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INTRODUCTION

The articles in this section introduce four influential but very different ways of
thinking about the mind/brain. Each picture of the mind offers a conceptual
framework both for thinking about some of the key problems in the philosophy
of psychology and for thinking about how to integrate the many different disci-
plines studying the mind/brain. We can view these four ways of thinking about
the mind/brain as offering different responses to what I have elsewhere termed
the interface problem (Bermúdez 2005).

The interface problem arises because we can study the mind/brain at many
different levels. Philosophers typically think about the mind in very high-level
ways. They are concerned with mental states such as beliefs and desires, hopes
and fears, and their aim is to understand what these mental states are; how they
are related to each other; and how they are realized by, or instantiated, in the
brain. Psychologists, in contrast, often work at a somewhat lower level of analysis.
Their interest is in the different capacities that we have for finding out about the
world (both physical and social), for thinking about it, and for acting upon it.
Psychologists want to understand both what these capacities are and what mech-
anisms underlie them. Moving still further down the hierarchy of explanation,
neuroscientists study individual neurons and populations of neurons, trying to
make sense of the structure and organization of the brain. These are all comple-
mentary investigations, and one of the most fundamental problems in the
philosophy of psychology is working out how, if at all, they can be fitted together
to form a unified theoretical perspective on the mind/brain.

Traditional philosophy of mind concerns itself with various versions of the 
so-called mind–body problem. The mind–body problem is standardly formulated at
the level of individual mental states. How are individual mental states related 
to physical states? Philosophers of mind have answered this question in many 
different ways. According to behaviorists such as Ryle, mental states are compli-
cated behavioral dispositions, so that a person’s mental life is ultimately deter-
mined by how they are behaving and how they are disposed to behave. Identity
theorists, on the other hand, take mental states to be identical to brain states, while
functionalists argue that mental states stand to neural states in the same relation
that software programs stand to the computer hardware that implements them.
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In contrast to the traditional mind–body problem, which in effect asks about
the physical basis for individual mental states such as particular beliefs and
desires, the interface problem asks about the physical basis for our practices of
commonsense psychological explanation – of explaining why people do what they
do in terms of how they take the world to be (the beliefs that they have) and how
they want things to turn out (the desires that they have). The interface problem
is the problem of determining how commonsense psychological explanation is to
be integrated with levels of explanation lower down in the hierarchy.

The interface problem: How does commonsense psychological explanation
interface with the explanations of cognition and mental operations given by
scientific psychology, cognitive science, cognitive neuroscience and the
other levels in the explanatory hierarchy?

Each of the four pictures of the mind that are introduced in this section gives a
very different response to the interface problem. The four views together form a
spectrum.

At one end of the spectrum is the picture of the autonomous mind, which
holds that the interface problem is not really a problem at all. Autonomy theo-
rists make much of the distinction between personal and subpersonal levels
of explanation (introduced by Dennett in Chapter 1) and argue that there is a
fundamental discontinuity between explanations given at the personal level of
commonsense psychology and explanations given at the various subpersonal levels
of explanation explored by psychologists and neuroscientists. The picture of the
autonomous mind understands the mind in terms of an autonomous and inde-
pendent type of explanation that has no application to the non-psychological world
and that interfaces only indirectly with the types of explanation applicable in the
non-psychological realm.

According to the picture of the functional mind, however, there is no such
fundamental distinction between personal and subpersonal levels of explanation.
Commonsense psychological explanations are a species of causal explanation, no
more and no less mysterious than the various types of causal explanation with
which we are familiar both from science and from our everyday experience of the
physical world. Mental states have associated with them a determinate causal
role, specifying what normally gives rise to them and how they themselves typi-
cally give rise to other mental states and to behavior. This allows us to understand
the mental states that feature in commonsense psychological explanation in terms
of their causal dimension.

The picture of the representational mind shares with the functional picture the
view that the essence of the mind is given by the causal dimension of mental
states, but takes a rather different approach to the interface problem. The key
idea behind the representational picture is that psychological states should be
understood as relations to sentences in an internal language of thought, where
the language of thought is a physically realized medium of thought that has many
of the properties of a natural language. This allows representational theorists to
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think about thinking in terms of operations that act directly only on the physical
properties of those inner sentences, but in a way that is sensitive to the semantic
relations between those inner sentences (to the relations that hold between their
meanings). The causal transitions between states of the representational mind
are purely formal in a way that exactly mirrors the transitions between states of
a digital computer. In fact, representationalists effectively claim that the mind
can best be modeled as a digital computer.

At the other end of the spectrum from the conception of the autonomous mind
lies the picture of the neurocomputational mind. Like representational theorists,
proponents of the neurocomputational mind are deeply influenced by the require-
ments of modeling the mind, but they are inspired by a fundamentally different
paradigm. Whereas the picture of the representational mind is motivated by the
idea that the mind is a digital computer and can be studied as a piece of soft-
ware, in complete independence of the hardware in which it is implemented,
neurocomputational theorists are inspired by research into artificial neural net-
works, which are computer models of different types of cognitive ability explicitly
designed to reflect certain features of how the brain is thought to process infor-
mation. Neural networks do not seem to accommodate many of the features of
commonsense psychological explanations, and this inspires proponents of the
neurocomputational mind to stress the discontinuities between personal-level
explanation and the neuroscientific explanations occurring at the bottom of the
hierarchy. They propose a co-evolutionary model, on which our understanding of
commonsense psychology coevolves with our understanding of the neural basis
of cognition.

IA The autonomous mind

Theorists of the autonomous mind, such as Donald Davidson, John McDowell,
Jennifer Hornsby, and (in some of his incarnations) Daniel Dennett, seek to make
a principled distinction between the activities and practices of commonsense
psychological explanation, on the one hand, and the many different explanatory
projects in the social, behavioral, and neural sciences. Although they each do so
for very different reasons, these theorists all think that the enterprise of making
sense of the thoughts and behavior of other people is a fundamentally different
type of explanatory project from the enterprise of trying to understand the neural
and psychological basis of cognition and behavior. The three papers in this 
section each offer a different way of motivating this distinction between different
explanatory projects.

Daniel Dennett’s “Personal and Subpersonal Levels of Explanation”, drawn
from his first book Content and Consciousness, gives a clear formulation of this
basic distinction between two types of explanation, which he terms the distinc-
tion between personal and subpersonal levels of explanation. There is, Dennett
argues, a fundamental difference between the activities and states characteristic
of persons, on the one hand, and the activities and states characteristic of parts
of persons, on the other. He claims that it is a mistake to think that questions
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about what a person does (questions formulated at the personal level) can be
answered by appeal to operations and mechanisms at the subpersonal level. 
The example he gives is our ability to locate sensations – to scratch an itch, for
example, or to reach to the location of a pain. Although there are of course afferent
pathways that carry information to the brain about the location of painful stimuli
on the body, it would be a mistake, Dennett thinks, to appeal to these afferent
pathways and associated neural mechanisms in answer to the question of how
we locate our sensations. Locating sensations is something that we as persons
just do. At the personal level there is nothing more to be said. Moving to the
subpersonal level does not provide further explanation. It merely changes the
subject.

The second paper in this section is Donald Davidson’s “Psychology as Phil-
osophy”. Davidson’s sophisticated version of the picture of the autonomous mind
is derived from his well-known doctrine of anomalous monism. Anomalous
monism combines the token-identity of mental and physical events (the idea that
every mental event is identical to some physical event) with the denial that there
can be any strict laws defined over mental states (where Davidson’s paradigm of
a strict law are the laws to be found in fundamental physics). It is this second
claim (the so-called anomalism of the mental) that makes Davidson an autonomy
theorist and that is explored and defended in this paper. The impossibility of
strict laws involving mental states derives, according to Davidson, from the role
of considerations of rationality in psychological explanation. When we try to make
sense of other people’s behavior, we are constrained to interpret them so that
their behavior comes out as rational. We have to credit them with a psycholog-
ical profile that rationalizes the way they behave, which forces us to see human
behavior as taking place within a coherent and consistent psychological frame.
Often enough, Davidson notes, “we must warp the evidence to fit this frame” 
(p. 29). There is, Davidson thinks, nothing corresponding to these requirements
of rationality, coherence, and consistency when we move outside the realm of
commonsense psychological explanation. This is what makes psychological expla-
nation at the person level so fundamentally different from, and irreducible to, the
various forms of explanation at the subpersonal level.1

In “Physicalist Thinking and Conceptions of Behaviour,” Jennifer Hornsby, who
has been much influenced by Dennett and Davidson, offers a different perspec-
tive on the distinction between personal and subpersonal levels of explanation.
Whereas both Dennett and Davidson stress differences in the style of the two
different explanatory projects and the constraints that govern them, Hornsby
emphasizes what she takes to be the very different explananda (things to be
explained) of the two explanatory projects. In very broad terms, both personal and
subpersonal explanation can be seen as exploring the processes by which informa-
tion arriving at the sensory periphery is processed and transformed in a manner
that leads ultimately to behavior. This apparent similarity, however, obscures a
fundamental point of difference. According to Hornsby, the concept of behavior
is understood very differently in the two different explanatory projects. At the
personal level, the behavior that is being explained is understood in a broad sense,
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in terms of actions that are carried out intentionally for a purpose. At the subper-
sonal level, in contrast, the behavior that is being explained is understood
narrowly, in terms of bodily movements/motor responses. Only if we equivocate
between these two ways of understanding behavior does it seem possible to assim-
ilate the two types of explanation. But, Hornsby argues, when we see how different
they are, and that it is impossible to assimilate one to the other, we will appre-
ciate that it is a mistake to try to explain facts at the personal level in terms of
facts at the subpersonal level.

IB The functional mind

Whereas supporters of the autonomous mind argue that, from the perspective of
personal-level explanation, the connections between mental states and between
mental states and behavior have to be understood in fundamentally rational 
terms, and hence as very different from the “ordinary” relations that hold between
non-minded physical objects, the picture of the functional mind sees the connec-
tions between mental states and between mental states and behavior as being
primarily causal. We understand behavior in terms of its causal antecedents, just
as we understand everyday physical occurrences in terms of their causal
antecedents. There is no basic difference of kind between explanation at the
personal level and explanation at the subpersonal level. From this perspective,
the key to understanding the mind is understanding the complex network of
causal relations that hold between perceptual inputs and mental states; between
different mental states; and between mental states and behavior. Commonsense
psychology is itself a (partial) model of this complex network. The generalizations
of commonsense psychology to which we appeal, either explicitly or implicitly, in
psychological explanation are generalizations about causal relations within the
network.

David Lewis’s “Reduction of Mind” illustrates one way of resolving the inter-
face problem on the picture of the functional mind, in the context of a global
reductionism set out in the first few pages of the paper. Lewis envisages common-
sense (or folk) psychology as a theory about the causal relations between
perceptual stimuli, mental states, and motor responses. This theory allows us to
think of mental states in terms of their causal role, where the causal role of a
mental state is given by the causal generalizations in which it features. Causal
roles are discoverable at the personal level, by processes of conceptual analysis.
Truths about causal roles are, Lewis thinks, analytic truths. Once we have an
understanding of these analytic truths about causal roles we resolve the interface
problem by looking to psychology and neuroscience to tell us about the subper-
sonal states that realize or implement these causal roles. According to Lewis,
empirical investigations at the subpersonal level will uncover a causal network of
physical states that is isomorphic to the commonsense psychological theory
arrived at on the basis of conceptual analysis.

In “Functionalism, Information and Content” Robert Van Gulick explores one
key aspect of the functional picture. If we are to think of mental states as the
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occupiers of causal roles, then we have to explain how every aspect of a mental
state can be derived from its causal role. In this context, it is helpful to bear in
mind the distinction, originating with Frege, between the force and the content
of a particular mental state. The force of my belief that, say, the cat is on the
mat is the fact that it is a belief (as opposed to a desire, or a hope). Its content
is the proposition that the cat is on the mat – a proposition that could equally
be the content of the desire that the cat be on the mat. It is relatively straight-
forward to see how the force of a mental state can be understood in causal terms.
The causal role of a belief is fundamentally different from the causal role of a
desire in ways that are relatively easy to specify. If I believe that p, then I will
act on the basis that p is the case, while if I desire that p, I will act in ways that
I think likely to bring p about. But it is far more difficult to see how the content
of a belief can be understood in causal terms. This is the problem that Van Gulick
addresses. Van Gulick sets out to explain what makes a particular state an infor-
mational state. He offers an account in terms of notions of goal directedness and
adaptiveness of the causal role that a mental state must play in order to qualify
as a processing information for the organism. The basic idea is that states are
informational just if they operate in ways that lead to adaptive modification of
the organism’s behavior in appropriate circumstances. The paper spells out how
“adaptive modification” and “appropriate circumstances” are to be understood.

The picture of the functional mind, as presented by Lewis and other “func-
tionalist” philosophers of mind, makes two very strong claims about the nature
of psychological explanation. The first, which is one of the claims sharply distin-
guishing the functional mind from the autonomous mind, is the claim that
personal level psychological explanation is ineliminably law-governed. As we
might expect, given that the functional roles of mental states are fixed by the
causal laws holding over those states, psychological explanation is essentially a
matter of subsuming behavior under the relevant causal generalizations. This
brings with it a second claim, this time about the nature of psychological expla-
nation at the subpersonal level. It is a key tenet of the functional picture that we
will be able to identify realizers at the subpersonal level for the functional roles
defined at the personal level. But this seems to require a structural isomorphism
between personal level and subpersonal explanation, which in turn demands that
appropriate causal generalizations be identifiable at the subpersonal level. Both
of these claims about psychological explanation have been challenged.

Proponents of the simulationist approach to commonsense psychology take
issue with the first claim (see Part IIC), while the second claim is disputed in
Robert Cummins’s “‘How does it work?’ versus ‘What are the laws?’” Cummins
argues that scientific psychology is not in the business of identifying laws. Such
laws as there are in psychology are really effects that need to be explained – as
opposed to laws that are capable of providing explanatory leverage in the way that
the laws of physics are explanatory. According to Cummins, who is putting forward
a version of the functional picture that is sometimes termed homuncular func-
tionalism, psychological explanation is essentially an enterprise of functional
analysis. In functional analysis, psychological capacities are analyzed in terms of
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organized complexes of less sophisticated capacities. There is no single distinc-
tion between role and realizer (as on the Lewis-style functional picture), but rather
a multitude of different levels of explanation, each of which can be seen as a
realization of the level above it and each of which is itself realized by the next
level down. The process of psychological explanation comes to an end when we
“bottom out” in capacities that no longer count as psychological. This is a very
different way of developing the functional picture from that proposed by Lewis
but, Cummins would argue, one that is much closer to the actual practices of
psychologists and neuroscientists.

IC The representational mind

As we saw in Van Gulick’s paper in Part IB, the standard way of developing the
picture of the functional mind holds that both the force and the content of mental
states are to be illuminated in terms of causal functional role. What makes the
belief that p is a belief is the fact that it fulfills a particular role in the cognitive
economy. And the fact that it fulfills this role is, moreover, what makes it a belief
with the content p. On the picture of the representational mind, these two aspects
of mental states come apart. Representational theorists are happy to explain the
force of a mental state in terms of its causal role, but they do not extend this
explanatory strategy to the content of mental states. We can see representational
theorists as stressing a fundamentally different direction of explanation from 
functional theorists. Whereas the functional picture takes the causal role of
psychological states as a given and accounts for their content on the basis of
their causal role, representational theorists are motivated by the (arguably) more
fundamental problem of how mental states can be causally efficacious in virtue
of their contents in the first place. Psychological explanations work because they
identify mental states that cause behavior in virtue of how they represent the
world. But the fact that mental states can do this is itself puzzling.

Jerry Fodor’s version of the representational theory offers a robust solution to
this puzzle (see also “The Persistence of the Attitudes” in Part IIA). Psychological
explanations, he argues, are computational explanations. That is, they presup-
pose that agents act the way they do as a result of sequences of computations
carried out within a representational system. According to Fodor this has signif-
icant implications for how we think about the realizers of those mental states. In
brief, Fodor thinks of computation as requiring a language-like representational
medium (hence the label of the representational mind). This leads him to think
of mental states as sentences in an internal language of thought, where a sentence
in the language of thought has constituents corresponding to the logically rele-
vant constituents of the content of the relevant mental state. The sentence in 
the language of thought that is the vehicle of my belief that Springfield is the
capital of Illinois has constituents corresponding to the proper names
“Springfield” and “Illinois” and to the two-place predicate “– is the capital of
–”. As he makes clear in other writings (see, for example, Fodor 1987), this allows
him to resolve the puzzle of causation by content. Computations are mechanical
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processes sensitive only to the formal properties of representational states. The
analogy in the background here is with operations in logical languages such as
the first order predicate calculus – operations that can be viewed as operating
solely on the “shape” of formulae in the logical language. Just as the soundness
of a logical language ensures that syntactic transformations on well-formed
formulae are truth preserving, the architecture of the mind is configured in such
a way that causal relations between sentences in the language of thought track
the semantic relations between the contents of those sentences.

In “The Language of Thought: First Approximations” Fodor is concerned to
establish the first part of his argument. He considers three different types of
explanatory project in psychology and argues that each only makes sense on the
assumption that there is an internal language of thought. The three domains he
considers are “considered action” (which he thinks requires organisms to compare
the possible outcomes of different courses of action), concept learning, and
perception (both of which he takes to involve processes of hypothesis formation
and testing). Each domain, he argues, involves computations that are defined over
language-like representations. And, since these basic forms of cognition are wide-
spread among non-linguistic creatures (both non-human animals and prelinguistic
children), Fodor concludes that the representational format cannot be an inter-
nalized public language. It must be a dedicated language of thought (Mentalese).

A different way of arguing for the language of thought hypothesis and the
picture of the representational mind is to be found in Georges Rey’s “A Not
‘Merely Empirical’ Argument for a Language of Thought”. Whereas Fodor’s argu-
ment in the chapter reprinted here begins with what he takes to be basic
explanatory practices in psychology (while his other writings explore some of the
empirical constraints imposed by the possibility of causation by content), Rey
explores the far more abstract question of what it is for a creature to count as
being capable of rational thought. According to Rey, only creatures that are
capable of making logical transitions between thoughts can be capable of rational
thought. Logical transitions between thoughts are distinguished from transitions
based upon association or conditioning. But what is involved in making such
logical transitions? According to Rey, making logical transitions in thought
requires being sensitive to the logical properties of thoughts. For some logical
transitions (e.g. truth-functional transitions grounded in the logical properties of
logical operators such as “and” and “or”) these logical properties hold between
individual thoughts. For other logical transitions, such as those codified in the
predicate calculus, the logical properties in question are internal to individual
thoughts. If I infer from the thought that the pen is on the table to the thought
that there is at least one thing on the table, then I am exploiting the internal
structure of the thought (since I am applying the form of inference that allows
me to conclude from Fa that ∃x Fx). This, Rey thinks, means that the internal
structure of the thought must be represented in a manner that is causally avail-
able, since transitions between thoughts must, in the last analysis, be causal
transitions. But the hypothesis that the internal structure of a thought is causally
accessible just is the language of thought hypothesis.
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ID The neurocomputational mind

Each of the three pictures of the mind we have been considering holds that we
can only understand the mind by abstracting away from the details of how the
brain works. On the picture of the autonomous mind it is a “category mistake”
to look to subpersonal displines such as neuroscience to illuminate personal-level
thought and behavior. The functional and representational pictures, on the other
hand, are essentially top-down in orientation. Both pictures of the mind hold that
commonsense psychology offers a privileged level of description for cognitive abil-
ities and capacities. Once commonsense psychology has fixed the things that 
are to be explained at the subpersonal level, we work downwards through the 
hierarchy of different disciplines, identifying the realizers for causal roles, or the
physical structures that implement sentences in the language of thought. Our
fourth and final picture of the mind rejects this top-down model for understanding
the mind. It is a fundamental tenet of the picture of the neurocomputational mind
that our thinking about commonsense psychology must coevolve with our thinking
about the neural basis of cognition. Whereas the top-down model of explanation
rests on the assumption that we can understand any given level in the hierarchy
independent of the levels below it, the neurocomputational picture is based on
the idea that the boundaries between disciplines and levels of explanation are
fluid and malleable, so that we need to see personal and subpersonal explana-
tions as interlocking and interacting. In particular, we cannot hope to understand
the mind without understanding the brain, since the way the brain works imposes
important constraints upon our understanding of higher-level cognition and
ordinary commonsense psychology.

Patricia Churchland and Terence Sejnowski’s “Neural Representation and
Neural Computation” begins by presenting a clear statement of the co-evolutionary
approach to studying the mind and cognition. They reject some of the standard
arguments for what they call theory dualism (the view that we can understand the
mind without understanding the brain), devoting particular attention to the lan-
guage of thought hypothesis (which they term sententialism). Churchland and
Sejnowski present a number of empirical considerations for thinking that cogni-
tion should not be understood in terms of computations defined over language-
like symbolic structures in the way that the language of thought hypothesis holds.
They observe, for example, that the brain is a parallel system, with huge numbers
of simultaneous connections between neurons, rather than a serial processor,
carrying out single algorithmic steps one at a time, as (they argue) it would have
to be were the language of thought hypothesis to be correct. Nor, they suggest,
do neurons operate sufficiently quickly for even the simplest serial computations
to take place within a realistic framework. So how then should we think about
neural computation?

We do not have the technology to study neural computation directly, despite
recent advances in detailed knowledge of how the brain works. Techniques 
such as functional magnetic resonance imaging (fMRI) and positron emission
tomography (PET) have allowed neuroscientists to begin establishing large-scale
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correlations between specific brain areas and particular cognitive tasks, while
other techniques have made it possible to study brain activity at the level of the
single neuron. Yet, although a functional map of the brain can tell us what cog-
nitive tasks are carried out by which brain areas, it has nothing to say about how
those tasks are carried out. And it is natural to think that neural computation
requires the interaction of populations of neurons, rather than taking place at the
level of individual neurons. The most promising strategy for understanding neural
computation is to develop models of populations of neurons and then to investi-
gate how they carry out particular cognitive tasks. Whereas the picture of the
representational mind takes the mind to operate essentially like a digital com-
puter, Churchland and Sejnowski propose looking to connectionist models (also
known as parallel distributed models and neural network models) to illuminate
how computation takes place in the brain. The final section of the paper shows
how network modeling can be used to pursue the co-evolutionary research agenda.

Whereas Churchland and Sejnowski discuss specific neural network models
such as NETtalk, Peter McLeod, Kim Plunkett, and Edmund Rolls in “The Attrac-
tions of Parallel Distributed Processing for Understanding Cognition” give a clear
presentation of some of the general characteristics of neural network models,
where they understand neural networks in very general terms as computational
models in which information is distributed across many processing units and
where computations take place in parallel across these processing units. As they
bring out with reference to McClelland’s well-known Jets and Sharks network, one
of the distinguishing features of neural network models is that information 
is stored in them in a content-addressable manner. That is, if a connectionist
network is given some part of a body of information it can recover the remaining
parts. This is in opposition to ordinary digital computers, in which information is
accessed through an address (much as the information in an encyclopedia entry
can only be accessed through the keyword of the entry). As McLeod, Plunkett,
and Rolls bring out, content-addressable connectionist networks display a number
of the characteristics of human memory. In particular, they operate in ways that
generate typicality effects (when “asked” to produce a random member of some
collection they will produce a typical member). This is just one of the features
of connectionist networks that have been thought to be biologically realistic.
Another such feature that they discuss (and that Churchland and Sejnowski
mention as something that serial processing models cannot accommodate) is the
damage resistance and fault tolerance of neural networks. Since the output of a
neural network model is determined by the “best fit” between current input and
previously received information, they “degrade gracefully” when damaged, rather
than suddenly cease to function in the manner of a damaged digital computer.
They are also much more tolerant of noisy input.

Notes

1 In “Psychology as Philosophy” and elsewhere in his writings, Davidson is
concerned with the basic distinction between commonsense psychological expla-
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nation and explanation in the physical sciences, but the arguments he gives are
really arguments for a principled distinction between explanations that involve
propositional attitudes subject to constraints of rationality and consistency and
explanations that do not – or, in other words, to a principled distinction between
personal- and subpersonal-level explanations.
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1

D.C. Dennett, “Personal and Sub-personal
Levels of Explanation”

The physiology of pain is relatively well understood. When a pain is felt, neural
impulses travel from the area in which the pain is felt along an anatomically
distinct neural network for the transmission of pain stimuli. In many instances
there is a peripheral reflex arc that triggers withdrawal, but there are also other
as yet unanalysed effects in the central areas of the brain.

It is appropriate for an organism to heed the most pressing demands of
survival, and the imminence of injury or death is as pressing as a demand can
be, so it is altogether to be expected that a strongly entrenched pain network,
essentially including appropriate responses of withdrawal, should be inherited.
Moreover, as personal experience reveals, the behavioural reactions to pain
are more difficult to overrule than any other behavioural tendencies. Genuine
pain behaviour is compulsive, involuntary, and only with great ‘will power’
or special training can man or beast keep from reactions to pain. Whether or
not such inherited afferent-efferent networks are a sufficient condition for the
existence of the ‘phenomenon of pain’, it is safe to say they are a necessary
condition. That is, it would be a very mysterious view that held that the bare
phenomenon of pain could occur on the evolutionary scene before there were
organisms that reacted appropriately to stimuli that were harbingers of injury.
Pain could not appear until organisms began avoiding it. The question before
us now is whether pain is something (some thing) in addition to the physical
operations of the pain-network.

An analysis of our ordinary way of speaking about pains shows that no
events or processes could be discovered in the brain that would exhibit the 
characteristics of the putative ‘mental phenomena’ of pain, because talk of
pains is essentially non-mechanical, and the events and processes of the brain
are essentially mechanical. When we ask a person why he pulled his hand away
from the stove, and he replies that he did so because it hurt, or he felt pain in
his hand, this looks like the beginning of an answer to a question of behavioural
control, the question being how people know enough to remove their hands
from things that can burn them. The natural ‘mental process’ answer is that 
the person has a ‘sensation’ which he identifies as pain, and which he is some-
how able to ‘locate’ in his fingertips, and this ‘prompts’ him to remove his hand.
An elaboration of this answer, however, runs into culs-de-sac at every turning.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

17



The first unanswered question is how a person distinguishes a painful sensa-
tion from one that is not painful. It is no answer to say that painful sensations
are just those that hurt, for then the question becomes how a person distin-
guishes sensations that hurt from sensations that do not. If this question is
seen as asking for a criterion for sensations that hurt, a criterion used by the
person to distinguish these sensations, the question admits of no answer, for
one does not distinguish the sensations that hurt or are painful by applying
some criterion; one simply distinguishes them. Their only distinguishing char-
acteristic is painfulness, an unanalysable quality that can only be defined
circularly. Moreover, a person’s ability to distinguish this quality in sensations
is ensured; one simply can tell when a sensation is painful (excluding cases
where one’s doubt is over whether the word ‘pain’ is too strong for the occa-
sion). When trying to explain the discrimination of pains, appeal to the quality
of painfulness is no advance over the question; it tells us nothing we did not
already know. When one is asked how one tells an x from a y and answers
that x’s have an indefinable characteristic which one is simply able to recognize
but not describe, all one is saying is: I can tell – that’s all.

The mechanical question, how is it done? is blocked. It is blocked not
because the reply is that one is in the dark about how one distinguishes painful
sensations from others, but because the reply is that no mechanical answer
would be appropriate in this context. Pains or painful sensations are ‘things’
discriminated by people, not, for example, by brains (although brains might
discriminate other things related to pains), and the question is: how do you
(the person) distinguish pains from other sensations? The question admits of
no answer because the person does not do anything in order to distinguish
pains; he just distinguishes them. Distinguishing pains is not a personal actvity,
and hence no answer of the form, first I do A and then I do B, makes any
sense at all. But if this is so, the appeal to a quality of these discriminated
sensations is gratuitous. A quality, to do any work in a theory, must be iden-
tified, but this means it must either be described or ostended. Description
presupposes analysis, and in this instance analysis presupposes personal
activity; where discrimination occurs without personal activity, no description
of a discriminated quality is possible. Then, if the quality is to be identified at
all, it must be ostended, but ostension of the quality in this instance cannot
be separated from ostension of the discriminating. Where discriminating is an
analysable personal activity, like discriminating good apples from bad by
checking for colour and crispness, we can distinguish the qualities from the
discriminating of them, but in the case of distinguishing sensations as painful,
the act of discrimination itself is the only clue to the localization (in space and
time) of the presumed quality. Insisting that, above and beyond our ability to
distinguish sensations as painful, there is the quality of painfulness, is thus
insisting on an unintelligible extra something.

The first cul-de-sac, then, is that a person’s power to discriminate painful
sensations is a brute fact subject to no further questions and answers. The next
question concerns the location of these pains, and meets the same fate. We do
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not locate our pains with the aid of any independently describable qualities
or ‘local signs’ provided us by the sensations; we just can locate them.
Whatever the brain may be ‘doing’ when one locates a pain, the person does
not do anything in the process of locating his pains, for there is no such process
that a person could engage in. One could engage in the process of locating
another person’s pains, by asking him questions, poking around until he
screams and so forth, but not in the process of locating one’s own pains.

The third question left unanswered has already been shown to have no
answer. What is there about painfulness that prompts us to avoid it, withdraw
our hand, attempt to eliminate it? The question is dead because there is
nothing about painfulness at all; it is an unanalysable quality. We simply do
abhor pain, but not in virtue of anything (but its painfulness). If, in our attempt
to build an explanatory bridge between sensation and action here, we invoke
the appreciation of an unanalysable quality of painfulness, we are forced to
choose between two non-explanations. We can either take it as a contingent
fact that painfulness is something we dislike, but a contingent fact that admits
of no explanation since painfulness is unanalysable; or we can take painful-
ness as necessarily abhorrent – something which by definition we withdraw
from or avoid – in which case there is no room for explanation since ‘we avoid
pains’ is then analytic, and cannot take the ‘because’ of causal explanation
after it.

When we have said that a person has a sensation of pain, locates it and is
prompted to react in a certain way, we have said all there is to say within the
scope of this vocabulary. We can demand further explanation of how a person
happens to withdraw his hand from the hot stove, but we cannot demand
further explanations of terms of ‘mental processes’. Since the introduction of
unanalysable mental qualities leads to a premature end to explanation, we may
decide that such introduction is wrong, and look for alternative modes of
explanation. If we do this we must abandon the explanatory level of people
and their sensations and activities and turn to the sub-personal level of brains
and events in the nervous system. But when we abandon the personal level in
a very real sense we abandon the subject matter of pains as well. When we
abandon mental process talk for physical process talk we cannot say that the
mental process analysis of pain is wrong, for our alternative analysis cannot
be an analysis of pain at all, but rather of something else – the motions of
human bodies or the organization of the nervous system. Indeed, the mental
process analysis of pain is correct. Pains are feelings, felt by people, and they
hurt. People can discriminate their pains and they do this not by applying any
tests, or in virtue of any describable qualities in their sensations. Yet we do
talk about the qualities of sensations and we act, react and make decisions in
virtue of these qualities we find in our sensations.

Abandoning the personal level of explanation is just that: abandoning the
pains and not bringing them along to identify with some physical event. The
only sort of explanation in which ‘pain’ belongs is non-mechanistic; hence no
identification of pains or painful sensations with brain processes makes sense,
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and the physical, mechanistic explanation can proceed with no worries about
the absence in the explanation of any talk about the discrimination of
unanalysable qualities. What is the physical explanation to be? Something like
this. When a person or animal is said to experience a pain there is afferent
input which produces efferent output resulting in certain characteristic modes
of behaviour centring on avoidance or withdrawal, and genuine pain behav-
iour is distinguished from feigned pain behaviour in virtue of the strength of
the afferent-efferent connections – their capacity to overrule or block out other
brain processes which would produce other motions. That is, the compulsion
of genuine pain behaviour is given a cerebral foundation. Now would this
account of pain behaviour suffice as an account of real pain behaviour, or 
is there something more that must be going on when a person is really in 
pain? It might be supposed that one could be suddenly and overwhelmingly
compelled to remove one’s finger from a hot stove without the additional
‘phenomenon’ of pain occurring. But although simple withdrawal may be the
basic or central response to such stimulation, in man and higher animals it is
not the only one. Could any sense be made of the supposition that a person
might hit his thumb with a hammer and be suddenly and overwhelmingly
compelled to drop the hammer, suck the thumb, dance about, shriek, moan,
cry, etc., and yet still not be experiencing pain? That is, one would not 
be acting in this case, as on a stage; one would be compelled. One would be
physically incapable of responding to polite applause with a smiling bow.
Positing some horrible (but otherwise indescribable) quality or phenomenon
to accompany such a compelled performance is entirely gratuitous.1

In one respect the distinction between the personal and sub-personal levels
of explanation is not at all new. The philosophy of mind initiated by Ryle and
Wittgenstein is in large measure an analysis of the concepts we use at the
personal level, and the lesson to be learned from Ryle’s attacks on ‘para-
mechanical hypotheses’ and Wittgenstein’s often startling insistence that
explanations come to an end rather earlier than we had thought is that the
personal and sub-personal levels must not be confused. The lesson has occa-
sionally been misconstrued, however, as the lesson that the personal level of
explanation is the only level of explanation when the subject matter is human
minds and actions. In an important but narrow sense this is true, for as we
see in the case of pain, to abandon the personal level is to stop talking about
pain. In another important sense it is false, and it is this that is often missed.
The recognition that there are two levels of explanation gives birth to the
burden of relating them, and this is a task that is not outside the philosopher’s
province. It cannot be the case that there is no relation between pains and
neural impulses or between beliefs and neural states, so setting the mechan-
ical or physical questions off-limits to the philosopher will not keep the
question of what these relations are from arising. The position that pains and
beliefs are in one category or domain of inquiry while neural events and states
are in another cannot be used to isolate the philosophical from the mechan-
ical questions, for, as we have seen, different categories are no better than
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different Cartesian substances unless they are construed as different ontolog-
ical categories, which is to say: the terms are construed to be in different
categories and only one category of terms is referential. The only way to foster
the proper separation between the two levels of explanation, to prevent the
contamination of the physical story with unanalysable qualities or ‘emergent
phenomena’, is to put the fusion barrier between them. Given this interpreta-
tion it is in one sense true that there is no relation between pains and neural
impulses, because there are no pains; ‘pain’ does not refer. There is no way
around this. If there is to be any relation between pains and neural impulses,
they will have to be related by either identity or non-identity, and if we want
to rule out both these relations we shall have to decide that one of the terms
is non-referential. Taking this step does not answer all the philosophical ques-
tions, however, for once we have decided that ‘pain’-talk is non-referential
there remains the question of how each bit of the talk about pain is related to
neural impulses or talk about neural impulses. This and parallel questions
about other phenomena need detailed answers even after it is agreed that there
are different sorts of explanation, different levels and categories. There is no
one general answer to these questions, for there are many different sorts of
talk in the language of the mind, and many different phenomena in the brain.

Notes

1 Cf. L. Wittgenstein: ‘“And yet you again and again reach the conclusion that the
sensation itself is a nothing.” Not at all. It is not a something, but not a nothing
either! The conclusion was only that a nothing would serve just as well as a some-
thing about which nothing could be said.’ Philosophical Investigations, trans. G.
E. M. Anscombe, Oxford, 1953, i 304.
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2

D. Davidson, 
“Psychology as Philosophy”

Not all human motion is behaviour. Each of us in this room is moving east-
ward at about 700 miles an hour, carried by the diurnal rotation of the earth,
but this is not a fact about our behaviour. When I cross my legs, the raised
foot bobs gently with the beat of my heart, but I do not move my foot.
Behaviour consists in things we do, whether by intention or not, but where
there is behaviour, intention is relevant. In the case of actions, the relevance
may be expressed this way: an event is an action if and only if it can be
described in a way that makes it intentional. For example, a man may stamp
on a hat, believing it is the hat of his rival when it is really his own. Then
stamping on his own hat is an act of his, and part of his behaviour, though
he did not do it intentionally. As observers we often describe the actions of
others in ways that would not occur to them. This does not mean that the
concept of intention has been left behind, however, for happenings cease to be
actions or behaviour only when there is no way of describing them in terms
of intention.

These remarks merely graze a large subject, the relation between action and
behaviour on the one hand, and intention on the other. I suggest that even
though intentional action, at least from the point of view of description, is by
no means all the behaviour there is, intention is conceptually central; the 
rest is understood and defined in terms of intention. If this is true, then any
considerations which show that the intentional has traits that segregate 
it conceptually from other families of concepts (particularly physical concepts)
will apply mutatis mutandis to behaviour generally. If the claim is mistaken,
then the following considerations apply to psychology only to the extent that
psychology employs the concepts of intention, belief, desire, hope, and other
attitudes directed (as one says) upon propositions.

Can intentional human behaviour be explained and predicted in the same
way other phenomena are? On the one hand, human acts are clearly part of
the order of nature, causing and being caused by events outside ourselves. On
the other hand, there are good arguments against the view that thought, desire
and voluntary action can be brought under deterministic laws, as physical
phenomena can. An adequate theory of behaviour must do justice to both
these insights and show how, contrary to appearance, they can be reconciled.
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By evaluating the arguments against the possibility of deterministic laws of
behaviour, we can test the claims of psychology to be a science like others
(some others).

When the world impinges on a person, or he moves to modify his environ-
ment, the interactions can be recorded and codified in ways that have been
refined by the social sciences and common sense. But what emerge are not the
strict quantitative laws embedded in sophisticated theory that we confidently
expect in physics, but irreducibly statistical correlations that resist, and resist
in principle, improvement without limit. What lies behind our inability to
discover deterministic psychophysical laws is this. When we attribute a belief,
a desire, a goal, an intention or a meaning to an agent, we necessarily operate
within a system of concepts in part determined by the structure of beliefs and
desires of the agent himself. Short of changing the subject, we cannot escape
this feature of the psychological; but this feature has no counterpart in the
world of physics.

The nomological irreducibility of the psychological means, if I am right,
that the social sciences cannot be expected to develop in ways exactly parallel
to the physical sciences, nor can we expect ever to be able to explain and
predict human behaviour with the kind of precision that is possible in prin-
ciple for physical phenomena. This does not mean there are any events that
are in themselves undetermined or unpredictable; it is only events as described
in the vocabulary of thought and action that resist incorporation into a closed
deterministic system. These same events, described in appropriate physical
terms, are as amenable to prediction and explanation as any.

I shall not argue here for this version of monism, but it may be worth indi-
cating how the parts of the thesis support one another. Take as a first premise
that psychological events such as perceivings, rememberings, the acquisition
and loss of knowledge, and intentional actions are directly or indirectly 
caused by, and the causes of, physical events. The second premise is that 
when events are related as cause and effect, then there exists a closed and
deterministic system of laws into which these events, when appropriately
described, fit. (I ignore as irrelevant the possibility that microphysics may be
irreducibly probabilistic.) The third premise, for which I shall be giving
reasons, is that there are no precise psychophysical laws. The three premises,
taken together, imply monism. For psychological events clearly cannot consti-
tute a closed system; much happens that is not psychological, and affects the
psychological. But if psychological events are causally related to physical
events, there must, by premise two, be laws that cover them. By premise 
three, the laws are not psychophysical, so they must be purely physical laws.
This means that the psychological events are describable, taken one by one,
in physical terms, that is, they are physical events. Perhaps it will be agreed
that this position deserves to be called anomalous monism: monism, because
it holds that psychological events are physical events; anomalous, because it
insists that events do not fall under strict laws when described in psycholog-
ical terms.
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My general strategy for trying to show that there are no strict psychophys-
ical laws depends, first, on emphasizing the holistic character of the cognitive
field. Any effort at increasing the accuracy and power of a theory of behav-
iour forces us to bring more and more of the whole system of the agent’s beliefs
and motives directly into account. But in inferring this system from the
evidence, we necessarily impose conditions of coherence, rationality, and
consistency. These conditions have no echo in physical theory, which is why
we can look for no more than rough correlations between psychological and
physical phenomena.

Consider our common-sense scheme for describing and explaining actions.
The part of this scheme that I have in mind depends on the fact that we can
explain why someone acted as he did by mentioning a desire, value, purpose,
goal, or aim the person had, and a belief connecting the desire with the action
to be explained. So, for example, we may explain why Achilles returned to
the battle by saying he wished to avenge the death of Patroclus. (Given this
much, we do not need to mention that he believed that by returning to the
battle he could avenge the death of Patroclus.) This style of explanation 
has many variants. We may adumbrate explanation simply by expanding the
description of the action: ‘He is returning to battle with the intention of
avenging the death of Patroclus.’ Or we may more simply redescribe: ‘Why is
he putting on his armour?’ ‘He is getting ready to avenge Patroclus’ death.’
Even the answer, ‘He just wanted to’ falls into the pattern. If given in expla-
nation of why Sam played the piano at midnight, it implies that he wanted to
make true a certain proposition, that Sam play the piano at midnight, and he
believed that by acting as he did, he would make it true.

A desire and a belief of the right sort may explain an action, but not neces-
sarily. A man might have good reasons for killing his father, and he might do
it, and yet the reasons not be his reasons in doing it (think of Oedipus). So
when we offer the fact of the desire and belief in explanation, we imply not
only that the agent had the desire and belief, but that they were efficacious in
producing the action. Here we must say, I think, that causality is involved, i.e.,
that the desire and belief were causal conditions of the action. Even this is not
sufficient, however. For suppose, contrary to the legend, that Oedipus, for
some dark oedipal reason, was hurrying along the road intent on killing his
father, and, finding a surly old man blocking his way, killed him so he could
(as he thought) get on with the main job. Then not only did Oedipus want to
kill his father, and actually kill him, but his desire caused him to kill his father.
Yet we could not say that in killing the old man he intentionally killed his
father, nor that his reason in killing the old man was to kill his father.

Can we somehow give conditions that are not only necessary, but also suffi-
cient, for an action to be intentional, using only such concepts as those of
belief, desire and cause? I think not. The reason, very sketchily stated, is this.
For a desire and a belief to explain an action in the right way, they must cause
it in the right way, perhaps through a chain or process of reasoning that meets
standards of rationality. I do not see how the right sort of causal process can
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be distinguished without, among other things, giving an account of how a deci-
sion is reached in the light of conflicting evidence and conflicting desires. I
doubt whether it is possible to provide such an account at all, but certainly it
cannot be done without using notions like evidence, or good reasons for
believing, and these notions outrun those with which we began.

What prevents us from giving necessary and sufficient conditions for acting
on a reason also prevents us from giving serious laws connecting reasons and
actions. To see this, suppose we had the sufficient conditions. Then we could
say: whenever a man has such-and-such beliefs and desires, and such-and-such
further conditions are satisfied, he will act in such-and-such a way. There are
no serious laws of this kind. By a serious law, I mean more than a statistical
generalization (the statistical laws of physics are serious because they give
sharply fixed probabilities, which spring from the nature of the theory); it must
be a law that, while it may have provisos limiting its application, allows us to
determine in advance whether or not the conditions of application are satis-
fied. It is an error to compare a truism like ‘If a man wants to eat an acorn
omelette, then he generally will if the opportunity exists and no other desire
overrides’ with a law that says how fast a body will fall in a vacuum. It is an
error, because in the latter case, but not the former, we can tell in advance
whether the condition holds, and we know what allowance to make if it
doesn’t. What is needed in the case of action, if we are to predict on the basis
of desires and beliefs, is a quantitative calculus that brings all relevant beliefs
and desires into the picture. There is no hope of refining the simple pattern of
explanation on the basis of reasons into such a calculus.

Two ideas are built into the concept of acting on a reason (and hence, the
concept of behaviour generally): the idea of cause and the idea of rationality.
A reason is a rational cause. One way rationality is built in is transparent: the
cause must be a belief and a desire in the light of which the action is reason-
able. But rationality also enters more subtly, since the way desire and belief
work to cause the action must meet further, and unspecified, conditions. The
advantage of this mode of explanation is clear: we can explain behaviour
without having to know too much about how it was caused. And the cost is
appropriate: we cannot turn this mode of explanation into something more
like science.

Explanation by reasons avoids coping with the complexity of causal factors
by singling out one, something it is able to do by omitting to provide, within
the theory, a clear test of when the antecedent conditions hold. The simplest
way of trying to improve matters is to substitute for desires and beliefs more
directly observable events that may be assumed to cause them, such as flashing
lights, punishments and rewards, deprivations, or spoken commands and
instructions. But perhaps it is now obvious to almost everyone that a theory
of action inspired by this idea has no chance of explaining complex behaviour
unless it succeeds in inferring or constructing the pattern of thoughts and
emotions of the agent.
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The best, though by no means the only, evidence for desires and beliefs 
is action, and this suggests the possibility of a theory that deals directly with 
the relations between actions, and treats wants and thoughts as theoretical
constructs. A sophisticated theory along these lines was proposed by Frank
Ramsey.1 Ramsey was primarily interested in providing a foundation in behav-
iour for the idea that a person accords one or another degree of credence to
a proposition. Ramsey was able to show that if the pattern of an individual’s
preferences or choices among an unlimited set of alternatives meets certain
conditions, then that individual can be taken to be acting so as to maximize
expected utility, that is, he acts as if he assigns values to the outcomes on an
interval scale, judges the plausibility of the truth of propositions on a ratio
scale, and chooses the alternative with the highest computed expected yield.

Ramsey’s theory suggests an experimental procedure for disengaging the
roles of subjective probability (or degree of belief) and subjective value in
choice behaviour. Clearly, if it may be assumed that an agent judges proba-
bilities in accord with frequencies or so-called objective probabilities, it is easy
to compute from his choices among gambles what his values are; and simi-
larly one can compute his degree of belief in various propositions if one can
assume that his values are, say, linear in money. But neither assumption seems
justified in advance of evidence, and since choices are the resultant of both
factors, how can either factor be derived from choices until the other is
known? Here, in effect, is Ramsey’s solution: we can tell that a man judges an
event as likely to happen as not if he doesn’t care whether an attractive or an
unattractive outcome is tied to it, if he is indifferent, say, between these two
options:

Option 1 Option 2
If it rains you get: $1,000 a kick
If it doesn’t rain: a kick $1,000

Using this event with a subjective probability of one half, it is possible to scale
values generally, and using these values, to scale probabilities.

In many ways, this theory takes a long step towards scientific respectability.
It gives up trying to explain actions one at a time by appeal to something more
basic, and instead postulates a pattern in behaviour from which beliefs and
attitudes can be inferred. This simultaneously removes the need for estab-
lishing the existence of beliefs and attitudes apart from behaviour, and takes
into systematic account (as a construct) the whole relevant network of cogni-
tive and motivational factors. The theory assigns numbers to measure degrees
of belief and desire, as is essential if it is to be adequate to prediction, and yet
it does this on the basis of purely qualitative evidence (preferences or choices
between pairs of alternatives). Can we accept such a theory of decision as a
scientific theory of behaviour on a par with a physical theory?

Well, first we must notice that a theory like Ramsey’s has no predictive
power at all unless it is assumed that beliefs and values do not change over
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time. The theory merely puts restrictions on a temporal cross-section of an
agent’s dispositions to choose. If we try experimentally to test the theory, we
run into the difficulty that the testing procedure disturbs the pattern we wish
to examine. After spending several years testing variants of Ramsey’s theory
on human subjects, I tried the following experiment (with Merrill Carlsmith).
Subjects made all possible pairwise choices within a small field of alternatives,
and in a series of subsequent sessions, were offered the same set of options
over and over. The alternatives were complex enough to mask the fact of repe-
tition, so that subjects could not remember their previous choices, and pay-offs
were deferred to the end of the experiment so that there was no normal
learning or conditioning. The choices for each session and each subject were
then examined for inconsistencies – cases where someone had chosen a over
b, b over c, and c over a. It was found that as time went on, people became
steadily more consistent; intransitivities were gradually eliminated; after six
sessions, all subjects were close to being perfectly consistent. This was enough
to show that a static theory like Ramsey’s could not, even under the most 
carefully controlled conditions, yield accurate predictions: merely making
choices (with no reward or feedback) alters future choices. There was also an
entirely unexpected result. If the choices of an individual over all trials were
combined, on the assumption that his ‘real’ preference was for the alternative
of a pair he chose most often, then there were almost no inconsistencies at 
all. Apparently, from the start there were underlying and consistent values
which were better and better realized in choice. I found it impossible to
construct a formal theory that could explain this, and gave up my career as
an experimental psychologist.

Before drawing a moral from this experiment, let me return to Ramsey’s
ingenious method for abstracting subjective values and probabilities simulta-
neously from choice behaviour. Application of the theory depends, it will be
remembered, on finding a proposition with a certain property: it must be such
that the subject does not care whether its truth or its falsity is tied to the more
attractive of two outcomes. In the context of theory, it is clear that this means,
any two outcomes. So, if the theory is to operate at all, if it is to be used to
measure degrees of belief and the relative force of desire, it is first necessary
that there be a proposition of the required sort. Apparently, this is an empir-
ical question; yet the claim that the theory is true is then a very sweeping
empirical claim. If it is ever correct, according to the theory, to say that for a
given person a certain event has some specific subjective probability, it must
be the case that a detailed and powerful theory is true concerning the pattern
of that person’s choice behaviour. And if it is ever reasonable to assert, for
example, that one event has a higher subjective probability than another for
a given person, then there must be good reason to believe that a very strong
theory is true rather than false.

From a formal point of view, the situation is analogous to fundamental
measurement in physics, say of length, temperature, or mass. The assignment
of numbers to measure any of these assumes that a very tight set of conditions
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holds. And I think that we can treat the cases as parallel in the following
respect. Just as the satisfaction of the conditions for measuring length or mass
may be viewed as constitutive of the range of application of the sciences that
employ these measures, so the satisfaction of conditions of consistency and
rational coherence may be viewed as constitutive of the range of applications
of such concepts as those of belief, desire, intention, and action. It is not easy
to describe in convincing detail an experiment that would persuade us that the
transitivity of the relation of heavier than had failed. Though the case is not
as extreme, I do not think we can clearly say what should convince us that a
man at a given time (without change of mind) preferred a to b, b to c, and c
to a. The reason for our difficulty is that we cannot make good sense of an
attribution of preference except against a background of coherent attitudes.

The significance of the experiment I described a page or so back is that it
demonstrates how easy it is to interpret choice behaviour so as to give it a
consistent and rational pattern. When we learn that apparent inconsistency
fades with repetition but no learning, we are apt to count the inconsistency as
merely apparent. When we learn that frequency of choice may be taken as
evidence for an underlying consistent disposition, we may decide to write off
what seem to be inconsistent choices as failures of perception or execution.
My point is not merely that the data are open to more than one interpreta-
tion, though this is obviously true. My point is that if we are intelligibly to
attribute attitudes and beliefs, or usefully to describe motions as behaviour,
then we are committed to finding, in the pattern of behaviour, belief, and
desire, a large degree of rationality and consistency.

A final consideration may help to reinforce this claim. In the experiments 
I have been describing, it is common to offer the subject choices verbally, and
for him to respond by saying what he chooses. We assume that the subject is
choosing between the alternatives described by the experimenter, i.e. that the
words used by subject and experimenter have the same interpretation. A more
satisfying theory would drop the assumption by incorporating in decision 
theory a theory of communication. This is not a peripheral issue, because
except in the case of the most primitive beliefs and desires, establishing the 
correctness of an attribution of belief or desire involves much the same 
problems as showing that we have understood the words of another. Suppose
I offer a person an apple and a pear. He points to the apple, and I record that
he has chosen the apple. By describing his action in this way, I imply that
he intended to point to the apple, and that by pointing he intended to indi-
cate his choice. I also imply that he believed he was choosing an apple. In
attributing beliefs we can make very fine distinctions, as fine as our language
provides. Not only is there a difference between his believing he is choosing an
apple and his believing he is choosing a pear. There is even a difference between
his believing he is choosing the best apple in the box and his believing he is
choosing the largest apple, and this can happen when the largest is the best.

All the distinctions available in our language are used in the attribution of
belief (and desire and intention); this is perhaps obvious from the fact that we
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can attribute a belief by putting any declarative sentence after the words, ‘He
believes that’. There is every reason to hold, then, that establishing the correct-
ness of an attribution of belief is no easier than interpreting a man’s speech.
But I think we can go further, and say that the problems are identical. Beliefs
cannot be ascertained in general without command of a man’s language; and
we cannot master a man’s language without knowing much of what he
believes. Unless someone could talk with him, it would not be possible to know
that a man believed Fermat’s last theorem to be true, or that he believed
Napoleon had all the qualities of a great general.

The reason we cannot understand what a man means by what he says
without knowing a good deal about his beliefs is this. In order to interpret
verbal behaviour, we must be able to tell when a speaker holds a sentence he
speaks to be true. But sentences are held to be true partly because of what is
believed, and partly because of what the speaker means by his words. The
problem of interpretation therefore is the problem of abstracting simultane-
ously the roles of belief and meaning from the pattern of sentences to which
a speaker subscribes over time. The situation is like that in decision theory:
just as we cannot infer beliefs from choices without also inferring desires, so
we cannot decide what a man means by what he says without at the same
time constructing a theory about what he believes.

In the case of language, the basic strategy must be to assume that by and
large a speaker we do not yet understand is consistent and correct in his beliefs
– according to our own standards, of course. Following this strategy makes 
it possible to pair up sentences the speaker utters with sentences of our own
that we hold true under like circumstances. When this is done systematically,
the result is a method of translation. Once the project is under way, it is
possible and indeed necessary, to allow some slack for error or difference of
opinion. But we cannot make sense of error until we have established a base
of agreement.

The interpretation of verbal behaviour thus shows the salient features of
the explanation of behaviour generally: we cannot profitably take the parts
one by one (the words and sentences), for it is only in the context of the system
(language) that their role can be specified. When we turn to the task of inter-
preting the pattern, we notice the need to find it in accord, within limits, with
standards of rationality. In the case of language, this is apparent, because
understanding it is translating it into our own system of concepts. But in fact
the case is no different with beliefs, desires, and actions.

The constitutive force in the realm of behaviour derives from the need to
view others, nearly enough, as like ourselves. As long as it is behaviour and
not something else we want to explain and describe, we must warp the evi-
dence to fit this frame. Physical concepts have different constitutive elements.
Standing ready, as we must, to adjust psychological terms to one set of stan-
dards and physical terms to another, we know that we cannot insist on a sharp
and law-like connection between them. Since psychological phenomena do not
constitute a closed system, this amounts to saying they are not, even in theory,
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amenable to precise prediction or subsumption under deterministic laws. The
limit thus placed on the social sciences is set not by nature, but by us when we
decide to view men as rational agents with goals and purposes, and as subject
to moral evaluation.

Notes

1 ‘Truth and Probability’. Ramsey’s theory, in a less interesting form, was later, and
independently, rediscovered by von Neumann and Morgenstern, and is sometimes
called a theory of decision under uncertainty, or simply decision theory, by econ-
omists and psychologists.
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3

J. Hornsby, “Physicalist Thinking 
and Conceptions of Behaviour”

1. I start from two pictures. One presents a view of what is involved when
we ascribe propositional attitudes to one another. The other presents a view
of what is involved when the scientist treats a human being as a physical thing
– of what a neurophysiologist sees as going on when he concerns himself with
the stimulations of sense organs, with the motor responses in a person’s body,
and with events and states that intervene between such stimulations and
responses.

One has only to look at these two picture to be tempted to make a super-
imposition. Two considerations may combine to make the temptation
irresistible. First, the brain and central nervous system is a part of a person
whose proper functioning is a necessary condition of that person’s having the
effects on the world she desires to have. Second, the causal chains that lead
up to and away from a person’s psychological states apparently pass through
the events depicted in the area that circumscribes the neurophysiologist’s study.
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If you extend the causal chains of the representation of the brain backwards
and forwards, what you reach is the elements standing at the left and right of
the representation of the person. The dependence of the person’s functioning
on the functioning of her brain may make one think of the brain as a mech-
anism inside the person which is responsible for producing the effects in virtue
of which she has her distinctive effects on the world. But then the common
properties of the brain’s states and of the person’s mental states – states of
each sort being seen as causal intermediaries – may make one think that in
placing the brain inside the person one locates the propositional–attitude states
there. Many will therefore feel compelled to say that particular beliefs and
desires are the neurophysiological states of a person.

This line of thought gives a very quick argument for a version of physi-
calism. Perhaps no one wishes to acknowledge that he takes such a direct or
simple route. But I think that there is a widespread presumption that if beliefs
and desires have any place in the physical world, then they are internal states
of persons, or of their brains; and I think that this presumption can be created
by the sort of high-level comparison of pictures I have just imagined. My
project in this paper is to question certain versions of physicalism the quick
argument may seem to recommend, by challenging the envisaged superimpo-
sition of the two pictures. More particularly, I shall challenge the use to which
a certain conception of behaviour is put. According to this conception, behav-
iour subsumes both a brain’s outputs and a person’s outputs, and thus provides
an area common to both pictures.

2. Naively we think that we can become informed about people’s answers to
such questions as ‘Why did she keep to the edge of the pond?’ or ‘Why did
she turn on the burner?’. And we suppose that such answers give psycholog-
ical explanations of behaviour. But it is often said nowadays that any account 
of psychological explanatory states is bound to use a purely bodily notion of
behaviour.

Consider, for example, Kim’s claims:1

[An] action of turning on the burner, insofar as this is thought to involve
the burner going on, is not an action that it is the proper business of
psychological theory to explain or predict. . . . It is not part of the object
of psychological explanation to explain why the burner went on. . . . The
job of psychological explanation is done once [psychological theory] has
explained the bodily action of turning a knob; whether or not this action
results in my also turning on the stove, my starting cooking the dinner
. . . is dependent on facts quite outside the province of psychology,
[which] are not the proper concern of psychological theory.

Kim and others believe, then, that we ought to recognize psychology’s proper
business to be much narrower than we naively take it to be.
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Kim’s claim that psychological states cannot serve to explain (for example)
why Kim turned on the burner is rested on the premiss that such states do not
serve to explain why the burner went on. Both the premiss and the argument
here may be questioned. In order to question the premiss, one must take a
relaxed view about psychological explanation. Then it will seem that it can be
psychologically explained (for example) why a burner went on. ‘Why did the
burner go on? Is the switch faulty?’ ‘No: Jane turned it on, she wanted to
make some tea’.

To question the argument, one may take a less relaxed view and start with
the assumption that any psychological explanation has as its explanandum
why some person did what she did. The principle underlying the argument
would then seem to be something like this:

Even if the explanation why p appears to be the fact that z, still if q and
r are necessary for p and the fact that z does not explain why q, then
the fact that z can only really explain why r.

But such a principle is surely unacceptable. Suppose that we thought that we
could explain why the window broke by saying that a heavy stone hit it at
speed. We then notice that the window’s breaking required that the window
be situated at p and that p be on the stone’s trajectory, and that the stone’s
hitting the window at speed does not explain why the window is situated at
p. We do not conclude that after all the stone’s hitting the window at high
speed cannot really explain why the window broke.2

It is a question how narrow the province of what is psychologically
explained would become if one endorsed Kim’s argument wholeheartedly. Kim
himself speaks as if turning a knob, unlike turning on the burner, were an
admissible object of psychological explanation. Yet turning a knob is surely
proscribed for him: it seems no more to be ‘part of the object of psycholog-
ical explanation’ to explain why a knob turned than it is to explain why the
burner went on. And we may wonder whether in fact Kim’s principle does not
rule out psychological explanations even of ‘bodily actions’ – of why someone
moved her finger, say; for it is by no means obvious that someone’s moving
her finger is not ‘dependent on facts which are not the proper concern of
psychological theory’. (I return to this at the end of section 3.)

Of course Kim’s conclusion about the objects of psychological explanation
may not be meant to rely on the principle alone. It may rely on a prior view
of psychological states – as internal states of people which are the immediate
causal ancestors of movements of their bodies. This view is certainly held by
functionalists. And the functionalists’ conception of behaviour may be sup-
posed to recommend itself on the merits of functionalism. So it will be worth
discovering whether the attractions of functionalism can survive scrutiny of 
the particular notion of behaviour that that doctrine employs.

3. Functionalists think that the defining feature of any type of mental state 
is given by describing the causal relations that its instances bear (a) to the
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environment’s effects on a person, (b) to mental states of other types, and (c)
to a person’s effects on the environment. And they think that mental terms
can be simultaneously implicitly defined in a total psychological theory of all
the types of mental states. Such a theory contains terms of two sorts, which
David Lewis has called the T-terms and the O-terms. The T-terms are, intu-
itively, mental terms, to be thought of as receiving implicit definition; in a
functional theory, their denotations are accorded functional roles that are spec-
ified using only the non-mental O-terms. The functionalist thinks of the
functional theory (abstracted, as it were, from the psychological theory) as
true of, or realized by, the physical states of individuals: physical states occupy
the functional roles of mental states.3

Functionalism is to be understood here as a thesis in the philosophy of mind,
which treats of those states and events that in the ordinary way we attribute
to one another, for example in explaining action. We can ask then ‘What does
the functionalist have to say about the role of the propositional–attitude states
in producing action?’. Put in the functionalist’s own terms, this is a question
about output generalizations ((c) above), which are meant to give an account
of the systematic ways in which such states as beliefs lead, as it is said, to
behaviour.

We are told that behaviourism is the ancestor of functionalism, and that
functionalism inherits the virtues of behaviourism. But the functionalist’s
notion of behaviour is very much more restrictive than that which some of the
behaviourists employed. When functionalists speak of behaviour, they speak,
like Kim, of bodily movements, or else they speak of motor responses.4 When
Ryle spoke about behaviour, he meant such characterizations of people’s
actions as these: ‘telling oneself and others that the ice is thin, skating warily,
shuddering, dwelling in imagination on possible disasters, warning other
skaters, keeping to the edge of the pond’.5 (It is true that some behaviourists
were reductionists, and that they used a narrower conception of behaviour
than Ryle. But if one is allowed to think of functionalism as inheriting its
attractions from a non-reductionist position, then Ryle’s everyday use of
‘behaviour’ ought not to be legislated into invisibility.)

There are two important differences here between the (Rylean) behaviourist
and the functionalist. The behaviourist makes allusion to things beyond the
agent’s body in his specifications of behaviour, but the functionalist does not.
And the behaviourist’s behavioural items are actions (that is, events of people
doing things such as moving their bodies), whereas the functionalist’s behav-
ioural items are apparently not actions, but movements of people’s bodies
(which are either effects of actions, or proper parts of actions, depending upon
your views).6 We need to understand why the functionalists should depart
from the behaviourists in these two ways and employ the particular concep-
tion that they do.

The functionalist’s stated objection to behaviourism is familiar enough: the
behaviourist said that to believe something (for instance) is to be disposed to
certain behaviour, whereas the functionalist insists that belief cannot be
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defined in terms of behaviour alone, because allowance has to be made for the
simultaneous determination of behaviour by many different mental states. In
this point alone, however, there is nothing that evidently constrains one to
used a bodily conception of behaviour. And we need to notice something else,
which is seldom stated very explicitly by functionalists; the behaviourists’
neglect of the interdependencies between mental things was not in fact the
only defect of behaviourism that the functionalist needed to correct for.
Certainly, if your belief that it is going to rain is to lead you to take your
umbrella, then you need (for example) to want not to get wet and to believe
that umbrellas keep the rain off, and to have no other countervailing desires
or interfering beliefs. But equally certainly, if your belief that it is going to rain
is to lead you to take your umbrella, then you need to believe of something
that is your umbrella that it is your umbrella. Not only can it not be left out
of account what desires a person has (as the behaviourist seemed to suppose),
it also cannot be taken for granted that what people believe is true. Avoiding
taking this for granted, one might say that someone who believes that p is
(very roughly) someone who would, given that p, realize such desires as
prevailed given her other desires and beliefs. But there is a problem about
incorporating this into a functionalist psychological theory as it stands. For
this does not tell us, in behavioural terms however broadly construed, what
someone with a certain belief would ever unconditionally do.

There are two ways in which the functionalist might try to make allowance
for the fact that it is only where other relevant beliefs of the agent are true
that behaviour as we naturally and widely conceive it is predictably matched
with particular desires and beliefs. First, he might settle for using what one
could call a world-conditioned notion of behaviour, saying, at the behavioural
end of an output generalization, that a person would do things of this sort:
such-and-such-if-the-world-is-as-it-would-be-if-relevant-beliefs-of-the-agent-
were-true. (I return to this idea in section 5.) Second, he might restrict the
notion of behaviour, so that something counts as a description of behaviour
only if an agent can be expected to satisfy it irrespective of whether her beliefs
are true. In talking about behaviour, he then confines himself to those things
that an agent would do no matter whether the world were as she believed it
to be – things, one might say, that she is simply able to do.

This provides the real explanation of why the functionalist should go back
to the body in describing behaviour. And perhaps we can now also understand
the functionalist’s other deviation from the behaviourist – his not treating
actions themselves as behavioural items. Even if a person’s beliefs about what
it is to � are false, she will at least try to � if she has overwhelming reason to
� (or so a functionalist may say). It seems then that the notion of trying or
attempting can be introduced if one wants a means of saying in ‘purely 
psychological’ terms what someone’s beliefs and desires in conjunction do
produce. One then arrives at a two-stage account of action production, such
as can be found in some functionalist writings.7 At the first stage, one says
how beliefs and desires modify one another and mediate the production of
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attempts; so much is ‘pure psychology’, in the language of the T-terms. At the
second stage, one says what attempts to do things would actually bring about,
whatever the truth values of the beliefs that led to those attempts; the idea is
that a sufficiently motivated agent who is simply able to do something will do
that thing. This second stage takes one from the T-terms to the O-terms; and
it is here that one is constrained to use the bodily movement vocabulary for
describing behaviour, and to speak (not of actions themselves, but) only of
things that are the most immediate, bodily effects of a person’s attempts.

Something like this functionalist view of action production is presumably
shared by Kim (section 2). But what one now gets at the second stage of the
account of action production will be instances of

a tries to � & a is simply able to � → there occurs a �-type movement

(where to be a ‘�-type movement’ is, intuitively, to be a movement of the type
associated with actions of �-ing). And this means that, unless we are prepared
to say that an agent’s being simply able to do something is a ‘proper concern
of psychological theory’, the argument that Kim gave in order to encourage
us to suppose that only ‘bodily action’ is genuinely psychologically explicable
could he used again now to show that even movements of bodies are not things
‘that it is the proper business of psychological theory to explain or predict’.
But an agent’s being simply able to move a part of her body is constituted by
the integrity and functioning of the relevant bits of her motor system and the
absence of constraints on her body itself, and such things are in no obvious
or intuitive sense psychological and would seem to be quite on a par with (for
instance) the burner’s being such as to light when the knob is turned. Following
through on Kim’s argument, then, the province of psychological explanation
would become even more circumscribed than Kim allowed: the proper objects
of psychological explanation could only be events described as agents’ trying
to do things.8

4. Functionalists for their part will probably be happy to allow that conditions
relating to agents’ simple abilities have to be specified using T-terms and be
caught up with psychological theory. Their aim is to show how some of the
brain’s complexity can be seen to mirror the complexity of the propositional–
attitude scheme. And it might seem that the use of purely bodily O-terms for
describing people’s outputs is in no way inimical to that aim. Although a bodily
motion of behaviour is more restricted than an everyday one, there is much
that can be said about people’s bodies’ movements, and it may seem that func-
tionalists can avail themselves of anything that can be said about them and
proceed to an interesting psychological theory.

But it must not be forgotten that functionalist output generalizations are
still meant to be got from what we all know about action-explanation in
knowing common-sense psychology. One thing that we know is that �-ing
is a proper explanandum of the common-sense psychological scheme only if
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agents have some beliefs in the ascription of which � -ing could be mentioned.
So functionalists are not in fact entitled to use whatever bodily movement
terms they like; their resources can include only such terms as could be used
in giving the contents of agents’ mental states. It seems, then, that they must
refrain from using any very detailed bodily movement terms.

In fact it will be controversial exactly how much detail can enter into the
bodily movement descriptions of common-sense psychology. If someone turns
on a light (say), how detailed can a bodily description be of what she inten-
tionally does, or tries to do? What beliefs about the movements of their bodies
do people in practice employ? My own view is that hardly any detail can enter.
When we engage in the practice of skills that require the manipulation of
objects, for instance, it is unclear that we employ any beliefs which concern
purely and simply the movements of our hands. It seems that a person can act
as a result of having beliefs and desires, while having next to nothing in the
way of beliefs about how her body moves when she acts.9 And if this is right,
then the functionalist, in confining himself to bodily movements, confines
himself to an extremely impoverished notion of behaviour indeed.

