APPENDIX

CONSCIOUSNESS: A HYPERSPACE VIEW
BY SAUL-PAUL SIRAG

INTRODUCTION

Ordinary reality, objectified by the methods of
measuring space, time and matter, is a subrealm of
a larger reality. This is an ancient idea — at least as
ancient as Plato’s cave story in which prisoners are
chained in such a way that they identify themselves
with their own shadows on the cave wall. It seems
clear that Plato meant to imply that the larger
reality is hyperdimensional — i.e., although we
tend to identify ourselves with our 3-d bodies,
there is a higher dimensional realm in which we are
higher dimensional beings of which our 3-d bodies
are mere shadows. This interpretation of the cave
parable is augmented by Plato’s motto for his
Academy: “Let no one enter here without geom-
etry” (cf. Hinton, 1904, 1980).

The idea that reality is hyperdimensional is
entertained today by physicists attempting to unify
all the physical forces in a unified field theory. Itis
reasonable to suppose that the detailed description
of this hyperdimensional reality will yield a theory

of consciousness.

Consider the following aspects:

1. The unification of electricity and magnetism
worked out by James Clerk Maxwell (1831-1879)
entailed the first satisfactory theory of light: i.e.,
light is an electromagnetic wave. This theory
introduced the unexpected idea that visible light is
only a tiny part of the electromagnetic spectrum.
Subsequent discovery of radio waves and x-rays
confirmed this theory. Analogously, we can expect
something new to come out of the unification of all
the forces. We should not be too surprised to see
that this something is consciousness and that the
unified theory provides a basis for a “spectrum” of
states of consciousness.

2. In philosophy, consciousness is usually
discussed in the context of the mind-body prob-
lem: Are the basic entities of the world mind-like
or body-like, or some mixture of mind-like and
body-like entities? The defining characteristic of
body-like is assumed to be extension in space. The
defining characteristic of mind-like is assumed to
be sensation. So the question becomes: Can the
world be constructed from sensations alone,
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extensions alone, or some mixture of both? There
are other possible views; for example: both
sensations and extensions are derived from different
combinations of some neutral entity

(cf. Russell, 1954).

The extension-alone school (materialism)
maintains that consciousness is an epiphenomenon
of the complex structures of the brain. The
sensation-alone school (idealism) maintains that
consciousness (or a universal mind) is the ultimate
reality and that the material world, as well as the
existence of individual minds, is a construct within
the universal mind. The sensation-and-extension
school (dualism) maintains that consciousness is an
aspect of reality separate from, but somehow
interacting with, the material world. The chief
criticism against dualism is that an entity which is
not extended in space cannot interact with matter
(which is extended in space). The view that
consciousness and mattér arise from different
combinations of some neutral set of entities is
called neutral monism.

It is easy to imagine that a hyperspace view of
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reality will entail a reevaluation of the tradi-
tional categories of the mind-body problem.

3. The unification of all the forces is
possible only if a theory can be constructed
unifying general relativity (Einstein’s theory of
gravity) with quantum mechanics. The main
problem is that these two theories appear to be
incompatible because general relativity is a
deterministic theory, whereas quantum
mechanics employs a fundamentally nondeter-
ministic description of measurement. A
possible means of reconciliation is suggested by
the fact that quantum mechanics itself has a
deterministic side as well as the well-known
nondeterministic side. The reconciliation of
these two opposed aspects of quantum theory is
called the quantum measurement problem. To
state this problem clearly, a brief description of
quantum theory is necessary.

A quantum system is represented by a
vector (called the state vector) which rotates in
an abstract space (which may very well be
infinite-dimensional). Note: A vectoris an
arrow-like entity with both length and direc-
tion. The rotation of the state vector is deter-
ministic in the sense that if its position is
known at one time, its position at another time
can be calculated. (It is just like a clock hand
except that a clock hand is rotating in a 2-d
space, whereas the quantum state vector might
be rotating in a hyperspace.) As long as no
measurement is made on the system, the state
vector keeps rotating smoothly in the state
space according to a deterministic equation
called Schroedinger’s equation; but, as soon as
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a measurement is made, the state vector
immediately jumps to a vector (an eigenvector)
corresponding to an allowed value (an eigen-
value) of the particular measurement that is
being made. This jump is called the collapse of
the wave function (another name for the state
vector), but it is more appropriately described
as the projection of the state vector onto an
eigenvector belonging to a measurement. Most
important: It is completely undetermined
which eigenvector is projected out of the state
vector by the measurement; however, we can
calculate the probability of this projection, and
we can verify this probability by repeating the
measurement over and over or by making
simultaneous measurements on a multitude of
similarly prepared systems. Each type of

measurement (e.g., a position measurement or

a momentum measurement) has its own set of
allowed states (eigenvectors) which belong to
allowed values (eigenvalues). The eigenvectors
corresponding to a type of measurement
provide a coordinate system for the space in
which the state vector rotates (state space).
Each type of measurement provides such a
coordinate system.

Note: Since a coordinate system is
imposed on a vector space arbitrarily (by
choosing a measurement), we will consider a
coordinate system as equivalent to a point of
view (cf. Weinberg, 1987).

A crucial question is: Under what condi-
tions do different types of measurement
provide identical coordinate systems for the
state space? And what is the consequence of
this coincidence?

FiG. A1 STATE SPACE FOR 2—EIGENSTATE QUANTUM SYSTEM

S= state Vector

A= eigenstate A B= eigenstate B

a’= the probability that S will be found in state A
b= the probability that S will be found in state B
) b Note: Quantum state vectors exist in a complex state

space. This drawing shows only the real part
of the state vector and eigenstates.

-
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The answer is somewhat abstract: To each
type of measurement corresponds an operator
which acts on the state vector and on the state
space in which the state vector lives. Of all the
vectors of the state space, let us pick out only
those which do not change direction, but
change only their length under the action of
the operator. These vectors are the eigenvectors
belonging to the operator. The factor by which
an eigenvector changes length is the eigenvalue
belonging to the eigenvector (e.g,, if the
operator doubles the length of the eigenvector,
the eigenvalue is 2). Now it is a theorem of
pure mathematics that commuting operators
have the same eigenvectors. Note: If AB= BA,
where A and Bare operators, then we say that
A and B commute. Thus, in this case, Aand B
provide the same coordinate system (the same
set of eigenvectors for the state space on which
they act).

The consequence for quantum theory is
that any two types of measurement represented
by commuting operators can be made in any
order. Thus, in unified field theory, we are
looking for a complete set of commuting
operators whose eigenvalues are the complete
set of “simultaneous” eigenvalues of the world.
As we shall see, these operators are expected to
be the basis elements of 2 maximal commutative
subalgebra of a Lie algebra (and these terms will
be defined in due time).

If two types of measurement are repre-
sented by noncommuting operators (AB# BA),
the order in which the measurements are made
affects the outcome of the measurements.

This is the basis of Heisenberg’s Uncertainty
Principle. For example, position and momentum
are measurements corresponding to noncom-
muting operators, so that PQ —QP= hl(i2n),
where Pis the momentum operator (in the x
direction), Q is the position operator (in the x
direction), 7 is the square root of minus one,
and 4 is Planck’s constant, which is the very
small quantity =107 erg seconds.

This implies that the uncertainty in
position times the uncertainty in momentum is
always greater than or equal to Planck’s
constant — which is the usual way the uncer-
tainty principle is stated.

(Note: The smallness of Planck’s constant
accounts for the fact that we didn’t notice it
until we investigated atomic phenomena. If we
measure ordinary-sized objects, the ordinary
measurement errors are much larger than the
fundamental uncertainty due to Planck’s
constant.)

The most peculiar thing in quantum
theory is not, however, the Uncertainty
Principle. Rather it is the Measurement
Problem (cf. Wheeler and Zurek, 1983), which
we state as follows: How can we reconcile the
deterministic evolution of the state vector with
the random projection of the state vector onto
a measurement eigenvector?

The problem becomes more acute when
we realize that measuring devices themselves are
ultimately composed of quantum entities so
that, in principle, there is a single state vector V
which corresponds to the combination of the
measured system and the measurement device.
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This state vector V must rotate deterministi-
cally like any other quantum state vector. The
projection of V onto an eigenvector is induced
by a measurement of the measuring device by
another measuring device (which, for the time
being, is considered outside the quantum
system). Of course, this second measuring
device can be combined with the above system
into an even larger quantum system and treated
similarly. In fact, an indefinitely long chain of
such devices can be hooked together. The most
interesting question is: What is the ultimate
observer? Is it the apparatus on the physicist’s
laboratory table? Is it the physicist’s eyes? His
optic nerves? His brain? His consciousness?
(see Fig. A2)

According to the mathematician John von
Neumann and the physicist Eugene Wigner
(cf. Wigner, 1979), the best solution to the
measurement problem is that ultimately
consciousness projects the state vector onto the
eigenvector. However, if one adopts the
Wigner interpretation of quantum theory, the
nonlocality of the state vector as implied by
Bell’s Theorem (cf. d’Espagnat, 1976, 1979,
1983; Herbert, 1985) suggests that this
consciousness which projects the state vector
must be a universal consciousness.

Of course, many other solutions to the
measurement problem have been proposed.
None of them, however, has been universally
accepted by physicists. And all of them are as
strange, in their own ways, as the Wigner
proposal. For example, Heisenberg (1958)
proposed that an eigenvector is essentially a
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mental entity in the sense that it describes not
the state of the physical world but rather the
state of our knowledge of the physical world.

We should expect that a view of unified
field physics, in which hyperspace is considered
real, would throw new light on the quantum
measurement problem. And we should not be
surprised if consciousness is involved in this
picture.
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4. Cosmology, the study of the large-scale
structure of spacetime, presents a special
challenge to unified field theory. On the large
scale, gravity is the dominant force, so that the
unification of gravity with the other forces
should have implications for cosmology.
Moreover, it is believed that the forces become
unified only in extremely high-energy interac-
tions, such as occurred shortly after the big
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bang explosion of the universe. Thus it is
hoped that unified field theory can provide
clues to the origin of the universe. It should be
clear from the discussion above that quantum
cosmology will entail a state vector for the
universe as a whole. In this case, the problem of
having an observer outside the universe to
project the state vector onto eigenvectors
becomes acute. The keyword here is outside,
and it should not be surprising to find that a
hyperspace view of reality provides a solution to
this problem.

5. Among physicists working on unified
feeld theory, it is widely believed that the deepest
aspect of the world is the symmerry principle,
which we state as follows: The rule describing
how the state vector evolves does not change
even though the direction of the state vector
can be altered by the changes in point of view
(i.e., coordinate system) (cf. Weinberg, 1987).

These changes in point of view which leave
the evolution rule unchanged are called
symmetries, and together they make up a
mathematical structure called the symmerry
group of the world. The symmetry principle
severely restricts the form of the rule of state-
vector evolution. In fact, it is believed that is
possible to specify the rule uniquely by specify-
ing the symmetry group. Thus, in order to
unify all the forces, we must answer the
question: What is the symmetry group of the
world? Since each element of this symmerry
group corresponds to a change in point of view,
it is clear that the symmetry principle requires
the basic rule of evolution to be independent of



point of view (i.e., coordinate-system
independent).

Some of these symmetries are spacetime
symmetries, such as the fact that the rules of
physics are independent of the time and place
and orientation of the measuring equipment.
It is rather amazing that from these quite
plausible requirements we can derive the
following laws: conservation of energy,
conservation of linear momentum and
conservation of angular momentum. More-
over, the rules of Einstein’s theory of special
relativity can be derived from the postulate
that the laws of physics must remain invariant
under any coordinate system change which
does not stretch the vectors in spacetime. The
constancy of the speed of light ¢is built in here
by the assumption that cis the intrinsic
conversion factor necessary to put space and
time into the same coordinate system — ¢t is a
distance, if ¢ is time. In the last several decades
it has become increasingly clear that similar
symmetry statements can be made about
vectors in the state spaces of quantum me-
chanics. These are called “internal” symmetries
in order to distinguish them from the symme-
tries of spacetime.

Symmetry and Groups

Because of the central role that symmetry
plays in the unified field theory, it is necessary
to present a more detailed description of
symmetry and symmetry groups.

We define a symmetry as a change in an
object which leaves some property of the

object unchanged (or invariant). We use
(rather loosely) the name of the change to
identify the symmetry. For example, we say
that a sphere is rotationally symmetric because
its shape does not change under any rotation.
We say that a cylinder is axially symmetric,
because it does not change its appearance under
a rotation about one particular axis (cf. Weyl,
1949, 1952; Elliott and Dawber, 1979).

The set of all symmetry transformations of
an object forms a mathematical structure called
a group, the most important feature of which is
that one transformation followed by another
transformation is equivalent to a third transfor-
mation. This property of the group is called
closure. There are three other necessary
properties:

1. Associativity: a(bc) = (ab)c where a, b, ¢
are group elements

2. Identity element: ea = ae = a where a is
any group element and e is the identity
element of the group

3. Inverse elements: aa™" = a~'a= e where
a is any group element and 2 ~/is the inverse of
a; i.e., every element has an inverse.

There are many extra properties which a
group might possess, the most important of
which is

4. Commutativity: ab = ba where a, b are
group elements.

In other words, the order in which we
perform all the transformations is irrelevant.
We call such a group commutative. A
noncommutative group may have a commuta-
tive subgroup. If this commutative subgroup

commutes with all the group elements, it is
called the center of the group.

Groups come in two types: continuous
groups and discrete groups. A continuous
group is also a space. Thus a continuous group
possesses not only the above algebraic proper-
ties which make it a group but also the geomet-
ric properties which make it a space. This
means that the elements of the group are also
the points of a space.

A discrete group is not a space (or is a
0-dimensional space if one insists in calling it a
space). However, it may be a subgroup of a
continuous group, i.e., a set of points set at
intervals in a space. The simplest example is the
group of integers, which can be viewed as a set
of discrete points on the real number line. The
identity element is 0; the inverse elements are
the negative integers. The integers are closed
and associative under the operation of addition.
Moreover, the integers form a subgroup of the
real numbers (viewed as a group under addi-
tion). The integers form an infinite but
countable set. In fact, we ordinarily use the
positive integers to do our counting.

There are also discrete groups which have a
finite number of elements. These groups are
called finite groups. The most important finite
groups are called symmetric groups. A symmet-
ric group S, consists of all the permutations
(reorderings) of 7 objects. The group property
of closure arises out of the fact that a permuta-
tion of a permutation yields another permuta-
tion. For each 7, there exists a permutation
group of »! (pronounced 7 factorial) elements,
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because there are #/ways to permute (rear-
range) 7 objects. For example, there are 4! = 4 x
3x2x 1 =24 ways to permute four objects. It
should be noted that S, is a noncommutative
group, except in the two trivial cases 7= 1 or 2.

