECCp-97, ECCp-109,
ECCp-131, ECCp-163, ECCp-191, ECCp-239,
and ECCp-359.

2. Randomly generated curves over characteristic
two finite fields: ECC2-79, ECC2-89, ECC2-97,
ECC2-109, ECC2-131, ECC2-163, ECC2-191,
ECC2-238, and ECC2-353.

3. Koblitz curves over Fy: ECC2K-95, ECC2K-
108, ECC2K-130, ECC2K-163, ECC2K-238,
and ECC2K-358.

The challenges were solved using the parallel
collision search variant of Pollard’s p algorithm as
explained in the discrete logarithm problem entry.
The computation was performed on workstations
distributed over the Internet. The hardest chal-
lenges solved to date were ECCp-109 and ECC2-
109. Of the challenges that remain unsolved, the
one that is expected to be the easiest to solve is
ECC2K-130.

Darrel Hankerson
Alfred Menezes
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ELECTROMAGNETIC
ATTACK

INTRODUCTION: Kerchoff’s laws (see maxim’s)
recommend basing cryptographic security solely

on the secrecy of the key and not on the conceal-
ment of the encryption algorithm. A cryptosystem
that uses some specific encryption method may,
however, be imperfect as to its physical imple-
mentation. One or several leakages of all possible
kinds may in that case provide an attacker with
relevant information. Physical signals can often be
used as a leakage source to conduct side channel
cryptanalysis [9] (see also side-channel attacks)
Time, power consumption or electromagnetic ra-
diations can, for instance, be used. Electromag-
netic radiation leakage has been known for a long
time now, [6] and it also constitutes the subject of
very recent research [11]. When analysing cryp-
tographic implementations, the near and far field
of cryptographic processors may offer a leakage
source that should be seriously taken into account.

HISTORY: It is quite difficult to fix with precision
the advent of side channel cryptanalysis. It even
seems that this date is rather to be situated at
the end of the XIXth century or at the very be-
ginning of XXth. J. Maxwell has established its
theory on electromagnetic waves in 1873. Some
cross talk problems in telephone links were men-
tioned at the end of the XIXth century. The ob-
tained information was only copied on another me-
dia in order to listen to it afterwards. In 1918, H.
Yardley and its team discovered that classified in-
formation could leak from electric materials. This
knowledge enabled them to rediscover the handled
secrets. The data contained in a cryptographic de-
vice modulated a signal on the tape of a nearby
recording source. The study of the IBM typewriter
in the middle thirties indicated that the leakage
of information was important and had to be seri-
ously taken into account. Many years and some
interception cases later, militaries seriously wor-
ried about this new threat and initiated the TEM-
PEST program. It is amusing to notice that the
first analyses were based on electromagnetic radi-
ation, rather than directly on the analysis of the
consumed current. This is due to the ease of mea-
suring the radiated field, which needs no physical
access to the device, unlike consumption measure-
ments.

In the early seventies, people began mentioning
cases of interference between some of their elec-
tronic equipment. Electromagnetic radiation has
even been described by standard, thus allowing
the peaceful coexistence of various devices at the
same time in the same place. All electronic devices
are sensitive to outside disturbances and may in
some cases, themselves, be disturbing elements.
So an office computer can interfere with a radio
receiver and this is the idea on which the study
of electromagnetic fields emitted by processors is



based upon [13, 20]. The idea has been applied to
smart cards, and allowed, realizing that their ra-
diation could easily be measured [8].

PRINCIPLES: It is thus possible to investigate ra-
diations coming from electronic components while
they are executing a sensitive computation involv-
ing some secret. A solution therefore is to mea-
sure the electromagnetic radiation of the chip dur-
ing computation. The principles of Simple Power
Analysis (SPA) and Differential Power Analysis
(DPA) [10] (see differential power analysis) are
based on consumption differences generated dur-
ing the computation in function of the value of
some key bit, which can be used to recover the
key. Similarly, Simple ElectroMagnetic Analysis
(SEMA) and Differential ElectroMagnetic Analy-
sis (DEMA) allow retrieving the key as well, based
on the same concept [14]. It is important to no-
tice that refinements such as Automatic Template
Analysis, Dictionary attacks, High Order DPA or
Multiple bits DPA [10, 12] are also useful in the
case of electromagnetic analyses.
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size of the used amplifiers, their power and the
quantity of changing bits. But it is possible to carry
out the same measure in the case of leakage by
consumption measurements. It is possible to de-
couple the power supply by judiciously placing a
small capacitor between the power supply line and
the ground of the device under measure. This is a
principle that is well-known to electronics engi-
neers, and all disruptions that are present on the
power supply line will in this way go through the
capacitor to end up at the ground. As previously,
only the commutations are visible. By measuring
the currents that transit through this capacitor,
it is possible to highly reduce the number of sam-
ples that are required for a differential measure.
This current measurement can be carried out by
an electromagnetic measurement.