What is certain is that functionalists don’t in fact envisage using a notion
of behaviour that would strike us as at all impoverished. Even if common-
sense bodily movement descriptions can be richer than I have just suggested,
we may still doubt that they can be as rich as those that functionalists actu-
ally want to employ. In functionalist writings, one often finds what appear to
be gestures towards great complication in accounts of behaviour. Armstrong
spoke of ‘making certain motions with the hand and so on’; he remarked that
this was vague, and said that ‘the matter might be investigated in a time-and-
motion study for instance’.10 Lewis speaks of ‘Karl’s fingers moving on certain
trajectories and exerting certain forces’.11 It can seem as if the functionalists,
feeling that the complexity of the propositional–attitude scheme must indeed
demand some richness in the specification of behaviour, simply ignore the
common-sense character of the truths about propositional attitudes that they
represent themselves as beginning from.

It will be no good saying that, since every bodily movement does have some
detailed description of which a student of time-and-motion or a physiologist
could become apprised, any detail that the functionalist’s aims require can
always be introduced into functionalist theories. For one thing, the student of
time-and-motion may discover that the sorts of bodily movements that agents
think of themselves as going in for are not connected in systematic ways with
the sorts of motions his studies concern.12 And although it is surely right that
there are, occasion by occasion, identities between the (coarse) bodily move-
ment effects of actions and the (refined) bodily movement effects of finely
discriminated states of the nervous system, it is unclear that this can help the
functionalist who is trying to avoid a notion of behaviour that strikes him as
too crude for the use to which he wants to put it. Someone who hoped to use
physiological knowledge occasion by occasion to pin down the neurophysio-
logical states that caused some effect of some action would have lost sight of
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one of the functionalists’ aspirations – to use our knowledge of interpersonal
psychology to define types of mental state.

5. I suggest that some of the allure of functionalism has resulted from failure
to keep track of the use of the simple term ‘behaviour’. The elements of
common sense that give rise to the idea of a psychological theory seem correct
when ‘behaviour’ is understood in Ryle’s way, as including all the many things
an agent does. The idea of a functional theory realized in neurophysiological
states seems correct when ‘behaviour’ is understood in (say) the physiologist’s
way, as an agent’s moving her body in all kinds of complex fashions. These
two notions of behaviour overlap, and when ‘bodily movements’ is used to
catch them both, they are made to appear to coincide. But the two notions do
not coincide. And if one wants to preserve both common sense and the idea
about functional theories, then one can only conclude that there is a com-
plexity in propositional–attitude psychology that does not derive from any
complexity in people’s bodily movements conceived in ways available to
common-sense psychology.13

No doubt many functionalists will say that theoretical psychology has to
be enlisted in the service of common-sense psychology. They would make
proposals about how theoretical psychological findings could be brought to
bear on common-sense psychological states, and they would claim that the
proposals will enable us to discover states that must be counted as beliefs and
desires even though common-sense psychology unaided would never have
recognized them as such.14 It is as if common-sense psychology had a hidden
complexity that the theoretical psychologist could uncover experimentally; as
if the superimposition of the picture of the person on the picture of the brain
could reveal a sort of complexity in the picture of the person which ordinarily
goes unheeded. But why should we think that common-sense psychology, in
order to achieve what we can all achieve using it, must really be capable of
achieving a great deal more that non-theoreticians will never know about? If
common-sense psychology has no concern with how exactly we move our
fingers when we turn on lights (say), then this is because we do not have to
try to move our fingers in the exact way in which we actually move them in
order to turn on a light when we want to. But where the details of bodily
movements are not within common-sense psychology’s province, how can that
which bears on the details have a bearing on common-sense psychological
states? How can theoretical psychology dictate to common sense answers to
questions that it is in the nature of common sense not to ask?

Instead of resorting to theoretical psychology, we could suppose that the
picture of the brain cannot be superimposed on the picture of the person
because the picture of the person has its own fine points which are not such
as to be exposed in the structure of the brain. What we should then have 
to exploit in understanding the felt complexity of propositional–attitude
psychology is not the brain’s complexity, but our knowledge that common-
sense psychology enables us to explain so much more than why there are the
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movements of people’s bodies that there are. The step from a Rylean sort of
behaviourism to functionalism will then seem to have been, in a way, a retro-
grade step. If mental states are to be thought of as dispositions of any sort (or,
if you prefer, as states that are parts of systems that exhibit an overall struc-
ture), then, to the extent that they are dispositions to behave (or states
connected systematically with ways of behaving), the relevant notion of behav-
iour is the broad one that the philosopher behaviourists used and the
functionalists left behind.

If we do employ the ordinary and richer conception of behaviour in spec-
ifying the upshots of mental states, we cannot hope to circumscribe mental
states in anything like the way that the functionalist envisages. Recall what
was wrong with the old behaviourist’s conception from the functionalist’s
point of view. Using that conception, one cannot leave the truth or falsity of
agents’ beliefs out of account. We imagined that this point might be accom-
modated by using a ‘world-conditioned’ notion of behaviour, but left this
suggestion rather vague (section 3). Now the ramified character of the inter-
dependencies between mental states, which the functionalist is so anxious to
take account of, ensures that any worldly conditions incorporated in a notion
of behaviour would ramify in any theory that attempted to accommodate that
notion. A person can be expected to do what she tries to do on occasion only
if certain beliefs that explain her then trying to do that are true. But the inter-
dependencies between mental things ensure that for any desire or belief whose
causal role we might think to define, it is possible that almost any belief might
interact with it in the production of some possible event of trying.15 Thus if
the world-conditioned notion of behaviour is introduced by the functionalist,
and from case to case he makes it explicit which beliefs are such that their
truth or falsity on occasion is relevant to what behaviour is produced, his task
turns into the project of giving an account of the structure of rational thought
and practice, any exemplification of which is conditioned by a simultaneous
view of the world as a subject confronts it. This is not the project of providing
descriptions, however abstract, of the brain.

6. It is not a novel claim that explanation in the rational mode cannot be
converted into science. As Davidson has said:

Any effort at increasing the accuracy and power of a theory of behav-
iour forces us to bring more and more of the whole system of the agent’s
beliefs and motives directly into account. But in inferring this system
from the evidence, we necessarily impose conditions of coherence,
rationality, and consistency. These conditions have no echo in physical
theory.16

I take the mismatch Davidson sees between the mental and the scientific
physical to show up in the fact that an attempt to incorporate conditions of
rationality in a physicalist theory, using a conception of behaviour that is
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bodily but constrained by common-sense psychology, seems to leave some-
thing out. Even to its proponents it seems to leave something out, and they
proceed by injecting some extra detail into bodily behavioural descriptions (cf.
Armstrong and Lewis). But there is no warrant for the extra detail.17

Davidson himself thinks that the mismatch between the mental and the
scientific physical shows up in two particular ways at the level of what can be
said about people’s ‘outputs’. First, ‘Practical reasoning . . . may simply fail to
occur’. Second, ‘Wanting to do something . . . may cause someone to do [the]
thing, and yet the causal chain may operate in such a manner that the act is
not intentional’.18 These two claims surely reveal an immediate and insuper-
able obstacle to constructing functionalists’ output generalizations. But I have
allowed the argument to progress, believing that the superficial plausibility of
the functionalists’ contrary claims derives in large part from their free use of
a quite schematic notion of behaviour.

The idea upon which the arguments here have traded is present in Davidson
too, of course – in the claim that the mental is not a closed system. The felt
complexity of propositional–attitude psychology will be accommodated only
when ‘the constitutive role of rationality’ is properly acknowledged, and the
attempt to see the patterns in a person’s mental states embodied in the states
of physical science is duly abandoned.19

7. The fundamental assumption that has been in dispute is that, in stating the
causal powers of mental states, one can prescind from all but the most imme-
diate effects of the actions they produce, and ignore almost everything under
the head of ‘desired effects of actions’ in the picture of the person (section 1).
This assumption underlay the physicalist line of thought sketched at the outset.
And we shall see now that it is the same assumption which leads people to
accept the supervenience of the mental on the neurophysiological, and which
gives rise to another physicalist view of intentional states of mind.

To many it seems (a) that a difference of mental state between two people
requires some difference in their behavioural dispositions, and (b) that a differ-
ence in the behavioural dispositions of two animal bodies requires some
difference in their internal physical machinery. They think, then, that if one
were to allow that there could be a mental difference without a difference in
brain state, one would be denying that the brain was responsible for the
production of behaviour.20

Their argument is guilty of the same equivocation on ‘behaviour’ as the
functionalists rely on. Premiss (a) requires for its truth a broad and everyday
conception of a behavioural disposition; (b) requires a narrow one. (a) is true
if we take it to mean that a change in mental state affect the proper explananda
of psychological explanations; (b) is true if we take it to mean that only a
change in brain state could affect how a creature moves itself. Nothing in the
argument holds these two conceptions of a behavioural disposition together.21

Of course it is well known that there are counterexamples to a thesis of the
supervenience of the psychological on the neurophysiological. Putnam’s Twin
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Earth examples show that there can be variations in the objects of de re states
of mind that are not reflected in any dispositions to move the body one way
rather than another.22

Some proponents of the supervenience thesis try to show that these exam-
ples do their thesis only negligible damage, as if the existence of de re states
posed some special, local problem. But we saw that the so-called holism of
the mental is apt to embrace all of those worldly facts which a person’s atti-
tudes concern and which her bodily movements confront: the problem for
supervenience is not a problem specifically about de re states of mind.

In some physicalist writings, this last point is acknowledged, and it is agreed
that propositional–attitude states cannot be characterized as the functionalist
envisages; but it is then said that these states must nevertheless have
causal–explanatory components, which components may be seen to coincide
with brain states. According to this new view, the picture of a person from
which we begin is not itself something upon which any picture of the brain
can be superimposed; but the picture of the person can, as it were, be split
into two, and one of the resultant parts – the ‘internal side’ of a person, which
is supposed to incorporate explanatory states – is suited to having some picture
of the brain fitted on to it.23

Yet it is hard to see how anyone is in a position to claim that there are
states whose ascription to people is explanatory of their behaviour unless he
can demonstrate that the ascription of such states does, or would, cast light
upon behaviour. We know of course that such states as we ascribe – beliefs
having contents, for instance – do cast light. But it is no help then to be told
that there must be states which lurk behind the states we ascribe and which
carry their explanatory force. It is a strange idea that the satisfaction yielded
by common-sense explanations has its source in something of which the parties
to the explanation are quite ignorant – as if light had been cast through a
medium that we cannot yet see through. But it would be a quite baffling idea
that the explanatory force of an explanation resides in something that is not
capable of illuminating anything for us – as if we could be sure that light will
one day pass through a medium that is always opaque.

Not only can the picture of the brain not be superimposed upon the person,
then: we have no reason to believe in any picture of a person’s non-worldly
aspect for it to be superimposed upon instead.

8. These conclusions ought not to surprise anyone who accepts that our
reason for believing that mental states are occupants of causal roles is given
by pointing to the place of mental states in causal explanation. For nothing
in the argument here is hostile to the thought that causal roles are constitu-
tive of at least some mental concepts. It can be true that the explanatory task
that propositional–attitude ascription serves is a causal one; and it can be true
that we cast all the light we can on propositional–attitude concepts by saying
(not in functionalist theories, but in the available ways) what explanatory task
their ascriptions serve.
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It will be said that there is a puzzle here, however. How can the
propositional–attitude states be thought of as mediating causally between
inputs to and outputs from persons, although nothing with the appropriate
causal powers of mental states can be found by scrutiny of a person’s interior?
Does not our conception of causality compel us to see the states which are
cited in causal explanations of (inter alia) movements of a body as states which
are located on causal chains that can be traced through space and time and
that run through space–time volumes incorporating movements of that body?
But then are we not obliged to see bodily movements as somehow primary
among the explananda of action explanations? (Some line of thought such as
this must be what lends plausibility to arguments like Kim’s in section 2.)

One will feel tremendous pressure to accept this if one adopts a paradigm
of causal explanations, got (say) from the picture of the brain, and takes it
that the causal explanations obtained in viewing a person as a person must
also conform to that paradigm. But if the causal–explanatory powers of mental
states cannot be specified in such a way that a scientist could be led to recog-
nize states that are the subjects of his studies as having those powers, then the
belief that common-sense psychological states conform to the paradigm is
undermined. The impossibility of specifying the causal–explanatory powers of
mental states in ways that would suit a scientist is revealed in the difficulty of
finding a notion of behaviour which is both available to common-sense
psychology and rich enough to define states that are explanatory according to
the paradigm even while they share in the complexities of common-sense
psychological states.

9. Why is the idea that propositional–attitude states can be fitted to the scien-
tific paradigm so compelling? I suspect that an unacknowledged allegiance to
principles of positivist epistemology must take a share of the blame.

If one begins with a distinction between psychological terms and non-
psychological terms, and dresses this up in a distinction between T-terms and
O-terms such as Lewis’s (section 3), then one comes to think of the O-terms
as conveying all the data from which psychological theories could be con-
structed. Application of the O-terms seems then to be independent of anything
one knows about people (per se), and common-sense psychology begins to
seem to be a theory of such observables as the O-terms describe, a theory
distinctive only in its particular concepts.

But reflection on the practice of psychological explanation shows what an
extraordinary myth this is.24 Someone required to explain why some agent has
done something has to show how the psychological facts about the agent are
consistent with what she ostensibly did. This may require him to become
clearer about what went on in the world even as he speculates about her
mental states. (Equally of course he may learn about the world by learning of
her states of mind.25) It is not, as the model of theory and observation might
suggest, that he has to arrive at a view about what went on in the agent’s head
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which coheres with some prior account of what happened at the place where
her body meets the world.

We ought not then to expect to find any notion of behaviour (‘the observ-
able’) that is suited to reductionist claims. Certainly Rylean talk of skaters’
dispositions to warn other skaters seems laughable if it is read as offering any
reduction of believing that the ice is thin. And there is reason to suppose that
the features of Ryle’s behavioural term which contaminate them psychologi-
cally must in fact be present equally in any terms that figure in any account
of mental things. There are two (related) ways in which the application of
everyday behavioural terms is caught up with the application of psychological
terms. First, bits, or items, of behaviour, as described by behavioural concepts,
are the effects of mental states; but it is impossible to divide behaviour up into
bits in such a way that the bits correspond to things that have a psycholog-
ical history unless we know something about the mental states that actually
produce the behaviour. Second, Ryle’s descriptions tell us of things that the
agent intentionally did; and one is not in a position to take a view of which
things are intentionally done by people unless one has some view of their
mental states. These two features are bound to be inherited by any behav-
ioural descriptions that are fit for inclusion in an account of mental states:
their application must presuppose (a) a psychologically informed method for
articulating the events that flow from a person, and (b) a sense of what is
psychologically relevant among the events thus articulated.26

If one rests content with a naive conception of psychology’s province, one
cannot then construe ‘observable’ in positivist spirit and think of behaviour,
the objects of psychological explanation, as ‘observable’. Helping oneself to
‘observable’ behaviour, on the other hand, is only a way of ensuring that one
ignores the truth about psychological explanation.

10. Section 9 is no doubt inadequate as a diagnosis of the attractions of
present-day physicalist accounts of intentional phenomena. Here I suspect that
the whole history of the subject is to the point. Philosophers of mind have
come to see Cartesian dualism as the great enemy, but have underestimated
what they have to contend with. Taking the putatively immaterial character
of minds to create the only problem that there is for Descartes’ account, they
marry up the picture of the person with the picture of her brain, and settle for
a view of mind which, though material in its (cranial) substance, is Cartesian
in its essence.27

Of course the acceptance of immaterial substance was one of Descartes’
errors. But it does not take a scientific materialism to remedy that error. After
all, it has not been said that there are elements of the person picture that
science fails to deal with because they are ethereal and unnatural, but only
that we have to look for the source of common-sense psychology’s complexity
elsewhere than at the junction between the central nervous system and the
world.
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Notes

1 Jaegwon Kim, ‘Psychophysical Supervenience’, Philosophical Studies, xli (1982),
64. (I have changed the order of Kim’s sentences.) For a similar argument, given
in the course of a defence of functionalism, see Brian Loar, Mind and Meaning
(CUP, Cambridge, 1981), 88.

2 It may be said that this counterexample is importantly different from the exam-
ples that were Kim’s concern, because in the counterexample it is only in the
presence of the explanans that we come to be able to separate necessary condi-
tions for the obtaining of the explanandum. But this feature may also be present
in psychological cases. We can know that someone turned on the burner (and
that there is a psychological explanation of that) without knowing what sort of
bodily movement on her part resulted in the burner’s being on.

3 David Lewis, ‘Psychophysical and Theoretical Identifications’, Australasian
Journal of Philosophy, 1(1972), 249–58. (Where Lewis uses ‘state’ I use ‘type
of state’, because, unlike Lewis, I reserve the word ‘state’ for particulars; and I
make no assumption that functionalists are committed to any type identities of
Lewis’s sort.)

4 ‘Bodily movements’ is used by Loar and others; ‘motor responses’ by Lewis in
‘Psychophysical and Theoretical Identifications’.

5 The Concept of Mind (Hutchinson, London, 1949), 129.
6 There is little here that is uncontroversial. (For an account of the controversy, see

my ‘Bodily Movements, Actions and Mental Epistemology’, in Midwest Studies in
Philosophy, vol. IX (1985).) What I assume now is that we can distinguish the
denotations of descriptions such as ‘a’s raising her arm’, which are actions, from
the denotations of such descriptions as ‘a’s arm’s rising’, which are not actions.

7 See Mind and Meaning, 86–91. Loar uses a technical, theoretical psychological
notion of willing, where my exposition uses trying. Loar’s view of theoretical
psychology is discussed in section 5. For arguments (in effect) that ‘try’ has many
of the properties needed for the two-stage account of action production, see
Chapters 3 and 4 of my Actions (Routledge and Kegan Paul, London, 1980).

8 Loar’s argument for narrowing down psychological explanation (see n. 1) intro-
duces basic actions, which Loar calls ‘primary explananda’. He says that non-basic
things are explained by ‘independent facts’, that is facts that are not themselves
psychologically explained. The question for Loar is quite parallel to that for Kim:
is the reason offered for extricating ‘independent facts’ from non-basic things not
also a reason for extricating non-psychological facts even from basic things?

There are two points about Loar’s terminology. (a) I have spoken of basic things
(done), rather than basic actions, because actions themselves, assuming these
are particulars, do not stand to one another in relations of relative basicness. (See
Actions, Chapter 5, where the relation more basic than is taken to hold between
descriptions of actions, or, better, my ‘Action and Ability’, in R Haller (ed.),
Language, Logic and Philosophy (Reidel, Dordrecht, 1981), where the relation is
taken to hold between the things a person does.) (b) It may be that Loar himself
does not distinguish actions from bodies’ movements, as my exposition of func-
tionalism has suggested functionalists do.

I state the second stage of a functionalist’s account of output as I do because
I think that (on occasion) an agent’s �-ing is the same as her trying to � and not
the same as a movement of the �-type. Still the consequent of the conditional
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might read ‘a �s’ – only then the conditional cannot be supposed to take one
from cause to effect (unless one denies that, on occasion, events of trying simply
are actions). At any rate, the argument addressed to Kim and Loar requires only
that some condition relating to the agent’s body’s functioning, as well as some
condition relating to the agent’s mind, is necessary for the occurrence of an
action. To accept this much, no stand needs to be taken on the controversy
mentioned in n. 6, or on the details of a correct formulation of the two-stage
account of action production.

9 See my discussion of what I there called teleologically basic descriptions of
actions in Chapter 6 of Actions. And notice that I make no assumption to the
effect that all beliefs are linguistically expressible by their possessors.

If bodily movement descriptions of actions are not basic, then there will be
some non-bodily basic descriptions for functionalists to use in describing outputs.
But if the functionalist does use output O-terms which touch on regions beyond
the agent’s body, then (a) it will become more implausible that his ‘simple ability’
conditions are ‘purely psychological’, and (b) this will do nothing to supply the
richness that functionalists seem to want to find in their notion of behaviour (see
below).

10 D. M. Armstrong, A Materialist Theory of The Mind (Routledge and Kegan Paul,
London, 1968), 147.

11 David Lewis, ‘Radical Interpretation’, at p. 114 in the reprinting in his Philo-
sophical Papers, vol. I (Clarendon Press, Oxford, 1983), quoted more fully at n.
26. Many functionalists speak of behaviour in a purely schematic way.

12 I am relying here on such claims as are made for example by P. F. Strawson and
G. J. Warnock in D. F. Pears (ed), Freedom and the Will (Macmillan, London,
1963): our system of classifying actions is grounded in quite different interests
from any system of bodily movement classification. I do not conclude, as they
did, that actions are not bodily movements; but I do take their claim to show the
irreducibility of movements-classified-by-someone-interested-in-action to move-
ments-classified-by-the-scientist-interested-in-movements-per-se.

13 It may be pointed out that complexity could be derived from complexity in descrip-
tions of inputs. (Functionalists insist that stimulus terms as well as behavioural
ones are needed to characterize the mental ones: this is a respect in which func-
tionalists are thought to differ from behaviourists which I have not singled out
for attention.) But I think that there are things to be said about perception which
lead in the same direction as the things I have said about action and which would
show that the functionalist cannot make anything of this point. And the argu-
ment I actually give is meant to rely on the fact that my opponents themselves
believe that more detail is needed in output specifications than (so I say) they
are entitled to.

14 This explains the technicalities in Loar’s account (see n. 7). Loar’s suggestion is
that if a theory well confirmed by experiments in theoretical psychology and neuro-
physiology were true of a person, and certain of the functional states of the theory
satisfied the full complement of the constraints imposed by common sense as
necessary conditions of having beliefs and desires, then it would be correct to
count those functional states as beliefs and desires.

15 The ‘certain’ beliefs are (intuitively, and leaving out modifications that would be
required to accommodate fortuituously false beliefs) those whose truth is required
for the agent’s trying to � to result in the agents �-ing.
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It is easy to miss the point about the ramification of worldly conditions if one
thinks about explanation as we know it and forgets about the predictive aspira-
tions of functionalists’ output generalizations. When we know the explanation of
an agent’s doing something, we are in a position to specify a small number of
beliefs which enter the explanation of her doing that, and only some of these are
beliefs whose truth values bear on whether she has actually done the thing. But
this is not the position of someone who hopes for a general, predictive theory of
what agents would do. Consider a functionalist who hoped to derive actual
mental/physical identities for the case of a particular person at a particular time.
He might start with a list of types of state which were instantiated in the person
at that time. For any type of state on that list, he will say (counterfactually) that
its instance would interact thus and so if . . .; for any type of state not on that
list, he will say (doubly counterfactually, as it were) that if there were an instance
of it, then it would interact thus and so if. . . . Thus possible events of trying
must be seen (at t) as such as to be produced in a person (at a time later than
t) by way of beliefs that that person may lack (at t). (Some people seem to forget
that a functionalist’s psychological theory must make mention of all the types of
mental state there are. I have put the matter as I have here only because it may
help to remind one of this.)

16 This is from ‘Psychology as Philosophy’; see Donald Davidson, Essays on Actions
and Events (Clarendon Press, Oxford, 1980), 231. This volume, 24.

17 I say that there is no warrant for the detail. But I should acknowledge that I have
an argument only in so far as I am in a position to ask (rhetorically) ‘What reason
could there be for supposing that the detail is warranted?’ (‘What reason could
there be for supposing that theoretical psychology can dictate to common
sense?’). Of course the committed proponent of scientific materialism thinks that
there are reasons where I see none: he supposes that metaphysical principles
provide the warrant. I try to engage with his position in sections 8–10.

18 The quotations are from ‘Freedom to Act’, at pp. 77 and 78 in Essays on Actions
and Events.

19 John McDowell also argues that if expositions such as Loar’s seem to undermine
Davidson’s claims about the mental’s anomalousness, then that could only be an
illusion. He focuses attention on ‘internal constraints’, where I have focused on
‘output generalizations’. See ‘Functionalism and Anomalous Monism’, in Ernest
Le Pore and Brian McLaughlin (eds.), The Philosophy of Donald Davidson:
Perspectives on Actions and Events (Blackwell, Oxford, 1986).

20 The argument is in Colin McGinn, The Character of Mind (Oxford University Press,
Oxford, 1982), 29; though McGinn would not endorse the argument just as it
stands (see n. 23).

21 Of course anyone can if he wants, put common-sense descriptions of behaviour
together with scientific descriptions of behaviour, and call what he arrives at
descriptions of behaviour. What cannot be guaranteed, however, is that, having
assembled a notion of behaviour by reference to two explanatory schemes, one
has then accorded some stable sense to ‘explanation of behaviour’ or ‘behavioural
disposition’. (I have not said that no one is entitled to the functionalists’ concep-
tion of behaviour; I have only questioned whether one is entitled to suppose that
it can be put to the use to which functionalists put it.)

22 See Hilary Putnam ‘The Meaning of “Meaning”’, in his Mind, Language and
Reality (CUP, Cambridge, 1975).
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23 See for example Colin McGinn, ‘The Structure of Content’ in Andrew Woodfield
(ed.), Thought and Object (Clarendon Press, Oxford, 1982). McGinn himself
argues that the notion of content is decomposable into explanatory and truth-
conditional aspects. The explanatory states he envisages do not have semantic
content by virtue of their explanatory role, and the arguments below apply to his
position inasmuch as this is so.

24 The story that mental terms were actually introduced as theoretical terms is called
a myth by David Lewis (op. cit. n. 3). In support of the idea that it is a good
myth (sc. that our terms for mental states mean just what they would if the myth
were true), Lewis says that if it were a good myth, it would explain the appeal of
Rylean behaviourism. But the appeal of Rylean behaviourism cannot be sepa-
rated from its use of a broad and everyday notion of behaviour; and this is a
notion which ought not to be available to one who tells the mythical story. (See
below, and n. 26 on Lewis on behaviour.)

25 That this is a point about psychological explanation, rather than about ‘head/world
correlations’, will be apparent only if one takes a relaxed view of psychological
explanation; see section 2.

26 Lewis is sensitive to the fact that intentional notions must be precluded from
accounts of behaviour if they are to be put to a theoretical use. He wrote (loc.
cit. n. 11):

There is an ambiguity in the term ‘behaviour’. . . . I am using it to refer to
raw behaviour – body movements and the like – . . .; not to behaviour speci-
fied partly in terms of the agent’s intentions. . . . That Karl’s fingers move
on certain trajectories and exert certain forces is what I call ‘behaviour’;
that he signs a cheque is not.

What Lewis seems to want to rule out from ‘raw’ behavioural descriptions is only
instances of ‘�’ such that any event of someone’s �-ing is an event of her inten-
tionally �-ing. There is no need to deny that this ruling can give us a notion of
behaviour. What I do deny is that such a ruling provides us with a notion that
might have been used by someone ignorant of all common-sense psychological
truths. I deny, then, that Lewis has found a notion fit for his ‘good myth’. (Of
course there is a notion of behaviour (or anyway of output) that we can imagine
applied in utter independence of any interest in persons; but with this (very raw)
notion, we return to one on which we get no real purchase when we state common-
sense psychological accounts.)

27 What Descartes’s commentators are typically most anxious to remind us of is that
Descartes should not have held both that mind and body are substances whose
essences are distinct, and that mind and body causally interact. Bernard Williams
is an exception: he describes a difficulty which is independent of Descartes’s
treating the mind as soul-like, and depends only upon Descartes’s thinking that
all the transactions between the mental and the physical happen, as it were, at
an interface. See the discussion of terminal interactionism (as Williams says we
might call it) in Descartes: The Project of Pure Enquiry (Penguin, Harmondsworth,
1978), 288–92.
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4

D. Lewis, “Reduction of Mind”

I am a realist and a reductive materialist about mind. I hold that mental states
are contingently identical to physical – in particular, neural states. My posi-
tion is very like the ‘Australian materialism’ of Place, Smart, and especially
Armstrong. Like Smart and Armstrong, I am an ex-Rylean, and I retain some
part of the Rylean legacy. In view of how the term is contested, I do not know
whether I am a ‘functionalist’.

Supervenience and analysis

My reductionism about mind begins as part of an a priori reductionism about
everything. This world, or any possible world, consists of things which instan-
tiate fundamental properties and which, in pairs or triples or . . ., instantiate
fundamental relations. Few properties are fundamental: the property of being
a club or a tub or a pub, for instance, is an unnatural gerrymander, a condi-
tion satisfied by miscellaneous things in miscellaneous ways. A fundamental,
or ‘perfectly natural’, property is the extreme opposite. Its instances share
exactly some aspect of their intrinsic nature. Likewise for relations.1 I hold,
as an a priori principle, that every contingent truth must be made true,
somehow, by the pattern of coinstantiation of fundamental properties and rela-
tions. The whole truth about the world, including the mental part of the world,
supervenes on this pattern. If two possible worlds were exactly isomorphic in
their patterns of coinstantiation of fundamental properties and relations, they
would thereby be exactly alike simpliciter.2

It is a task of physics to provide an inventory of all the fundamental prop-
erties and relations that occur in the world. (That’s because it is also a task of
physics to discover the fundamental laws of nature, and only the fundamental
properties and relations may appear in the fundamental laws.3) We have no a
priori guarantee of it, but we may reasonably think that present-day physics
already goes a long way toward a complete and correct inventory. Remember
that the physical nature of ordinary matter under mild conditions is very well
understood.4 And we may reasonably hope that future physics can finish the
job in the same distinctive style. We may think, for instance, that mass and

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

51



charge are among the fundamental properties; and that whatever fundamental
properties remain as yet undiscovered are likewise instantiated by very small
things that come in very large classes of exact duplicates. We may further think
that the very same fundamental properties and relations, governed by the very
same laws, occur in the living and the dead parts of the world, and in the
sentient and the insentient parts, and in the clever and the stupid parts. In
short: if we optimistically extrapolate the triumph of physics hitherto, we may
provisionally accept that all fundamental properties and relations that actu-
ally occur are physical. This is the thesis of materialism.

(It was so named when the best physics of the day was the physics of matter
alone. Now our best physics acknowledges other bearers of fundamental prop-
erties: parts of pervasive fields, parts of causally active spacetime. But it would
be pedantry to change the name on that account, and disown our intellectual
ancestors. Or worse, it would be a tacky marketing ploy, akin to British Rail’s
decree that second class passengers shall now be called ‘standard class
customers’.)

If materialism is true, as I believe it is, then the a priori supervenience
of everything upon the pattern of coinstantiation of fundamental properties
and relations yields an a posteriori supervenience of everything upon the
pattern of coinstantiation of fundamental physical properties and relations.
Materialist supervenience should be a contingent matter. To make it so, we
supply a restriction that makes reference to actuality. Thus: if two worlds were
physically isomorphic, and if no fundamental properties or relations alien to
actuality occurred in either world, then these worlds would be exactly alike
simpliciter. Disregarding alien worlds, the whole truth supervenes upon the
physical truth. In particular, the whole mental truth supervenes. So here we
have the common core of all materialist theories of the mind.5

A materialist who stops here has already said enough to come under formi-
dable attack. An especially well-focused version of the attack comes from
Frank Jackson.6 Mary, confined in a room where all she can see is black or
white, studies the physics of colour and colour vision and colour experience
(and any other physics you might think relevant) until she knows it all. Then
she herself sees colour for the first time, and at last she knows what it’s like
to see colour. What is this knowledge that Mary has gained? It may seem that
she has eliminated some possibilities left open by all her previous knowledge;
she has distinguished the actual world from other possible worlds that are
exactly like it in all relevant physical respects. But if materialist supervenience
is true, this cannot be what has happened.

Materialists have said many things about what does happen in such a case.
I myself, following Nemirow, call it a case of know-how: Mary gains new
imaginative abilities.7 Others have said that Mary gains new relations of
acquaintance, or new means of mental representation; or that the change in
her is just that she has now seen colour. These suggestions need not be taken
as rival alternatives. And much ink has been spent on the question whether
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these various happenings could in any sense be called the gaining of ‘new
knowledge’, ‘new belief, or ‘new information’. But for a materialist, the heart
of the matter is not what does happen but what doesn’t: Mary does not distin-
guish the actual world from other worlds that are its physical duplicates but
not its duplicates simpliciter.

Imagine a grid of a million tiny spots – pixels – each of which can be made
light or dark. When some are light and some are dark, they form a picture,
replete with interesting intrinsic gestalt properties. The case evokes reduc-
tionist comments. Yes, the picture really does exist. Yes, it really does have
those gestalt properties. However, the picture and the properties reduce to the
arrangement of light and dark pixels. They are nothing over and above the
pixels. They make nothing true that is not made true already by the pixels.
They could go unmentioned in an inventory of what there is without thereby
rendering that inventory incomplete. And so on.

Such comments seem to me obviously right. The picture reduces to the
pixels. And that is because the picture supervenes on the pixels: there could
be no difference in the picture and its properties without some difference in
the arrangement of light and dark pixels. Further, the supervenience is asym-
metric: not just any difference in the pixels would matter to the gestalt
properties of the picture. And it is supervenience of the large upon the small
and many. In such a case, say I, supervenience is reduction. And the materi-
alist supervenience of mind and all else upon the arrangement of atoms in 
the void – or whatever replaces atoms in the void in true physics – is another
such case.

Yet thousands say that what’s good about stating materialism in terms of
supervenience is that this avoids reductionism! There’s no hope of settling this
disagreement by appeal to some uncontested definition of the term ‘reduc-
tionism’. Because the term is contested, and the aim of some contestants is to
see to it that whatever position they may hold, ‘reductionism’ shall be the
name for something else.

At any rate, materialist supervenience means that for anything mental, there
are physical conditions that would be sufficient for its presence, and physical
conditions that would be sufficient for its absence. (These conditions will
include conditions saying that certain inventories are complete: an electron 
has only so-and-so quantum numbers, for instance, and it responds only to
such-and-such forces. But it’s fair to call such a condition ‘physical’, since it
answers a kind of question that physics does indeed address.) And no matter
how the world may be, provided it is free of fundamental properties or 
relations alien to actuality, a condition of the one sort or the other will 
obtain. For all we know so far, the conditions associated with a given mental
item might be complicated and miscellaneous – even infinitely complicated and
miscellaneous. But so long as we limit ourselves just to the question of how
this mental item can find a place in the world of fundamental physics, it is
irrelevant how complicated and miscellaneous the conditions might be.
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It may seem unsatisfactory that physical conditions should always settle
whether the mental item is present or absent. For mightn’t that sometimes be
a vague question with no determinate answer? A short reply to this objection
from vagueness is that if it did show that the mental was irreducible to funda-
mental physics despite supervenience, it would likewise show that boiling was
irreducible to fundamental physics – which is absurd. For it is a vague matter
just where simmering leaves off and boiling begins.

A longer reply has three parts. (1) If the physical settles the mental insofar
as anything does, we still have materialist supervenience. Part of what it means
for two physically isomorphic worlds to be just alike mentally is that any
mental indeterminacy in one is exactly matched by mental indeterminacy in
the other. (2) Whenever it is a vague question whether some simplistic mental
classification applies, it will be determinate that some more subtle classifica-
tion applies. What’s determinate may be not that you do love him or that you
don’t, but rather that you’re in a certain equivocal state of mind that defies
easy description. (3) If all indeterminacy is a matter of semantic indecision,8

then there is no indeterminacy in the things themselves. How could we conjure
up some irreducible mental item just by failing to decide exactly which
reducible item we’re referring to?

It may seem that when supervenience guarantees that there are physical
conditions sufficient for the presence or absence of a given mental item, the
sufficiency is of the wrong sort. The implication is necessary but not a priori.
You might want to say, for instance, that black-and-white Mary really did gain
new knowledge when she first saw colour; although what she learned followed
necessarily from all the physics she knew beforehand, she had remained igno-
rant because it didn’t follow a priori.

A short reply to this objection from necessity a posteriori is that if it did
show that the mental was irreducible to fundamental physics, it would like-
wise show that boiling was irreducible to fundamental physics – which is
absurd. For the identity between boiling and a certain process described in
fundamental physical terms is necessary a posteriori if anything is.

(A longer reply, following Jackson, is founded upon the ‘two-dimensional’
analysis of necessity a posteriori.9 Two-dimensionalism says that there is no
such thing as a necessary a posteriori proposition. However, one single
sentence � may be associated in two different ways with two different proposi-
tions, one of them necessary and the other one contingent; and the contingent
one can be known only a posteriori. Suppose we choose to adopt a conception
of meaning under which our conventions of language sometimes fix meanings
only as a function of matters of contingent fact – for example, a conception
on which the meaning of ‘boils’ is left dependent on which physical phenom-
enon turns out to occupy the boiling-role. Then if we interpret a sentence �
using the meanings of its words as fixed in world W1, we get proposition H1;
using the meanings as fixed in W2, we get H2; and so on. Call these the propo-
sitions horizontally expressed by � at the various worlds; and let H be the
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proposition horizontally expressed by � at the actual world. The proposition
diagonally expressed by � is the proposition D that holds at any world W iff
the proposition horizontally expressed by � at W is true at W. So if we know
D, we know that � horizontally expresses some truth or other, but we may
not know which truth. Sentence � is necessary a posteriori iff H is necessary
but D is knowable only a posteriori. Likewise, a proposition P necessarily
implies that � iff P implies H; but P a priori implies that � iff P implies D.
Our worry was that when � was about the mind, and P was a premise made
true by fundamental physics, P might imply that � necessarily but not a priori.
But if so, and if you think it matters, just take another proposition Q: let Q
be true at exactly those worlds where � horizontally expresses the same propo-
sition H that it actually does. Q is true. Given the materialist supervenience
of everything, Q as well as P is made true by fundamental physics. P and Q
together imply a priori that �. So the gap between physical premises and
mental conclusion is closed. Anyone who wants to reopen it – for instance, in
order to square materialist supervenience with Mary’s supposed ignorance –
must somehow show that the two-dimensional analysis of necessity a poste-
riori is inadequate.)

If we limit ourselves to the question how mind finds a place in the world of
physics, our work is done. Materialist supervenience offers a full answer. But
if we expand our interests a little, we’ll see that among the supervenient
features of the world, mind must be very exceptional. There are countless such
features. In our little toy example of the picture and the pixels, the superve-
nient properties number 2 to the power: 2 to the millionth power. In the case
of materialist supervenience, the number will be far greater. The infinite
cardinal beth-3 is a conservative estimate. The vast majority of supervenient
features of the world are given only by miscellaneously infinite disjunctions of
infinitely complex physical conditions. Therefore they are beyond our power
to detect, to name, or to think about one at a time. Mental features of the
world, however, are not at all beyond our ken. Finite assemblies of particles
– us – can track them. Therefore there must be some sort of simplicity to them.
Maybe it will be a subtle sort of simplicity, visible only if you look in just the
right way. (Think of the Mandelbrot set: its overwhelming complexity, its short
and simple recipe.) But somehow it must be there. Revealing this simplicity is
a job for conceptual analysis.

Arbiters of fashion proclaim that analysis is out of date. Yet without it, I
see no possible way to establish that any feature of the world does or does
not deserve a name drawn from our traditional mental vocabulary. We should
repudiate not analysis itself, but only some simplistic goals for it. We should
allow for semantic indecision: any interesting analysandum is likely to turn
out vague and ambiguous. Often the best that any one analysis can do is to
fall safely within the range of indecision. And we should allow for semantic
satisficing: analysis may reveal what it would take to deserve a name perfectly,
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but imperfect deservers of the name may yet deserve it well enough. (And
sometimes the perfect case may be impossible.) If so, there is bound to be
semantic indecision about how well is well enough.

I offer not analyses, but a recipe for analyses. We have a very extensive
shared understanding of how we work mentally. Think of it as a theory: 
folk psychology. It is common knowledge among us; but it is tacit, as our
grammatical knowledge is. We can tell which particular predictions and expla-
nations conform to its principles, but we cannot expound those principles
systematically.10 Folk psychology is a powerful instrument of prediction. We
are capable of all sorts of behaviour that would seem bizarre and unintelli-
gible, and this is exactly the behaviour that folk psychology predicts, rightly,
will seldom occur. (But we take a special interest in questions that lie beyond
the predictive power of folk psychology; wherefore ingrates may fairly
complain of a lack of interesting predictions!) Folk psychology has evolved
through thousands of years of close observation of one another. It is not the
last word in psychology, but we should be confident that so far as it goes –
and it does go far – it is largely right.

Folk psychology concerns the causal relations of mental states, perceptual
stimuli, and behavioural responses. It says how mental states, singly or in
combination, are apt for causing behaviour; and it says how mental states are
apt to change under the impact of perceptual stimuli and other mental states.
Thus it associates with each mental state a typical causal role. Now we have
our recipe for analyses. Suppose we’ve managed to elicit all the tacitly known
general principles of folk psychology. Whenever M is a folk-psychological
name for a mental state, folk psychology will say that state M typically occu-
pies a certain causal role: call this the M-role. Then we analyse M as meaning
‘the state that typically occupies the M-role’. Folk psychology implicitly defines
the term M, and we have only to make that definition explicit.

Since the causal roles of mental states involve other mental states, we might
fear circularity. ‘The remedy is due in its essentials to Ramsey.11 Suppose, for
instance, that folk psychology had only three names for mental states: L, M,
N. We associate with this triplet of names a complex causal role for a triplet
of states, including causal relations within the triplet: call this the LMN-role.
Folk psychology says that the states L, M, N jointly occupy the LMN-role.
That implies that M occupies the derivative role: coming second in a triplet of
states that jointly occupy the LMN-role. Taking this as our M-role, we proceed
as before. Say that the names L, M, N are interdefined, The defining of all
three via the LMN-role is a package deal.

We might fear circularity for another reason. The causal roles of mental
states involve responses to perceptual stimuli. But the relevant feature of the
stimulus will often be some secondary quality – for instance, a colour. We
cannot replace the secondary quality with a specification of the stimulus in
purely physical terms, on pain of going beyond what is known to folk
psychology. But if we analyse the secondary quality in terms of the distinctive
mental states its presence is apt to evoke, we close a definitional circle. So we
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should take interdefinition further. Let folk psychology include folk psycho-
physics. This will say, for instance, that the pair of a certain colour and the
corresponding sensation jointly occupy a complex causal role that consists in
part, but only in part, of the former being apt to cause the latter. Now we
have a derivative role associated with the name of the colour, and another
associated with the name of the sensation: the role of coming first or coming
second, respectively, in a pair that jointly occupies this complex role.

We might worry also about the behaviour that mental states are apt for
causing. Often we describe behaviour in a mentally loaded way: as action. To
say that you kicked the ball to your teammate is to describe your behaviour.
But such a description presupposes a great deal about how your behaviour
was meant to serve your desires according to your beliefs; and also about the
presence of the ball and the playing surface and the other player, and about
the social facts that unite players into teams. More threat of circularity? More
need for interdefinition? I don’t know how such further interdefinition would
work; and anyway, it would be well to call a halt before folk psychology
expands into a folk theory of the entire Lebenswelt!

Describing the behaviour in purely physical terms – the angle of the knee,
the velocity of the foot – would get rid of those presuppositions. But, just as
in the case of the stimuli, it would go beyond what is known to folk
psychology. Further, these descriptions would never fit the behaviour of space
aliens not of humanoid shape; and yet we should not dismiss out of hand the
speculation that folk psychology might apply to aliens as well as to ourselves.

Fortunately there is a third way to describe behaviour. When you kicked
the ball, your body moved in such a way that if you had been on a flat surface
in Earth-normal gravity with a suitably placed ball in front of you and a suit-
ably placed teammate some distance away, then the impact of your foot upon
the ball would have propelled the ball onto a trajectory bringing it within the
teammate’s reach. That description is available to the folk. They wouldn’t give
it spontaneously, but they can recognize it as correct. It presupposes nothing
about your mental states, not even that you have any; nothing about whether
the ball and the playing field and the gravity and the teammate are really there;
nothing about your humanoid shape, except that you have some sort of foot.
It could just as well describe the behaviour of a mindless mechanical contrap-
tion, in the shape of a space alien (with a foot), thrashing about in free fall.

(I don’t say that we should really use these ‘if – then’ descriptions of behav-
iour. Rather, my point is that their availability shows how to unload the
presuppositions from our ordinary descriptions.)

If M means ‘the state that typically occupies the M-role’ and if that role is
only imperfectly occupied, what are we to do? – Satisfice: let the name M go
to a state that deserves it imperfectly. And if nothing comes anywhere near
occupying the M-role? – Then the name M has no referent. The boundary
between the cases is vague. To take an example from a different term-intro-
ducing theory, I suppose it to be indeterminate whether ‘dephlogisticated air’
refers to oxygen or to nothing. But folk psychology is in far better shape than
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phlogiston theory, despite scare stories to the contrary. We can happily grant
that there are no perfect deservers of folk-psychological names, but we
shouldn’t doubt that there are states that deserve those names well enough.

What to do if the M-role, or the LMN-role, turns out to be doubly occu-
pied? I used to think that in this case too the name M had no referent.12 But
now I think it might be better, sometimes or always, to say that the name turns
out to be ambiguous in reference. That follows the lead of Field; and it is
consistent with, though not required by, the treatment of Carnap.13 Note that
we face the same choice with phrases like ‘the moon of Mars’; and in that case
too I’d now lean toward ambiguity of reference rather than lack of it.

My recipe for analyses, like Rylean analytic behaviourism, posits analytic
truths that constrain the causal relations of mental states to behaviour. (We
have no necessary connections between distinct existences, of course; the
necessity is verbal. The state itself could have failed to occupy its causal role,
but would thereby have failed to deserve its mental name.) But the constraints
are weak enough to be credible. Because the state that typically occupies a role
need not occupy it invariably, and also because a state may deserve a name
well enough in virtue of a role that it occupies imperfectly, we are safe from
the behaviourist’s bugbears. We have a place for the resolute deceiver, disposed
come what may to behave as if his mental states were other than they really
are. We have a place for the total and incurable paralytic with a rich mental
life and no behavioural dispositions whatever. We even have a place for a
madman whose mental states are causally related to behaviour and stimuli and
one another in a totally haywire fashion.14 And yet not anything goes. At some
point – and just where that point comes is a matter of semantic indecision –
weird tales of mental states that habitually offend against the principles of folk
psychology stop making sense; because at some point the offending states lose
all claim to their folk-psychological names. To that extent, analytic behav-
iourism was right. To quote my closest ally in these matters, ‘. . . outward
physical behaviour and tendencies to behave do in some way enter into our
ordinary concept of mind. Whatever theory of mind is true, it has a debt to
pay, and a peace to be made, with behaviourism.’15

When we describe mental state M as the occupant of the M-role, that is
what Smart calls a topic-neutral description.16 It says nothing about what sort
of state it is that occupies the role. It might be a non-physical or a physical
state, and if it is physical it might be a state of neural activity in the brain, 
or a pattern of currents and charges on a silicon chip, or the jangling of 
an enormous assemblage of beer cans. What state occupies the M-role and
thereby deserves the name M is an a posteriori matter. But if materialist super-
venience is true, and every feature of the world supervenes upon fundamental
physics, then the occupant of the role is some physical state or other – because
there’s nothing else for it to be. We know enough to rule out the chip and 
the cans, and to support the hypothesis that what occupies the role is some
pattern of neural activity. When we know more, we shall know what pattern
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of neural activity it is. Then we shall have the premises of an argument for
psychophysical identification:17

mental state M = the occupant of the M-role (by analysis),
physical state P = the occupant of the M-role (by science),
therefore M = P.

That’s how conceptual analysis can reveal the simple formula – or anyway,
the much less than infinitely complicated formula – whereby, when we know
enough, we can pick out a mental feature of the world from all the countless
other features of the world that likewise supervene on fundamental physics.

The causal-role analyses would still hold even if materialist supervenience
failed. They might even still yield psychophysical identifications. Even if we
lived in a spook-infested world, it might be physical states that occupied the
causal rules (in us, if not in the spooks) and thereby deserved the folk-psycho-
logical names. Or it might be non-physical states that occupied the roles. Then,
if we knew enough parapsychology, we would have the premises of an argu-
ment for psycho-nonphysical identification.

When our argument delivers an identification M = P, the identity is contin-
gent. How so? – All identity is self-identity, and nothing could possibly have
failed to be self-identical. But that is not required. It’s contingent, and it can
only be known a posteriori, which physical (or other) states occupy which
causal roles. So if M means ‘the occupant of the M-role’ it’s contingent which
state is the referent of M; it’s contingent whether some one state is the common
referent of M and P; so it’s contingent whether M = P is true.

Kripke vigorously intuits that some names for mental states, in particular
‘pain’, are rigid designators: that is, it’s not contingent what their referents
are.18 I myself intuit no such thing, so the non-rigidity imputed by causal-role
analyses troubles me not at all.

Here is an argument that ‘pain’ is not a rigid designator. Think of some
occasion when you were in severe pain, unmistakable and unignorable. All
will agree, except for some philosophers and faith healers, that there is a state
that actually occupies the pain role (or near enough); that it is called ‘pain’;
and that you were in it on that occasion. For now, I assume nothing about
the nature of this state, or about how it deserves its name. Now consider an
unactualized situation in which it is some different state that occupies the pain
role in place of the actual occupant; and in which you were in that different
state; and which is otherwise as much like the actual situation as possible. Can
you distinguish the actual situation from this unactualized alternative? I say
not, or not without laborious investigation. But if ‘pain’ is a rigid designator,
then the alternative situation is one in which you were not in pain, so you
could distinguish the two very easily. So ‘pain’ is not a rigid designator.

Philosophical arguments are never incontrovertible – well hardly ever. Their
purpose is to help expound a position, not to coerce agreement. In this case,
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the controverter might say that if the actual occupant of the pain role is not
a physical state, but rather is a special sort of non-physical state, then indeed
you can distinguish the two situations. He might join me in saying that this
would not be so if the actual occupant of the role were a physical state – else
neurophysiology would be easier than it is – and take this together with intu-
itions of rigidity to yield a reductio against materialism. Myself, I don’t see
how the physical or non-physical nature of the actual occupant of the role has
anything to do with whether the two situations can be distinguished. Talk of
‘phenomenal character’ and the like doesn’t help. Either it is loaded with ques-
tion-begging philosophical doctrine, or else it just reiterates the undisputed
fact that pain is a kind of experience.19

If there is variation across worlds with respect to which states occupy 
the folk-psychological roles and deserve the folk-psychological names (and if
this variation doesn’t always require differences in the laws of nature, as
presumably it doesn’t) then also there can be variations within a single world.
For possibility obeys a principle of recombination: roughly, any possible 
kind of thing can coexist with any other.20 For all we know, there may be 
variation even within this world. Maybe there are space aliens, and maybe
there will soon be artificial intelligences, in whom the folk-psychological roles
are occupied (or near enough) by states very different from any states of 
a human nervous system. Presumably, at least some folk-psychological roles
are occupied in at least some animals, and maybe there is variation across
species. There might even be variation within humanity. It depends on the
extent to which we are hard-wired, and on the extent of genetic variation in
our wiring.

We should beware, however, of finding spurious variation by overlooking
common descriptions. Imagine two mechanical calculators that are just alike
in design. When they add columns of numbers, the amount carried goes into
a register, and the register used for this purpose is selected by throwing a
switch. Don’t say that the carry-seventeen role is occupied in one machine by
a state of register A and in the other by a state of register B. Say instead that
in both machines alike the role is occupied by a state of the register selected
by the switch. (Equivalently, by a state of a part of the calculator large enough
to include the switch and both registers.) If there is a kind of thinking that
some of us do in the left side of the brain and others do in the right side, that
might be a parallel case.

If M means ‘the occupant of the M-role’ and there is variation in what occu-
pies the M-role, then our psychophysical identities need to be restricted: not
plain M = P, but M-in-K = P where K is a kind within which P occupies the
M-role. Human pain might be one thing, Martian pain might be something
else.21 As with contingency, which is variation across worlds, so likewise with
variation in a single world: the variability in no way infects the identity rela-
tion, but rather concerns the reference of the mental name.

The threat of variation has led many to retreat from ‘type–type’ to ‘token–
token’ identity. They will not say that M = P, where M and P are names 
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for a state that can be common to different things at different times – that 
is, for a property had by things at times. But they will say that m = p, where
m and p are mental and physical names for a particular, unrepeatable event.
Token–token identities are all very well, in their derivative way, but the flight
from type–type identities was quite unnecessary. For our restricted identities,
of the form M-in-K = P, are still type–type.

But don’t we at least have a choice? Couldn’t our causal role analyses be
recast in terms of the causal roles of tokens, and if they were, would they not
then yield token–token identities? After all, the only way for a type to occupy
a causal role is through the causes and effects of its tokens. The effects of pain
are the effects of pain-events – I think, following Jackson, Pargetter, and Prior,
that this recasting of the analyses would not be easy.22 There are more causal
relations than one. Besides causing, there is preventing. It too may figure in
folk-psychological causal roles; for instance, pain tends to prevent undivided
attention to anything else. Prevention cannot straightforwardly be treated as
a causal relation of tokens, because the prevented tokens do not exist – not
in this world, anyway. It is better taken as a relation of types.

If a retreat had been needed, a better retreat would have been to ‘subtype–
subtype’ identity. Let MK name the conjunctive property of being in state M
and being of kind K; and likewise for PK. Do we really want psychophysical
identities of the form MK = PK? – Close, but I think not quite right. For one
thing, M-in-K is not the same thing as MK. The former but not the latter can
occur also in something that isn’t of kind K. For another thing, it is P itself,
not PK, that occupies the M-role in things of kind K.

Non-rigidity means that M is different states in different possible cases; vari-
ation would mean that M was different states in different actual cases. But
don’t we think that there is one property of being in the state M – one prop-
erty that is common to all, actual or possible, of whatever kind, who can truly
be said to be in state M? – There is. It is the property such that, for any possible
X, X has it just in case X is in the state that occupies the M-role for X’s kind
at X’s world.23 The gerund ‘being in M’ can be taken, at least on one good
disambiguation, as a rigid designator of this property. However, this property
is not the occupant of the M-role. It cannot occupy that or any other causal
role because it is excessively disjunctive, and therefore no events are essentially
havings of it.24 To admit it as causally efficacious would lead to absurd double-
counting of causes. It would be like saying that the meat fried in Footscray
cooked because it had the property of being either fried in Footscray or boiled
in Bundoora – only worse, because the disjunction would be much longer and
more miscellaneous.

Since the highly disjunctive property of being in M does not occupy the 
M-role, I say it cannot be the referent of M. Many disagree. They would like
it if M turned out to be a rigid designator of a property common to all who
are in M. So the property I call ‘being in M’, they call simply M; and the prop-
erty that I call M, the occupant of the M-role, they call ‘the realisation of M’.
They have made the wrong choice, since it is absurd to deny that M itself
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is causally efficacious. Still, their mistake is superficial. They have the right
properties in mind, even if they give them the wrong names.

It is unfortunate that this superficial question has sometimes been taken to
mark the boundary of ‘functionalism’. Sometimes so and sometimes not – and
that’s why I have no idea whether I am a functionalist.

Those who take ‘pain’ to be a rigid designator of the highly disjunctive
property will need to controvert my argument that ‘pain’ is not rigid, and they
will not wish to claim that one can distinguish situations in which the pain-
role is differently occupied. Instead, they should controvert the first step, and
deny that the actual occupant of the pain-role is called ‘pain’. I call that denial
a reductio.
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5

R. Van Gulick, “Functionalism, 
Information and Content”

Human beings are physical systems and thus in principle their activity can 
be described within the language of physical science. Yet it is clear that such
descriptions will not suffice for every practical or explanatory purpose.1

Among the theoretical perspectives which seem required for an adequate
psychology of human action or behavior are those which describe human
beings as acquiring information about their environment as well as storing,
interrelating and using that information. Indeed, so large a role do such factors
play in human behavior that many cognitive psychologists have adopted the
notion of an information processing system as the dominant model in
constructing theories of human psychological function.2 However, despite the
widespread popularity of the information processing approach, there is consid-
erable theoretical unclarity about the notions of information and cognitive
representation which are employed in formulating such theories. Various uses
of the term ‘information’ drawn from computer science, communication
theory, traditional psychology and common sense are often distinguished only
inexactly, if at all.

Functionalism and content My intent below will be to provide an analytic,
though nonrigorous,3 treatment of the related concepts of information and
content from a basically functionalist perspective, where functionalism is
understood as the philosophic view that psychological states are type individ-
uated by their distinctive role within a complex network of states mediating
the perceptual conditions and behavior of organisms or systems.4 States,
including contentful states, are held to be of a given psychological type in
virtue of their functional role within such a network. Thus the functionalist is
obliged to explain how content is to be unpacked by reference to functional
role.

The class of contentful states includes beliefs, desires, states of perceptual
awareness in lower as well as higher animals, and at least some so-called
“memory states” in digital computers. Roughly speaking, a contentful state 
is any state of a system whose adequate description requires a specification of
its content. A particular belief state, for example, must be a state of believing
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that p or believing that q. Particular desires and intentions similarly require a
specification of their content in order to be adequately characterized; we must
say what is desired or intended and under what description.

The basic functionalist thesis is that psychological state types are to be char-
acterized in terms of the functional roles which those states play in a structure
of internal states, mediating stimulus inputs and behavioral outputs (leaving
aside for now any further claims about the conceptual resources which will
suffice to specify those roles.5 Considerations of functional role are held to
differentiate not only among general psychological state types such as beliefs,
desires, and intentions, but also among subtypes such as believing that p and
believing that q. A state has whatever content it does on the basis of its func-
tional role.

Informational states In accord with our primary interest in the concept of
information, I will focus on those contentful states which can be thought 
of as informational states of their respective systems. Systems realize infor-
mational states in the relevant sense when they can be said to possess the
information or to have stored it in a manner allowing them to make use of it.
It is the idea of information possession which is crucial here. For while repre-
sentations and symbols can be thought of as representing or encoding certain
bits of information, it would make no sense to think of them as themselves
possessing that information. The information is present in those representa-
tions to be retrieved by any person or system capable of interpreting them.
But when we attribute to an agent the belief that p (a belief being a type of
informational state), we clearly attribute to him also the ability to understand
and utilize that information. The distinction corresponds to Dennett’s between
intelligent and nonintelligent information storage,6 for the crucial feature 
with respect to both intelligent information storage and informational states
is that the relevant information is information for the system storing it or 
being in that state. Our task is to say what functional role or relation to input
and output a state must realize if it is to constitute a system’s possessing
information.

Input Let us consider input relations first. Much contemporary psychological
work on human and animal perception treats organic sensory structures as sys-
tems for extracting information from the physical stimuli impinging on the
organism.7 The processes are usually complex, involving first level transducers
which convert physical stimuli in patterns of neural activity, followed by many
levels of “analysis” performed on those neural patterns. In the retina, optic
nerve, and cortex the pattern of neural firing is continually modified as it passes
upward. The firing rates of neurons at upper levels are determined according
to sometimes complex functions by the firing rates of neurons connecting to
them from below. The firing of neurons from below has sometimes a facilitory
and sometimes an inhibitory effect on neurons to which it inputs, but the

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“FUNCTIONALISM, INFORMATION AND CONTENT”

65



details of these processes need not concern us here. What is relevant is that
using this dual system of inhibition and excitement it is possible to build up
structures, where neurons at the upper level are more and more selective in
their response to features of the sensory stimuli. Thus using these so-called
“perceptron” system8 we can construct sophisticated feature extractors or 
pattern recognition devices; for example, selectively firing cortical neurons
which alter their firing rate only if a line of light is present on the retina, or a
line of a certain width, or of a certain width, length and orientation.

Such perceptron systems are often spoken of as “extracting information”
from the initial pattern of light falling on the retina. But in what sense can the
firing of the relevant cortical neuron be thought of as recognition of the pres-
ence of a horizontal line or as the realization of an informational state whose
content is that a horizontal line is present? ‘Information’ is being used here in
a manner much as in communications theory, where we talk of the nonrandom
covariance between the properties of two communicating system.9 In the visual
perception system there is a nonrandom correlation between the presence or
absence of various features in the initial stimuli and the firing of cortical
neurons.

Given the correlations and its causal ties to the stimulus conditions, the
firing of the relevant cortical neuron might seem to represent the presence of
a horizontal line. But for whom or for what system does it represent such?
The relevant system in this case must surely be the organism, but we are not
justified in attributing to it the possession of information about the horizontal
line purely on the basis of the sorts of input analysis described above.

Output In order to possess that information, the organism must be able to
utilize it. The possession of the information must make a difference in the
organism’s actual or counterfactual behavior. For the content of any given state
is a matter not only of its relations to input but also of its relations to the
outputs of the system of which it is a part. Unless the system is in some way
disposed to act differentially with respect to the stimulus, or in consequence
of the state occasioned by the stimulus, no sense could be made of the system’s
attaching any significance to that stimulus. There would be nothing about the
system which would constitute its taking the stimulus to be of a certain sort.
Thus we could assign no content to the supposed representational state. Such
a system would be only a passive or nonintelligent storer of information. The
point is not an epistemological one about our inability to assign or discover
the contents of internal states in the absence of behavioral manifestations 
of those states, but rather a conceptual claim. For a state may well have
content though it never in fact manifests itself in behavior. Its influence on the
organism’s behavior may remain purely potential in the absence of the appro-
priate circumstances for activating its effects. However, even in the case of
such never activated structures, it is the difference which they would make to
behavior which provides the basis for assigning them informational content.
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Of course not all the influences which a system’s states have on its behavior
are relevant to determining what content, if any, those states realize for the 
system. There are many ways in which a system’s inputs can alter its output
which are not properly thought of as involving the acquisition of information.
This point should emerge clearly if we consider two general classes of
constraints which apply in relating behavior regulating role to content. The
first consists of constraints which concern adaptivity and the specificity 
of a response’s adaptive value. The others involve rationality and interstate
relations.

Adaptivity Speaking somewhat loosely, a system’s states may be thought of as
informational states or states of possessing information whenever the presence
of those states leads to adaptive modification of the system’s behavior; that is,
modification which enhances the system’s survival or the realization of its
goals. To see a system as using information, we need not suppose that there
is some separate store of information which it “consults” prior to acting to
regulate its behavior. Rather in so far as structures within the system adaptively
modify the behavioral responses of the system to changing environmental
conditions, the very presence of those structures should be thought of as the
possession of information by the system. For the likelihood that random
behavioral changes occasioned by environmental conditions would be benefi-
cial to the system is sufficiently low, that any structures which generally modify
behavior in adaptive ways must be thought of as nonrandom and as consti-
tuting information possessed by the system about its environment. The point
is put somewhat more strongly by the ethologist Konrad Lorenz when writing
of organic adaptation. He argues:

“Adaptation” is the process which molds the organism so that it fits its
environment in a way achieving survival. . . . Any molding of the
organism to its environment is a process so akin to that of forming within
organic structure an image of the environment that it is completely
correct to speak of information concerning the environment being
acquired by the organism.10

Specificity This general characterization of information possession in terms of
any adaptive structure is of course overly broad. It is at this point that consid-
erations of specificity apply. The modifications of behavior brought about must
be responsive to specific features of the changing environmental situation in
order to justify the attribution of informational content to the structure. By
running regularly a man may increase the strength of his legs, and the resul-
tant increase in endurance and speed may well be considered adaptive. Yet we
would not normally consider the organic changes in his musculature as the
acquisition of information. What is missing in such a case is the development
of structures regulating behavior which fit that behavior to the particular 
and specific circumstances of the environmental situation. We are in a strong
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position to attribute content to an internal state of a given system when the
presence of that state is causally correlated with the presence of a particular
environmental feature and the presence of the state modifies the behavior of
the system in ways specifically adaptive to that particular environmental
feature (for example, the cortical states of a frog which are excited only by
small moving objects in its visual field and which produce “fly-catching”
movements of its tongue). In very complex informational systems, the links
between an informational state and adaptive behavior may be quite indirect.
It may be difficult, for example, to locate any adaptive difference in behavior
which connects with the average science student’s true beliefs about the speed
of light. But such cases can arise only within the context of a rich network of
interconnected states. Specific adaptivity of response seems an essential
element in the primary or basic cases of information possession.11 Only where
some states of a system have acquired content on such a basis can other 
states perhaps acquire content derivatively by relation to those states, without
themselves having any specific adaptive consequences.12

Having introduced the notion of specific adaptivity, we cannot go further
without discussing the idea of a system’s having goals or being goal directed.
Many philosophers and psychologists find such notions objectionably teleo-
logical, but properly understood their use need not involve us in any excessive
metaphysical commitments. Moreover, there seems no hope of giving any satis-
factory account of active information possession without using goal-based
concepts. In as far as informational states have the contents that they do in
virtue of the adaptive modifications of behavior which they bring about, we
must be prepared to attribute goals and goal directedness to any system to
which we wish to attribute informational states. For otherwise, the notion of
adaptivity could have no application. A system could not have informational
states in the interesting sense of actively possessing information unless that
system also had goals whose achievement could be enhanced by the utiliza-
tion of that information. Thus possessing information presupposes having
goals. Moreover, a proper understanding of goal directed systems will show
that the converse also holds; that is, any system which is goal directed in an
interesting sense must also be a system possessing information, a system with
informational states.

Goal directedness To establish these connections, let us consider the generally
plausible account of goal directedness offered by Ernest Nagel in his 1976
John Dewey lectures.13 On Nagel’s analysis which is fundamentally in keeping
with general systems theory, a goal-directed system is one which tends toward
a fixed state, and whose behavior in tending toward that state is persistent and
plastic in the face of disturbing influences but (causally) orthogonal to those
disturbing forces. The conditions of persistence and plasticity build in the
notion of variable response to changing environmental conditions and thus
exclude as non-goal-directed any systems which uniformly proceed toward
some equilibrium state in too simple a manner, exhibiting no substantial degree
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of correction or self regulation. Operationalizing or making more specific how
one might measure variability or plasticity would be no easy matter, but the
general notions are I hope sufficiently clear as is their applicability to the
concept of goal directedness.

The requirement of orthogonality is needed to rule out cases where the char-
acter of the system’s corrective responses are direct and simple causal
consequences of the nature of the disturbing influences operating. Explaining
the system’s persistence in tending toward the fixed end state in such cases
does not require appeal to any internal behavior regulating structures, but is
a simple direct causal consequence of direct input/output relations. Here again
there are difficulties in spelling out the constraint. How indirect must the link
between disturbance and response be to count as orthogonal? And how might
one measure directness? We surely cannot require that there be no causal link
between disturbance and response without danger of depriving all physical
systems of goal-directed status.14 What is important is that the organizational
structure of the system play an essential role in determining the behavioral
response, and that ceteris paribus the more that response depends on the
complex and systematic interaction of component structures within the system,
the more basis there is for treating the behavior as goal directed. Still in many
cases there will be an element of choice involved in our attribution of goal
directedness, choices dependent on our explanatory aims and on the larger
systematic context within which the structure or component we are describing
occurs. If we understand what the causal determinants of that item’s response
to its environment are, the issue of whether or not to regard it as goal directed
is not one of adding further causal factors or causal factors of a different sort
to our story. It is rather a matter of choosing that descriptive framework
which, consistent with the causal facts, meets our need to explain and under-
stand the item in question and its behavior. The teleological description might
be apt in cases where we wish to explain why this structure rather than some
other came to be (or to be perpetuated), by appeal to the selective advantage
of the goals it secures. The teleological view may also bring out similarities
between the item in question and other structures which emerge only when
we depart from their causal details and consider them in terms of the goals
toward which they can be seen as directed. In so far as characterizing any item
X as of a given sort F is not a matter independent of taking it to be like or
unlike other things (in some variety of respects), it may be necessary to exhibit
those of X’s similarities to other items which emerge only under a teleological
description in order to achieve the sort of understanding of X which we aim
at in a given situation. At the level of detailed causal structure X may bear
little resemblance to Y and Z, though we may enhance our understanding of
X if we recognize the affinities between X, Y, and Z considered teleologically.
For example, they might all be seen to function as feedback devices regulating
some growth process within their respective containing systems.

In consequence of this context dependence, we may find much better
grounds to regard one of two very similar items as more goal directed than
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another, merely on the basis of its role within the system of which it is a
component. We cannot restrict our attention to the component’s input/output
relations alone nor even to the causal determinants of its behavior. Of two
structures acting similarly to achieve changes in the ionization balance internal
and external to themselves, one may be more aptly thought of as goal directed,
if its achieving such an effect can be seen to contribute to larger more clearly
goal-directed behaviors in its containing system. Imagine perhaps that one
structure is an isolated randomly occurring molecular structure and the other
is a neural membrane of some vertebrate. In the latter case, we are more likely
to derive explanatory value from describing the membrane in goal-directed
terminology so as to fit its activity within the larger context of the organism’s
goal-directed processes. In doing so we do not attribute to its activity a
different causal structure than that attributed to the isolated molecule, but
rather focus attention on ways of relating the membrane and its behavior to
other systematically related items.15 The conditions which justify the descrip-
tion of some system as goal directed will not be independent of the pragmatic
and explanatory context in which the description is to be used. This contex-
tual dependence should emphasize that nothing said above is intended to
provide a strict operational definition of what it is to be a goal-directed system.