If the space of a continuous group is
smooth, the group is called a Lie group (named
for the Norwegian mathematician Sophus Lie,
1842-1899). The best examples of Lie groups
are groups consisting of rotations of vectors in
vector spaces (which could, for example, be the
state spaces of quantum theory).

One must be very careful to distinguish
between two spaces here: (1) the space which
the group is and (2) the space on which the
group acts. One must also keep in mind that
the group can act on itself as a transformation
group. In this special case of self-action, (1) and
(2) are the same space. This is hardly an
unimportant technical detail. For as we will see,
the action of the Lie symmetry group on itself
corresponds to force fields, whereas the action of
the group on an “outside” space corresponds to
matter fields. And this is the fundamental basis
of the distinction between these two types of
field.

The set of all rotations of a sphere is a very
useful example of a Lie group. There is a
continuous infinity of rotations of an ordinary
sphere (called a 2-sphere, with the label 2,
because it is a 2-d space, coordinatized by
latitude and longitude, let us say). These
rotations themselves form a 3-d space, called
the 3-sphere mod plus or minus 1, with the label
S$7/{1}. The group name for this space is
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SO(3), which means the set of all special-
orthogonal 3-by-3 matrices (cf. Schutz, 1980;
Poor, 1981).

Note: A matrixis a rectangular array of
numbers. The word orthogonal refers to the fact
that the matrices rotate without stretching the
vectors on which they act; the word special
implies that volume remains invariant under
the action of the matrices. Thus the 3 in the
label SO(3) refers not to the 3-d space of the
group itself but to the dimensionality of the
space on which the group acts, i.e., the 3-d
vector space in which the sphere §°is embed-
ded as the set of all unit-length 3-d vectors.

In general, the set of #-by-# special
orthogonal matrices is a group called SO(n)
which acts on an n-dimensionalvector space
and in so doing rotates an 7 — I dimensional
sphere $” 7.

The importance of SO(3) may be realized
by considering its finite subgroups, which are
the symmetry groups of various polybedra
inscribed in the sphere S on which SO(3) acts.
(cf. Weyl, 1952; Du Val, 1964; Slodowy,
1983). Each element of the group leaves the
polyhedron invariant — i.e., looking the same

(see Fig. A3).

The finite subgroups of SO(3) are:

1. All of the ¢yclic groups ¢, (n = any
integer) are commutative groups which rotate
n-sided pyramids. We can imagine these
pyramids as inscribed in 2 with the base
inscribed in the “equator” and the apex at the
“north” pole.
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2. All the dihedral groups d,, (n = any
integer) are (except for 7= 1 or 7= 2) noncom-
mutative groups which rotate #-sided oranges.
We can imagine such an orange as S ° parti-
tioned into 7 sectors with the two vertices at
the two poles. The noncommutativity of the
symmetry group arises from the fact that a flip-
over of the orange, exchanging the “north” and
“south” poles, followed by a clockwise rotation
through angle x, is different from a clockwise
rotation through angle x followed by a flip. (To
make this concrete, try it on a beach ball with
different colored segments.)

3. The three regular polyhedral groups,
which are symmetry groups of the five platonic
solids: the tetrahedron, the octahedron, the cube,
the icosabedron, and the dodecahedron. (Note:
The octahedron and cube have the same
symmetry group; likewise for the icosahedron
and the dodecahedron.) All three groups are
noncommutative.

T is the 12-element tetrahedral group,
which we depict as the set of symmetries of the
tetrahedron inscribed in 2.

O is the 24-element octahedral group,
which we depict as the set of symmetries of the
octahedron inscribed in S This is also the
symmetry group of the cube, since the six faces
of the cube correspond to the six vertices of the
octahedron, and the eight faces of the octahe-
dron correspond to the eight vertices of the
cube.

(The noncommutativity of Ois easily seen
by rotating a cube with six different colored
faces. Or simply visualize the following: The



Fic. A3
Symmetry figures embedded in S° correspond to finite subgroups of
SO(3). The regular figures (all sides equal) are the five Platonic solids.
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three axes about which a cube rotates could be
labeled — according to aeronautical terminol-
ogy — yaw, pitch, and roll. Then imagine you
are the pilot of an airplane which is flying
upright and level due west, and consider a pitch
downward through 90° followed by a yaw to
the left through 90°% you are now flying due
south and with your right wing pointed to the
ground. Now go back to the original starting
position and reverse the order of the two
maneuvers. You will “end up” with your nose
headed straight to the ground!)

I is the 60-element icosahedral group,
which we depict as the set of symmetries of the
icosahedron inscribed in S2 as well as the
symmetry group of the dodecahedron, since
the 12 faces of the dodecahedron correspond to
the 12 vertices of the icosahedron, and the 20
faces of the icosahedron correspond to the 20
vertices of the dodecabedron.

The finite groups c,, 4,, and the regular
polyhedral groups 7', O, and [ form the
complete set of finite subgroups of SO(3)

(cf. Weyl, 1952). There is a corresponding set
of finite subgroups of the Lie Group SU(2).
This group is the set of all special-unitary 2-by-
2 matrices: the elements of SU(2) rotate the
vectors in the complex 2-d vector space on
which the matrices act. In other words, SU(2)
acts on the 2-d complex space (4-d real space)
just like SO(3) acts on 3-d real space. In fact,
SU(2) as a space is called the double cover of
SO(3). This is because SU(2) as a space is the
sphere S, whereas SO(3) is $?/{*1}. This
means that SO(3) can be derived from SU(2)
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by pairing up positive and negative elements of
SU(2) to form elements of SO(3). Geometri-
cally, this would be like considering the
“north” and “south” poles of a sphere as the
same element (cf. Penrose, 1978).

Thus each x-element finite subgroup of
SO(3) has a 2x-element double cover in SU(2).
These finite subgroups of SU(2) can be called
polybedral double groups. For example, the 24-
element octahedral group O has a 48-element
double cover in SU(2) called the octabedral
double group OD, and O can be derived from
OD by pairing up positive and negative
elements in OD. We can write: O= OD/{x1}.

Another important class of finite groups is
reflection groups (Coxeter, 1973), the most
useful examples of which are the Wey/ groups of
Lie groups. A Weyl group acts on the reflection
space h* of the Lie algebra of the Lie group.
The concept of a reflection space plays an
important role in our theory, so it is necessary
to describe this idea, charming in itself, in some
detail. It will perhaps interest the reader to
know ahead of time that the observable
quantities (eigenvalues) of a quantum system,
mentioned previously, exist in a reflection
space, so that we could also call this space
eigenvalue space.

An ordinary mirror seems to transfer
objects from one side of the mirror to a similar
space on the other side, seemingly changing the
direction of objects as if the space in front of
the mirror had simply flipped through the
mirror. Imagine a two-sided mirror that

actually could transfer objects, without chang-
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ing their size, in both directions — the space in
front of the mirror would be flipped, without
stretching, behind the mirror, and vice versa,
while the 2-d space of the mirror itself is left
unmoved. This action of a 2-d mirror plane on
a 3-d vector space is called a reflection in
mathematics. And the idea generalizes to any
number of dimensions, provided the mirror of
an n-dimensional vector space is a plane of one
dimension less, called a Ayperplane. (For
example, a line is the mirror hyperplane of 2-d
space, and a 3-d plane is the mirror hyperplane
in a 4-d space.) Only in this way can the
mirror be two-sided. Just as a line has two sides
in an ordinary plane but an infinity of “sides”
in a 3-d space, so a 2-d plane is 2-sided in 3-d
space but infinite-sided in 4-d space. Notice
how these considerations provide some
intuition about hyperspace.

Since we are by now accustomed to the
idea of group elements acting on a vector space,
we should not be surprised to learn thata
reflection, as defined above, is a group element,
and that a reflection is its own inverse element.
That is, if 7 is a reflection, then r following »
has the same end effect as doing nothing to the
vector space. So we can write: 7°= 1, where 1 is
our symbol for the identity element (which
means “do nothing”).

Suppose we have two or more mirror
planes intersecting each other. At the point
where all the mirrors intersect, one vector (a
mirror vector) is defined for each mirror, so that
the vector corresponding to a mirror points

away from the mirror orthogonally (at a right
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A and B are basic mirrors
(set at 60° to one another).

C is a mirror generated by reflection
in either A or B.

o and B are basis roots

(set at 120° to one another).

The other four roots are generated by reflections
in the mirrors. The nodes (crossing points) are the
weight lattice. Each node is a different weight.

Note: The root lattice is a sub-lattice of the weight
lattice. The large dots are part of the root lattice.



angle). There would, of course, be a negative
mirror vector attached to the back of each
mirror at the same point. We have pictured our
mirrors as living in a vector space, and we
usually imagine a vector space as having some
set of basis vectors to provide a coordinate system
for the vector space. Moreover, we customarily
make this coordinate system rectangular by
having the basis vectors orthogonal to each
other, such as in the familiar x—y—z axis system
for a 3-d vector space. For any vector space,
however, there is an infinity of coordinate
systems, not all of them rectangular. To set up
a coordinate system, we need one basis vector
for each dimension of the space, but these basis
vectors need not be orthogonal (or even all of
the same length) (see Fig. A4).

We can now define a reflection space as a
vector space whose basis vectors are mirror
vectors.

This implies that all the reflection activity
possible in such a space is generated by the
basic mirrors attached to the basis vectors. All
the other mirrors are derived by reflection in
these basic mirrors. Each basic mirror defines a
reflection in these basic mirrors. Each basic
mirror defines a reflection group element and
all the elements of the reflection group are
generated by (i.e., are combinations of) the
reflections defined by the basic mirrors.

It is known (cf. Coxeter, 1973) that in
setting up reflection spaces, the angles between
the basic intersecting mirrors can only be: 60°,
45°, or 36° (except in the 2-d case where the
angles can be 180°%/p, where p is any integer

Fig. A5 A-D-E CoxeTER GRAPHS

LIE ALGEBRA LABEL COXETER GRAPH TOTAL NUMBER OF MIRRORS
A, 0-0-0—. ..—-0 (nnodes) (n? + n)/2
D, 0-0-0—. ..-0 (nnodes) n’-n (n greater than 3)
E, 0-0-0-0-0 36
0
E, 0-0-0-0-0-0 63
0
Eq 0—0—?—0—0-0 0-0 120
0

larger than 2). Thus all possible reflection
spaces can be defined by a graph (called a
Coxeter graph or Dynkin diagram) for each
reflection space. The nodes in each graph stand
for the basic mirrors.

The most important reflection spaces have
basic mirrors which are all set at 60° to each
other. These are called the A-D-E Coxeter
graphs, which are displayed in Figure A5.

Thus, we have two infinite series: 4, and
D, (corresponding to two types of #-dimen-
sional reflection spaces, and the “exceptional
series” consisting of the three graphs E, £,
and Ej (corresponding to three exceptional
reflection spaces of dimensions 6, 7, and 8).

Not only do these graphs classify reflection
spaces, but they define a nesting of lower

dimensional reflection spaces within the higher
dimensional reflection spaces. This is because a
lower-rank graph can always be derived by
removing a node from a higher-rank graph.
(The rank of a graph is the number of nodes,
which is equal to the dimensionality of the
reflection space defined by the graph.) For
example, starting from Eg, we can remove
appropriate nodes to create the following two
hierarchies of nestings:

Eg, E;, Eg, D5, Dy, Az, Ay, Ay
Es, E}, DG, Ds, D‘;’, Aj, A‘?; A)I;

and many other hierarchies as well.

The nesting hierarchies imply that the
lower dimensional reflection spaces are con-
tained in higher reflection spaces. In fact, since
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a mirror in an #-dimensional reflection space is
an (n— 1)-dimensional plane, we can regard
this mirror plane itself as a reflection space
defined by a graph of #— 1 nodes; and, in turn,
each (7 — 2)-dimensional mirror can be
considered a reflection space defined.by a graph
of rank »— 2; and so on, all the way down
through the hierarchy of reflection spaces. In
effect, each node in an #-rank graph (of A-D-E
type) is a graph of rank n— 1.

As one might guess, this hierarchy of
reflection spaces is also a hierarchy of algebraic
and topological structures, which are of great
beauty and utility (cf. Gilmore, 1981).

As mentioned above, the reflection spaces
are Lie algebra reflection spaces 4* In fact, the
A-D-E labels name various Lie algebras. Thus
we can expect an intimate relationship between
Lie groups, Lie algebras and Weyl reflection
groups, since all three structures can be derived
from the Coxeter graphs.

For example, given the A, Coxeter graph,
we specify a 2-d reflection space (Fig. A4) with
two basic mirrors (i.e., lines) intersecting at 60°.
Call the mirrors A and B. The two mirror
vectors, O and 3, attached to these mirrors are
angled at 120° to each other. These are the
basis vectors of this reflection space. By
reflection in the basic mirrors (and a third
mirror generated from either of the basic
mirrors), we generate four new vectors: -0, —f3,
0. + 3, and —ot — 8. Thus we have six vectors
attached in pairs to each side of three mirrors.
These six mirror vectors, usually called roozs, are
eigenvalue vectors in the sense that the coordi-
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nates of each root are eigenvalues of an eigen-
vector belonging to two commuting operators
h;and A which form the basis of 4, the
maximal commutative subalgebra (the Cartan
subalgebra) of A;. The noncommuting part of
the Lie algebra requires a basis made of one
eigenvector corresponding to each root. Thus
the A , algebra is 8-d, with eight basis vectors:
h;, b, and six noncommuting eigenvectors.

Note: An element of an algebrais both a
vector and an gperator, because an algebra has
both additive and multiplicative properties.
Imagine each element represented by a matrix.
The addition of two matrices corresponds to
the addition of two vectors. We represent the
algebra acting on its own vector space by the
multiplication of one matrix by another. In a
Lie algebra, multiplication of elements X and ¥
is defined as the combination XY~ YX, which
is written via Lie brackets: [X, Y]. Thus, if we
consider X an operator and Y a vector, we can
write the eigenvector equation as:

[X Y]=aY

where Yis an eigenvector with eigenvalue 2
belonging to the operator X. In the case of 4,
for example, we have:

[}Jh }52] = 0;
(A2 b)) =0;
[h), €] =2¢
[h,, €] =—e

Thus 4; and 4, are commutative and are
eigenvectors of each other with eigenvalue 0.

And e is an eigenvector of both 4; and 4,
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with eigenvalues 2 and —1, respectively. The
root associated to e is a vector in the reflection
space A* with coordinates 2 and —1. There are
five other eigenvectors following the same
pattern as ¢ but with different eigenvalues, and
thus corresponding to the other five roots.