The figure depicted below shows two curves, rep-
resenting the initialisation of a smart card, the ex-
ecution of a DES (see Data Encryption Standard)

and the stopping of the card. Both curves have sig-
nal to noise ratios that are very close, but the green
curve, which details the current through the ca-
pacitor, requires twenty-five times less traces than
the one that represents the current measurement.

- P 1

In the case of the current analysis, however,
the only possible measure contains the sum of
the contributions of all actions of the processor at
a given moment. Computer architecture and the
massive use of commutation electronics generate
interesting properties for electromagnetic analy-
sis. The modifications linked to the evolution of
the clock characterize the system for the case of a
synchronous processor and the bus transfers have
a consumption that is proportional to the number
of bit transitions between two cycles. It is indeed
possible to easily use sensors that are only sen-
sitive to commutations inside the chip. When the
value of a logic gate is established and does not
vary anymore, the only existing currents are con-
tinuous currents. During the commutation from
one value to another, on the contrary, the involved
currents contain very different frequency compo-
nents. Every continuous current will indeed not
provide any contribution to the sensor. The oscil-
lators and commutation lines, on the contrary, pro-
vide contributions that are directly linked to the
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As for power consumption measurements, the
analysis of the currents, obtained with an electro-
magnetic field sensor can be performed in the time
domain as well as in the frequency domain. The in-
ternal clocks of the components, as well as the os-
cillator of the charge pump required for the writing
into some non-volatile memories, can in this way
easily be found. In certain cases (charge pump-
ing oscillator...), the sensitive information mod-
ulates the radiated signals and a simple demodu-
lation suffices to recover the data [1, 14, 17].

The cards are well protected against a wide
variety of attacks (see tamper detection, tamper
response and tamper resistance) in order to avoid
fault insertion [3, 4, 19] (see fault attack). As a
consequence, they recreate their clock internally
and by electromagnetic analysis it is possible to
recover this clock, to re-amplify it and to multiply
it in order to be able to synchronize the acquisition
frequency of the device as well as possible.

One of the advantages of EMA is the locality
principle. Using an adapted sensor it is possible to
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locally measure the field radiated by a chip [7, 15].
But the equations are much more complex than
announced in [7], and the near field approximation
does not require the same equations at all. Using
a coil as the electromagnetic sensor and consider-
ing it as an adapted sensor is only a first order
approximation.

ADVANTAGES: An advantage of Electromagnetic
Analysis is that it allows obtaining at least the
same result as power analysis [17]. But the most
accurate information leakage model (see side-
channel attacks) is based on bit commutations be-
tween two states. Moreover, for some so-called
classes of ‘bad’ instructions, it allows to deduce re-
sults, where power analysis fails [5, 18]. So, EMA
could be used to reduce the effectiveness of ex-
isting countermeasures against Power Analysis.
Buses and registers constitute the major leakage
sources. In addition, it is possible to use the pos-
sible leakage sources jointly. Rao and his team
have shown that attacks that are based on signals
which, taken together, do not necessarily present
the best signal to noise ratio, can lead to satis-
factory results [2]. Smart cards are particularly
vulnerable, as they can hardly detect a listening
material (see tamper detection, tamper response
and tamper resistance). In certain cases electro-
magnetic analysis allows to recover PIN codes (see
personal identification number) or, by applying an
alittle bit more complex approach (active sensors),
to insert faults [16].

CONTEXT: Maxwell’s equations indicate that it is
possible to theoretically predict the radiation of
a cryptoprocessor. The complexity of the compu-
tation is, however, often prohibitive and inhibits
from using such a procedure. From this observa-
tion on, only an empirical approach, based on prac-
tice and experimentation, allows to rapidly obtain
useful results. Once this step is taken, one can turn
back to a numerical simulation and provide more
reliable numerical values to the used model.