Holism Despite its somewhat open and pragmatic character, our basic account
establishes important links between the notions of goal directedness and
information possession. Modification of behavior which is specifically adaptive
to changing environmental circumstances is a crucial element in both analyses.
The sorts of internal structures which must be present regulating behavior to
provide sufficient plasticity and orthogonality of behavior to justify the attri-
bution of goal directedness to a system are of the same sort required to attribute
the possession of information to the system. Just as possessing information pre-
supposes the having of goals, so also no system could adapt its behavior in the
ways required by our analysis of goal directedness without ipso facto possess-
ing information. The two notions are analytically interdependent; indeed they
might be thought of as merely two aspects of a single functional characteristic
of complex systems, that of having structures which adaptively mold or fit 
the system to its environment and which manifest an understanding of that
environment and its causal structure in their regulation of the system’s behav-
ior.16 The existence of such conceptual connections will come as no surprise 
to those sympathetic to the claims of mental holism, though the conceptual
interdependence for which I have argued above seems both more intimate and
more general in scope than in standard discussions of holism.17 The oft alleged
mutual interdependence of belief and desire can now be seen as merely a spe-
cial case of a more general link between informational and goal-direction
states. The considerations which so intimately tie belief and desire are not pecu-
liar to any given theory of human or common-sense psychology, but would
apply equally with respect to any psychological theory which employed the
concepts of information or goal directedness in explaining behavior.
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To adequately display the importance of holistic considerations in charac-
terizing such systems, we must go on to discuss the second general class of
constraints which apply to their functional organizations. For holistic inter-
dependencies arise also within the fine-grained relations among large classes
of particular contentful states, all of which may be of the same general state
type. For example, the realization of a particular informational state will typi-
cally require the realization of a structure of other related informational states.
If the state is a belief, it is clear that to have one belief, the believer must have
many. And the beliefs which he has must be interconnected and interrelated
in appropriate ways manifesting a rational order. Taking account of this holism
requires us to expand our list of the constraints which must be honored in
relating a state’s content to its behavioral role by adding constraints which
concern the nature and degree of the state’s interconnection or functional inter-
action with other internal behavior regulating states, with special emphasis on
connections of rationality.

Interconnection In considering constraints of interconnection it is important
to distinguish between two sorts of reasons for attending to interstate rela-
tions in developing an account of content – one practical, the other more
conceptual. As a practical matter, most of the systems to which we would wish
to attribute informational states, are ones in which the behavior of the system
can rarely if ever be explained by appeal to the influence of a single state acting
in isolation. Rather it is characteristic of such systems that their behavior is
the product of complex and multiple interactions involving many internal
structures. Any adequate specification of the role which a given state or struc-
ture plays with respect to the system’s behavior will have to be in terms of the
partial contributions which that state makes to the determination of behavior
in conjunction with a wide variety of internal state combinations. Thus as a
practical matter, if we wish our account of content as a function of behavioral
role to cover such systems, as we surely do, then we must be prepared to
accommodate these interrelations. On the conceptual side, a stronger claim is
suggested. For a high degree of interstate connection may be more than acci-
dentally present in the actual systems of interest to us. Such rich connections
among informational (or contentful) states may be necessary for possessing
many sorts of information. If so, no system lacking such interstate connections
within its functional organization could satisfy the conditions for possessing
the relevant information.

To see how this might be so, we must note how the range of information
which a system can possess is constrained by the character of its internal 
functional organization. In so far as content is understood as a function 
of functional role, relations among items of content must in some way be
reflected in relations among functional structures. Now recognizing relations
among items of content will be a pervasive and necessary feature of sophis-
ticated information possessing systems. For given our sense of active infor-
mation possession, a system cannot possess the information that a certain 
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situation obtains or that some item satisfies a given description unless the sys-
tem can in some sense “understand” what it would be for that situation to
obtain or that description to apply. But achieving this understanding in most
cases will require of the system that it ‘recognize’ how this particular fact links
up with other facts. To understand what an individual fact comes to, the sys-
tem will have to place it within a larger organized structure of facts (some
analog of a theory). Thus in order to satisfy the conditions for possessing the
one item of information, it must also realize in its functional organization the
conditions for possessing those related items of content as well as reflecting
their interrelations. The holism of the cognitive field at the level of content must
be mirrored at the level of functional organization if content is as we suppose
a function of functional organization. At some level of description, there must
be an isomorphism between the logical and relational structure of the informa-
tion possessed and the functional organization of states which constitutes the
possession of that information.18

Unfortunately our use of isomorphism is likely to remain vague here,
though it can perhaps be made a bit more specific by looking at its applica-
tion in particular cases. Suppose for example that we wish our system to
possess information about the relative volumes of a group of cylinders. The
ordering of cylinders by relative volume will be transitive, and this transitivity
should be reflected in our system’s representation of those volumes. Now one
need not suppose that the states of the system realizing the possession of
information about the volumes of particular cylinders should themselves
evidence some transitive physical ordering, far less an ordering in terms of
relative volume. But the transitive ordering must somehow be embodied in the
interactive relations between those states in virtue of which the behavior of
the system is determined. The structure must be such that if the system is asked
to select the member greater in volume from each of the three pairs of cylin-
ders A and B, B and C, and C and A, it will not make any such intransitive
selections as A, B, C, respectively. Thus the isomorphic relation which mirrors
the transitive ordering of the cylinders’ volumes may not be any simple phys-
ical relation, but rather a relation which emerges only at the level of the
functional roles which the contentful states play in regulating the system’s
behavior. In such cases, the isomorphism between informational structure and
functional structure can be established only when the functional organization
is described in terms of its actual behavior regulating role. That the relevant
isomorphism might be a mapping from a structure of informational items onto
a structure of behavior regulating operations or procedures in no way under-
cuts the demand for some sort of ‘mirroring’ as an essential condition for
possessing the relevant information. We must just avoid too narrow a concep-
tion of ‘mirroring.’

The line of support for our conceptual claim should now be obvious. 
A system can actively possess information about a given fact only if it can
understand that fact by placing it in a context. Thus to realize the initial infor-
mational state a system must also realize a structure of other interrelated states
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which constitute its possession of information about those related facts which
form the necessary context for understanding the original fact. Holism is
inescapable with respect to information possession, and the more sophisticated
is the information possessed, the greater become the demands for functional
interconnection.

If we remember that the relevant context of understanding for active
information possession is a real world context and not a merely symbolic one,
a second argument can be made for the necessity of interconnection by appeal
to behavioral roles. The idea of information possession is essentially bound
up with that of adaptive modification of behavior. However, with respect to
many of the contents we might wish to use in specifying the information
possessed by a system there is no simple or isolated set of behavioral routines
or responses which would manifest its possession of just that information. The
sorts of facts about a system’s behavior which could count as its understanding
and possessing such items of information would have to involve its realizing
patterns of complex conditional response sensitive as well to a great many
other environmental features or parameters. In such cases, then, the realiza-
tion by any system of a functional structure which constituted its possession
of the initial information would require its also realizing functional struc-
tures constituting the possession of a great deal of other information as well,
information about those other factors.19 Thus the argument from treating
content as a function of behavioral role reaches the same holistic result as 
the argument from understanding. Indeed, the two are closely tied in so far 
as achieving greater understanding involves establishing more finely tuned
adaptive behavior regulation.

Sententially specified content This can be illustrated in an especially clear way
by considering the special conditions which a system must satisfy to justify us
in using the sentential mode to specify the contents of its informational states.
By “sentential mode” or “sentential idiom” here I mean the use of that-clauses
to specify content, as when we say of someone or something that it knows
that or believes that the door is open. When we employ this method, we
attribute to the system whose informational states we are specifying a degree
of understanding very much like our own. We treat the informational state 
as the system’s possession of the same sort of information which we would
possess if we knew the declarative sentence portion of the that-clause to be
true.20 Thus possessing such information requires of a system that it realize a
large network of richly and rationally interconnected states. The demands of
holism are especially great when the sentential mode is to be employed.

Consider again our selectively firing cortical neuron which responds only
to the presence on the retina of a horizontal line of light. We saw that to count
the state of that neuron’s firing as the recognition of a horizontal line’s pres-
ence, that state would have to make an appropriate difference to the system’s
behavior, where “appropriate” was left to be spelled out in detail. In moving
to the sentential mode of content specification we face increased requirements
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which must be met for a state to qualify as the recognition or awareness that
a horizontal line is present. Here the appropriate behavior cannot be merely
some limited set of responses which are apt given the line’s presence. Rather
we require of the system that it evidence the variety of differences in behavior
which might result when a human possesses the equivalent belief. There will
not be any easy or simple way to spell out the relevant behavior influencing
role, since the number of effects which such recognition might have on the
behavior of a human or other fully rational agent is virtually limitless and
crucially dependent on the totality of his other psychological states.

A system’s realizing a sententially specified informational state cannot be a
matter of its realizing a state which merely produces some small repertoire of
fixed adaptive behaviors. The behavioral role played by such a state will be
considerably more abstract and involve the state’s making a partial contribu-
tion to a great many different behavior regulating processes. The differences
of response which the presence or absence of the given state produces in each
of these many cases enables the system to exhibit an overall pattern of selective
variation in its behavior which may be counted as its realizing the possession
of the relevant abstract information.

Moreover, the possession of such information could be realized only via
structures functioning in such relatively global ways. A system’s possessing the
information that X obtains, where X is some sententially specified state of
affairs, could not be merely a matter of S’s having a structure which causes it
to act in certain ways toward X. Rather possessing such information will
involve the system’s acting in highly selective and differential ways toward a
great many environmental features other than X, but in ways which can be
seen as manifesting the information it possesses about X. That is, the system
can understand and possess information about X’s obtaining only in virtue of
realizing structures modifying its behavior toward some Ys and Zs in ways
which are selectively adaptive given X. These behaviors most be counted
among the responses which S makes with respect to X, though not (directly)
toward X.

Both types of behaviour are relevant to a state’s content determining func-
tional role, and in systems realizing sententially specified informational states
it is often responses of the former sort which figure the largest in fixing content.
If we wish to attribute to some system the possession of the information that
the can before it contains blue paint or that five times seven equals thirty-five,
we must suppose that the system realizes structures to utilize this information
in a great many diverse applications. Thus a high degree of holistic interac-
tion among functional states turns out to be an essential characteristic of any
system which realizes contentful states of the abstract sort specified in the
sentential mode. Holism, abstraction, and sentential content go naturally
together. Thus the holism of common-sense psychology is not a peculiarity 
of that theory. The degree of interactive complexity among informational
states which we find in the common-sense model will have to be a necessary
feature of any system to which we might wish to attribute the sorts of contents
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specifiable by use of the sentential idiom. No system which was substantially
less holistic in its system of possessing information could have states infor-
mationally equivalent to those of sententially specified systems. But of course
it is not just the degree of interaction among states which matters, but also
the character of that interaction. Not just any interconnections will suffice.
For in addition to the richness of their interstate connections, sententially spec-
ified systems are distinguished by the degree to which those relations must
satisfy what we may term the constraints of rationality.21

Rationality In so far as we wish to use the sentential idiom in characterizing
the informational contents of a system’s states, the contents which we attribute
to that system must on the whole form a relatively consistent and coherent
set. We cannot meaningfully attribute to a system a set of contents whose
members are grossly incompatible in terms of their deductive or inductive 
relations. Nor can we suppose a system to have states with a particular set of
sentential contents, C, while lacking any states whose contents correspond 
to the obvious inductive and deductive consequences of C.

We need not assume that a system’s set of informational states satisfies 
the demands of strict closure under the consequence relation just as we do not
expect human agents to be ideally rational or to draw all the consequences of
their beliefs. Nonetheless, a certain minimal but hardly insignificant degree 
of rationality is built into the very notion of a sentential state. For a system
cannot possess information in our sense about matters it cannot understand.
At the level of sententially specified content, this entails that a person or system
cannot believe or possess the information that a particular proposition p
obtains unless it understands what the truth of p would amount to. Now 
such understanding will have to consist in large part of linking p with other
propositions. For surely no system could be said to understand p while failing
to connect p with any reasonable number of its deductive and inductive 
consequences.

Moreover, the rationality of the system must be reflected not only in the
overall consistency and coherence of its set of contents at a time, but also in
the procedures which govern the transitions in the system’s set of states over
time. The manner in which states are added to or deleted from the system’s
set should more often than not correspond to patterns of sound inference
between the sententially characterized contents of those states.

The constraints of rationality are not merely methodological guides to be
used in effectively employing the sentential mode of content specification.
Rather, they are elements essential to viewing any system as realizing senten-
tial states. As such they are a special case of the general requirement noted
earlier for an information possessing system to mirror or preserve the rela-
tional structure of the information which it possesses. The notion of a set of
propositions is essentially bound up with the logical relations among the
members of that set. To possess the information that a given set of proposi-
tions obtains, a system must embody in the structure of its informational states
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the relations among those propositions. I do not wish to claim that to under-
stand a given proposition, there is some well defined and explicit set of other
propositions which the system must also understand and to which it must
connect the original proposition. We surely must allow for individual differ-
ences, but that a system should be able to understand that a proposition p
obtains while “recognizing” virtually none of p’s relations to other proposi-
tions is incoherent. Just as a sentence has meaning only within the context 
of a language, so too a state can have a content specified by a sententially
generated that-clause only within the context of a network of rationally inter-
connected states. A grossly inconsistent set of sentences does not constitute a
theory as it provides no coherent account of what it might be taken to describe.
Similarly, one could not think of an informational system as realizing an
overall set of contentful states with just the contents specified by such a set of
inconsistent sentences. The set of sentences we use to specify the information
possessed by a system must exhibit that minimal degree of rationality required
to justify the use of the intentional idiom.

There are three elements present here which while differentiable must 
not be thought of as independent: the system’s realizing a set of contentful or
informational states, the interconnections or functional interactions between
those states in regulating behavior, and the system’s understanding of the 
relevant sorts of content. No one of these phenomena should be thought of
as an independent element which comes about as a causal consequence of the
others. Neither the interconnections between states nor the system’s utiliza-
tion of the information contained in those states should be thought of as a
causal consequence of the system’s understanding the relevant information.
Rather its understanding consists in its having the structure of interactive rela-
tions among its states in regulating behavior which it does. It is also in virtue
of those functional relations that the states have the contents that they do, but
their content is not a causal consequence of those relations. Rather, that the
system of states has the functional structure that it does and that the states
have the contents that they do are one and the same state of affairs differently
described; or perhaps the former could be said to constitute or realize the latter.
Thus the two phenomena of a system’s achieving understanding and its having
contentful states turn out to be interdependent and mutually presupposing.
Either both or neither will be present, and where they are present they will be
so in virtue of the structure of interactive behavior regulating mechanisms
which constitute their joint realization by the system.

Sentential and nonsentential content Given the rough conditions that have
been laid out for realizing sententially specified content, we can see that states
justifying specification of their content in the sentential mode will be a limited
subset of contentful states. While we often use the sentential idiom in
attributing information to non-human animals, it seems that many such attri-
butions are unjustified or justified only in so far as we are speaking loosely or
metaphorically. The informational states which are the resultants of a frog’s
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visual perception system, for example, cannot be literally described as states
of recognizing that there is a fly to the front. We know that the frog is unable
to discriminate between the presence of a moving fly and the presence of any
roughly fly-sized moving object before it, no matter how unfly-like it might be
in shape, color, or edibility.22 The restricted range of input analysis clearly
makes the use of the human concept of ‘a fly’ inappropriate in describing the
information obtained by those processes. Might we describe the informational
state as the frog’s recognition that a roughly half-inch sized object is moving
to the front? Again the answer must be negative, but not in this case due to
the frog’s limited abilities to discriminate among inputs. The deficiency lies
rather in the limited nature of the differences which the frog’s perceptual state
can make to its behavior. The perceptual state will trigger the frog to thrust
out its tongue and will spatially orient the tongue movements toward the 
location of the moving object. To the extent that this constitutes the whole of
the behavioral influences produced by the presence of the relevant perceptual
state, the sentential idiom is not at all appropriate. The state simply fails to
interact in the requisite ways with other states to produce complex rational
changes in the frog’s behavior.

The sentential mode is also limited in its application to humans. For 
many of the informational states likely to be posited by a theory of human
psychology will occur as components of networks not justifying the sentential
idiom. An example might be the sort of information about the condition of
local muscle fiber groups realized by brain structures regulating voluntary
bodily movements.23 Despite the highly specific character of the input or
sensory analysis involved in such cases, it would be mistaken to specify the
content of such a cortical state as an awareness that such-and-such fibers are
fatigued to degree n, or that such-and-such muscle is bent at an angle of x
degrees. The contents of those states simply do not enter into the sorts of 
inferential relations that these sentential characterizations would suggest. The
information which is contained in these states of kinaesthetic afferentation 
is relatively isolated in the sorts of ways it affects behavior, notwithstanding
the fineness of regulation it produces with respect to bodily movement. In so
far as those neural structures realize an understanding of muscle activity and
function, that understanding is opaquely embedded in movement-regulating
processes and is not of an explicit sort which would allow for rich inferential
connection.

The question of just how the content of such states ought to be specified
so that we attribute to the state neither more nor less information than it 
actually contains is no simple problem once we recognize the impropriety 
of treating it as analogous to the informational content of our own familiar
cognitive states, our conscious beliefs. Whatever methods we employ are likely
to have some misleading implications, and caution will require us to keep a
close watch on the overall structure of the relevant information systems in
discussing the contents of their states.
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Motivational states Though our focus has been on informational states, the
mutual interdependence of information possession and goal directedness
should lead us to expect that the principal features of our account of content
specification apply similarly to the contents of motivational or preference
states. All the difficulties which confront us in attempting to specify what a
given system takes to obtain will apply mutatis mutandis in specifying what
it is the system aims at or is directed toward bringing about. For simple systems
or organisms there is likely to be no natural language specification of the sys-
tem’s goals which characterizes them in a way reflecting the modesty of the
system’s psychological organization. It is no more appropriate to attribute to
a frog a rich and exactly specified preference than it would be to attribute 
to it a similar belief or perceptual state. It would be wrong to attribute to a
frog a preference or desire to ingest small moving objects of such-and-such
shape and size, even where such a result is regularly achieved by the frog’s
behavior. In so far as we want our characterization of the frog’s goals to reflect
the overall structure of his psychological organization, we must describe those
goals at a level of content specification consistent with the sort of awareness
attributable to the frog and the sort of interaction present among its psycho-
logical states. Where a high level of rational interconnectedness is absent,
neither goals nor informational content can be appropriately specified in the
sentential mode.

Pragmatics and interest relativity Throughout our account, the general depen-
dence of content on holistic interstate relations has provided the basis for
distinguishing many degrees of content sophistication as well as degrees to
which any system can be said to understand or be rational. Thus we need draw
no sharp lines between those systems which are rational and those which are
not. Moreover, attributions of content turn out to involve an element of choice
dependent on our explanatory and practical interests. Specifications of content
are not arbitrary and functional organization constrains content realization,
but there is always discretion to use or forgo description in terms of content,
as well as in how content is to be specified.

The way in which our choices in such cases depend pragmatically on our
explanatory interests nicely turns our account of content and understanding
back on itself. Since possessing information about some item (or understand-
ing it) is to have behavior-regulating mechanisms which allow one to deal with
it in a way enhancing the realization of one’s goals, what constitutes under-
standing or information will always be relative to one’s goals or interests. Such
interest relativity applies as well in those cases where it is information pos-
sessing systems themselves which are to be understood. What information we
possess about such a system and in what ways we understand it will depend
on how we are able to adaptively interact with it. Our understanding will be
bound up with our goals and interests relative to it, and different descriptions
will likely be appropriate for the various cases in which we wish to predict its
behavior, experimentally investigate it, make sense of its actions, manipulate
it, construct it, or communicate with it.
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It is worth emphasizing this pragmatic element, since the adaptive interest-
relative aspect of understanding tends to slip out of sight in considering our
own informational states, while conversely the informational character of
adaptivity tends to get hidden when we consider very simple systems. We might
consider informational states as ordered on a continuum24 according to the
rough account of content sophistication developed above. To one extreme
would fall such crude information as that possessed or “understood” by a
chameleon about the color of its environment or the value of camouflage. At
the other end would come such fully sentential states as the beliefs of a rational
human agent, while intermediate would be states of the sort associated with
the frog visual system and human fine muscle control. With cases of the one
extreme, where adaptivity is a causally direct result of structure, speaking of
the chameleon as acquiring information about the color of his surroundings
or of the bird’s wing and flight mechanisms as “understanding” or embodying
the possession of information about the air, we may seem to strain the notion
of understanding past its limit. But the prominence and directness of adap-
tivity in these cases should not blind us to the fact that the presence of such
physically improbable structures constitutes the possession of phylogenetically
acquired information about the environment.

As we move further along or up our ordering we do not move away from
states linked to behavior. We move only away from states whose content lies
in their connection with a single fixed behavior toward those whose content
consists in their larger (or potentially infinite) number of links to behavior. As
we move toward states with richer and more varied behavior influencing roles,
the instrumentally adaptive character of their informational content rends to
diffuse, but not diminish. In sophisticated systems, like ourselves, with fully
sentential states, the interest-relative dependence of informational content on
adaptive value is obscured by the wealth and diversity of interests involved.
But one must not mistake cases of multiple use information possession for
cases of a basically incoherent sort in which information is possessed in the
absence of any even potential effects on goal-directed behavior.

Of course there is an enormous difference between the frog’s understanding
of its visual environment and a physicist’s understanding of the principles of
thermodynamics. But this should not lead us to draw a distinction between
instrumental and noninstrumental (or purely theoretical) understanding; for
given a functionalist analysis of content, understanding is necessarily bound
up with instrumental function. The interesting contrast is rather between the
sort of implicit understanding which is opaquely embedded in adaptive proce-
dures and the explicit understanding and inferential richness characteristic of
theoretical thinking (with many cases in between). It seems plausible to link
explicitness and inferential connectedness; for we can view the progression
from the frog to the physicist as a move toward systems which become “aware
of” (understand or possess information about) the rationales which are
implicit or embedded in their functional structures. Making the contents real-
ized by such structures explicit and themselves the objects of understanding
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would be ipso facto to generalize their application and bring them within a
wider inferential sphere.

In as far as this progression is toward forms of understanding which provide
more open-ended possibilities for successful interaction with what is under-
stood, its direction bears some resemblance to what Thomas Nagel has
described as the “direction of objectivity.”25 The movement in each case is
toward forms of understanding which abstract from the particular character
of the direct causal dealings between the understanding system (or subject) S
and its object. Coming to have a more objective understanding of x is to
acquire a capacity for the sorts of indirect dealings with x that result from
placing it within a larger inferential context. In so doing the system S realizes
a greater understanding of x as an object playing a role in the world inde-
pendently of S. Thus although the construction and use of theoretical
representations is likely to be of great value in achieving such objective under-
standing, we can unpack the notion of objectivity and give an account of what
it is to have objective understanding in purely functional terms.

Extending the functionalist account Still, the absence from one functionalist
account of any specific discussion of the role of theoretical and symbolic struc-
tures in achieving understanding should serve to underscore its status as only
a preliminary account of content. It is intended to provide a general frame-
work within which further issues about content may be addressed and
elaborated. Thus it seems apt to close by considering how a few important
issues about content, neglected above, might be handled in keeping with the
main themes of our analysis. Three such areas of concern would be: giving
some account of symbolic representation and representational content, the
problem of self-conscious and self-understanding systems, and accommo-
dating the social holism of content and meaning. Let us consider these three
briefly and in turn.

Representations It is a virtue of the functionalist approach that it allows 
us to provide an account of contentful states and intelligent information-
possessing systems without having to rely on talk of representations or
representational content. Still it seems clear that representations and symbolic
structures play so large a role in human understanding and information posses-
sion that one cannot hope to have a complete or adequate human psychology
which fails to include an account of representations and their content.26

I suggest the following strategy. In keeping with the guiding ideal of func-
tionalism, the notion of “being a representation” would be analyzed as speci-
fying a functional category. Perhaps the functional class could be better 
specified as items which “are used as representations by some system S” or
which “serve as representations for S.” The content of any such item would
depend on its use by or within the relevant system (focusing for present
purposes on internally used representations). The notion of a state’s having
content would be taken as analytically or theoretically more primitive than
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that of a representation’s having content, in that the idea of state content
would be used in two ways to account for representational content.

First, representations and processes operating on representations can be
understood as underlying or realizing a system’s network of contentful states.
That is, the description of the system’s operations on representations would
be at a lower level of abstraction, or nearer a hardware description than the
contentful state description. The relevant system would satisfy the functional
condition for possessing certain items of information about its environment
on the basis of its internal structure of processes operating on representations.
It is important to note that though the representation-based processes causally
underlie or instantiate the system’s contentful states, they do so only in virtue
of realizing the necessary functional roles. As regards their own functional
roles, the representations have whatever content they do only in virtue of the
contentful states which they serve to realize within the system.

Moreover, the notion of state content must figure in a second respect; for
not every causal structure which underlies a contentful state does so by func-
tioning as a representation. The hope would be to mark off the special role
played by representations by appeal to our theory of contentful states. In brief,
representations might be classed as structures which not only underlie
contentful states, but do so in virtue of themselves being taken to have or
understood to have content by the very system within which they occur. The
notion of a system’s understanding certain features of its own structure or
organization to have content would be explicated in terms of the system’s
having contentful states to that effect (that is, its bearing the appropriate causal
functional relations to those features of itself). Of course, we cannot suppose
that all of a system’s contentful states are realized by representation based
processes, if we are to avoid a vicious and infinite regress. But our function-
alist theory can easily allow for some understanding which is simply embedded
in processes.27 Such processes could operate on representations and do so in
a way which constitutes understanding those items as having content, without
embodying that understanding itself in any representations. Though devel-
oping these suggestions in detail would be no simple matter, they offer the
functionalist a basis for optimism.28

Self-consciousneses and self-understanding Our proposal for handling repre-
sentations also suggests a strategy for developing a functionalist account of
self-awareness or self-consciousness. The basic idea is to treat self-aware
systems as realizing informational states about their own structure and func-
tional organization.29 The analysis of information possession would continue
to be in terms of adaptive modification of behavior. A self-aware system’s
understanding of its own features would be a matter of its capacity for adap-
tive interaction with those features. We have often spoken above of the
system’s interaction with its environment, but of course the system itself can
be a part of its environment, considered as the sphere of its adaptive activity.
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Moreover, self understanding need not be restricted to its structural features,
but might include complex higher-order features of its functional organization
as well.

As our discussion of internal representation use should suggest, a capacity
for self-understanding may do more than simply allow a system to interact
adaptively with itself as it does with other objects. Rather, a system’s capacity
for self-understanding may greatly enhance its ability to adaptively interact
with other non-self portions of the world. Being able to use features of itself
as representations of the external environment and being able to make explicit
the rationales embedded in its behavioral procedures in a way which allows
for their generalization would be just two of the many such possibilities. We
also might consider a capacity for learning or self-design30 as a form of func-
tionally analyzable self-understanding. A system could be said to possess
information about or understand the function of a given behavior-regulating
mechanism insofar as it realized a set of internal procedures which modified
that mechanism in a way enhancing its adaptive value on the basis of environ-
mental feedback. Such understanding need not be explicit; indeed it might be
opaquely embedded in the learning procedures. But where the resulting modi-
fications are so apt to the mechanism’s function, the procedures guiding that
modification should be seen as constituting implicit understanding of that
function.

It is unclear just how much can be gotten from our functional account of
information possession by constructing systems which turn back on themselves
iteratively and reiteratively. Especially lacking is a clear route which would
lead us from such iterative structures to an account of the sort of self-
consciousness which we associate with conscious human experience. No
immediate solutions to different philosophic puzzles about the subjective and
phenomenal features of conscious experience seem in the offing.31 Still the
basic functionalist strategy here presents a wealth of opportunities which have
barely begun to be exploited.

The social holism of meaning and content Indeed, the functionalist may be
confronted with an embarrassment of programmatic riches. For complemen-
tary to the strategy of investigating self-conscious or inwardly turning infor-
mational systems is the equally promising project of considering information
possession systems which are turned outward within a social context or com-
munity of interacting informational systems. Our basic functionalist account
above focused on cases of isolated individual systems within well-defined
nonsocial environments. While such a focus may have been heuristically justi-
fied, it clearly will not suffice for constructing an overall account of how social
organisms, such as human beings, understand and possess information about
their world. However, I believe it is possible to extend our functionalist account
to accommodate the social dimension, while preserving its basic analysis of
content and information. I hope to make this claim of extendability plausible
by discussing in an admittedly quick and simple fashion three ways in which
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the introduction of the social context would make a difference to the func-
tionalist analysis of content.

First, systems or organisms which live together in genuine communities
would of necessity have to possess the ability to understand each other as
systems which understand, possess information, and have goals. They would
have to possess some second-order understanding; that is, they would need to
realize contentful states concerned with the realization of contentful states by
other systems. Not only would they have contentful states, but they would in
some sense “understand” what it is to have contentful states. Of course, their
understanding need not be at all like an explicit theoretical understanding of
such matters. Indeed all the relevant understanding might be opaquely
embedded in mechanisms which regulate the interactions among the members
of the community. Given its adaptive value, the presence of a mechanism which
puts a sparrow to flight in response to a ‘warning call’ cannot be regarded as
a random fact. Rather it should be seen as constituting the possession of phylo-
genetically acquired information, part of which is an implicit understanding
of other sparrows as perceivers capable of detecting or acquiring information
about the presence of predators. Though human beings can understand each
other as informational systems in a much more explicit and sophisticated way,
the bird example should make clear that on our naturalistic and functionalist
view of content, various forms of (at least implicit) second-order under-
standing are widely realized throughout the biological world.

The second feature of the social which the functionalist must accommodate
is the existence of socially constituted objects of understanding. Societies bring
into existence practices, institutions and states of affairs which could have no
reality apart from the regularities of the social context (for example, pecking
orders, law courts and ritual ceremonies). Moreover, the members of societies
can and must realize informational and other contentful states about those
socially constituted phenomena in order to participate in the behavioral regu-
larities which do the constituting. It is this tail-biting aspect of social
constitution which prevents us from treating such cases as differing from our
standard cases of information possession only in their particular content. It is
not like shifting from information about flies to information about sticks. For
in the social case, the states of affairs which are taken to exist and about which
information is possessed are dependent for their very existence on being recog-
nized or taken to obtain by the members of the society. Thus in talking about
content or information possession in such cases, we must complicate the
simple picture presented above, in which content was analyzed in terms of
causal functional relations obtaining between an informational system and an
independently existing set of objects. Socially constituted phenomena do have
a reality independent of their recognition by any particular informational
system or society member, but it is clear that their dependence on the collec-
tive contentful states of the society’s members will demand special attention
in accommodating understanding and the possession of information about
such phenomena within our functionalist account.
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Moreover, reflection on the social cases reveals that in a less radical form
such an interdependence between understanding and its objects is yet another
form of pervasive holism that applies with respect to all contentful states. Such
nonsocial objects as trees, rocks, and flies are not dependent upon recognition
for their existence or character. But if we wish to specify the contentful states
which a system has about such items, our choice of how to describe or clas-
sify them will not be independent of their relations to the system in question.
Types of objects which might be classed together relative to one system which
fails in any way to distinguish among them, might need to be described as of
many different kinds relative to some other system. Thus in general our
description of the objective component of the functional relations between a
contentful system and its environment will not be independent of the character
of the informational system or subjective element of the relation.

It is this sort of descriptive holism embracing the environment as well as
the informational system which underlies familiar difficulties about specifying
the inputs and outputs for human functional psychology. On the one hand,
many classes of inputs such as red objects really only constitute a class on the
basis of subjective facts; that is, facts about their functional equivalence in
affecting the perceptual mechanisms of human subjects.32 And on the other
hand, such disparate outputs as nodding one’s head, raising a hand, or uttering
‘yes’ get classed together only on the basis of all being taken as gestures of
assent by the community of subjects. The human cases are not special in this
regard but only make more evident the descriptive interdependence of subject
and object which arises whenever we turn to specify the functional networks
underlying contentful relations.

The third respect in which society makes a difference can be illustrated by
again considering the example of the sparrow’s warning call. In virtue of their
coordinated collective behavior each member of the sparrow community gains
perceptual or informational access to portions of its environment beyond the
reach of its individual sensory organs.33 Thus its position within a social group
enhances each sparrow’s ability to acquire information about nonsocial
portions of the world. In analyzing information possession in terms of causal
functional relations, we must acknowledge that the necessary connections will
often be established only through the mediation of social structures.

Moreover, the social context can do more than merely extend the ability of
its members to acquire information of a sort which they could acquire indi-
vidually. Society can transform the nature of understanding in a more radical
manner, such that the social group can be said to understand or possess
information of a sort not possessed by any member of the group. Social insects
provide clear examples of such more radically social information possession.
There are good reasons for attributing to a colony of bees information 
not possessed by any of the individual bees. Collectively their behavior will
result in the construction of a well-defined adaptive hive structure Yet no 
bee possesses the information of how to build a hive. Rather such under-
standing is embedded in the mechanism which regulates each bee’s behavior
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as a function of what other nearby bees are doing. That is, the individual bee’s
behavior is not under the control of feedback about the emerging overall struc-
ture of the hive. The behavior regulating mechanisms in each bee are under
only local feedback control sensitive to its interaction with other nearby bees.
Yet the end product of this activity is a completed hive. The presence of mech-
anisms within the individual bees which produce such a result cannot be
treated as a random fact, but should be understood as constituting the posses-
sion by the bee colony as a whole of phylogenetically acquired information
about how to build a hive. The shaping processes of natural selection in this
case have operated at the social level, perpetuating the genetically based social
structures which embody the possession of such understanding.

The dramatic character of social understanding in bees and other social
insects should not blind us to the presence of similar phenomena in more
sophisticated animal societies, including human culture and society. For if we
keep our focus on the functional notion of information possession as a
capacity for adaptive interaction with the environment, it should be clear that
large organized human groups can successfully deal with the environment in
ways which manifest an understanding of that environment not possessed 
by any of their members. It is important to note that in such cases collective
action is required not merely to put into action or apply that understanding,
but the very understanding itself may be irreducibly collective. Consider a large
scientific research program which over time investigates some class of micro-
phenomena. A great many specialists with diverse theoretical, computational,
and experimental skills will need to collaborate and depend on one another’s
activities to advance the research effort. It is unreasonable and simply false to
believe that each of these research team members has individual cognitive
mastery of all the elements of the overall project. Indeed, there is likely to be
no such team member. The thought that there must be some person who indi-
vidually possesses all the information probably arises from overrating the
understanding of those team members whose contribution to the program
derives from their skill in manipulating the theoretical formalism rather than
in using its experimental and equipmental analogs of sensory and effector
mechanisms. Of course, the theoreticians will have some understanding of the
experimental set ups, but it is only the entire organized and intercommuni-
cating scientific group together with its technical devices which can actually
carry out the successful dealings with the micro-phenomena in those ways
which constitute the acquisition and possession of information. The ability of
individual researchers to describe and discuss overall aspects of their research
should not lead us to neglect the necessity in such contexts for a social division
of epistemological labor.34

Despite the wealth of complications and further interdependencies we have
encountered in considering the social context, I hope to have offered plausible
suggestions for accommodating the social aspects of information possession
within our functionalist framework. However, it should also be evident that
it would be a very messy affair to construct for even a moderately sophisticated
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system an explicit account of content which would take us from a physical
description of the system and its dealings with the environment to a specifi-
cation of its informational and other contentful states. Most often we will
rather be engaged in attributing a limited range of contentful states to some
system of which we have some prior understanding on the basis of its dealing
with an environment described in a manner already appropriate to that
system’s patterns of interacting with it. This is most evident when we deal with
other humans whom we assume to be quite like us or with other natural organ-
isms of whose biological nature and needs we are at least partially aware.

Adopting a functionalist approach to content carries no commitment to
theoretical reductionism. The functionalist program does not aim to construct
an account which would enable us to deduce every fact about a system’s
contentful states from a physical description of its causal relations to its
environment. It does, however, offer a way to think about content which is
naturalistic and metaphysically austere, allowing us to discern the continuities
which fit facts about content within the natural and biological sphere. Thus
it satisfies those of our desires for a unity of science which are reasonable,
while providing us with basic guiding ideas to link information, under-
standing, and adaptive causal interaction in developing accounts of content
for the particular systems and situations where we need them.

Notes

I have benefited greatly from discussion of earlier versions of this paper with my
colleagues at Rutgers University, especially Robert Matthews, Laverne Shelton, Sarah
Stebbins, and Robert Weingard. My work was aided by a research leave granted by
the Rutgers University FASP program.
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only within the context of a large number of interdependent contentful states,
where our basic scheme for fixing the contents of those states accords in general
with our principle that information possession produce adaptive behavior. For
discussion of a related point concerning veridicality and belief attribution see 
D. C. Dennett, “Intentional systems,” pp. 102–3.

12 Notorious difficulties surround the attempt to account for the meanings of theo-
retical statements by their relations to nontheoretical or observational statements.
No such intent, positivistic or otherwise, is implied by my use of the term ‘basic’
here. As should be clear below, my view of content is thoroughly holistic rather
than foundationalist. What is basic is the general connection between information
and adaptivity, not a privileged set of cases where that connection is especially
direct or atomisticaily isolable.

13 Ernest Nagel, “Teleology revisited,” The Journal of Philosophy, 1977, pp.
261–301.

14 The difficulty here is that the causal influences and responses of a closed causal
system will always be nonorthogonal under some sufficiently complex description
of the system’s causal structure. Thus the weight of the constraint must fall on
the complexity and indirectness of a causal link, rather than on its total absence.

15 See also R. Cummins, “Functional analysis,” The Journal of Philosophy, 1975,
pp. 741–65.

16 There is thus more than a punning similarity between the teleological and non-
teleological senses in which informational states (or psychological states in
general) may be thought of as functional states. For the interdependence of
information possession and goal directedness entails that it will not be possible
to spell out the relevant causal behavior determining roles in virtue of which some
feature (or state) functions to realize the possession of information, without also
characterizing the system’s states vis-à-vis teleological functions. Adaptivity is a
teleological notion in so far as it requires us to attribute goals to the system being
considered, and it is a state’s causal role in determining adaptive behavior which
is crucial to information possession. Thus with respect to information possessing
systems the notion of a functional state as specified in terms of its contribution
to behavior within a systematic context of interacting components of necessity
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merges with the notion of a functional state specified in terms of its adaptive
value.

17 As in Donald Davidson, “Mental events,” in L Foster and J. W. Swanson (eds),
Experience and Theory (Massachusetts, 1970); “Psychology as Philosophy,” in
S. C. Brown (ed.), Philosophy and Psychology, (Macmillan, 1974); and D. C.
Dennett, “Intentional systems.” A somewhat more general account of the inter-
dependence is offered in H. P. Grice, “Method in philosophical psychology,”
Proceedings and Addresses of the American Philosophical Association, 1975, 
pp. 23–53.

18 For some interesting suggestions on a related point see Stephen Palmer,
“Fundamental aspects of cognitive representation,” in E. H. Rosch and B. B.
Lloyd (eds), Cognition and Categorization (Erlbaum Press, 1978).

19 See also in this regard H. P. Grice, “Method in philosophical psychology.”
20 This question of when it is appropriate to employ the sentential idiom in speci-

fying content is related to the question raised by Dennett in “Intentional systems”
of “What is involved in treating something as an intentional system?” However,
I am here interested in the further question which Dennett declines to discuss
there of “What is it for a system to actually realize the possession of sententially
specified content, i.e. to be an intentional system?”

21 The coiner of this term is to my knowledge Donald Davidson (“Mental events”).
My use, however, parallels his only in part. The main differences concern the
emphasis placed here on rational connectedness as requisite for understanding
and the use to which these constraints of rationality are put. I, unlike Davidson,
am primarily concerned to distinguish the realization of sententially specified
states from other forms of information possession. Moreover, the constraints of
rationality function show as constraints on sets of real state transitions, rather
than as rules governing the reconstruction of an agent’s psychological states from
partial samples of his behavior. Understood in the manner described above the
constraints seem of little value in support of Davidson’s claims about the anom-
alous nature of the mental.

22 J. Y. Lettvin, H. R. Maturana, W H. Pitts, and W. S. McCulloch, “What the frog’s
eye tells the frog’s brain,” Proceedings of the IRE, 1959, pp. 1940–51.

23 A. I. Luria, The Working Brain (Basic Books, 1973), especially pp. 35–8.
24 I use the term ‘continuum’ here primarily to suggest the density of the ordering

and to emphasize that systems may vary by many subtle degrees in the nature
and quality of the information which they possess. I do not wish to imply 
that there is a simple linear ordering of systems in terms of the sophistication of
the contents which characterize their informational states. The construction 
of a general hierarchy of levels of content specification would not be so 
simple a matter. For present purposes the rough judgments we can make distin-
guishing among substantially different levels of content specification should
suffice.

25 T. Nagel, Mortal Questions (Cambridge University Press, 1978), p. 174. While
the resonance between Nagel’s remarks and the discussion above is suggestive,
their apparent affinity should be regarded cautiously, given Nagel’s strongly anti-
functionalist bent.

26 For arguments to this effect see J. Fodor, The Language of Thought, ch. 2.
27 For discussion on procedural understanding see T. Winograd, “Formalism for

knowledge,” in Thinking (Cambridge University Press, 1977), pp. 62–71.
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28 I make some attempt to carry this project a bit further in “Mental representation:
A functionalist view,” Pacific Philosophical Quarterly, 1982, pp. 3–20.

29 See D. C. Dennett’s Brainstorms, pp. 149–73; and Grice’s “Method in philo-
sophical psychology.”

30 The description of learning as self-design is Dennett’s: Brainstorms, pp. 71–89.
31 T. Nagel forcefully presents the case for difficulties in his essay “What is it like

to be a bat?” in Mortal Questions, pp. 165–80.
32 To get a feel for just how complex and indirect is the relation between an object’s

light reflecting characteristics and its perceived color see E. H. Land, “The
Retinex Theory of color vision,” Scientific American, Dec. 1977, pp. 108–28.

33 This example and its use to illustrate the view of language as “the extension of
the senses” is due to W. V. O. Quine and J. Ullian, The Web of Belief (Random
House, 1970).

34 Such division of epistemological labor (there called linguistic labor) is discussed
in H. Putnam, Mind, Language, and Reality, ch. 12, especially pp. 245–7.
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6

R. Cummins, “‘How Does It Work?’ versus
‘What Are the Laws?’: Two Conceptions of

Psychological Explanation”

1 In the beginning

In the beginning there was the deductive nomological (DN) model of expla-
nation, articulated by Hempel and Oppenheim (1948). According to DN,
scientific explanation is subsumption under natural law. Individual events are
explained by deducing them from laws together with initial conditions (or
boundary conditions), and laws are explained by deriving them from other
more fundamental laws, as, for example, the simple pendulum law is derived
from Newton’s laws of motion.

It is well-known that DN is vulnerable to a wide variety of counterexam-
ples (e.g., Kim 1962; Salmon 1998). As a result, DN is not widely defended.
But it is, I think, still widely believed that scientific explanation is subsump-
tion under law. This is something of a scandal. Given DN’s miserable track
record in spite of spirited defense by many ingenious believers, one is led to
ask why so many cleave so faithfully to a doctrine that has proved so inde-
fensible?

There are two factors that work to keep DN in place. First, there is the fact
that every experimental paper one picks up involves the explanation of some
data by appeal to some hypothesis or other. It is tempting to conclude that
philosophers’ continued failure to articulate this practice in some defensible
way is a point against philosophers, not against DN. And second, there is the
fact that there is no widely understood and compelling alternative to DN on
the market. If cognitive psychology has taught us anything, it is that no one
willingly gives up a well-worn idea without having something to put in its
place. I propose to examine these two factors in turn.

2 Two pitfalls

In psychology DN gets a spurious plausibility from the fact that data are
routinely said to be “explained” or “accounted for” by some hypothesis or
other. But this is likely to be misleading in at least two ways.
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First, when psychologists talk about explaining or accounting for some 
percentage of the variance, the “hypothesis” in question is that the experi-
mental treatment will have some real effect. One is looking to reject the null
hypothesis in favor of its complement, namely, the hypothesis that whatever
differences there are between the treatment group and the control group are
not due to chance (random variation). But this sort of hypothesis isn’t a law
or anything like a law. The word “hypothesis” as it is used in statistical analy-
sis, and the word “hypothesis” as it is used to refer to a conjectured theory or
law, are little more than homonyms: They share the element of conjecture and
little else. While there is nothing wrong with either use of the word, in the 
present context, we do well to keep the two senses distinct. With this in mind,
I will use “proposed law” to refer to a hypothesis in the second sense.

The second way in which talk of explanation in the context of the statistical
analysis of data is likely to be misleading is that, even though experimenters
sometimes are attempting to test a theory or an hypothesis in the second sense
(i.e., a proposed law or regularity), this is an exercise in confirmation, not
explanation. We say that a law or theory accounts for or explains the data,
but this simply means that the data confirm the law or theory. When a law is
confirmed by some data set, this is evidence that the law describes the data
(to some reasonable approximation). The now classic illustration of this is
Balmer’s formula (Hempel 1966):

� = 3645.6 –——n
2

n2 – 4
––

This formula specifies the wavelengths of the emission spectrum of hydrogen.
Finding spectral lines in the places predicted by the formula confirms the law,
but no one thinks the law explains why the lines are where they are.

Defenders of DN concede that Balmer’s formula and similar cases are cases
in which subsumption under law is not explanatory. They then take their task
to be formulating a criterion that will distinguish cases like Balmer’s formula
from genuinely explanatory laws. There is wide consensus, however, that this
has not been done successfully, and the suspicion grows that it cannot be done
successfully. I think we should take seriously the possibility that it cannot be
done because there isn’t any difference: No laws are explanatory in the sense
required by DN. Laws simply tell us what happens; they do not tell us why
or how. Molière, satirizing scholastic appeals to occult properties and
“virtues,” tweaks the doctors of his time for explaining that opium puts people
to sleep because it has a dormitival virtue. But isn’t this just what subsump-
tion under law always amounts to? Does the Law of Effect explain why giving
a pigeon Pigeon Chow whenever it pecks a key increases the rate of key
peeking? Or does it just restate the phenomenon in more general terms? Surely
the correct moral to draw here is that the law of effect is an explanandum,
not an explanans.

In science, when a law is thought of as an explanandum, it is called an
“effect.” Einstein received his Nobel prize, not for his work on relativity, but
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for his explanation of the photo-electric effect. In psychology, such laws as
there are are almost always conceived of, and even called, effects. We have the
Garcia effect (Garcia and Koelling 1966), the spacing effect (Madigan 1969),
the McGurk effect (MacDonald and McGurk 1978), and many, many more.
Each of these is a fairly well confirmed law or regularity (or set of them). But
no one thinks that the McGurk effect explains the data it subsumes. No one
not in the grip of the DN model would suppose that one could explain why
someone hears a consonant like the speaking mouth appears to make by
appeal to the McGurk effect. That just is the McGurk effect.

The mistaken idea that accounting for data by subsuming it under law is
explanation is also fostered by a confusion between explanation and predic-
tion.1 A law that predicts a certain data point or data set is said to “explain”
it. But prediction and explanation are separable in ways that DN cannot
accommodate. It is possible to understand how a mechanism works, and hence
to be in a position to explain its behavior and capacities – the effects it exhibits
– without being able to predict or control its behavior. This is true generally
of stochastic or chaotic systems. It is also true of systems whose relevant initial
states are unknowable or simply unknown. In possession of a machine table
for a Turing machine, I can explain all of its capacities, but, lacking know-
ledge of its initial state, I may be unable to predict its behavior (Moore 1956).
Less interestingly, but just as important, some systems are simply intractable.
We can explain the swirling trajectory of a falling leaf, but it would be hope-
less to predict it.2 Finally many systems are well understood in an idealized
form, but their actual behavior cannot be predicted because the relevant
boundary conditions are seldom or never realized.

So, systems can be well-understood yet unpredictable. What about the
converse? Can a system be predictable without being understood? Certainly.
For centuries, the tides have been predicted from tide tables. Their predic-
tability was not improved at all by Newton’s successful explanation of them.3

Consider also the plight of the seventeenth-century scientist confronted with
the fact that pounding a nail makes it hot. Caloric theory, the going theory of
heat at the time, treated changes in heat as diffusion phenomena. Your coffee
cools because the caloric in it diffuses into the surrounding cup and air until
equilibrium is reached. The fire reheats it because the caloric in the fire diffuses
into the pot and surrounding air, and thence to the coffee, and so on. But
pounding a nail will make it hot regardless of the temperature of the hammer.4

This phenomenon – call it the “Galileo effect” after the man who made it
famous – is relatively easy to quantify You can be in a position to predict 
what is going to happen, and even be able to quantify those predictions, yet
still have no idea why it happens. Conversely, once in possession of the
mechanical theory of heat, one sees that pounding a nail is like poking a cube
of Jell-O: more vibration equals more heat. But this insight does not improve
predictability at all; it explains the Galileo effect, but it is the statement of the
effect itself that generates the predictions.
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3 Why the Laws of Psychology are Explananda

From the perspective I’ve been urging, it emerges that a substantial propor-
tion of research effort in experimental psychology isn’t expended directly in
the explanation business; it is expended in the business of discovering and
confirming effects, An effect, I’ve been arguing, is an explanandum, not an
explanans. In psychology, we are overwhelmed with things to explain, and
somewhat underwhelmed by things to explain them with. Why is that?

I want to begin by mentioning a sociological factor just so it can be set to
one side. The fact is that it is very difficult to publish a paper that simply offers
an explanation of an effect. Must journals want reports of experiments.
Explanation, such as it is, is relegated to the “discussion” section, which is
generally loose and frankly speculative compared to the rest of the paper.
Discussion sections are often not read, and their contents are almost never
reported in other articles. The lion’s share of the effort goes into the experi-
ments and data analysis, not into explaining the effects they uncover. Any
other course of action is a quick route to a plot in Tenure Memorial Park.

This is not mere tradition or perversity. It derives from a deep-rooted uncer-
tainty about what it would take to really explain a psychological effect. What,
after all, would a successful explanatory theory of the mind look like?

We can be pretty sore what it wouldn’t look like. It wouldn’t look like a
Principia Psychologica. Newtonian mechanics was laid out as an axiomatic
system, self-consciously imitating Euclidian geometry, a widely influential
paradigm in the seventeenth century, and has since been the dominant para-
digm of an explanatory theory in science. It is arguable whether this is a 
really useful paradigm in any science. Certainly mechanics, even Newtonian
mechanics, is never presented that way today. Still, if the goal is to lay out the
fundamental principles of motion, the axiomatic approach makes a kind of
sense. There are, one might suppose, a small number of fundamental princi-
ples governing motion, and these, together with some suitable definitions,
might enable the derivations of equations specifying the (perhaps idealized)
behavior of any particular mechanical system: a pendulum, a spring, a solar
system, and so on. What makes this seem a viable approach is the idea that
motion is the same everywhere, whatever moves, wherever and whenever it
moves. It is also this sort of idea that grounds the widespread conviction that
physics is the most fundamental science.

Conversely, what grounds the idea that psychology and geology are not
fundamental sciences is the thought that psychological and geological systems
are special. The principles of psychology and geology and the other so-called
special sciences do not govern nature generally, but only special sorts of
systems. Laws of psychology and geology are laws in situ, that is, laws that
hold of a special kind of system because of its peculiar constitution and organ-
ization. The special sciences do not yield general laws of nature, but rather
laws governing the special sorts of systems that are their proper objects of
study. Laws in situ specify effects – regular behavioral patterns characteristic
of a specific kind of mechanism.
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Once we see that the laws of a special science are specifications of effects,
we see why theories in such sciences could not be anything like Newton’s
Principia. Who would be interested in an axiomatic development of the effects
exhibited by the liver or the internal combustion engine? What we want is an
explanation of those effects in terms of the constitution and organization of
the liver or engine. At the level of fundamental physics, laws are what you get
because, at a fundamental level, all you can do is say how things are. We don’t
think of the fundamental laws of motion as effects, because we don’t think 
of them as specifying the behavior of some specialized sort of system that
behaves as it does because of its constitution and organization. The things that
obey the fundamental laws of motion (everything) do not have some special
constitution or organization that accounts for the fact that they obey those
laws. The laws of motion just say what motion is in this possible world. Special
sorts of systems, on the other hand, exhibit distinctive characteristic effects.
In general, then, it seems that special sciences like psychology should seek to
discover and specify the effects characteristic of the systems that constitute
their proprietary domains, and to explain those effects in terms of the struc-
ture of those systems, that is, in terms of their constituents (either physical or
functional) and their mode of organization (see Cummins 1983, chaps. 1, 2,
for how this kind of explanation applies to psychology).

4 Effects and Capacities

What I have been calling “psychological effects” are not the only, or even the
primary, explananda of psychology. I have been concentrating on effects
because I have been criticizing the idea that psychological explanation is
subsumption under law; and psychological laws specify effects. The primary
explananda of psychology, however are not effects (psychological laws) but
capacities: the capacity to see depth, to learn and speak a language, to plan,
to predict the future, to empathize, to fathom the mental states of others, to
deceive oneself, to be self-aware, and so on. Understanding these sorts of
capacities is what motivates psychological inquiry in the first place.

Capacities are best understood as a kind of complex dispositional property.
Standard treatments typically assume that dispositions are specified by
subjunctive conditionals along the following lines:

Salt is water-soluble = If salt were put in water, then, ceteris paribus, it
would dissolve.

This sort of analysis is valuable because it makes it clear that to have a dispo-
sitional property is to satisfy a law in situ, a law characterizing the behavior
of a certain kind of thing. Capacities and effects are thus close kin.

For this sort of analysis to work, we have to know what precipitating condi-
tions (putting x in water) generate which manifestations (x dissolves). For
many psychological capacities, it is a matter of some substance to specify
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exactly what they are. The specification of a capacity is what Marr (1982)
called the “computational problem.” This can be extremely nontrivial. How,
after all, should we specify the capacity to understand Chinese? Or it can be
relatively simple, as in the ease of calculational capacities (the capacity to add
or multiply, for example). So one reason we do not think of the capacity to
learn a natural language as an effect is just that it is relatively ill specified. As
a consequence, the primary explananda of psychology – capacities – are not
typically specified as laws, nor is it clear they always can be.

But there is a more interesting reason. Many of the things we call “effects”
in psychology are in fact incidental to the exercise of some capacity of interest.
An analogy will help to clarify the distinction I have in mind. Consider two
multipliers, M1 and M2. M1 uses the standard partial products algorithm we
all learned in school. M2 uses successive addition. Both systems have the
capacity to multiply: given two numerals, they return a numeral representing
the product of the numbers represented by the inputs. But M2 also exhibits
the “linearity effect”: computation is, roughly, a linear function of the size of
the multiplier. It takes twice as long to compute 24 × N as it does to compute
12 × N. M1 does not exhibit the linearity effect. Its complexity profile is,
roughly, a step function of the number of digits in the multiplier.

The “linearity effect” is incidental to the capacity to multiply in M1. It is,
as it were, a side effect of the way M1 exercises its capacity to multiply, and
that is why we call this fact about computation time an “effect” and the multi-
plication a “capacity”. Of course, the “linearity effect” might be computed.
We could design a system M3 that not only computes products, but computes
reaction times as well, timing its outputs to mimic a successive addition
machine. M3 might be quite difficult to distinguish from M1 on behavioral
grounds, though it need not be impossible. The timing function might be
disabled somehow without disabling the multiplier. More subtly, computation
of the relevant output times might itself be nonlinear, in which case M3 will
not be able to fool us on very large inputs (assuming it can process them at
all). Or it might be that the “linearity effect” in M3 is cognitively penetrable
(Pylyshyn 1982), in which case it cannot be incidental. Thus it can be a matter
of substantive controversy whether we are looking at an exercise of a capacity
or an incidental effect. This is precisely what is at issue between the friends of
imagery and their opponents. Are the rotation and scanning effects (for
example) incidental effects of rotating or scanning a picturelike representation,
or is it the exercise of a capacity to estimate rotation or scanning times
involving real physical objects? (See, for example, Pylyshyn 1979.)

As primacy explananda of psychological theory, capacities typically do 
not have to be discovered: everyone knows that people can see depth and 
learn language. But they do have to be specified, and that, to repeat, can be
nontrivial. As secondary explananda, effects typically do have to be discov-
ered. Much more important, however, is the different bearing that explaining
effects as opposed to capacities has on theory confirmation. Given two theo-
ries or models of the same capacity, associated incidental effects can be used 
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to distinguish between them. This is important for two reasons. First, it is
always possible in principle, and often in fact, to construct weakly equivalent
models of the same capacity. To take an extreme case, Smolensky, Legendre
and Miyata (1992) have shown that, for any parser written in a LISP-like
language called “tensor product programming language” (TPPL), it possible
[sic] to construct a distributed connectionist network that effects the same
parses. With respect to parsing per se, then, there is nothing to choose between
the two models. However, they predict very different incidental effects. Second,
even when two models are not weakly equivalent, they may be on a par empir-
ically, that is, close enough so that differences between them are plausibly
attributed to such factors as experimental error, idealization, and the like.
Again, incidental effects that may have no great interest as explananda in their
own right may serve to distinguish such cases.

We can expect, then, to see a good deal of effort expended in the explana-
tion of incidental effects that have little interest in their own right: no one
would construct a theory just to explain them. But their successful explana-
tion can often be crucial to the assessment of theories or models designed to
explain the core capacities that are the primary targets of psychological
inquiry.

5 Functional Analysis

A theory may explain a dispositional property by systematic analysis – i.e.
analyzing the system that has it, or it may proceed instead by analyzing the
disposition itself. I call the application of property analysis to dispositions or
capacities “functional analysis.”

Functional analysis consists in analyzing a disposition into a number of 
less problematic dispositions such that programmed manifestation of these
analyzing dispositions amounts to a manifestation of the analyzed disposition
By “programmed” here, I simply mean organized in a way that could be 
specified in a program or flowchart. Assembly line production provides a
transparent illustration. Production is broken down into a number of distinct
and relatively simple (unskilled) tasks. The line has the capacity to produce
the product by virtue of the fact that the units on the line have the capacity
to perform one or more of these tasks, and by virtue of the fact that when
these tasks are performed in a certain organized way – according to a certain
program – the finished product results. Schematic diagrams in electronics
provide another familiar example. Because each symbol represents any phys-
ical object having a certain capacity, a schematic diagram of a complex device
constitutes an analysis of the electronic capacities of the device as a whole into
the capacities of its components. Such an analysis allows us to explain how
the device as whole exercises the analyzed capacity, for it allows us to see exer-
cises on the analyzed capacity as programmed (i.e., organized) exercises of the
analyzing capacities.
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In these examples, analysis of the disposition goes together in a fairly
obvious way with componential analysis of the disposed system, analyzing
dispositions being capacities of system components. This sort of direct form-
function correlation is fairly common in artifacts because it facilitates
diagnosis and repair of malfunctions. Form-function correlation is certainly
absent in many cases, however, and it is therefore important to keep functional
analysis and componential analysis conceptually distinct. Componential
analysis of computers, and probably brains, will typically yield components
with capacities that do not figure in the analysis of capacities of the whole
system. A cook’s capacity to bake a cake analyzes into other capacities of the
“whole cook.” Similarly Turing machine capacities analyzes into other Turing
machine capacities. Because we do this sort of analysis without reference to a
realizing system, the analysis is evidently not an analysis of a realizing system
but of the capacity itself. Thus functional analysis puts very indirect
constraints on componential analysis. My capacity to multiply 27 times 32
analyzes into the capacity to multiply 2 times 7, to add 5 and 1, and so on,
but these capacities are not (so far as is known) capacities of my components.

The explanatory interest of functional analysis is roughly proportional to
(1) the extent to which the analyzing capacities are less sophisticated than the
analyzed capacities; (2) the extent to which the analyzing capacities are
different in kind from the analyzed capacities; and (3) the relative sophistica-
tion of the program appealed to, that is, the relative complexity of the
organization of component parts or processes that is attributed to the system.
Item (3) is correlative with (1) and (2): the greater the gap in sophistication
and kind between analyzing and analyzed capacities, the more sophisticated
the program must be to close the gap.

Ultimately, of course, a complete theory for a capacity must exhibit the
details of the target capacity’s realization in the system (or system type) that
has it. Functional analysis of a capacity must eventually terminate in disposi-
tions whose realizations are explicable via analysis of the target system. Failing
this, we have no reason to suppose we have analyzed the capacity as it is 
realized in that system.

Notes

1 I do not mean to suggest that DN theorists were confused about this. On the
contrary , they held that explanation and prediction are just two sides of the same
coin. The point is rather that DN conflates explanation and prediction, which are,
I claim, orthogonal.

2 Cartwright (1983) denies that we can explain the trajectory of a falling leaf. But
all she argues for is that we cannot predict it. She seems to think it follows from
this that we have no reason to believe that the laws of mechanics accurately
subsume it. A more conservative view is that we understand falling leaves quite
well. No one seriously thinks this is an outstanding mystery of nature on a par
with the nature of consciousness, say. The problem is just that prediction is
intractable.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“ ‘HOW DOES IT WORK?’ V. ‘WHAT ARE THE LAWS?’ ”

97



3 This is an interesting case in a number of ways. Newton’s successful explanation
in terms of the moon’s gravitational influence does not allow prediction, which is
done today, as before Newton, by tables. So here we have in a single instance a
case where prediction is neither necessary nor sufficient for explanation.
Moreover, we have a case where explanation seems to come apart from truth. The
Newtonian mechanics on which the explanation is based has been supplanted,
yet the explanation is still accepted.

4 Friction was thought to release otherwise bound caloric but this will not help with
a cold hammer and nail.
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7

J.A. Fodor, “The Language of Thought: 
First Approximations”

I’m the only president you’ve got.
Lyndon B. Johnson

The main argument of this book runs as follow:

1 The only psychological models of cognitive processes that seem even
remotely plausible represent such processes as computational.

2 Computation presupposes a medium of computation: a representational
system.

3 Remotely plausible theories are better than no theories at all.
4 We are thus provisionally committed to attributing a representational

system to organisms. ‘Provisionally committed’ means: committed insofar
as we attribute cognitive processes to organisms and insofar as we take
seriously such theories of these processes as are currently available.

5 It is a reasonable research goal to try to characterize the representational
system to which we thus find ourselves provisionally committed.

6 It is a reasonable research strategy to try to infer this characterization from
the details of such psychological theories as seem likely to prove true.

7 This strategy may actually work: It is possible to exhibit specimen infer-
ences along the lines of item 6 which, if not precisely apodictic, have at
least an air of prima facie plausibility.

The epistemic status of these points is pretty various. I take it, for example,
that item 3 is a self-evident truth and therefore requires no justification beyond
an appeal to right reason. I take it that item 4 follows from items 1–3. Items
5–7, on the other hand, need to be justified in practice. What must be shown
is that it is, in fact, productive to conduct psychological research along the
lines they recommend. Much of the material in later chapters of this book will
be concerned to show precisely that. Hence, the discussion will become more
intimately involved with empirical findings, and with their interpretations, as
we go along.
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This chapter, however is primarily concerned with items 1 and 2. I shall
argue that, quite independent of one’s assumptions about the details of psycho-
logical theories of cognition, their general structure presupposes underlying
computational processes and a representational system in which such
processes are carried out. It is often quite familiar facts which, in the first
instance, constrain one’s models of the mental life, and this chapter is mostly
a meditation on a number of these. I shall, in short, discuss some kinds of
theories which, I think, most cognitive psychologists would accept in outline,
however much they might disagree about specifics. I want to show how, in
every case, these theories presuppose the existence and exploitation of a repre-
sentational system of some complexity in which mental processes are carried
out. I commence with theories of choice.

I take it to be self-evident that organisms often believe the behavior they
produce to be behavior of a certain kind and that it is often part of the expla-
nation of the way that an organism behaves to advert to the beliefs it has 
about the kind of behaviour it produces.1 This being assumed, the following
model seems overwhelmingly plausible as an account of how at least some
behaviour is decided on.

8 The agent finds himself in a certain situation (S).
9 The agent believes that a certain set of behavioral options (B1, B2, . . . . Bn)

are available to him in S; i,e., given S, B1 through Bn are things the agent
believes that he can do.

10 The probable consequence of performing each of B1 through Bn are
predicted: i.e., the agent computes a set of hypotheticals of roughly the
form if Bi is performed in S, then, with a certain probability, Ci. Which
such hypotheticals are computed and which probabilities are assigned will,
of course, depend on what the organism knows or believes about situa-
tions like S. (It will also depend upon other variables which are, from the
point of view of the present model, merely noisy: time pressure, the
amount of computation space available to the organism, etc.)

11 A preference ordering is assigned to the consequences.
12 The organism’s choice of behavior is determined as a function of the pref-

erences and the probabilities assigned.

Two caveats. First, this is not a theory but a theory schema. No predictions
about what particular organisms will choose to do on particular occasions are
forthcoming until one supplies values for the variables; e.g., until one knows
how S is described, which behavioral options are considered, what conse-
quences the exploitation of the options are believed to lead to, what preference
ordering the organism assigns to these consequences and what trade-off
between probability and preferability the organism accepts. This is to say that,
here as elsewhere, a serious theory of the way an organism behaves presup-
poses extensive information about what the organism knows and values. Items
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8–12 do not purport to give such a theory, but only to identify some of the
variables in terms of which one would have to be articulated.

Second, it is obvious that the model is highly idealized. We do not always
contemplate each (or, indeed, any) of the behavioral options we believe to be
available to us in a given situation. Nor do we always assess our options in
the light of what we take to be their likely consequences. (Existentialists, I’m
told, make a point of never doing so.) But these kinds of departures from the
facts do not impugn the model. The most they show is that the behaviors we
produce aren’t always in rational correspondence with the beliefs we hold. It
is sufficient for my point, however, that some agents are rational to some
extent some of the time, and that when they are, and to the extent that they
are, processes like the ones mentioned by items 8–12 mediate the relation
between what the agent believes and what he does.2

Insofar as we accept that this model applies in a given case, we also accept
the kinds of explanations that it licenses. For example, given the model, we
may explain the fact that organism a produced behavior B by showing:

13 That a believed himself to be in situation S.
14 That a believed that producing behavior of the type Bi in S would prob-

ably lead to consequence Ci.
15 That Ci was a (or the) highly valued consequence for a.
16 That a believed and intended B to be behavior of the Bi type.

The point to notice is that it is built into this pattern of explanation 
that agents sometimes take their behavior to be behavior of a certain kind; in
the present case, it is part of the explanation of a’s behavior that he believed
it to be of the Bi kind, since it is behavior of that kind for which highly 
valued consequences are predicted. To put it briefly, the explanation fails to
be a (full) explanation of a’s behavior unless that behavior was Bi and a
believed it to be so.

Items 13–16 might, of course, contribute to an explanation of behavior even
where B is not produced and where the actual behavior is not taken by the
agent to be Bi behavior. ‘Will nobody pat my hiccup?’ cried the eponymous
Reverend Spooner. We assume that what goes in for Bi is a structural descrip-
tion of the sentence type ‘Will nobody pick my hat up?’ and that the disparity
between the behavior produced and a token of that type is attributable to what
the networks call a temporary mechanical failure. In such cases, our confidence
that we know what behavior the agent intended often rests upon three beliefs:

17 That items 14 and 15 are true under the proposed substitution for Bi .
18 That items 14 and 15 would be false if we were instead to substitute a

description of the type of which the observed behavior was in fact a token.
(In the present example, it is plausibly assumed that Spooner would have
set no positive utility upon the production of a token of the type ‘Will
nobody pat my hiccup?’; why on earth should he want to say that?)
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19 That it is plausible to hypothesize mechanisms of the sort whose opera-
tions would account for the respects in which the observed and the
intended behaviors differ. (In the present case, mechanisms of metathesis.)

It is notorious that if ‘psychodynamic’ explanations of behavior are true,
the mechanisms envisaged by item 19 may themselves be of practically fath-
omless complexity. My present point, in any event, is that not only accounts
of observed behavior, but also attributions of thwarted behavioral intentions,
may intimately presuppose the applicability of some such explanatory schema
as items 8–12.

I am laboring these very obvious remarks because I think that their 
immediate consequences are of profound significance for the construction of
cognitive theories in general: viz., that this sort of explanation can go through
only if we assume that agents have means for representing their behaviors to
themselves; indeed, means for representing their behaviors as having certain
properties and not having others. In the present case, it is essential to the expla-
nation that the agent intends and believes the behavior he produced to be
behavior of a certain kind (viz., of the kind associated with relatively highly
valued consequences in S) and not of some other kind (viz., not of the kind
associated with relatively low-valued consequences in S). Give this up, and one
gives up the possibility of explaining the behavior of the agent by reference to
his beliefs and preferences.