In general, a Lie algebra of rank # is
defined by an #-node Coxeter graph, such that
there is an #-dimensional Cartan subalgebra
with #» commuting operators as basis, and a set
of noncommuting operators corresponding 1:1
to the roots in the reflection space defined by
the Coxeter graph. In fact, the reflection space
is called the dual space h* of the Cartan
subalgebra 4. Moreover, /*and 4 can be
considered two different views of the same
space, which we now call C”, because we
regard the Lie algebras as complex Lie algebras
(cf. Humphreys, 1972).

Since quantum theory restricts observable
quantities to eigenvalues of measurement
operators, these quantities are to be found in
some Lie algebra reflection spaces. For example,
the first grand unified field theory proposed the
A ;reflection space as the unified eigenvalue
space. This 4-d reflection space has: one
dimension for electric charge, one for weak
charge, and two for strong (color) charge
(cf. Georgi, 1981,1982).

Note: A ;is the label for a complex Lie
algebra whose compact Lie group is SU(5),
with Cartan subgroup 7" % so that the 4,
reflection space is also the reflection space of
the group SU(5). In general, the Lie algebra 4,

with reflection space C” has a compact Lie



group SU(#n + 1). Thus the first grand unified
field theory is usually referred to as the SU(5)
theory.

The term grand unified theory s really a
misnomer because gravity is missing, and it is
mainly the attempt to include gravity in unified
field theory that has forced us to look to much
larger Lie algebra reflection spaces. For ex-
ample, the most celebrated version of
superstring theory proposes to unify all the forces
via the 16-dimensional reflection space Egx Ej,.
This is possible only because the hierarchy of
reflection space embeddings provides for an
embedding of 4, in Eg (cf. Duff, 1986).

Since reflection spaces seem to be the key
unification structures, we would do well to
study them in more detail. One of the most
striking facts of recent mathematics is a 1:1
correspondence between the finite subgroups
of SU(2) mentioned above and the A-D-E
series of Lie algebras (cf. McKay, 1980;
Slodowy, 1983; Arnold, 1986). We list the
most important aspects of this correspondence
in Figure A6 (the terms will be explained in
due course).

The extended Coxeter graph of a particular
n-rank Lie algebra defines an-infinite number
of mirror planes in the #-dimensional reflection
space of the Lie algebra. This is accomplished
by starting from the 7 basis vectors defined by
the ordinary Coxeter graph (cf. p. 335), and
then constructing a new vector corresponding
to the node marked with an asterisk. We
lengthen all the other vectors by the factors
indicated in the extended graph. These 7+ 1

vectors are now in balance: if they were force
vectors, the total force would be zero.

These vectors-in-balance define a mirror
plane which forms a closed alcove (called a
fundamental alcove) with the basic mirror
planes. An observer in the closed alcove would
see the space of the alcove reflected in all the
mirror walls of the alcove so that a tessellation
of mirror-walled alcoves (called Coxeter alcoves)
would be generated, thus filling the entire
reflection space (cf. Coxeter, 1973; Briocker and
Dieck, 1985) (see Fig. A5).

For example, the A; fundamental alcove is
a tetrahedron. Put a candle in its center; then
an infinity of candles in the centers of tetrahe-

dral alcoves will be reflected in the four

mirrored walls of the fundamental tetrahedron.

There are many uses for the balance
numbers in the extended graphs. The sum of
the balance numbers for a particular graph is
called the Coxeter number c. We can calculate
the mirror number m of intersecting mirrors in
an n-dimensional reflection space as m = nc /2.
We can check that for £, the number of
mirrors is 63 = 7 x 18/2, because the Coxeter
numberis 18=1+2+3+4+3+2+1+2.
Since there are two roots for each intersecting
mirror, the number of roots is simply 126 = 7 x
18. And thus the dimensionality of the E, Lie
algebra is the rank plus the number of roots:
133 =7 + 126.

This is all on the Lie algebra side. What

Fic. A6 THe McKay CORRESPONDENCE

LIE ALGEBRA ExTENDED COXETER GRAPH
A, 1-1-...-1
~N 1* /
D, O T Y, |
i 1*
Eq 1<2=3-2-1
2
li
E, 1*-2-3-4-3-2-1
I
2
Eg 2-4-6-5-4-3-2-1*
I
3
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Fic. A7 E; & (EXTENDED) I'\E7
COEXETER (GRAPHS

(Where the underlined numbers are indexing
numbers)

123567 0123567
0-0-0-0-0-0 1-2-3-4-3-2-1
; i

4 4

about the supposed correspondence with finite
subgroups of SU(2)? The following relations
are due to the mathematician John McKay
(1980), so we call these finite groups M cKay
groups. For a given extended graph:

1. The sum of the squares of the balance
numbers is the number of elements in the
associated McKay group.

For E

1P+22+ 3%+ 4%+ 32 +2°+ 17+ 22 =48

where 48 is the number of elements in the
McKay group OD.

2. The balance numbers are the dimen-
sions of fundamental vector spaces on which
the McKay group acts. Such vector spaces are
called inequivalent irreducible representation
spaces (or Zzrep spaces). Thus the number of
balance numbers & (i.e., the number of nodes
in the extended graph) is equal to the number
of iireps of the McKay group.

For E, the iirep dimensions of OD are:
1,2,3,4,3,2,1,2.

3. The number of classes within the
McKay group is also equal to 4. (Note: Two
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group elements are in the same class if their
action on a vector space differs only by a
change of basis, or coordinate system, for the
vector space.)

For E,, the number of classes in the
McKay group OD is eight.

4. 1f we make the McKay-group elements
into basis vectors of a vector space, this vector
space becomes an algebra called a group algebra.
We can also make the classes into basis vectors
of an algebra which is called the center of the
group algebra. (Note: The center is a commu-
tative subalgebra which commutes with the
entire group algebra.) The dimensionality of
the center is &, since & is the number of classes.

For E,, the McKay-group algebra is
C[OD), each of whose elements is a complex
sum over the group elements OD — i.e., any
element of C[OD) can be written as ¢; x; + ¢,x,
+...+ C4gx45 where ¢; through c g are
complex numbers, and x; through x4 are the
elements of OD. There are eight classes in OD.
Thus, if we partition the 48 elements into these
eight classes and assign to each element of a
class the same complex number, we will have

an element of the 8-d center of C[OD).

5. Just as rectangular basis vectors define a
grid structure whose vertices are called a
“lattice” on a vector space, so the basis roots
define a nonrectangular lattice (called a root
lattice L ,) in the reflection space. The intersec-
tion points of the alcoves generated by the
extended graph also define the vertices of a
lattice, called a weight lattice L ,, (see Fig. A4).
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Fic. A8 AE7 (ExTENDED) CARTAN MATRIX

C=-A+2E

0 1 2 3 4 5 6 7
0|2 -1 0O 0 o0 0 0 o
1(-1 2 - o 0 o o0 0
210 -1 2 -1 0O 0 o0 o
310 o0 -1 2 -1 -1 0 0
410 0 o0 -1 2 0 o0 0
510 0 0 -1 0o 2 -1 0
6|0 0 0 0 0 -1 2 -1
710 0 O O O o0 -1 2

Note: If we remove the 0’th row and the 0’th
column, we have the ordinary Cartan matrix
forE..

In unified field theory, the roots correspond to
eigenvalues of force particles, whereas the
weights correspond the eigenvalues of matter
particles. If we think of the reflection space
(where these roots and weights reside) as a
space acted on by an operator, the most
important such operator is one changing a
weight basis to a root basis. This is called the
Cartan matrix. The Cartan matrix has as
columns the coordinates of the basic roots and
thus can be derived directly from the Coxeter
graph. In like manner, the extended Cartan
matrix can be derived from the extended
Coxeter graph (see Fig. A7).

The Cartan matrix can be defined as



Fic. A9 THE INTERSECTION OF E7

witH C[OD]
AT

CFLL
7

1
T
17

|
-

|ﬂ|;1
i
Y

LLLRRLRRRARLLY

L]

-
1

~L]
U

C[OD]
48-d

C7 = Cartan subalgebra of B’ &
subalgebra of C[OD] center

C?® = Cartan subalgebra of "E, &
center of C[OD]

C=-A+2E, where Ais the adjacency matrix
of the graph, and E is the identity matrix
consisting of ones written along the primary
diagonal of the marrix.

Note: In the adjacency matrix A (of either
the ordinary or extended graph), the compo-
nent corresponding to the i’th row and the
7’th column has a 1 if the i’th node is adjacent
to the 7’th node, and 0 otherwise (see Fig. A8).

6. McKay (1980) has proved the amazing
fact that eigenvectors (i.e., the vectors changing
only in length) under the action of an extended
Cartan matrix are the columns of the character
table of the McKay group associated to the
extended graph.

Note: The character table of a finite group
is a square array of numbers, which are the
characters (i.e., the sums of the diagonal
numbers) of the iirep matrices for each class of
elements of the group. The rows of the
character table correspond to iireps; the
columns correspond to the classes.

McKay’s theorem implies that the col-
umns of the character table of the McKay
group provide a rectangular basis for the
n-dimensional reflection space embedded in
the C[OD] center of dimension 7 + 1 (see Figs.
A9 and A10).

Let us look at these facts from the point of
view of quantum mechanics in the context of
unified field theory. We pick a Lie algebra
which we hope encodes the basic symmetries of
the world. The basis operators of its Cartan
subalgebra / are a complete set of commuting
operators. The eigenvectors correspond to

eigenstates of the quantum system — the
world. There are two types of eigenvalue in the
reflection space 5*: force eigenvalues corre-
sponding to the root lattice and matter
cigenvalues corresponding to the weight lattice.
The Cartan matrix acts on reflection space
h* and transforms its weights into roots: i.e.,
matter eigenvalues into force eigenvalues. Thus
it is a kind of super-operator. Think of the
extended Cartan matrix as a super measure-
ment operator whose eigenvectors are the
classes of the McKay group associated to the
Lie algebra. In general, Eigenvectors corre-
spond to particle states. In this case (since the

Fic. A10 THE OD CHARACTER TABLE

(Bdassmci&Siirepst)

C ¢ G G G G G G
Ry[1 1 1 1 1 1 1 1
R (2 0 1 0 v2 2 -1 -2
R,[3 -1 0 1 1 3 o0 1
R,[4 0 -1 o0 0 1 0
Rg[2 2 -1 0 0 2 -1 0
R;{3 -1 0 1 -1 3 o0 -1
Rg[2 0 1 02 2 -1 2
R, (1 1 1 1 -1 1 1 -

Note: The ordering of iireps accords with the
indexing of the "E, (extended) graph (see Fig. A7).
The first column, which contains the E; balance
numbers, corresponds to the identity element.
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operator is a super-operator), we expect the
eigenvectors to correspond to classes of
observable particle states.

Is there an assignment of particle classes to
the eight classes of the OD group? Actually, the
most straightforward assignment is to the five
classes of the O group. But since O= OD/*1,
the elements of O are pairs of OD elements, so
the classes of O are derived from the classes of
OD. The classes of O are equivalent to the
classes of permutation cycle pattern. For
example, there are six ways to permute four
objects by swapping two and leaving the other
two untouched. If we name the objects 1, 2, 3,
and 4, the six such permutations can be written
as: (12)(3)4), (1 3)(2)(4), (1 H)(2)(3),

(3 4)(1)(2), 2 4)(1)(3), and (2 3)(1)(4). These
are called cycle patterns because the numbers in
brackets are considered as a cycle —e.g.,
(12)(3)(4) is read as 1 goes to 2 and 2 goes to
1; 3 goes to 3; 4 goes to 4.

The five permutation classes partition the
24 elements of Ointo three classes of even
permutations and two classes of 044 permuta-
tions.

Note: An even permutation can be
considered as a combination of an even
number of swaps; an odd permutation is
equivalent to an odd number of swaps.

The number of elements in the three even
classes are: one, three, and eight.

The number of elements in the two odd
classes are: six and six.

If we call an even permutation eand an
odd permutation o, we can write the general
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rules for combining permutation as:
EX E=¢€
o0Xo=¢
EXO0=0
0Xée=0

We notice that this matches the quantum field
rules for force bosons & and matter fermions f
f interacts with f by exchanging & (fx 6 =f),
while & interacts with & by exchanging
b(bxb=10).

This suggests that the class numbers one,
three, and eight correspond, somehow; to the
numbers of force particles in each of three
classes. Moreover, it would seem that the class
numbers six and six correspond to the two
classes of matter particle: quarks and leptons.

If we also partition the 24 elements of O
into six cosets of the subgroup K, then three
of the cosets correspond to even permutations,
and the three remaining cosets correspond to
three families of fermions, with two quarks and
two leptons in each family.

We display the O multiplication table and
define the 24 permutations with assignments to
particle labels as Figure A11.

Since the fermion family structure is
generally regarded as the deepest mystery of
particle physics (cf. Georgi, 1982), we are
justified in thinking thar the finite group
solution to this problem is a fundamental clue
to the structure of unified field theory (cf.
Sirag, 1982).

To test this idea further, we must construct
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an interpretation of the multiplication table
which makes sense of the particle labels. First
we note that every particle interaction funda-
mentally entails three particles. Such an
interaction is represented by a vertex in a
Feynman diagram, i.c., three lines meeting at a
point. There are only two patterns to this
vertex: two fermion lines and a boson line,
three boson lines. This matches the odd-even
structure of the O multiplication table, as
mentioned above (see Fig. A12).

The three lines of any interaction vertex
can be labeled: forward, lateral and forward;
and the multiplication table can be interpreted
so that @b = ¢ means forward zand lateral &
and forward ¢ meet at a vertex. In short,
forward x lateral = forward. When this rule is
postulated, the deep structure of weak and
strong interactions is displayed (see Fig. A13).
To distinguish these O group bosons from the
standard force bosons, we use the particle labels
identon, kleinon and familon, rather than
photon, weakon and gluon, respectively. The
standard force bosons are recovered by embed-
ding the gauge groups U(1)x SU(2)x SU(3) in
the group algebra C[ O], which is a subalgebra
of C[OD].