The practical approach is simple, but the princi-
ple of analysis by measuring the electromagnetic
radiation is, however, more complex to put in place
than the one that uses power consumption mea-
surements. As for power analysis, a sensor and
an acquisition system are sufficient to recover the
sampled data. But sometimes the obtained signal
has to be amplified before it can be correctly mea-
sured. Different sensors can therefore be used,
but they do not all offer the same information.
The measured spectrum also vary in the function
of the implementations and the packaging of the
components.

COUNTERMEASURES: There exist multiple coun-
termeasures at the hardware level, but they are
however not all well suited to all cases and have
sometimes to be locally adjusted. The first of all
these countermeasures is of course the use of a
Faraday cage, in order to stop all kinds of ra-
diation leakage. This countermeasure, although
being ideally the most perfect one, is also the
most difficult to put in place. There are multi-
ple and heavy constraints when using a Faraday
cage and they cannot always all be relaxed. In or-
der to reduce radiation, a thin metal layer (ide-
ally a ferromagnetic one) may sometimes suffice
to render measurements more difficult. In cases
where a Faraday cage cannot be used because of
bounding wires, power supply lines, or simply be-
cause of mechanical constraints (the thickness of
a smart card is fixed at 0.76 mm), one should
define a protection zone around the device to be
measured. But once again, this cannot always be
done.

Electronic designs call more and more upon low
consumption techniques. As a consequence, this
reduces the commuted currents and thus reduces
their radiation. These techniques are, however,
not sufficient. One is then forced to use asynchro-
nism techniques and classical DPA countermea-
sures (Dual rail logic and precharged logic. .. ) (see
side-channel attacks). Some of the new architec-
tures seem, however, to be able to break the local-
ity principle and scatter around the computation
over the processor.

CONCLUSION: Analysis by electromagnetic radi-
ation has to be taken into account seriously, espe-
cially when it enables discovering cryptographic
keys. Practical examples that could be threatened
by such an attacks/are numerous (see hardware
security module and EMV-standard). Therefore,
there exist some evaluation criterions (see secu-
rity evaluation criteria and countermeasures to
stop this type of attack. Even if the signals are
noisier, electromagnetic analysis has some serious
advantages compared to power consumption anal-
ysis. The combination of both often allows reduc-
ing the required number of samples to recover the
cryptographic keys, because of the improvement of
the signal to noise ratio. The statistical analyses
that can be performed afterwards are numerous
and also allow improving the efficiency of the at-
tack compared to a classical differential analysis.
The use of side channels to recover a cryptographic
key is primordial when a physical access to the de-
vice is at disposal. But electromagnetic analysis
strongly depends on the architecture of the chip




and some knowledge of the internal circuitry of
the processor also highly facilitates the work.

Jean-Jacques Quisquater
Samyde David
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ELECTRONIC CASH

Electronic Cash is a self-authenticating digital
payment instrument that can be stored in an
electronic wallet (or electronic purse) just like tra-
ditional cash is stored in a traditional wallet.
Electronic cash is a sort of pre-paid electronic
payment, i.e., payers withdraw electronic cash
from their bank accounts prior to making a pur-
chase and payment. To make a payment the payer
simply passes the required amount of electronic
cash to the payee. The payee is not referred to any
bank account of the payer.

Like electronic payment schemes in general,
electronic cash schemes shall satisfy the following
security requirements:

Payment authorization: Electronic cash typi-
cally comes in the form of electronic coins of var-
ious face values, which have attached a digital
signature by the issuing bank. Any payee can
immediately verify the validity of such elecronic
coins by checking them against the public veri-
fying key of the respective issuing bank.

No counterfeiting: The overall value of all pay-
ment instruments shall not be increased with-
out further action by an authorized minting
bank. This is partly achieved by the digital sig-
natures of electronic coins, which ensure that
electronic coins cannot be forged. However, the
digital signatures alone cannot prevent cheat-
ing payers from overspending. In some systems,
such attacks can be detected after the fact, but
they cannot be prevented unless electronic wal-
lets employ a piece of tamper resistant hardware
that controls the spending of coins effectively.
A moderate level of tamper resistance can be
achieved by smartcards. This approach is taken,
e.g., by [4]. Stronger levels of tamper resistance
can only be achieved by more tamper responsive
electronic wallets.