The moral I want to draw, then, is that certain kinds of very central patterns
of psychological explanation presuppose the availability, to the behaving
organism, of some sort of representational system. I have emphasized, for
purposes of exposition, the significance of the organism’s representation of its
own behavior in the explanation of its considered actions. But, once made,
the point is seen to be ubiquitous. It was, for example, implicit in the model
that the organism has available means for representing not only its behavioral
options but also: the probable consequence of acting on those options, a pref-
erence ordering defined over those consequences and, of course, the original
situation in which it finds itself. To use this sort of model is, then, to presup-
pose that the agent has access to a representational system of very considerable
richness. For, according to the model, deciding is a computational process; the
act the agent performs is the consequence of computations defined over repre-
sentations of possible actions. No representations, no computations. No
computations, no model.

I might as well have said that the model presupposes a language. For, a little
prodding will show that the representational system assumed by items 8–12
must share a number of the characteristic features of real languages. This is a
point to which I shall return at considerable length in chapters 2 and 3. Suffice
it to point out here just two of the properties that the putative system of repre-
sentations must have in common with languages properly so-called (e.g., with
natural languages).

In the first place, an infinity of distinct representations must belong to 
the system. The argument here is precisely analogous to the argument for the
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nonfiniteness of natural languages: Just as, in the latter case, there is no upper
bound to the complexity of a sentence that can be used to make a statement,
so in the former case, there is no upper bound to the complexity of the repre-
sentation that may be required to specify the behavioral options available to
the agent, or the situation in which he finds himself, or the consequences of
acting one way or another.

This is not, of course, to argue that the practical possibilities are literally
infinite. Just as there is a longest-sentence-that-anyone-can-utter, so there must
be a most-complex-situation-that-anyone-can-act-upon. The infinite capacity
of the representational system is thus an idealization, but it is not an arbitrary
idealization. In both cases, the essential point is the organism’s ability to deal
with novel stimulations. Thus, we infer the productivity of natural languages
from the speaker/hearer’s ability to produce/understand sentences on which he
was not specifically trained. Precisely the same argument infers the produc-
tivity of the internal representational system from the agent’s ability to
calculate the behavioral options appropriate to a kind of situation he has never
before encountered.

But productivity isn’t the only important property common to natural
languages and whatever system of representation is exploited in deciding what
to do. It is evident, for example, that the notion that the agent can represent
to himself salient aspects of the situations in which he finds himself presup-
poses that such familiar semantic properties as truth and reference are
exhibited by formulae in the representational system.3 We have been supposing
that, underlying the capacity for reasoned action, there must be a capacity for
the description of real and possible states of affairs. But the notions of descrip-
tion, truth, and reference are inseparable: Roughly, ‘D’ describes what ‘a’
refers to iff (‘Da’ is true iff a is D).

A similar line of thought shows that mechanisms for expressing intentional
properties will have to be available to the representational system. In partic-
ular, calculated action presupposes decisions between possible (but) nonactual
outcomes. So, the representational system recruited for the calculations must
distinguish between possible, nonactual states of affairs. Whether one ought
to do this by defining preference orderings over propositions (as traditional
treatments of intentionality would suggest) or over possible worlds (in the
manner of model-theoretic approaches to semantics) is a question I won’t even
attempt to deal with. My present point is just that some such mechanisms
must be available to the representational system, and for reasons quite parallel
to those that lead us to think that some such mechanisms are available to
natural languages.

I have assumed so far in this discussion that anyone reasonable will accept
that something like items 8–12 is essential to a theory of the psychology of
choice; what I have been doing is just spinning out some of the implications 
of that assumption. But, notoriously, the assumption isn’t true. Behaviorists, for
example, don’t accept that deciding is a computational process, so behavioristic
accounts of action can make do without postulating a system of internal rep-
resentations. I don’t propose to raise the general question of the adequacy of

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“THE LANGUAGE OF THOUGHT”

105



such accounts; it seems to me a dead issue. Suffice it to remark that, in light of
our discussion, some of the standard criticisms can be deepened.

It is a point often made against behaviorists that they seek a prima facie
implausible reduction of calculated actions to habits. The intended criticism
is usually that insofar as actions are viewed simply as trained responses to
environmental inputs the productivity of behavior is rendered unintelligible.
(For elaboration, see Chomsky, 1959.) But this is not the only thing wrong
with construing calculated behaviors as species of conditioned responses.
What everyone knows, but the behaviorist’s methodology won’t allow him to
admit, is that at least some actions are choices from among a range of options
contemplated by the agent. The behaviorist cannot admit this because he is
committed to describing actions as the effects of environmental causes. Since
only actual states of affairs can be causes, the-possibility-that-P cannot be
among the determinants of a response. But nor, however, can contemplations
of possibilities since, though they are presumably real events on any rational
ontology, they are not environmental events in the behaviorist’s proprietary
sense of that notion. Looked at either way, the behaviorist is methodologically
committed to denying what would seem to be self-evident: that we sometimes
act the way we do because that seems the best way to act given what we take
to be the options. In short, the behaviorist requires us to view considered
behaviors as responses to actual inputs, when what we want to do is view
them as responses to possible outcomes.

It is, conversely, one of the great advantages of computational theories of
action that they allow us to acknowledge what everybody knows: that deciding
what to do often involves considering what might turn out to be the case. To
assume a representational system which can distinguish among (viz., assign dif-
ferent representations to) distinct possible states of affairs is precisely to permit
oneself to view the behavior that is actually produced as a choice from among
those options that the agent regards as ‘live’. It is worth emphasizing that the
behaviorist literature offers no grounds for rejecting this immensely plausible
treatment except the reiterated assertion that it is, somehow, ‘unscientific’. So
far as I can tell, however, this amounts only to the (correct) observation 
that one cannot both say what it is plausible to say about actions and adhere
to a behavioristic methodology. So much the worse for the methodology.

It will have occurred to the reader that what I am proposing to do is resur-
rect the traditional notion that there is a ‘language of thought’ and that
characterizing that language is a good part of what a theory of the mind needs
to do. This is a view to which, it seems to me, much of the current psycho-
logical work on cognition bears a curious and mildly schizoid relation. On the
one hand, it seems to be implicit in almost every kind of explanation that cog-
nitive psychologists accept since, as I remarked above, most such explanations
treat behavior as the outcome of computation, and computation presupposes
a medium in which to compute. But, on the other hand, the assumption of 
such a medium is relatively rarely made explicit, and the pressing question to
which it leads – what properties does the system of internal representations
have – is only occasionally taken as the object of sustained research.
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I propose, as we go along, to consider a variety of types of evidence that
may bear upon the answer to that question. Before doing so, however, I want
to explore two more lines of argument which seem to lead, with a fair show
of inevitability, to the postulation of a language of thought as a precondition
for any sort of serious theory construction in cognitive psychology. My point
will be that not only considered action, but also learning and perception, must
surely be viewed as based upon computational processes; and, once again, no
computation without representation.

Let us first consider the phenomenon that psychologists sometimes call
‘concept learning’. I want to concentrate on concept learning not only because
it provides a useful illustration of our main thesis (cognitive processes are
computational processes and hence presuppose a representational system) but
also because the analysis of concept learning bears on a variety of issues that
will arise in later chapters.

To begin with, then, concept learning is one of those processes in which what
the organism knows is altered as a consequence of its experiences; in particular,
as a consequence of its interactions with the environment. But, of course, not
every case of an environmentally determined alteration in knowledge would
count as learning; a fortiori, not all such cases count as concept learning. So,
for example, aphasia is often environmentally induced, but catching aphasia
isn’t a learning experience. Similarly, if we could somehow induce knowledge
of Latin by swallowing blue pills, I suppose that that would be acquiring Latin
without learning it. Similarly, imprinting (see Thorpe, 1963) alters what the
organism knows as a consequence of its experiences, but is only marginally a
learning process if it is a learning process at all. A general theory of concept
learning is, at best, not a general theory of how experience affects knowledge.

There are, moreover, kinds of learning that very probably aren’t kinds of
concept learning.4 Rote learning is a plausible example (e.g., the learning of a
list of nonsense syllables. However, see Young, 1968). So is what one might
call ‘sensory learning’ (learning what a steak tastes like, learning what middle
C sounds like played on an oboe, and so forth). Very roughly, and just by way
of marking out the area of our concern, what distinguishes rote learning and
sensory learning from concept learning is that, in the former cases, what is
remembered of an experience typically exhausts what is learned from that
experience. Whereas concept learning somehow ‘goes beyond’ the experien-
tial data. But what does that mean?

I think that what concept learning situations have in common is funda-
mentally this: The experiences which occasion the learning in such situations
(under their theoretically relevant descriptions) stand in a confirmation rela-
tion to what is learned (under its theoretically relevant description). A short
way of saying this is that concept learning is essentially a process of hypoth-
esis formation and confirmation.5 The best way to see that this is so is to
consider the experimental paradigm in terms of which the concept learning
‘construct’ is, as one used to say, ‘operationally defined’.

In the typical experimental situation, the subject (human or infra-human)
is faced with the task of determining the environmental conditions under
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which a designated response is appropriate, and learning is manifested by S’s
increasing tendency, over time or trials, to produce the designated response
when, and only when, those conditions obtain. The logic of the experimental
paradigm requires, first, that there be an ‘error signal’ (e.g., reinforcement or
punishment or both) which indicates whether the designated response has been
appropriately performed and, second, that there be some ‘criterial property’
of the experimentally manipulated stimuli such that the character of the error
signal is a function of the occurrence of the designated response together with
the presence or absence of that property. Thus, in a simple experiment of this
kind, S might be asked to sort stimulus cards into piles, where the figures on
the cards exhibit any combination of the properties red and black with square
and circular, but where the only correct (e.g., rewarded) sorting is the one
which groups red circles with black squares. In such a case, the ‘designated
response’ is sorting into the positive pile and the ‘criterial property’ is red circle
or black square.

It is possible to use this sort of experimental setup to study the rate of learn-
ing as a function of any large number of variables: e.g., the character of the
criterial property; S’s ability to report the property in terms of which he is sort-
ing; the character of the error signal; the character of the relation (temporal,
statistical, etc.) between occurrences of the error signal and instantiations of
the criterial property; the character of the subject population (age, species,
intelligence, motivation, or whatever); and so on. Much of the experimental
psychology of learning in the last thirty years has been concerned with ringing
changes on the values of these variables; the paradigm has been central to the
work of psychologists who have little else in common as, say, Skinner and
Vygotsky.6

My present point is that there is only one kind of theory that has ever been
proposed for concept learning – indeed, there would seem to be only one kind
of theory that is conceivable – and this theory is incoherent unless there is a
language of thought. In this respect, the analysis of concept learning is like 
the analysis of considered choice; we cannot begin to make sense of the
phenomena unless we are willing to view them as computational and we
cannot begin to make sense of the view that they are computational unless we
are willing to assume a representational system of considerable power in which
the computations are carried out.

Notice, to begin with, that at any given trial t and in respect of any given
property P, the organism’s experience in the concept learning paradigm is
appropriately represented as a data matrix in which the rows represent trials
and the columns represent the performance of the designated response, the
presence or absence of P, and the character of the error signal.7 Thus:

Trial Designated response Property P present Value of error signal
performed

1 yes yes minus
2 no no minus
3 yes no plus
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Put this way, it seems clear that the problem the organism faces on trial t
is that of choosing a value of P for which, in the ideal case, the last column
of the matrix is positive when and only when the first two columns are, and
which is such that the matrix will continue to exhibit that correspondence for
any (reasonable) value of tn > t. This is the sense in which what is learned in
concept learning ‘goes beyond’ what is given in the experiential data. What
the organism has to do in order to perform successfully is to extrapolate a
generalization (all the positive stimuli are P-stimuli) on the basis of some
instances that conform to the generalization (the first n positive stimuli were
P-stimuli). The game is, in short, inductive extrapolation, and inductive
extrapolation presupposes (a) a source of inductive hypotheses (in the present
case, a range of candidate values of P) and (b) a confirmation metric such that
the probability that the organism will accept (e.g., act upon) a given value of
P at t is some reasonable function of the distribution of entries in the data
matrix for trials prior to t.

There are, of course, many many ways of fleshing out the details of this
kind of model. For example, there is plenty of reason to believe that the various
values of P are typically tested in a determinate order; indeed, that the choices
of P may be very subtly determined by the character of the P-values previ-
ously assessed and rejected and by the particular configuration of the data
matrix for those values. But, however the details go, what seems entirely clear
is that the behavior of the organism will depend upon the confirmation rela-
tion between the data and the hypothesis, so that accounts of its behavior will
require information about how, in the course of learning, the data and the
hypotheses are represented.

Why is this entirely clear? Fundamentally, because one of its distinguishing
characteristics of concept learning is the nonarbitrariness of the relation
between what is learned and the character of the experiences that occasion the
learning. (Compare the case of acquiring Latin by taking pills.) That is, what
a theory of concept learning has to explain is why it is experiences of xs which
are F (and not, say, experiences of xs which are G) that leads the organism,
eventually, to the belief that all the xs are F. We can explain that if we assume
(a) that the organism represents the relevant experiences as experiences of xs
which are F; (b) that one of the hypotheses that the organism can entertain
about its environment is the hypothesis that perhaps all xs are F; and (c) that
the organism employs, in the fixation of its beliefs, a rule of confirmation
which says (very roughly) that all the observed xs being F is, ceteris paribus,
grounds for believing that all the xs are F. To put it mildly, it seems unlikely
that any theory radically incompatible with items (a–c) could account for the
nonarbitrariness of the relation between what is learned and the experiences
that occasion the learning.8

In short, concept learning begs for analysis as involving the determination
of a confirmation relation between observed and extrapolated reward contin-
gencies, and this is already to commit oneself to a representational system in
which the observations and the candidate extrapolations are displayed and the
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degree of confirmation is computed. There is, however, also a more subtle way
in which inductive extrapolation presupposes a representational system, and
this point bears considering.

Inductive extrapolation is a form of nondemonstrative inference. For
present purposes this means that, at any given trial t, there will be indefinitely
many nonequivalent values of P that are ‘compatible’ with the data matrix up
to t. That is, there will be indefinitely many values of P such that, on all trials
prior to t, the designated response is rewarded iff P is exhibited by the stim-
ulus, but where each value of P ‘predicts’ a different pairing of responses and
rewards on future trials. Clearly, if the organism is to extrapolate from its
experiences, it will need some way of choosing between these indefinitely many
values of P. Equally clearly, that choice cannot be made on the basis of the
data available up to t since the choice that needs to be made is precisely among
hypotheses all of which predict the same data up to t.

This is a familiar situation in discussions of inductive inference in the phil-
osophy of science. The classic argument is due to Goodman (1965), who
pointed out that, for any fixed set of observations of green emeralds, both the
hypothesis that all emeralds are green and the hypothesis that all emeralds are
grue will be compatible with the data. (One way of defining a grue-predicate
is: An emerald is grue iff it is (in the data sample and green) or (not in the
data sample and blue).) It is part of Goodman’s point, however, that there are
indefinitely many ways of constructing predicates which share the counter-
inductive properties that grue exhibits. Since both hypotheses are compatible
with the data, the principle that distinguishes between them must appeal to
something other than observations of green emeralds.

The way out of this puzzle is to assume that candidate extrapolations of
the data receive an a priori ordering under a simplicity metric, and that metric
prefers ‘all xs are green’ to ‘all xs are grue’ as the extrapolation of any body
of data compatible with both.9 In the present case this means that the deci-
sion that a given value of P is confirmed relative to a given data matrix must
be determined not only by the distribution of entries in the matrix, but also
by the relative simplicity of P. This conclusion seems to be irresistible, given
the nondemonstrative character of the extrapolations involved in concept
learning. It has, however, immediate consequences for the general claim that
theories of concept learning are incoherent unless they presuppose that a repre-
sentational system is available to the organism.

The point is that, so far as anyone can tell, simplicity metrics must be sensi-
tive to the form of the hypotheses that they apply to, i.e., to their syntax and
vocabulary.10 That is, so far as anyone can tell, we can get an a priori ordering
of hypotheses only if we take account of the way in which the hypotheses are
expressed. We need such an ordering if we are to provide a coherent account
of the order in which values of P are selected in the concept learning situa-
tion. But this means that a theory of concept learning will have to be sensitive
to the way that the organism represents its hypotheses. But the notion of the
organism representing its hypotheses in one way or another (e.g., in one or
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another vocabulary or syntax) just is the notion of the organism possessing a
representational system.

In fact, this argument states the case too weakly. In the formalization of
scientific inference a simplicity metric distinguishes between hypotheses that
are compatible with the data but make different predictions for unobserved
cases. Our point, thus far, has been that the corresponding remarks presum-
ably hold in the special case where the hypotheses are P-values and the data
are the observed values of the error signal. There is, however, a respect in
which the case of scientific inference differs from the extrapolation involved
in concept learning. A simplicity metric used in the evaluation of scientific
theories is presumably not required to distinguish between equivalent hypoth-
eses. To put it the other way around, two hypotheses are identical, for the
purposes of formalizing scientific inferences, if they predict the same extrap-
olations of the data matrix and are equally complex. Pairs of hypotheses that
are identical in this sense, but differ in formulation, are said to be ‘notational
variants’ of the same theory.

There is ample evidence, however, that the a priori ordering of P-values
exploited in concept learning does distinguish between hypotheses that are, in
this sense, notational variants of each other; i.e., the ordering of P-values
imposes stronger constraints upon the form of hypothesis than simplicity
metrics do.

It is, for example, a standard finding the Ss prefer affirmative conjunctive
representations of the data matrix to negative or disjunctive representations.
(See Bruner et al., 1956.) Thus, subjects in the concept learning task will 
typically find it easier to learn to sort all the red triangles together than to
learn to sort together all things that aren’t triangles or all the things that are
either triangles or red. Yet, affirmative conjunctive hypotheses are interdefin-
able with negative disjunctive hypotheses; the subject who is choosing all and
only red triangles as instances of positive stimuli is ipso facto choosing all and
only things that are (not triangles or not red) as instances of the negative
stimuli.11 What makes the difference in the subject’s performance is which of
these choices he takes himself to be making; i.e., the way he represents the
choices. Ss who report an affirmative conjunctive hypothesis typically learn
faster than those who don’t.12 This is thoroughly intelligible on the assump-
tion that the same hypothesis can receive different internal representations and
that the subject’s a priori preferences are sensitive to such differences. But it
doesn’t seem to be intelligible on any other account.

We have been considering some of the ways in which viewing the concept
learning task as essentially involving inductive extrapolation commits one to
postulating a representational system in which the relevant inductions are
carried through. I think it is worth emphasizing that no alternative view of
concept learning has ever been proposed, though there are alternative vocab-
ularies for formulating the view just discussed. For example, many psycholo-
gists use the notion of habit strength (or strength of association) where I 
have used the notion of degree of confirmation of a hypothesis. But once it
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has been recognized that any such construct must be defined over candidate
extrapolations of a data matrix (and not over S–R pairings; see note 6) the
residual issue is entirely terminological. A theory which determines how habit
strength varies as a function of reinforcement (or which determines strength
of association as a function of frequency of association, etc.) just is an induc-
tive logic, where the confirmation function is articulated by whatever laws of
reinforcement/association are assumed.

Similarly, some psychologists would prefer to speak of a theory of atten-
tion where I have spoken of a theory which determines the order in which
P-values are tested. But again the issue is just terminological. A theory that
determines what the organism is attending to at t thereby predicts the stim-
ulus parameter that is extrapolated at t. It must therefore be sensitive to
whatever properties of the data matrix, and of the previously contemplated
hypotheses, affect the order in which P-values are tested, and to whatever a
priori ordering of P-values determines their relative complexity. Whether or
not one calls this a theory of attention, the function of the construct is precisely
to predict what extrapolations of the data matrix the organism will try and
in what order it will try them.

Finally, there are psychologists who prefer to describe the organism as
‘sampling’ the properties of the stimulus rather than as constructing hypoth-
eses abut which such properties are criterial for sorting. But the notion of a
property is proprietary in the former kind of theory. In the nonproprietary
sense of ‘property’, every stimulus has an infinity of properties an infinite
subset of which are never sampled. The properties that are sampled, on the
other hand, are of necessity a selection from those that the organism is capable
of internally representing. Given that, talking about sampling hypotheses
about those properties are two ways of making the same point.

To summarize: So far as anyone knows, concept learning is essentially
inductive extrapolation, so a theory of concept learning will have to exhibit
the characteristic features of theories of induction. In particular, concept
learning presupposes a format for representing the experiential data, a source
of hypotheses for predicting future data, and a metric which determines the
level of confirmation that a given body of data bestows upon a given hypoth-
esis. No one, so far as I know, has ever doubted this, though I suppose many
psychologists have failed to realize what it was that they weren’t doubting.
But to accept that learning which ‘goes beyond the data’ involves inductive
inference is to commit oneself to a language in which the inductions are carried
out, since (a) an inductive argument is warranted only insofar as the obser-
vation statements which constitute its premises confirm the hypothesis 
which constitutes its conclusion; (b) whether this confirmation relation holds
between premises and conclusion depends, at least in part, upon the form of
the premises and conclusion; and (c) the notion of ‘form’ is defined only for
‘linguistic’ objects; viz. for representations.

I shall close this chapter by pointing out that the same kinds of morals
emerge when one begins to think about the structure of theories of perception.
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To begin with, there is an obvious analogy between theories of con-
cept learning of the kind I have just been discussing and classical theories of
perception in the empiricist vein. According to the latter, perception is essen-
tially a matter of problem solving, where the form of the problem is to predict
the character of future sensory experience given the character of past and
current sensations as data. Conceived this way, models of perception have the
same general structure as models of concept learning: One needs a canonical
form for the representation of the data, one needs a source of hypotheses for
the extrapolation of the data, and one needs a confirmation metric to select
among the hypotheses.

Since some of the empiricists took their project to be the formalization of
perceptual arguments – viz., of those arguments whose cogency justifies our
knowledge claims about objects of perception – they developed fairly explicit
doctrines about the kinds of representations that mediate perceptual infer-
ences. It is possible (and it is in the spirit of much of the empiricist tradition)
to regard such doctrines as implying theories of the computational processes
that underlie perceptual integration. It is notorious, however, that in a number
of respects empiricist accounts of perceptual inferences make dubious psych-
ology when so construed. For example, the premises of perceptual inferences
were sometimes presumed to be represented in a ‘sense datum’ language whose
formulae were supposed to have some extremely peculiar properties: E.g. that
sense datum statements are somehow incorrigible, that all empirical statements
have a unique decomposition into sense datum statements; that each sense
datum statement is logically independent of any of the rest, and so on.

For many of the empiricists, the defining feature of this data language was
supposed to be that its referring expressions could refer only to qualia: If sense
datum statements were curious, that was because qualia were curiouser.
Conversely, the language in which perceptual hypotheses are couched was
identified with ‘physical object language’, thereby making the distinction
between what is sensed and what is perceived coextensive with the distinction
between qualia and things. Redescriptions of sensory fields in physical object
terms could mediate the prediction of future sensations because, on this view,
to accept a description of one’s experiences in a physical object language is
logically to commit oneself to (at least hypothetical) statements about experi-
ences yet to come. Roughly, sense datum statements provide inductive support
for physical object statements, and physical object statements entail statements
about further sensations. One thus accepts an ‘inductive risk’ in inferring from
sensations to perceptions, and the problem posed to the perceiver is that of
behaving rationally in face of this risk. That is, given a description of experi-
ence couched in the sensation language, he must somehow choose that
redescription in physical object terms which the experiences best confirm. Only
by doing so can he be rationally assured that most of the expectations about
future or hypothetical experiences to which his perceptual judgments commit
him are likely to be true.

If, in short, I describe my current experience in terms of color patches, tex-
tures, smells, sounds, and so forth, I do not commit myself to predictions about
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the character of my prior or future experiences. But if I describe it in terms of
tables and chairs and their logical kin then I am so committed since nothing
can be a table or chair unless it performs in a reasonably table-or-chair-wise
fashion across the time. So, if I claim that what I see is a table, I am (implic-
itly) going bond for its past and future behavior; in particular, I am issuing
guarantees about the sensations it will, or would, provide. So the story goes.

It is widely known that this account of perception has taken a terrific drub-
bing at the hands of epistemologists and Gestalt psychologists. It is hard, these
days, to imagine what it would be like for the formulae of a representational
system to be privileged in the way that formulae in the sense datum language
were supposed to be. Nor is it easy to imagine a way of characterizing qualia
which would make it turn out that one’s perceptual information is all medi-
ated by the sensing of them. Nor does it seem pointful to deny that what one
sees are typically things; not, in any event, if the alternative is that what one
sees are typically color patches and their edges.

This line of criticism is too well known to bear repeating here. I think that
it is clearly cogent. But I think, nevertheless, that the core of the empiricist
theory of perception is inevitable. In particular, the following claims about the
psychology of perception seem to me to be almost certainly true and entirely
in the spirit of empiricist theorizing:

1 Perception typically involves hypothesis formation and confirmation.
2 The sensory data which confirm a given perceptual hypothesis are typi-

cally internally represented in a vocabulary that is impoverished compared
to the vocabulary in which the hypotheses themselves are couched.

Before I say why I think these aspects of the empiricist treatment of percep-
tion are right, I want to say something brief about where I think the empiricists
went wrong.

I am reading the typical empiricist theory of perception as doing double
duty: as an account of the justification of perceptual beliefs and as a psych-
ology of the integration of percepts. I think it is clear that many of the empiri-
cists took their views this way. But it is also pretty clear that when a conflict
arose between what the psychology required and what the epistemology
appeared to, it was the demands of the latter that shaped the theory.

For example, the claim of incorrigibility for sense datum statements was
not responsive to any particular psychological insight, but rather to the
presumed need to isolate inductive risk at some epistemic level other than one
at which the data were specified. The idea was, roughly, that we could not
know physical object statements to be true unless we were certain of the data
for those statements, and we could not be certain of the data statements if it
is possible that some of them are false. Certainty is, as it were, inherited
upward from the data to the perceptual judgements they support. Similarly,
experiences of qualia have to be conscious events because the statements which
such experiences confirm are the premises for arguments whose conclusions
are the physical object statements we explicitly believe. If such arguments are
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to be our justification for believing such statements, their premises had better
be available for us to cite.

This is, very probably, mostly muddle. Justification is a far more pragmatic
notion that the empiricist analysis suggests. In particular, there is no reason
why the direction of all justificatory arguments should be upward from epis-
temologically unassailable premises. Why should not one of my physical object
statements be justified by appeal to another, and that by appeal to a third, and
so on? What justificatory argument requires is not that some beliefs be unques-
tionable but at most that some of them be (de facto) unquestioned. What 
can’t be done is to justify all my beliefs at once. Well, what can’t be done can’t
be done.

But while I think that the notion of the direction of justification is largely
confused, the notion that there is a direction of information flow in percep-
tion is almost certainly well taken, though the arguments are empirical rather
than conceptual.

To begin with, it seems clear that causal interactions between the organism
and its environment must contribute to the etiology of anything one would
want to call perceptual knowledge. Insofar as this is right, there is a good deal
of empirical information available about the character of these interactions.

So far as anybody knows, any information that the organism gets about its
environment as a result of such interactions must be mediated by the activity
of one or another sensory mechanism. By a sensory mechanism, I mean one
which responds to physical properties of environmental events. By a physical
property I mean one designated by a natural kind term in some (ideally
completed) physical science (for the notion of a natural kind term, see the
second part of the introduction). What mediated by comes to will take some
explaining, but as a first approximation I mean that the operation of a sensory
mechanism in responding to a physical property of an environmental event 
is an empirically necessary condition for the organism’s perception of any
property of that environmental event.

Suppose, for example, that we think of a sensory mechanism as represented
by a characteristic function, such that the value of the function is 1 in any case
where the mechanism is excited and 0 otherwise. Then, so far as anyone
knows, we can develop a theory which predicts the values of that function
across time only if we take into account the physical properties of inputs to
the mechanism. And we can predict the perceptual analysis that the organism
will assign a given environmental event only if we know which physical prop-
erties of that event the sensory mechanisms of the organism have responded
to. (Thus, for example, to predict the state of excitation of the human audi-
tory system, we need information about the spectrum analysis of impinging
wave forms. And to predict the sentence type to which an utterance token will
be perceptually assigned, we must know at least which auditory properties 
of the utterance have been detected.)

I want to stress that this is an empirical fact even though it is not a surpris-
ing fact. We can imagine an organism (say an angel or a clairvoyant) whose
perceptual knowledge is not mediated by the operation of sensory mechanisms; 
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only, so far as we know, there are no such organisms, or, if there are any, 
psychologists have yet to find them. For all the known cases, perception is
dependent upon the operation of mechanisms whose states of excitation can
be predicted from physical descriptions of their input and not in any other way.

Viewed in terms of information flow, this means that a sensory mechanism
operates to associate token physical excitations (as input) with token physical
descriptions (as output); i.e., a sensory mechanism is a device which says ‘yes’
when excited by stimuli exhibiting certain specified values of physical para-
meters and ‘no’ otherwise.13 In particular, it does not care about any property
that environmental events fail to share so long as the events have the relevant
physical properties in common, and it does not care about nonphysical prop-
erties that environmental events have in common so long as they fail to share
the relevant physical properties. In this sense, the excitation of a sensory mech-
anism encodes the presence of a physical property. (If the auditory system is
a mechanism whose states of excitation are specific to the values of frequency,
amplitude, etc., of causally impinging environmental events, then one might
as well think of the output of the system as an encoded description of the
environment in terms of those values. Indeed, one had better think of it this
way if one intends to represent the integration of auditory percepts as a
computational process.) But if this is true, and if it is also true that whatever
perceptual information the organism has about its environment is mediated
by the operation of its sensory mechanisms, it follows that perceptual analyses
must somehow be responsive to the information about values of physical
parameters of environmental events that the sensory mechanisms provide.14

That, I suppose, is the problem of perception insofar as the problem of
perception is a problem in psychology. For though the information provided
by causal interactions between the environment and the organism is informa-
tion about physical properties in the first instance, in the last instance it may
(of course) be information about any property the organism can perceive the
environment to have. To a first approximation, the outputs of sensory mech-
anisms are appropriately viewed as physical descriptions, but perceptual
judgments need not be articulated in the vocabulary of such descriptions.
Typically they are not: A paradigm perceptual judgment is, ‘There’s a robin
on the lawn’ or ‘I see by the clock that it’s time for tea’.

It is, I take it, an empirical question whether psychological processes are
computational processes. But if they are, then what must go on in perception
is that a description of the environment that is not couched in a vocabulary
whose terms designate values of physical variables is somehow computed on
the basis of a description that is couched in such a vocabulary. Presumably
this is possible because the perceptual analysis of an event is determined not
just by sensory information but also by such background knowledge as the
organism brings to the task. The computational processes in perception are
mainly those involved in the integration of these two kinds of information. I
take it that that is what is left of the classical empiricist view that perception
involves the (non-demonstrative) inference from descriptions couched in a
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relatively impoverished language to conclusions couched in a relatively unim-
poverished one.

Almost nothing is left of the empiricist epistemology. For example, the
perceptually pertinent description of sensory information is not given in the
theory-free language of qualia but rather in the theory-laden language of
values of physical parameters. (This is a way of saying what I said above: that,
so far as anyone knows, the only way of providing a reasonably compact
account of the characteristic function for a sensory mechanism is by taking its
inputs under physical description.) Hence, there is no reason to believe that
the organism cannot be mistaken about what sensory descriptions apply in
any given case. For that matter, there is no reason to believe that organisms
are usually conscious of the sensory analyses that they impose.

This distinction – between the notion of a sensory mechanism as the source
of a mosaic of conscious experiences out of which percepts are constructed 
(e g., by associative processes) and the notion of the senses as transducers of
such environmental information as affects perceptual integration – is now
standard in the psychological literature. It is stressed even by such psycholo-
gists as Gibson (1966), whose approach to perception is not, on the whole,
sympathetic to the sort of computational views of psychology with which 
I am primarily concerned. For Gibson, perception involves the detection of
invariant (typically relational) properties of impinging stimulus arrays. He
apparently assumes that any percept can be identified with such an invariant
if only the relevant property is sufficiently abstractly described.15 But, though
Gibson denies that percepts are constructed from conscious sensory data, he
does apparently hold that the presence of the relevant stimulus invariant must
be inferred from the information output by sensory transducers.

. . . I will distinguish the input to the nervous system that evokes
conscious sensation from the input that evokes perception. . . . For it is
surely a fact that detecting something can sometimes occur without the
accompaniment of sense impressions. An example is the visual detection
of one thing behind another. . . . But this does not mean that percep-
tion can occur without stimulation of receptors; it only means that
organs of perception are sometimes stimulated in such a way that they
are not specified in consciousness. Perception cannot be . . . without
input; it can only be so if that means without awareness of the visual,
auditory, or other quality of the input. An example of this is the ‘obstacle
sense’ of the blind, which is felt as ‘facial vision’ but is actually auditory
echo detection. The blind man ‘senses’ the wall in front of him with-
out realizing what sense has been stimulated. In short there can be 
sensationless perception, but not informationless perception. (p. 2)

Thus, even for psychologists who think of perceptual distinctions as 
distinctions between (abstract) stimulus invariants, the problem of how such
invariants are themselves detected needs to be solved; and it appears that
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solving it requires postulating the same sorts of inferences from inputs that
empiricist theories assumed. The difference is mainly that contemporary
psychologists do not assume that the computations, or the data over which
they are defined, must be consciously accessible.16

It is worth emphasizing that the claim that the outputs of sensory mecha-
nisms are, in general, not consciously accessible is supposed to be an empirical
result rather than a truth of epistemology. There is, for example, quite good
empirical evidence that an early representation of a speech signal must specify
its formant relations.17 Yet speaker/hearers have no conscious access to
formant structure and, for that matter, very little conscious access to any other
acoustic property of speech. It is, in fact, very probably a general truth that,
of the various redescriptions of the input that underlie perceptual analyses, the
degree of conscious accessibility of a representation is pretty well predicted by
the abstractness of its relation to what the sensors specify. This is the kind of
point that such philosophers as Cassirer have had in mind when they remark
that we ‘hear through’ an utterance of a sentence to its meaning; one is much
better at reporting the syntactic type of which an utterance is a token than at
reporting the acoustic properties of the token, and one is much better at
reporting those syntactic features which affect meaning than those which
don’t. One might put it that one does not hear the formant relations in utter-
ances of sentences even though one does hear the linguistic relations and the
formant structure (inter alia) causally determines which linguistic relations one
hears. Of course, which descriptions are consciously accessible is to some
extent labile. Artists and phoneticians learn consciously to note properties of
their sensory experience to which the layman is blind and deaf. This fact is by
no means uninteresting.

Where we have gotten to is that the etiology of perceptual analyses involves
a series of redescriptions of the environment, and that the initial description
in this series specifies perceptually relevant physical properties of the environ-
ment. Perception must involve hypothesis formation and confirmation because
the organism must somehow manage to infer the appropriate task-relevant
description of the environment from its physical description together with
whatever background information about the structure of the environment 
it has available. Notoriously, this inference is nondemonstrative: There is typi-
cally no conceptual connection between a perceptual category and its sensory
indicants; an indefinite number of perceptual analyses will, in principle, 
be compatible with any given specification of a sensory input.18 On this
account, then, perceptual integrations are most plausibly viewed as species of
inferences-to-the-best-explanation, the computational problem in perceptual
integration being that of choosing the best hypothesis about the distal source
of proximal stimulations.

There is, in short, an enormous problem about how to relate the conditions
for applying physical descriptions so the conditions for applying such descrip-
tions as ‘time for tea’. My present point is that the computational capacities
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of the organism must constitute a solution to such problems insofar as its
perceptual judgments are (a) mediated by sensory information, and (b) true.

It is time to draw the moral, which will by now sound familiar. If one
accepts, even in rough outline, the kind of approach to perception just
surveyed, then one is committed to the view that perceptual processes involve
computing a series of redescriptions of impinging environmental stimuli. But
this is to acknowledge that perception presupposes a representational system;
indeed, a representational system rich enough to distinguish between the
members of sets of properties all of which are exhibited by the same event. 
If, for example, e is a token of a sentence type, and if understanding/percep-
tually analyzing e requires determining which sentence type it is a token of,
then on the current view of understanding/perceptually analyzing, a series 
of representations of e will have to be computed. And this series will have to
include, and distinguish between, representations which specify the acoustic,
phonological, morphological, and syntactic properties of the token. It will
have to include all these representations because, so far as anybody knows,
each is essential for determining the type/token relation for utterances of
sentences. It will have to distinguish among them because, so far as anyone
knows, properties of sentences that are defined over any one of these kinds 
of representation will, ipso facto, be undefined for any of the others.

We are back to our old point that psychological processes are typically
computational and computation presupposes a medium for representing the
structures over which the computational operations are defined. Instead of
further reiterating this point, however, I shall close this part of the discussion
by making explicit two assumptions that the argument depends upon.

I have claimed that the only available models for deciding, concept learning,
and perceiving all treat these phenomena as computational and hence presup-
pose that the organism has access to a language in which the computations
are carried through. But, of course, this argument requires taking the models
literally as at least schemata for explanations of the phenomena. In particular,
it requires assuming that if such a model attributes a state to an organism,
then insofar as we accept the model we are ontologically committed to the
state. Now many philosophers do not like to play the game this way. They are
willing to accept computational accounts of cognitive processes if only for lack
of viable theoretical alternatives. But the models are accepted only as façons
de parler, some reductionist program having previously been endorsed.

As I remarked in the introduction, I cannot prove that it is impossible to
get the force of computational psychological theories in some framework
which treats mental states as (e.g.) behavioral dispositions. But I think it is fair
so say that no one has ever given any reason to believe that it is possible, and
the program seems increasingly hopeless as empirical research reveals how
complex the mental structures of organisms, and the interactions of such struc-
tures, really are. I have assumed that one oughtn’t to eat the cake unless one
is prepared to bite the bullet. If our psychological theories commit us to a
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language of thought, we had better take the commitment seriously and find
out what the language of thought is like.

My second point is that, while I have argued for a language of thought,
what I have really shown is at best that there is a language of computation;
for thinking is something that organisms do. But the sorts of data processes 
I have been discussing, though they may well go on in the nervous systems 
of organisms, are presumably not, in the most direct sense, attributable to the
organisms themselves.

There is, obviously, a horribly difficult problem about what determines
what a person (as distinct from his body, or parts of his body) did. Many
philosophers care terrifically about drawing this distinction, and so they
should: It can be crucial in such contexts as the assessment of legal or moral
responsibility. It can also be crucial where the goal is phenomenology: i.e., the
systematic characterization of the conscious states of the organism.19 But
whatever relevance the distinction between states of the organism and states
of its nervous system may have for some purposes, there is no particular reason
to suppose that it is relevant to the purposes of cognitive psychology.

What cognitive psychologists typically try to do is to characterize the
etiology of behavior in terms of a series of transformations of information.
Roughly speaking, information is said to be available to the organism when
the neural event which encodes it is one of the causal determinants of the
behavior of the organism. ‘Behavior’ is itself construed broadly (and intu-
itively) to include, say, thinking and dreaming but not accelerating when you
fall down the stairs.

If one has these ends in view, it turns out (again on empirical rather than
conceptual grounds) that the ordinary distinction between what the organism
does, knows, thinks, and dreams, and what happens to and in its nervous
system, does not seem to be frightfully important. The natural kinds, for
purposes of theory construction, appear to include some things that the
organism does, some things that happen in the nervous system of the organism,
and some things that happen in its environment. It is simply no good for
philosophers to urge that, since this sort of theory does not draw the usual
distinctions, the theory must be a muddle. It cannot be an objection to a theory
that there are some distinctions it does not make; if it were, it would be an
objection to every theory. (Aristotelians thought that it was an argument
against the Galelean mechanics that it did not distinguish between sublunary
and heavenly bodies; that its generalizations were defined for both. This line
of argument is now widely held to have been ill-advised.)

In short, the states of the organism postulated in theories of cognition would
not count as states of the organism for purposes of, say, a theory of legal or
moral responsibility. But so what? What matters is that they should count as
states of the organism for some useful purpose. In particular, what matters is
that they should count as states of the organism for purposes of constructing
psychological theories that are true.
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To put this point the other way around, if psychological theories fail to
draw the usual distinctions between some of the things that happen to organ-
isms and some of the things that organisms do, that does not imply that
psychologists are committed to denying that there are such distinctions or 
that they should be drawn for some purposes or other. Nor does it imply that
psychologists are (somehow, and whatever precisely this may mean) com-
mitted to ‘redrawing the logical geography’ of our ordinary mental concepts.
What is implied (and all that is implied) is just that the distinction between
actions and happenings isn’t a psychological distinction. Lots of very fine
distinctions, after all, are not.20

Notes

1 I am not supposing that this is, in any technical sense, a necessary truth. But I
do think it is the kind of proposition that it would be silly to try to confirm (or
confute) by doing experiments. One can (just barely) imagine a situation in which
it would be reasonable to abandon the practice of appealing to an organism’s
beliefs in attempts to account for its behavior: either because such appeals had
been shown to be internally incoherent or because an alternative theoretical appa-
ratus had been shown to provide better explanations. As things stand, however,
no such incoherence has been demonstrated (the operationalist literature to the
contrary notwithstanding) and no one has the slightest idea what an alternative
theoretical option would be like (the operationalist literature to the contrary
notwithstanding). It is a methodological principle I shall adhere to scrupulously
in what follows that if one has no alternative but to assume that P, then one has
no alternative but to assume that P.

2 It is not, of course, a sufficient condition for the rationality of behavior that
processes like items 8–12 should be implicated in its production. For example,
behaviors so mediated will generally be irrational if the beliefs involved in item
10 are superstitions, or if the preferences involved in item 11 are perverse, or if
the computations involved in items 9–12 are grossly unsound. Nor, so far as I
can see, do items 8–12 propose logically necessary conditions upon the ratio-
nality of behavior. To revert to the idiom of the introduction, the conceptual story
about what makes behavior rational presumably requires a certain kind of corre-
spondence between behavior and belief but doesn’t care about the character of
the processes whereby that correspondence is effected; it is, I suppose, logically
possible that angels are rational by reflex. The claim for items 8–12, then, is just
that they or something reasonably like them – are empirically necessary for
bringing about a rational correspondence between the beliefs and the behaviors
of sublunary creatures. The short way of saying this is that items 8–12 propose
a (schematic) psychological theory.

3 I use the term ‘formulae’ without prejudice for whatever the vehicles of internal
representation may turn out to be. At this point in the discussion it is left open
that they might be images, or semaphore signals, or sentences of Japanese. Much
of the discussion in succeeding chapters will concern what is known about the
character of internal representations and what can be inferred about it from what
is known of other things.
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4 I regard this as an empirical issue; whether it’s true depends on what, in fact,
goes on in the various learning processes. It might turn out that the mechanism
of concept learning is the general learning mechanism, but it would be a surprise
if that were true and I want explicitly not to be committed to the assumption that
it is. We badly need – and have not got – an empirically defensible taxonomy of
kinds of learning.

5 This analysis of concept learning is in general agreement with such sources as
Bruner, Goodnow, and Austin (1956), as is the emphasis upon the inferential char-
acter of the computations that underlie success in concept learning situations.

6 Though Skinner would not, perhaps, like to see it put this way. Part of the radical
behaviorist analysis of learning is the attempt to reduce concept learning to ‘dis-
crimination learning’; i.e., to insist that what the organism learns in the concept
learning situation is to produce the designated response. It seems clear, however,
that the reduction ought to go the other way around: The concept learning para-
digm and the discrimination learning paradigm are the same, but in neither is the
existence of a designated response more than a convenience to the experimenter;
all it does is provide a regimented procedure whereby S can indicate which 
sorting he believes to be the right one as a given stage in the learning process.

This is, I take it, not a methodological but an empirical claim. It is clear on
several grounds that concept learning (in the sense of learning which categoriza-
tion of the stimuli is the right one) can, and usually does, proceed in the absence
of specific designated responses – indeed, in the absence of any response at all.
Nature addicts learn, I’m told, to distinguish oaks from pine trees, and many of
them probably do so without being explicitly taught what the distinguishing
criteria are. This is true concept learning, but there is no distinctive response
that even nature addicts tend to make when and only when they see an oak.

There is, in fact, plenty of experimental evidence on this point. Tolman (1932)
showed that what a rat learns when it learns which turning is rewarded in a T-
maze is not specific to the response system that it uses to make the turn. Brewer
(to be published), in a recent survey of the literature on conditioning in human
beings, argues persuasively that the designated response can usually be detached
from the criterial stimuli simply by instructing the subject to detach it (‘From
now on, please do not sort the red circles with the black squares’). It is, in short,
simply not the case that learning typically consists of establishing connections
between specific classes of stimuli and specific classes of responses. What is the
case is (a) that S can often use what he has learned to effect a correspondence
between the occurrence of criterial stimulation and the production of a desig-
nated response; (b) that it is often experimentally convenient to require him to
do so, thereby providing a simple way for E so determine which properties of the
stimuli S believes to be criterial; and (c) that Ss will go along with this arrange-
ment providing that they are adequately motivated to do so. Here as elsewhere,
what the subject does is determined by his beliefs together with his preferences.

7 One might, ideally, want a three-valued matrix since, on any given trial, the
organism may not have observed, or may have observed and forgotten, whether
the designated response was performed, whether P was present, or what the 
value of the error signal was. This is the sort of nicety which I shall quite gener-
ally ignore. I mention it only to emphasize that it is the organism’s internal
representation of its experiences (and not the objective facts about them) that is
immediately implicated in the causation of its behavior.
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8 I have purposely been stressing the analogies between the theory of inductive
confirmation and the theory of the fixation of belief. But I do not intend to endorse
the view (which examples like item (c) might suggest) that the confirmation of
universal hypotheses in science is normally a process of simple generalization
from instances. For that matter, I do not intend to endorse the view, embodied
in the program of ‘inductive logic’, that confirmation is normally reconstructable
as a ‘formal’ relation between hypotheses and data. On the contrary, it appears
that the level of confirmation of a scientific hypothesis is frequently sensitive to
a variety of informal considerations concerning the overall economy, plausibility,
persuasiveness and productivity of the theory in which the hypothesis is
embedded, to say nothing of the existence of competing theories.

It may well be that the fixation of belief is also sensitive to these sorts of ‘global’
considerations. Even so, however, the prospects for a formal theory of belief seem
to me considerably better than the prospects for an inductive logic. To formalize
the relation of inductive confirmation, we should have to provide a theory which
picks the best hypothesis (the hypothesis that ought to be believed), given the
available evidence. Whereas, to formalize the fixation of belief, we need only
develop a theory which, given the evidence, picks the hypothesis that the organ-
ism does believe. To the extent that this cannot be done, we cannot view learning
as a computational process; and it is, for better or for worse, the working assump-
tion of this book that computational accounts of organisms will not break down.

9 I take it that this is common ground among philosophers of science. Where they
disagree is on how to characterize the difference between predicates like grue
(which the simplicity metric doesn’t like) and predicates like green (which it
does), and also, on how to justify adopting a simplicity metric which discriminates
that way.

10 Notions like entrenchment, for example, are defined over the predicates of a
science, if ‘green’ is more entrenched than ‘grue’, that is presumably because
there are laws expressed in terms of the former but no laws expressed in terms
of the latter. (For discussion, see Goodman, 1965.) One could, of course, try to
avoid this conclusion by defining simplicity, entrenchment, and related notions
for properties (rather than for predicates). But even if that could be done it would
seem to be a step in the wrong direction: Insofar as one wants psychological
processes to turn out to be computational processes, one wants the rules of
computation to apply formally to the objects in their domains. Once again: my
goal in this book is not to demonstrate that psychological processes are compu-
tational, but to work out the consequences of assuming that they are.

11 The point is, of course, that ‘choosing’ is opaque in the first occurrence and trans-
parent in the second. Perhaps it’s not surprising that what is chosen opaquely is
chosen under a representation.

12 For example, Wason and Johnson-Laird (1972) describe an experiment in which
Ss were, in effect, presented with data matrices and required to articulate the
appropriate extrapolations. The basic prediction, which was confirmed, was that
‘concepts which were essentially conjunctive in form would be easier to formu-
late than concepts which were essentially disjunctive in form, and that whenever
a component was negated there would be a slight increase in difficulty’ (p. 70).
They note that the order of difficulty that they obtained by asking the subject to
state the relevant generalization ‘conforms to the order obtained when subjects
have to learn concepts in the conventional manner’ (p. 72), i.e., in the concept
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learning task. The point to notice is that, since conjunction is interdefinable with
negation and disjunction, no concept is, strictly speaking, essentially conjunctive
or essentially disjunctive. Strictly speaking, concepts don’t have forms, though
representations of concepts do. What Wason and Johnson-Laird mean by a
conjunctive concept is, as they are careful to point out, just one which can be
expressed by a (relatively) economical formula in the representational system that
the subject is using (in the present case, in English). What the experiment really
shows, then, is that the employment of such a representation facilitates the
subject’s performance; hence that formulations of a hypothesis which are, in 
the sense described above, mere notational variants of one another, may never-
theless be differentially available as extrapolations of a data matrix.

13 For purposes of exposition, I am ignoring the (serious) empirical possibility that
some or all sensory mechanisms have output values between 0 and 1. Problems
about the ‘digitalness’ of the various stages of cognitive processing are at issue
here; but, though these problems are interesting and important, they don’t affect
the larger issues. Suffice it to say that the question is not just whether the outputs
of sensory mechanisms are continuous under physical description, but rather
whether intermediate values of excitation carry information that is used in later
stages of processing. I don’t know what the answer to this question is, and I don’t
mean to preclude the possibility that the answer is different for different sensory
modalities.

14 It bears emphasizing that the present account of sensory systems, like most of
the psychological theorizing in this chapter, is highly idealized. Thus, ‘from the
physical point of view the sensory receptors are transducers, that is, they convert
the particular form of energy to which each is attuned into the electrical energy
of the nerve impulse’ (Loewenstein, 1960). But, of course, it does not follow that
the sensors are perfect transducers, viz., that their output is predictable just from
a determination of the impinging physical energies. On the contrary, there is
evidence that any or all of the following variables may contribute to such deter-
minations.

i. Cells in sensory systems exhibit a characteristic cycle of inhibition and
heightened sensitivity consequent upon each firing. The effects of impinging
stimuli are thus not independent of the effects of prior stimulations unless the
interstimulus interval is large compared to the time course of this cycle.

ii. Cells on the sensory periphery may be so interconnected that the excita-
tion of any of them inhibits the firing of the others. Such mutual ‘lateral’ inhibition
of sensory elements is usually interpreted as a ‘sharpening’ mechanism; perhaps
part of an overall system of analog-to-digital conversion. (See Ratliff, 1961.)

iii. At any distance ‘back’ from the periphery of the sensory system one is likely
to find ‘logic’ elements whose firing may be thought of as coding Boolean func-
tions of the primary transducer information. (See Lettvin et al., 1961; Capranica,
1965.)

iv. There may be central ‘centripetal’ tuning of the response characteristics
of the peripheral transducers, in which case the output of such transducers may
vary according to the motivational, attentional, etc. state of the organism.

v. Cells in the sensory system exhibit ‘spontaneous’ activity; viz., firing which
is not contingent upon stimulus inputs.

A sensory transducer may thus diverge, in all these respects, from the ideal
mechanisms contemplated in the text; nor do I wish to claim that this list is
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complete. But for all that, the main point holds: Insofar as the environment does
contribute to the etiology of sensory information, it is presumably only under phys-
ical description that the uniformities in its contribution are revealed.

Equivalently for these purposes: Insofar as the activity of sensory mechanisms
encodes information about the state of the environment, it is the physical state
of the environment that is thus encoded.

15 The status of the claim that there are stimulus invariants corresponding to
percepts is unclear. On one way of reading it it would seem to be a necessary
truth: Since ‘perceive’ is a success verb, there must be at least one invariant
feature of all situations in which someone perceives a thing to be of type t; viz.,
the presence of a thing of type t. On the other hand, it is a very strong empirical
claim that, for any type of thing that can be perceived, there exists a set of phys-
ical properties such that the detection of those properties is plausibly identified
with the perception of a thing of that type. This latter requires that the distinc-
tion between things of type t and everything else is a physical distinction, and,
as we saw in the introduction, that conclusion does not follow just from the
premise that t-type objects are physical objects.

The issue is whether there are physical kinds corresponding to perceptual kinds
and that, as we have been saying all along, is an empirical issue. My impression
of the literature is that the correspondence fails more often than it holds; that
perception cannot, in general, be thought of as the categorization of physical
invariants, however abstractly such invariants may be described. (For a discus-
sion of the empirical situation in the field of speech perception, cf. Fodor et al.,
1974.)

16 Gibson sometimes writes as though the problem of how the (presumed) stimulus
invariants are detected could be avoided by distinguishing between the stimulus
for the sensory transducers (viz., physical energies) and the stimulus for the
perceptual organs (viz., abstract invariants). But this way trivialization lies. If one
is allowed to use the notion of a stimulus so as to distinguish the input to the
retina (light energy) from the input to the optic system (patterns of light energy
which exhibit invariances relevant, e.g., to the explanation of perceptual constan-
cies), why not also talk about the stimulus for the whole organism (viz.,
perceptibles)? Thus, the answer to ‘How do we perceive bottles?’ would go: ‘It is
necessary and sufficient for the perception of a bottle that one detect the pres-
ence of the stimulus invariant bottle.’ The trouble with this answer (which, by
the way, has a curiously Rylean sound to my ears) is, of course, that the problem
of how one detects the relevant stimulus invariant is the same problem as how
one perceives a bottle, so no ground has been gained overall.

What this shows, I think, is not that the psychological problem of perception
is a muddle, but that stating the problem requires choosing (and motivating) a
proprietary vocabulary for the representation of inputs. I have argued that the
vocabulary of values of physical parameters is appropriate on the plausible
assumption that sensory transducers detect values of physical parameters and
that all perceptual knowledge is mediated by the activity of sensory transducers.

17 I have been assuming that the representations of an environmental event that are
assigned in the course of perceptual analysis are computed serially. Actually, a
weaker assumption will do: viz., that at least some information about physical
parameters normally ‘gets in’ before any higher-level representations are com-
puted. I don’t suppose this is a claim that any psychologist would wish to deny.
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18 Hence the possibility of perceptual illusions. For a discussion of perception that
runs along the lines I have endorsed, see Gregory (1966) or Teuber (1960).

19 It is, of course, quite unclear whether the latter undertaking can be carried
through in any very revealing way. That will depend upon whether there are gener-
alizations which hold (just) for conscious mental states, and that depends in turn
on whether the conscious states of an organism have more in common with one
another than with the unconscious states of the nervous system of the organism.
It is, in this sense, an open question whether conscious psychological states
provide a natural domain for a theory, just as it is an open question whether, say,
all the objects in Minnesota provide a natural domain for a theory. One can’t have
theories of everything under every description, and which descriptions of which
things can be generalized is not usually a question that can be settled a priori.
I should have thought that, since Freud, the burden of proof has shifted to those
who maintain that the conscious states (of human beings) do form a theoretical
domain.

20 These remarks connect, in obvious ways, with the ones that concluded the intro-
duction: The various intellectual disciplines typically cross-classify one another’s
subject matter.
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8

G. Rey, “A Not ‘Merely Empirical’ 
Argument for a Language of Thought”

I

The “Language of Thought” (“LOT”) hypothesis (“LOTH”) is the hypoth-
esis that thinking involves states that have (semantically valuable) logico-
syntactic constituents that are causally available to the thinker.1 It has been
advanced in recent decades largely as an empirical hypothesis about the 
character of much human cognition. While this kind of defense of that hypoth-
esis is perfectly reasonable and, I think, very promising, it has the unfortunate
side-effect of inviting philosophers to regard the hypothesis as “merely empir-
ical,” a kind of Rube-Goldberg conjecture showing (perhaps contrary to
Descartes) how a material mind conceivably might work, but not a serious
hypothesis about how one actually does (much less must) work. Questions of
this latter sort are the business of (“mere”) psychologists and computer
scientists, not philosophers.

Now, there are, to be sure, “merely empirical issues” in discussions of mind,
as in any concrete domain, issues that can be settled only by going out and
looking: for example, what strategies people actually use in reasoning, the 
fallacies to which they are susceptible, how their amygdalas are implicated in
anger. But there are also theoretical issues in this domain, as in any other, which
I submit are not happily classified as either “purely philosophical” or “merely
empirical.” They are a mixed bag of methodological reflections, very general
constraints on possible theories, and commitments that may turn out to run
fairly deep in our understanding of the world. For example, the atomic theory
of matter, the theory of natural selection, the theory of genetic inheritance:
these theories strike me as too deep to be classified as “merely empirical.” For
no notion of “observation,” however loose and theory-laden, do we just
“observe” them to be true. But nor do they all seem to be establishable “by
pure reason alone.” We can imagine some of them being false; they may even
be possibly false. Mere imaginings and possibilities, however, can come to seem
idle and uninteresting the more we appreciate the fundamental role these
hypotheses play in our general theories and taxonomies of the world.2

The LOTH strikes me as just such a case in point. Although there are many
“merely empirical” considerations that can be marshalled on its behalf, there
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are also deeper ones that should not be so regarded. Some philosophers, e.g.
Maloney (1989), Davies (1991), Lycan (1993), have already proposed some a
priori-style arguments (Lycan calls his “deductive”), to many parts of which
I’m quite sympathetic. I worry, though, that the premises of their arguments
may not be all that a priori or unproblematic, and that, in any case, they may
be far too strong for many readers.3 In §II of this paper I want to advance
what I believe to be, if not an a priori, at least a not “merely empirical” argu-
ment of my own, based on weaker premises. Whether it is in fact a priori –
whether the premises are in some sense analytic or apodeictic or otherwise
“philosophical” – is not something I want to decide here. For reasons I discuss
elsewhere (Rey 1993), these further philosophical distinctions seem to me
highly theoretic ones, whose clarification seems to me to await a more detailed
psychology than we yet possess. But I do think the argument I will present is
close to many that have been regarded as “purely philosophical” in the past,
and is, I hope, based upon extremely weak premises that most anyone on a
little reflection ought to accept.

One thing I hope to accomplish by providing such an argument is to indi-
cate just how weak and natural the LOTH need be. Many discussions of the
LOTH make it seem as though the issue is whether people are Turing
machines; or whether thought isn’t often imagistic; whether people’s everyday
mental processes are “formal” and abstract in the fashion of symbolic logic,
or somehow more ingrained in their understanding of real examples; whether
our brains have a “classical” von Neumann architecture or a connectionist/
“dynamical” one. Many of these questions do turn on quite specific empirical
details about which a philosopher need and perhaps ought not make any
claims. In §III I will show how my argument frees the LOTH from a stand on
these further issues, and so can tolerate much of the evidence and argument
that has been raised by connectionists and others against a Classical View. It
may well be that many people’s actual mental processes involve images,
metaphors, analogies and all manner of computational tricks, as well as
massive parallel processing that is distributed far and wide in the brain. My
argument will try to establish only that, if people are genuinely thinking things,
they must also have available to them the resources of an LOT.

There is afoot, however, a general resistance to any philosophical (or not
“merely empirical”) conjectures about the internal structures of our brains, a
resistance that has its roots in Twentieth Century abhorrence of philosophy
committing itself to any substantive claims about the world. This has resulted
in what I call a “superficialism” about mental concepts that is evident in 
much phenomenological, behavioristic and even more recent “commonsense”
accounts of such concepts. In §IV I shall argue that the arguments on behalf
of these accounts are fallacious, and that they miss the important, internal
explanatory role that the phenomena picked out by many mental concepts are
designed to play. If this is true, then it can be no objection to my argument
for LOTH that it involves speculations about internal structures that are 
ordinarily hidden from view.
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II Argument T

What might be called “the argument from thought” – what I will call “argu-
ment T” – proceeds as follows:

1 There are thinking things (e.g. oneself) that are capable of rational
thought, involving at least first-order logical thought.

2 Anything that is capable of rational thought is capable of making logical
transitions in thought; i.e. it is psychologically possible that it pass from
one thought to another by virtue of logical properties of its thought.

3 First-order logical properties are in part constituted by (semantically valu-
able) logico-syntactic constituent structure.

4 For transitions between thoughts to occur by virtue of logico-syntactic
constituent structure, those constituents must be causally available
features of the thinker.

From these premises, it follows that:

5 A thinking thing is a thing some of whose states have (semantically valu-
able) logical syntactic constituents that are causally available to the
thinker.

and so:

6 There are things (e.g. oneself) some of whose states have (semantically
valuable) logico-syntactic constituents that are causally available to it, i.e.
there are things whose states entoken sentences in a LOT.

The essential idea is that one can know that there are things (e.g. oneself) that
have a language of thought almost as well as one can know that there are
things (e.g. oneself) that are capable of processes of logical thought. I shall
discuss the premises one by one.

Premise (1) There are thinking things (e.g. oneself) that are capable 
of rational thought, involving at least first-order logical
thought.

‘Thinking’ can, of course, be used in a loose sense for most any mental process,
but presumably a system qualifies for this loose sense only if it is capable of
thought in some more specific sense, a sense we often capture ordinarily when
we contrast thinking with mere dreaming, free association, rote memorization.
At least part of what I think we mean to capture by this more specific sense
is rational thought, or reasoning (and unless otherwise noted I shall have this
sense in mind in my uses of ‘thought’, ‘thinking’ and related forms4).

So understood, premise (1) should, of course, be acceptable to anyone the
least bit moved by Descartes. Although he didn’t have the resources of modern
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logic, I take it he and his followers would think those resources do capture an
essential core of the thoughts of which he thought himself capable by virtue
of being a thinking thing – even if they don’t capture them all. This core
includes at least some truth-functional (e.g., “Either I exist or I don’t exist”)
and some quantificational thoughts (e.g., “If I exist, then something exists”).5

To be sure, Descartes regarded (at least his personal instance of) premise
(1) as an absolute certitude on which he hoped to base a great deal of the rest
of his knowledge. Argument T has no such ambitions, and can even treat
premise (1) as dubitable, at least in principle, even by a live and thinking thing.
There might, for example, be some specific feature of the concept [thinking]
that could turn out to be problematic (we shall see in discussing the next
premise what one such feature might be); or it may be that no intentional
notion is scientifically or metaphysically respectable. Many philosophers and
radical connectionist opponents of the LOTH have, of course, taken this latter
view. For example, Daniel Dennett (1978) defines mental (or “intentional”)
systems as being “stance relative”:

What do two people have in common when they both believe that snow
is white? I propose this:

(x)(x believes snow is white iff x can be predictively
attributed the belief that snow is white). (1978: xvii)

reiterating a little later: “There is no objectively satisfiable sufficient condition
for an entity’s really having beliefs” (1978: 285). Fine: this then simply denies
premise (1), that anything is a thinking thing – that anything (e.g. oneself)
really is one.6 The present argument is not addressed to such a person. But I
do presume that such a view is extremely implausible, shown to be so by the
overwhelming failure of eliminativist efforts (e.g. methodological behaviorism)
to explain obvious regularities in much human and animal behavior.7 That’s
at least one reason on which one could rely to reassure oneself of premise (1).
In any case, if you like, assume premise (1) merely for the sake of my argu-
ment (and, if not yourself; since perhaps you find the relevant regularities more
easily observable in others, use some other example you find more plausible).

Premise (2) Anything that is capable of rational thought is capable of
making logical transitions in thought; i.e. it is psychologi-
cally possible that it pass from one thought to another by
virtue of logical properties of its thought.8

The claim here is that it is not enough that a thinking thing have logical
thoughts: it must be at least capable of undergoing a particular sort of process
(or set of processes). At this point in the development of psychology it would
be rash to try to specify precisely what the process(es) must be, as rash as it
would have been to try to specify exactly the relevant processes that count 
as digestion or metabolism prior to an adequate theory of physiology. But, as
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would have been true in the case of digestion, it’s not impossible to suggest
some plausible necessary conditions.9

Rational thought has something to do with reasoning, reasoning with the
provision of reasons; and, as I’ve already suggested in premise (1), the core
cases of reasons are provided by logic. But, contrary to behaviorism,10 not just
any process that produces as output logical consequences of input premises
would count as thinking or reasoning. As the contrast with rote memoriza-
tion and free association suggests, someone who merely memorized steps of a
proof, or associated premises with conclusions as one does “salt” with
“pepper,” is not someone who is thinking in our non-loose sense, i.e. genuinely
reasoning. Nor would it do for the process to consist of merely a “look-up”
procedure, whereby a table was consulted in which sentences were paired, one
by one, with some consequences.11 What these examples strongly suggest is
that, in a case of genuine thinking, it must also be possible for the thought of
the consequences to have come about in a certain way by virtue of the thought
of the premises; and, then, not by virtue of just any arbitrary property of the
premises – say, a certain pattern of rhyme – but by virtue of their logical prop-
erties. It would certainly seem to be the most basic fact about thinking things
that they are things that are sensitive to such properties.12 Transitions between
thoughts that occur by virtue of the logical properties I shall call “logical tran-
sitions.” If something were psychologically incapable of making any such
logical transitions, it is hard to see what point there would be in regarding it
as a genuinely thinking thing, as opposed to something that, like the objects
of Dennett’s stances, could be conveniently or instrumentally so regarded.

There are, of course, heaps of problems with spelling out just what the nice
phrase “by virtue of” means. I do presume that it is metaphysically legitimate,
that premise (2) is as intelligible as “He died by virtue of inhaling the smoke,
not by virtue of being consumed by the flames (had there been no smoke he
would have escaped in time).” Whatever problems attach to such a phrase, I
assume, however, that they are in no way peculiar to the mental, or beg the
question of the LOTH. Although I won’t hazard a general account, perhaps
what I have in mind will become clearer by discussion of related cases, both
here and in the discussion of the other premises (particular premise (4)).

Consider, at least by way of analogy, Davidson’s (1963) similar insistence
on a distinction between real and mere rationalized reasons:

[A] person can have a reason for an action, and perform the action, and
yet this reason not be the reason why he did it. Central to the relation
between a reason and an action it explains is the idea that the agent
performed the action because he had the reason. (1963/79: 9)

In a later article, Davidson (1973/80) observes that a lot here depends upon
the way in which a reason brings about an act:

A climber might want to rid himself of the weight and danger of holding
another man on a rope, and he might know that by loosening his hold
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on the rope he could rid himself of the weight and danger. This belief
and want might so unnerve him as to cause him to loosen his hold, and
yet it might be the case that he never chose to loosen his hold, nor did
he do it intentionally. (1973/80: 79)

I leave to premise (4) the question whether the ‘because’ in the previous quote,
and the ‘cause’ in this one actually involve physical causation. The point of
the present premise is merely that, however we spell out the ultimate meta-
physics, we want to preserve a quite specific way in which mental states come
about (to put it neutrally) by virtue of other states: otherwise we would seem
to have no basis for claiming something was the real reason for an act.
Similarly, premise (2) could be seen to be based on the insistence of a distinc-
tion between genuine and only apparent thinking: a genuine thinking thing is
something that is able to enter into a process of genuine, and not merely
apparent thought, i.e. a process whose results depend in the right way upon
the logical properties of the thoughts involved.

Davidson (1973/80: 80) himself despairs of spelling out the appropriate way
that would distinguish genuine intentional action from the behavior of the
climber. And we might readily agree that there may be no a priori way of
doing so. But our confidence that there is a difference may be justified even
though we don’t know how to specify it. We may, after all, be in the position
with respect to the distinction between the intentional and unintentional that
Grice (1961/65) urged we were in with regard to perception, and Putnam
(1975) argued we were in with regard to other explanatorily interesting
distinctions, e.g. between chemical kinds, where we leave “a blank space to
be filled in by the specialist” (Grice (1961/65: 463).

Someone could insist, however, that there is a usage of ‘believe’ and ‘desire’
that is indifferent to any facts about how any states come about. This was, of
course, the view of analytic behaviorism; but it might also, less dramatically,
be the view of a decision theorist, who might be interested in merely the
thoughts – the beliefs and preferences – agents have at specific points in time,
irrespective of how they happened to arrive at them. Predictions about game
play or market behavior might be derivable from such an abstract theory, and
even be illuminating about many regularities in those domains. Such systems
might be said to “have thoughts” without actually “thinking”; we might call
them mere “thoughters,” not thinkers. Now, I don’t know whether such crea-
tures are genuinely possible; but it’s not hard to see why decision theorists
often might not care which they are dealing with.

What is good for behaviorism and decision theory, however, may not be
enough for premise (1), which is the claim that there are genuinely thinking
things.13 As I’ve emphasized, that claim (and, I submit, most of our interest
in psychology) seems to be committed not merely to individual attitude states,
but to the character of the processes by which those states can and sometimes
do come about.
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Premise (3) First-order logical properties are in part constituted by
(semantically valuable) logico-syntactic constituent structure.