It may seem that we have strayed far from
the idea of a reflection space in defining particle
classes corresponding to finite group classes.
However, although the McKay group OD is
not a reflection group, its factor group Ois a
reflection group. In fact, Ois the reflection
group of the A ; reflection space. And A5 can
be used to unify the eigenvalue structure of the
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Multiplication table for O (i.e. Sy):

ABCD

ABCD
BADC
CDAB
DCBA

EGHF
FHGE
GEFH
HFEG

IJK
JKIL
KJLI
LIK]

MQNP
NPMQ
PNQM
QMPN
RVTS

STVR
TSRV

EFGH

EFGH
FEHG
GHEF
HGFE

IKL)
JLKI
KIJL
LJIK

ADBC
BCAD
CBDA
DACB

RSVT

TVSR
SRVT

XZWY
YWZX

MPQN
PMNQ
NQPM
QNMP

IJKL

IJKL
JIKL
KLIJ
LKJI

ACDB
BDCA
CABD
DBAC

EHFG
FGEH
GFHE
HEGF

WZYX

ZNWXY

MNPQ
QPNM
PQMN
MNQP

RTSV
TRVS
VSTR
SVRT

MNPQ RSTV WXYZ

MNPQ
PQMN
MNQP
QPNM

WZYX
XYZW
YXWZ
ZWXY

RTSV
TRVS
VSTR
SVRT

ACDB
CABD
BDCA
DBAC

KL
KLJI
JILK
KLIJ

EHFG
FGEH
GFHE
HEGF

RSTV
TVRS
VTSR
SRVT

MPNQ
PMQN
NQMP
QNPM

WYZX
XZNVW
YWXZ
ZXWY

EFHG
GHEFE
FEGH
HGEF

ADCB
DABC
BCDA
CBAD

IKJL
JLIK
KILJ
LJKI

WXYZ
XWZY
YZWX
ZYXW

RVST
TSVR
VRTS
STRV

MQPN
PNMQ
NPQM
ZMNP

ILK]
KJIL
JKLI
LJK

EGFH
HFGE
FHEG
GEHF

ABDC
BACD
CDBA
DCAB

Permutation:

Even:

ARG @
B (12) 34)
C(13) (24)
D (14) (23)

E (124) (3)
F (234) (1)
G (143) (2)
H(132) (1)

1(142) (3)
J(134) )
K (123) (4)
L (243) (1)

Odci:
M (24) (1) 3)
N (13) (2) 4)

P (1234)
Q (1432)

R(14) () 3)
$(23) (1) 4
T (1342)
V (1243)

W (12) (3) (4)
X (34) (1) 2)
Y (1423)
Z (1324)

Particle
Bosons:

identon
kleinon
kleinon

kleinon

familon
familon
familon
familon

familon
familon
familon
familon

Fermions:

quark
quark
lepton
lepton

quark
quark
lepton
lepton

quark
quark
lepton
lepton

Coset:

Ist

2nd

3rd

4th

5th

6th

electromagnetic and strong color forces, as
emphasized by Georgi (1981) (see Fig. A14).

The exact interpretation of the relationship
between Oas a factor group of ODand Oas
A reflection space has yet to be worked out.
Since the eigenvalues associated with the
measurement of particles reside in reflection
space, it is reasonable to expect that it will be
intimately related to the fundamental fact of
quantum mechanics: only eigenvalues are
observable.

Furthermore, because there seems to be no
fundamental distinction between observation
and what is observed, I propose that the
reflection space (i.e., eigenvalue space) is
universal consciousness.

Consciousness as Reflection Space

As we have seen, all of the magical struc-
ture of unified field theory is in the reflection
space. Because of the McKay theorem, we can
view this reflection space via the Lie algebra, or
the McKay group, or both. In fact, we will
argue that the McKay-group algebra corre-
sponds to the physical aspect of the world,
while the Lie algebra corresponds to the mental
aspect. The reflection space exists in the
intersection of the McKay-group algebra and
the Lie algebra (actually the infinite-dimen-
sional Lie algebra defined by the extended
Coxeter graph) (see Fig. A9 on p. 339). Since
this intersection space mediates between the
two algebras, and since it is so active, I propose
to identify it with universal consciousness.

It might be supposed that the idea of
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Fic. A12 FEYMAN DIAGRAMS

2 Types of Vertices

>mw

boson  Aana NS
fermion
Electromagnetism
P P
A
P P
PA=P P = electron
A = identon
(~photon)
Weak Interaction
M P Q D
>w§4< >AEN‘£::’1
N Q P B
NC=M PC=Q
QC-=P CB=D
Q = electron neutrino
P = electron
M= up quark
N = down quark

C = ldeinon (~weakon)
B = kleinon (~weakon)
D = kleinon (~weakon)
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Feyman Diagrams display two types of
vertices. The second type of vertex shows up in
the weak interaction because weakons can interact
with each other.

Actually A is somewhat different from a
photon, so we call it an identon, because it
corresponds to the identity element of the group.
Also B, C, and D are somewhat different from the
weakon so we call them kleinons, after Felix Klein
for whom the Klein group K, consisting of A, B,
C, & D, is named.

‘We recover the standard gauge theory of
these force particles by the embedding of U (1) x
SU (2) x SU(3) in the algebra C[OD].

consciousness as reflection space is simply a bad
pun. After all, mathematicians have taken an
ordinary word reflection and given it a technical
meaning which is different from, but similar to,
the usual meaning, The ordinary meaning has
also generated the figurative meaning, by which
reflection is a kind of thinking. It may be,
however, that there is something deeper in this
figure of speech. Perhaps thinking of all kinds is
a kind of reflection. And perhaps this kind of
reflection is akin to the mathematician’s use of
the word. Of course, there is more to con-
sciousness than thinking. But there is also
much more to reflection space than reflection.
It is often assumed that a theory of conscious-
ness is impossible because consciousness is so
complicated. Perhaps the few aspects of
reflection space which I have so far described
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will suggest that mathematical complexities
may be rich enough to describe so rich an
experience as consciousness.

Figures of speech have a habit of cutting
two ways. We say that certain molecules have a
“memory” if they return to an original shape
after being deformed. This is a figure of speech
(in fact, a gross anthropomorphism), of course.
However, it is not entirely foolish to imagine
that our own memories may, in part, be
describable by using molecules with a
“memory.”

In the philosophical debates over the
mind-body problem, this scheme of conscious-
ness as reflection space could be considered
either dualistic or monistic, since we are
proposing that the world is a single space
consisting of two different (but intersecting)
algebras. This intersection is identified as
universal consciousness. Thus the scheme is
monistic geometrically, but dualistic
algebraically.

Moreover, there is no problem here with
the notion of the mental realm acting on the
physical real and vice versa, because both
realms in this theory are spaces. In fact, the
action of each of these realms upon the other is
mediated by the overlapping space — the
reflection space.

The question now becomes: is there a
reflection space with the appropriate qualities
to fulfill this very demanding role? And does it
have further properties which confirm it in this
role?

Because of the theoretical successes of the



FiG. A13 THE STRONG INTERACTION MODELED
BY THE FaMILON ProDUCTS OF THE O GROUP

MG =V
V]=M
MF =S
SL=-M
NL=Z
ZF =N
NJ =X
XG =N
NH=§
SK=N
NL=Z
ZF =N
FM=S§
SL=M
NK = W
WH =N
NG =R
RJ =N
MK =Y
YH =M
MJ=Z
7ZG=M
NG =R
RJ =N

LF=A
FL=A
1G=A
GJ =&
KH=A
HK=A

These products are derived from
the multiplication table of the O
group. They model the labeling of
this diagram via the rule:

forward x lateral = forward.

The strong force binding the
proton and neutron is mediated by
the exchange of a pi meson, which
changes the identity of these
particles. According to the quark
model, the pi meson (consisting of
an up quark (u) and an anti-down
quark(Q)) transfers an up quark (u)
from the proton to the neutron, and
a down quark (d) from the neutron
to the proton. The quarks are bound
to each other by gluons, each of
which consists of a color and an
anticolor.

Here the “gluons” are replaced
by a complex of familons, which
changes the family label of the
quarks.
The standard theory of quarks
and gluons is recovered by the
embedding of the color gauge group
SU (3) in C[OD], but here we’re

examining the underlying structure
of OD itself via = OD/£1.

A
M
®

Neutron Protron
@ @ ® @ ®
N N M N M
A A A A A

A A A A A

N M N N M

@ ® @ @ ®
Protron Neutron
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Electric Charge

THE A ; REFLECTION SPACE projects down the A,
reflection space, so that a tetrahedron (inscribed in
a cube) is projected down to a triangle. The
vertices of the tetrahedron carry the labels of three
colored up quarks u,, u,, and u3;, and a neutrino

v. A reciprocal tetrahedron carries the anti-down
quark labels 3!, El:,_, and 33, and the anti-electron e,
Thus, the eight vertices of the cube in A, reflec-
tion space encode the charge and color eigenvalues
of a fermion family.

Note that the dotted lines in the A, reflection
space correspond to mirrors, while the solid lines
correspond to roots (or mirror vectors).

C. Fig. Ad.
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Eg x Eg superstring theory, we might first try
out the £ reflection space. However, an
examination of the McKay groups /D, OD, z
and 7D of the exceptional Lie algebras makes
E; with its McKay group OD more plausible.
Remember that the balance numbers of
the £, graphare 1, 2, 3, 4, 2, 3, 2, 1, which
are the dimensions of the iirep vector spaces on
which OD acts. According to the theory of
complex group algebras, each n-dimensional
lirep space corresponds to a unitary Lie group
Ufn) embedded in the group algebra. This,
along with other facts of group theory, implies
that the maximal compact subspace of the £,
McKay-group algebra, which we label C[OD],
is the 48-d unitary Lie group (Note: 1* + 22 +
F+4+22432 427+ 122 48):

a fiber

-

Fic. A15

X axis = time

y axis = space

P=U)x U2)x UB)x UH4)x U2)x
U3) x U2)x U(1)

zaxis = internal space

A FIBER BUNDLE with 2—d spacetime as base

which we call P because it plays the role of the
principal fiber bundle of our scheme.

A fiber bundle is a total space B which
projects down to a subspace X (called the base
space) in such a way that all the points of B
which project to a point of X constitute a fiber
F; moreover, there is a Lie group which acts on
each fiber F as a symmetry group. In the case
of a principal fiber bundle, the fibers are all
copies of the symmetry group, so that the
action of the symmetry group on a fiber is the
action of the Lie group on itself. For any fiber
bundle, we can write 4= f+ x, where 4, £ and x
are dimensions of B, F, and X; respectively. In
fact, each point of X can be considered to be a

because

case).
path in

space.
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space, and a 1-d fiber. More complicated fiber
bundles are not picturable.

If the 1-d fibers were replaced by circles of
unit radius — e.g. by connecting the ends of the
1 fibers — we would have an example of a
principal fiber bundle, because a unit circle is
equivalent to the U(1) group, and thus each fiber
would be a copy of U(1).

The bundle pictured above is a vector bundle,

each fiber is a vector space (1—d, in each

The path in the bundle is projected onto the

the base space via the bundle projection,

which projects each fiber onto a point of the base



copy of the Lie group F (see Fig. Al5).

Every unified field theory is specified, in
part, by constructing a principal fiber bundle
whose base space is spacetime, and whose basic
fiber is the symmetry group of the world (cf.
Bleecker, 1981; Duff, 1986).

For example, the principal fiber bundle of
the E; x Eg superstring theory would be a
506-d bundle, with a 10-d base space and the
496-d basic fiber, G(Eg x Eg) — l.e., the Lie
group generated by the Lie algebra £ x Ej.
This fiber bundle is a rather large structure, and
much ingenuity has been expended in masking
most of it in order to make contact with
ordinary (low-energy) particle physics which
corresponds to the product Lie group U(1)x
SUR)x SUB).

In the scheme of this paper, E is the
high-energy symmetry group, but because of
the McKay correspondence between £, and
OD, the unitary Lie group P in C[OD]
contains the low-energy symmetry group. P is
a 48-d principal fiber bundle projecting down
to a 10-d base space S, each point of which is a
copy of the 38-d basic fiber G. We write these

spaces out as the following Lie groups:
S=UR2)x TS
G=U(1) x SUR2)x SUB)x SU4)x SU2)

where U(2) s a 4-d spacetime called
conformally compactified Minkowski space; T ° is
a6-drorus= U()x U(D)x U)x U1)x U(l)
x U(1).

We consider Sas the 10-d spacetime of
superstring theory and G as the symmetry

group of the following six forces, which we
identify in sequence as: electromagnetism,
weak, strong (color), hyperweak, gravity, and
perhaps the feeble force.

We can write: P=Sx G. Since U(2) =
U(1) x SU(2), we can rearrange Sas S= SU(2)
x T7. We regard SU(2), .i.e., spherical 3-space
S, as the space of cosmology — the space in
which we as macroscopic bodies appear to live.
Every point of a macroscopic body is a point of
§2. Thus, if we view Sas a fiber bundle, every
point of a macroscopic body is actually a 7-d
space which is a copy of 7””. Note that the
7-torus T incorporates the factor U(1) from
the U(2) spacetime, and thus includes time.

Now 77 corresponds (via McKay's
theorem) to the 7-d reflection space of E as
follows:

T7-RVIL,
where R’ is the real part of the £, complex
reflection space C, and L, is the E root
lattice. This means that all the points of the
lattice are identified as a single point, the
identity element of 7”7, and every other point
of T7isa copy of L,.

To see how this works, you can generate a
2-torus (the surface of a donut) from a rectan-
gular grid on a 2-d plane. First take one square
of this grid, e.g., a sheet of paper, and glue
together two opposite edges. You now have a
tube. If you connect the ends of the tube to
each other, you will have a 2-torus. Notice that
the four corners of the sheet of paper are at the
same point of the 2-torus (see Fig. A16).

If the sheet of paper with a rectangular grid
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A TORUS can be derived from a square by
connecting up the sides labeled 2, and then the
sides labeled 1. Note that all four corners of the
square become a single point of the torus.
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A TORUS can be derived from a lattice on a
plane by rolling the plane an infinity of times in
one direction so that an infinite tube (of circum-
ference equal to the lattice spacing 2) is produced.
Then wrap the tube an infinity of times around a
circle of circumference equal to the lattice spacing
1. (Drawing after Stillwell)
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were infinite in extent, you could still get a
2-torus by rolling the paper an infinity of times
along one grid direction and then doing the
same along an orthogonal grid direction. In
doing this, all the vertices of the grid (the lattice
points) become identified as one point in 72,
In fact, since the positioning of the grid of
paper is arbitrary, we can consider every point
of 7" as a copy of all the grid lattice points (see
Fig. A17).

This procedure for generating tori works
even if the grid is not rectangular and is
hyperdimensional, as is the case of the E, root
lattice L, .

Since, by our fiber bundle construction,
each point of the base space S”is a copy of 77,
we can consider each point of a macroscopic
body to be a copy of R’/L, . Since R’ is the
(real) E; reflection space, it is the home of the
fundamental eigenvalues of our unification
scheme. If we identify consciousness with C’
space, it would appear that every point of any
macroscopic body has access to consciousness.
This is why we must consider C as space of
universal consciousness. From this point of
view, the long evolution of larger and larger
brains is the evolution of richer and richer
access to the universal consciousness.