Confidentiality: Certain payment information
may be required to be kept confidential from
prying eyes (privacy). The purchase content,
the payment amount, or the time of payment
shall not be disclosed to individuals not involved
in the transaction. This is usually achieved by
using a point-to-point connection between the
payer’s electronic wallet and the payee’s mer-
chant device (e.g., a point of sale terminal), or

by using an SSL/TLS tunnel over the Internet
(see Secure Socket Layer and Transport Layer
Security).

Payer anonymity and payment unlinkability
can be achieved by electronic coins that are sta-

tistically independent of the payers who use
them. According to work by Chaum and Brands
[1, 3] this can be achieved by blind signatures
as follows: When a payer opens an account with
her issuing bank, she identifies herself to the
issuer and establishes a role pseudonym to be
used for her withdrawels of electronic coins
from the issuer. When the payer withdraws an
electronic coin from her bank account, the is-
suer provides a blind signature for the payer’s
role pseudonym. Different public verifying keys
can be used to encode different face values of
electronic coins, such that the face value can-
not be changed by the blinding of signatures.
The payer then transforms the blind signature
into a signature for a one-time pseudonym of
the payer. The resulting electronic coin is sta-
tistically independent of any other electronic
coin of this and every other payer, thus achiev-
ing payer anonymity and payment unlinkability
even against computationally unlimited payee’s
who collaborate with the issuer to figure out ori-
gins of electronic coins. The remarkable prop-
erty of Brands proposal is that he shows how
to construct the payment protocol such that
the payer automatically loses her anonymity
once she spends any of her electronic coins
twice. The payment protocol ensures that such
cheating will immediately reveal to the payee
the role pseudonym the payer uses with her
issuer. Thus, Brands electronic cash scheme
achieves overspender detection even if imple-
mented without tamper resistant electronic
wallets.

Reliability: The payment transaction must be
atomic in the sense that it is either processed
completely or not at all. Even if the network
or system crashes, there must be recovery
mechanisms in place that either allow to re-
synchronize the devices of all participants au-
tomatically or at least enable all participants to
make their just claims. This is usually not ad-
dressed in the cryptographic literature, and for
many electronic cash schemes actually in use it
is not described in great detail.

Nacchache and van Solms [5] pointed out that

anonymous electronic cash can be misused if there

is no way of revoking the payer’s anonymity in case
of suspected money laundering and other kinds of
financial abuse. Their work sparked more sophis-
ticated proposals of anonymous electronic cash,




for example by Brickell, Gemmell and Kravitz [2]
where centralized or decentralized trustees are
capable of revoking the anonymity from electronic
coins.

Electronic cash provides customers a way of
offline electronic payment, i.e., no bank or other
trusted third party is involved in the payments.
This may be appealing to certain groups of cus-
tomers, but it is not favored by banks, and banks
have argued against offline electronic payments
by saying it is less secure than online electronic
payments.

Another practical issue in any electronic cash
product is how customers are protected against
loss of electronic coins in critical cases such as
when their electronic wallets fail or if disaster or
bankruptcy strikes their issuer.

It is thus conceivable that electronic cash will
remain a method of payment for smaller amounts,
while online electronic payments methods will re-
main to be used for larger amounts.

Gerrit Bleumer
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ELECTRONIC CHEQUE

This term is used quite freely and could mean any-
thing from an electronic payment instruction of
some kind to a digitally signed electronic counter-
part of a paper based cheque, and may even be
considered as the so-called negotiable instrument
(as opposed to a crossed cheque, which may not be
forwarded as a payment but needs to be cashed).

Peter Landrock
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ELECTRONIC
NEGOTIABLE
INSTRUMENTS

A negotiable instrument is a document which, ac-
cording to law, can be traded freely, such as cash,
endorsable cheques or Bills of Lading (which actu-
ally is only quasi-negotiable). All of these types of
documents may appear in electronic form as well.
The only challenge is to prevent what is known
as double-spending (e.g., for cash). This can be
achieved in two ways: either by having an on-line
Trusted Third Party to keep track of ownership,
or by using tamper resistant devices to prevent
double-spending.