Substantial support for this premise is, of course, provided by the enormous
success of so-called “formal” methods in logic.14 For example, at least a core
set of logical truths (e.g. ‘P v ~P’, ‘Fa ⊃ (∃x)Fx’, ‘(∃x)(y)Rxy ⊃ (y)(∃x)Rxy’)
can be shown to be so by virtue of the way in which their semantically valu-
able constituents – e.g. predicates, operators – are syntactically composed. So
far as we know, this kind of account is the only adequate kind of account of
logical thoughts that we have (cf. Maloney 1989: 7).

There is an interesting question about how to characterize precisely the class
of formalisms necessary to capture quantificational theory. In addition to the
usual Frege/Peano/Russell and Polish notation(s), there is the lambda calculus,
Tarski’s cylindrical algebras, and the variableless, combinatory logic of Curry
and Feys (1958).15 I venture that what is essential to all such formalisms is
that they involve a set of operators (such as connectives, quantifiers, abstrac-
tors) that operate in an ordered way on the referential devices of the language
(such as predicates, variables, singular terms): the sentences of such systems
involve specific orderings of operators and referential devices; the logical truths
are those sentences whose truth does not depend upon the reference of the
referential devices. It is these orderings of such constituents that constitute
what I have been calling “logico-syntactic structure.” The burden of premise
(3) is that such structure is not an accidental feature of logical properties.

Note that this premise is relying only on logical properties of thoughts being
constituted by logico-syntactic structure. Though it seems to me a perfectly
natural assumption that those properties (though not depending upon the
reference of the referential devices) are also semantic, the present argument
does not require their being so. Certainly premise (1) would be ordinarily
understood as entailing that there are things with contentful states. But if one
wanted to insist, as does Stich (1983), that syntax is determinate but seman-
tics is not, the whole of argument T could be read as establishing only a
syntactic LOTH.16

There are some (e.g. Stalnaker 1984) who might claim that it is really
propositions that have entailments, and that it is the inclusion relations among
them, not logico-syntactic form that is relevant. Now, if propositions are
construed as sets of possible worlds, as Lewis and Stalnaker propose, then
such an account will not distinguish logical truths and entailments from other
necessary truths and (strictly speaking) valid arguments, as might arise in
mathematics or (given necessary constitutions) even chemistry. In any case, we
would still be owed an account of how it is possible for thoughts to give rise
to other states by virtue of their logical structure, if that logical structure were
confined to patterns among possible worlds alone (I will consider a more
sentential account of propositions in defending premise (4)).

A possibility that many find attractive is that thought might have no logical
syntax at all: images, maps, diagrams would suffice. Thus, David Lewis (1994)
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argues that our ordinary talk of thought is not committed to being seriously
language-like, involving logico-syntactic constituents, but could be merely
maplike:

A serious issue, and one on which I take folk psychology to be agnostic,
concerns the relation between the whole and the parts of a representa-
tion. Suppose I have a piece of paper according to which, inter alia,
Collingwood is east of Fitzroy. Can I tear the paper up so that I get one
snippet that has exactly the content that Collingwood is east of Fitzroy,
nothing more and nothing less? If the paper is covered with writing
maybe I can; for maybe ‘Collingwood is east of Fitzroy’ is one of the
sentences written there. But if the paper is a map, any snippet according
to which Collingwood is east of Fitzroy will be a snippet according to
which more is true besides. . . . If our beliefs are ‘a map . . . by which we
steer’, as Ramsey said . . . then they are to that extent not language-like.
(1994: 422)

But surely Ramsey’s remark was only intended as a useful metaphor; just how
thoughts about non-spatial matters could literally be maps is left entirely
unclear. Indeed, it is revealing that Lewis considers here only a case of a logi-
cally simple 2-place spatial predication, such as ‘Collingwood is east of
Fitzroy.’ He is certainly right that in such a case a map might suffice as a repre-
sentation instead of a sentence with a logico-syntactic structure, and that one
indication of that fact would be the lack of a specific propositional content to
assign a specific representation. Indeed, such maps might well afford a way 
of capturing certain systematicities: they can represent Collingwood as east of
Fitzroy iff they can represent Fitzroy as east of Collingwood. And perhaps
many thoughts that people have are representable by maps and other sorts of
imagistic representations in this way. But premises (1) and (2) include quan-
tificational thoughts, and transitions between them by virtue of their logical
structure: how are we to exploit maps or images for such a purpose unless we
can also represent those thoughts as possessing logico-syntactic structure?
How are maps alone to represent negations, conditionals, nested quantifica-
tions, modals, and the combinations of them that are required for the logical
transitions demanded by premises (1) and (2)? In any case, until someone
provides an imagistic system of logic as expressively powerful as a logico-
syntactic one, I submit we are entitled to suppose that premise (3) captures a
deep fact about the nature of logical properties.

Premise (4) For transitions between thoughts to occur by virtue of
logico-syntactic constituent structure, those constituents
must be causally available features of the thinker.

So far as premises (1)–(3) are concerned, we could be talking about the
thinking capacities of angels. The further question arises as to how ordinary
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mortals, creatures in space and time, can make such transitions between states
by virtue of logical structure. Descartes, of course, was skeptical that any
material object could make such transitions:

it is morally impossible that a machine should contain so many varied
arrangements as to act in all the events of life in the way that reason
enables us to act. (1637/1954: 42).

But his skepticism was begun to be met by Alan Turing, when he supplemented
Frege’s and Russell’s work with his account of mechanical computation of,
inter alia, logical functions.

But while Turing might be regarded as having shown how a spatio-temporal
device might possibly manage to think, he can’t be taken to have shown how
something must think. And I don’t intend to offer any such apodeictic argu-
ment here. But I do think, continuing with the reasoning I’ve advanced so far,
that there is the following not “merely empirical” thing to be said.

For the question arises as to how, given the kind of physical/causal world
in which we live, we are to make sense of premise (2): how can one thing
happen “by virtue of” something else, if not as a result of physical causation?
In particular, insofar as it must be possible for states to arise by virtue of the
logical structure of thought, and, by premise (3), that structure involves seman-
tically valuable syntactic constituents, it would certainly seem as if those
constituents had better be causally efficacious.

In the very passages of Davidson (1963/79, 1973/80) that we already cited
on behalf of premise (2), it is clear that Davidson presumes that the only way
to e.g. distinguish a real from a rationalized reason is by relying on physical
causation. But, ironically enough, those and other later writings might suggest
to someone that one could understand the “by virtue of” (and “because”)
claims of premise (2) not as involving causal relations between states, but
simply a conceptually constitutive relation imposed by the demands of
intentional interpretation. After all, Davidson insists:

If we cannot find a way to interpret the utterances and other behavior
of a creature as revealing a set of beliefs largely consistent and true by
our own standards, we have no reason to count that creature as rational,
as having beliefs, or as saying anything. (1973/84: 137)

Depending upon precisely how one spells out “largely consistent and true by
our own standards,” someone’s being prepared to make logical transitions
might be regarded as simply constitutive of their having any thoughts at all.17

But such a constitutive “by virtue of” claim has the agent already believing
the logical consequences of any belief merely by virtue of having it: the agent
doesn’t have to do, or be disposed to engage in any sort of process of thought.
But it was precisely the possibility of a particular process of thought to which
I have argued premise (2) commits us. Of course, if the constitutive claim is
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to be understood as also involving just such a possibility, then it is simply
another way of expressing premise (2) – a far stronger way, one should note,
than argument T or the LOTH requires. If it doesn’t commit us to a process,
then, I submit, we are back to a form of Dennett’s instrumentalism, or, again,
merely to thoughters, not thinkers.18

But thoughts could be causally efficacious without their constituents being
so. The objects of thoughts could be identified with merely abstract objects
that have syntactic structure – indeed, merely type sentences, say, in some
preferred language of the theorist, who then simply pairs states of people onto
them: a person’s thought that a is F is to be paired to the structure type [Fa];
her thought that something is F, with [(∃x)Fx]. The (interpreted) sentence with
which the person’s state is associated could be regarded as providing the
content of that state. And the theorist might claim that for there to be “a
logical transition between these states in virtue of form” is for there simply to
be a law relating the paired states by reference to those structured entities: e.g.
whenever someone is in a state paired to [Fa], she makes a transition to a state
paired to [(∃x)Fx]. And so, for her to be a thinking thing, it is enough that it
is psychologically possible for her transitions to be governed by such a law.
On this view, it would appear that there is no need for the logico-syntactic
constituents of those thoughts to be causally available.19

This view would seem, however, to fail to capture the kind of “by virtue
of” claim that is reasonably intended in premise (2). Consider again Davidson’s
“climber” case: it might be a law about the climber that whenever he finds he
wants to loosen his hold this so unnerves him that he does so; but that still
presumably wouldn’t make the loosening deliberate. Similarly, in the case of
reasoning, not only do we want to rule out accidental transitions in thought,
we want to rule out even non-accidental transitions that occur in the wrong
way. Merely some nomological association between one thought and another
that happens to be a consequence of it doesn’t constitute genuine logical
thinking: a student who merely memorizes some of the consequences of a claim
may well make transitions in thought capturable by a law relating sentences;
but he isn’t engaged thereby in genuine logical thought. Or imagine that we
condition a young child to think and say “Two” whenever he sees that his cat,
Alice, is purring, to say “Three” whenever he sees that anything is purring,
and, where both are to be said, to attend first to Alice, and say “Two.”
Suppose, indeed, such a pattern of conditioning were applied across a wide
variety of cases (dogs, people, teddy bears). If it were successful, there would
be a law relating the child’s thought states that would refer to the syntactic
structure of the sentences that express the contents of the child’s states: for a
wide range of values of ‘P’ and ‘a’, whenever the child thinks [Pa] he then
thinks [(∃x)Px]. But the transitions here would not occur by virtue of the
logico-syntactic properties of these thoughts. The child might never notice that
Alice’s purring entails that something is purring. We can even suppose that the
child’s inferential ability is too poor even to unself-reflectively sustain the infer-
ence (imagine the child is quite retarded, though still conditionable). So merely
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satisfying the law would not seem to be a way of satisfying the transition
condition of premise (2). In this sort of case it is extremely difficult to see 
how to capture the requisite right way by virtue of which an event is brought
about without appealing to the right sort of causal chains: such causal details
would seem to supply precisely the very fine-grained distinctions needed 
to distinguish both Davidson’s climber from someone more culpable, and 
our conditioned child from someone more genuinely thoughtful. If premise (3)
is correct, these causal details will quite plausibly include logico-syntactic
properties.20

Someone might reply that, for such a child, the proposed pairing to pred-
icative sentences isn’t the right one; rather, it ought to be something more
holophrastic like “Alice-purrs” and “It-purreth” (like “It-raineth,” cf. Quine
1960: ch 2). But note that (1) there would still be a law relating the child’s
states that did advert to sentences paired with those states; and (2) in order
to insist on the right pairing, distinguishing among necessarily equivalent
sentences, one would presumably need to ascertain just which inferences the
child was disposed to make; which is just to concede that there merely being
a law relating states characterizable by sentences isn’t sufficient for the tran-
sitions between those states to count as genuine inference, i.e. genuine
thinking, indeed, not even for having the genuine thought at all! What is
required for that? Well, it would certainly seem that the only way to motivate
a structured vs. merely holophrastic content would be for the constituents of
the structure to be causally available to the agent. So premise (4) is established
merely with a detour through a theory of content.

Aficionados of the literature in this area will recognize in the example of 
the child a thinly disguised version of Smolensky’s (1991: 212ff.) proposed 
codings of mental states as tensor product sums.21 As he points out (p. 225fn7),
such a coding is like Gödel numbering of logical formulae, but with the 
possible advantage that the transitions between the states that realize the code
needn’t depend upon any of the coded state’s logical constituents being 
causally efficacious.22 However, what the above examples strongly suggest is
that, insofar as such codings are possible, the transitions that would occur 
on their basis would not count as logical transitions in the sense of premise (2):
they wouldn’t occur by virtue of logical structure. Of course, along the lines of
the previous paragraph, a genuine thinker might exploit such a procedure as a
perhaps economical heuristic, much as a medieval monk might recall the
Barbara Celarent mnemonic in deciding whether a syllogism was valid, or
someone might report the cosine of an angle by looking it up in a book. But if
a creature could only make transitions between thoughts in this way and could-
n’t also do it by exploiting logical properties (i.e., by premise (3), constituent
structure), then it would no more be a thinking thing than would a student
who could only do logic by the mnemonics be capable of logic, or someone
who could only look up cosines in a table be competent at trigonometry.

Note that premise (4) does not require that the logico-syntactic constituents
be constituents of the very thought state itself: someone might think that Alice
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is purring merely by using an image of a smiling cat, or a Gödel number or a
sum of tensor products. What is required is that, insofar as this state is capable
of entering into logical transitions, there be available to the agent the requi-
site constituents.23 The agent would have to be able to move from the image
of the smiling cat to representations with the logico-syntactic structure
required for logical thought (or from the Gödel numbers or tensor products
to their factors).

In any event, a defender of the complete dispensibility [sic] of causally effi-
cacious constituents owes us some account of how, without them, genuine
thought is to be distinguished from merely a behavioristic simulation. What
constraint, if any, is being placed on internal processing? Need there be no
connection between thought and reasoning, between reasoning and the
thinking of reasons, or between the thinking of reasons and logical proper-
ties? Again, we would seem to be left with no distinction between thinkers
and mere “thoughters.”

The conclusions

The above premises entail:

5 A thinking thing is a thing some of whose states have (semantically 
valuable) logical syntactic constituents that are causally available to the
thinker.

which, in conjunction with premise (1), that there are thinking things, entails:

6 There are things (e.g. oneself) some of whose states have (semantically
valuable) logico-syntactic constituents that are causally available to it, i.e.
there are things whose states entoken sentences in a LOT.

For example, my thought that I think is capable of giving rise to the thought
that something thinks by virtue of the fact that ‘I think’ has a certain struc-
ture, the constituents of which, ‘I’ and ‘think’, are both semantically valuable
and causally efficacious. The LOTH is in this way very nearly as plausible as
Descartes’ cogito, or, at any rate, that claim, and the claim that thinking
involves logical transitions that are essentially capturable by logico-syntactic
structure.

III What argument T doesn’t show

It is important to see what Argument T does not establish.
(1) Argument T is not committed to the usual claims about systematicity,

productivity and generality of thought that other authors – e.g. Fodor and
Pylyshyn (1988), Davies (1991), Lycan (1993) – have emphasized on behalf
of the LOTH. That is, my argument does not require that, for any thought
someone can think, she can think it iff she can think all logical permutations
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of it (systematicity), or all logical combinations of it and other thoughts, no
matter how long and complex (productivity, generality). Although I think there
is in fact quite a sufficiency of instances to warrant the LOTH on these
grounds, I suspect there are limits: we’re notoriously dreadful at understanding
certain sorts of iterated nestings of especially the same operator (negations,
modals, propositional attitudes), and it’s by no means clear that everyone can
really understand arbitrary combinations of concepts that they understand
separately (e.g.[Space–time is curved]; [The world is 11-dimensional], [The
reddish thing is greenish]).24 In any case, if argument T is sound, a defender
of the LOTH need not be committed to a stand on these questions.

(2) T does not entail that we are Turing Machines (i.e. that our psychology
is best regarded as a realization of one). In arguing for premise (3), I relied on
Turing’s work to establish that logical features are mechanically computable,
and that, given my other premises, anything that could think must have causal
access to logical constituents. But a person could be a lot less than a Turing
machine for that to be true (for example, there might be nomologically deter-
mined limitations on her memory); and, of course, she conceivably might even
have access to a great deal more: perhaps some methods of computation of
which such people as Penrose (1989: ch 4) dream, when they dream that
Gödel’s theorem shows we aren’t Turing machines. In any case, T is certainly
not committed to supposing that our mental architecture remotely resembles
that of a Turing Machine, or a von Neumann architecture, or any determin-
istic or serial automaton. LOTH presents only a quite weak constraint on
possible architectures, viz. that logico-syntactic properties be causally effica-
cious; and this is compatible with an indefinitely rich variety of architectures,
for example, ones that might implement those properties in connectionist
and/or massively parallel processors.

(3) T does not establish that all or even most ordinary mental activities
involve an LOTH. The above argument rests upon premises about the capac-
ities or, in Chomsky’s phrase, competencies of a creature, not its actual
activities or performance. For all that T establishes, everyone might in reality
use short-cut heuristics that save them the effort of genuine thought, just as
most of us use simple mnemonic algorithms, not careful deductive reasoning,
in doing our daily sums.

The word ‘process’ that I have used to describe thinking might of course
mislead in this connection: it might appear as though I am committing the
LOTH to claims about actual processing and performance. However, my claim
is not that all, or even most, or, come to think of it, even any of our actual
mental processes of thought involve logical transitions; only that, insofar 
as they are processes of thought, that they involve states for which it is at 
least psychologically possible that they are capable of entering into logical
transitions. Someone’s being a thinking thing requires that she be capable of
undergoing certain processes of thought, not that she ever actually has or ever
will (most people, after all, may well “live lives of quiet desperation”
performing mindless connectionist tasks).25
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This point – a Chomskyean insistence on competence instead of perform-
ance – seems to me to get missed so often in the connectionist debate that it
is worth pounding the table a bit about it. Van Gelder and Niklasson (1994),
for example, recently attack systematicity, claiming that the well-known
“selection task” data of Wason (1966) belie Fodor and Pylyshyn’s (1988) claim
that minds are systematic: people seem to understand “All Fs are Gs,” but not
to infer from it that “All not Gs are not Fs.”

Put aside the question of whether this latter failure has actually anything
to do with systematicity.26 Van Gelder and Niklasson do consider interpreting
Fodor and Pylyshyn’s systematicity claims as making a claim about an agent’s
competence, but make the startling claim that

Fodor and Pylyshyn explicitly declined to rely on competence/perform-
ance distinctions, acknowledging that the hypothesis of ideal competence
was held in suspicion in the opposing camp (connectionists). (1994: 908)

But this misreads Fodor and Pylyshyn’s concession. They claim that system-
aticity “doesn’t require the idealization to unbounded competence” (Fodor
and Pylyshyn 1988, p. 37, italics mine), not that it doesn’t require idealiza-
tion to any sort of competence at all! Of course, it does; as does any interesting
claim about the mind’s abilities.

(4) Given then that the LOTH, and certainly the premises of T, are claims
only about a certain competence, they are compatible with proposals that:

(a) People often exploit the resources of “images, prototypes, schemata,
semantic frames, metaphors and metonymy” (Johnson 1993: 152; see also
Kosslyn 1980). They may – indeed they should – use whatever works. The
only constraint demanded by (T) is that, insofar as the agent is a genuine
thinker, she had better have available to her the constituents required for
logical transitions;

(b) In particular, people may well often reason according to “models,” and
not by employing the predicate calculus. Thus, Johnson-Laird claims:

The models that people use to reason are more likely to resemble percep-
tion or conception of the events (from a God’s-eye view) than a string
of symbols directly corresponding to the linguistic form of the premises
and then applying rules of inference to them in order to derive a conclu-
sion. (1983: 53–4)

Now, it’s not altogether clear what contrast Johnson-Laird means to be 
drawing here: even if people don’t ordinarily use the Frege/Russell predicate
calculus in reasoning syllogistically, they presumably have to use some mechan-
ical, representational medium when they “perceive or conceive” events. But it
may well be that people often reason far more efficiently by mapping state-
ments in some logico-syntactic formalism to some imagistic system, perhaps 
a spatial-reasoning module that happens to be especially efficient in human
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beings and other navigating animals. The only commitment of argument T 
and the LOTH is that such heuristics do not exhaust people’s reasoning abili-
ties: in order to be thinking things they must also be capable of making the
transitions by virtue of logico-syntactic structures as well;

(c) Much pattern recognition and other mental processes may be due to a
connectionist – even “dynamical” – architecture. As many have pointed out,
connectionism could afford an implementation of an LOT; but even where it
didn’t, such processes might well co-exist and interact with LOT states. Indeed,
for rapid statistical analyses, connectionist systems seem quite plausible.27

IV Resisting the lure of superficialism

I have been concerned to show in this paper how the LOTH can be regarded
as a consequence of quite weak and plausible assumptions about what it is to
be a thinking thing. But, against all of these assumptions, it might be felt that
there is an even weaker and more plausible idea, that there mustn’t be anything
“hidden” about the mind: the application of folk mental concepts should be
exhausted by the evidence of introspection and/or overt behavior. I call this
view “superficialism,” in contrast to the kind of “internalist” account I have
been urging here, and fear it is endemic to much 20th Century thought about
the mind.28 One finds it not only in introspectivist and behaviorist approaches
to the mind, but even, as we saw in discussing premise (4), lurking in recent
connectionist proposals.

Superficialism can be motivated in a number of ways: an extreme verifica-
tionist theory of meaning; a philosophical reluctance to speculate about the
structure of the brain or, indeed, to make any substantive, possibly false claims
about the world.29 But it can also be motivated by a quite tenacious intuition
emphasized by many philosophers concerning the ordinary irrelevance of any
facts about the brain, given our ordinary ignorance about it, and what would
appear to be our liberality in what we might count as thinking things. Imagine
a person who behaved in a way genuinely indistinguishable from a normal
person, but whose skull turned out to be empty or full of oatmeal, or whose
processing were very different from ours: would we really claim that such a
creature had no mental life? In a recent article, Jackson and Pettit (1993: 304),
for example, have argued that our ordinary psychological idiom couldn’t be
committed to “a distinctive style of information processing,” since

it would be unduly chauvinistic, to insist that in order to count as a
believer a creature must solve the informational processing problems a
world sets its inhabitants in the same general way that we do, or in
anything like the way we do . . . but any science-fiction buff knows that
our concept of belief does not thereby preclude [differently constructed]
Vesuvians from having beliefs, say, about the location of objects around
them. (1993: 304–5)
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Leaving aside for a moment, the vagaries of the phrase “information
processing,” it’s instructive to become clear about what precisely “any science-
fiction buffs knows.” Why should we suppose that it makes no difference to
our mental concepts what goes on at any psychological level that might be
hidden in the brain? As I noted earlier in citing Davidson (1973/80) and Grice
(1961/65) in defense of premise (2), distinctions between genuine and merely
apparent intentional action and perception, seem to depend upon speculations
about hidden causal connections in the brain. Other examples abound: spon-
taneous vs. feigned feelings, insincerity vs. self-deception, strong wills vs. weak
appetites, courage vs. foolishness, distraction vs. inconsideration:30 these
distinctions plausibly can occur duly in systems organized in a certain way,
and would seem to depend upon distinctions among very specific sorts of
causal processes. This was, of course, the claim of premises (2) and (4) with
regard to thinking.

But what then about people (or Vesuvians) whose behavior is indistin-
guishable from ours but whose skulls are empty or full of oatmeal? It’s open
to the internalist simply to claim that those structures must be hidden else-
where than in the usual place: maybe it’s in their toes, or in some yet
unexamined special ghost stuff. In some cases, of course, such as beings
remotely controlled from Mars or Block’s (1990) “Blockhead,” it is in fact
perfectly open to the internalist to claim that such beings don’t really have any
minds at all.

So is argument T an a priori argument after all? There is this reason to think
it isn’t: if it really were to turn out that none of even what we take to be the
best examples of logical thought in human beings actually involved an LOT,
then that would be some reason to begin to doubt the LOTH.31 We would be
in something like the position of ancients learning that fire just wasn’t any sort
of “substance,” nor stars any sorts of holes. Thus, if it were to turn out that it
really was oatmeal in all our heads that was responsible for (what appeared 
to be) our thoughtful ways, or that we were in fact “Blockheads” or radical
connectionist machines, then it would perhaps be overly reactionary to hold
onto premises (2)–(4) and insist that no one has ever engaged in any thought
at all. But it is important to appreciate just how extraordinary such a discov-
ery would be. It would involve not only giving up some of premises (2)–(4),
but a massive reconsideration of the distinctions between e.g. thinking and
mere memorization, between cogent reasoning and mere association, and the
role of these distinctions in our understanding of people. It would be a little
like finding out that there is no basis for the distinction between deliberate and
unintentional action; between intending and wanting; between real and ratio-
nalized reasons for action; or between the experiences of sight and smell
(indeed, one wonders how a radical connectionist proposes to capture these
distinctions as well). It therefore may not be logically impossible that these 
distinctions are groundless, or grounded other than by inner causal structures.
So it may not be a priori that our brains have a certain structure. But it 
does seem improbable in the extreme that they don’t, about as improbable as
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finding out, to return to examples with which I began, that animals really
haven’t evolved, or that there are no genes. In this way, the postulation of inner
causal structure seems to me not “merely empirical” either.

Given that superficialism seems generally unwarranted with regard to our
mental concepts, there can be no objection to the LOTH, or to my argument
on its behalf, that it involves folk speculations about mental processes not
open to ordinary folk inspection. The folk know that. They defer to experts
and/or the nature of things in the case of the mind as in the case of any other
explanatorily interesting region of the world. Indeed, if argument T is correct,
they ought to be quite friendly to the suggestion of an LOTH whose details
will be revealed by psychology. For if that argument is correct, the LOTH 
is as natural as the hypothesis that there are genuine thinking things, for
example, themselves.32

Notes

1 What counts as “logico-syntactic” will be discussed in due course. I prefer the
term “semantically valuable” to the more common “semantically evaluable” in
order to avoid the conventionalist and instrumentalist suggestions of the latter.
However, as the parentheses here are meant to indicate, in order to keep the
premises of the argument of the present paper as weak as possible, I will try to
remain neutral on the issue of semantic realism: I will understand a “LOT” to be
a set of logico-syntactic structures available to a thinker, with or without semantic
values.

2 I have been influenced here by discussions with Karen Neander of her (forth-
coming); see also Lycan’s (1993: 412) discussion of “inferences to the only
explanation”. Note that I am not committing myself here to any particular expla-
nation of the status of these hypotheses: indeed, one needn’t subscribe to a
distinction between the philosophical and empirical, much less the analytic and
the synthetic, to regard some claims as not “merely empirical”: a Quinian could
regard the kinds of deep claims I have in mind as simply being more deeply
enmeshed in the continuous web of our beliefs.

3 Maloney’s (1989) rich discussion is closest to my own (see esp. his §§1.2, 1.4
and 3.1). I contrast my account with these others at various points (see fns. 16,
19 and 20, as well as the beginning of §III).

4 In keeping with my general reluctance to claim my argument is a priori, I don’t
intend, however, to be basing any premises of my argument on any “analytic”
claims about (the ordinary use of) the word ‘thinking’ or its various forms. I use
the word only because its traditional associations are closer to my modest inten-
tions than the more formidable ‘reason’ and its forms.

5 Not that all representations in the predicate calculus represent some thought:
some are too long to do so, and some are quite unintuitive (e.g. ‘(∃y)(Fx ⊃ Gx)’).

6 Dennett’s views over the years actually present a number of exegetical difficul-
ties that need not detain us here; see my (1996).

7 For discussion of non-tendentious empirical reasons far believing in a mind (and
in a LOT), see my (1991).

8 For present purposes, I will take what is psychologically possible to be what is
compatible with an explanatorily adequate description of a thinker’s system of
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thought under suitable idealization. Spelling out this idealization adequately
would require a more complete psychology than is presently available.

9 Let me stress that I do not take myself in what follows to be providing sufficient
conditions.

10 Or, more generally, “superficialist” ones of the sort address in §IV below.
11 It’s not at all unlikely that there were medieval monks who actually relied for

much of their logic on the “Barbara Celarent” mnemonic method of traditional
syllogistic. Presumably they were not genuinely engaged in (the corresponding)
logical thought when they did so, any more than would something that passed
the Turing Test merely by coordinating conversational moves by means of a lookup
table, as in the case of what has come to be called “The Blockhead,” cf. Block
(1990).

12 Cf. Fodor and Pylyshyn’s (1988: p. 50) and Fodor and McLaughlin’s (1991) insis-
tence that systematicity be no accident of the architecture of the brain; and
Davies’ (1991: 236) insistence on the presence of a “common mechanism.” In
view of the kinds of case that will emerge in my defense of premise (4), I don’t
think these claims are sufficient.

13 Thus, another way that premise (1) could turn out to be false is if it turned out
that no one was capable of logical transitions in thought. It strikes me as an inter-
esting question whether Descartes would have been unnerved by this, and whether
he’s entitled to as much certitude about his being a thinker as a thoughter (cf.
Lichtenberg’s quip that Descartes is only entitled to claim not, “I think,” but only
“there is a thought”).

14 As Michael Devitt (1991) has rightly stressed, partly because of the effect of the
combined work of Frege, Russell and Turing, the word “formal” is exasperatingly
ambiguous in the modern literature between “logico-syntactic” and “physical”
(as in “shape”). I suspect it has come to mean something like “physical feature
implementing a logico-syntactic one.” So as to help distinguish premise (3) and
4), I shall try to avoid the term.

15 See Quine (1966) for a short, lucid discussion of combinatory logic, and his
(1970/76) for a review of such systems more generally.

16 Similarly, although my argument here is certainly cousin to the argument of Davies
(1991: 243–7), it doesn’t depend in the way Davies’ does on the assumption
that possession of a concept depends upon either “appreciating” certain analytic
transitions, like that between ‘bachelor’ and ‘unmarried’ (p. 244), much less upon
finding them “primitively compelling” (pp. 246–7). I doubt that this approach to
conceptual possession conditions in general is promising, and, pace p. 236, am
skeptical that even if it worked, that there would be a notion of “form” on which
it could rely (cf. Rey (1993) and (1996a)). The only “form” on which the 
present argument is relying is strictly logico-syntactic structure (cf. fns. 19 and
20 below).

17 John O’Leary-Hawthorne pressed this argument on me. Clark (1991: 202–5)
makes a similar argument against Fodor and Pylyshyn’s (1988) causal under-
standing of systematicity. I won’t attempt to address whether these later views of
Davidson’s are compatible with the earlier ones we quoted; see Antony (1989)
for an excellent discussion.

18 Indeed, I suspect that the kind of “interpretative” views one finds in Davidson
may well arise from the kind of interest he has always had, not in psychology per
se, but in a fairly abstract decision theory. Thus he writes that, when he found
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that subjects in experiments didn’t make decisions in accordance with Ramsey’s
theory, he “gave up [his] career as an experimental psychologist” (1974/80: 
236).

19 I am indebted to Jerry Fodor for defending this view (against his own – better? –
inclinations). Note that Davies’ (1991: 236) right insistence that “to each
[semantically coherent] pattern there should be a common mechanism whose
presence explains the aspect of input–output transitions that is captured in that
pattern” is open to this possibility, particularly since the patterns he cites seem
to be essentially semantic (and not also logico-syntactic, cf. fns. 16 and 20).

20 Putting aside “primitive compulsions,” and limiting “form” to logical syntax (fn.
14 above), this is perhaps a way of spelling out Davies’ (1991: 246) suggestion
that “mirroring the commonality in the inferences that are primitively compelling
– namely their form – there should be a commonality in the causal processes that
explain their being so.” Indeed, it provides a basis otherwise unavailable to Davies
(see fns. 16 and 19 above) for insisting as he does that the “common mecha-
nism” responsible for inference be one that does indeed mirror the logico-
syntactic structure: merely arithmetic or other domain specific inferences don’t
seem “formal”; it would seem enough merely that one’s reasoning respect certain
truths, no matter how that respect is realized. Maloney (1989: [7, §3.1) quite
rightly stresses the importance of how e.g. beliefs cause action, but relies only
on inferences being sensitive to content, which, again, could arise without
causally available logico-syntactic structure (without “inference” being “compu-
tation” (p. 18)).

21 See also Smolensky (1991 and 1995) for further development of this sugges-
tion. I am indebted to Smolensky for fruitful discussions of this issue, despite
(but also because of) our differences with regard to it.

22 It would be miraculous were there to be a machine that operated on Gödel
numbers to realize logical relations without the factoring into prime constituents
on which Gödel’s proof depends. However, I emphasize that, as things presently
stand, it is only (epistemically) possible that tensor ending is any better off, since
it’s by no means yet clear that that coding doesn’t in fact involve causally effi-
cacious constituents.

23 For the need of this hedge, I am indebted to Mark Greenberg.
24 That is, there may be limits to what Evans (1982: 85) calls the “Russell

Principle” on which Davies (1991: 240) relies, the principle that to have the
concept of being an F, a thinker must know what it is for an arbitrary object (that
can be F) to be F. The interesting example of “the red thing is green” is raised
by an experiment of Crane and Piantanida (1983; cited by Hardin 1988: 124–5)
in which, as a result of an unusually stable image on their retinas, some subjects
report having a color experience they are (nearly enough) inclined to describe in
this way. All such possibilities seem to me to undermine Clark’s (1991: 205)
claim that such properties as systematicity in thought are conceptual require-
ments on any thought ascriptions at all.

25 Lest I be thought a “mere competence” extremist on this issue, I should say that
I do think people actually do think, quite often logically, and that LOTH seems
to me an excellent hypothesis about how they manage to do so; see §IV for more
discussion.

26 Note that all the systematicity needed to establish LOTH is of a “can think form:
there is no need to claim anything about what a subject “will infer”. Note also
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that the Wason selection task involves a question about confirmation, which, as
Hempel ‘s “raven paradox” shows, is immensely sensitive to form, notoriously to
contraposition!

27 Although it’s interesting to note in this regard that the alleged superiority of
connectionist over classical architectures has evidently been exaggerated.
McLaughlin and Warfield (forthcoming) show that, for a large selection of well-
known tasks, there is a classical machine comparable in efficiency to any
connectionist one.

28 In Rey (1993) I criticize its role in Russell’s and Quine’s theories of meaning, in
Rey (1994), its role in Wittgenstein’s thought, and in Rey (forthcoming-b) in the
work of Dennett.

29 In his own “deductive” argument for the LOTH, Lycan (1993) seems to me to pre-
sent a nice antidote to such superficialist temptations, comparing our mentalistic
ways of thinking with the way someone (perhaps a Martian) might think about
automobiles whose interiors she thinks she can’t inspect: from her observation of
the details of a car’s motion, he points out, she might be able to formulate fairly
rich and accurate hypotheses about its inner structure. Essentially, I want to
defend this way of thinking about the matter against an objection Lycan didn’t
consider.

30 In Rey (1996) I discuss a particularly striking example in reply to Dennett’s
(1991: 395–6) superficialist discounting of the puzzle many of us have in the
case of the taste of beer: we wonder whether in coming to like it since childhood,
it’s our experiences or our preferences that have changed. Suppose that there is
in fact no behavioral or introspective way to tell; but that it turns out that chil-
dren have more taste buds than adults. One might have independent evidence
that both children and adults have the same preferences for bitter titillation, but
that consequently children reach a painful threshold sooner with the same quan-
tity of a bitter substance. It tastes differently, since, arguably, more intense
sensation is caused by their tongues.

31 I am indebted to Ramon Das for pressing me on this issue.
32 Argument T emerged in my mind partly in response to discussions with Murat

Aydede of his dissertation (1993), which examines the systematicity arguments
of Fodor and Pylyshyn (1988), and partly in response to defenses of superfi-
cialism by David Braddon-Mitchell, Frank Jackson and Philip Pettit at the
Australian National University (for whose warm hospitality I want to express my
appreciation). I am also grateful to James Tomberlin for the invitation to write
the argument up (and for his patience while I did so), as well as to Ned Block,
Michael Devitt, Mark Greenberg, Karen Neander, and the students of my cogni-
tive science seminar at the University of Maryland for comments on drafts.
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P.S. Churchland and T.J. Sejnowski, 
“Neural Representation and 

Neural Computation”

The types of representation and the styles of computation in the brain appear
to be very different from the symbolic expressions and logical inferences that
are used in sentence-logic models of cognition. In this paper we explore the
consequences that brain-style processing may have on theories of cognition.
Connectionist models are used as examples to illustrate neural representation
and computation in the pronouncing of English text and in the extracting of
shape parameters from shaded images. Levels of analysis are not independent
in connectionist models, and the dependencies between levels provide an
opportunity to co-evolve theories at all levels. This is a radical departure from
the a priori, introspection-based strategy that has characterized most previous
work in epistemology.

1 How do we represent the world?

The central epistemological question, from Plato on, is this: How is represen-
tation of a world by a self possible? So far as we can tell, there is a reality
existing external to ourselves, and it appears that we do come to represent
that reality, and sometimes even to know how its initial appearance to our
senses differs from how it actually is. How is this accomplished, and how is
knowledge possible? How is science itself possible?

The dominant philosophical tradition has been to try to resolve the episte-
mological puzzles by invoking mainly intuition and logic to figure out such
things as the organization of knowledge, the nature of the “mirroring” of the
outer world by the inner world, and the roles of reason and inference in 
the generation of internal models of reality. Epistemology thus pursued 
was the product of “pure reason,” not of empirical investigation, and thus
epistemological theories were believed to delimit the necessary conditions, the
absolute foundations, and the incontrovertible presuppositions of human
knowledge. For this a priori task – a task of reflective understanding and pure
reason – empirical observations by psychologists and neurobiologists are 
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typically considered irrelevant, or at least incapable of effecting any significant
correction of the a priori conclusions. Plato, Descartes, and Kant are some of
the major historical figures in that tradition; some contemporary figures are
Chisholm (1966), Strawson (1966), Davidson (1974), and McGinn (1982). It
is safe to say that most philosophers still espouse the a priori strategy to some
nontrivial extent.

In a recent departure from this venerable tradition of a priori philosophy,
some philosophers have argued that epistemology itself must be informed by
the psychological and neurobiological data that bear upon how in fact we
represent and model the world. First articulated in a systematic and powerful
way by Quine (1960),1 this new “naturalism” has begun to seem more in
keeping with evolutionary and biological science and to promise more testable
and less speculative answers.

If, as it seems, acquiring knowledge is an essentially biological phenom-
enon, in the straightforward sense that it is something our brains do, then
there is no reason to expect that brains should have evolved to have a priori
knowledge of the true nature of things: not of fire, not of light, not of the
heart and the blood, and certainly not of knowledge or of its own microstruc-
ture and microfunction. There are, undoubtedly, innate dispositions to behave
in certain ways, to believe certain things, and to organize data in certain ways,
but innateness is no guarantee of truth, and it is the truth that a priori reflec-
tions are presumed to reveal. Innate beliefs and cognitive structure cannot be
assumed to be either optimal or true, because all evolution “cares” about is
that the internal models enable the species to survive. Satisficing is good
enough. It is left for science to care about the truth (or perhaps empirical
adequacy), and the theories science generates may well show the inadequacies
of our innately specified models of external reality. Even more dramatically,
they may show the inadequacy of our model of our internal reality – of the
nature of our selves.

The a priori insights of the Great Philosophers should be understood, there-
fore, not as The Absolute Truth about how the mind–brain must be, but as
articulations of the assumptions that live deep in our collective conception of
ourselves. As assumptions, however, they may be misconceived and empiri-
cally unsound, or at least they may be open to revision in the light of scientific
progress. The possibility of such revision does not entail that the assumptions
are ludicrous or useless. On the contrary, they may well be very important
elements in the theoretical scaffolding as neurobiology and psychology inch
their way toward empirically adequate theories of mind–brain function. The
methodological point is that in science we cannot proceed with no theoretical
framework, so even intuitive folk theory is better than nothing as the scientific
enterprise gets underway.

In addition to asking how the self can know about the external reality, Kant
asked: How is representation of a self by a knowing self possible? One of his
important ideas was that the nature of the internal world of the self is no more
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unmediated or given than is knowledge of the external world of physical
objects in space and time. A modern version of this insight says: Just as the
inner thoughts and experiences may represent but not resemble the outer
reality, so the inner thoughts may represent but not resemble the inner reality
of which they are the representation. This idea, taken with Quine’s naturalism,
implies that if we want to know how we represent the world – the external
world of colored, moving objects, and the internal world of thoughts,
consciousness, motives, and dreams – the scientific approach is likely to be the
most rewarding. Inner knowledge, like outer knowledge, is conceptually and
theoretically mediated – it is the result of complex information processing.
Whether our intuitive understanding of the nature of our inner world is at all
adequate is an empirical question, not an priori one.

If empirical results are relevant to our understanding of how the mind–brain
represents, it is also entirely possible that scientific progress on this frontier
will be as revolutionary as it has been in astronomy, physics, chemistry,
biology, and geology. With this observation comes the recognition that it 
may reconfigure our current assumptions about knowledge, consciousness,
representations, and the self at least as much as Copernicus and Darwin recon-
figured our dearest assumptions about the nature of the universe and our place
in it. Our intuitive assumptions, and even what seems phenomenologically
obvious, may be misconceived and may thus undergo reconfiguration as new
theory emerges from psychology and neurobiology.

Philosophers – and sometimes psychologists, and occasionally even neuro-
scientists – generally make one of two responses to the naturalists’ conception
of the status of our self-understanding:

1 Philosophy is an a priori discipline, and the fundamental conceptual truths
about the nature of the mind, of knowledge, of reason, etc. will come only
from a priori investigations. In this way, philosophy sets the bounds for
science – indeed, the bounds of sense, as Strawson (1966) would put it.
In a more extreme vein, some existentialist philosophers would claim that
the naturalistic approach is itself symptomatic of a civilizational neurosis:
the infatuation with science. On this view, the scientific approach to
human nature is deeply irrational. Mandt (1986: 274) describes the exis-
tentialist criticism as follows: “That scientific modes of thought have
become paradigmatic indicates the degree to which traditional modes of
human life and experience have disintegrated, plunging civilization into a
nihilistic abyss.”

2 Even if a naturalistic approach is useful for some aspects of the nature of
knowledge and representation, the neurosciences in particular are largely
irrelevant to the enterprise. Neuroscience may be fascinating enough in its
own right, but for a variety of reasons it is irrelevant to answering the
questions we care about concerning cognition, representation, intelligent
behavior, learning, consciousness, and so forth. Psychology and linguistics
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might actually be useful in informing us about such matters, but neuro-
biology is just off the book.

2 Why is neurobiology dismissed as irrelevant to
understanding how the mind works?

2.1 The traditional problem

In its traditional guise, the mind–body problem can be stated thus: Are mental
phenomena (experiences, beliefs, desires, etc.) actually phenomena of the phys-
ical brain? Dualists have answered No to this question. On the dualist’s view,
mental phenomena inhere in a special, nonphysical substance: the mind (also
referred to as the soul or the spirit). The mind, on the dualist’s theory, is the
ghost in the machine; it is composed not of physical material obeying phys-
ical laws but of soul-stuff, or “spooky” stuff, and it operates according to
principles unique to spooky stuff.

The most renowned of the substance dualists are Plato and Descartes, and,
more recently, J. C. Eccles (1977) and Richard Swinburne (1986). Because
dualists believe the mind to be a wholly separate kind of stuff or entity, they
expect that it can be understood only in its own terms. At most, neuroscience
can shed light on the interaction between mind and body, but not on the nature
of the mind itself. Dualists consequently see psychology as essentially inde-
pendent of neurobiology, which, after all, is devoted to finding out how the
physical stuff of the nervous system works. It might be thought a bonus of
dualism that it implies that to understand the mind we do not have to know
much about the brain.

Materialism answers the mind–body question (Are mental states actually
states of the physical brain?) in the affirmative. The predominant arguments
for materialism draw upon the spectacular failure of dualism to cohere with
the rest of ongoing science. And as physics, molecular biology, evolutionary
biology, and neuroscience have progressed, this failure has become more rather
than less marked. In short, the weight of empirical evidence is against the exist-
ence of special soul-stuff (spooky stuff). (For a more thorough discussion of
the failures of substance dualism, see P. S. Churchland 1986.) Proponents of
materialism include Hobbes (in the seventeenth century), B. F. Skinner (1957,
1976), J. J. C. Smart (1959), W. V. O. Quine (1960), D. C. Dennett (1978),
and P. M. Churchland (1988).

Despite the general commitment to materialism, there are significant differ-
ences among materialists in addressing the central question of how best to
explain psychological states. Strict behaviorists, such as Skinner, thought that
explanations would take the form of stimulus–response profiles exclusively.
Supporting this empirical hypothesis with a philosophical theory, philosoph-
ical behaviorists claimed that the mental terminology itself could be analyzed
into sheerly physicalistic language about dispositions to behave. (For discus-
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sion, see P. M. Churchland 1988). Curiously, perhaps, the behaviorists (both
empirical and philosophical) share with the dualists the conviction that it is
not necessary to understand the workings of the brain in order to explain intel-
ligent behavior. On the behaviorists’ research ideology, again we have a bonus:
In order to explain behavior, we do not have to know anything about the
brain.

In contrast to behaviorism, identity theorists (Smart 1959; Enc 1983)
claimed that mental states, such as visual perceptions, pains, beliefs, and
drives, were in fact identical to states of the brain, though it would of course
be up to neuroscience to discover precisely what brain states were in fact iden-
tical to what mental states. On the research ideology advocated by these
materialists, explanation of behavior will have to refer to inner representations
and hence to what the brain is doing.

2.2 The contemporary problem: theory dualism

Many philosophers who are materialists to the extent that they doubt the 
existence of soul-stuff nonetheless believe that psychology ought to be essen-
tially autonomous from neuroscience, and that neuroscience will not
contribute significantly to our understanding of perception, language use,
thinking, problem solving, and (more generally) cognition. Thus, the mind-
body problem in its contemporary guise is this: Can we get a unified science
of the mind–brain? Will psychological theory reduce to neuroscience?

A widespread view (which we call theory dualism) answers No to the above
question. Typically, three sorts of reasons are offered:

(a) Neuroscience is too hard. The brain is too complex; there are too many
neurons and too many connections, and it is a hopeless task to suppose
we can ever understand complex higher functions in terms of the dynamics
and organization of neurons.

(b) The argument from multiple instantiability. Psychological states are func-
tional states and, as such, can be implemented (instantiated) in diverse
machines (Putnam 1967; Fodor 1975; Pylyshyn 1984). Therefore, no
particular psychological state, such as believing that the earth is round or
that 2 + 2 = 4, can be identified with exactly this or that machine state.
So no functional (cognitive) process can be reduced to the behavior of
particular neuronal systems.

(c) Psychological states have intentionality. That is, they are identified in
terms of their semantic content; they are “about” other things; they repre-
sent things; they have logical relations to one another. We can think about
objects in their absence, and even of nonexistent objects. For example, if
someone has the belief that Mars is warmer than Venus, then that psycho-
logical state is specified as the state it is in terms of the sentence “Mars is
warmer than Venus”, which has a specific meaning (its content) and which
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is logically related to other sentences. It is a belief about Mars and Venus,
but it is not caused by Mars or Venus. Someone might have this belief
because he was told, or because he deduced it from other things he knew.
In cognitive generalizations states are related semantically and logically,
whereas in neurobiological generalizations states can only be causally
related. Neurobiological explanations cannot be sensitive to the logical
relations between the contents of cognitive states, or to meaning or
“aboutness.” They respond only to causal properties. Neurobiology, there-
fore, cannot do justice to cognition, and thus no reduction is possible.

2.3 What is wrong with theory dualism?

In opposition to theory dualists, reductionists think we ought to strive for an
integration of psychological and neurobiological theory. Obviously, a crucial
element in the discussion concerns what is meant by “reduction”; hence, part
of what must first be achieved is a proper account of what sort of business
inter-theoretic reduction is.

Roughly, the account is this: Reductions are explanations of phenomena
described by one theory in terms of the phenomena described by a more basic
theory. Reductions typically involve the co-evolution of theories over time, and
as they co-evolve one theory is normally revised, corrected, and modified by
its co-evolutionary cohort theory at the other level. This revisionary interac-
tion can, and usually does, go both ways from the more basic to the less basic
theory and vice versa. It is important to emphasize the modification to theo-
ries as they co-evolve, because sometimes the modification is radical and
entails massive reconfiguration of the very categories used to describe the
phenomena. In such an event, the very data to be explained may come to be
redescribed under pressure from the evolving theories. Examples of categories
that have undergone varying degrees of revision, from the minor to the radical,
include impetus, caloric, gene, neuron, electricity, instinct, life, and very
recently, excitability (in neurons) (Schaffner 1976; P. M. Churchland 1979;
Hooker 1981).

Because reductionism is frequently misunderstood, it is necessary to be
explicit about what is not meant. First, seeking reductions of macro-level
theory to micro level does not imply that one must first know everything about
the elements of the micro theory before research at the macro level can be
usefully undertaken. Quite the reverse is advocated – research should pro-
ceed at all levels of the system, and co-evolution of theory may enhance
progress at all levels. Data from one level constrain theorizing at that level and
at other levels. Additionally, the reduction of theories does not mean that the
reduced phenomena somehow disappear or are discredited. The theory of
optics was reduced to the theory of electromagnetic radiation, but light itself
did not disappear, nor did it become disreputable to study light at the macro
level. Nor was the reduced theory cast out as useless or discredited; on the
contrary, it was and continues to be useful for addressing phenomena at a
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higher level of description. As for the phenomenon, it is what it is, and it
continues to be whatever it is as theories are reduced or abandoned. Whether
a category is ultimately rejected or revised depends on its scientific integrity,
and that is, of course, determined empirically. (For more detail on inter-
theoretic reduction, see P. S. Churchland 1986.)

Given this brief account of reduction as a backdrop, an outline of how the
reductionist answers the theory dualist goes as follows:

(a) Neuroscience is hard, but with many new techniques now available, an
impressive body of data is available to constrain our theories, and a lot
of data are very suggestive as to how neural networks function. (See
Sejnowski and Churchland, in press.) We have begun to see the shape of
neurobiological answers to functional questions, such as how information
is stored, how networks learn, and how networks of neurons represent.

(b) High-level states are multiply instantiable. So what? If, in any given
species, we can show that particular functional states are identical to
specific neuronal configurations (for example, that being in REM sleep is
having a specified neuronal state, or that one type of learning involves
changing synaptic weights according to a Hebb rule), that will be suffi-
cient to declare a reduction relative to that domain (Richardson 1979; Enc
1983; P. S. Churchland 1986; section 3 below). Very pure philosophers
who cannot bring themselves to call these perfectly respectable domain-
relative explanations “reductions” are really just digging in on who gets
to use the word. Moreover, it should be emphasized that the explanation
of high-level cognitive phenomena will not be achieved directly in terms
of phenomena at the lowest level of nervous-system organization, such as
synapses and individual neurons. Rather, the explanation will refer to
properties at higher structural levels, such as networks or systems.
Functional properties of networks and systems will be explained by refer-
ence to properties at the next level down, and so on. What we envision is
a chain of explanations linking higher to next-lower levels, and so on
down the ladder of structural levels. (See Sejnowski and Churchland, in
press.) Aspects of individual variation at the synaptic and cellular levels
are probably invisible at the systems level, where similarity of larger-scale
emergent properties, such as position in a high-dimensional parameter
space, is critical in identifying similarity of information-processing func-
tion (Sejnowski et al. 1988). 

(c) A theory of how states in a nervous system represent or model the world
will need to be set in the context of the evolution and development of ner-
vous systems, and will try to explain the interactive role of neural states in
the ongoing neuro-cognitive economy of the system. Nervous systems do
not represent all aspects of the physical environment; they selectively rep-
resent information a species needs, given its environmental niche and its
way of life. Nervous systems are programmed to respond to certain selected
features, and within limits they learn other features through experience by
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encountering examples and generalizing. Cognitive neuroscience is now
beginning to understand how this is done (Livingstone 1988; Goldman-
Rakic 1987; Kelso et al. 1986). Although the task is difficult, it now seems
reasonable to assume that the “aboutness” or “meaningfulness” of repre-
sentational states is not a spooky relation but a neurobiological relation. As
we come to understand more about the dynamical properties of networks,
we may ultimately be able to generate a theory of how human language is
learned and represented by our sort of nervous system, and thence to
explain language-dependent kinds of meaning. Because this answer is highly
cryptic and because intentionality has often seemed forever beyond the
reach of neurobiology, the next section will focus on intentionality: the 
theory dualist’s motivation, and the reductionist’s strategy.

3 Levels, intentionality, and the sentence-logic 
model of the mind

3.1 Sentential attitudes and the computer metaphor

Two deep and interrelated assumptions concerning the nature of cognition
drive the third anti-reductionist argument:

1 Cognition essentially involves representations and computations. Repre-
sentations are, in general, symbolic structures, and computations are, in
general, rules (such as rules of logic) for manipulating those symbolic
structures.

2 A good model for understanding mind-brain functions is the computer –
that is, a machine based on the same logical foundations as a Turing
machine and on the von Neumann architecture for a digital computer.
Such machines are ideally suited for the manipulation of symbols
according to rules. The computer metaphor suggests that the mind–brain,
at the information-processing level, can be understood as a kind of digital
computer, the problem for cognitive psychology is to determine the
program that our brains run.

The motivating vision here is that cognition is to be modeled largely on
language and logical reasoning; having a thought is, functionally speaking,
having a sentence in the bead, and thinking is, functionally speaking, doing
logic, or at least running on procedures very like logic. Put thus baldly, it may
seem faintly ridiculous, but the theory is supported quite plausibly by the
observation that beliefs, thoughts, hopes, desires, and so forth are essential in
the explanation of cognition, and that such states are irreducibly semantic
because they are identified in virtue of their content sentences. That is, such
states are always and essentially beliefs that p, thoughts that p, or desires that
p, where for “p” we substitute the appropriate sentence, such as “Nixon was
a Russian spy” or “Custard is made with milk”. Such cognitive states – the
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so-called sentential attitudes – are the states they are in virtue of the sentences
that specify what they are about. Moreover, a content sentence stands in
specific logical and semantic relations to other sentences. The state transitions
are determined by semantic and logical relations between the content
sentences, not by casual relations among states neurobiologically described.
Thus, cognitive states have meaning (that is, content, or intentionality), and
it might be argued that it is precisely in virtue of their meaningfulness that
they play the role in cognition that they do.

The fundamental conception is, accordingly, well and truly rooted in folk
psychology, the body of concepts and everyday lore by means of which we
routinely explain one another’s behavior by invoking sentential attitudes (Stich
1983; P. M. Churchland 1988) – for example, Smith paid for the vase because
he believed that his son had dropped it and he feared that the store owner
would be angry. In these sorts of intentional explanations, the basic unit of
representation is the sentence, and state transitions arc accomplished through
the following of rules: deductive inference, inductive inference, and assorted
other rules.

Extending the framework of folk psychology to get an encompassing
account of cognition in general, this approach takes it that thinking, problem
solving, language use, perception, and so forth will be understood as we 
determine the sequence of sentences corresponding to the steps in a given
information-processing task; that is, as we understand the mechanics of
sentence crunching. According to this research paradigm, known as senten-
tialism, it is the task of cognitive science to figure out what programs the brain
runs, and neuroscience can then check these top-down hypotheses against the
wetware to see if they are generally possible. (See especially Fodor 1975, 1981;
Pylyshyn 1984.)

3.2 Is cognition mainly symbol manipulation 
in the language of thought?

Although this view concerning the nature of cognition and the research
strategy for studying cognition may be appealing (where much of the appeal
is derived from the comfortable place found for folk psychology), it suffers
from major defects. Many of these defects have been discussed in detail by
Anderson and Hinton (1981) by P. S. Churchland (1986), and in various 
chapters of McClelland and Rumelhart (1986). A summary will call them to
mind:

1 Many cognitive tasks, such as visual recognition and answering simple
true-or-false questions, can be accomplished in about half a second. Given
what we know about conduction velocities and synaptic delays in neurons,
this allows about 5 milliseconds per computational step, which means that
there is time for only about 100 steps. For a sequential program run on
a conventional computer, 100 steps is not going to get us remotely close

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“NEURAL REPRESENTATION AND COMPUTATION”

159



to task completion. Feldman and Ballard (1982) call this the hundred-
step rule.

2 Anatomically and physiologically, the brain is a parallel system, not a
sequential von Neumann machine. The neural architecture is highly inter-
connected. Neurons such as Purkinje cells may have upwards of 80,000
input connections, and neurons in cerebral cortex can have upwards of
10,000 output connections (Anderson and Hinton 1981; Pellionisz and
Llinas 1982; Sejnowski 1986).

3 However information is stored in nervous systems, it appears to be radi-
cally unlike information storage in a digital computer, where storage and
processing are separated and items are stored in memory according to
addressable locations. In nervous systems, information seems to be stored
in the connections between the same neurons that process the informa-
tion. There does not appear to be a distinct storage location for each piece
of stored information, and information is content addressable rather than
location addressable. Information storage is probably at least somewhat
distributed rather than punctate, since memories tend to be degraded with
damage to the system rather than selectively wiped out one by one.

4 A task may fall gracefully to one architecture and not to another. Certain
kinds of tasks, such as numerical calculation, fall gracefully to a von
Neumann architecture, but others, such as learning or associative memory,
do not. Things we humans find effortless (such as facial recognition and
visual perception) are tasks which artificial intelligence has great difficulty
simulating on a von Neumann architecture, whereas things we find
“effortful” (such as simple proofs in the propositional calculus or math-
ematic calculations) are straightforward for a digital computer (Anderson
and Hinton 1981; Rumelhart, Hinton and McClelland 1986). This
suggests that the computational style of nervous systems may be very
unlike that suited to von Neumann architectures.

5 The hardware/software analogy fails for many reasons, the most promi-
nent of which are that nervous systems are plastic and that neurons
continually change as we grow and learn. Related, perhaps, is the obser-
vation that nervous systems degrade gracefully and are relatively fault
tolerant. A von Neumann machine is rigid and fault intolerant, and a
breakdown of one tiny component disrupts the machine’s performance.

6 The analogy between levels of description in a conventional computer
(such as the hardware/software distinction) and levels of explanation in
nervous systems may well be profoundly misleading. Exactly how many
levels of organization we need to postulate in order to understand nervous-
system function is an empirical question, and it may turn out that there
are many levels between the molecular and the behavioral. In nervous
systems we may already discern as distinct descriptive levels the molecule,
the membrane, the cell, the circuit, networks, maps, brain systems, and
several levels of behavior (from the reflexive to the highest levels of cogni-
tion). Other levels may come to be described as more is discovered about

P.S. CHURCHLAND AND T.J. SEJNOWSKI

160



the nature of nervous systems. As is discussed below, the properties at one
level may constrain the kind of properties realizable at another level.

7 Nonverbal animals and infraverbal humans present a major problem for
the sentence-logic theory of cognition: How is their cognition accom-
plished? On the sentence-logic theory of cognition, either their cognition
resembles the human variety (and hence involves symbol manipulation
according to rules, and a language of thought replete with a substantial
conceptual repertoire) or their cognitive processes are entirely different
from the usual human ones. Neither alternative is remotely credible. The
first lacks any evidence. At best, its defense is circular; it helps to save the
theory. The second alternative entails a radical discontinuity in evolution
– sufficiently radical that language-of-thought cognition is a bolt from the
blue. This implies that evolutionary biology and developmental neurobi-
ology are mistaken in some fundamental respects. Since neither alternative
can be taken seriously, the hypothesis itself has diminished credibility.

If cognition, then, is not, in general, to be understood on the sentence-
logical model, the pressing questions then are these: How does the brain
represent? How do nervous systems model the external world of objects in
motion and the internal world of the nervous system itself? And when repre-
sentations do stand in semantic and logical relations to one another, how is
this achieved by neural networks? How is the semantic and logical structure
of language – as we both comprehend and speak – represented in the brain?
According to the rejected model, we postulate an internal organization – a
language of thought – with the very same structure and organization as
language. But if that model is rejected, what do we replace it with?

These are, of course, the central questions, and getting answers will not be
easy. But the difficulty should not make the language-of-thought hypothesis
more appealing. In certain respects, the current scientific state of a general
theory of representation is analogous to the science of embryology in the nine-
teenth century. The development of highly structured, complex, fully formed
organisms from eggs and sperm is a profoundly amazing thing. Faced with
this mystery, some scientists concluded that the only way to explain the emer-
gence of a fully structured organism at birth was to join the ancients in
assuming that the structure was already there. Hence the homuncular theory
of reproduction, which claimed that a miniature but complete human already
exists in the sperm and merely expands during its tenure in the womb.

We now know that there is structure in the sperm (and the egg) – not in
the form of a miniature, fully structured organism, but mainly in the form of
DNA – a molecule that looks not at all like a fully formed human. Thus, the
structure of the cause does not resemble the structure of the effect.
Accordingly, the homuncular theorists were right in supposing that the highly
structured neonate does not come from nothing, but they were wrong in
looking for a structural resemblance between cause and effect. It was, of
course, terribly hard to imagine the nature of the structural organization that
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enables development yet in no way resembles the final product. Only through
molecular biology and detailed work in embryology have we begun to under-
stand how one kind of structure can, through intermediate mechanisms, yield
another, very different kind of structure.

The parallel with cognitive neurobiology is this: The neuronal processes
underlying cognition have a structure of some kind, but almost certainly it will
not, in general, look anything like the semantic/logic structure visible in overt
language. The organizational principles of nervous systems are what permit
highly complex, structured patterns of behavior, for it is certain that the behav-
ioral structure does not emerge magically from neuronal chaos. As things
stand, it is very hard to imagine what those organizational principles could
look like, and, just as in genetics and embryology, we can find answers only
by framing hypotheses and doing experiments.

Instead of starting from the old sentence-logic model, we model informa-
tion processing in terms of the trajectory of a complex nonlinear dynamical
system in a very high-dimensional space. This structure does not resemble
sentences arrayed in logical sequences, but it is potentially rich enough and
complex enough to yield behavior capable of supporting semantic and logical
relationships. We shall now explore what representing looks like in a particular
class of nonlinear dynamical systems called connectionist models.

4 Representation in connectionist models

As the name implies, a connectionist model is characterized by connections
and differential strengths of connections between processing units. Processing
units are meant to be rather like neurons, and communicate with one another
by signals (such as firing rate) that are numerical rather than symbolic.
Connectionist models are designed to perform a task by specifying the archi-
tecture: the number of units, their arrangement in layers and columns, the
patterns of connectivity, and the weight or strength of each connection (figures
9.1 and 9.2). These models have close ties with the computational level on
which the task is specified, and with the implementation level on which the
task is physically instantiated (Marr 1982). This species of network models
should properly be considered a class of algorithms specified at various levels
of organization – in some cases at the small-circuit level, in other cases at the
system level. Both the task description and the neural embodiment are,
however, crucially important in constraining the class of networks that will be
explored. On the one hand the networks have to be powerful enough to match
human performance of the computational tasks, and on the other hand they
have to be built from the available materials. In the case of the brain, that
means neurons and synapses; in the ease of network models, that means
neuron-like processing units and synapse-like weights.

Digital computers are used to simulate neural networks, and the network
models that can be simulated on current machines are tiny in comparison with
the number of synapses and neurons in the mammalian brain. The networks
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Figure 9.1 Left: Schematic model of a neuron-like processing unit that receives synapse-
like inputs from other processing units. Right: Nonlinear sigmoid-shaped transforma-
tion between summed inputs and the output “firing rate” of a processing unit. The
output is a continuous value between 0 and 1.

Figure 9.2 Schematic model of a three-layered network. Each input unit makes connec-
tions with each of the hidden units on the middle layer, which in turn projects to each
of the output units. This is feedforward architecture in which information provided as
an input vector flows through the network, one layer at a time, to produce an output
vector. More complex architectures allow feedback connections from an upper to a
lower layer and lateral interactions between units within a layer.



that have been constructed should be understood, therefore, as small parts of
a more complex processing system whose general configuration has not 
yet been worked out, rather than as simulations of a whole system. To avoid
misunderstanding, it should be emphasized that connectionist models cannot
yet support a full cognitive system. To begin to reach that goal will require
both a computing technology capable of supporting more detailed simulations
and a more complete specification of the nervous system.

Granting these limitations, we may none the less be able to catch a glimpse
of what representations might look like within the parallel-style architecture
of the brain by taking a look inside a connectionist network. The place to look
is in the dynamics of the system; that is, in the patterns of activity generated
by the system of interconnected units. This approach has its roots in the work
of previous generations of researchers – primarily the Gestalt school of
psychology and D. O. Hebb (1949), who developed many ideas about learning
and representation in neural assemblies. Only recently, however, has sufficient
computer power been available to explore the consequences of these ideas by
direct simulation, since the dynamics of massively parallel nonlinear networks
is highly computation intensive. Parallel-network models are now being used
to explore many different aspects of perception and cognition (McClelland
and Rumelhart 1986; Feldman and Ballard 1982; Cognitive Science, special
issue, vol. 9, 1985) but in this chapter we shall focus on two representative
examples. The first is NETtalk, perhaps the most complex network model yet
constructed, which learns to convert English text to speech sounds (Sejnowski
and Rosenberg 1987, 1988). The second is a network model that computes
surface curvatures of an object from its gray-level input image. NETtalk will
be used primarily to illustrate two things: how a network can learn to perform
a very complex task without symbols and without rules to manipulate
symbols, and the differences between local and distributed representations.

Connectionist models can be applied on a large scale to model whole brain
systems or, on a smaller scale, to model particular brain circuits. NETtalk is
on a large scale, since the problem of pronunciation is constrained mainly by
the abstract cognitive considerations and since its solution in the brain must
involve a number of systems, including the visual system, the motor-articula-
tory system, and the language areas. The second example is more directly
related to smaller brain circuits used in visual processing, the representational
organization achieved by the network model can be related to the known
representational organization in visual cortex.

In the models reviewed here, the processing units sum the inputs from
connections with other processing units, each input weighted by the strength
of the connection. The output of each processing unit is a real number that is
a nonlinear function of the linearly summed inputs. The output is small when
the inputs are below threshold, and it increases rapidly as the total input
becomes more positive. Roughly, the activity level can be considered the sum
of the postsynaptic potentials in a neuron, and the output can be considered
its firing rate (figure 9.1).
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4.1 Speech processing: text to speech

In the simplest NETtalk system2 there are three layers of processing units. The
first level receives as input letters in a word: the final layer yields the elemen-
tary sounds, or phonemes (table 9.1); and an intervening layer of “hidden
units,” which is fully connected with the input and output layers, performs
the transformation of letters to sounds (figure 9.3). On the input layer, there
is local representation with respect to letters because single units are used to
represent single letters of the alphabet. Notice, however, that the representa-
tion could be construed as distributed with respect to words, inasmuch as each
word is represented as a pattern of activity among the input units. Similarly,
each phoneme is represented by a pattern of activity among the output units,
and phonemic representation is therefore distributed. But each output unit is
coded for a particular distinctive feature of the speech sound, such as whether
the phoneme was voiced, and consequently each unit is local with respect to
distinctive features.
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Table 9.1 Symbols for phonemes used in NETtalk

Symbol Phoneme Symbol Phoneme

/a/ father /D/ this
/b/ bet /E/ bet
/c/ bought /G/ sing
/d/ debt /I/ bit
/e/ bake /J/ gin
/f/ fin /K/ sexual
/g/ guess /L/ bottle
/h/ head /M/ abysm
/i/ Pete /N/ button
/k/ Ken /O/ boy
/l/ let /Q/ quest
/m/ met /R/ bird
/n/ net /S/ shin
/o/ boat /T/ thin
/p/ pet /U/ book
/r/ red /W/ bout
/s/ sit /X/ excess
/t/ test /Y/ cute
/u/ lute /Z/ leisure
/v/ vest /@/ bat
/w/ wet /!/ Nazi
/x/ about /#/ examine
/y/ yet /*/ one
/z/ zoo / | / logic
/A/ bite /^/ but
/C/ chin



NETtalk has 309 processing units and 18 629 connection strengths
(weights) that must be specified. The network does not have any initial or
built-in organization for processing the input or (more exactly) mapping letters
on to sounds. All the structure emerges during the training period. The values
of the weights are determined by using the “back-propagation” learning algo-
rithm developed by Rumelhart, Hinton and Williams (1986). (For a review of
network learning algorithms, see Hinton 1988 and Sejnowski 1988.) The
strategy exploits the calculated error between the actual values of the
processing units in the output layer and the desired values, which is provided
by a training signal. The resulting error signal is propagated from the output
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INPUT

s l a t

HIDDEN
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Figure 9.3 Schematic drawing of the NETtalk network architecture. A window of
letters in an English text is fed to an array of 203 input units arranged in 7 groups of
29 units each. Information from these units is transformed by an intermediate layer 
of 80 hidden units to produce a pattern of activity in 26 output units. The connections
in the network are specified by a total of 18 629 weight parameters (including a vari-
able threshold for each unit). During the training, information about the desired output
provided by the Teacher is compared with the actual output of the network, and the
weights in the network are changed slightly so as to reduce the error.



layer backward to the input layer and used to adjust each weight in the
network. The network learns, as the weights are changed, to minimize the
mean squared error over the training set of words. Thus, the system can be
characterized as following a path in weight space (the space of all possible
weights) until it finds a minimum (figure 9.4). The important point to be illus-
trated, therefore, is this: The network processes information by nonlinear
dynamics, not by manipulating symbols and accessing rules. It learns by
gradient descent in a complex interactive system, not by generating new rules
(Hinton and Sejnowski 1986).