Our experience suggests that consciousness
is also causal. For example, I can choose to raise
my arm. Even though most of what I do occurs
unconsciously, these unconscious happenings
seem to be ultimately under my control as a
conscious entity. Raising my arm, after all,
requires a host of activities only some of which
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catastrophe
manifold

control space

THE A, CATASTROPHE is pictured via the real
catastrophe manifold, which is the net of critical
points of the A catastrophe polynomial:

K=A%+ A2+ LA

The catastrophe manifold is projected down
to the control space, here 2—d, and the folds of the
manifold become cusp lines in the control space.

Such a control space diagram is called a
separatrix. The same separatrix occurs if we add
any number of squared terms to K.

are understood by physiologists, cell biologists,
molecular biologists, chemists and physicists.
Nevertheless, all this unconscious activity is
coordinated by my desire to lift my arm.

I believe that the causal aspect of con-
sciousness derives also from our access to the £
reflection space C’. In this case it must be

viewed as the critical value space of a catastrophe
(see Figs. A18 and A19).
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THE A, CATASTROPHE is pictured via the real
critical value surface embedded in the 3—d base
space R (with parameters t,, t,, t3) of the A5
catastrophe bundle B>. B3 is the zero set of the Az
polynomial:

K=A%+B2+ C?+ A2 + A+ 4y

which is the value of K on the catastrophe
manifold of critical points of K (Cf. Fig. A18).
K is a complex polynomial. The correspond-
ing polynomial for E- is:
K=A%+AB3+ C? 4+ 1;C? + 1,B3 + ,B% + ;B4 +
t,AB + tSA.Bz + t6A2 +1t

A catastrophe is a large change in a dynamic
system caused by a small change in the param-
eter space on which the system depends. The
mathematician Rene Thom (1975) invented
catastrophe theory in order to provide a
framework for a theory of biological develop-
ment. Such a theory has not yet emerged.
However, catastrophe theory has been success-
ful in describing dynamic systems in the
physical sciences. Certainly the mathematics of
catastrophe theory is sound and very fruitful. In
fact, the Russian mathematician Vladimir
Arnold (1981) has been able to define Thom’s
seven elementary catastrophes via the Lie
algebra reflection spaces. Moreover, Arnold
showed that there is an infinite hierarchy of
catastrophes such that there is a 1:1 correspon-
dence between the simple catastrophes and the
A-D-E complex reflection spaces.

Note: A complex catastrophe is modeled by
a catastrophe bundle, a fiber bundle which is a
complex manifold — i.e., each small piece of
the manifold looks like a complex vector space
of dimension equal to that of the manifold. For
example, S can be regarded as a 1-d complex
manifold, because each small piece of S looks
like a 2-d real plane which can be viewed as the
plane of complex numbers, called a 1-d
complex plane. Since a complex number is an
ordered pair of real numbers, an #-dimensional
complex space can be considered a
2n-dimensional real space (see Fig. A20).

The A-D-E classification is very deep since
it also classifies simple singularities of maps,
degenerate critical points of functions, caustics,
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THE MANIFOLD $%: THE 2—SPHERE

.

Y

A small piece of S? looks like a flat plane. S can
be regarded as a 2—d real manifold or as a 1-d
complex manifold. In this case, we relabel the y-
axis on the plane as 7y, where i = -1

wave fronts, quivers, crystallographic reflection
groups, all the finite subgroups of SU(2) and
therefore the regular polyhedra. In fact, Arnold
(1986) hypothesizes that the A-D-E scheme
classifies all “simple” objects in mathematics.
In other words, there is a complex hierar-

chical structure, specified by the hierarchy of
the A-D-E Coxeter graphs. All the mathemati-
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cal structures listed by Arnold (and probably
many yet to be discovered) are different ways
of viewing this structure. The advantage of this
discovery is that what is almost impossible to
see in one view is easy in another view. By
using all these views, a deep understanding of
this structure will emerge. Arnold calls this
field of mathematics by the suggestive name
Platonics (cf. Arnold, 1986).

The correspondence between reflection
spaces and catastrophes is via the catastrophe
germs listed in Figure AG on page 337.

As we will see, for a given Coxeter graph,
the actions of the McKay group and the Lie
algebra interact in a truly marvelous way in the
structure of a catastrophe.

In the case of E,, we generate the follow-
ing construction:

E,= M’= C’|W & CT’ < C[OD]

This means that the 133-d complex Lie
algebra £, projects down to the 9-d complex-
catastrophe bundle M ?, which in turns
projects down to a 7-d complex vector space
C’/ W, the final base space, which is the critical
value space for M.

(Note: W is the E, Weyl reflection group,
and C’/ W is the orbit space consisting of the
set of W orbits in the E, reflection space C.)

Since the reflection group W acts on
complex as well as real spaces, C” can be
regarded as the complex reflection space of E.
Remember that 77 =R’/ L, where T is the
real E, torus, R” is the real reflection space of
E,,and L, is the E root lattice. Moreover,
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C’ is the intersection of the Lie algebra £, and
C[OD].

Let us focus on the catastrophe projection:
M?= C’|W. This is a fiber-bundle projection
where each point of the base space C’/W is an
image of a complex 2-d fiber. The fiber F; at
the origin (the zero point) of C'/ W is a space
with a singularity (i.e., a point which is not .
smooth, such as a cusp) (cf. Arnold, 1981).
This singularity space F, is the zero ser of the
E, catastrophe germ: g= A° + AB? + C?. Thus
F, is the set of solutions derived by setting this
polynomial gequal to zero. This polynomial is
called a catastrophe germ because each fiber of
the bundle M ?is a deformation of the fiber F,
In fact, we can write out the full £, catastro-

phe bundle polynomial Kas:

K=A° + AB’+ C?+t,B? + t,B’+
t3BY+ t;AB + t;AB? + t;A% + 15

It is interesting that the degrees of those
monomialsin K which are coefficients of the #-
parameters (i.e., 2, 3, 4, 2, 3, 2 and O for the
constant 1) match the balance numbers on the
extended Coxeter graph — if we exclude the
node marked with a star (see Fig. A6) — and
we have used this fact to make the indexing of
the #-parameters match the indexing of the
Coxeter graph (see Figs. A7 and A10 on pages
338 and 339).

There are 10 complex variables in this
polynomial: 4, B, C t;, . . ., t;. Thus the zero
set is a 9-d complex space, i.e., the complex
manifold M °.

(Note: in general, the zero set of an 7-
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A 2 fiber bundle analogous to the 9-d
complex fiber bundle M. The fiber at the origin
0 of the 1-d base space has a cusp singularity. The
fiber at the origin of the 7-d complex base space
C’/W is the 2—d complex space C2/OD. As we
pick fibers further from the origin, the singularity
becomes more benign (to the right), and even
disappears (to the left). The change in the
singularity structure of the fiber C2/OD is
determined by the critical surface ¥, in C7/W.

variable polynomial is an (z— 1)-dimensional
space (cf. Kendig, 1977).

If we substitute a complex number for
each of the parameters ¢, through #,, the
solution set of the equation, K= 0, isa 2-d
complex space. Note: Once we specify the
seven parameters, there remain only the three
variables: A, B, C. This 2-d solution set is the
fiber attached to the base C’/ W at the point
specified by the seven complex coordinate
numbers. This is why we call C’/ W a param-
eter space. Note that if we set all seven param-



eters to zero, i.e., choose the origin of C’/ W all
the terms beyond the germ become zero. Thus
the fiber at the origin of C'/ W is the zero set of
the germ itself. There is a smooth deformation
(or unfolding) of the fiber as one traces a path in
C’/W. This smoothness does not preclude
“rapid” changes in the fiber corresponding to
“slow” changes in the parameter space. This is
what is meant by the word catastrophe

(see Fig. A21).

In the language of catastrophe theory, the
six parameters #, . . . , 4 are the parameters of
the control space of the E, catastrophe. This
implies that the £, control space is a subspace
of the E, base space C’/W. This base space is a
critical value space in the following sense:

Every mapping has a set of critical points,
i.e., points on the graph of the mapping
which locate qualitative changes. For
example, ¥'= X?is a mapping from X to ¥’
(each 1-d spaces); the graph of this map is a
parabola with the lowest point at the origin
(0,0) of XY space. This point is the only
critical point of the mapping, since only at
this point does the graph change direction
from going down to going up. The value of
the graph at the critical point is called the
criticalvalue (e.g., the critical value of the
parabola is zero; see Fig. A22).

In the much more complicated case of a
mapping from C'’to C', as described by the
E; catastrophe polynomial K the set of all
values of the # parameters {¢, . . . , ¢} for
which K has zero as a critical value forms a

6-d hypersurface ¥, in C”/ W. This set of critical

values is called the critical value hypersurface
(see Fig. A19).

The hypersurface 2. contains a great deal
of information about the singularities of the
fibers attached to C”/W. Any point of ¥, in
C’/W is attached to a fiber which has a
singularity. The type of singularity is deter-
mined by the nested Coxeter graphs. The
most severe singularity occurs at the origin
and is described by the E graph. This
singular point when resolved (i.c., pulled apart
to form a non-singular structure) looks like a
“bouquet” of seven 2-spheres just touching
each other according to the adjacency pattern
of the nodes of the £, graph (see Fig. A23).
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A PARABOLA is the graph of the equation y =
x2. The point at the origin 0 is a critical point.
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THE RESOLUTION OF THE SINGULAR POINT IN
C2/0D

The seven 2—spheres are in contact in accordance
with E-, Coxeter graph.

As one moves along a path away from the
origin in the critical value surface, one picks out
fibers whose singularity structures become
simpler and simpler just as their Coxeter graphs
become simpler and simpler. Since ¥ is a 6-d
space, it is “thin” within the 7-d space C"/ W
— just as a 2-d surface is “thin” within the 3-d
space. A path crossing this thin %, will corre-
spond to a rapid change in fiber. Thus a small
change along this crossing path corresponds to
a large change in the fiber (and therefore in the
catastrophe manifold; see Fig. A21).

This kind of activity is the essence of
mental control of the body: a small change in
mental activity corresponds to a large change in
bodily activity. But how is the fiber in this
catastrophe bundle related to bodily activity?

Remember that £, corresponds to the
mental world (both conscious and uncon-
scious), whereas C[ OD) corresponds to the
physical world, the overlap C” being universal

consciousness.
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Amazingly, one can also describe the
singular fiber F, at the origin of C’/W as
C?/OD. In other words, each point of F,is
actually a set of 48 points and is a copy of OD.
This is because OD acts on C* by its represen-
tation via 2-by-2 matrices. In this action certain
polynomials on C? remain invariant.

According to the mathematics of invariant
theory (Springer, 1977) there are three funda-
mental invariant polynomials of the group OD
acting on C?. This means that any polynomial
which is invariant under OD is a polynomial of
these fundamental polynomials — i.e., any
OD-invariant polynomial can be written as a
polynomial whose variables are the three
fundamental invariant polynomials. These
three polynomials are not independent, but
form a relation called a syzygy. The OD syzygy
can be written in the form A% + AB? + C?=0.
Thus A4, B, and C (which define the fiber F)
are not simply variables. They are also invariant
polynomials of OD. In order to describe 4, B,
and C, we first describe the fundamental
invariant polynomials of the tetrahedral group
TD, which is a subgroup of OD.

There are three fundamental invariant
polynomials of 7D:

f=xy— 2%

(f=0: 6 vertices of octahedron)

h=x%+ 14x%y? 4 5%

(h=0: 8 vertices of cube)

j= %122 33587 _ 33,48 4 412,

(= 0: 12 vertices of cuboctahedron)

where x and y are complex variables, so that the
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clements of 7D act on (x,y )-vectors.

Note: A vector in an n-dimensional space
is an ordered set of z numbers. Here the vector
space is C?, so a vector is an ordered pair of
complex numbers.

Using the rules of matrix multiplication,
the action of ¢, one particular element of 7D,

on the general vector V= (xy) is cV=V "

0]-1|/[x _
1]0]\y/ \x

Then by substituting —y for xand x for yin
the polynomial f; we have:

f=(pPx= (9%’ =

—ij + _yx5 =

y-xy’=f

Thus £ is invariant under the action of
element ¢. Similarly, £ is invariant under all 12
elements of 7D. In the same way, #and jare
invariant under 7D.

Since 7D is a subgroup of OD, we expect
a close relationship between the fundamental
invariant polynomials £ 4, and j of the group
TD and the fundamental invariant polynomials
A, B, and Cof the group OD. In fact, 4, B, C

are constructed from £, 4, as follows:
A=f%
B=k;
C=fj.

The syzygy between the fundamental OD
invariants 4, B, and C, expressed by 47 + AB?
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+ C?= 0, has the consequence that C*/ODis a
space which is equivalent to the zero set of
A%+ AB’+ C?.

Furthermore, the syzygy between A, B, and
C makes the OD-invariant algebra finite
dimensional. In fact, this invariant algebra, the
set of all OD-invariant polynomials C[4,B,C]
— i.e., the set of polynomials in 4, B, and C—
is also the coordinate algebra of C*/ OD. This
coordinate algebra is 7-dimensional and has as
basis elements the seven coefficients of the seven
., t. These coefficients are
listed in the catastrophe polynomial K'and are:
B’ B’ B*, AB AB* A% 1.

Note: The coordinate algebra of a space is
the set of all distinct polynomials which live on
that space. Thus C[4, B, C ] is the set of
distinct polynomials living on C*/ OD.

In string theory, the spacetime in which the
string vibrates is generated as the set of scalar
fieldsliving on the 2-d string manifold. Since a
scalar field on a space is a continuous assign-
ment of a number (a scalar) to each point of
the space, a polynomial is a good example of a
scalar field. This suggests that we should
interpret C[A, B, C'] as a set of scalar fields
living on C* OD. In other words: the defor-
mations of C*/ OD are analogous to the
vibrations of the string surface.

An important difference between our
theory and string theory, however, is that a
string surface is a 2-d real space, whereas
C?* ODis a 2-d complex space, which suggests

parameters tpo

that our theory entails a complexification of
string theory.



Thus we start with 10 complex variables:
A B Ct,...,t. Thereis a polynomial Kin
these variables. The zero set of Kis a complex
space M ?, called the catastrophe manifold.
There is a fiber bundle projection,

M? = C7/ W, such that the fiber F,at the
origin of C’/ W is a singular space C*/OD
(see Fig. A21).