Peter Landrock

ELECTRONIC PAYMENT

Since the Internet spread beyond the research
communities and made significant inroads into
the commercial world, more and more customers
became connected to the Internet. Customers first
got equipped with personal computers, then with
palm pilots, and more recently with cell phones.
By the end of the 1990s most customers in the de-
veloped countries were hooked to the Internet by
one device or another. The wide availability of cus-
tomer devices and the Internet itself sparked the
development of electronic payment instruments
throughout the 1980s and 1990s and many of them
have been put to trial.

In traditional payment systems as well as in
electronic payment systems, payers and payees
keep and manage their money in bank accounts.
The payer’s bank is sometimes called the issuer,
while the payee’s bank is called the aquirer. A pay-
ment system is a way to move a specified amount
of money from the payer’s bank account into the
payee’s bank account in a secure fashion. In or-
der to transfer money from the payer’s account at
the issuer to the payee’s account at the acquirer,
the payer and payee can use various electronic
payment instruments. All electronic payment in-
struments are electronic representations of cash,
a payment order, funds transfer order, or the like
that authorizes the transfer of a specified amount
of money. Electronic payments can be initiated by
the payer or by the payee.

In indirect payment systems, the payer initiates
a payment with the acquirer into the payees bank
account, or the payee initiates a payment with the
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issuer from the payer’s account. In either case, the
payer and payee have no online interaction dur-
ing the payment. Respective examples are elec-
tronic funds transfer and automatic clearing house
(ACH).

In direct payment schemes, the payer and payee
interact online during the payment while connect-
ing their devices, either directly, e.g., by insert-
ing the payer’s card into the payee’s card reader
and terminal or by a point-to-point IR connection,
or by connecting the two devices through a wired
or wireless network. A direct payment scheme is
called online if the payment protocol requires the
issuer or the acquirer to participate in the pay-
ment protocol online. Otherwise, it is called of-
fline. Online payment schemes are perceived as
more secure because each payment transaction is
overseen by an issuer or by an acquirer, who are
regarded as trusted participants. Offline (direct)
payment schemes require payers to use electronic
wallets, i.e., secure hardware devices, in order to
prevent overspending (overspending prevention).

payee sharing the secret. The highest degree of
security can be achieved if the payer uses a dig-
ital signature to authorize payments. Distribut-
ing the respective public verifying keys requires
a public key infrastructure (PKI), but ensures
non-repudiation, i.e., only the intended payer is
capable to produce a signature for the payment
with respect to the public verifying key certified
to the payer’s name.

No counterfeiting: The overall value of all
payment instruments cannot increase without
further action by an authorized minting bank.
In other words, payees shall not find their ac-
counts credited without anyone actually paying
for this amount.

Confidentiality: Certain payment information
may be required to be kept confidential from
prying eyes (privacy). The purchase content, the
payment amount, or the time of payment shall
not be disclosed to individuals not involved in
the transaction. If anonymity of payer or payee,
unlinkability of payments or untraceability of

Direct payment schemes can be classified as

follows:

Pre-pay: At the time of payment, the payee’s bank
account is credited, but the payer has to have
withdrawn a sufficient amount of money from
her or his accounts BEFORE making the pay-
ment. This is usually called electronic cash.

Pay-now: At the time of payment, the bank ac-
count of the payers is debited and the bank ac-
count of the payee is credited. Examples are
electronic checks and debit cards.

Pay-later: At the time of payment, the payee’s
bank account is credited, but the payer’s bank
account is debited some time later. Typical ex-
amples are electronic credit cards.

Payment schemes must satisfy a number of
security requirements:

Payment authorization: Payers shall not find
money deducted from their accounts without
their consent. Thus, all payments shall be au-
thorized at least by the payer. This will not nec-
cessarily imply that payers have to authenti-
cate their identity to payees. In pre-pay systems,
i.e., e-cash systems, the payment instruments
are self-authenticated, and payers may remain
anonymous.

A payer can authorize a payment by out-of-
band means such as by phone or regular mail.
This is common with credit cards payments for
phone orders or mail orders. In lasting business
relationships, the payer and payee can agree on
a shared secret such as a password, passphrase
or PIN. The payer then needs to type the shared
secret in order to authorize a payment to the

payments are an issue, then the identities of the

payer and/or payee must be disclosed neither to

outsiders nor to certain participants of the pay-
ment transaction.

Reliability: The payment transaction must be
atomic in the sense that it is either processed
completely or not at all. Even if the network
or system crashes, there must be recovery
mechanisms in place that either allow to re-
synchronize the devices of all participants au-
tomatically or at least enable all participants to
make their just claims.