The issue that we want to focus on next is the structural organization that
is “discovered” by the network, in virtue of which it succeeds in converting
letters to phonemes and manages to pronounce, with few errors, the many
irregularities of English. If there are no rules in the network, how is the trans-
formation accomplished? Since a trained network can generalize quite well to
new words, some knowledge about the pattern of English pronunciation must
be contained inside the network. Although a representational organization was
imposed on the input and output layers, the network had to create new,
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Figure 9.4 Schematic drawing of a path followed in weight space as the network finds
a minimum of the average error over the set of training patterns. Only two weights
out of many thousands are shown. The learning algorithm only ensures convergence
to a local minimum, which is often a good solution. Typically, many sets of weights
are good solutions, so the network is likely to find one of them from a random starting
position in weight space. The learning time can be reduced by starting the network
near a good solution; for example, the pattern of connections can be limited to a geom-
etry that reduces the number of variable weights that must be searched by gradient
descent.



internal representations in the hidden layer of processing units. How did the
network organize its “knowledge”? To be more accurate: How did the equiv-
alence class of networks organize its knowledge? (Each time the network was
started from a random set of weights, a different network was generated.)

The answers were not immediately available, because a network does not
leave an explanation of its travels through weight space, nor does it provide
a decoding scheme when it reaches a resting place. Even so, some progress
was made by measuring the activity pattern among the hidden units for specific
inputs. In a sense, this test mimics at the modeling level what neurophysiolo-
gists do at the cellular level when they record the activity of a single neuron
to try to find the effective stimulus that makes it respond. NETtalk is a fortu-
nate “preparation,” inasmuch as the number of processing units is relatively
small, and it is possible to determine the activity patterns of all the units for
all possible input patterns. These measurements, despite the relatively small
network, did create a staggering amount of data, and then the puzzle was this:
How does one find the order in all these data?

For each set of input letters, there is a pattern of activity among the hidden
units (figure 9.5). The first step in the analysis of the activity of the hidden
units was to compute the average level of activity for each letter-to-sound
correspondence. For example, all words with the letter c in the middle posi-
tion yielding the hard-c sound /k/ were presented to the network, and the
average level of activity was calculated. Typically, about 15 of the 80 hidden
units were very highly activated, and the rest of the hidden units had little or
no activity. This procedure was repeated for each of the 79 letter-to-sound
correspondences. The result was 79 vectors, each vector pointing in a different
direction in the 80-dimensional space of average hidden-unit activities. The
next step was to explore the relationship among the vectors in this space by
cluster analysis. It is useful to conceive of each vector as the internal code that
is used to represent a specific letter-to-sound correspondence; consequently,
those vectors that clustered close together would have similar codes.

Remarkably, all the vectors for vowel sounds clustered together, indicating
that they were represented in the network by patterns of activity in units that
were distinct from those representing the consonants (which were themselves
clustered together). (See figure 9.6.) Within the vowels, all the letter-to-sound
correspondences that used the letter a were clustered together, as were the
vectors of e, i, o, and u and the relevant instances of y. This was a very robust
organizational scheme that occurred in all the networks that were analyzed,
differences in starting weights notwithstanding. The coding scheme for conso-
nants was more variable from network to network, but as a general rule 
the clustering was based more on similarities in sounds than on letters. Thus,
the labial stops /p/ and /b/ were very close together in the space of hidden-unit
activities, as were all the letter-to-sound correspondences that result in the 
hard-c sound /k/.

Other statistical techniques, such as factor analysis and multidimensional
scaling, are also being applied to the network, and activity patterns from
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individual inputs, rather than averages over classes, are also being studied
(Rosenberg 1988). These statistical techniques are providing us with a detailed
description of the representation for single inputs as well as classes or
input–output pairs.
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Figure 9.5 Levels of activation in the layer of hidden units for a variety of words. The
input string in the window of seven letters is shown to the left, with the target letter
emphasized. The output from the network is the phoneme that corresponds to the
target letter. The transformation is accomplished by 80 hidden units, whose activity
levels are shown to the right in two rows of 40 units each. The area of each white
square is proportional to the activity level. Most units have little or no activity for a
given input, but a few are highly activated.



Several aspects of NETtalk’s organization should be emphasized:

1 The representational organization visible in the trained-up network is 
not programmed or coded into the network; it is found by the network.
In a sense it “programs” itself, by virtue of being connected in the manner
described and having weights changed by experience according to the
learning algorithm. The dynamical properties of this sort of system are
such that the network will settle into the displayed organization.

2 The network’s representation for letter-to-sound correspondences is
neither local nor completely distributed; it is somewhere in between. The
point is, each unit participates in more than one correspondence, and so
the representation is not local, but since it does not participate in all corre-
spondences, the representation is not completely distributed either.

3 The representation is a property of the collection of hidden units, and does
not resemble sentence-logic organization.

4 The organization is structured, which suggests that emergent subordinate
and superordinate relations might be a general principle of network organ-
ization that could be used as input for other networks assigned other tasks
if NETtalk were embedded in a larger system of networks.
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Figure 9.6 Hierarchical clustering of hidden units for letter-to-sound correspondences.
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5 General properties of the hierarchical organization of letter-to-sound
correspondences emerged only at the level of groups of units. This organ-
ization was invariant across all the networks created from the same sample
of English words, even where the processing units in distinct networks had
specialized for a different aspect of the problem.

6 Different networks created by starting from different initial conditions 
all achieved about the same level of performance, but the detailed response
properties of the individual units in the networks differed greatly.
Nonetheless, all the networks had similar functional clusterings for letter-
to-sound correspondence (figure 9.6). This suggests that single neurons 
code information relative to other neurons in small groups or assemblies
(Hebb 1949).

The representational organization in NETtalk may illustrate important
principles concerning network computation and representation, but what do
they tell us about neural representations? Some of the principles uncovered
might be generally applicable to a wide class of tasks, but it would be
surprising if the details of the model bore any significant resemblance to the
way reading skills are represented in the human nervous system. NETtalk is
more of a demonstration of certain network capacities and properties than 
a faithful model of some subsystem of the brain, and it may be a long time
before data concerning the human neurobiology of reading become available.
Nevertheless, the same network techniques that were used to explore the
language domain can be applied to problems in other domains, such as vision,
where much more is known about the anatomy and the physiology.

4.2 Visual processing: computing surface curvature 
from shaded images

The general constraints from brain architecture touched on in section 3 should
be supplemented, wherever possible, by more detailed constraints from brain
physiology and anatomy. Building models of real neural networks is a diffi-
cult task, however, because essential knowledge about the style of computa-
tion in the brain is not yet available (Sejnowski 1986). Not only is the fine
detail (such as the connectivity patterns in neurons in cerebral cortex) not
known, but even global-level knowledge specifying the flow of information 
through different parts of the brain during normal function is limited. Even if
more neurophysiological and neuroanatomical detail were available, current
computing technology would put rather severe limits on how much detail
could be captured in a simulation. Nevertheless, the same type of network
model used in NETtalk could be useful in understanding how information is
coded within small networks confined to cortical columns. The processing
units in this model will be identified with neurons in the visual cortex.

Ever since Hubel and Wiesel (1962) first reported that single neurons in the
cat visual cortex respond better to oriented bars of light and to dark/light edges
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than to spots of light, it has been generally assumed, or at least widely hoped,
that the function of these neurons is to detect boundaries of objects in the
world. In general, the inference from a cell’s response profile to is function in
the wider information-processing economy is intuitively very plausible, and if
we are to have any hope of understanding neural representations we need to
start in an area such as visual cortex – where it is possible to build on an
impressive body of existing data. The trouble is, however, that many functions
are consistent with the particular response properties of a neuronal popula-
tion. That a cell responds optimally to an oriented bar of light is compatible
with its having lots of functions other than detecting object boundaries, though
the hypothesis that it serves to detect boundaries does tend to remain intu-
itively compelling. To see that our intuitions might really mislead us as we try
to infer function from response profiles, it would be useful if we could demon-
strate this point concretely. In what follows we shall show how the same
response properties could in fact serve in the processing of visual information
about the regions of a surface between boundaries rather than about the
boundaries themselves.

Boundaries of objects are relatively rare in images, yet the preponderance
of cells in visual cortex respond preferentially to oriented bars and slits. If we
assume that all those cells are detecting boundaries, then it is puzzling that
there should be so many cells whose sole function is to detect boundaries when
there are not many boundaries to detect. It would, therefore, seem wasteful
if, of all the neurons with oriented fields, only a small fraction carried useful
information about a particular image. Within their boundaries, most objects
have shaded or textured surfaces that will partially activate these neurons. The
problem, accordingly, is this: Can the information contained in a population
of partially activated cortical neurons be used to compute useful informa-
tion about the three-dimensional surfaces between the boundaries of objects
in the image?

One of the primary properties of a surface is its curvature. Some surfaces,
such as the top of a table, are flat, and have no intrinsic curvature. Other
surfaces, such as cylinders and spheres, are curved, and around each point on
a surface the degree of curvature can be characterized by the direction along
the surface of maximum and minimum curvature. It can be shown that these
directions are always at right angles to each other, and the values are called
the principal curvatures (Hilbert and Cohn-Vossen 1952). The principal curva-
tures and the orientation of the axes provide a complete description of the
local curvature.

One problem with extracting the principal curvatures from an image is that
the gray-level shading depends on many factors, such as the direction of illu-
mination, the reflectance of the surface, and the orientation of the surface
relative to the viewer. Somehow our visual system is able to separate these
variables and to extract information about the shape of an object indepen-
dent of these other variables. Pentland (1984) has shown that a significant
amount of information about the curvature of a surface is available locally.
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Can a network model be constructed that can extract this information from
shaded images?

Until recently it was not obvious how to begin to construct such a network,
but network learning algorithms (see above) provide us with a powerful
method for creating a network by giving it examples of the task at hand. The
learning algorithm is being used in this instance simply as a design tool to see
whether some network can be found that performs the task. Many examples
of simple surfaces (elliptic paraboloids) were generated and presented to the
network. A set of weights was indeed found with this procedure that, inde-
pendent of the direction of illumination, extracted the principal curvatures of
three-dimensional surfaces and the direction of maximum curvature from
shaded images (Lehky and Sejnowski 1987).

The input to the network is from an array of on-center and off-center recep-
tive fields similar to those of cells in the lateral geniculate nucleus. The output
layer is a population of units that conjointly represent the curvatures and the
broadly tuned direction of maximum curvature. The units of the intermediate
layer, which are needed to perform the transformation, have oriented recep-
tive fields, similar to those of simple cells in the visual cortex of cats and
monkeys that respond optimally to oriented bars and edges (figure 9.7). It is
important to emphasize that these properties of the hidden units were not put
into the network directly but emerged during training. The system “chose”
these properties because they are useful in performing a particular task.
Interestingly, time output units, which were required to code information
about the principal curvatures and principal orientations of surfaces, had
properties, when probed with bars of light, that were similar to those of a
class of complex cells that are end-stopped (Lehky and Sejnowski 1988). The
surprising thing, given the plausible receptive-field-to-function inference rule,
is that the function of the units in the network is not to detect boundary
contours, but to extract curvature information from shaded images.

What the shape-from-shading network demonstrates is that we cannot
directly infer function from receptive field properties. In the trained-up
network, the hidden units represent an intermediate transformation for a
computational task quite different from the one that has been customarily
ascribed to simple cells in visual cortex – they are used to determine shape
from shading, not to detect boundaries. It turns out, however, that the hidden
units have receptive fields similar to those of simple cells in visual cortex.
Therefore, bars and edges as receptive-field properties do not necessarily mean
that the cell’s function is to detect bars and edges in objects; it might be to
detect curvature and shape, as it is in the network model, or perhaps some
other surface property such as texture. The general implication is that there is
no way of determining the function of each hidden unit in the network simply
by “recording” the receptive-field properties of the unit. This, in turn, implies
that, despite its intuitive plausibility, the receptive-field-to-function inference
rule is untenable.
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Figure 9.7 Hinton diagram showing the connection strengths in a network that
computes the principal curvatures and direction of minimum curvature from shaded
images in a small patch of the visual field corresponding roughly to the area repre-
sented in a cortical column. There are 12 hidden units which receive connections from
the 122 inputs and project to each of the 23 output units. The diagram shows each of
the connection strengths to and from the hidden units. Each weight is represented by
one square, the area of which is proportional to the magnitude of the weight. The color
is white if the weight is excitatory and black if it is inhibitory. The inputs are two
hexagonal arrays of 61 processing units each. Each input unit has a concentric on-
center (top) or off-surround (bottom) receptive field similar to those of principal cells
in the lateral geniculate nucleus. The output consists of 24 units that conjointly repre-
sent the direction of maximum curvature (six columns) and principal curvature (four
rows: two for each principal curvature). Each of the 12 hidden units is represented in
the diagram in a way that reveals all the connections to and from the unit. Within each
of the 12 gray background regions, the weights from the inputs are shown on the
bottom and the weights to the output layer are shown above. To the left of each hidden
unit, the lone square gives the threshold of the unit, which was also allowed to vary.
Note that there emerged two different types of hidden units as revealed by the “projec-
tive field.” The six units in the bottom row and the fourth and fifth from the left in
the top row were mainly responsible for providing information about the direction of
minimum curvature, while others were responsible for computing the signs and magni-
tudes of the two principal curvatures The curvature-selective units could be further
classified as convexity detectors (top row, thud from left) or elongation filters (top row,
second and sixth from left).



The function of a unit is revealed only when its outputs – its “projective
field” (Lehky and Sejnowski 1988) – are also examined. It is the projective field
of a unit that provides the additional information needed to interpret the unit’s
computational role in the network. In the network model the projective field
could be examined directly, but in real neural networks it can only be inferred
indirectly by examining the next stage of processing. Whether or not curvature
is directly represented in visual cortex, for example, can be tested by design-
ing experiments with images of curved surfaces.

4.3 Next-generation networks

NETtalk and time shape-from-shading network are important examples
because they yield clues to how the nervous system can embody models of
various domains of the world. Parallel-network modeling is still in a pion-
eering stage of development. There are bound to be many snags and hitches,
and many problems yet undreamt of will have to be solved. At this stage, the
representational structure of networks has not yet been explored in detail, nor
is it known how well the performance of network models will scale with the
number of neurons and the difficulty of the task. (That is, will representations
and computations in a cortical column with 200 000 neurons be similar to
those in a model network comprising only a few hundred processing units?)

Moreover, taken literally as a model of functioning neurons, back-
propagation is biologically implausible, inasmuch as error signals cannot
literally be propagated back down the very same axon the signal came up.
Taken as a systems-level algorithm, however, back-propagation may have a
realization using feedback projections that do map on to neural hardware.
Even squarely facing these cautionary considerations, the important thing is
that something with this sort of character at least lets us see what represen-
tational structure – good, meaty, usable structure – could look like in a
neuronal network.

Temporal chaining of sequences of representations is probably a prominent
feature of many kinds of behavior, and it may turn out to be particularly
important for language acquisition and use. It is conceivable that structured
sequences – long, temporally extended sequences – are the elements of an
abstract sort of neural state space that enable humans to use language. Sereno
(1986) has suggested something along these lines, pointing out that DNA, as
a spatially extended sequence of nucleotides, allows for encoding; by analogy,
one may envision that the development of mechanisms for generating tempo-
rally extended sequences of neuronal (abstract) structures may allow for a kind
of structured behavior (that is, language) that short sequences do not allow
for. (See also MacKay 1987; Dehaene et al. l987.)

One promising strategy will be to try first to unscramble the more funda-
mental kinds of representing accomplished by nervous systems, shelving until
later the problem of complex representations such as linguistic representations.
To solve such problems, the solutions discovered for simpler representations
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may be crucial. At the most basic level, there appears to be an isomorphism
between cell responses and external events (for example, cells in visual cortex
responding to bars of light moving in a specific direction). At higher levels the
receptive-field properties change (Allman et al. 1985; Andersen 1987), and it
may be that the lower-level isomorphism gives way to more complicated and
dynamic network effects. Motivation, planning, and other factors may, at this
level, have roles in how a representation is generated. At still higher levels,
still other principles may be operative. Once we understand the nature of
representing in early sensory processing, as we have indeed begun to do, and
go on to address the nature of representations at more and more abstract
levels, we may finally be able to address how learning a language yields
another kind of representation, and how symbols can be represented in neural
networks. Whatever the basic principles of language representation, they are
not likely to be utterly unrelated to the way or ways that the nervous system
generates visual representations or auditory representations, or represents
spatial maps and motor planning. (On semantic relations in connectionist
models, see Hinton 1981, 1986.)

5 Dogmas and dreams: George Boole, 
Ramon y Cajal, David Marr

The connectionist models discussed are valuable for the glimpse of represen-
tational and computational space that they provide, for it is exactly such
glimpses that free us from the bonds of the intuitive conceptions of represen-
tations as language-like and computation as logic-like. They thus free us from
what Hofstadter (1982) called the Boolean Dream, where all cognition is
symbol-manipulation according to the rules of logic.

Equally important, they also free us from what we call the Neurobiologists’
Dream (perhaps, with all due respect, it might be called Cajal’s Dream), which
is really the faith that the answers we seek will be manifest once the fine-grain
details of each neuron (its morphology, physiology, and connections) are
revealed – these models also teach the tremendously important lesson that
system properties are not accessible at the single-unit level. In a system, what
we need to know is how the elements in large sets of elements interact over
time. Until we have new physiological techniques for supplying data of that
sort, building network models is a method of first resort.

To be really useful, a model must be biologically constrained. However,
exactly which biological properties are crucial to a model’s utility and which
can be safely ignored until later are matters that can be decided only by
hunches until a mature theory is in place. Such “bottom-up” constraints are
crucial, since computational space is immensely vast – too vast for us to be
lucky enough to light on the correct theory simply from the engineering bench.
Moreover, the brain’s solutions to the problems of vision, motor control, and
so forth may be far more powerful, more beautiful, and even more simple than
what we engineer into existence. This is the point of Orgel’s Second Rule:

P.S. CHURCHLAND AND T.J. SEJNOWSKI

176



Nature is more ingenious than we are. And we stand to miss all that power
and ingenuity unless we attend to neurobiological plausibility. The point is,
evolution has already done it, so why not learn how that stupendous machine,
our brain, actually works?

This observation allows us to awake from Marr’s Dream of three levels of
explanation: the computational level of abstract problem analysis, the level of
the algorithm, and the level of physical implementation of the computation.
In Marr’s view, a higher level was independent of the levels below it, and hence
computational problems could be analyzed independent of an understanding
of the algorithm that executes the computation, and the algorithmic problem
could be solved independent of an understanding of the physical implemen-
tation. Marr’s assessment of the relations between levels has been re-evaluated,
and the dependence of higher levels on lower levels has come to be recognized.

The matter of the interdependence of levels marks a major conceptual dif-
ference between Marr and the current generation of connectionists. Network
models are not independent of either the computational level or the imple-
mentational level; they depend in important ways on constraints from all 
levels of analysis. Network models show how knowledge of brain architecture
can contribute to the devising of likely and powerful algorithms that can 
be efficiently implemented in the architecture of the nervous system and may
alter even how we construe the computational problems.

On the heels of the insight that the use of constraints from higher up and
lower down matters tremendously, the notion that there are basically three
levels of analysis also begins to look questionable. If we examine more closely
how the three levels of analysis are meant to map on to the organization of
the nervous system, the answer is far from straightforward.

To begin with, the idea that there is essentially one single implementational
level is an oversimplification. Depending on the fineness of grain, research
techniques reveal structural organization at many strata: the biochemical level;
then the levels of the membrane, the single cell, and the circuit; and perhaps
yet other levels, such as brain subsystems, brain systems, brain maps, and the
whole central nervous system. But notice that at each structurally specified
stratum we can raise the functional question: What does it contribute to the
wider, functional business of the brain?

This range of structural organization implies, therefore, that the oversim-
plification with respect to implementation has a companion oversimplification
with respect to computational descriptions. And indeed, on reflection it does
seem most unlikely that a single type of computational description can do
justice to the computational niche of diverse structural organization. On the
contrary, one would expect distinct task descriptions corresponding to distinct
structural levels. But if there is a ramifying of task specifications to match the
ramified structural organization, this diversity will probably be reflected in 
the ramification of the algorithms that characterize how a task is accom-
plished. And this, in turn, means that the notion of the algorithmic levels is
as oversimplified as the notion of the implementation level.
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Similar algorithms were used to specify the network models in NETtalk and
the shape-from-shading network, but they have a quite different status in these
two examples. On this perspective of the levels of organization, NETtalk is 
a network relevant to the systems level, whereas the shape-from-shading
network is relevant to the circuit level. Since the networks are meant to reflect
principles at entirely different levels of organization, their implementations
will also be at different scales in the nervous system. Other computational
principles may be found to apply to the single cell or to neural maps.

Once we look at them closely, Marr’s three levels of analysis and the brain’s
levels of organization do not appear to mesh in a very useful or satisfying
manner. So poor is the fit that it may be doubted whether levels of analysis,
as conceived by Marr, have much methodological significance. Accordingly, in
light of the flaws with the notion of independence, and in light of the flaws
with the tripartite character of the conception of levels, it seems that Marr’s
dream, inspiring though it was for a time, must be left behind.

The vision that inspires network modeling is essentially and inescapably
interdisciplinary. Unless we explicitly theorize above the level of the single cell
we will never find the key to the order and the systematicity hidden in 
the blinding minutiae of the neuropil. Unless our theorizing is geared to mesh
with the neurobiological data, we risk wasting our time exploring some impos-
sibly remote, if temporarily fashionable, corner of computational space.
Additionally, without the constraints from psychology, ethology, and linguis-
tics to specify more exactly the parameters of the large-scale capacities of
nervous systems, our conception of the functions for which we need explana-
tion will be so woolly and tangled as to effectively smother progress.

Consequently, cross-disciplinary research, combining constraints from
psychology, neurology, neurophysiology, linguistics, and computer modeling,
is the best hope for the co-evolution that could ultimately yield a unified, inte-
grated science of the mind–brain. It has to be admitted, however, that this
vision is itself a dream. From within the dream, we cannot yet reliably discern
what are the flaws that will impede progress, what crucial elements are
missing, or at which points the vague if tantalizing hunches might be replaced
by palpable results.

Notes

1 An earlier exploration of these ideas is to be found in Kenneth Craik’s book The
Nature of Explanation (Cambridge University Press, 1943).

2 NETtalk networks can differ in how input letters and output phonemes are repre-
sented, and in the number and arrangement of hidden units.
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P. McLeod, K. Plunkett, and 
E.T. Rolls, “The Attraction of 

Parallel Distributed Processing for 
Modelling Cognition”

The representation and processing of information in connectionist networks
is distributed. Decisions are reached by consensus of a large number of simple
computations taking place in parallel as stimulus information interacts with
stored knowledge. In consequence, connectionist memories display many
human characteristics: They are relatively immune to damaged components
within the system or to noisy input; they allow retrieval by content; they are
likely to retrieve typical instances from categories.

The last decade has seen an explosive growth in the connectionist modelling
of cognitive processes, with simulation of most of the classical experimental
paradigms of cognitive psychology. One reason for this enthusiasm is that,
independent of their success at modelling human performance at any partic-
ular cognitive task, all connectionist models exhibit some general character-
istics which are shown by human cognitive processes and distinguish them
from non-biological computational systems such as computer programs: They
still perform reasonably well after minor damage to components of the system;
they still perform reasonably well if their input is noisy or inaccurate; they
allow memory retrieval by content.

In this chapter we will look at two aspects of connectionist systems which
are responsible for these characteristics. These are based on general observa-
tions of brain structure. First, knowledge representation is distributed across
many processing units. Second, computations take place in parallel across
these distributed representations. The result is that conclusions are reached on
the basis of a consensus of many calculations rather than depending on any
particular one.

These principles put connectionist models in direct contrast to many tradi-
tional models in cognitive psychology or artificial intelligence where know-
ledge representation is local and computation is serial. In general, such models
are not immune to damage or resistant to noisy input. So a traditional model
of, say, syllogistic reasoning, might give as good a fit to the experimental data
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as a connectionist model, but it would do so without exhibiting the full range
of human characteristics as it performed the task.

The representation of knowledge in connectionist 
networks is distributed

Traditional models of cognitive processing usually assume a local representa-
tion of knowledge. That is, knowledge about different things is stored in
different, independent locations. In a traditional model of reading aloud, for
example, information about how to pronounce the letter string DOG is stored
in one place and information about how to pronounce the string CAT 
in another. What could be more natural? The two pieces of information are
independent and would be required at different times. So storing them inde-
pendently makes obvious sense. The information storage systems we are
familiar with in everyday life – dictionaries, telephone directories, computer
discs – use local representation. Each discrete piece of information is stored
separately. How else could it be done?

In connectionist models information storage is not local, it is distributed.
There is no one place where a particular piece of knowledge can be located.
Consider a network which is learning to read aloud. Any input, such as 
the letter string DOG, would excite units and connections all over the net-
work. Learning takes place by changing the weights of the connections 
leading to all output units which have an incorrect level of activity. The 
knowledge of how to pronounce the input DOG is distributed across many
different connections in different parts of the system. It is the sum total effect
of all these connections which produces the pronunciation, not any single one
of them.

The concept of distributed storage may be difficult to grasp at first because
it is counter to our everyday experience of information storage systems. The
connections which contain the system’s knowledge about how to pronounce
DOG are the same as those with the knowledge about how to pronounce any
other letter string. All the knowledge that the network contains is superim-
posed on the same set of connections. Intuitively this may seem entirely
implausible. How can the same set of weights store independent and even
contradictory pieces of information? As we will see, it can be done, and some
of the emergent properties of such systems are intriguingly similar to proper-
ties of human cognitive processes. But for the moment this will have to be
taken on trust. There are no familiar information storage systems which use
distributed coding, so analogy to a familiar system is not possible.

Distributed representations are damage resistant 
and fault tolerant

When one considers the structure of the brain it is remarkable that it 
ever manages to come to the correct conclusion about anything. By any

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“PARALLEL DISTRIBUTED PROCESSING”

183



conventional standards neurons are an entirely unsuitable medium for compu-
tation: they die throughout the brain’s life, causing random loss of stored
information; they have a finite probability of firing even when they are not
engaged in signal processing; the response of a neuron to any particular input
is probabilistic, not fixed.

If we look at the firing pattern of a single neuron the problem that proba-
bilistic responses cause for the system will become clear. The upper part of
figure 10.1 shows the average response of a single neuron in the visual cortex
to a stimulus presented to the eye. The stimulus is presented at time 0. Time
after the presentation of the stimulus is shown on the horizontal axis. The
vertical axis shows the neuron’s firing rate. It has an average background firing
rate of a few spikes per second. When the stimulus is presented a signal is
superimposed on this. About 50 ms after the stimulus appears the neuron fires
strongly for about 30 ms. 100 ms later it fires again, rather less intensely, for
about 50 ms. This is the signal that the neuron transmits to the other neurons
to which it is connected, indicating what pattern of stimulation it has received.

This seems fairly straightforward. But the histogram was obtained by
summing the spike patterns over a number of presentations of the stimulus.
The lower part of the figure shows 12 different occasions on which the same
stimulus was presented. Each time the neuron fires there is a vertical spike. If
we look at these individual trials the pattern which emerges is much less clear
than that suggested by the overall average at the top. On trial 5 the initial
burst was missing. On trial 10 the second burst was missing. On trial 11 the
neuron did not respond at all. It is clear that the ‘signal’ which the histogram
at the top shows is an idealised average. On any given trial the output will
only approximate this, sometimes quite closely, sometimes not at all. How can
the system produce a reliable response on every trial when the individual
components only produce their signal on average across trials?

If the processing components in a conventional digital computer produced
random spontaneous output, a different response to the same stimulus on
different occasions and suffered from random component drop-out, the system
would be totally unpredictable! Sometimes it would work correctly, but if a
computation required access to the contents of a missing memory unit, or a
burst of noise obliterated a signal, the result would be garbage. Although the
components in the brain can fire and die at random, the computations
performed by the brain are not unpredictable. With minor damage it becomes
a little slower and less accurate, but it still produces roughly the same answer.
It has to suffer serious damage before it produces nonsense.

The brain escapes the consequences of the unpredictable behaviour of 
individual neurons because its computations are performed in parallel on
representations which are distributed over many neurons. No one neuron
plays a crucial role in processing. The overall result is the outcome of 
many distributed sub-computations. Even if individual components of the
calculation are not accurate, the ensemble averaging can nevertheless give an
answer which is accurate enough. When the memory location required for a
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Figure 10.1 The response of a neuron in the visual cortex for 250 ms after stimulus
presentation. Upper: The firing rate of the neuron summed over a number of presen-
tations of the stimulus. Lower: The pattern on 12 of the trials which contributed to
the average response shown at the top. Each vertical line represents the time at which
the neuron fired. (Based on Morrell 1972.)



calculation in a localist information storage system is damaged, the result is
disaster. If the first page of a dictionary is missing, there is no way of checking
whether aardvark is really spelt like that. But, in a connectionist system, there
is no such thing as ‘the memory location required for a calculation’.
Information and calculation are spread across the network. If one unit or
connection in the network is damaged, others can make up for the missing
part.

The system will, of course, be slightly less accurate if a connection is lost.
But the pattern of loss is quite different in localist and distributed systems.
Damage to a localist system causes some information to be lost totally while
other information is unaffected. In a distributed system any damage causes
partial loss of a range of information. As damage increases, the performance
of the system inevitably begins to drop. But a small amount of damage may
have no noticeable effect on the output of the system. The ability of brains
and connectionist models to continue to produce a reasonable approximation
to the correct answer following damage, rather than undergoing catastrophic
failure, is an example of fault tolerance referred to as graceful degradation.

Connectionist networks allow memory access by content

Human memory is content-addressable. That is, you can access a memory by
using some part of the information contained in the memory (the content) as
a retrieval cue. This is unlike retrieval from familiar forms of information 
storage, such as dictionaries, telephone directories or computer discs. In these,
the place where the information is stored has an address. The only way to
access information for retrieval is with the address. For example, in a diction-
ary the address is the spelling of the word; the information stored with this
address is the definition of the word. In a computer system a typical address is
the name of a file; the information which can be accessed with this address 
is the contents of the file.

To understand the difference between accessing a memory by address and
by content, contrast retrieving information from a dictionary with obtaining
the same information from a person. Imagine that you want to know the 
name of a man-made wall, built across a valley, to contain water to build up
a head of pressure to generate electricity. With a dictionary, there is no way
to access the location where this information is stored and extract the missing
piece, the word ‘dam’. If you start with the address (DAM) you can access all
the information stored at the address. Without it you can access nothing. In
contrast, a person given part of the information would probably be able to
retrieve the rest. Unlike a dictionary, human memory allows access via any
part of the information that forms the memory. One of the reasons why
connectionist models of human memory are attractive is that content address-
ability follows as a natural consequence of their distributed structure. Content
addressability can be built into localist storage but only by adding a complex
cross-referencing system.
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Any information processing system which works in the brain must be fault
tolerant because the signals it has to work with are seldom perfect. There is
a random component to neuronal firing; speech is usually heard against a
background of other noises; objects rarely present the same image on different
occasions. An attractive aspect of content-addressable memory is that it is
inherently fault tolerant. Imagine someone asked you to guess who they were
thinking of: ‘This man was a British Conservative politician. He became Prime
Minister in 1978 and was Prime Minister during the Falklands War. He was
ousted from office by his own party, being held responsible for the fiasco of
the Poll Tax. He was eventually replaced as Prime Minister by John Major.’
You could probably suggest ‘Margaret Thatcher’ as an answer despite the fact
that some of the information is incorrect. Mrs Thatcher did not become Prime
Minister until 1979, of course. With content-addressable memory the weight
of evidence pointing to one answer can overcome other evidence that is incon-
sistent. A best fit solution can be chosen even if it is not perfect. This is unlike
memory systems in which access by address is the only possibility. Any error
in the address will lead to failure. A search of Who’s Who using the address
‘Margaret Patcher’ would discover nothing, despite the fact that most of the
search term fits an existing entry.

Retrieving information from a distributed database

To see how a distributed system with parallel processing works in practice we
will look at retrieval from a simple connectionist memory described by
McClelland (1981).1 This memory demonstrates content addressability and
fault tolerance, It also shows typicality effects in retrieval – if asked to retrieve
a random member of a category it will produce a typical member. Considering
the simplicity of the simulation it demonstrates a remarkable range of human
characteristics in memory retrieval.

Imagine that you live in a neighbourhood where many of your male
acquaintances belong to one of the two rival local gangs, the Jets or the Sharks.
Your knowledge about these characters will come from a succession of inde-
pendent episodes. One night Fred emerges from behind a bush and offers you
some white powder. You hear Dave and his wife trading insults as she drives
off with a car full of suitcases. Everyone in the bar is laughing because Don
has been admitted to college on the basis of forged examination results. Nick
hangs out with Karl whom you know to be a Shark. All these pieces of
information about your neighbours are gradually assembled over the years.
Fred is a pusher; Dave is divorced; Don went to college; Nick is a Shark.

Table 10.1 shows how this information might be stored in a conventional
information storage system. The system has a set of storage locations, corre-
sponding to a set of cards in an index file or a set of files on disc in a computer,
for example, each headed by an address. The address is the name of the person.
Each new piece of information relating to him is stored at the location 
headed by this address. In this simple simulation we imagine that we have
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information about the Gang each person belongs to (Jets or Sharks), a rough
idea of his Age (20s, 30s or 40s), the extent of his Education (Junior High,
High School or College), his Marital Status (Married, Single or Divorced), and
his Occupation (Bookie, Burglar or Pusher) The format used in table 10.1,
address + contents, is a logical way of storing the information since the name
Alan is the key which binds one set of information together, Clyde connects
another set, and so on.

This form of storage is efficient for retrieving information in response to
questions like ‘Is Fred a pusher?’ The question contains the address, and the
address leads directly to the place where the information which provides the
answer is stored. But it is not so good for answering other enquiries. If you
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Table 10.1

Address Contents

Gang Age Education Marital Occupation
Status

Alan Jets 30s JH Married Burglar
Art Jets 40s JH Single Pusher
Clyde Jets 40s JH Single Bookie
Dave Sharks 30s HS Divorced Pusher
Don Sharks 30s Col Married Burglar
Doug Jets 30s HS Single Bookie
Earl Sharks 40s HS Married Burglar
Fred Jets 20s HS Single Pusher
Gene Jets 20s Col Single Pusher
George Jets 20s JH Divorced Burglar
Greg Jets 20s HS Married Pusher
Ike Sharks 30s JH Single Bookie
Jim Jets 20s JH Divorced Burglar
John Jets 20s JH Married Burglar
Karl Sharks 40s HS Married Bookie
Ken Sharks 20s HS Single Burglar
Lance Jets 20s JH Married Burglar
Mike Jets 30s JH Single Bookie
Neal Sharks 30s HS Single Bookie
Ned Sharks 30s Col Married Bookie
Nick Sharks 30s HS Single Pusher
Oliver Sharks 30s Col Married Pusher
Pete Jets 20s HS Single Bookie
Phil Sharks 30s Col Married Pusher
Ralph Jets 30s JH Single Pusher
Rick Sharks 30s HS Divorced Burglar
Sam Jets 20s Col Married Bookie

(Based on McClelland 1981.)



are asked ‘Do you know the name of a pusher?’, the only way is to search
through the list of addresses until you find one where the information Pusher
is stored under Occupation. Although the information Pusher is stored at
many locations, it does not form part of the address. So an answer to this
question cannot be extracted directly from the memory.

Admittedly, with this particular database it would not take long to find a
pusher if you searched addresses at random. But a more realistic representa-
tion of knowledge of these people would include many unique pieces of
information, such as the fact that Fred’s grandparents came from Ballylickey.
The only way to store this in a system like that shown in table 10.1 is as the
fact ‘grandparents came from Ballylickey’ at the storage location with the
address Fred. The question ‘Whose grandparents came from Ballylickey?’
could only be answered by random search of the addresses until the one
containing that information was found. This might take a long time although
you would get there in the end. But a human memory would not respond 
like that. If you could remember the information at all you would usually
produce the answer reasonably quickly. This is because human memory can
be accessed by content – any part of the knowledge base can be used to access
any other part. ‘Ballylickey’ can be used as a cue, and will lead to Fred. The
information storage system shown in table 10.1 is perfectly logical. Indeed, 
it is probably the sort of system you would use if you were asked to store 
the information about the Jets and Sharks. But human memory cannot be
organised like this. A memory organised like table 10.1 does not allow
content-addressable retrieval; human memory does.

Another way of seeing why human memory cannot be organised so that
access is only possible by address is to consider how you would answer the
question ‘What are the Jets like?’. Table 10.1 allows easy access to informa-
tion about individual Jets, But it offers no simple way to answer questions
requiring generalisations across a number of entries. Human memory does
allow generalisations across areas of memory. A person who knew these two
gangs could probably tell you that the Jets were younger than the Sharks
without having to think very hard. Although the method of information
storage shown in table 10.1 seems natural, it cannot be the way that human
memory is organised.

(1) Setting up a distributed database for the Jets and Sharks base.
McClelland explored the consequences of storing the information about the
Jets and Sharks in a distributed system The architecture of his system is shown
in the upper part of figure 10.2. To store the information in table 10.1 we
need to represent facts about Name, Gang Membership Age, Education,
Marital Status and Occupation. Within each of these areas of knowledge there
is a node corresponding to the possible values that someone could have. So in
the Age area there are nodes for 20s, 30s and 40s, in Occupation for Burglar,
Bookie and Pusher, in Gang for Jet and Shark, and so on. This model might
seem to be localist rather than distributed because there are individual nodes
to represent specific concepts. But, as we shall see, the underlying dynamics
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of the model are parallel and distributed. The result of any input is determined
by interaction across the entire database. The localist coding of concepts is
used to make it easy to see what the model is doing in the examples which
follow.

A memory is formed by setting up a link between two nodes. If we discover
that Sam is a bookie we set up a positive connection between the Sam node
in the Name area and the Bookie node in the Occupation area. If we then
discover that he is married we set up a positive connection between Sam in
the Name area and Married in Marital Status, and between Bookie and
Married (since we now know of a bookie who is married). To store all the
information we know about Sam we would set up positive links between all
the possible pairwise combinations of Sam in Name, Jet in Gang, 20s in Age,
College in Education, Married in Marital Status and Bookie in Occupation.
The way that McClelland did this is shown in the middle of figure 10.2. He
set up a Person node in the central region of the model and then made a posi-
tive connection between this and each fact that was related to that person.
The result is similar to setting up all 15 links necessary to represent these facts
individually, but requires fewer links. Person nodes were then set up for each
of the people in table 10.1 and the necessary links formed to represent every-
thing that is known about them.2

The bottom part of figure 10.2 shows the connections between the various
nodes building up as information about five of the people is added to the
system. This also shows a second element of the model. There are mutually
inhibitory connections between each of the exemplar nodes within a know-
ledge area, There must be some inhibitory links in a network like this where
everything is interconnected or the result of activating any node would be that
everything in the network would eventually reach its maximum activity level
and no differential response to different inputs would be possible. These
connections represent the fact that, for example, if someone is in his 20s, he
cannot be in either his 30s or his 40s. This fact could have been implemented
by making negative connections from each person node to all the things he is
not. Building mutually inhibitory links between alternative instance nodes
within an area has a similar effect on the performance of the net but greatly
reduces the number of connections required. As we shall see, the way that
inhibition is built into this network has an important role to play in the way
the model runs.
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Figure 10.2 The architecture of McClelland’s system for storing the information about
the Jets and Sharks shown in table 10.1. (a) Each cloud represents an area of know-
ledge about the members of the two gangs, with the nodes within a cloud representing
possible instances. (b) The information about Sam is represented by setting up excita-
tory connections between the facts that are known about him, This is done by setting
up a Person node (the black node in the central circle) and linking this to all the instance
nodes which represent his properties. If any one of these nodes becomes active these
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Age
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Education
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Marital status

links will ensure that the nodes representing his other characteristics will be activated.
(c) The excitatory connections necessary to represent all the information about five
members of the gang have been entered. Inhibitory connections (links with filled circles
on their ends) have been set up between competing instances nodes within each area
of knowledge. When the model runs, any node which has a positive activity level will
inhibit any other node to which it is connected by one of these links. (Based on
McClelland 1981.)



(2) Running the network. The nodes are the processing units of the model.
Each has an activity level associated with it. When the model runs, each node
passes activity to all the other nodes to which it is connected. The input to the
receiving node is the product of the activity level of the sending node and the
weight of the connection between them. In this simple model the weight of all
positive connections between nodes is +1 and that of negative connections is
–1.3 So, when the model runs, every node which has a positive activity level
tries to increase the activity level of every node to which it has a positive
connection, and to reduce the activity of every node to which it has a nega-
tive connection. The net input of each node is determined by summing these
negative and positive inputs. The net input is then converted by an activation
function to an activity level. The activation function used by McClelland had
the same effect as a sigmoid function, namely, limiting the maximum value
which the activity level could reach, and slowing the change in activity level
with changes in net input as the unit’s activity level approached its maximum
value. In a single processing cycle the activity level of each unit is computed
by summing its inputs and converting these to an activity level with the acti-
vation function. On the next cycle these new activity levels are used to compute
the new net inputs to each unit, and thus their new activity level. This is
continued until the net reaches a steady state. That is, until each node in the
network reaches a constant activity level.

(3) Retrieval from the database. To test the memory performance of this
system we ask it a question such as ‘Can you remember the name of a pusher?’
This is done by activating the Pusher node in Occupation and waiting to see
which unit becomes active in the Name area as activity passes round the
network. The activity of all nodes starts at a level of –0.1. Activity of the
Pusher node increases the activity level of all nodes to which it has a positive
connection and decreases the activity of all those to which it has a negative
connection. Once the activity level of a node rises above 0 it excites all the
nodes to which it has a positive connection and inhibits all those to which it
has a negative connection. Eventually the system reaches a steady state in
which the activity level of each node is constant, either because it has reached
its maximum or minimum permitted value, or because its negative and posi-
tive inputs are exactly balanced.4 The Name node which is most strongly
activated when steady state is reached is the system’s answer to the question.

Does such a system behave like human memory? Apart from being able to
retrieve the information it had been given directly, by answering such ques-
tions as ‘What does Fred do?’, anyone who knew these people would find it
easy to answer questions like ‘Do you know the name of a pusher?’ or ‘What
are the Jets like?’ These are the sort of questions which it is difficult to answer
with a localist memory store organised like table 10.1. Will this distributed,
connectionist memory system find them any easier?

With the aid of the bottom part of figure 10.2 it is possible to get some idea
of what happens when the system runs. To see what answer the system will
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retrieve when it is asked: ‘Can you remember the name of a pusher?’ the
Pusher node is activated. This activity passes along all the connections from
the Pusher node. So the Ralph and Art Person nodes become excited because
there is a positive connection to them from Pusher. (In the real model all the
Person nodes of pushers would be excited. For simplicity we will just follow
two of them.) The Bookie and Burglar nodes become inhibited because there
are negative connections to them from Pusher. In the next processing cycle the
Ralph Name, Jet, 30s, JH, Single and Pusher nodes are excited by the Ralph
Person node, and the Art Name, Jet, 40s, JH, Single and Pusher nodes become
excited by the Art Person node. At each succeeding cycle every node which is
active influences every node to which it is connected by an amount which
depends on its activity level and in a direction which depends on whether the
connection between them is excitatory or inhibitory. So, for example, the fact
that the 30s node is excited by the Ralph Person node will in turn cause exci-
tation of all the Person nodes connected to 30s, and inhibition of the 20s and
40s Age nodes. At the same time the excitation of the 40s Age node by the
Art Person node may be sufficient to overcome this and cause excitation of all
Person nodes connected to 40s and the inhibition of the 30s and 20s Age
nodes. After several processing cycles the activity level of every node in the
system is being influenced by a mixture of positive and negative inputs.
Obviously it soon becomes impossible to keep track of the patterns of exci-
tation and inhibition and predict whether the system will reach a stable state,
and if so, what will be excited and what depressed. The only way to find out
what the system will do in response to stimulation of any of its nodes is to
run a computer simulation of the whole system.

It should now be clear that a connectionist memory system is totally unlike
a conventional memory such as a computer filing system. In a conventional
system independent pieces of information are stored separately. When a
specific piece of information is accessed, it and it alone is retrieved. But in a
distributed connectionist system, an attempt to extract any information from
the system leads to a flow of excitation and inhibition throughout the system
to everything which has any relation to this information. This results in many
different nodes becoming active. What is retrieved is the information which
corresponds to the most active node(s) once this flow has stabilised. If one is
accustomed to information retrieval from a conventional, non-connectionist
system such as a telephone directory, this might seem very odd. If you looked
up Tom Brown’s number in a connectionist telephone directory the number
retrieved would be influenced by the entries of everyone with a similar name
or a similar number to Tom’s. This would not be useful. You do not want the
number retrieved to be influenced by the fact that there happens to be someone
called Tim Brown who has a telephone number quite unlike Tom’s. You want
the information stored at the location with the address ‘Tom Brown’ and
nothing else. But the interference which a connectionist system allows during
retrieval between related items of stored information turns out to have some
interesting and useful properties.
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(4) Content-addressable memory in Jets and Sharks. To see whether this
memory system allows access by content, we can ask it the question ‘Do you
know the name of a pusher?’ To do this we activate the Pusher node, leave it
on, and see which Name nodes become activated. Figure 10.3 shows the
activity level of three of the Name nodes as a function of the number of
processing cycles for which the system has been allowed to run. All the pushers
names initially become activated. Most of them, like Oliver, quickly return to
their resting level. But Fred and Nick both become increasingly activated. After
about 50 cycles Fred starts to dominate and soon the system enters a stable
state with Fred activated and all the other names back at their resting level.
The system answers the question with the reply: ‘Err . . . Fred.’ So, unlike the
storage system of table 10.1, this system does allow information to be retrieved
when it has been accessed by content rather than address.

The relative activity of the name Fred compared to the name Nick over the
last 50 cycles demonstrates an important characteristic of models with mutual
inhibition between competing responses. When alternatives are equally acti-
vated they inhibit each other equally and everything is balanced. But once one
gets ahead it inhibits the others more than they inhibit it. This reduces their
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Activity
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0.4 ‘Do you know the name of a pusher?’
‘Err ... Fred’

0.3

0.2
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0.0
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Nick
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Figure 10.3 To see how the system responds to the question, the Pusher node in the
Occupation area is held On and activity flows from here through the system. The initial
activity level of all nodes is set to –0.1. The activity level of three of the nodes in the
Name area is plotted as a function of the number of cycles of activity passing around
the system.



activity and thus the extent to which they inhibit the one which is ahead. So
it becomes more active and inhibits the others yet more. This rapidly results
in the one that is a little more active consolidating its position in the lead and
completely inhibiting the alternatives. The effect is sometimes referred to as
‘the rich get richer’ or ‘winner takes all’.

Building positive feedback into the system in this way makes it likely that
the system will quickly come to a definite conclusion, even if the difference
between the evidence favouring one alternative rather than the other is small.
But it makes the decision process vulnerable to noise. A random disturbance
may be magnified and treated as a signal. This would generally be considered
a drawback in a decision making system but it has one useful consequence.
Figure 10.3 suggests that the system would always answer the question ‘Do
you know a pusher?’ with the reply ‘Fred’. If so, it would be an indifferent
model of human memory. People would give a different answer to this ques-
tion on different occasions, or if asked for an alternative answer, could provide
the names of other pushers. It is straightforward to achieve this response vari-
ability with the model. If random noise is added to the starting activity levels
the system will produce a different answer. Positive feedback ensures that a
node that gets ahead is likely to consolidate its advantage. So a small change
in starting conditions, or during processing, can make a radical difference to
the outcome. Figure 10.4 shows the result of setting the initial activity level
of Nick’s Person node to –0.07 rather than –0.1 before activating the Pusher
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Figure 10.4 The effect of adding noise to the activity levels before asking the question.
The initial activity of Nick’s Person node is set to –0.07 rather than –0.1.



node. Now the system answers the question ‘Do you know a pusher?’ with
the reply ‘Err . . . Nick’. Given that we know the brain is a noisy system, it is
appropriate to model it with an inherently noisy network. The result is the
human characteristic of variability in response to the same input.

(5) Typicality effects in memory retrieval. If the information about the Jets
and Sharks was stored in the manner of table 10.1 it would not be possible
to retrieve the names of pushers directly, because ‘pusher’ is not part of the
address. But the information could be extracted by sampling addresses at
random and giving the names of ones that turned out to contain the informa-
tion Pusher under Occupation. In that case any pusher would have an equal
chance of being produced as an example. But this is not how the network
behaves when asked to name pushers. As figure 10.3 shows, it is more likely
to retrieve the names of some pushers than others. It might retrieve Fred or
Nick, but it is unlikely to produce Oliver’s name.

Human memory retrieval has the same characteristic (see, for example,
Rosch 1975). If you ask people to produce a list of birds (the equivalent of
asking the network ‘Tell me the names of all the pushers you know’) most
people will include Robin in their list but fewer will include Chicken. Some
information is more easily available for retrieval from memory than other
information from the same category. Since the answers which are most likely
to be given to this question are the names of birds which would be rated as
typical examples of the category, this result is called, unsurprisingly, a typi-
cality effect.

The reason why the network is likely to retrieve Fred rather than Oliver in
reply to the request for the name of a pusher can be seen in table 10.2. Pushers
are more likely to be a Jet than a Shark, they tend to be in their 30s, to have
been educated to High School level and to be single. So the Person nodes which
get excited when Pusher is activated send more activity to the Jet, 30s, HS and
Single nodes than to other nodes.
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Table 10.2 The pushers

Gang Jets Sharks
5 4

Age 20s 30s 40s
3 5 1

Education JH HS College
2 4 3

Marital status Single Married Divorced
5 3 1

The prototypical pusher: Jet 30s HS Single
Fred Jet 20s HS Single
Nick Shark 30s HS Single
Oliver Shark 30s Col Married



The mutual inhibition between alternative instance nodes with an area
means that Single, HS and Jet become more activated, and Married, College
and Shark become less activated. This in turn means that the Person nodes
connected to Single, HS and Jet get supported, and the Name nodes connected
to these become activated but the Person nodes and hence the Name nodes
connected to Married, College and Shark do not. Fred is a single, High School
educated, Jet; Oliver is a married, College educated, Shark. So, as a result of
Fred’s similarity to a prototypical pusher, his Person and Name nodes become
more and more active as processing continues. Oliver’s dissimilarity to the
prototypical pusher means that his become less and less active. The result is
that when the system is asked to think of a pusher, Fred’s name is retrieved
but Oliver’s is not. If asked to generate instances from a category, distributed
connectionist nets automatically generate typical instances, just like people.

Constraint satisfaction in connectionist networks

When activity flows through a connectionist network in response to an input,
each unit influences the state of all the units to which it is connected. If the
connection weight is positive the sending unit tries to put the receiving unit
into the same state of activity as itself; if the connection weight is negative it
tries to put it into the opposite state. Since all activity changes are determined
by these influences, each input can be seen as setting constraints on the final
state (i.e. set of unit activities) which the system can settle into. When the
system runs, the activities of individual units will change in a way which
increases the number of these constraints which are satisfied. Thus connec-
tionist networks are said to work by constraint satisfaction.

The ideal final state would be a set of activities for the individual units
where all the constraints were satisfied. The network would then be stable
because no unit would be trying to change the state of any of the units to
which it was connected. This ideal solution is unlikely to exist because most
units are connected to some units which are trying to increase its activity and
others which are trying to reduce it. There is no way of satisfying both. But
if the system can find a state in which any change in the activity levels of the
units reduces the overall number of satisfied constraints, it will stop changing
activities. That is, it will have found a stable state. For most networks there
will be many possible stable states with a different pattern of activity, each
one of which will be reached from a different pattern of input activity. The
realisation that these stable states could be viewed as the network’s memories
– that is, the set of possible states that it could reach in response to different
inputs – was an important step in the history of connectionism.

In a conventional connectionist network where knowledge is distributed
across many units, it is difficult to follow constraint satisfaction at work
because it is difficult to see what role any particular unit is playing. In 
Jets and Sharks it is easy, because the concept coding is localist rather than
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distributed. Each node stands for an identifiable concept. The constraints on
the system are the various facts in table 10.1, each one of which is represented
by one of the links in the network. The fact that Clyde is a Jet in his 40s means
that if either of the nodes representing these concepts is activated it will try to
activate the other, and inhibit the Shark, 30s and 20s nodes. The fact that there
are also both Jets and Sharks in their 30s and 20s means that a whole set of
other, mutually contradictory constraints are influencing the way that the
system changes the activity level of the units in response to any particular
pattern of input. The key point is that the changes in activity on each cycle
will increase the number of constraints which are satisfied.

A system which works by constraint satisfaction has a number of desirable
characteristics for modelling human cognition. The main one is that it allows
a decision to be reached by a consensus of evidence, a reasonable fit between
input and memory, rather than requiring an exact match. We have already
seen this as a virtue in any model of human cognition because the nature of
the nervous system requires a degree of fault tolerance in the information
processing system (remember figure 10.1). It is also desirable because of the
nature of the input which the cognitive system has to work with in the real
world. Consider what happens when you listen to one particular speaker in a
crowded room. The signals arriving at your ear contain the sounds made by
the person you are listening to, but superimposed on these are a jumble of
sounds from different speakers, the whole thing obliterated from time to time
by bursts of laughter and other noises. And yet, most of the time, what you
perceive is words. The signal you receive bears some relationship to a proto-
typical representation of the word that you perceive but will be far from an
exact match. The fact that you perceive words shows that the word recogni-
tion system must be looking for a best fit to the word patterns it has stored
rather than for an exact match. This effect has been studied in the laboratory
with an experimental paradigm called ‘phoneme restoration’. In the original
study by Warren (1970) the sound /s/ was removed from the word ‘legislature’
and replaced with a cough. People then listened to a sentence containing the
word ‘legi<cough>lature’ and were asked what they heard. People reported
the sentence correctly, adding that there was a cough before or after the word
‘legislature’. In other words, the perceptual system does not necessarily give a
veridical account of the stimulus, it gives a plausible interpretation of the
input, given its knowledge of English words.

The same effect can be seen in the Jets and Sharks system. Figure 10.5 shows
what happens when the system is probed with a variety of retrieval cues. The
filled circles show what happens when the net is asked: ‘Do you know a 
Shark, in his 20s, who went to High School, who is single and a burglar?’ 
(i.e. the Shark, 20s, HS, Single and Burglar nodes are all switched On). 
The circles joined by solid lines show the activity of Ken’s Name node and the
circles joined by dashed lines the activity of the next most activated Name
node. Not surprisingly, the net answers ‘Ken’ quickly.
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This is the equivalent of presenting a listener with a clear and unambiguous
example of the word ‘legislature’ and asking her what word she heard. The
crosses show what happens when High School is changed to Junior High in
the input activity pattern. This input is no longer an accurate description 
of anyone in the database (the equivalent of presenting a listener with
‘legi<cough>lature’). A system which tried to find an exact match to the input
would fail. There is no person who matches that input pattern in the data-
base. But the network has no problem. It takes slightly longer to respond (i.e.
Ken’s name takes more time to become activated, and does not reach such a
high level) but Ken still comes out as the clearly preferred item retrieved from
memory. The squares show what happens with an even more ambiguous input.
In this the Bookie and Pusher nodes have all been activated as well as Burglar.
As long as the input pattern is closer to a description of Ken than to any alter-
native, the system makes a clear decision in favour of the response ‘Ken’.5

The fact that connectionist systems work by constraint satisfaction is the
reason why they exhibit fault tolerance. No part of the input uniquely deter-
mines the outcome. The network’s response is the best fit it can make between
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Correct retrieval pattern for Ken
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Cycles
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Activity level of next
most active name

Incorrect retrieval pattern for Ken

Even less correct retrieval pattern for Ken

Activity level of
Ken’s name

Figure 10.5 Constraint satisfaction in operation. Given a correct description of Ken as
a retrieval cue, the system retrieves Ken’s name. Given progressively less accurate
retrieval cues, which are, nevertheless, closer to a description of him than to anyone
else in the database, it still produces his name. Input activity levels:

(●) Shark = 1; 20s = 1; HS = 1; Single = 1; Burglar = 1. 
(✖) Shark = 1; 20s = 1; JH = 1; Single = 1; Burglar = 1.
(❑) Shark = 1; 20s = 1; JH = 1; Single = 1; Burglar = 0.5; Pusher=0.25; Bookie=0.25.



the current input and information it has acquired in the past. It would be
possible to devise a system, based on address + contents information storage
like table 10.1, which, if given an input that failed to match any stored infor-
mation, could compute a best fit. However, this would be a time consuming
process once possible inputs achieved any degree of complexity. The parallel
distributed computation in the Jets and Sharks database automatically
computes a best fit between input and stored information. It would continue
to do so whatever the degree of complexity of the patterns describing the 
individual entries without taking any more time.

There is no distinction between ‘memory’ and 
‘processing’ in connectionist models

One general point to note about distributed representations is that they 
blur the distinction between memory and processing. Traditional models of
cognitive processes often distinguish between ‘memory’, a store of learnt
information, and ‘processing’, operations which enable the system to interpret
incoming information. The processing operations may use information from
memory, but the conceptual distinction is clear. Indeed, in many models this
is made explicit with separate parts of the model labelled ‘memory’ and
‘processor’. Such models exploit the analogy to conventional digital computers
where there are independent systems for storing information and for
processing it.

There is no such distinction in connectionist models. All the information
which the network has – its memory – is stored in the weights of the connec-
tions between units. All the processing that the net can do is determined by
the same set of weights.

Problems for distributed representations

We have emphasised the advantage of distributed representations over localist
representations in allowing the system some degree of resistance to damage
and tolerance of noisy inputs. Given the unreliable nature of the matter which
the brain uses for computation, it seems inevitable that it would use distrib-
uted representations. However, there are two properties of human memory
which would not seem to be easy to account for with connectionist models
but which would be expected with localist information storage: First, the addi-
tion of new information does not necessarily cause the loss of old. Second,
learning can be immediate.

In a distributed system, any new information has to be added to the connec-
tions which already carry the system’s current store of knowledge. To add the
new information the strength of connections must be changed. If this is done
in a single trial, addition of new information is likely to lead to some loss of
old information. In a localist system, in contrast, the addition of new informa-
tion is no problem. It is simply added to new storage locations and does not
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affect old information. At this point, however, we will just suggest that at an
intuitive level there are different sorts of human learning.

At one extreme it seems clear that some sorts of knowledge can be acquired
immediately, without interfering with other information. All young chess
players are shown the smothered mate sequence with a queen sacrificed to a
rook on g1 followed by mate of the king on h1 by a knight moving from h3
to f2. If you understand chess you only have to see this sequence once to
remember it for ever, despite the fact that you may never have an opportunity
to use it in a game. Similarily, if you knew anything about the British ex-Prime
Minister Mrs Thatcher, and were told that her nickname at school was ‘Bossy
Roberts’, you would be unlikely to forget it. A novel piece of information
which you find interesting or amusing, in a domain where you already have
sufficient knowledge to understand its significance, is likely to be remembered
after a single presentation. And it can be retrieved as a specific item of informa-
tion in future, independent of any other facts in the database. It is difficult 
to believe that such acquisition is accompanied by the loss of any other
information. Quick, cost-free, addition of new information to existing data-
bases characterises certain sorts of human knowledge acquisition. It is 
natural with localist representation of knowledge – you just add another entry
to the database. But it is difficult to see how it can happen with a distributed
system.

At the other extreme there are many areas of knowledge acquisition, such
learning to play tennis or learning to talk, where acquisition of new know-
ledge is gradual, and accompanied by the modification or loss of previous
patterns. As your tennis serve improves or you learn to pronounce the
language correctly you want to lose some aspects of your old response patterns
because they were inaccurate. Later it is difficult to recall when a specific piece
of information was added to the database. Such a pattern, where new infor-
mation is inextricably interwoven with old, occurs naturally with a distrib-
uted system, but not with a localist one. Distinctions between different sorts
of knowledge representation occur in many models of the cognitive system.
Most of the connectionist learning algorithms we will look at are more
appropriate for modelling the latter sort of acquisition and representation 
than the former.

Notes
1 The Jets and Sharks memory system is not implemented in tlearn but its prop-

erties and examples described in the text can be explored using the iac program
in McClelland and Rumelhart (1988).

2 It might seem that the Person node corresponds to the address for the information
just as the name Sam does in table 10.1. When information is retrieved from the
net the Person node cannot be accessed, so it cannot be used as a retrieval
address. It is just a convenience which reduces the number of connections req-
uired to set up the model and makes the operation of the model easier to follow.
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3 There is no gradual learning phase in Jets and Sharks. Facts are given to the
model complete. Therefore the weights do not develop as knowledge is acquired
as they would in a conventional connectionist model. The way that information
is entered into this system is an example of Hebbian learning. If two things are
mutually consistent (e.g. being in your 20s and being a burglar) a positive connec-
tion (via the appropriate Person node) is made between them. If two things are
mutually inconsistent (e.g. being in your 20s and 30s) a negative connection is
made between them.

4 In McClelland’s model the activity of each unit also decays on each cycle by an
amount proportional to its activity level. This affects the dynamic behaviour of
the net but to understand why the net reaches a steady state it can be consid-
ered as another negative input contributing to the balance between positive and
negative inputs to each unit.

5 The interaction of information in the Jets and Sharks system produces some
strange and unpredictable results which can only be appreciated by playing with
the iac model. For example, figure 10.5 shows that if you wait long enough the
less accurate description of Ken produces a stronger preference for his name than
the more accurate description.
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PART II

COMMONSENSE
PSYCHOLOGY
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INTRODUCTION

Each of the four pictures of the mind explored in Part I offers different answers
to the interface problem (the problem of explaining how the ways we make sense
of each other by using the basic categories and generalizations of commonsense
psychology interface with the type of explanations offered lower down in the hier-
archy of explanation). The differences between the four pictures of the mind are
at least in part a function of differences in how they view commonsense
psychology and the constraints that its success (or otherwise) imposes upon a
general account of the mind. The papers in Part II all focus on how to under-
stand commonsense psychology and the practices of explanation and prediction
that make use of it.

The papers in IIA present two very different perspectives on the relation
between belief–desire psychology and the explanation of behavior. Whereas Jerry
Fodor argues that the concepts of commonsense psychology are indispensable for
psychological explanation, and uses this as an argument for the representational
theory of mind (see also IC above), Stephen Stich finds a fundamental incom-
patibility between belief–desire psychology and what he takes to be the guiding
principle of psychological explanation (the principle of the autonomy of the
psychological). In IIB the papers explore the relation between commonsense
psychology and mental representation. The principal issue here is whether the
explanatory and predictive power of commonsense psychology stands or falls with
propositional attitudes being realized in discrete physical states that can enter
into causal interactions. The papers in IIC are concerned primarily with how we
understand the nature of commonsense psychological explanation. Should we
take it to be essentially theory-like, as assumed by most of the papers in IIA and
IIB? Or is psychological explanation and prediction more a matter of simulation
and empathetic understanding than of subsuming behavior and mental states
under lawlike generalizations. 

IIA Commonsense psychology and explaining behavior

What role does commonsense psychology play in explaining behavior? This ques-
tion can be taken in a number of different ways. It might be interpreted as a
question about our ordinary, everyday practices of making sense of other people.
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On this interpretation, one would be asking how deeply the propositional attitudes
are implicated in our ordinary, everyday explanatory and predictive practices. It
is a widely held view among philosophers that propositional attitudes concepts
play a very fundamental role in social understanding and social coordination
(understood as activities at the personal level), and this view is shared by both
of the authors in this subsection. But we can ask about the role of commonsense
psychology in a very different way. We can ask about the role that propositional
attitude psychology will play in a scientific understanding of behavior. How likely
is it that a complete scientific theory of behavior will make appeal to beliefs and
desires?

In “The Persistence of the Attitudes”, the first chapter his book Psycho-
semantics, Jerry Fodor makes an eloquent case for the ineliminability of propo-
sitional attitude psychology. Fodor suggests that commonsense belief–desire
psychology is a powerful implicit theory on which we continually rely and that
rarely lets us down. He notes that the generalizations of commonsense psychology
have built into them riders to the effect that they apply only ceteris paribus (all
other things being equal), but claims that this is typical of generalizations in the
special sciences (such as geology or economics) and does not in any way limit
their explanatory power. According to Fodor, the centrality of propositional atti-
tude psychology in our lives, and our inability to imagine an alternative to it,
means that any scientific psychology will have to be, as he puts it, commonsen-
sical about the attitudes. Any satisfactory scientific psychology will have to
postulate states that have three basic features that are defining features of the
propositional attitudes. First, those states must be semantically evaluable (that
is, they must be the sort of thing that can be true or false). Second, they must
have causal powers, and in particular they must be the sort of thing that can
stand as causal antecedents of behavior. Third, the implicit generalizations of
commonsense psychology must be largely true of them.

Fodor argues that these three requirements can be jointly satisfied only by the
representational theory of mind. The basic states in the representational theory
of mind are symbol structures that can be thought of as sentences in the language
of thought (Mentalese). These symbol structures can be thought of both syntac-
tically and semantically. From a semantic point of view sentences in the language
of thought are entities that have representational content (they represent states
of affairs in the world, and of course states of affairs that do not actually hold).
From a syntactic point of view, sentences in the language of thought are phys-
ical entities that have a certain structure corresponding to the structure of what
they represent. By the same token, transitions between sentences in the language
of thought can be viewed either syntactically or semantically. Viewed syntacti-
cally, these transitions are causal sequences of symbol structures, while viewed
semantically they are, in effect, processes of reasoning. Since Fodor takes the
language of thought to be a formal language much like the first-order predicate
calculus, he appeals to metalogical results to argue that the semantics of the
language of thought will track the syntax, so that causal sequences of symbol
structures at the level of syntax turn out to implement processes of reasoning
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that respects the semantic relations between the contents of the relevant symbol
structures. According to Fodor, the representational theory of mind provides a
vindication of commonsense psychology by showing how semantically evaluable
states can have causal powers in ways that are consistent with the generaliza-
tions of commonsense psychology (which tend to rest upon the semantic relations
between the propositional attitude contents). 

Stephen Stich’s “Autonomous Psychology and the Belief–Desire Thesis” is
much more pessimistic than Fodor about the prospects for what he terms the
belief–desire thesis, which is the thesis that the concepts of belief and desire
will play a central role in a complete psychological theory of human behavior. The
principal difficulty that Stich identifies for the belief–desire thesis is that it seems
to come into conflict with what he takes to be a basic principle governing psycho-
logical theorizing. This is the principle of psychological autonomy, which holds
that any two organisms that are physically identical are ipso facto identical with
respect to the properties that will be invoked in psychological explanation. Stich
claims that this principle plays a regulative role in psychology. It is, he suggests,
a methodological principle that guides research and constrains theorizing, rather
than being a substantive thesis that might be disproved or rejected in the future.1

The principle of psychological autonomy (also known as the principle of method-
ological solipsism) needs to be distinguished from the familiar claim that
psychological properties supervene upon physical properties, since Stich’s whole
argument rests upon there being psychological properties (in one sense of
“psychological”) that do not supervene upon physical properties. What he wants
to do is to deny that those psychological properties (such as the property of being
in a particular belief-state) can have any role to play in scientific psychology. 

Stich argues that the principle of psychological autonomy creates difficulties
for the belief–desire thesis because the contents of propositional attitudes do not
supervene upon physical properties in the way that the principle requires. He
gives a number of examples of what he takes to be subjects who are identical
with respect to all the properties that might be relevant to psychological expla-
nation but who have different beliefs. All four examples that he discusses exploit
the following principle for individuating belief contents: If two belief tokens differ
in truth value then they cannot be tokens of the same type (where we can think
of two belief tokens counting as tokens of the same type just when they have the
same content). Put another way, if two subjects have beliefs with the same
content, then their beliefs will always match in truth value. Stich’s argument rests
upon finding cases where it seems plausible to say that two subjects are type-
identical with respect to the properties relevant to psychological explanation, but
where the truth-value principle entails that they have different beliefs. 

IIB Commonsense psychology and mental representation

The debate explored in IIA is a debate about the place of commonsense
psychology within scientific psychology and cognitive science. It is a debate in
which the direction of argument is fundamentally top-down. Arguments about
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explanation in scientific psychology (such as Fodor’s argument that commonsense
psychology is ineliminable from scientific psychology, or Stich’s argument that
scientific psychology individuates states in a fundamentally different way from
commonsense psychology) have consequences for how we think about the archi-
tecture of cognition. If Fodor is right, for example, then the architecture of
cognition is essentially linguistic. But it is also possible to argue in the opposite
direction, from claims about cognitive architecture to conclusions about the status
of commonsense psychology. The principal issue in this area is the implications
of connectionism and neural network models for how we think about propositional
attitude psychology – an issue particularly relevant to the neurocomputational
picture of the mind (see ID above). 