Remember: C”/W is the set of points (an
orbit) reached by acting on one point of C’
with all the elements of the £, reflection
group W.

A, B, and Care the fundamental invariants
of the OD group actingon C% ¢, . . ., ¢ are
fundamental invariants of the £ reflection
group W acting on C’.

The actions of OD and W are very
different because OD is not a reflection group,
whereas W is a reflection group. The action of
a finite nonreflection group on a complex vector
space is to create a space of the same dimension
but different topology. The action of a reflection
group on a complex vector space is to create
another copy of that space — i.e., we regard
C’/W as a copy of C” because they are
isomorphic vector spaces.

The action of OD on C? creates the
complex string surface C*/OD which is the
zero set of the germ A7 + AB” + C°. The
deformations of C*/OD are parameterized by
tps . .., t;. Thus for each point # of C'/W a
different deformation of C?*/ OD is selected.

Since the action of W on C” creates
another copy of C”, C’/W isalsoa 7-d
complex vector space. However, C’/ W is

related to C?/OD in a wonderful and useful

way:

C’7/W contains the E, critical value surface

2., which is a 6-d hypersurface cutting

through itself in a complicated way and thus

dividing the reflection space into many

regions. Every point of 2. picks out a

deformation of C*/ OD which contains a

singularity. Since C7/W is the set of orbits

of Win C7, W creates 2. in C’/W in the
sense that 2, is the set of nonregular W orbits

in C’.

Note: W has 288 x 7! x 2 = 2,903,040
elements. If the number of distinct points in an
orbit of W is equal to this element number, the
orbit is called regular; otherwise it is called
nonregular. As it turns out, each point of X in
C’/W is a nonregular element — i.e. consists
of fewer than 2,903,040 distinct points of C’.

In case the number 288 x 7! x 2 looks too
abstract, we can remember that 288 =1x2x 3
x4 x 3 x2x 1 x 2, which are the node numbers
appearing on the extended £, Dynkin
diagram and are thus also the dimensions of the
iireps of the OD group. (This is one more way
in which the structure of ODand W inter-
wwine). The 7! (7-factorial) is 7 x 6 x 5 x4 x 3 x
2 x 1, which is the number of elements in the
symmetric-7 group S 7, which is the group of
all permutations of seven objects (e.g., the basic
mirror planes of C”), and the factor 2 corre-
sponds to the bilateral symmetry of the
extended E, Coxeter graph itself. Thus we
have a geometric meaning for all of the factors

in the number of W elements 288 x 7! x 2.

We can use geometric reasoning to clarify
further the orbit mapping C” = C”/W as
follows (cf. Bott, 1979):

Consider that the 63 mirror planes in C’
cut this reflection space into 2,903,040
Coxeter chambers, since each chamber can
be reached from the fundamental chamber
by an action of one of the elements of the
Weyl group, each of whose elements is a
series of reflections. Thus any point inside
any of these Coxeter chambers is copied by
reflections into all the other Coxeter
chambers, thereby generating a regular orbit
of that point. Moreover, in the orbit
mapping C’ fi C7/ W, this regular orbit of
the Coxeter chamber point is mapped onto
a point outside the critical value surface 2.

In contrast to this regular orbit mapping, if
a point belonging to one of the 63 mirrors of
C’ is chosen and acted on by reflections, that
mirror point will be reflected only onto other
mirrors, Thus the biggest mirror orbit will be a
reflection onto all 63 mirrors. These orbits of
mirror points are clearly nonregular orbits. In
effect, the orbit mapping C” = C’/ W trans-
forms a mirror point into a point of the critical
surface 3., and a chamber point into a point
outside this critical surface.

To summarize: Within £, there is a fiber
bundle projection

M’=CIwW
where M ? is a compact, complex manifold,
which is the zero set of a polynomial K in the
10 variables 4, B, C ¢, . . . , ¢,. The fiber at
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the origin 0, of C”/W is C*/ OD, which is the
zero set of A + AB” + C?. Each point of
C’/W, parameterized by #,, . . ., t, picks out
a deformation of C*OD— i.e., a different
fiber in M ”.

A, B, and Care fundamental invariants of
OD acting on C%.

¢}, . . . t are fundamental invariants of W
actingon C’.

OD is a nonreflection group acting on C%
thus this action creates an orbit space C*/ OD
which has a singularity: the zero set of A7 +
AB? + C? which is a 2-d compact, complex
surface.

W is a reflection group on C; thus this
action creates an orbit space C”/ W, which is
isomorphic to C”. Under this orbit mapping,
the 63 mirrors in C” get mapped onto the
critical value surface ¥ in C”/ W, and the space
between the mirrors (the Coxeter chambers)
gets mapped onto the space outside the critical
surface 2.

Y is called a critical value surface because
crossing it corresponds to a rapid change in the
catastrophe bundle M”. Moreover, the points
of 2. pick out singularity-containing deforma-
tions of C*/ OD.

All of this activity is going on inside the
133-d Lie algebra E,, because M ? is a sub-
space of E,; W is the Weyl reflection-group of
E,;and C7/ W is the action of W on the
largest commutative subalgebra C” of E.

With this summary of the £ side of the
theory, we must now look more closely at the

C[OD] side.
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THE 24—CrLL
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This is a 2—d projection of a 4-d figure which has
24 vertices and 24 three—d faces (called cells), each
of which is an octahedron. (Coxeter, 1973)



Since C*/OD is the identity fiber in M °,
we are reminded that OD plays a fundamental
role within the E, algebra; in fact, C7 is the
intersection of E, with C[OD). As we have
seen, C (universal consciousness) in the form
of C’/W controls the deformation structure
of C*/OD in the space E,, which we have
identified with universal mind.

We have yet to identify C*/ ODand its
deformations with anything other than the
fibers of the E, catastrophe bundle M”.
Having identified C[OD] with the physical
world, we expect C*/ OD to have an intimate
connection with the physical world. One could
say that C*/ODand its perturbations are
mental images of the physical world. This is
because the deformations of C*/OD are
controlled by the critical space C”/ W, which is
the set of W orbits in C’, the intersection of
the mental world £ and the physical world
C[OD). In effect, C*/ODis a counterpart to
ordinary physical space — i.e., cosmic space
§7. This is suggested by the mathematical
properties of these spaces:

C* can be viewed as the set of quaternions

Q, since a quaternion is an ordered pair of

complex numbers. 7 can be viewed as the

set of unit quaternions. OD is a finite
subgroup of §°. And in fact, it is well
known that §% OD = the intersection of

C*/ODwith §° (the unit sphere in C?, the

space parameterized by A, B, and C, the

fundamental invariants of OD; cf. Milnor,

1968,1975). In other words, $3/OD

provides a good approximation to the

topology of C?/OD near the singular point.

Fic. A25
THE SpLiceD BunDLE (SB181) MappiNGs

E, X C[OD]

E,

e

£7 C[OD]

(2

M’ ——— C7/W > CT7/W < C7.~'Lr-(—) [T7x $3)C€

Incidentally, OD is a very symmetric set
of 48 points in §7. OD s two copies of the
24-cell (each reciprocal to the other). One
24-cell is the subgroup 7D.

Note: The 24-cell is a unique regular
polytope in R* space, of which there is no
analog in spaces of higher or lower dimension.
The 24 vertices of the 24-cell (i.e., the points
TDin S?) are the points at which the 24 §°-
spheres touch the central $? sphere in the
most efficient sphere packing in R*

(see Fig. A24).

Thus the 24-cell as a sphere-packing
figure has analogs in other spaces, such as R,
where the 126 sphere-packing points are the
E, roots. Because of the hierarchy of the
reflection space structures, the 24-cell is a
substructure of the 126 vertex £ root figure
Vizs-

This suggests that the 24-cell is a structure
mediating between V5 and the Vg, the
double 24-cell or OD.

Moreover, all these considerations suggest
that the cosmic space S as embedded in

C[OD)] must be a fiber similar to the fiber
C’/0D.

In order to describe the relationship of
C?/0ODto §?, we can display Figure A25,
where (1) is a fiber bundle projection with
identity fiber C*/OD, and (2) is a fiber bundle
projection with identity fiber $7x 57, (Re-
member that C”/L, is the complex 7-torus
CT 7)) Therefore the spliced bundle SB'®' = E,
x C[OD] contains the spliced sub-bundle M ° x
[7 7x §?]Cwith the projection M’ x [T x
§?)’= CT’7/Wwith identity fiber (C*/ OD) x
§?x §3. As different points along a path in
CT7IW are chosen, the identity fiber under-
goes deformations. Since C77/W is the Lie
group version of C’/ W, these perturbations are
described by the critical value surface Y. in
C’IW.

Thus we have identified the physical
counterpart of C*/ ODwith S?x 7. Notice
that both of these structures are complex, and
that the real part of C*/OD is a 2-d surface
while the real part of $7x §7 is the spherical
cosmic space 7. We can regard §%x §?as
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complexified cosmic space.

This implies that every deformation of
C?/OD is linked to a deformation of the
cosmic space S~. We can view each point of §?
as a copy of C* OD, and each point of a
deformed S? as a copy of a perturbed C% OD.
The deformations are controlled by the points
of C’/W. Thus each path through C"/W
corresponds to a different evolution of the fiber
C*0D xS%x§°.

What about #ime? Remember that §7 s
the space part of cosmic spacetime U(2), because
U(2)= T'x S?. The one-torus (a circle) 7"/ is
part of the 7" in the superstring spacetime S x
T”. Thus time becomes complexified as a
parameter ¢, in the seven-parameter basis of
C’/W. This implies that time is a part of
universal consciousness.

The fact that we must identify z; with time
raises the question: What is the interpretation
of the fibration M’ = C’/W such that ¢, asa
deformation parameter of C*/ OD can be
considered as time?

We can consider the critical surface Y. in
C’/W to be a family of 6-d wave fronts
evolving in time. Under this interpretation ¢,
does indeed become a time parameter, so that
C’/W is a complex 7-d spacetime. The
singularities of the wave fronts are described by
the £, singularity structure (cf. Arnold,
Gusein-Zade, Varchenko, 1985).

Note: The same time parameter ¢, plays
three roles:

1. Cosmic time in the 4-d spacetime:

U2)=T'xS§?
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2. Supertime in 10-d superstring
spacetime: 7”x 7

3. Complex time in the 7-d consciousness
spacetime C’/ W.

The picture we now have is that (corre-
sponding respectively to the three roles of the
time parameter) every spacetime path in C’/ W
synchronizes three evolutions:

1. An evolution of cosmic space S?

2. A series of deformations of the C*/ OD
fiber

3. An evolution of wave fronts in C’/ W.

Because of the fact that C77/ W is the
base space of the SB "% fiber bundle, CT 7/ W
contains an zmage of all the most essential
structure of the entire SB '* space. Remember-
ing that C77/ W is the Lie group version of the
Lie algebra space C’/W, we can say that the
pathsin C’/W— i.e., the set of evolutions of
wave fronts in C”/ W— are the images of the
deformations of C%/ OD, as well as the
evolutions of 7.

Every point of §7is a location in the space
of the macroscopic world. However, the
identity-subfiber s, in SB '*' is the direct
product of (C*/OD) x $° x §2. Thus every
point of § can be regarded as a copy of C%/
OD. This view is especially appropriate in the
present state of the universe — i.e., S is of
“cosmic” size, approximately 10%® cm in radius.
Thus, as we look at smaller and smaller regions
of §7, we will see the structure of the 4-(real)-
dimensional C*/ OD emerge, rather than a
mere 0-d point.

Remember that every point along a path in
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y Fic. A26

THE CYCLOID CURVE is the line traveled by a point
on the rim of a rolling wheel.

Applied to cosmology:
x = time

y = the radius of a spherical universe $3

C’IW selects a different deformation (or
unfolding) of C*/OD. The critical value surface
Y in C’/W (ie., the family of wave fronts)
determines what happens along the path (once
the path is chosen). The zero point 0, (the
origin) of C”/W selects C*/ OD itself. This a
complicated space with one singular point
(rather like a line crossing itself three times at
one point). As one moves along a chosen path
away from 0, the deformations of C*/OD
change this 2-d fiber so that it becomes less and
less complicated. If the path selects a fiber
outside Y., the singularity in the fiber goes
away.

It is natural to suppose that 0 corresponds
to the “big bang” singularity of cosmology. The
cosmological singularity, however, refers to a
condition of infinite density of the cosmos.



This is a different meaning of “singularity”
than that associated with C%/ OD.

The study of spaces such as C*/ ODis a
branch of mathematics called singularity theory
(cf. Arnold, 1981), and it deals with “singular”
points such as cusps and nodes, where the space
becomes unsmooth. (For the sake of readers
who have studied calculus, let me say that at
such unsmooth points on a curve the derivative
becomes undefined, and we say thar the curve
is undifferentiable at a singularity; analogous
statements about partial derivatives hold for
higher dimensional unsmooth spaces, which
are undifferentiable at a singular point.)

It is striking, however, that the curve
which represents the scale factor R of the
universe as a function of time has a cusp
singularity at t= 0, just when the cosmological
singularity occurs. For a compact universe (e.g.,
$7) this curve is the cycloid curve (i.e., the curve
traced out by a point on the rim of a rolling
wheel); there is also a cusp singularity corre-
sponding to the cosmic singularity of the “big
crunch” (see Fig. A26).

This cosmic cycloid curve would be a
subspace of the parameter space C’/ W, which
includes time. It is possible to regard the scale
factor R as a measure of a variable gravitational
“constant” G (cf. Sirag, 1983). In other words,
G is effectively one of the seven parameters in
C'IW.

More correctly, we should regard Gas a
toroidal parameter of C7”7/ W. As we have said,
CT’IW is the Lie group version of the Lie
algebra space C'/W. The relationship between

a Lie group LG and Lie algebra A4 can be
expressed via the exponential map:

LG =exp(LA)

This implies that in our case the parameter

gin C7/W which corresponds to Gin T has
the following relationships:

et =G;
e? =13
P Y

where eis the base of the natural logarithms:
2.71828 ... etc.

Ifweset G=1 (i.e., g= 0 at the time £= 0,
then as the cosmos S expands to its maximum
R, the gravitational parameter G goes to V2
(i.e., g goes to —0.69). Similarly, as S~ contracts
to its minimum size, G = ¥2 (g=—-0.69) goes
back to G=1 (g=0). In other words, as G
oscillates between 1 and ¥4 (i.e., goscillates
between 0 and —0.69), §7 oscillates between R
=1and R=10*". Thus a small change in the
parameter space C’/W corresponds to a large
change in the fiber § 3(cf. Sirag, 1983;
Marciano, 1984; Appelquist et al., 1985).