In order to support frequent payments of small
amounts, typically less than 1$ each, special mi-
cro payment schemes have been proposed. They
involve no complex cryptographic computations
for the payment itself, but require some over-
head between the payer and payee in order to
set up the micropayment option. Typical applica-
tions are pay-per-view or pay-per-click or pay-per-
phone tick. If micropayments between a payer and
a payee are so rare that even the small overhead
to set up the micropayment option is not justified,
then they can still use a micro payment scheme,
such as u-iKP [2], by employing a broker who fre-
quently receives micro payments from the payer
and makes micropayments to the payee. This way,
one leverages on existing business relationships
spanning from the payer over the broker to the
payee.

The predominant standard for on-line pay-now
schemes (electronic checks) is SET, the Secure
Electronic Transactions [3] standard, a merger of
VISA’s Secure Transaction Technology (STT) and



Master Card’s Secure Electronic Payment Protocol
(SEPP). Marketing, branding and compliance test-
ing is organized by SetCo, Inc., a joint subsidiary
of VISA and MasterCard.

There is a large and quickly changing variety of
proposals for electronic payment schemes; some
more directed to research activities, others striv-
ing for market share. A good overview is given by
Asokan, Janson, Steiner and Waidner in [1].

Gerrit Bleumer
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ELECTRONIC POSTAGE

Electronic postage is a way to pay for postal trans-
portation services in an electronic way. Customers
who have less than five or ten mailpieces to send
per day on an average will use stamps, and cus-
tomers who have several hundreds of mailpieces
of equal weight and size will use rebated bulk
mail options. For many other customers, electronic
postage is a convenient option. Electronic postage
comes in two form factors, as a software applica-
tion running on a regular personal computer, or
built right into a desktop printer, or integrated
into a postage metering device [5].

Large Postal Services such as the US Postal Ser-
vices, Deutsche Post AG, and Canada Post Cor-
poration have started initiatives that will replace
mechanical postage metering devices in their re-
spective Postal markets by electronic metering de-
vices within 3 to 5 years. Other Postal Services are
likely to follow these initiatives because electronic
metering devices reduce the risk of fraud signifi-
cantly, and they support the integration of value
added features such as track and trace services.

The first specification of electronic postage was
published by the US Postal Services in 1996 [7].
The first publication specified closed systems, i.e.,
postage metering devices that couple the elec-
tronic postage vault together with the printing
mechanism. It was later accompanied by a spec-
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ification of open systems, which means systems
based on a regular personal computer connected
to a desktop printer. Both specifications enforced
that electronic postage would only be stored inside
certified hardware security modules, which were
called postal security devices. In closed systems,
the postal security devices would be integrated
within the postage metering devices in order to
faciliate high throughputs of mailpieces. For open
systems, there were two options. Either the postal
security device was held inside a server at the
postage provider, such that customers could use
some application software in order to download
postage every time they had to produce an indi-
cium for a mail piece. This approach is called on-
line PC postage. The other option was to build
postal security devices into the customers per-
sonal computers, which would then be used more
orless like a postage meter. This approach is called
offline PC postage. In 1999, a third type of system
was specified, called centralized systems, where
customers employ one postal security device in
a central location of a network, and connect sev-
eral printers or postage metering devices (with-
out built-in postal security devices) to the net-
work, for example, one for each department. Each
printer or postage metering device would then re-
ceiveits indicia from the central postal security de-
vice. In practice, profitable business models have
only been developed for electronic postage meter-
ing devices and for online PC postage (see listings
at [3,7]).

The main idea behind the Information Based In-
dicia Program (IBIP) is this: each postal security
device serves as a secure storage for pre-paid elec-
tronic postage, and produces a digital signature
for each mail piece a customer is going to send.
Typically, the digital signature is produced in real
time, such that all actual mail piece parameters
such as weight, size, mail category, date of mailing,
etc. can be taken into account by the digital signa-
ture. All parameters and the digital signature of
a mail piece are encoded into a two-dimensional
barcode, which is printed in the upper right cor-
ner of an envelope. A similar kind of bar code can
also be used for parcels. Typically, those barcodes
are printed to a label, which the customer affixes
to the respective parcel. IBIP specifies which sig-
nature algorithms are permitted (the RSA digi-
tal signature scheme