William Ramsey, Stephen Stich, and Joseph Garon’s “Connectionism, Elimi-
nativism and the Future of Folk Psychology” makes a conditional claim to the
effect that if connectionist networks turn out to be accurate models of cognition,
then we will have to adopt some version of eliminativism about the propositional
attitudes. As they conceive of it, eliminativism about the propositional attitudes
is the claim that there are no such things as beliefs, desires, hopes and fears,
and so on. (Note that this is stronger than Stich’s claim in “Autonomous
Psychology and the Belief–desire Thesis” that propositional attitudes cannot
feature in scientific psychology.) Eliminativism about the attitudes is opposed 
to realism, which Ramsey, Stich, and Garon interpret in a manner much like 
that proposed by Fodor in “The Persistence of the Attitudes”. Realism about the
propositional attitudes requires them to be functionally discrete, semantically
evaluable, and causally efficacious (i.e. standing in causal relations to other
propositional attitudes, to sensory input, and to behavior). Ramsey, Stich, and
Garon term this bundle of claims the requirement of propositional modularity,
which they take to be deeply implicated both in commonsense psychology and
in influential paradigms in scientific psychology. In their view, if scientific
psychology rejects propositional modularity, then we have no choice but to be
eliminativists about the propositional attitudes. 

Ramsey, Stich, and Garon see propositional modularity as seriously threatened
by a particular class of connectionist networks. These are connectionist networks
that are proposed as models of cognitive processes (as opposed to hypotheses at
the implementational level – see ID above and IIIA below) and that take repre-
sentations to be distributed across a large number of connection weights. In
connectionist networks of this type there is no distinct and identifiable symbolic
expression that can be identified with a particular propositional attitude. Not only
are representations distributed, but individual units within the network cannot 
be given a symbolic interpretation that would allow them to be mapped onto
constituents of a proposition. There is, quite simply, no way of locating proposi-
tional attitudes within connectionist networks of the specified type and hence no
way in which the requirements of propositional modularity can be met. Ramsey,
Stich, and Garon argue that within such networks there are no functionally
discrete representations of which one can even ask whether they play a causal
role in generating outputs or what their truth-value is. They illustrate this claim
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with reference to two connectionist models of memory. Their conclusion is that,
although the jury remains out on whether cognition is indeed best modeled on
connectionist lines, if mental representation does turn out to be distributed in
the manner of connectionist networks, then eliminativism about the propositional
attitudes is an inescapable consequence. 

The force of Ramsey, Stich, and Garon’s argument that connectionist models
of mental processes are incompatible with realism about the propositional
attitudes depends, of course, on the crucial premise that realism requires propo-
sitional modularity. Daniel Dennett has consistently resisted the inference from
the usefulness and accuracy of psychological explanation to the existence of
causally efficacious internal items corresponding to the beliefs and desires cited
in those explanations. What makes a psychological explanation useful and accu-
rate, so the argument for propositional modularity goes, is its truth and that truth
consists in correctly identifying the beliefs and desires responsible for generating
the behavior in question. Responsibility here is to be understood in causal terms.
So we are led to the demand for causally efficacious internal items, generally
understood to be neurophysiological states of one kind or another. Dennett’s initial
resistance to this line of argument focused on the first stage – on the claim that
we need to understand the predictive utility of psychological explanations in terms
of their truth. At various points in his earlier writings (e.g. Dennett 1981) he
developed a position that has struck many as a form of instrumentalism about
psychological explanations. This instrumentalism effectively turns the standard
argument on its head, maintaining that there is nothing more to the truth of
psychological explanations than their predictive utility. Dennett once suggested
that all there is to being a believer is behaving in ways that are usefully explic-
able according to what he called the intentional stance – that is to say, within
the personal level framework of commonsense psychology. 

More recently Dennett himself has moved away from instrumentalism towards
what he calls a “mild realism”, which is explored in “Real Patterns”. The differ-
ence between instrumentalism and mild realism is, in essence, a view about the
truth-aptness of commonsense psychological explanations. Mild realism permits
a more robust sense in which psychological explanations can be evaluated for
truth or falsity. Dennett thinks that the truth of belief–desire explanations consists
in their tracking genuinely existing patterns in the behavior of the organisms and
systems to which those explanations are applied. These patterns, which Dennett
calls “real patterns”, are not observer-dependent (in the way that ascriptions of
propositional attitudes seemed to be on Dennett’s earlier instrumentalism). There
is a genuine fact of the matter as to whether they hold or not. These independently
existing real patterns provide the truth-makers for psychological explanations –
they are the beliefs and desires cited in the explanation. And the existence of
those patterns is, of course, what makes commonsense psychological explanation
and prediction effective. Dennett’s real patterns hold over emergent properties of
intentional agents and cognitive systems. They are patterns in the behavior of the
agent or system as a whole and cannot be reduced to, or understood in terms 
of, the operation of parts of the agent or system. This conception of emergent
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properties (which Dennett illustrates through an intriguing example inspired by
the mathematics of cellular automata) is part of what makes Dennett an autonomy
theorist and allows him to deny that personal level facts about the behavior 
of the system as a whole can be understood in terms of facts about inner states 
or modules at the subpersonal level. 

IIC The machinery of commonsense psychology: 
Theory or simulation?

The problems explored in IIA and IIB can be spelled out on a very generic under-
standing of commonsense psychology. The discussion up to now has understood
commonsense psychology simply in terms of a commitment to practices of expla-
nation and prediction that invoke propositional attitudes. But there is a number
of different ways of understanding those practices of explanation and prediction.
In particular, there is an extensive debate about whether making commonsense
psychological predictions and explanations involves deploying a primitive psycho-
logical theory, or whether it should be understood more as an exercise in
simulation and empathetic understanding (“putting oneself in someone else’s
shoes”).

Paul Churchland’s “Folk Psychology and the Explanation of Human Behavior”
is a robust presentation of the theoretical interpretation of commonsense psych-
ology. Churchland argues that commonsense psychology is a theory in the sense
that it (a) consists of laws, (b) supports causal explanations, and (c) is used to
explain, predict and manipulate a certain domain of phenomena (i.e. human
social interactions). He responds to a number of objections that have been raised
to the theoretical view of commonsense psychology, arguing that commonsense
psychology is no more subject to ceteris paribus clauses than any other “folk”
theory (such as folk mechanics or folk biology) and that processes of simulation
and empathetic understanding are not really alternatives to the theory theory 
but rather themselves depend upon a theoretical understanding of one’s own
psychology. 

The position that Churchland defends, however, differs in a number of
important respects from standard presentations of what has come to be known
as the theory theory. The theory theory is often presented in conjunction with a
deductive-nomological model of explanation, so that commonsense psychological
explanations and predictions are taken to be deductive inferences from univer-
sally quantified general sentences that state laws (in conjunction, of course, with
a statement of the particular circumstances of the case in question, making clear
why it falls under the law). Churchland rejects this conception of commonsense
psychological laws as universal generalizations that might be represented in the
brain, for example, as sentences in a language of thought. This rejection is part
and parcel of his rejection of the deductive-nomological model of scientific expla-
nation, and the model of knowledge-representation on which it rests, in favor of
a different model, one inspired by connectionist models of cognitive processes.
Churchland suggests that we replace the idea that a law, whether a scientific law
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or a folk-theoretic law, is represented in the form of a universal generalization
about things or events of a particular type with the idea that it is represented
through prototypical examples of the relevant thing or event. Instead of a gener-
alization to the effect that all Fs are G, we have a representation of a prototypical
F that is G in the context of a similarity metric that explains what is to count as
relevant similarity to the prototype. As Churchland points out in the final section
of the paper, the idea that theoretical understanding is represented in this way
goes hand in hand with the idea that information is represented in the brain in
much the same way as it is in a connectionist network. 

Supporters of the simulationist approach to commonsense psychology chal-
lenge the theoretical understanding of how our knowledge of commonsense
psychology is represented and applied. Simulationists think that we explain and
predict the behavior of other agents by projecting ourselves into the situation of
the person whose behavior is to be explained/predicted and then using our own
mind as a model of theirs. Suppose that we have a reasonable sense of the beliefs
and desires that it would be appropriate to attribute to someone else in a partic-
ular situation, so that we understand both how they view the situation and what
they want to achieve in it. And suppose that we want to find out how they will
behave. Instead of using generalizations about how mental states typically feed
into behavior to predict how that person will behave, the simulationist thinks that
we use our own decision-making processes to run a simulation of what would
happen if we ourselves had those beliefs and desires. We do this by running our
decision-making processes off-line, so that instead of generating an action directly
they generate a description of an action or an intention to act in a certain way.
We then use this description to predict the behavior of the person in question.

Alvin Goldman’s “Interpretation Psychologized” suggests that there are two
dominant philosophical models of social understanding and interpretation. The
first, which he terms the rationality approach and identifies with Donald Davidson
and Daniel Dennett, is governed by a principle of charity to the effect that one
should attribute psychological states to an agent in a way that will maximize the
rationality of his behavior. Goldman’s objection to the rationality approach is that
the notion of rationality is poorly specified and in most of the obvious ways of
specifying it (as determined, for example, by the basic principles of deductive
logic and probability theory), it often makes sense to attribute irrational combi-
nations of attitudes to other people. The second dominant model is the theory 
theory, which he sees as closely allied with philosophical functionalism (see IB
above). Goldman objects to the theory theory on the grounds that it is irremedia-
bly vague (he particularly objects to ceteris paribus clauses); that the laws that
tend to be cited as examples of commonsense psychological laws are at best highly
inaccurate; and that there is no reason to think that there is a single set of psy-
chological laws deployed by all who participate successfully in social interactions. 

In opposition to these two models, Goldman offers a version of the simulation
approach and argues that his version of the simulation approach to social under-
standing is free of the problems that arise for both of the dominant models. In
the case of common probabilistic fallacies (such as the gambler’s fallacy, where
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someone judges that a fair coin is more likely to come down tails after a long series
of heads), for example, the fact that I am as likely to be prey to this fallacy as the
person whose behavior I am predicting means that I am likely to correctly attribute
the fallacious belief in just the circumstances in which the person really has it.
Goldman suggests also that the simulation approach is supported by research into
children with autism – in particular by studies identifying strong correlations
between impairments in social understanding and poverty in pretend play (which
he sees as involving the same mechanisms that are deployed in simulation). 

The version of simulationism espoused by Goldman still requires the explicit
attribution of beliefs and desires to the person being simulated. On this view, in
order to simulate someone, I need to form explicit judgments about how they
represent the relevant situation and what they want to achieve in that situation.
These judgments serve as the input to the simulation process and I reach them
by thinking introspectively about the beliefs and desires I myself would have in
a particular situation and then making an analogical inference about what the
person being simulated will do. According to the radical simulationism proposed
by Robert Gordon in “Simulation Without Introspection or Inference from Me to
You”, the process of simulation does not require either introspection or analog-
ical inference. In fact, simulation does not even require the simulator to possess
concepts of the propositional attitudes. According to Gordon, instead of coming
explicitly to the view that the person whose behavior I am trying to predict has a
certain belief (say, the belief that p), what I need to do is to imagine how the
world would appear from his or her point of view. The distinction is between, on
the one hand, forming a belief about how another person represents the world (a
belief with the content that the person believes that p) and, on the other, holding
a belief about the world in one’s imagination (a belief with the content simply
that p). The simulator is thinking about the world from the perspective of the
person being simulated, rather than thinking about their beliefs, desires, and
other psychological states.

In response to the question of where the simulator obtains the inputs for the
process of simulation, Gordon offers an account based upon what he calls ascent
routines. Gordon denies that we identify our own beliefs by inward-directed
processes of introspection. Instead, he suggests, we establish whether or not we
believe that p by asking whether it is the case that p. This basic method is, he
thinks, just as suited to finding out about another person’s beliefs as it is to
finding out about one’s own. If I am simulating someone else, then I have recen-
tered my own perspective on the world onto theirs, and from that recentered
perspective I can ask the question of whether or not it is the case that p. This
gives me what is in effect information about what that person believes, but I
obtain that information without deploying the concept of belief. 

Notes
1 Note that the principle of psychological autonomy stresses a different type of

autonomy from that pressed by proponents of the autonomous mind. Autonomy
theorists frequently reject psychological autonomy, and vice versa.
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11

J. Fodor, “The Persistence 
of the Attitudes”

A Midsummer Night’s Dream, act 3, scene 2.
Enter Demetrius and Hermia.

Dem. O, why rebuke you him that loves you so?
Lay breath so bitter on your bitter foe.

Herm. Now I but chide, but I should use thee worse;
For thou, I fear, hast given me cause to curse.
If thou hast slain Lysander in his sleep,
Being o’er shoes in blood, plunge in the deep,
And kill me too.
The sun was not so true unto the day
As he to me: would he have stol’n away
From sleeping Hermia? I’ll believe as soon
This whole earth may be bor’d; and that the moon
May through the centre creep, and so displease
Her brother’s noontide with the antipodes.
It cannot be but thou hast murder’d him;
So should a murderer look; so dead, so grim.

Very nice. And also very plausible; a convincing (though informal) piece of
implicit, nondemonstrative, theoretical inference.

Here, leaving out a lot of lemmas, is how the inference must have gone:
Hermia has reason to believe herself beloved of Lysander. (Lysander has told
her that he loves her – repeatedly and in elegant iambics – and inferences from
how people say they feel to how they do feel are reliable, ceteris paribus.) But
if Lysander does indeed love Hermia, then, a fortiori, Lysander wishes Hermia
well. But if Lysander wishes Hermia well, then Lysander does not voluntarily
desert Hermia at night in a darkling wood. (There may be lions. ‘There is not
a more fearful wild-fowl than your lion living.’) But Hermia was, in fact, so
deserted by Lysander. Therefore not voluntarily. Therefore involuntarily.
Therefore it is plausible that Lysander has come to harm. At whose hands?
Plausibly at Demetrius’ hands. For Demetrius is Lysander’s rival for the love
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of Hermia, and the presumption is that rivals in love do not wish one another
well. Specifically, Hermia believes that Demetrius believes that a live Lysander
is an impediment to the success of his (Demetrius’) wooing of her (Hermia).
Moreover, Hermia believes (correctly) that if x wants that P, and x believes
that not-P unless Q, and x believes that x can bring it about that Q, then
(ceteris paribus) x tries to bring it about that Q. Moreover, Hermia believes
(again correctly) that, by and large, people succeed in bringing about what
they try to bring about. So: Knowing and believing all this, Hermia infers that
perhaps Demetrius has killed Lysander. And we, the audience, who know what
Hermia knows and believes and who share, more or less, her views about the
psychology of lovers and rivals, understand how she has come to draw this
inference. We sympathize.

In fact, Hermia has it all wrong. Demetrius is innocent and Lysander lives.
The intricate theory that connects beliefs, desires, and actions – the implicit
theory that Hermia relies on to make sense of what Lysander did and what
Demetrius may have done; and that we rely on to make sense of Hermia’s
inferring what she does; and that Shakespeare relies on to predict and manip-
ulate our sympathies (‘deconstruction’ my foot, by the way) – this theory
makes no provision for nocturnal interventions by mischievous fairies.
Unbeknownst to Hermia, a peripatetic sprite has sprung the ceteris paribus
clause and made her plausible inference go awry. ‘Reason and love keep little
company together now-a-days: the more the pity that some honest neighbours
will not make them friends.’

Granting, however, that the theory fails from time to time – and not just
when fairies intervene – I nevertheless want to emphasize (I) how often it goes
right, (2) how deep it is, and (3) how much we do depend upon it.
Commonsense belief/desire psychology has recently come under a lot of philo-
sophical pressure, and it’s possible to doubt whether it can be saved in face of
the sorts of problems that its critics have raised. There is, however, a prior
question: whether it’s worth the effort of trying to save it. That’s the issue I
propose to start with.

How often it works

Hermia got it wrong; her lover was less constant than she had supposed.
Applications of commonsense psychology mediate our relations with one
another, and when its predictions fail these relations break down. The resulting
disarray is likely to happen in public and to be highly noticeable.

Herm. Since night you lov’d me; yet since night you left me;
Why, then, you left me, – O, the gods forbid! –
In earnest, shall I say?

Lys. Ay, by my life,
And never did desire to see thee more.
Therefore be out of hope . . .
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This sort of thing makes excellent theater; the successes of common-sense
psychology, by contrast, are ubiquitous and – for that very reason – practically
invisible.

Commonsense psychology works so well it disappears. It’s like those myth-
ical Rolls-Royce cars whose engines are sealed when they leave the factory;
only it’s better because it isn’t mythical. Someone I don’t know phones me at
my office in New York from – as it might be – Arizona. ‘Would you like to
lecture here next Tuesday?’ are the words that he utters. ‘Yes, thank you. I’ll
be at your airport on the 3 p.m. flight’ are the words that I reply. That’s all
that happens, but it’s more than enough; the rest of the burden of predicting
behavior – of bridging the gap between utterances and actions – is routinely
taken up by theory. And the theory works so well that several days later (or
weeks later, or months later, or years later; you can vary the example to taste)
and several thousand miles away, there I am at the airport, and there he is to
meet me. Or if I don’t turn up, it’s less likely that the theory has failed than
that something went wrong with the airline. It’s not possible to say, in quan-
titative terms, just how successfully commonsense psychology allows us to
coordinate our behaviors. But I have the impression that we manage pretty
well with one another; often rather better than we cope with less complex
machines.

The point – to repeat – is that the theory from which we get this extraor-
dinary predictive power is just good old commonsense belief/desire psych-
ology. That’s what tells us, for example, how to infer people’s intentions from
the sounds they make (if someone utters the form of words ‘I’ll be at your
airport on the 3 p.m. flight,’ then, ceteris paribus, he intends to be at your air-
port on the 3 p.m. flight) and how to infer people’s behavior from their inten-
tions (if someone intends to be at your airport on the 3 p.m. flight, then, ceteris
paribus, he will produce behavior of a sort which will eventuate in his arriving
at that place at that time, barring mechanical failures and acts of God). And
all this works not just with people whose psychology you know intimately:
your closest friends, say, or the spouse of your bosom. It works with absolute
strangers; people you wouldn’t know if you bumped into them. And it works
not just in laboratory conditions – where you can control the interacting vari-
ables – but also, indeed preeminently, in field conditions where all you know
about the sources of variance is what commonsense psychology tells you about
them. Remarkable. If we could do that well with predicting the weather, no
one would ever get his feet wet; and yet the etiology of the weather must surely
be child’s play compared with the causes of behavior.

Yes, but what about all those ceteris paribuses? I commence to digress:
Philosophers sometimes argue that the appearance of predictive adequacy that
accrues to the generalizations of commonsense psychology is spurious. For,
they say, as soon as you try to make these generalizations explicit, you see that
they have to be hedged about with ceteris paribus clauses; hedged about in
ways that make them trivially incapable of disconfirmation. ‘False or vacuous’
is the charge.
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Consider the defeasibility of ‘if someone utters the form of words “I’ll be
at your airport on the 3 p.m. flight,” then he intends to be at your airport on
the 3 p.m. flight.’ This generalization does not hold if, for example, the speaker
is lying; or if the speaker is using the utterance as an example (of a false
sentence, say); or if he is a monolingual speaker of Urdu who happens to have
uttered the sentence by accident; or if the speaker is talking in his sleep; or 
. . . whatever. You can, of course, defend the generalization in the usual way;
you can say that ‘all else being equal, if someone utters the form of words “I’ll
be at your airport on the 3 p.m. flight,” then he intends to be at your airport
on the 3 p.m. flight.’ But perhaps this last means nothing more than: ‘if
someone says that he intends to be there, then he does intend to be there –
unless he doesn’t.’ That, of course, is predictively adequate for sure; nothing
that happens will disconfirm it; nothing that happens could.

A lot of philosophers seem to be moved by this sort of argument; yet, even
at first blush, it would be surprising if it were any good. After all, we do use
commonsense psychological generalizations to predict one another’s behavior;
and the predictions do – very often – come out true. But how could that be
so if the generalizations that we base the predictions on are empty?

I’m inclined to think that what is alleged about the implicit reliance of
commonsense psychology on uncashed ceteris paribus clauses is in fact a
perfectly general property of the explicit generalizations in all the special
sciences; in all empirical explanatory schemes, that is to say, other than basic
physics. Consider the following modest truth of geology: A meandering river
erodes its outside bank. ‘False or vacuous’; so a philosopher might argue. ‘Take
it straight – as a strictly universal generalization – and it is surely false. Think
of the case where the weather changes and the river freezes; or the world comes
to an end; or somebody builds a dam; or somebody builds a concrete wall on
the outside bank; or the rains stops and the river dries up . . . or whatever.
You can, of course, defend. the generalization in the usual way – by appending
a ceteris paribus clause: ‘All else being equal, a meandering river erodes its
outside bank.’ But perhaps this last means nothing more than: ‘A meandering
river erodes its outside bank – unless it doesn’t.’ That, of course, is predic-
tively adequate for sure. Nothing that happens will disconfirm it; nothing that
happens could.

Patently, something has gone wrong. For ‘All else being equal, a meandering
river erodes its outside bank’ is neither false nor vacuous and it doesn’t mean
‘A meandering river erodes its outside bank – unless it doesn’t.’ It is, I expect,
a long story how the generalizations of the special sciences manage to be both
hedged and informative (or, if you like, how they manage to support coun-
terfactuals even though they have exceptions). Telling that story is part of
making clear why we have special sciences at all; why we don’t just have basic
physics. It is also part of making clear how idealization works in science. For
surely ‘Ceteris paribus, a meandering river erodes its outside bank’ means
something like ‘A meandering river erodes its outside bank in any nomologi-
cally possible world where the operative idealizations of geology are satisfied.’
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That this is, in general, stronger than ‘P in any world where not not-P’ is
certain. So if, as it would appear, commonsense psychology relies upon its
ceteris paribus clauses, so too does geology.

There is, then, a face similarity between the way implicit generalizations
work in commonsense psychology and the way explicit generalizations work
in the special sciences. But maybe this similarity is merely superficial. Donald
Davidson is famous for having argued that the generalizations of real science,
unlike those that underlie commonsense belief/desire explanations, are
‘perfectible’. In the real, but not the intentional, sciences we can (in principle,
anyhow) get rid of the ceteris paribus clauses by actually enumerating the
conditions under which the generalizations are supposed to hold.

By this criterion, however, the only real science is basic physics. For it simply
isn’t true that we can, even in principle, specify the conditions under which –
say – geological generalizations hold so long as we stick to the vocabulary of
geology. Or, to put it less in the formal mode, the causes of exceptions to
geological generalizations are, quite typically, not themselves geological events.
Try it and see: ‘A meandering river erodes its outer banks unless, for example,
the weather changes and the river dries up.’ But ‘weather’ isn’t a term in
geology; nor are ‘the world comes to an end’, ‘somebody builds a dam’, and
indefinitely many other descriptors required to specify the sorts of things that
can go wrong. All you can say that’s any use is: If the generalization failed to
hold, then the operative idealizations must somehow have failed to be satis-
fied. But so, too, in commonsense psychology: If he didn’t turn up when he
intended to, then something must have gone wrong.

Exceptions to the generalizations of a special science are typically inexplic-
able from the point of view of (that is, in the vocabulary of) that science. That’s
one of the things that makes it a special science. But, of course, it may never-
theless be perfectly possible to explain the exceptions in the vocabulary of
some other science. In the most familiar case, you go ‘down’ one or more levels
and use the vocabulary of a more ‘basic’ science. (The current failed to run
through the circuit because the terminals were oxidized; he no longer recog-
nizes familiar objects because of a cerebral accident. And so forth.) The
availability of this strategy is one of the things that the hierarchical arrange-
ment of our sciences buys for us. Anyhow, to put the point succinctly, the same
pattern that holds for the special sciences seems to hold for commonsense
psychology as well. On the one hand, its ceteris paribus clauses are inelim-
inable from the point of view of its proprietary conceptual resources. But, on
the other hand, we have – so far at least – no reason to doubt that they can
be discharged in the vocabulary of some lower-level science (neurology, say,
or biochemistry; at worst, physics).

If the world is describable as a closed causal system at all, it is so only in
the vocabulary of our most basic science. From this nothing follows that a
psychologist (or a geologist) needs to worry about.

I cease to digress. The moral so far is that the predictive adequacy of
commonsense psychology is beyond rational dispute; nor is there any reason
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to suppose that it’s obtained by cheating. If you want to know where my phys-
ical body will be next Thursday, mechanics – our best science of middle-sized
objects after all, and reputed to be pretty good in its field – is no use to you
at all. Far the best way to find out (usually, in practice, the only way to find
out) is: ask me!

The depth of the theory

It’s tempting to think of commonsense psychology as merely a budget of such
truisms as one learns at Granny’s knee: that the burnt child fears the fire, that
all the world loves a lover, that money can’t buy happiness, that reinforcement
affects response rate, and that the way to a man’s heart is through his stomach.
None of these, I agree, is worth saving. However, as even the simple example
sketched above serves to make clear, subsumption under platitudes is not the
typical form of commonsense psychological explanation. Rather, when such
explanations are made explicit, they are frequently seen to exhibit the ‘deduc-
tive structure’ that is so characteristic of explanation in real science. There are
two parts to this: the theory’s underlying generalizations are defined over
unobservables, and they lead to its predictions by iterating and interacting
rather than by being directly instantiated.

Hermia, for example, is no fool and no behaviorist; she is perfectly aware
both that Demetrius’ behavior is caused, by his mental states and that the
pattern of such causation is typically intricate. There are, in particular, no plau-
sible and counterfactual-supporting generalizations of the form (x)(y)(x is a
rival of y) → (x kills y). Nothing like that is remotely true; not even ceteris
paribus. Rather, the generalization Hermia takes to be operative – the one that
is true and counterfactual-supporting – must be something like If x is y’s rival,
then x prefers y’s discomfiture, all else being equal. This principle, however,
doesn’t so much as mention behavior; it leads to behavioral predictions, but
only via a lot of further assumptions about how people’s preferences may affect
their actions in given situations. Or rather, since there probably are no gener-
alizations which connect preferences to actions irrespective of beliefs, what
Hermia must be relying on is an implicit theory of how beliefs, preferences,
and behaviors interact; an implicit decision theory, no less.

It is a deep fact about the world that the most powerful etiological gener-
alizations hold of unobservable causes. Such facts shape our science (they’d
better!). It is thus a test of the depth of a theory that many of its generaliza-
tions subsume interactions among unobservables. By this test, our implicit,
commonsense meteorology is presumably not a deep theory, since it consists
largely of rule-of-thumb generalizations of the ‘red at night, sailor’s delight’
variety. Correspondingly, the reasoning that mediates applications of common-
sense meteorology probably involves not a lot more than instantiation and
modus ponens. (All this being so, it is perhaps not surprising that common-
sense meteorology doesn’t work very well.) Commonsense psychology, by
contrast, passes the test. It takes for granted that overt behavior comes at the
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end of a causal chain whose links are mental events – hence unobservable –
and which may be arbitrarily long (and arbitrarily kinky). Like Hermia, we
are all – quite literally, I expect – born mentalists and Realists; and we stay
that way until common sense is driven out by bad philosophy.

Its indispensability

We have, in practice, no alternative to the vocabulary of commonsense psycho-
logical explanation; we have no other way of describing our behaviors and
their causes if we want our behaviors and their causes to be subsumed by any
counterfactual-supporting generalizations that we know about. This is, again,
hard to see because it’s so close.

For example, a few paragraphs back, I spoke of the commonsense psycho-
logical generalization people generally do what they say that they will do as
bridging the gap between an exchange of utterances (‘Will you come and
lecture . . .’, ‘I’ll be at your airport on Thursday . . .’) and the consequent
behaviors of the speakers (my arriving at the airport, his being there to meet
me). But this understates the case for the indispensability of commonsense
psychology, since without it we can’t even describe the utterances as forms of
words (to say nothing of describing the ensuing behaviors as kinds of acts).
Word is a psychological category. (It is, indeed, irreducibly psychological, so
far as anybody knows; there are, for example, no acoustic properties that all
and only tokens of the same word type must share. In fact, surprisingly, there
are no acoustic properties that all and only fully intelligible tokens of the same
word type must share. Which is why our best technology is currently unable
to build a typewriter that you can dictate to.)

As things now stand – to spell it out – we have no vocabulary for speci-
fying event types that meets the following four conditions:

1 My behavior in uttering ‘I’ll be there on Thursday . . .’ counts as an event
of type Ti

2 My arriving there on Thursday counts as an event of Type Tj.
3 ‘Events of type Tj are consequent upon events of type Ti’ is even roughly

true and counterfactual supporting.
4 Categories Ti and Tj are other than irreducibly psychological.

For the only known taxonomies that meet conditions 1–3 acknowledge such
event types as uttering the form of words ‘I’ll be there on Thursday’ or saying
that one will be there on Thursday, or performing the act of meeting someone
at the airport; so they fail condition 4.

Philosophers and psychologists used to dream of an alternative conceptual
apparatus, one in which the commonsense inventory of types of behavior is
replaced by an inventory of types of movements; the counterfactual-supporting
generalizations of psychology would then exhibit the contingency of these
movements upon environmental and/or organic variables. That behavior is
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indeed contingent upon environmental and organic variables is, I suppose, not
to be denied; yet the generalizations were not forthcoming. Why? There’s a
standard answer: It’s because behavior consists of actions, and actions cross-
classify movements. The generalization is that the burnt child avoids the fire;
but what movement constitutes avoidance depends on where the child is,
where the fire is . . . and so, drearily, forth. If you want to know what gener-
alizations subsume a behavioral event, you have to know what action type it
belongs to; knowing what motion type it belongs to usually doesn’t buy
anything. I take all that to be Gospel.

Yet is is generally assumed that this situation must be remediable, at least
in principle. After all, the generalizations of a completed physics would pre-
sumably subsume every motion of every thing, hence the motions of organisms
inter alia. So, if we wait long enough, we will after all have counterfactual-
supporting generalizations that subsume the motions of organisms under that
description. Presumably, God has them already.

This is, however, a little misleading. For, the (putative) generalizations of
the (putative) completed physics would apply to the motions of organisms qua
motions, but not qua organismic. Physics presumably has as little use for the
categories of macrobiology as it does for the categories of commonsense
psychology; it dissolves the behaver as well as the behavior. What’s left is
atoms in the void. The subsumption of motions of organisms – and of every-
thing else – by the counterfactual-supporting generalizations of physics does
not therefore guarantee that there is any science whose ontology recognizes
organisms and their motions. That is: The subsumption of the motions of
organisms – and of everything else – by the laws of physics does not guarantee
that there are any laws about the motions of organisms qua motions or organ-
isms. So far as anybody knows – barring, perhaps, a little bit of the psychology
of classical reflexes – there are no such laws; and there is no metaphysical
reason to expect any.1

Anyhow, this is all poppycock. Even if psychology were dispensable in prin-
ciple, that would be no argument for dispensing with it. (Perhaps geology is
dispensable in principle; every river is a physical object after all. Would that
be a reason for supposing that rivers aren’t a natural kind? Or that ‘mean-
dering rivers erode their outside banks’ is untrue?) What’s relevant to whether
commonsense psychology is worth defending is its dispensability in fact.
And here the situation is absolutely clear. We have no idea of how to explain
ourselves to ourselves except in a vocabulary which is saturated with belief/
desire psychology. One is tempted to transcendental argument: What Kant said
to Hume about physical objects holds, mutatis mutandis, for the propositional
attitudes; we can’t give them up because we don’t know how to.2

So maybe we had better try to hold onto them. Holding onto the attitudes
– vindicating commonsense psychology – means showing how you could 
have (or, at a minimum, showing that you could have) a respectable science
whose ontology explicitly acknowledges states that exhibit the sorts of 
properties that common sense attributes to the attitudes. This undertaking
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presupposes, however, some consensus about what sorts of properties common
sense does attribute to the attitudes. That is what the next bit of this chapter
is about.

The essence of the attitudes

How do we tell whether a psychology is a belief/desire psychology? How, in
general, do we know if propositional attitudes are among the entities that the
ontology of a theory acknowledges? These sorts of questions raise familiar and
perplexing issues of intertheoretic identification. How do you distinguish elim-
ination from reduction and reconstruction? Is the right story that there’s no
such thing as dephlogistinated matter, or is ‘dephlogistinizing’ just a word for
oxidizing? Even behaviorists had trouble deciding whether they wanted to
deny the existence of the mental or to assert its identity with the behavioral.
(Sometimes they did both, in successive sentences. Ah, they really knew about
insouciance in those days.)

I propose to stipulate. I will view a psychology as being common-sensical
about the attitudes – in fact, as endorsing them – just in case it postulates
states (entities, events, whatever) satisfying the following conditions:

(i) They are semantically evaluable.
(ii) They have causal powers.

(iii) The implicit generalizations of commonsense belief/desire psychology are
largely true of them.

In effect, I’m assuming that (i)-(iii) are the essential properties of the attitudes.
This seems to me intuitively plausible; if it doesn’t seem intuitively plausible
to you, so be it. Squabbling about intuitions strikes me as vulgar.

A word about each of these conditions.

(i) Semantic evaluation

Beliefs are the kinds of things that are true or false; desires are the kinds of
things that get frustrated or fulfilled; hunches are the kinds of things that turn
out to be right or wrong; so it goes. I will assume that what makes a belief
true (/false) is something about its relation to the nonpsychological world (and
not – e.g. – something about its relation to other beliefs; unless it happens to
be a belief about beliefs). Hence, to say of a belief that it is true (/false) is 
to evaluate that belief in terms of its relation to the world. I will call such 
evaluations ‘semantic’. Similarly, mutatis mutandis, with desires, hunches, and
so forth.

It is, as I remarked in the preface, a puzzle about beliefs, desires, and the
like that they are semantically evaluable; almost nothing else is. (Trees aren’t;
numbers aren’t; people aren’t. Propositions are [assuming that there are such
things], but that’s hardly surprising; propositions exist to be what beliefs and
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desires are attitudes toward.) We will see, later in this book, that it is primarily
the semantic evaluability of beliefs and desires that gets them into philosoph-
ical trouble – and that a defense of belief/desire psychology needs to be a
defense of it.

Sometimes I’ll talk of the content of a psychological state rather than its
semantic evaluability. These two ideas are intimately interconnected. Consider
– for a change of plays – Hamlet’s belief that his uncle killed his father. That
belief has a certain semantic value; in particular, it’s a true belief. Why true?
Well, because it corresponds to a certain fact. Which fact? Well, the fact that
Hamlet’s uncle killed Hamlet’s father. But why is it that fact that determines
the semantic evaluation of Hamlet’s belief? Why not the fact that 2 is a prime
number, or the fact that Demetrius didn’t kill Lysander? Well, because the
content of Hamlet’s belief is that his uncle killed his father. (If you like, the
belief ‘expresses the proposition’ that Hamlet’s uncle killed his father.) If you
know what the content of a belief is, then you know what it is about the world
that determines the semantic evaluation of the belief; that, at a minimum, is
how the notions of content and semantic evaluation connect.

I propose to say almost nothing more about content at this stage; its time
will come. Suffice it just to add that propositional attitudes have their contents
essentially: the canonical way of picking out an attitude is to say (a) what sort
of attitude it is (a belief, a desire, a hunch, or whatever); and (b) what the
content of the attitude is (that Hamlet’s uncle killed his father; that 2 is a prime
number; that Hermia believes that Demetrius dislikes Lysander; or whatever).
In what follows, nothing will count as a propositional-attitude psychology –
as a reduction or reconstruction or vindication of commonsense belief/desire
explanation – that does not acknowledge states that can be individuated in
this sort of way.

(ii) Causal powers

Commonsense psychological explanation is deeply committed to mental
causation of at least three sorts: the causation of behavior by mental states;
the causation of mental states by impinging environmental events (by ‘prox-
imal stimulation’ as psychologists sometimes say); and – in some ways the
most interesting commonsense psychological etiologies – the causation of
mental states by one another. As an example of the last sort, common sense
acknowledges chains of thought as species of complex mental events. A chain
of thought is presumably a causal chain in which one semantically evaluable
mental state gives rise to another; a process that often terminates in the fixa-
tion of belief. (That, as you will remember, was the sort of thing Sherlock
Holmes was supposed to be very good at.)

Every psychology that is Realist about the mental ipso facto acknowledges
its causal powers.3 Philosophers of ‘functionalist’ persuasion even hold that
the causal powers of a mental state determine its identity (that for a mental
state to be, as it might be, the state of believing that Demetrius killed Lysander
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is just for it to have a characteristic galaxy of potential and actual causal rela-
tions). This is a position of some interest to us, since if it is true – and if it is
also true that propositional attitudes have their contents essentially – it follows
that the causal powers of a mental state somehow determine its content. I do
not, however, believe that it is true. More of this later.

What’s important for now is this: It is characteristic of commonsense
belief/desire psychology – and hence of any explicit theory that I’m prepared
to view as vindicating commonsense belief/desire psychology – that it attrib-
utes contents and causal powers to the very same mental things that it takes
to be semantically evaluable. It is Hamlet’s belief that Claudius killed his father
– the very same belief which is true or false in virtue of the facts about his
father’s death – that causes him to behave in such a beastly way to Gertrude.4

In fact, there’s a deeper point to make. It’s not just that, in a psychology of
propositional attitudes, content and causal powers are attributed to the same
things. It’s also that causal relations among propositional attitudes somehow
typically contrive to respect their relations of content, and belief/desire expla-
nations often turn on this. Hamlet believed that somebody had killed his father
because he believed that Claudius had killed his father. His having the second
belief explains his having the first. How? Well, presumably via some such
causal generalization as ‘if someone believes Fa, then ceteris paribus he believes
∃x(Fx)’. This generalization specifies a causal relation between two kinds of
mental states picked out by reference to (the logical form of) the propositions
they express; so we have the usual pattern of a simultaneous attribution of
content and causal powers. The present point, however, is that the contents
of the mental states that the causal generalization subsumes are themselves
semantically related; Fa entails ∃x(Fx), so, of course, the semantic value of the
latter belief is not independent of the semantic value of the former.

Or, compare the pattern of implicit reasoning attributed to Hermia at the
beginning of this chapter. I suggested that she must be relying crucially on
some such causal generalization as: ‘If x wants that P, and x believes that –P
unless Q, and x believes that it is within his power to bring it about that Q,
then ceteris paribus x tries to bring it about that Q.’ Common sense seems
pretty clearly to hold that something like that is true and counterfactual
supporting; hence that one has explained x’s attempt to bring it about that Q
if one shows that x had beliefs and desires of the sort that the generaliza-
tion specifies. What is absolutely typical is (a) the appeal to causal relations
among semantically evaluable mental states as part and parcel of the expla-
nation; and (b) the existence of content relations among the mental states thus
appealed to.

Witness the recurrent schematic letters; they function precisely to constrain
the content relations among the mental states that the generalization subsumes.
Thus, unless, in a given case, what x wants is the same as what x believes that
he can’t have without Q, and unless what x believes to be required for P
is the same as what he tries to bring about, the generalization isn’t satisfied
and the explanation fails. It is self-evident that the explanatory principles of
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commonsense psychology achieve generality by quantifying over agents (the
‘practical syllogism’ purports to apply, ceteris paribus, to all the x’s). But it
bears emphasis that they also achieve generality by abstracting over contents
(‘if you want P and you believe not-P unless Q . . . you try to bring it about
that Q,’ whatever the P and Q may be). The latter strategy works only
because, very often, the same P’s and Q’s – the same contents – recur in
causally related mental states; viz., only because causal relations very often
respect semantic ones.

This parallelism between causal powers and contents engenders what is,
surely, one of the most striking facts about the cognitive mind as common-
sense belief/desire psychology conceives it: the frequent similarity between
trains of thought and arguments. Here for example, is Sherlock Holmes doing
his thing at the end of ‘The Speckled Band’:

I instantly reconsidered my position . . . it became clear to me that what-
ever danger threatened an occupant of the room couldn’t come either
from the window or the door. My attention was speedily drawn, as I
have already remarked to you, to this ventilator, and to the bell-rope
which hung down to the bed. The discovery that this was a dummy, and
that the bed was clamped to the floor, instantly gave rise to the suspi-
cion that the rope was there as a bridge for something passing through
the hole, and coming to the bed. The idea of a snake instantly occurred
to me, and when I coupled it with my knowledge that the Doctor was
furnished with a supply of the creatures from India I felt that I was prob-
ably on the right track.

The passage purports to be a bit of reconstructive psychology: a capsule his-
tory of the sequence of mental states which brought Holmes first to suspect,
then to believe, that the doctor did it with his pet snake. What is therefore
interesting, for our purposes, is that Holmes’s story isn’t just reconstructive
psychology. It does double duty, since it also serves to assemble premises for a
plausible inference to the conclusion that the doctor did it with the snake.
Because his train of thought is like an argument, Holmes expects Watson to be
convinced by the considerations which, when they occurred to Holmes, caused
his own conviction. What connects the causal-history aspect of Holmes’s story
with its plausible-inference aspect is the fact that the thoughts that fix the belief
that P provide, often enough, reasonable grounds for believing that P. Were
this not the case – were there not this general harmony between the semanti-
cal and the causal properties of thoughts, so that, as Holmes puts it in another
story, ‘one true inference invariably suggests others’ – there wouldn’t after all,
be much profit in thinking.

All this raises a budget of philosophical issues; just what sorts of content
relations are preserved in the generalizations that subsume typical cases of
belief/desire causation? And – in many ways a harder question – how could
the mind be so constructed that such generalizations are true of it? What sort
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of mechanism could have states that are both semantically and causally
connected, and such that the causal connections respect the semantic ones? It
is the intractability of such questions that causes many philosophers to despair
of commonsense psychology. But, of course, the argument cuts both ways: if
the parallelism between content and causal relations is, as it seems to be, a
deep fact about the cognitive mind, then unless we can save the notion of
content, there is a deep fact about the cognitive mind that our psychology is
going to miss.

(iii) Generalizations preserved

What I’ve said so far amounts largely to this; An explicit psychology that vindi-
cates commonsense belief/desire explanations must permit the assignment of
content to causally efficacious mental states and must recognize behavioral
explanations in which covering generalizations refer to (or quantify over) the
contents of the mental states that they subsume. I now add that the general-
izations that are recognized by vindicating theory mustn’t be crazy from the
point of view of common sense; the causal powers of the attitudes must be,
more or less, what common sense supposes that they are. After all, common-
sense psychology won’t be vindicated unless it turns out to be at least
approximately true.

I don’t, however, have a shopping list of commonsense generalizations that
must be honored by a theory if it wants to be ontologically committed to bona
fide propositional attitudes. A lot of what common sense believes about the
attitudes must surely be false (a lot of what common sense believes about
anything must surely be false). Indeed, one rather hopes that there will prove
to be many more – and much odder – things in mind than common sense had
dreamed of; or else what’s the fun of doing psychology? The indications are,
and have been since Freud, that this hope will be abundantly gratified. For
example, contrary to common sense, it looks as though much of what’s in
the mind is unconscious. and, contrary to common sense, it looks as though
much of what’s in the mind is unlearned. I retain my countenance, I remain
self-possessed.

On the other hand, there is a lot of commonsense psychology that we have
– so far at least – no reason to doubt, and that friends of the attitudes would
hate to abandon. So, it’s hard to imagine a psychology of action that is
committed to the attitudes but doesn’t acknowledge some such causal rela-
tions among beliefs, desires, and behavioral intentions (the ‘maxims’ of acts)
as decision theories explicate. Similarly, it’s hard to imagine a psycholinguis-
tics (for English) which attributes beliefs, desires, communicative intentions,
and such to speaker/hearers but fails to entail an infinity of theorems recog-
nizably similar to these:

• ‘Demetrius killed Lysander’ is the form of words standardly used to
communicate the belief that Demetrius killed Lysander.
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• ‘The cat is on the mat’ is the form of words standardly used to communi-
cate the belief that the cat is on the mat.

• ‘Demetrius killed Lysander or the cat is on the mat’ is the form of words
standardly used to communicate the belief that Demetrius killed Lysander
or the cat is on the mat.

And so on indefinitely. Indeed, it’s hard to imagine a psycholinguistics that
appeals to the propositional attitudes of speakers/hearers of English to explain
their verbal behavior but that doesn’t entail that they know at least one such
theorem for each sentence of their language. So there’s an infinite amount of
common sense for psychology to vindicate already.

Self-confident essentialism is philosophically fashionable this week. There
are people around who have Very Strong Views (‘modal intuitions’, these views
are called) about whether there could be cats in a world in which all the
domestic felines are Martian robots, and whether there could be Homer in a
world where nobody wrote the Odyssey or the Iliad. Ducky for them; their
epistemic condition is enviable, but I don’t myself aspire to it. I just don’t know
how much commonsense psychology would have to be true for there to be
beliefs and desires. Let’s say, some of it at a minimum; lots of it by preference.
Since I have no doubt at all but that lots of it is true, this is an issue about
which I do not stay up nights worrying.

RTM

The main thesis of this book can now be put as follows: We have no reason
to doubt – indeed, we have substantial reason to believe – that it is possible
to have a scientific psychology that vindicates commonsense belief/desire
explanation. But though that is my thesis, I don’t propose to argue the case
in quite so abstract a form. For there is already in the field a (more or less)
empirical theory that is, in my view, reasonably construed as ontologically
committed to the attitudes and that – again, in my view – is quite probably
approximately true. If I’m right about this theory, it is a vindication of the
attitudes. Since, moreover, it’s the only thing of its kind around (it’s the only
proposal for a scientific belief/desire psychology that’s in the field), defending
the commonsense assumptions about the attitudes and defending this theory
turn out to be much the same enterprise; extensionally, as one might say.

That, in any event, is the strategy that I’ll pursue: I’ll argue that the sorts
of objections philosophers have recently raised against belief/desire explana-
tion are (to put it mildly) not conclusive against the best vindicating theory
currently available. The rest of this chapter is therefore devoted to a sketch of
how this theory treats the attitudes and why its treatment of the attitudes seems
so promising. Since this story is now pretty well known in both philosophical
and psychological circles, I propose to be quick.

What I’m selling is the Representational Theory of Mind (hence RTM). At
the heart of the theory is the postulation of a language of thought: an infinite
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set of ‘mental representations’ which function both as the immediate objects
of propositional attitudes and as the domains of mental processes. More
precisely, RTM is the conjunction of the following two claims:

Claim 1 (the nature of propositional attitudes):

For any organism O, and any attitude A toward the proposition P, there
is a (‘computational’/’functional’) relation R and a mental representation
MP such that

MP means that P, and
O has A iff [if and only if] O bears R to MP.

(We’ll see presently that the biconditional needs to be watered down a little;
but not in a way that much affects the spirit of the proposal.)

It’s a thin line between clarity and pomposity. A cruder but more intelli-
gible way of putting claim 1 would be this: To believe that such and such is
to have a mental symbol that means that such and such tokened in your head
in a certain way; it’s to have such a token ‘in your belief box’, as I’ll some-
times say. Correspondingly, to hope that such and such is to have a token of
that same mental symbol tokened in your head, but in a rather different way;
it’s to have it tokened ‘in your hope box’. (The difference between having the
token in one box or the other corresponds to the difference between the causal
roles of beliefs and desires. Talking about belief boxes and such as a short-
hand for representing the attitudes as functional states is an idea due to Steve
Schiffer.) And so on for every attitude that you can bear toward a proposi-
tion; and so on for every proposition toward which you can bear an attitude.

Claim 2 (the nature of mental processes):

Mental processes are causal sequences of tokenings of mental represen-
tations.

A train of thoughts, for example, is a causal sequence of tokenings of mental
representations which express the propositions that are the objects of the
thoughts. To a first approximation, to think ‘It’s going to rain; so I’ll go
indoors’ is to have a tokening of a mental representation that means I’ll
go indoors caused, in a certain way, by a tokening of a mental representation
that means It’s going to rain.

So much for formulating RTM.
There are, I think, a number of reasons for believing that RTM may be

more or less true. The best reason is that some version or other of RTM under-
lies practically all current psychological research on mentation, and our best
science is ipso facto our best estimate of what there is and what it’s made of.
There are those of my colleagues in philosophy who do not find this sort of
argument persuasive. I blush for them. (For a lengthy discussion of how RTM
shapes current work on cognition, see Fodor, 1975, especially chapter 1. For

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“THE PERSISTENCE OF THE ATTITUDES”

231



a discussion of the connection between RTM and commonsense Intentional
Realism – and some arguments that, given the latter, the former is practically
mandatory – see the Appendix, Fodor, 1987.)

But we have a reason for suspecting that RTM may be true even aside from
the details of its empirical success. I remarked above that there is a striking
parallelism between the causal relations among mental states, on the one hand,
and the semantic relations that hold among their propositional objects, on the
other; and that very deep properties of the mental – as, for example, that trains
of thought are largely truth preserving – turn on this symmetry. RTM suggests
a plausible mechanism for this relation, and that is something that no previous
account of mentation has been able to do. I propose to spell this out a bit; it
helps make clear just why RTM has such a central place in the way that
psychologists now think about the mind.

The trick is to combine the postulation of mental representations with the
‘computer metaphor’. Computers show us how to connect semantical with
causal properties for symbols. So, if having a propositional attitude involves
tokening a symbol, then we can get some leverage on connecting semantical
properties with causal ones for thoughts. In this respect, I think there really
has been something like an intellectual breakthrough. Technical details to one
side, this is – in my view – the only aspect of contemporary cognitive science
that represents a major advance over the versions of mentalism that were its
eighteenth- and nineteenth-century predecessors. Exactly what was wrong
with Associationism, for example, was that there proved to be no way to get
a rational mental life to emerge from the sorts of causal relations among
thoughts that the ‘laws of association’ recognized. (See the concluding pages
of Joyce’s Ulysses for a – presumably inadvertent – parody of the contrary
view.)

Here, in barest outline, is how the new story is supposed to go: You connect
the causal properties of a symbol with its semantic properties via its syntax.
The syntax of a symbol is one of its higher-order physical properties. To a
metaphorical first approximation, we can think of the syntactic structure of a
symbol as an abstract feature of its shape.5 Because, to all intents and purposes,
syntax reduces to shape, and because the shape of a symbol is a potential 
determinant of its causal role, it is fairly easy to see how there could be envi-
ronments in which the causal role of a symbol correlates with its syntax. It’s
easy, that is to say, to imagine symbol tokens interacting causally in virtue 
of their syntactic structures. The syntax of a symbol might determine the
causes and effects of its tokenings in much the way that the geometry of a key
determines which locks it will open.

But, now, we know from modern logic that certain of the semantic rela-
tions among symbols can be, as it were, ‘mimicked’ by their syntactic relations;
that, when seen from a very great distance, is what proof-theory is about. So,
within certain famous limits, the semantic relation that holds between two
symbols when the proposition expressed by the one is entailed by the propo-
sition expressed by the other can be mimicked by syntactic relations in virtue
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of which one of the symbols is derivable from the other. We can therefore build
machines which have, again within famous limits, the following property:

The operations of the machine consist entirely of transformations of
symbols;

in the course of performing these operations, the machine is sensitive
solely to syntactic properties of the symbols;

and the operations that the machine performs on the symbols are entirely
confined to altering their shapes.

Yet the machine is so devised that it will transform one symbol into another
if and only if the propositions expressed by the symbols that are so trans-
formed stand in certain semantic relations – e.g., the relation that the premises
bear to the conclusion in a valid argument. Such machines – computers, of
course – just are environments in which the syntax of a symbol determines its
causal role in a way that respects its content. This is, I think, a perfectly terrific
idea; not least because it works.

I expect it’s clear how this is supposed to connect with RTM and ontolog-
ical commitment to mental representations. Computers are a solution to the
problem of mediating between the causal properties of symbols and their
semantic properties. So if the mind is a sort of computer, we begin to see how
you can have a theory of mental processes that succeeds where – literally – all
previous attempts had abjectly failed; a theory which explains how there could
be nonarbitrary content relations among causally related thoughts. But,
patently, there are going to have to be mental representations if this proposal
is going to work. In computer design, causal role is brought into phase with
content by exploiting parallelisms between the syntax of a symbol and its
semantics. But that idea won’t do the theory of mind any good unless there
are mental symbols: mental particulars possessed of both semantical and
syntactic properties. There must be mental symbols because, in a nutshell, only
symbols have syntax, and our best available theory of mental processes –
indeed, the only available theory of mental processes that isn’t known to be
false – needs the picture of the mind as a syntax-driven machine.

It is sometimes alleged against commonsense belief/desire psychology, by
those who admire it less than I do, that it is a ‘sterile’ theory; one that arguably
hasn’t progressed much since Homer and hasn’t progressed at all since Jane
Austen. There is, no doubt, a sense in which this charge is warranted;
commonsense psychology may be implicit science, but it isn’t, on anybody’s
story, implicit research science. (What novelists and poets do doesn’t count as
research by the present austere criteria.) If, in short, you want to evaluate
progress, you need to look not at the implicit commonsense theory but at the
best candidate for its explicit vindication. And here the progress has been enor-
mous. It’s not just that we now know a little about memory and perception
(qua means to the fixation of belief), and a little about language (qua means
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to the communication of belief); see any standard psychology text. The real
achievement is that we are (maybe) on the verge of solving a great mystery
about the mind: How could its causal processes be semantically coherent?
Or, if you like yours with drums and trumpets: How is rationality mechani-
cally possible?’6 Notice that this sort of problem can’t even be stated, let alone
solved, unless we suppose – just as commonsense belief/desire psychology
wants us to – that there are mental states with both semantic contents and
causal roles. A good theory is one that leads you to ask questions that have
answers. And vice versa, ceteris paribus.

Still, RTM won’t do in quite the raw form set forth above. I propose to end
this chapter with a little polishing.

According to claim 1, RTM requires both the following:

For each tokening of a propositional attitude, there is a tokening of a cor-
responding relation between an organism and a mental representation;

and

For each tokening of that relation, there is a corresponding tokening of
a propositional attitude.7

This is, however, much too strong; the equivalence fails in both directions.
As, indeed, we should expect it to, given our experience in other cases where

explicit science co-opts the conceptual apparatus of common sense. For
example, as everybody points out, it is simply not true that chemistry identi-
fies each sample of water with a sample of H2O; not, at least, if the operative
notion of water is the commonsense one according to which what we drink,
sail on, and fill our bathtubs with all qualifies. What chemistry does is recon-
struct the commonsense categories in what the theory itself identifies as core
cases; chemically pure water is H2O. The ecological infrequency of such core
cases is, of course, no argument against the claim that chemical science vindi-
cates the commonsense taxonomy: Common sense was right about there being
such stuff as water, right about there being water in the Charles River, and
right again that it’s the water in what we drink that quenches our thirst. It
never said that the water in the Charles is chemically pure; ‘chemically pure’
isn’t a phrase in the commonsense vocabulary.

Exactly similarly, RTM vindicates commonsense psychology for what RTM
identifies as the core cases; in those cases, what common sense takes to be
tokenings of propositional attitudes are indeed tokenings of a relation between
an organism and a mental representation. The other cases – where you get
either attitude tokenings without the relation or relation tokenings without
the attitudes – the theory treats as derivative. This is all, I repeat, exactly what
you’d expect from scientific precedent. Nevertheless, philosophers have 
made an awful fuss about it in discussing the vindication of the attitudes 
(see the controversy over the ‘explicit representation’ – or otherwise – of
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grammars recently conducted by, among others, Stabler in Stabler 1983 and
Demopoulos and Matthews 1983. So let’s consider the details awhile. Doing
so will lead to a sharpening of claim 1, which is all to the good.

Case 1. Attitudes without mental representations

Here’s a case from Dennett:

In a recent conversation with the designer of a chess-playing program I
heard the following criticism of a rival program: ‘It thinks it should get
its queen out early.’ This ascribes a propositional attitude to the program
in a very useful and predictive way, for as the designer went on to say,
one can usually count on chasing that queen around the board. But for
all the many levels of explicit representation to be found in that program,
nowhere is anything roughly synonymous with ‘I should get my queen
out early’ explicitly tokened. The level of analysis to which the designer’s
remark belongs describes features of the program that are, in an entirely
innocent way, emergent properties of the computational processes that
have ‘engineering reality’. I see no reason to believe that the relation
between belief/talk and psychological-process talk will be any more
direct (Dennett 1981: 107; see also Matthews 1984).

Notice that the problem Dennett raises isn’t just that some of what common
sense takes to be one’s propositional attitudes are dispositional. It’s not like
the worry that I might now be said to believe some abstruse consequence of
number theory – one that I have, commonsensically speaking, never even
thought of – because I would accept the proof of the theorem if I were shown
it. It’s true, of course, that merely dispositional beliefs couldn’t correspond to
occurrent tokenings of relations to mental representations, and claim 1 must
therefore be reformulated. But the problem is superficial, since the relevant
revision of claim 1 would be pretty obvious; viz., that for each occurrent belief
there is a corresponding occurrent tokening of a mental representation; and
for each dispositional belief there is a corresponding disposition to token a
mental representation.

This would leave open a question that arises independent of one’s views
about RTM: viz., when are attributions of dispositional beliefs true? I suppose
that one’s dispositional beliefs could reasonably be identified with the closure
of one’s occurrent beliefs under principles of inference that one explicitly
accepts. And, if it’s a little vague just what beliefs belong to such a closure,
RTM could live with that. Qua dispositional, attitudes play no causal role 
in actual mental processes; only occurrent attitudes – for that matter, only
occurrent anythings – are actual causes. So RTM can afford to be a little oper-
ationalist about merely dispositional beliefs (see Lycan 1986: 61–82) so long
as it takes a hard line about occurrent ones.
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However, to repeat, the problem raised in Dennett’s text is not of this sort.
It’s not that the program believes ‘get your queen out early’ potentially.
Dennett’s point is that the program actually operates on this principle; but not
in virtue of any tokening of any symbol that expresses it. And chess isn’t, of
course, the only sort of case. Behavioral commitment to modus ponens, or to
the syntactic rule of ‘wh’-movement might betoken that these are inscribed 
in brain writing. But it needn’t, since these rules might be – as philosophers
sometimes say – complied with but not literally followed.

In Dennett’s example, you have an attitude being, as it were, an emergent
out of its own implementation. This way of putting it might seem to suggest
a way of saving claim 1: The machine doesn’t explicitly represent ‘get your
queen out early’, but at least we may suppose that it does represent, explicitly,
some more detailed rules of play (the ones that Dennett says have ‘engineering
reality’). For these rules, at least, a strong form of claim 1 would thus be 
satisfied. But that suggestion won’t work either. None of the principles in
accordance with which a computational system operates need be explicitly
represented by a formula tokened in the device; there is no guarantee that the
program of a machine will be explicitly represented in the machine whose
program it is. (See Cummins 1982; roughly, the point is that for any machine
that computes a function by executing an explicit algorithm, there exists
another machine – one that’s ‘hard-wired’ – that computes the same function
but not by executing an explicit algorithm.) So what, you might wonder, does
the ‘computer metaphor’ buy for RTM after all?

There is even a point of principle here – one that is sometimes read in (or
into) Lewis Carroll’s dialogue between Achilles and the Tortoise: Not all the
rules of inference that a computational system runs on can be represented just
explicitly in the system; some of them have to be, as one says, ‘realized in the
hardware’. Otherwise the machine won’t run at all. A computer in which the
principles of operation are only explicitly represented is just like a blackboard
on which the principles have been written down. It has Hamlet’s problem:
When you turn the thing on, nothing happens.

Since this is all clearly correct and arguably important, the question arises
how to state RTM so that these cases where programs are hardwired don’t
count as disconfirmations of claim 1. We’ll return to this momentarily; first
let’s consider:

Case 2. Mental representations without attitudes

What RTM borrows from computers is, in the first instance, the recipe for
mechanizing rationality: Use a syntactically driven machine to exploit paral-
lelisms between the syntactic and semantic properties of symbols. Some – 
but not all – versions of RTM borrow more than this; not just a theory of
rationality but a theory of intelligence too. According to this story, intelligent
behavior typically exploits a ‘cognitive architecture’ constituted of hierarchies
of symbol processors. At the top of such a hierarchy might be a quite complex

J. FODOR

236



capacity: solving a problem, making a plan, uttering a sentence. At the bottom,
however, are only the sorts of unintelligent operations that Turing machines
can perform: deleting symbols, storing symbols, copying symbols, and the rest.
Filling in the middle levels is tantamount to reducing – analyzing – an intelli-
gent capacity into a complex of dumb ones; hence to a kind of explanation of
the former.

Here’s a typical example of a kind of representational theory that runs along
these lines:

This is the way we tie our shoes. There is a little man who lives in one’s
head. The little man keeps a library. When one acts upon the intention
to tie one’s shoes, the little man fetches down a volume entitled Tying
One’s Shoes. The volume says such things as: ‘Take the left free end of
the shoelace in the left hand. Cross the left free end of the shoelace over
the right free end of the shoelace . . .,’ etc. . . . When the little man reads
‘take the left free end of the shoelace in the left hand’, we imagine him
ringing up the shop foreman in charge of grasping shoelaces. The shop
foreman goes about supervising that activity in a way that is, in essence,
a microcosm of tying one’s shoe. Indeed, the shop foreman might be
imagined to superintend a detail of wage slaves, whose functions include:
searching representations of visual inputs for traces of shoelace,
dispatching orders to flex and contract fingers on the left hand, etc.
(Fodor 1981: 63–4).

At the very top are states which may well correspond to the propositional atti-
tudes that common sense is prepared to acknowledge (knowing how to tie
one’s shoes, thinking about shoe tying). But at the bottom and middle levels
there are bound to be lots of symbol-processing operations that correspond to
nothing that people – as opposed to their nervous systems – ever do. These
are the operations of what Dennett has called ‘subpersonal’ computational
systems; and though they satisfy the present formulation of claim 1 (in that
they involve causally efficacious tokenings of mental representations), yet it’s
unclear that they correspond to anything that common sense would count as
the tokening of an attitude. But then how are we to formulate claim 1 so as
to avoid disconfirmation by subpersonal information processes?

Vindication vindicated

There is a sense in which these sorts of objections to claim 1 strike me as not
very serious. As I remarked above, the vindication of belief/desire explanation
by RTM does not require that every case common sense counts as the tokening
of an attitude should correspond to the tokening of a mental representation,
or vice versa. All that’s required is that such correspondences should obtain in
what the vindicating theory itself takes to be the core cases. On the other hand,
RTM had better be able to say which cases it does count as core. Chemistry is
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allowed to hold the Charles River largely irrelevant to the confirmation of
‘water is H2O’, but only because it provides independent grounds for denying
that what’s in the Charles is a chemically pure sample. Of anything!

So, what are the core cases for RTM? The answer should be clear from
claim 2. According to claim 2, mental processes are causal sequences of trans-
formations of mental representations. It follows that tokenings of attitudes
must correspond to tokenings of mental representations when they – the atti-
tude tokenings – are episodes in mental processes. If the intentional objects of
such causally efficacious attitude tokenings are not explicitly represented, then
RTM is simply false. I repeat for emphasis: If the occurrence of a thought is
an episode in a mental process, then RTM is committed to the explicit repre-
sentation of its content. The motto is therefore No Intentional Causation
without Explicit Representation.

Notice that this way of choosing core cases squares us with the alleged
counterexamples. RTM says that the contents of a sequence of attitudes that
constitutes a mental process must be expressed by explicit tokenings of mental
representations. But the rules that determine the course of the transformation
of these representations – modus ponens, ‘wh’-movement, ‘get the queen 
out early’, or whatever – need not themselves ever be’ explicit. They can be
emergents out of explicitly represented procedures of implementation, or out
of hardware structures, or both. Roughly: According to RTM, programs –
corresponding to the ‘laws of thought’ – may be explicitly represented; but
‘data structures’ – corresponding to the contents of thoughts – have to be.

Thus, in Dennett’s chess case, the rule ‘get it out early’ may or may not be
expressed by a ‘mental’ (/program language) symbol. That depends on just
how the machine works; specifically, on whether consulting the rule is a step
in the machine’s operations. I take it that in the machine that Dennett has in
mind, it isn’t; entertaining the thought ‘Better get the queen out early’ never
constitutes an episode in the mental life of that machine.8 But then, the inten-
tional content of this thought need not be explicitly represented consonant
with ‘no intentional causation without explicit representation’ being true. By
contrast, the representations of the board – of actual or possible states of play
– over which the machine’s computations are defined must be explicit, precisely
because the machine’s computations are defined over them. These computa-
tions constitute the machine’s ‘mental processes’, so either they are causal
sequences of explicit representations, or the representational theory of chess
playing is simply false of the machine. To put the matter in a nutshell:
Restricting one’s attention to the status of rules and programs can make it
seem that the computer metaphor is neutral with respect to RTM. But when
one thinks about the constitution of mental processes, the connection between
the idea that they are computational and the idea that there is a language of
thought becomes immediately apparent.9

What about the subpersonal examples, where you have mental repre-
sentation tokenings without attitude tokenings? Commonsense belief/desire 
explanations are vindicated if scientific psychology is ontologically committed
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to beliefs and desires. But it’s not also required that the folk-psychological
inventory of propositional attitudes should turn out to exhaust a natural kind. 
It would be astounding if it did; how could common sense know all that?
What’s important about RTM – what makes RTM a vindication of intuitive
belief/desire psychology – isn’t that it picks out a kind that is precisely co-
extensive with the propositional attitudes. It’s that RTM shows how
intentional states could have causal powers; precisely the aspect of common-
sense intentional realism that seemed most perplexing from the metaphysical
point of view.

Molecular physics vindicates the intuitive taxonomy of middle-sized objects
into liquids and solids. But the nearest kind to the liquids that molecular
physics acknowledges includes some of what common sense would not; glass,
for example. So what?

So much for RTM; so much for this chapter, too. There is a strong prima
facie case for commonsense belief/desire explanation. Common sense would
be vindicated if some good theory of the mind proved to be committed to 
entities which – like the attitudes – are both semantically evaluable and etio-
logically involved. RTM looks like being a good theory of the mind that is so
committed; so if RTM is true, common sense is vindicated. It goes without
saying that RTM needs to make an empirical case; we need good accounts,
independently confirmed, of mental processes as causal sequences of trans-
formations of mental representations. Modern cognitive psychology is
devoted, practically in its entirety, to devising and confirming such accounts.
For present purposes, I shall take all that as read.

Notes
1 Perhaps there are laws that relate the brain states of organisms to their motions.

But then again, perhaps there aren’t, since it seems entirely possible that the
lawful connections should hold between brain states and actions where, as usual,
actions cross-classify movements. This is, perhaps, what you would predict upon
reflection. Would you really expect the same brain state that causes the utter-
ances of ‘dog’ in tokens of ‘dog’ to be the one that causes it in tokens of
‘dogmatic’? How about utterances of (the phonetic sequence) [empedokliz lipt]
when you’re talking English and when you’re talking German?

2 The trouble with transcendental arguments being, however, that it’s not obvious
why a theory couldn’t be both indispensable and false. I wouldn’t want to buy a
transcendental deduction of the attitudes if operationalism were the price I had
to pay for it.

3 Denying the etiological involvement of mental states was really what behaviorism
was about; it’s what ‘logical’ behaviorists and ‘eliminativists’ had in common.
Thus, for example, to hold – as Ryle did, more or less – that mental states are
species of dispositions is to refuse to certify as literally causal such psycholog-
ical explanations as ‘He did it with the intention of pleasing her,’ or, for that
matter, ‘His headache made him groan,’ to say nothing of ‘The mere thought of
giving a lecture makes him ill.’ (For discussion, see Fodor 1981, ‘Something on
the State of the Art’, Introduction to Representations.)
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4 Some philosophers feel very strongly about enforcing an object/state (or maybe
object/event) distinction here, so that what have causal powers are tokenings 
of mental state types (e.g., Hamlet’s believing that Claudius killed his father), but
what have semantic values are propositions (e.g., the proposition that Claudius
killed Hamlet’s father). The point is that it sounds odd to say that Hamlet’s believ-
ing that P is true but all right to say that Hamlet’s belief that P is.

I’m not convinced that this distinction is one that I will care about in the long
run, since sounding odd is the least of my problems and in the long run I expect
I want to do without propositions altogether. However, if you are squeamish about
ontology, that’s all right with me. In that case, the point in the text should be:
Belief/desire psychology attributes causal properties to the very same things (viz.,
tokenings of certain mental state types) to which it attributes propositional
objects. It is thus true of Hamlet’s believing that Claudius killed his father both
that it is implicated in the etiology of his behavior Gertrudeward and that it has
as its object a certain belief, viz., the proposition that Claudius killed his father.
If we then speak of Hamlet’s state of believing that Claudius killed his father (or
of the event which consists of the tokening of that state) as semantically evalu-
able, we can take that as an abbreviation for a more precise way of talking. The
state S has the semantic value V if S has as its object a proposition whose value
is V.

It goes without saying that none of this ontological fooling around makes the
slightest progress toward removing the puzzles about intentionality. If (on my way
of talking) it’s metaphysically worrying that beliefs and desires are semantically
evaluable though trees, rocks, and prime numbers aren’t, it’s equally metaphys-
ically worrying (on the orthodox way of talking) that believings have propositional
objects though trees, rocks and prime numbers don’t.