Since each point of §7is a copy of C?/
OD, we should also consider the changes in the
radius & of C*/ OD. According to string
theory arguments,  is approximately 10°
cm, which in natural units is 137G ”, Thus,
by the construction considered here, as G goes
from 1 to %3, d goes from 107’ cm to
.707(107") cm. This small change in & (less
than one order of magnitude) corresponds to a
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change of 41 orders of magnitude in R, radius
of §2. Moreover, the changes go in the
opposite direction: 4 gets smaller as R gets
bigger, and vice versa.

We are now in a position to describe the
relationship of mind to body. There is a
universal body, C/ [OD]. There is a universal
mind, E ;. The intersection of the two — C’
— is universal consciousness.

There is a universal geometric entity, the
spliced bundle SB *¥', which is the direct
product £, x C/OD].

Notice that from the point of view of
SB '8! the system is monistic; but from the
point of view of the constituent algebras £,
and C[OD), the system is dualistic.

SB "¥! projects down to the base space C'/
W. The subfiber attached to the identity
element of CT7/W is 5= (C*/OD) x $%x §°,

Every observer corresponds to a different
path in C’/W— i.e., each observer has his
own cosmos, his own copy of s carried along
the C’/W path. Each point along the path s,
in effect, a new observation since a new copy of
50 1s selected for each point of the path.

In one sense, each observer is separate,
having his own path in reflection space C’.
However, in C’/W many paths coincide part
of the way. The coincidence of two or more
paths over any distance is called the conzact
between the paths. Remember, these are not
paths in spacetime, but paths in critical space
C’/W (which includes complexified time).
Moreover, since we have identified the reflec-
tion space C” with universal consciousness, the
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contact structure of C’/ W must play an
important role in coordinating the observations
of separate observers. For example, even though
two separate observers live in separate “uni-
verses” via paths in C’, they can communicate
with each other meaningfully if they are in
contact via paths in C’/ W— i.e., while the
paths are in contact, the observers see the same
universe, because they experience the same
eigenvalues.

In fact, since eigenvalues are observations,
and the reflection space has been identified
with eigenvalue space, we can make the

following postulate:
Within C’, point  is aware of point & if

and only if point « is in contact with point &

inC’/W—1ie.,aand &in C7 are mapped

onto the same point of C”/ W.

This postulate justifies, in a fundamental way,
our calling the space C” consciousness (cf.
Culbertson, 1982).

Notice that we are not explaining con-
sciousness here. Rather we are defining the
conditions under which awareness (an aspect of
consciousness) exists between two points. We
are assuming the existence of consciousness as
fundamental. As some philosophers (e.g.,
Descartes) have emphasized, the existence of
consciousness is the safest starting point for any
theory of reality — i.e., if the philosopher
knows nothing certain about the world, he at
least knows that he is aware of his uncertainty,
so he can begin his speculations on reality by
assuming his own awareness.

Given the above postulate, we can see that
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the “purpose” of the projection from C” onto
C’/W is to make points which are separate in
C’ identical in C’/ W— i.e., bring the points
into contact and thus into mutual awareness.

Moreover, it becomes clear that a brain
must be a set of points in cosmic space 7
attached to a set of paths in C’/W in such a
way as to increase its contact structure. The
entire evolution of biological entities is in
general an evolution of increasing the richness
of contact (and thus awareness).

The nature of the contact structure of all
the paths in C’/W is determined by the orbit
structure of the £, reflection group W acting
on C”. Remember that a single point of C’/ W
is an orbit, which is a set of (as many as
2,903,040) points in C’. Thus the reflection
group W weaves together sets of points in C”
to create points in C’/ W so that paths in
contact in C’/ W can be lifted to separate paths
in C’, while separate paths in C7 can be
lowered to paths in contact in C’/ W. (Note:
Lifting and lowering are the standard math-
ematical terms for these mappings.)

Moreover, there is a close relationship
between the contact structure of C’/W and
the wave front structure ¥, because ¥, in C’/ W
is the set of nonregular W orbits in C”.

Remember: The 63 mirror planes in C’
are mapped onto 2. in C”/ W the point where
all the mirrors intersect is the origin of C”/ W,
to which is attached the identity fiber C*/OD
(cf. Bott, 1979).

Because of the relationship between the
contact structure and the wave front structure
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in C7/ W, we can see that there must be a close
relationship between the contact structure and
the causal properties of both the mental fiber
C? OD and the physical fiber S°. This means
that there is an intimate relationship between
awareness (contact) and wvolition (wave fronts).

At this point the reader may feel that the
choice of C7 as the space of primary conscious-
ness is arbitrary. Why not C® or C? or infinite
dimensional C-space?

The answer is that we have identified C’
as the space of consciousness because it is the
intersection of £, with C[OD]; in turn, these
algebras are brought into the picture by the
structure of a unified field theory which unites
the forces as we know them in the physical
world. The physical world is decisive in this
discussion because we know that physical
factors affect consciousness (e.g., close your
eyes) and that consciousness affects the physical
world (e.g., you can decide to close, or not to
close, your eyes).

But from a purely mathematical point of
view, our choice of C” is arbitrary. We could
have chosen any of infinity of finite subgroups
of SU(2) as our starting point. Call that finite
subgroup (a McKay group) g then we could

write:

C is the intersection of X with C[g]

where X is some Lie algebra: 4, D ,or E,, E,
E,. And C[g] is the group algebra of (McKay)
group g Thus we can form a spliced-bundle

projection:

X,x Clg] = C”
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In fact, as we have pointed out early in this
paper, there is a hierarchy of these A-D-E
algebras, so that, for instance, we have the
projections:

Ey=E, =2E;,=2Ds=D,=A4; =

A, = A4,

The structure of this hierarchy derives
from the structure of the Coxeter graph of
these algebras. The subscripts are the ranks of
the algebras and correspond to the number of
nodes in the algebra’s Coxeter graph. Not only
is the algebra of lower rank a subalgebra, but,
more important, these projections entail a
hierarchy of singularity structure — i.e., the
deformations of the higher rank singularity
contain the deformations of the lower rank
singularity.

The difference between any of the A-D-E
spliced-bundle schemes and the scheme of this
paper is that quite different unified field
theories would be entailed — i.c., different
from the physical forces we know about.

It is conceivable that the entire A-D-F set
of schemes is active, and that we have here

Eg+—E;—Eq

described only one scheme £ ;. If this were so,
there would be an infinite set of consciousness
structures (realms), all intimately tied together
by the hierarchical structure of the A-D-E
classification based on the Coxeter graphs (see
Fig. A27).

There are many possible applications of
such a hierarchy. Since the actual existence of
such a hierarchy of realms is speculative, we
shall content ourselves with the observation
that it is suggested by the mathematical
structure of our unification scheme E .

This is the same position that Maxwell
found himself in when (in 1864) he unified
electricity and magnetism and discovered the
electromagnetic theory of light. The mathemar-
ics of his unification suggested to him the
speculative idea that visible light is only a small
part of an infinite spectrum of light frequen-
cies. In due course, radio waves, x-rays and
other forms of light verified his speculation.

It may be that there is an infinite set of
consciousness realms, hierarchically organized
according to the A-D-E abutment scheme as
depicted in Figure A27. It should be men-
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tioned that the hierarchy of abutments
corresponds as well to hierarchy of control in
the sense that higher catastrophe structures
embed and control lower catastrophe struc-
tures (cf. Gilmore, 1981).

This means that, if the hierarchy is actual
(not merely mathematical), there is a whole
hyperphysical world with its own set of forces
above us, the Fg realm, and also a world
directly below us, the £ realm.

The connections between these separate
realms is via the spaces of consciousness:

C¢=C’ =Ct
because the Dynkin diagrams are nested
according to this hierarchy, and the lattices
and Weyl groups are embedded according to
this hierarchy.

At this point it is useful to mention that
there is indeed something special about the
three algebras Ey, £, E¢. For one thing, the
corresponding McKay groups are symmetry
groups of the Platonic solids: icosahedron
(and dodecahedron), octahedron (and cube),
tetrahedron. Perhaps more important for a
theory of consciousness is the fact that the root
lattices corresponding to these three algebras
are generated by error-correcting codes (cf.
Conway and Sloane, 1988).

This is a large subject with much connec-
tion to other aspects of the theory presented
here (including unified field theory). I will just
point out that the £, lattice is generated by
the Hamming-7 code and that the E; lattice is
generated by the Hamming-8 code. More-
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over, 4, a fundamental invariant polynomial of
the OD group, is the weight polynomial of the
Hamming-8 code. Thus there is a connection
between E; and Eg via coding theory, in
addition to the ones we have already consid-
ered. Coding theory is an application of
information theory, so that it is natural to
suppose a connection between coding theory
and cognitive aspects consciousness. Needless
to say, this is an active area of my own research
(cf. Sirag, 1984, 1986).

There is much room for further specula-
tion and comparison with philosophical and
mystical ideas. I will mention only one such
mystical idea (cf. Chang, 1971):

Fa Tsang (643—712), the Chinese master of
Hwa Yen Buddhism, prepared for the
Empress Wu an octagonal room completely
covered with mirrors, including the floor
and ceiling. In the center he placed an image
of the Buddha with a burning torch. He
brought the Empress into this room and
said (in part):

Your Majesty, this is a demonstration of
Totality in the Dharmadhatu. In each and
every mirror within this room you will find
the reflections of all the other mirrors with
the Buddha's image in them. And in each
and every reflection of any mirror you will
find all the reflections of all the other
mirrors, together with the specific Buddha
image in each, without omission or mis-
placement. The principle of interpenetration
and containment is clearly shown by this
demonstration. Right here we see an
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example of one in all and all in one — the
mystery of realm embracing realm ad
infinitum is thus revealed. The principle of
simultaneous arising of different realms is so
obvious here that no explanation is neces-
sary. These infinite reflections of different
realms now simultaneously arise without the
slightest effort; they just naturally do so in a
perfectly harmonious way. . . .

As for the principle of the nonobstruction of
space, it can be demonstrated in this
manner. . . . (saying which, he took a crystal
ball from his sleeve and placed it in the palm
of his hand). Your Majesty, now we see all
the mirrors and their reflections within this
small crystal ball. Here we have an example
of the small containing the large, as well as
of the large containing the small. This is a
demonstration of the nonobstruction of
“sizes,” or space.

As for the nonobstruction of times, the past
entering the future and the future entering
the past cannot be shown in this demonstra-
tion, because this is, after all, a static one,
lacking the dynamic quality of the temporal
elements. A demonstration of the
nonobstruction of times, and of time and
space, is indeed difficult to arrange by
ordinary means. One must reach a different
level to be capable of witnessing a “demon-
stration” such as that. But in any case, your
Majesty, I hope this simple demonstration
has served its purpose to your satisfaction.

Notice that the suggestion of a need for a
“different level” to explain the temporal aspects
of the mystical experience is a suggestion that
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reality is hyperdimensional. Moreover, we have
found in the catastrophe and wave front
evolution structure a dynamical description of
this hyperdimensional realm.

Let us quote from the Hwa Yen Sutra itself
(cf. Chang, 1971):

The Indescribable-Indescribable
Turning permeates what cannot be de-
scribed. . ..

It would take eternity to count

All the Buddha’s universes.

In each dust-mote of these worlds

Are countless worlds and Buddhas....
An excellent mathematician could not
enumerate them

But a Bodhisattva can clearly explain them
Al

Perhaps a seventh-century mathematician
could not cope with the mystic vision, but Fa
Tsang appears to have had a method that can
be enlarged upon significantly by today’s
mathematics. Moreover, the mathematics of
singularity theory and the A-D-Ehierarchy is
rather recent, and therefore many aspects of
this hierarchy remain to be discovered. I will
close with a speculation of one of the most
perceptive mathematicians who has contrib-
uted to the study of the A-D-F hierarchy, V. L.
Arnold (1986):

At first glance, functions, quivers, caustics,
wave fronts and regular polyhedra have no
connection with each other. But in fact,
corresponding objects bear the same label
not just by chance: for example, from the
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icosahedron one can construct the function
x?+ y7 + 27, and from it the diagram E;
and also the caustic and wave front of the
same name.

To easily checked properties of one of a set
of associated objects correspond properties
of the others which need not be evident at
all. Thus the relations between all the 4, D,
E classifications can be used for the simulta-
neous study of all simple objects, in spite of
the fact that the origin of many of these
relations (for example, of the connections
between functions and quivers) remains an
unexplained manifestation of the mysterious

unity of all things.

Coda

In order to clarify the plethora of algebraic
and geometrical relationships entailed in our
overall scheme, let us lay out Figure A28.

Fic. A28
E7 MarrING Box DIAGRAM

E,L——> €7 <«——C[OD]

G(Eq) I\CT? -« {\
caxc

G

G(Mg}-——- CT7NV = [s? X T71C

a = algebra level
g = group level

Note that the diagram forms a box divided
into two compartments with the following
features:

1. The back panel maps algebras to each
other

2. The front panel maps groups to each
other

3. The upper panel is projected down to
the lower panel

4. The left compartment contains the Lie
(algebra and group) structures

5. The right compartment contains the
finite group-algebra structures

6. The panel dividing the box into the two
compartments contains the intersections
between the Lie structures and the finite group-
algebra structures.

In particular:

ALGEBRA STRUCTURES

E, is the 133-d (complex) Lie algebra.

C[OD] is the 48-d (complex) OD group
algebra.

C’ is the intersection of E, with C[OD).

C’ is also the Cartan subalgebra (maximal
commutative subalgebra) of E .

C is also a subalgebra of C®, which is the
center of C[OD).

M?is the 9-d (complex) E; catastrophe

bundle.

C’/W is the critical space of the E,
catastrophe bundle.

C’ x C’ is the C[OD)] subalgebra whose
Lie group is [77x S%]°.
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GROUP STRUCTURES

G(E;) is the 133-d (complex) Lie group
whose Lie algebra is £;.

P €is the 48-d (complex) Lie group which
consists of the set of invertible elements of
C[OD].

P is the 48-d (real) manifold consisting of
all unitary elements of C[OD] — i.e., P is the
unitary Lie group in C[OD].

P is also the maximal compact subspace of
C[OD].

CT7is the intersection of G(E,)and P€,

CT7 7 is also the Cartan subgroup of
G(E;).

CT7is also a (complex) 7-torus, which is a
maximal torus in G(E;)— i.e., the maximal
commutative subgroup of G(E ).

G(M ) is the (complex) 9-d catastrophe
bundle embedded in the Lie Group G(E).

CT7IW is the Lie-group view of the
critical space C’/ W of the E, catastrophe
bundle.

(T7xS7] 1sthe(c0mpex} 10-d
superstring spacetime, which is a base space of

the (complex) principal fiber bundle €.
MAPPINGS

G = exp(A) is the exponential map which
transforms Lie algebra structures A into Lie
group structures G.

= log(G) is the logarithmic map which
transforms Lie group structures G into Lie
algebra structures A.
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7 = the fiber bundle projection from M ?to
C’/W, with C*/ OD as the fiber at the origin of
C’IW.

7' = the fiber bundle projection from G(M °)
to CT7/W, also with C*/ OD as the fiber at
the origin of CT 7/ W.

® = the fiber bundle projection from C’x C*
to C’, with C? as the fiber at the origin of C”.

@' = the fiber bundle projection from
[77x 8§21 to CT7, with (S%)€ as fiber.
(Note: ($7)¢=57x57%)
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GLOSSARY

Algebra. the study of the structure of numbers
and the systems of entities abstracted from and
generalized upon this structure. The most basic
structure in this study is the group From groups
one can define rings, and from rings and groups
one can define modules, and vector spaces and
associative algebras. We can construct the
following hierarchy of structures:

Semigroup. {S, #} closure and associativity
defined on S with composition of elements

under 3.

Group. {G,#} identity element and inverses also

defined on G.

Commutative group. {G, +} commutativity (2
+ b= b+ a) defined on G. Note: We conven-
tionally regard composition of elements of a
commutative as addition.

Ring. additive group {R, +}; multplicative
semigroup (i.e., closure and associativity) {R, e}.
Module. Scalar ring {R,#}, i.c. only the
multiplicative aspect of the ring is used; vector
commutative group {V, +}; scalar multiplica-
tion distributes over vector addition : r® (v, +
v)=re v+ reuv,.
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Vector space. the multiplicative structure of the
ring (with zero omitted) becomes a commuta-
tive group {R— 0, o}; vector commutative group

{V, +}.

Associative algebra. multiplicative semigroup
(with composition denoted by @) in the vector
space {V, +, o}.

Note: Mathematicians used to call algebra as
defined here hypercomplex numbers, or abstract
algebra. Now they simply call it algebra. High
school algebra is essentially the study of the
associative algebras R (the set of real numbers)
and C = R + V-1IR (the set of complex
numbers) because every polynomialin one
unknown has a root (or solution) in C. The
multiplicative structure of C (if we leave out 0)
is a commutative group. For these reasons, C is
a very special case of an algebra.

Both R and C are examples of commutative
algebras. The first noncommutative algebra was

discovered by Hamilton in 1842 and was called
by him the quaternions, which we designate Q.

An associative algebra is also called a linear
algebra, a mathematical structure A which
closely imitates the essential features of the real
number line R. These features are: an additive
structure on A, a multiplicative structure on A,
and a distributive relationship between these
two structures. The additive structure is
provided by requiring A to be a vector space,
which by definition is a commutative group.
The multiplicative structure is not necessarily a
group, but must obey the properties of closure
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and associativity. Thus not every element of A
has a multiplicative inverse, nor does the
multiplicative structure necessarily have an
identity element. Moreover, the additive
identity element, zero, when used multiplica-
tively has the effect of making any element of A
into zero: @0 = 0a = 0, for all elements 4 of A.

Examples of associative algebras are: the real
numbers R; the complex numbers C; the zotal
matrix algebra M (n), the set of all nx »
matrices. These algebras are called associative
algebras because their multiplicative structure
obeys the associative law: a(bc) = (ab)c.

Any associative algebra can be made into a Lze
algebra by defining a new multiplicative
structure based on the underlying associative
multiplicative structure. Conventionally, this
new structure is called the Lie bracket: [a,b] =
ab— ba, where ab and ba are defined by the
underlying associative multiplication structure.
This is usually done via matrix representations
of the underlying associative algebra. It is a
basic theorem of algebra that any finite
dimensional associative algebra is equivalent to
a matrix algebra and thus can be faithfully
represented by a matrix algebra. The dimension
of the algebra is, of course, the dimension of
the vector space which provides the additive
structure for the algebra. For example, the
dimension of the matrix algebra M (n) is n°,
the number of components of an 7 x 7 matrix.
This is obvious to anyone who remembers that
two matrices are added by componentwise
addition.
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Basis. a set B of vectors in a vector space such
that any vector in the space is equivalent to a
sum over B. The number of vectors in B is
equal to the dimension of the vector space.
Thus, in an #-dimensional vector space V, if B
is the set {6, & . .., b,}, then any vector v of
V can be written as v = ;6 + 665+ . . . +¢,b,
where the set {¢;, ¢ . . ., ¢,} consists of
numbers which are called coordinates. Thus a
basis provides a coordinate system for the
vector space.

Note: When a vector is regarded as an ordered
set of numbers, these numbers are the coordi-
nates and are usually called the components of
the vector.

Bell’s Theorem. a statement proved by John S.
Bell (1964) that if a quantum state vector
corresponds to some objective reality, that

reality must have nonlocal effects.

Consciousness. awareness — not necessarily
self-awareness. Awareness entails perceprual and
cognitive aspects of reality. Self-awareness entails
also the volitional aspect. (For example, in a
state of muscular paralysis due to anesthesia, it
is possible to have awareness without self-
awareness.)

Component. see Basis.
Coordinate system. see Basis.

Deformation. a transformation of a math-
ematical structure which shrinks, twists or
otherwise changes the structure without
tearing.



Dimension. the number of degrees of freedom
in a space. The number of coordinates neces-
sary to locate a point in a space. The coordi-
nates are not necessarily rectangular, e.g,, the
surface of the earth is 2-dimensional; customar-
ily it has two coordinates called longitude and

latitude.
Dual space. the set of linear functions of a

vector space. An n-dimensional space has an
n-dimensional dual space. The dual space of a
dual space is the original vector space.

Eigenvalue. the numerical solution x to the
operator equation:

Av=xv

where A is the operator, and v is a vector called
the eigenvector solution to this operator
equation. Geometrically, this means that 4 is
acting upon the vector # and does not change
its direction but only its length; this length
change is by the factor x. E.g., if xis 2, vis
doubled in length by 4; if xis 2, v is cut in
half by A4;if xis 1, v doesn’t change at all.

Usually A4 is represented by an 7x » matrix
where 7 is a dimension of v, i.e., the number
of components in . In many cases, the
solutions can be found by transforming the
matrix M representing A into diagonal form;
i.e., M is transformed into diag(M) = gM g~
(where gis an 7 x 7 matrix representing an
element of a group, and g ~'is the inverse of g).
In diag (M) all components are zero except for
the components of the primary diagonal. These

components are the eigenvalues of M. It
should be noted that M and gM g~ represent
the same transformation, but with differing
coordinate systems, on the vector space in
which the v live. In fact, the eigenvectors v are
the basis vectors of the coordinate system in

which diag (M) is defined.

Eigenvector. a vector solution v to the
operator equation described under eigenvalue.
In general, there are several eigenvector
solutions to an operator equation. The number
n of solutions is the dimensionality of the space
the vectors live in. The matrix representing the
operator is an 7x n matrix. If there are »
eigenvectors belonging to an operator acting on
an n-dimensional space, the  eigenvectors
form a basis for this space.

Field. a smooth assignment of some type of
mathematical object to each point of some
space; e.g., a scalar field assigns a scalar (a
number) to each point of a space; a vector field
assigns a vector to each point of a space.

Force field. (also called a gauge field) a smooth
assignment of an element of a Lie algebra to
each point of spacetime. The standard corre-
spondence of Lie algebras to forces is as follows
(using Lie group labels): U(1), electromagne-
tism; SU(2), weak force; SU(3), strong (color)
force.

Function. a mapping from an n-dimensional
space to a 1-dimensional space. This means
that 7 numbers go into the function and one
number comes out; e.g., given the equation
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z=x” + 3y, we can say that z is a function of x

and y (see Mapping).

A linear function is an additive entity in the
sense that the sum of two linear functions is
also a linear function on the space on which the
function is defined.

Hyperspace. a space of more than three

dimensions.

Lie algebra. a nonassociative algebra which
obeys two extra rules:

1. Anticommutativity: 2® b= —be a
2. The Jacobi identity: z® (b c) = (a® b) ® ¢

+ b e (ae c), which replaces the associative law

albe) = (ab)e.

Since most Lie algebras can be faithfully
represented by sets of matrices, the Lie product
a® bcan be faithfully represented via the Lie
bracket: i.e., 2@ b= [a, &) = ab— ba, where the
product 24 is simply the ordinary product of
two matrices. In fact, any matrix algebra is an
associative algebra which can be made into a
Lie algebra by defining Lie brackets on the
underlying matrix algebra.

The building blocks of Lie algebras are called
simple Lie algebras.

Mapping. from an #-dimensional space Nto
an x-dimensional space X is a rule which
assigns to each element of /V a unique element
of X. Note that Nand X may be the same
space. A function is a special case of a mapping,
in which X the space being mapped to is

1-dimensional.
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Matter field. a smooth assignment of a
complex vector (of appropriate dimension) to
each point of spacetime. The vector space is

acted upon by the Lie group associated with
the force field or fields involved.

Mind. the realm of all mental events (such as
beliefs, memories, images, thoughts) including
subconscious events.

Nonlocality. independence from spatial and
temporal constraints. A nonlocal effect is
instantancous and undiminished over distance.
Note: A nonlocal effect does not necessarily
transfer energy or information from one point
to another. In particular, transfer of energy or
information is not implicit in the nonlocality
referred to in Bell’s Theorem. The understand-
ing of a nonlocal effect which does not transfer
energy or information is an open problem in

physics.

Orbit. the set of points in a space selected by
the action of all the elements of a group on a
single point of the space. If the group is
continuous (a Lie group), the orbit will be
continuous; e.g., SO(3) acting on a single point
of ordinary 3-d space creates an ordinary orbit
— acircle. If the group is discrete, the orbit of
a point will be a discrete set of points; e.g., the
orbit of a reflection group acting on a point
between the mirrors (i.e., in a reflection
chamber) is a point in each reflection chamber;
thus the number of points in such an orbit is
equal to the number of elements in the
reflection group.
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Operator. a mathematical entity that trans-
forms a space; e.g., on a vector space, an
operator may rotate, stretch, translate or
perform some combination of these transfor-
mations on the vectors of the space. An
operator which acts on an n#-dimensional space
is represented by an 7 x n matrix.

Parameter. a variable which selects members of
a family of structures. For example, zand bare
parameters in the equation for a straight line:
y=a+ bx; aselects the point where the line
intercepts the yaxis; & selects the slope of the
line. In this paper, ¢, . . . ,t, are parameters
which select a fiber of the catastrophe manifold
X ?; these fibers are called the deformations of
the identity fiber C*/ OD (see Unfolding).

Quaternions. an ordered pair of complex
numbers, or equivalently, an ordered quartet of
real numbers. Although quaternions are not
commutative, they do have multiplicative
inverses, which means that the set of quater-
nions (with zero omitted) forms a group under
multiplication. If we think of the quaternions
as an ordered quartet of real numbers, we will
regard the quaternions as forming a 4-d vector
space. The set of all quaternions of unit length
form a sphere S, which is also a Lie group
with the usual label SU(2).

Realm. reality structure. In this paper we use
the word realm to refer to the combination of a
universal mind with a universal body. Thus
there is a hierarchical spectrum of realms
corresponding to the A-D-F hierarchy.
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Space. a set with a continuous infinity of
elements. These elements are called points. The
simplest space is a line.

Unfolding. a family of functions F which
contains a particular function f'is called an
unfolding of £ If F contains all the functions
close to £ the folding is called a universal

unffolding (see Deformation).

Unified field theory. a theory combining two
or more force fields into a single force field. The
theory must also give an adequate description
of the matter fields which feel the force fields
entailed in the unified theory, because matter
fields interact with each other by exchanging
force fields.

Universal body. the physical realm in all its
aspects. Individual bodies are substructures of
the universal body. In this paper, the universal
body is identified with the group algebra,
C[OD)]. It is possible that there is a universal
body corresponding to each of the McKay-
group algebras, so that there would be a
hierarchical spectrum of universal bodies
matching the spectrum of universal minds.
One could view the entire spectrum of univer-
sal bodies as a Supreme Body.

Universal consciousness. that consciousness of
which individual consciousnesses are substruc-
tures. In this paper, universal consciousness is
identified with C’, the intersection of the Lie
algebra £, with the group algebra C[OD).

Universal mind. the mental realm in all its
aspects, including the subconscious. Individual



minds are viewed as substructures within the
universal structure. In this paper, the universal
mind is described as the 133-dimensional £,
group. It may be necessary to extend this
description to the infinite-dimensional Kac-
Moody group AE ;. Also, it is possible that
there is a universal mind corresponding to each
of the A-D-E Lie groups, so that there would
be a hierarchical spectrum of universal minds
comprising a Supreme Mind.

Vector. a set of ordered numbers called
components. The number of these components
is the dimension of the vector. A real vector has
real numbers as components; a complex vector
has complex numbers as components. Since a
complex number is an ordered pair of real
numbers, an #-dimensional complex vector can
be regarded as a 2#-dimensional real vector.

Geometrically, a vector is an entity having
magnitude and direction. We can recover the
algebraic definition, if we imagine the vector
tied to the origin of a coordinate system. Then
the components of the vector are the coordi-
nates of the tip of the vector.

Vector space. a space whose elements, called
vectors 2, form a commutative group, which by
convention is considered additive so that the
0-vector is the identity element. It must also be
possible to multiply » by a scalar s (i.c., a
number); a law of distribution holds for this
scalar muldplication:

v, + sv,= v, + v).

We say that a vector space is defined over the
set of scalars. If this set is the real numbers, we

call the space a real vector space. If this set is the
complex numbers, we call the space a complex
vector space. Since a complex number is an
ordered pair of real numbers, it is always
possible to consider an #-dimensional complex
vector space as a 2n-dimensional real vector
space.

‘Wave function. a function Y which provides a
description of a quantum system. It is a
function of the observables of the system in
such a way that the square of the amplitude of
the wavefunction is the probability for seeing a
particular value of an observable. For example,
if we consider only the observable of position x,
then the square of the amplitude of W(x) is the
probability of seeing the system (say, a particle)
at x. The word “wavefunction” is really a
misnomer in the sense that most wavefunctions
are not wavelike. Like waves, however,
wavefunctions are additive: i.e., two
wavefunctions (for the same system) can be
added to produce another wave function. An
alternative view of the wavefunction is a vector
called the state vector of the system. Whenever
a system is observed a particular aspect of the
wavefunction, called an eigenfunction, is
observed; alternatively a projection of the state
vector, called an eigenvector, corresponds to an
observed state.
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