5 Any nomic property of symbol tokens, however – any property in virtue of the
posession of which they satisfy causal laws – would, in principle, do just as well.
(So, for example, syntactic structure could be realized by relations among elec-
tromagnetic states rather than relations among shapes; as, indeed, it is in real
computers.) This is the point of the Functionalist doctrine that, in principle, you
can make a mind out of almost anything.

6 Which is not to deny that there are (ahem!) certain residual technical difficul-
ties. (See, for example, part 4 of Fodor 1983.) A theory of rationality (i.e., a
theory of our rationality) has to account not merely for the ‘semantic coherence’
of thought processes in the abstract but for our ability to pull off the very sorts
of rational inferences that we do. (It has to account for our ability to make science,
for example.) No such theory will be available by this time next week.

7 Because I don’t want to worry about the ontology of mind, I’ve avoided stating
RTM as an identity thesis. But you could do if you were so inclined.

8 Like Dennett, I’m assuming for purposes of argument that the machine has
thoughts and mental processes; nothing hangs on this, since we could, of course,
have had the same discussion about people.

9 We can now see what to say about the philosophical chestnut about Kepler’s Law.
The allegation is that intentionalist methodology permits the inference from ‘x’s
behavior complies with rule R’ to ‘R is a rule that x explicitly represents.’ The
embarrassment is supposed to be that this allows the inference from ‘The move-
ments of the planets comply with Kepler’s Law’ to some astronomical version of
LOT.
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But in fact no such principle of inference is assumed. What warrants the
hypothesis that R is explicitly represented is not mere behavior in compliance
with R; it’s an etiology according to which R figures as the content of one of the
intentional states whose tokenings are causally responsible for x’s behavior. And,
of course, it’s not part of the etiological story about the motions of the planets
that Kepler’s Law occurs to them as they proceed upon their occasions.
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12

S.P. Stich, “Autonomous Psychology and 
the Belief–Desire Thesis”

A venerable view, still very much alive, holds that human action is to be
explained at least in part in terms of beliefs and desires. Those who advocate
the view expect that the psychological theory which explains human behavior
will invoke the concepts of belief and desire in a substantive way, I will call
this expectation the belief–desire thesis. Though there would surely be a
quibble or a caveat here and there, the thesis would be endorsed by an excep-
tionally heterogeneous collection of psychologists and philosophers ranging
from Freud and Hume, to Thomas Szasz and Richard Brandt. Indeed, a
number of philosophers have contended that the thesis, or something like it,
is embedded in our ordinary, workaday concept of action.1 If they are right,
and I think they are, then insofar as we use the concept of action we are all
committed to the belief–desire thesis. My purpose in this essay is to explore
the tension between the belief–desire thesis and a widely held assumption
about the nature of explanatory psychological theories, an assumption that
serves as a fundamental regulative principle for much of contemporary psycho-
logical theorizing. This assumption, which for want of a better term I will call
the principle of psychological autonomy, will be the focus of the first of 
the sections below. In the second section I will elaborate a bit on how the
belief–desire thesis is to be interpreted, and try to extract from it a principle
that will serve as a premise in the argument to follow. In the third section I
will set out an argument to the effect that large numbers of belief–desire expla-
nations of action, indeed perhaps the bulk of such explanations, are
incompatible with the principle of autonomy. Finally, in the last section, I will
fend off a possible objection to my argument. In the process, I will try to make
clear just why the argument works and what price we should have to pay if
we were resolved to avoid its consequences.

1 The principle of psychological autonomy

Perhaps the most vivid way of explaining the principle I have in mind is by
invoking a type of science fiction example that has cropped up with some
frequency in recent philosophical literature. Imagine that technology were
available which would enable us to duplicate people. That is, we can build
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living human beings who are atom for atom and molecule for molecule replicas
of some given human being.2 Now suppose that we have before us a human
being (or, for that matter, any sort of animal) and his exact replica. What the
principle of autonomy claims is that these two humans will be psychologically
identical, that any psychological property instantiated by one of these subjects
will also be instantiated by the other.

Actually, a bit of hedging is needed to mark the boundaries of this claim 
to psychological identity. First, let me note that the organisms claimed to be
psychologically identical include any pair of organisms, existing at the same
time or at different times, who happen to be atom for atom replicas of each
other. Moreover, it is inessential that one organism should have been built to
be a replica of the other. Even if the replication is entirely accidental, the two
organisms will still be psychologically identical.

A caveat of another sort is needed to clarify just what I mean by calling
two organisms “psychologically identical.” For consider the following objec-
tion: “The original organism and his replica do not share all of their
psychological properties. The original may, for example, remember seeing the
Watergate hearings on television, but the replica remembers no such thing. He
may think he remembers it, or have an identical “memory trace,” but if he
was not created until long after the Watergate hearings, then he did not see
the hearings on television, and thus he could not remember seeing them.” The
point being urged by my imagined critic is a reasonable one. There are many
sorts of properties plausibly labeled “psychological” that might be instanti-
ated by a person and not by his replica. Remembering that p is one example,
knowing that p and seeing that p are others. These properties have a sort of
“hybrid” character. They seem to be analyzable into a “purely psychological”
property (like seeming to remember that p, or believing that p) along with one
or more nonpsychological properties and relations (like p being true, or the
memory trace being caused in a certain way by the fact that p). But to insist
that “hybrid” psychological properties are not psychological properties at all
would be at best a rather high handed attempt at stipulative definition. Still,
there is something a bit odd about these hybrid psychological properties, 
a fact which reflects itself in the intuitive distinction between “hybrids” and
their underlying “purely psychological” components. What is odd about the
hybrids, I think, is that we do not expect them to play any role in an explana-
tory psychological theory. Rather, we expect a psychological theory which
aims at explaining behavior to invoke only the “purely psychological” prop-
erties which are shared by a subject and its replicas. Thus, for example, we
are inclined to insist it is Jones’s belief that there is no greatest prime number
that plays a role in the explanation of his answering the exam question. He
may, in fact, have known that there is no greatest prime number. But even if
he did not know it, if, for example, the source of his information had himself
only been guessing, Jones’s behavior would have been unaffected. What know-
ledge adds to belief is psychologically irrelevant. Similarly the difference
between really remembering that p and merely seeming to remember that p
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makes no difference to the subject’s behavior. In claiming that physical replicas
are psychologically identical, the principle of psychological autonomy is to 
be understood as restricting itself to the properties that can play a role in
explanatory psychological theory. Indeed, the principle is best viewed as a
claim about what sorts of properties and relations may play a role in explana-
tory psychological theory. If the principle is to be observed, then the only
properties and relations that may legitimately play a role in explanatory
psychological theories are the properties and relations that a subject and its
replica will share.

There is another way to explain the principle of psychological autonomy
that does not appeal to the fanciful idea of a replica. Jaegwon Kim has expli-
cated and explored the notion of one class of properties supervening upon
another class of properties.3 Suppose S and W are two classes of properties,
and that S# and W# are the sets of all properties constructible from the prop-
erties in S and W respectively. Then, following Kim, we will say that the family
S of properties supervenes on the family W of properties (with respect to a
domain D of objects) just in case, necessarily, any two objects in D which share
all properties in W# will also share all properties in S#. A bit less formally,
one class of properties supervenes on another if the presence or absence of
properties in the former class is completely determined by the presence or
absence of properties in the latter.4 Now the principle of psychological
autonomy states that the properties and relations to be invoked in an explana-
tory psychological theory must be supervenient upon the current, internal
physical properties and relations of organisms (i.e., just those properties that
an organism shares with all of its replicas).

Perhaps the best way to focus more sharply on what the autonomy prin-
ciple states is to look at what it rules out. First, of course, if explanatory
psychological properties and relations must supervene on physical properties,
then at least some forms of dualism are false. The dualist who claims that
there are psychological (or mental) properties which are not nomologically
correlated with physical properties, but which nonetheless must be invoked in
an explanation of the organism’s behavior, is denying that explanatory psycho-
logical states supervene upon physical states. However, the autonomy principle
is not inimical to all forms of dualism. Those dualists, for example, who hold
that mental and physical properties are nomologically correlated need have no
quarrel with the doctrine of autonomy. However, the principle of autonomy
is significantly stronger than the mere insistence that psychological states
supervene on physical states.5 For autonomy requires in addition that certain
physical properties and relations are psychologically irrelevant in the sense that
organisms which differ only with respect to those properties and relations are
psychologically identical.6 In specifying that only “current” physical proper-
ties are psychologically relevant, the autonomy principle decrees irrelevant all
those properties that deal with the history of the organism, both past and
future. It is entirely possible, for example, for two organisms to have quite
different physical histories and yet, at a specific pair of moments, to be replicas 
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of one another. But this sort of difference, according to the autonomy prin-
ciple, can make no difference from the point of view of explanatory
psychology. Thus remembering that p (as contrasted with having a memory
trace that p) cannot be an explanatory psychological state. For the difference
between a person who remembers that p and a person who only seems to
remember that p is not dependent on their current physical state, but only 
on the history of these states. Similarly, in specifying that only internal prop-
erties and relations are relevant to explanatory psychological properties, the
autonomy principle decrees that relations between an organism and its
external environment are irrelevant to its current (explanatory) psychological
state. The restriction also entails that properties and relations of external
objects cannot be relevant to the organism’s current (explanatory) psycholog-
ical state. Thus neither my seeing that Jones is falling nor my knowing that
Ouagadougou is the capital of Upper Volta can play a role in an explanatory
psychological theory, since the former depends in part on my relation to Jones,
and the latter depends in part on the relation between Ouagadougou and
Upper Volta. 

Before we leave our discussion of the principle of psychological autonomy,
let us reflect briefly on the status of the principle. On Kim’s view, the belief
that one set of properties supervenes on another “is largely, and often, a combi-
nation of metaphysical convictions and methodological considerations.”7 The
description seems particularly apt for the principle of psychological autonomy.
The autonomy principle serves a sort of regulative role in modern psychology,
directing us to restrict the concepts we invoke in our explanatory theories 
in a very special way. When we act in accordance with the regulative stipula-
tion of the principle we are giving witness to the tacit conviction that the best
explanation of behavior will include a theory invoking properties supervenient
upon the organism’s current, internal physical state.8 As Kim urges, this
conviction is supported in part by the past success of theories which cleave to
the principle’s restrictions, and in part by some very fundamental metaphys-
ical convictions. I think there is much to be learned in trying to pick apart the
various metaphysical views that support the autonomy principle, for some of
them have implications in areas quite removed from psychology. But that is a
project for a different paper.

2 The belief–desire thesis

The belief–desire thesis maintains that human action is to be explained, at least
in part, in terms of beliefs and desires. To sharpen the thesis we need to say
more about the intended sense of explain, and more about what it would be
to explain action in terms of beliefs and desires. But before trying to pin down
either of these notions, it will be useful to set out an example of the sort of
informal belief–desire explanations that we commonly offer for our own
actions and the actions of others.
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Jones is watching television; from time to time he looks nervously at a
lottery ticket grasped firmly in his hand. Suddenly he jumps up and
rushes toward the phone. Why? It was because the TV announcer has
just announced the winning lottery number, and it is the number on
Jones’s ticket. Jones believes that he has won the lottery. He also believes
that to collect his winnings he must contact the lottery commission
promptly. And, needless to say, he very much wants to collect his
winnings.

Many theorists acknowledge that explanations like the one offered of Jones
rushing toward the phone are often true (albeit incomplete) explanations of
action. But this concession alone does not commit the theorist to the
belief–desire thesis as I will interpret it here. There is considerable controversy
over how we are to understand the “because” in “Jones rushed for the phone
because he believed he had won the lottery and he wanted . . .” Some writers
are inclined to read the “because” literally, as claiming that Jones’s belief and
his desire were the causes (or among the causes) of his action. Others offer a
variety of non-causal accounts of the relation between beliefs and desires on
the one hand and actions on the other’.9 However, it is the former, “literal,”
reading that is required by the belief–desire thesis as I am construing it.

To say that Jones’s belief that he had won the lottery was among the causes
of his rushing toward the phone is to say of one specific event that it had
among its causes one specific state. There is much debate over how such
“singular causal statements” are to be analyzed. Some philosophers hold that
for a state or event S to be among the causes of an event E, there must be a
law which somehow relates S and E. Other philosophers propose other
accounts. Even among those who agree that singular causal statements must
be subsumed by a law, there is debate over how this notion of subsumption
is to be understood. At the heart of this controversy is the issue of how much
difference there can be between the properties invoked in the law and those
invoked in the description of the event if the event is to be an instance of the
law.10 Given our current purposes, there is no need to take a stand on this
quite general metaphysical issue. But we will have to take a stand on a special
case of the relation between beliefs, desires, and the psychological laws that
subsume them. The belief–desire thesis, as I am viewing it, takes seriously the
idea of developing a psychological theory couched in terms of beliefs and
desires. Thus, in addition to holding that Jones’s action was caused by his
belief that he had won the lottery and his desire to collect his winnings, it also
holds that this singular causal statement is true in virtue of being subsumed
by laws which specify nomological relations among beliefs, desires, and
action.11

There is one further point that needs to be made about my construal of the
belief–desire thesis. If the thesis is right, then action is to be explained at least
in part by appeal to laws detailing how beliefs, desires, and other psycholog-
ical states effect action. But how are we to recognize such laws? It is, after all,
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plainly not enough for a theory simply to invoke the terms “belief” and
“desire” in its laws. If it were, then it would be possible to convert any theory
into a belief–desire theory by the simple expedient of replacing a pair of its
theoretical terms with the terms “belief” and “desire.” The point I am laboring
is that the belief–desire thesis must be construed as the claim that psycholog-
ical theory will be couched in terms of beliefs and desires as we ordinarily
conceive of them. Thus to spell out the belief–desire thesis in detail would
require that we explicate our intuitive concepts of belief and desire.
Fortunately, we need not embark on that project here.12 To fuel the arguments
I will develop in the following section, I will need only a single, intuitively
plausible, premise about beliefs.

As a backdrop for the premise that I need, let me introduce some handy
terminology. I believe that Ouagadougou is the capital of Upper Volta, and if
you share my interest in atlases then it is likely that you have the same belief.
Of course, there is also a perfectly coherent sense in which your belief is not
the same as mine, since you could come to believe that Bobo Dioulasso is the
capital of Upper Volta, while my belief remains unchanged. The point here is
the obvious one that beliefs, like sentences, admit of a type–token distinction.
I am inclined to view belief tokens as states of a person. And I take a state to
be the instantiation of a property by an object during a time interval. Two
belief states (or belief tokens) are of the same type if they are instantiations of
the same property and they are of different types if they are instantiations of
different properties.13 In the example at hand, the property that both you and
I instantiate is believing that Ouagadougou is the capital of Upper Volta.

Now the premise I need for my argument concerns the identity conditions
for belief properties. Cast in its most intuitive form, the premise is simply that
if a particular belief of yours is true and a particular belief of mine is false,
then they are not the same belief. A bit more precisely: If a belief token of one
subject differs in truth value from a belief token of another subject, then the
tokens are not of the same type. Given our recent account of belief states, this
is equivalent to a sufficient condition for the non-identity of belief properties:
If an instantiation of belief property p1 differs in truth value from an instan-
tiation of belief property p2 then p1 and p2 are different properties. This
premise hardly constitutes an analysis of our notion of sameness of belief, since
we surely do not hold belief tokens to be of the same type if they merely have
the same truth value. But no matter. There is no need here to explicate our
intuitive notion of belief identity in any detail. What the premise does provide
is a necessary condition on any state counting as a belief. If a pair of states
can be type identical (i.e., can be instantiations of the same property) while
differing in truth value, then the states are not beliefs as we ordinarily conceive
of them.

Before putting my premise to work, it might be helpful to note how the
premise can be derived from a quite traditional philosophical account of 
the nature of beliefs. According to this account, belief is a relation between a
person and a proposition. Two persons have the same belief (instantiate the
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same belief property) if they are belief-related to the same proposition. And,
finally, propositions are taken to be the vehicles of truth, so propositions with
different truth values cannot be identical. Given this account of belief, it
follows straightforwardly that belief tokens differing in truth value differ in
type. But the entailment is not mutual, so those who, like me, have some suspi-
cions about the account of belief as a relation between a person and a
proposition are free to explore other accounts of belief without abandoning
the intuitively sanctioned premise that differences in truth value entail differ-
ence in belief.

3 The tension between autonomy and the 
belief–desire thesis

In this section I want to argue that a certain tension exists between the prin-
ciple of psychological autonomy and the belief–desire thesis. The tension is
not, strictly speaking, a logical incompatibility, Rather, there is an incompat-
ibility between the autonomy principle and some assumptions that are
naturally and all but universally shared by advocates of the belief–desire thesis.
The additional assumptions are that singular causal statements like the ones
extractable from our little story about Jones and the lottery ticket are often
true. Moreover, they are true because they are subsumed by laws which invoke
the very properties which are invoked in the characterization of the beliefs and
desires. A bit less abstractly, what I am assuming is that statements like
“Jones’s belief that he had won the lottery was among the causes of his rushing
toward the phone” are often true; and that they are true in virtue of being
subsumed by laws invoking properties like believing that he had just won the
lottery. The burden of my argument is that if we accept the principle of
autonomy, then these assumptions must be rejected. More specifically, I will
argue that if the autonomy principle is accepted then there are large numbers
of belief properties that cannot play a role in an explanatory psychological
theory. My strategy will be to examine four different cases, each representa-
tive of a large class. In each case we will consider a pair of subjects who,
according to the autonomy principle, instantiate all the same explanatory
psychological properties, but who have different beliefs. So if we accept the
principle of psychological autonomy, then it follows that the belief properties
our subjects instantiate cannot be explanatory psychological properties. After
running through the examples, I will reflect briefly on the implications of the
argument for the belief–desire thesis.

Case 1: Self-referential beliefs14

Suppose, as we did earlier, that we have the technology for creating atom for
atom replicas of people. Suppose, further, that a replica for me has just been
created. I believe that I have tasted a bottle of Chateau d’Yquem, 1962. Were
you to ask me whether I had ever tasted a d’Yquem, 1962, I would likely reply,
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“Yes, I have.” An advocate of the belief–desire thesis would urge, plausibly
enough, that my belief is among the causes of my utterance. Now if you were
to ask my replica whether he had ever tasted a d’Yquem, 1962, he would likely
also reply, “Yes, I have.” And surely a belief–desire theorist will also count
my replica’s belief among the causes of his utterance. But the belief which is
a cause of my replica’s utterance must be of a different type from the one
which is a cause of my utterance. For his belief is false; he has just been created
and has never tasted a d’Yquem, nor any other wine. So by the premise we
set out in section 2, the belief property he instantiates is different from the one
I instantiate. Yet since we are replicas, the autonomy principle entails that we
share all our explanatory psychological properties. It follows that the prop-
erty of believing that I have tasted a Chateau d’Yquem, 1962, cannot be one
which plays a role in an explanatory psychological theory. In an obvious way,
the example can be generalized to almost all beliefs about oneself. If we adhere
to the principle of autonomy, then beliefs about ourselves can play no role in
the explanation of our behavior.

Case 2: Beliefs about one’s spatial and temporal location

Imagine, to vary the science fiction example, that cryogenics, the art of freezing
people, has been perfected to the point at which a person can be frozen, stored,
then defrosted, and at the end of the ordeal be atom for atom identical with
the way he was at the beginning of the freezing process. Now suppose that I
submit myself to cryogenic preservation this afternoon, and, after being frozen,
I am transported to Iceland where I am stored for a century or two, then
defrosted. I now believe that it is the twentieth century and that there are many
strawberry farms nearby. It would be easy enough to tell stories which would
incline the belief–desire theorists to say that each of these beliefs is serving as
a cause of my actions. I will leave the details to the reader’s imagination. On
being defrosted, however, I would presumably still believe that it is the twen-
tieth century and that there are many strawberry farms nearby. Since my
current beliefs are both true and my future beliefs both false, they are not
belief tokens of the same type, and do not instantiate the same belief prop-
erty. But by hypothesis, I am, on defrosting, a replica of my current self. Thus
the explanatory psychological properties that I instantiate cannot have
changed. So the belief property I instantiate when I now believe that it is the
twentieth century cannot play any role in an explanatory psychological theory.
As in the previous case, the example generalizes to a large number of other
beliefs involving a subject’s temporal and spatial location.

Case 3: Beliefs about other people

In several papers Hilary Putnam has made interesting use of the following
fanciful hypothesis.15 Suppose that in some distant corner of the universe there
is a planet very much like our own. Indeed, it is so much like our own that
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there is a person there who is my doppelganger. He is atom for atom identical
with me and has led an entirely parallel life history. Like me, my doppelganger
teaches in a philosophy department, and like me has heard a number of
lectures on the subject of proper names delivered by a man called “Saul
Kripke.” However, his planet is not a complete physical replica of mine. For
the philosopher called “Saul Kripke” on that planet, though strikingly similar
to the one called by the same name on our planet, was actually born in a 
state they call “South Dakota,” which is to the north of a state they call
“Nebraska.” By contrast, our Saul Kripke was born in Nebraska – our
Nebraska, of course, not theirs. But for reasons which need not be gone into
here, many people on this distant planet, including my doppelganger, hold a
belief which they express by saying “Saul Kripke was born in Nebraska.” Now
I also hold a belief which I express by saying “Saul Kripke was born in
Nebraska.” However, the belief I express with those words is very different
from the belief my doppelganger expresses using the same words, so different,
in fact, that his belief is false while mine is true. Yet since we are doppelgangers
the autonomy principle dictates that we instantiate all the same explanatory
psychological properties. Thus the belief property I instantiate in virtue of
believing that Saul Kripke was born in Nebraska cannot be a property invoked
in an explanatory psychological theory.

Case 4: Natural kind predicates

In Putnam’s doppelganger planet stories, a crucial difference between our
planet and the distant one is that on our planet the substance which we call
“water,” which fills our lakes, etc. is in fact H20, while on the other planet
the substance they call “water” which fills their lakes, etc. is in fact some
complex chemical whose chemical formula we may abbreviate XYZ. Now
imagine that we are in the year 1700, and that some ancestor of mine hears
a story from a source he takes to be beyond reproach to the effect that when
lizards are dipped in water, they dissolve. The story, let us further suppose, is
false, a fact which my ancestor might discover to his dismay when attempting
to dissolve a lizard. For the belief–desire theorist, the unsuccessful attempt has
as one of its causes the belief that lizards dissolve in water. Now suppose that
my ancestor has a doppelganger on the far-off planet who is told an identical
sounding story by an equally trustworthy raconteur. However, as it happens
that story is true, for there are lizards that do dissolve in XYZ, though none
will dissolve in H2O. The pattern should by now be familiar. My ancestor’s
belief is false, his doppelganger’s is true. Thus the belief tokens instantiate
different belief properties. But since ex hypothesis the people holding the
beliefs are physically identical, the belief properties they instantiate cannot
function in an explanatory psychological theory.16

This completes my presentation of cases. Obviously, the sorts of examples
we have looked at are not the only ones susceptible to the sort of arguments
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I have been using. But let us now reflect for a moment on just what these argu-
ments show. To begin, we should note that they do not show the belief–desire
thesis is false. The thesis, as I have construed it here, holds that there are
psychological laws which invoke various belief and desire properties and
which have a substantive role to play in the explanation of behavior. Nothing
we have said here would suffice to show that there are no such laws. At best,
what we have shown is that, if we accept the principle of psychological
autonomy, then a large class of belief properties cannot be invoked in an
explanatory psychological theory. This, in turn, entails that many intuitively
sanctioned singular causal statements which specify a belief as a cause of an
action cannot be straightforwardly subsumed by a law. And it is just here, I
think, that our argument may serve to undermine the belief–desire thesis. For
the plausibility of the thesis rests, in large measure, on the plausibility of these
singular causal statements. Indeed, I think the belief–desire thesis can be prof-
itably viewed as the speculation that these intuitively sanctioned singular
causal statements can be cashed out in a serious psychological theory couched
in terms of beliefs and desires. In showing that large numbers of these singular
causal statements cannot be cashed out in this way, we make the speculation
embodied in the belief–desire thesis appear idle and unmotivated. In the
section that follows, I will consider a way in which an advocate of the
belief–desire thesis might try to deflect the impact of our arguments, and indi-
cate the burden that this escape route imposes on the belief–desire theorist. 

4 A way out and its costs 

Perhaps the most tempting way to contain the damage done by the arguments
of the previous section is to grant the conclusions while denying their rele-
vance to the belief–desire thesis. I imagine a critic’s objection going something
like this: “Granted, if we accept the autonomy principle, then certain belief
properties cannot be used in explanatory theories. But this does nothing to
diminish the plausibility of the belief–desire thesis, because the properties you
have shown incompatible with autonomy are the wrong kind of belief prop-
erties. All of the examples you consider are cases of de re beliefs, none of them
are de dicto beliefs. But those theorists who take seriously the idea of
constructing a belief–desire psychological theory have in mind a theory
invoking de dicto beliefs and desires. De re beliefs are a sort of hybrid; a person
has a de re belief if he has a suitable underlying de dicto belief, and if he is
related to specific objects in a certain way. But it is only the underlying de
dicto belief that will play a role in psychological explanation. Thus your argu-
ments do not cast any serious doubt on the belief–desire thesis.17

Before assessing this attempt to protect the belief–desire thesis, a few
remarks on the de dicto/de re distinction are in order. In the recent philo-
sophical discussion of de re and de dicto beliefs, the focus has been on the
logical relations among various sorts of belief attributions. Writers concerned
with the issue have generally invoked a substitution criterion to mark the
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boundary between de dicto and de re belief attributions. Roughly, a belief attri-
bution of the form.

S believes that p

is de re if any name or other referring expression within p can be replaced
with a co-designating term without risk of change of truth value, otherwise
the attribution is de dicto.18

But now given this way of drawing the de re/de dicto distinction, my imag-
ined critic is simply wrong in suggesting that all of the examples used in my
arguments are cases of de re belief. Indeed, just the opposite is true; I intend
all of the belief attribution in my examples to be understood in the de dicto
sense, and all my arguments work quite as well when they are read in this
way. Thus, for example, in Case 3 I attribute to myself the belief that Saul
Kripke was born in Nebraska. But I intend this to be understood in such a
way that

Stich believes � was born in Nebraska

might well be false if � were replaced by a term which, quite unbeknownst to
me, in fact denotes Saul Kripke.

There is, however, another way the critic could press his attack that side-
steps my rejoinder. Recently, a number of writers have challenged the
substitutional account of the de dicto/de re distinction. The basic idea under-
lying their challenge is that the term “de re” should be used for all belief
attributions which intend to ascribe a “real” relation of some sort between
the believer and the object of his belief. The notion of a real relation is
contrasted with the sort of relation that obtains between a person and an
object when the object happens to satisfy some description that the person has
in mind.19 Burge, for example, holds that “a de dicto belief is a belief in which
the believer is related only to a completely expressed proposition (dictum),”
in contrast to a de re belief which is “a belief whose correct ascription places
the believer in an appropriate, nonconceptual, contextual relation to the
objects the belief is about.”20 Thus, if Brown believes that the most prosperous
Oriental rug dealer in Los Angeles is an Armenian, and if he believes it simply
because he believes all prosperous Oriental rug dealers are Armenian, but has
no idea who the man may be, then his belief is de dicto. By contrast, if Brown
is an intimate of the gentleman, he may have the de re belief that the most
prosperous Oriental rug dealer in Los Angeles is an Armenian. The sentence 

Brown believes that the must prosperous Oriental rug dealer in Los
Angeles is an Armenian.

is thus ambiguous, since it may be used either in the de re sense to assert 
that Brown and the rug dealer stand in some “appropriate, nonconceptual,
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contextual relation” or in the de dicto sense which asserts merely that Brown
endorses the proposition that the most prosperous rug dealer in Los Angeles
(whoever he may be) is an Armenian. 

The problem with the substitutional account of the de dicto/de re distinc-
tion is that it classifies as de dicto many belief attributions which impute a
“real” relation between the believer and the object of his belief. In many belief
attributions the names or definite descriptions that occur in the content
sentence do a sort of double duty. First, they serve the function commonly
served by names and descriptions; they indicate (or refer to) an object, in this
case the object to which the believer is said to be related. The names or descrip-
tions in the content sentence also may serve to indicate how the believer
conceives of the object, or how he might characterize it. When a name or
description serving both roles is replaced by a codesignating expression which
does not indicate how the believer conceives of the object, then the altered
attribution (interpreted in the “double duty” sense) will be false. Thus the
substitutional account classifies the original attribution as de dicto, despite its
imputation of a “real” relation between believer and object?21

Now if the de dicto/de re distinction is drawn by classifying as de re all
those belief attributions which impute a “real” relation between believer and
object, then the critic conjured in the first paragraph of this section is likely
right in his contention that all of my arguments invoke examples of de re
beliefs. Indeed, the strategy of my arguments is to cite an example of a de re
(i.e., “real relation”) belief, then construct a second example in which the
second believer is a physical replica of the first, but has no “real relation” to
the object of the first believer’s belief. However, to grant this much is not to
grant that the critic has succeeded in blunting the point of my arguments.

Let me begin my rejoinder with a fussy point. The critic’s contentions were
two: first, that my examples all invoked de re belief properties; second, that
de re belief properties are hybrids and are analyzable into de dicto belief prop-
erties. The fussy point is that even if both the critic’s contentions are granted,
the critic would not quite have met my arguments head on. The missing
premise is that de dicto belief properties (construed now according to the “real
relation” criterion) are in fact compatible with the principle of psychological
autonomy. This premise may be true, but the notion of a “real” relation, on
which the current account of de dicto belief properties depends, is sufficiently
obscure that it is hard to tell. Fortunately, there is a simple way to finesse the
problem. Let us introduce the term autonomous beliefs for those beliefs that
a subject must share with all his replicas; and let us use the term non-
autonomous for those beliefs which a subject need not share with his replica.22

More generally, we can call any property which an organism must share with
its replicas an autonomous property. We can now reconstrue the critic’s claims
as follows: 

1 All the examples considered in section 3 invoke non-autonomous belief
properties.
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2 Non-autonomous belief properties are hybrids, analyzable into an under-
lying autonomous belief property (which can play a role in psychological
explanation) plus some further relation(s) between the believer and the
object of his belief.

On the first point I naturally have no quarrel, since a principal purpose of this
essay is to show that a large class of belief properties are non-autonomous.
On the second claim, however, I would balk, for I am skeptical that the
proposed analysis can in fact be carried off. I must hasten to add that I know
of no argument sufficient to show that the analysis is impossible. But, of
course, my critic has no argument either. Behind my skepticism is the fact that
no such analysis has ever been carried off. Moreover, the required analysis is
considerably more demanding than the analysis of de re belief in terms of de
dicto belief, when the distinction between the two is drawn by the substitu-
tional criterion. For the class of autonomous beliefs is significantly smaller
than the class of de dicto beliefs (characterized substitutionally).23 And the
most impressive attempts to reduce de re beliefs to de dicto plainly will not
be of much help for the analysis my critic proposes.24 But enough, I have
already conceded that I cannot prove my critic’s project is impossible. What 
I do hope to have established is that the critic’s burden is the burden of 
the belief–desire theorist. If the reduction of non-autonomous beliefs to
autonomous beliefs cannot be carried off, then there is small prospect that a
psychological theory couched in terms of beliefs and desires will succeed in
explaining any substantial part of human behavior.

A final point. It might be argued that, however difficult the analysis of non-
autonomous beliefs to autonomous ones may be, it must be possible to carry
it off. For, the argument continues, a subject’s non-autonomous beliefs are
determined in part by the autonomous psychological properties he instanti-
ates and in part by his various relations to the objects of the world. Were either
of these components suitably altered, the subject’s non-autonomous beliefs
would be altered as well. And since non-autonomous beliefs are jointly deter-
mined by autonomous psychological properties and by other relations, 
there must be some analysis, however complex, which specifies how this joint
determination works. Now this last claim is not one I would want to chal-
lenge. I am quite prepared to grant that non-autonomous beliefs admit of some
analysis in terms of autonomous psychological properties plus other relations.
But what seems much more doubtful to me is that the autonomous properties
invoked in the analysis would be belief properties. To see the reasons for my
doubt, let us reflect on the picture suggested by the examples in section 3. 
In each case we had a pair of subjects who shared all their autonomous prop-
erties though their non-autonomous beliefs differed in truth value. The
difference in truth value, in turn, was rooted in a difference in reference; 
the beliefs were simply about different persons, places, or times. In short, the
beliefs represented different states of affairs. If the non-autonomous belief
properties of these examples are to be analyzed into autonomous psychological
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properties plus various historical or external relations, then it is plausible to
suppose that the autonomous psychological properties do not determine a
truth value, an appropriate reference, or a represented state of affairs. So the
state of exhibiting one (or more) of these autonomous properties itself has 
no truth value, is not referential, and does not represent anything. And this, 
I would urge, is more than enough reason to say that it is not a belief at 
all. None of this amounts to an argument that non-autonomous beliefs are
not analyzable into autonomous ones. Those who seek such an analysis 
are still free to maintain that there will be at least one autonomous belief
among the autonomous properties in the analysis of each non-autonomous
belief property. But in the absence of an argument for this claim, I think few
will find it particularly plausible. The ball is in the belief–desire theorist’s
court.25, 26

Appendix

A bit more needs to be said about the premise urged at the end of section 2.
The premise, it will be recalled, was this: 

If a belief token of one subject differs in truth value from a belief token
of another subject, then the tokens are not of the same type.

A number of helpful critics base pointed out to me that we actually have a
variety of intuitively sanctioned ways to decide when two belief tokens are of
the same type. Moreover, some of these patently violate my premise. Thus, for
example, if Jones and Smith each believes that he will win the next presiden-
tial election, there would be no intuitive oddness to the claim that Jones and
Smith have the same belief. Though, of course, if Jones’s belief is true, Smith’s
belief is false. It would be equally natural in this case to say that Jones and
Smith have different beliefs. So I cannot rest my premise on our intuitive judg-
ments; the intuitions will not bear the weight. 

I think the best way of defending the premise is to make clear how it is
related to a certain view (actually a category of views) about what beliefs are.
The views I have in mind all share two features in common:

(i) they take belief to be a relation between a believer and a type of abstract
object;

(ii) they take the abstract objects to be representational – that is, the abstract
objects are taken to picture the world as being a certain way, or to claim
that some state of affairs obtains. Thus the object, along with the actual
state of the believer’s world, determines a truth value.

For example, certain theorists take belief to be a relation between a person
and a proposition; a proposition, in turn, determines a truth value for every
possible world – truth for those worlds in which it is true and falsity for those
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worlds in which it is false. A person’s belief is true if the proposition is true
in his or her world. Rather more old fashioned is the theory which holds belief
to be a relation between a person and an image or a mental picture. The belief
is true if and only if the mental picture correctly depicts the believer’s world.

Now on views such as these which take belief to be a relation between a
person and an abstract object, the most natural way of determining when a
pair of belief tokens are of the same type is by appeal to the abstract objects.
A pair of subjects’ belief tokens are of the same type when the subjects are
related to the same abstract object. Thus when subjects are in the same possible
world, their belief tokens are of the same type only if they are identical in truth
value. And this, in effect, was the premise advanced in section 2. The thesis
of this essay is best taken to be that the principle of psychological autonomy
is in conflict with the belief–desire thesis, when beliefs are construed as in (i)
and (ii). Let me add a final observation. A number of theorists have taken
belief to be a relation between a person and a sentence or sentence-like object.
For example, in The Language of Thought (Fodor 1975) Jerry Fodor holds
that belief is a relation between a person and a sentence in “the language of
thought.” It is interesting to ask whether a theory like Fodor’s is at odds with
the principle of psychological autonomy. The answer, I think, turns on whether
the sentences in the language of thought are taken to have truth values, and
whether their referring expressions are taken to determine a referent in a given
world, independent of the head in which they happen to be inscribed. If
sentences in the language of thought are taken to be analogous to Quine’s
eternal sentences, true or false in a given world regardless of who utters them
or where they may be inscribed, then Fodor’s view will satisfy (i) and (ii) and
will run head on into the principle of psychological autonomy. For Fodor, I
suspect, this would be argument enough to show that the sentences in the
language of thought are not eternal.

Notes

1 The clearest and most detailed elaboration of this view that I know of is to be
found in Goldman (1970). The view is also argued in Brandt and Kim (1963),
and in Davidson (1963). However Davidson does not advocate the belief–desire
thesis as it will be construed below (cf. n. 11).

2 Cf. Putnam (1973 and 1975).
3 Kim (1978).
4 Kim’s account of supervenience is intentionally noncommittal on the sort of

necessity invoked in the definition. Different notions of necessity will yield
different, though parallel, concepts of supervenience. 

5 This weaker principle is discussed at some length in Kim (1977).
6 Note, however, that physical properties that are irrelevant in this sense may

nonetheless be causally related to those physical properties upon which psycho-
logical properties supervene. Thus they may be “psychologically relevant” in the
sense that they may play a role in the explanation of how the organism comes to
have some psychological property.
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7 Kim (1978).
8 It has been my experience that psychologists who agree on little else readily

endorse the autonomy principle. Indeed, I have yet to find a psychologist who
did not take the principle to be obviously true. Some of these same psychologists
also favored the sort of belief–desire explanations of action that I will later argue
are at odds with the autonomy principle. None, however, was aware of the incom-
patibility, and a number of them vigorously resisted the contention that the
incompatibility is there.

9 For a critique of these views, cf. Goldman (1970: chapter 3); Alston (1967b). 
10 For discussion of these matters, see Kim (1973). Kim defends the view that the

property invoked in the description must be identical with the one invoked in the
law. For a much more liberal view see Davidson (1967).

11 Thus Davidson is not an advocate of the belief–desire thesis as I am construing
it. For on his view, though beliefs and desires may be among the causes of actions,
the general laws supporting the causal claims are not themselves couched in
terms of beliefs and desires (cf. Davidson 1970). But Davidson’s view, though
not without interest, is plainly idiosyncratic. Generally, philosophers who hold that
beliefs and desires are among the causes of behavior also think that there are
psychological laws to be found (most likely probabilistic ones) which are stated
in terms of beliefs and desires, Cf., for example, Hempel (1965: 463–87), Alston
(1967a and 1967b); Goldman (1970: chapters 3 and 4).

We should also note that much of recent psychology can be viewed as a quest
for psychological laws couched in terms of beliefs and/or desires. There is, for
example, an enormous and varied literature on problem solving (cf. Newell and
Simon 1972) and on informal inference (cf. Nisbett and Ross 1980) which
explores the mechanisms and environmental determinants of belief formation.
Also, much of the literature on motivation is concerned with uncovering the laws
governing the formation and strength of desires (cf. Atkinson 1964).

12 For an attempt to explicate our informal concepts of belief and desire in some
detail, see Stich (1983).

13 For more on this way of viewing states and events, cf. Kim (1969 and 1976). I
think that most everything I say in this essay can be said as well, though not as
briefly, without presupposing this account of states and events.

14 The examples in Case 1 and Case 2, along with my thinking on these matters,
have been influenced by a pair of important papers by Castañeda (1966 and
1967).

15 Putnam (1973 and 1975).
16 We should note that this example and others invoking natural kind words work

only if the extension of my ancestor’s word “water” is different from the exten-
sion of the word “water” as used by my ancestor’s doppelganger. I am inclined
to agree with Putnam that the extensions are different. But the matter is contro-
versial. For some support of Putnam’s view, see Kripke (1972) and Teller (1977);
for an opposing view cf. Zemach (1976). Incidentally, one critic has expressed
doubt that my doppelganger and I could be physically identical if that stuff called
“water” on the far-off planet is actually XYZ. Those who find the point troubling
are urged to construct a parallel example using kinds of material not generally
occurring within people.

17 The idea that de dicto beliefs are psychologically more basic is widespread. For
a particularly clear example, see Armstrong (1973: 25–31). Of the various
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attempts so analyze de re beliefs in terms of de dicto beliefs, perhaps the best
known are to be found in Kaplan (1968) and Chisholm (1976).

18 The substitutional account of the de re/de dicto distinction has a curious conse-
quence that has been little noted. Though most belief sentences of the form 

S believes that Fa

can be used to make either de re or de dicto attributions, the substitutional
account entails that some can only be used to make de re attributions. Consider,
for example.

(i) Quine believes that the Queen of England is a turtle.

The claim of course, is false. Indeed, it is so false that it could not be used to
make a de dicto belief attribution. For in all likelihood, there is no name or defi-
nite description � denoting Elizabeth II such that

Quine believes that � is a turtle

is true. Thus “Quine believes that the Queen of England is a turtle” is false and
cannot be turned into a truth by the replacement of “the Queen of England” by
a codesignating expression. So on the substitutional account, this sentence can
be used to make only de re attributions. A parallel problem besets Quine’s well
known substitutional account of a purely referential position (Quine 1960:
142ff.). In (i) the position occupied by “the Queen of England” can only be
regarded as purely referential.

19 For more on the distinction between “real” relations and mere “satisfaction” rela-
tions, cf. Kim (1977).

20 Burge (1977: 345 and 346), last emphasis added.
21 For more on this “double duty” view of the role of names and descriptions in

content sentences, see Loar (1972).
22 Of course when the notion of a “real relation” has been suitably sharpened it

might well turn out that the autonomous/non-autonomous distinction coincides
with the “real relation” version of the de dicto/de re distinction.

23 For example, when I say, “I believe that Kripke was born in Nebraska,” I am
attributing to myself a belief which is substitutionally de dicto, but not
autonomous.

24 Kaplan’s strategy, for example, will be of no help, since his analysans are, for the
most part, non-autonomous substitutionally de dicto belief sentences. Cf. Kaplan
(1968) and Burge (1977: 350ff.).

25 I am indebted to Robert Cummins, Jaegwon Kim, William Alston, and John
Bennett for their helpful comments on the topics discussed in this essay.

26 After completing this essay, I was delighted to discover a very similar view in
Perry (1979). Fodor (1980) defends a version of the principle of psychological
autonomy.
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13

W. Ramsey, S. Stich and J. Garon,
“Connectionism, Eliminativism and 

The Future of Folk Psychology”1

1 Introduction

In the years since the publication of Thomas Kuhn’s Structure of Scientific
Revolutions, the term “scientific revolution” has been used with increasing
frequency in discussions of scientific change, and the magnitude required of
an innovation before someone or other is tempted to call it a revolution has
diminished alarmingly. Our thesis in this paper is that if a certain family of
connectionist hypotheses turn out to be right, they will surely count as revo-
lutionary, even on stringent pre-Kuhnian standards. There is no question that
connectionism has already brought about major changes in the way many
cognitive scientists conceive of cognition. However, as we see it, what makes
certain kinds of connectionist models genuinely revolutionary is the support
they lend to a thoroughgoing eliminativism about some of the central posits
of common sense (or “folk”) psychology. Our focus in this paper will be on
beliefs or propositional memories, though the argument generalizes straight-
forwardly to all the other propositional attitudes. If we are right, the
consequences of this kind of connectionism extend well beyond the confines
of cognitive science, since these models, if successful, will require a radical
reorientation in the way we think about ourselves.

Here is a quick preview of what is to come. Section 2 gives a brief account
of what eliminativism claims, and sketches a pair of premises that eliminativist
arguments typically require. Section 3 says a bit about how we conceive of
common sense psychology, and the propositional attitudes that it posits. It also
illustrates one sort of psychological model that exploits and builds upon the
posits of folk psychology. Section 4 is devoted to connectionism. Models that
have been called “connectionist” form a fuzzy and heterogeneous set whose
members often share little more than a vague family resemblance. However,
our argument linking connectionism to eliminativism will work only for a
restricted domain of connectionist models, interpreted in a particular way; the
main job of Section 4 is to say what that domain is and how the models in
the domain are to be interpreted. In Section 5 we will illustrate what a connec-
tionist model of belief that comports with our strictures might look like, and
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go on to argue that if models of this sort are correct, then things look bad for
common sense psychology. Section 6 assembles some objections and replies.
The final section is a brief conclusion.

Before plunging in we should emphasize that the thesis we propose to
defend is a conditional claim: If connectionist hypotheses of the sort we will
sketch turn out to be right, so too will eliminativism about propositional atti-
tudes. Since our goal is only to show how connectionism and eliminativism
are related, we will make no effort to argue for the truth or falsity of either
doctrine. In particular, we will offer no argument in favor of the version of
connectionism required in the antecedent of our conditional. Indeed our view
is that it is early days yet – too early to tell with any assurance how well this
family of connectionist hypotheses will fare. Those who are more confident of
connectionism may, of course, invoke our conditional as part of larger argu-
ment for doing away with the propositional attitudes.2 But, as John Haugeland
once remarked, one man’s ponens is another man’s tollens. And those 
who take eliminativism about propositional attitudes to be preposterous or
unthinkable may well view our arguments as part of a larger case against
connectionism. Thus, we’d not be at all surprised if trenchant critics of connec-
tionism, like Fodor and Pylyshyn, found both our conditional and the
argument for it to be quite congenial.3

2 Eliminativism and folk psychology

‘Eliminativism’, as we shall use the term, is a fancy name for a simple thesis.
It is the claim that some category of entities, processes or properties exploited
in a common sense or scientific account of the world do not exist. So
construed, we are all eliminativists about many sorts of things. In the domain
of folk theory, witches are the standard example. Once upon a time witches
were widely believed to be responsible for various local calamities. But people
gradually became convinced that there are better explanations for most of the
events in which witches had been implicated. There being no explanatory work
for witches to do, sensible people concluded that there were no such things.
In the scientific domain, phlogiston, caloric fluid and the luminiferous ether
are the parade cases for eliminativism. Each was invoked by serious scientists
pursuing sophisticated research programs. But in each case the program ran
aground in a major way, and the theories in which the entities were invoked
were replaced by successor theories in which the entities played no role. The
scientific community gradually came to recognize that phlogiston and the rest
do not exist.

As these examples suggest, a central step in an eliminativist argument will
typically be the demonstration that the theory in which certain putative enti-
ties or processes are invoked should be rejected and replaced by a better theory.
And that raises the question of how we go about showing that one theory is
better than another. Notoriously, this question is easier to ask than to answer.
However, it would be pretty widely agreed that if a new theory provides more
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accurate predictions and better explanations than an old one, and does so over
a broader range of phenomena, and if the new theory comports as well or
better with well established theories in neighboring domains, then there is
good reason to think that the old theory is inferior, and that the new one is
to be preferred. This is hardly a complete account of the conditions under
which one theory is to be preferred to another, though for our purposes it will
suffice.

But merely showing that a theory in which a class of entities plays a role
is inferior to a successor theory plainly is not sufficient to show that the enti-
ties do not exist. Often a more appropriate conclusion is that the rejected
theory was wrong, perhaps seriously wrong, about some of the properties of
the entities in its domain, or about the laws governing those entities, and that
the new theory gives us a more accurate account of those very same entities.
Thus, for example, pre-Copernican astronomy was very wrong about the
nature of the planets and the laws governing their movement. But it would be
something of a joke to suggest that Copernicus and Galileo showed that the
planets Ptolemy spoke of do not exist.4

In other cases the right thing to conclude is that the posits of the old theory
are reducible to those of the new. Standard examples here include the reduc-
tion of temperature to mean molecular kinetic energy, the reduction of sound
to wave motion in the medium, and the reduction of genes to sequences of
polynucleotide bases.5 Given our current concerns, the lesson to be learned
from these cases is that even if the common sense theory in which proposi-
tional attitudes find their home is replaced by a better theory, that would not
be enough to show that the posits of the common sense theory do not exist.

What more would be needed? What is it that distinguishes cases like phlo-
giston and caloric, on the one hand, from cases like genes or the planets on
the other? Or, to ask the question in a rather different way, what made phlo-
giston and caloric candidates for elimination? Why wasn’t it concluded that
phlogiston is oxygen, that caloric is kinetic energy, and that the earlier theo-
ries had just been rather badly mistaken about some of the properties of
phlogiston and caloric?

Let us introduce a bit of terminology. We will call theory changes in which
the entities and processes of the old theory are retained or reduced to those
of the new one ontologically conservative theory changes. Theory changes that
are not ontologically conservative we will call ontologically radical. Given this
terminology, the question we are asking is how to distinguish ontologically
conservative theory changes from ontologically radical ones.

Once again, this is a question that is easier to ask than to answer. There is,
in the philosophy of science literature, nothing that even comes close to a plau-
sible and fully general account of when theory change sustains an eliminativist
conclusion and when it does not. In the absence of a principled way of deciding
when ontological elimination is in order, the best we can do is to look at the
posits of the old theory – the ones that are at risk of elimination – and ask
whether there is anything in the new theory that they might be identified with
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or reduced to. If the posits of the new theory strike us as deeply and funda-
mentally different from those of the old theory, in the way that molecular
motion seems deeply and fundamentally different from the “exquisitely
elastic” fluid posited by caloric theory, then it will be plausible to conclude
that the theory change has been a radical one, and that an eliminativist conclu-
sion is in order. But since there is no easy measure of how “deeply and
fundamentally different” a pair of posits are, the conclusion we reach is bound
to be a judgment call.6

To argue that certain sorts of connectionist models support eliminativism
about the propositional attitudes, we must make it plausible that these models
are not ontologically conservative. Our strategy will be to contrast these
connectionist models, models like those set out in Section 5, with ontologi-
cally conservative models like the one sketched at the end of Section 3, in an
effort to underscore just how ontologically radical the connectionist models
are. But here we are getting ahead of ourselves. Before trying to persuade 
you that connectionist models are ontologically radical, we need to take a 
look at the folk psychological theory that the connectionist models threaten
to replace.

3 Propositional attitudes and common sense psychology

For present purposes we will assume that common sense psychology can plau-
sibly be regarded as a theory, and that beliefs, desires and the rest of the
propositional attitudes are plausibly viewed as posits of that theory. Though
this is not an uncontroversial assumption, the case for it has been well argued
by others.7 Once it is granted that common sense psychology is indeed a theory,
we expect it will be conceded by almost everyone that the theory is a likely
candidate for replacement. In saying this, we do not intend to disparage folk
psychology, or to beg any questions about the status of the entities it posits.
Our point is simply that folk wisdom on matters psychological is not likely to
tell us all there is to know. Common sense psychology, like other folk theo-
ries, is bound to be incomplete in many ways, and very likely to be inaccurate
in more than a few. If this were not the case, there would be no need for a
careful, quantitative, experimental science of psychology. With the possible
exception of a few die hard Wittgensteinians, just about everyone is prepared
to grant that there are many psychological facts and principles beyond those
embedded in common sense. If this is right, then we have the first premise
needed in an eliminativist argument aimed at beliefs, propositional memories
and the rest of the propositional attitudes. The theory that posits the attitudes
is indeed a prime candidate for replacement.

Though common sense psychology contains a wealth of lore about beliefs,
memories, desires, hopes, fears and the other propositional attitudes, the 
crucial folk psychological tenets in forging the link between connectionism and
eliminativism are the claims that propositional attitudes are functionally dis-
crete, semantically interpretable, states that play a causal role in the production
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of other propositional attitudes, and ultimately in the production of behavior.
Following the suggestion in Stich (1983), we’ll call this cluster of claims propo-
sitional modularity.8 (The reader is cautioned not to confuse this notion of
propositional modularity with the very different notion of modularity defended
in Fodor (1983).)

There is a great deal of evidence that might be cited in support of the thesis
that folk psychology is committed to the tenets of propositional modularity.
The fact that common sense psychology takes beliefs and other propositional
attitudes to have semantic properties deserves special emphasis. According to
common sense:

(i) when people see a dog nearby they typically come to believe that there is
a dog nearby;

(ii) when people believe that the train will be late if there is snow in the moun-
tains, and come to believe that there is snow in the mountains, they will
typically come to believe that the train will be late;

(iii) when people who speak English say ‘There is a cat in the yard,’ they typi-
cally believe that there is a cat in the yard.

And so on, for indefinitely many further examples. Note that these general-
izations of common sense psychology are couched in terms of the semantic
properties of the attitudes. It is in virtue of being the belief that p that a given
belief has a given effect or cause. Thus common sense psychology treats the
predicates expressing these semantic properties, predicates like ‘believes that
the train is late’, as projectable predicates – the sort of predicates that are
appropriately used in nomological or law-like generalizations.

Perhaps the most obvious way to bring out folk psychology’s commitment
to the thesis that propositional attitudes are functionally discrete states is to
note that it typically makes perfectly good sense to claim that a person has
acquired (or lost) a single memory or belief. Thus, for example, on a given
occasion it might plausibly be claimed that when Henry awoke from his nap
he had completely forgotten that the car keys were hidden in the refrigerator,
though he had forgotten nothing else. In saying that folk psychology views
beliefs as the sorts of things that can be acquired or lost one at a time, we do
not mean to be denying that having any particular belief may presuppose a
substantial network of related beliefs. The belief that the car keys are in the
refrigerator is not one that could be acquired by a primitive tribesman who
knew nothing about cars, keys or refrigerators. But once the relevant back-
ground is in place, as we may suppose it is for us and for Henry, it seems that
folk psychology is entirely comfortable with the possibility that a person may
acquire (or lose) the belief that the car keys are in the refrigerator, while the
remainder of his beliefs remain unchanged. Propositional modularity does 
not, of course, deny that acquiring one belief often leads to the acquisition 
of a cluster of related beliefs. When Henry is told that the keys are in the
refrigerator, he may come to believe that they haven’t been left in the ignition,
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or in his jacket pocket. But then again he may not. Indeed, on the folk
psychological conception of belief it is perfectly possible for a person to have
a long standing belief that the keys are in the refrigerator, and to continue
searching for them in the bedroom.9

To illustrate the way in which folk psychology takes propositional attitudes
to be functionally discrete, causally active states let us sketch a pair of more
elaborate examples.

(i) In common sense psychology, behavior is often explained by appeal to
certain of the agent’s beliefs and desires. Thus, to explain why Alice went to
her office, we might note that she wanted to send some e-mail messages (and,
of course, she believed she could do so from her office). However, in some
cases an agent will have several sets of beliefs and desires each of which might
lead to the same behavior. Thus we may suppose that Alice also wanted to
talk to her research assistant, and that she believed he would be at the office.
In such cases, common sense psychology assumes that Alice’s going to her
office might have been caused by either one of the belief/desire pairs, or by
both, and that determining which of these options obtains is an empirical
matter. So it is entirely possible that on this occasion Alice’s desire to send
some e-mail played no role in producing her behavior; it was the desire to talk
with her research assistant that actually caused her to go to the office.
However, had she not wanted to talk with her research assistant, she might
have gone to the office anyhow, because the desire to send some e-mail, which
was causally inert in her actual decision making, might then have become
actively involved. Note that in this case common sense psychology is prepared
to recognize a pair of quite distinct semantically characterized states, one of
which may be causally active while the other is not.

(ii) Our second illustration is parallel to the first, but focuses on beliefs
and inference, rather than desires and action. On the common sense view, it
may sometimes happen that a person has a number of belief clusters, any one
of which might lead him to infer some further belief. When he actually does
draw the inference, folk psychology assumes that it is an empirical question
that he inferred it from, and that this question typically has a determinate
answer. Suppose, for example, that Inspector Clouseau believes that the butler
said he spent the evening at the village hotel, and that he said he arrived back
on the morning train. Suppose Clouseau also believes that the village hotel is
closed for the season, and that the morning train has been taken out of service.
Given these beliefs, along with some widely shared background beliefs,
Clouseau might well infer that the butler is lying. If he does, folk psychology
presumes that the inference might be based either on his beliefs about the hotel,
or on his beliefs about the train, or both. It is entirely possible, from the
perspective of common sense psychology, that although Clouseau has long
known that the hotel is closed for the season, this belief played no role in his
inference on this particular occasion. Once again we see common sense
psychology invoking a pair of distinct propositional attitudes, one of which is
causally active on a particular occasion while the other is causally inert.
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In the psychological literature there is no shortage of models for human
belief or memory which follow the lead of common sense psychology in
supposing that propositional modularity is true. Indeed, prior to the emer-
gence of connectionism, just about all psychological models of propositional
memory, save for those urged by behaviorists, were comfortably compatible
with propositional modularity. Typically, these models view a subject’s store
of beliefs or memories as an interconnected collection of functionally discrete,
semantically interpretable states which interact in systematic ways. Some of
these models represent individual beliefs as sentence-like structures – strings
of symbols which can be individually activated by transferring them from long
term memory to the more limited memory of a central processing unit. Other
models represent beliefs as a network of labeled nodes and labeled links
through which patterns of activation may spread. Still other models represent
beliefs as sets of production rules.10 In all three sorts of models, it is generally
the case that for any given cognitive episode, like performing a particular infer-
ence or answering a question, some of the memory states will be actively
involved, and others will be dormant.

In Figure 13.1 we have displayed a fragment of a “semantic network” rep-
resentation of memory, in the style of Collins and Quillian (1972). In this
model, each distinct proposition in memory is represented by an oval node
along with its labeled links to various concepts. By adding assumptions about
the way in which questions or other sorts of memory probes lead to activation
spreading through the network, the model enables us to make predictions
about speed and accuracy in various experimental studies of memory.

For our purposes there are three facts about this model that are of particular
importance. First, since each proposition is encoded in a functionally discrete
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way, it is a straightforward matter to add or subtract a single proposition from
memory, while leaving the rest of the network unchanged. Thus, for example,
Figure 13.2 depicts the result of removing one proposition from the network
in Figure 13.1. Second, the model treats predicates expressing the semantic
properties of beliefs or memories as projectable.11 They are treated as the 
sorts of predicates that pick out scientifically genuine kinds, rather than mere
accidental conglomerates, and thus are suitable for inclusion in the statement
of lawlike regularities. To see this, we need only consider the way in which
such models are tested against empirical data about memory acquisition and
forgetting. Typically, it will be assumed that if a subject is told (for example)
that the policeman arrested the hippie, then the subject will (with a certain
probability) remember that the policeman arrested the hippie.12 this assump-
tion is taken to express a nomological generalization – it captures something
lawlike about the way in which the cognitive system works. So while the class
of people who remember that the policeman arrested the hippie may differ psy-
chologically in all sorts of ways, the theory treats them as a psychologically
natural kind. Third, in any given memory search or inference task exploiting
a semantic network model, it makes sense to ask which propositions were 
activated and which were not. Thus, a search in the network of Figure 13.1
might terminate without ever activating the proposition that cats have paws.

4 A family of connectionist hypotheses

Our theme, in the previous section, was that common sense psychology is
committed to propositional modularity, and that many models of memory
proposed in the cognitive psychology literature are comfortably compatible
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with this assumption. In the present section we want to describe a class of
connectionist models which, we will argue, are not readily compatible with
propositional modularity. The connectionist models we have in mind share
three properties:

(i) their encoding of information in the connection weights and in the biases
on units is widely distributed, rather than being localist;

(ii) individual hidden units in the network have no comfortable symbolic
interpretation; they are subsymbolic, to use a term suggested by Paul
Smolensky;

(iii) the models are intended as cognitive models, not merely as implementa-
tions of cognitive models.

A bit later in this section we will elaborate further on each of these three
features, and in the next section we will describe a simple example of a connec-
tionist model that meets our three criteria. However, we are under no illusion
that what we say will be sufficient to give a sharp-edged characterization of
the class of connectionist models we have in mind. Nor is such a sharp-edged
characterization essential for our argument. It will suffice if we can convince
you that there is a significant class of connectionist models which are incom-
patible with the propositional modularity of folk psychology.

Before saying more about the three features on our list, we would do well to
give a more general characterization of the sort of models we are calling “con-
nectionist,” and introduce some of the jargon that comes with the territory. To
this end, let us quote at some length from Paul Smolensky’s lucid overview.

Connectionist models are large networks of simple, parallel computing
elements, each of which carries a numerical activation value which it
computes from neighboring elements in the network, using some simple
numerical formula. The network elements or units influence each other’s
values through connections that carry a numerical strength or weight . . .

In a typical . . . model, input to the system is provided by imposing acti-
vation values on the input units of the network; these numerical values
represent some encoding or representation of the input. The activation
on the input units propagates along the connections until some set of acti-
vation values emerges on the output units; these activation values encode
the output the system has computed from the input. In between the input
and output units there may be other units, often called hidden units, that
participate in representing neither the input nor the output.

The computation performed by the network in transforming the input
pattern of activity to the output pattern depends on the set of connec-
tion strengths; these weights are usually regarded as encoding the
system’s knowledge.13 In this sense, the connection strengths play the
role of the program in a conventional computer. Much of the allure of
the connectionist approach is that many connectionist networks program
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themselves, that is, they have autonomous procedures for tuning their
weights to eventually perform some specific computation. Such learning
procedures often depend on training in which the network is presented
with sample input/output pairs from the function it is supposed to
compute. In learning networks with hidden units, the network itself
“decides” what computations the hidden units will perform; because
these units represent neither inputs nor outputs, they are never “told”
what their values should be, even during training . . . .14

One point must be added to Smolensky’s portrait. In many connectionist
models the hidden units and the output units are assigned a numerical “bias”
which is added into the calculation determining the unit’s activation level. The
learning procedures for such networks typically set both the connection
strengths and the biases. Thus in these networks the system’s knowledge is
usually regarded as encoded in both the connection strengths and the biases.

So much for a general overview. Let us now try to explain the three features
that characterize those connectionist models we take to be incompatible with
propositional modularity.

(i) In many non-connectionist cognitive models, like the one illustrated at
the end of Section 3, it is an easy matter to locate a functionally distinct part
of the model encoding each proposition or state of affairs represented in the
system. Indeed, according to Fodor and Pylyshyn, “conventional [computa-
tional] architecture requires that there be distinct symbolic expressions for
each state of affairs that it can represent.”15 In some connectionist models an
analogous sort of functional localization is possible, not only for the input and
output units but for the hidden units as well. Thus, for example, in certain
connectionist models, various individual units or small clusters of units are
themselves intended to represent specific properties or features of the environ-
ment. When the connection strength from one such unit to another is strongly
positive, this might be construed as the system’s representation of the propo-
sition that if the first feature is present, so too is the second. However, in many
connectionist networks it is not possible to localize propositional representa-
tion beyond the input layer. That is, there are no particular features or states
of the system which lend themselves to a straightforward semantic evaluation.
This can sometimes be a real inconvenience to the connectionist model builder
when the system as a whole fails to achieve its goal because it has not repre-
sented the world the way it should. When this happens, as Smolensky notes,

[I]t is not necessarily possible to localize a failure of veridical represen-
tation. Any particular state is part of a large causal system of states, and
failures of the system to meet goal conditions cannot in general be local-
ized to any particular state or state component.”16

It is connectionist networks of this sort, in which it is not possible to isolate
the representation of particular propositions or states of affairs within the
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nodes, connection strengths and biases, that we have in mind when we talk
about the encoding of information in the biases, weights and hidden nodes
being widely distributed rather than localist.

(ii) As we’ve just noted, there are some connectionist models in which
some or all of the units are intended to represent specific properties or features
of the system’s environment. These units may be viewed as the model’s sym-
bols for the properties or features in question. However, in models where the
weights and biases have been tuned by learning algorithms it is often not the
case that any single unit or any small collection of units will end up repre-
senting a specific feature of the environment in any straightforward way. As
we shall see in the next section, it is often plausible to view such networks as
collectively or holistically encoding a set of propositions, although none of the
hidden units, weights or biases are comfortably viewed as symbols. When this
is the case we will call the strategy of representation invoked in the model sub-
symbolic. Typically (perhaps always?) networks exploiting subsymbolic strate-
gies of representation will encode information in a widely distributed way.

(iii) The third item on our list is not a feature of connectionist models
themselves, but rather a point about how the models are to be interpreted. In
making this point we must presuppose a notion of theoretical or explanatory
level which, despite much discussion in the recent literature, is far from being
a paradigm of clarity.17 Perhaps the clearest way to introduce the notion of
explanatory level is against the background of the familiar functionalist thesis
that psychological theories are analogous to programs which can be imple-
mented on a variety of very different sorts of computers.18 If one accepts this
analogy, then it makes sense to ask whether a particular connectionist model
is intended as a model at the psychological level or at the level of underlying
neural implementation. Because of their obvious, though in many ways very
partial, similarity to real neural architectures, it is tempting to view connec-
tionist models as models of the implementation of psychological processes.
And some connectionist model builders endorse this view quite explicitly. So
viewed, however, connectionist models are not psychological or cognitive
models at all, any more than a story of how cognitive processes are imple-
mented at the quantum mechanical level is a psychological story. A very
different view that connectionist model builders can and often do take is that
their models are at the psychological level, not at the level of implementation.
So construed, the models are in competition with other psychological models
of the same phenomena. Thus a connectionist model of word recognition
would be an alternative to – and not simply a possible implementation of – 
a non-connectionist model of word recognition; a connectionist theory of
memory would be a competitor to a semantic network theory, and so on.
Connectionists who hold this view of their theories often illustrate the point
by drawing analogies with other sciences. Smolensky, for example, suggests
that connectionist models stand to traditional cognitive models (like semantic
networks) in much the same way that quantum mechanics stands to classical
mechanics. In each case the newer theory is deeper, more general and more
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accurate over a broader range of phenomena. But in each case the new theory
and the old are competing at the same explanatory level. If one is right, the
other must be wrong.

In light of our concerns in this paper, there is one respect in which the anal-
ogy between connectionist models and quantum mechanics may be thought
to beg an important question. For while quantum mechanics is conceded to
be a better theory than classical mechanics, a plausible case could be made
that the shift from classical to quantum mechanics was an ontologically
conservative theory change. In any event, it is not clear that the change was
ontologically radical. If our central thesis in this paper is correct, then the rela-
tion between connectionist models and more traditional cognitive models is
more like the relation between the caloric theory of heat and the kinetic theory.
The caloric and kinetic theories are at the same explanatory level, though the
shift from one to the other was pretty clearly ontologically radical. In order
to make the case that the caloric analogy is the more appropriate one, it will
be useful to describe a concrete, though very simple, connectionist model of
memory that meets the three criteria we have been trying to explicate.

5 A connectionist model of memory

Our goal in constructing the model was to produce a connectionist network
that would do at least some of the tasks done by more traditional cognitive
models of memory, and that would perspicuously exhibit the sort of distrib-
uted, subsymbolic encoding described in the previous section. We began by
constructing a network, we’ll call it Network A, that would judge the truth
or falsehood of the sixteen propositions displayed above the line in Figure
13.3. The network was a typical three tiered feed-forward network consisting
of 16 input units, four hidden units and one output unit, as shown in Figure
13.4. The input coding of each proposition is shown in the center column in
Figure 13.3. Outputs close to 1 were interpreted as ‘true’ and outputs close to
zero were interpreted as ‘false’. Back propagation, a familiar connectionist
learning algorithm, was used to “train up” the network thereby setting the
connection weights and biases. Training was terminated when the network
consistently gave an output higher than .9 for each true proposition and lower
than .1 for each false proposition. Figure 13.5 shows the connection weights
between the input units and the leftmost hidden unit in the trained up network,
along with the bias on that unit. Figure 13.6 indicates the connection weights
and biases further upstream. Figure 13.7 shows the way in which the network
computes its response to the proposition Dogs have fur when that proposi-
tion is encoded in the input units.

There is a clear sense in which the trained up Network A may be said to
have stored information about the truth or falsity of propositions (1)–(16),
since when any one of these propositions is presented to the network it
correctly judges whether the proposition is true or false. In this respect it is
similar to various semantic network models which can be constructed to
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perform much the same task. However, there is a striking difference between
Network A and a semantic network model like the one depicted in Figure
13.1. For, as we noted earlier, in the semantic network there is a functionally
distinct sub-part associated with each proposition, and thus it makes perfectly
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 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

Dogs have fur
Dogs have paws
Dogs have fleas
Dogs have legs
Cats have fur
Cats have paws
Cats have fleas
Fish have scales
Fish have fins
Fish have gills
Cats have gills
Fish have legs
Fish have fleas
Dogs have scales
Dogs have fins
Cats have fins

11000011 00001111
11000011 00110011
11000011 00111111
11000011 00111100
11001100 00001111
11001100 00110011
11001100 00111111
11110000 00110000
11110000 00001100
11110000 00000011
11001100 00000011
11110000 00111100
11110000 00111111
11000011 00110000
11000011 00001100
11001100 00001100

1 true
1 true
1 true
1 true
1 true
1 true
1 true
1 true
1 true
1 true
0 false
0 false
0 false
0 false
0 false
0 false

Proposition Input Output

17 Fish have eggs 11110000 11001000 1 true

Added Proposition

Figure 13.3

Output Node

Input Nodes

‘Hidden’
Nodes

Figure 13.4



good sense to ask, for any probe of the network, whether or not the repre-
sentation of a specific proposition played a causal role. In the connectionist
network, by contrast, there is no distinct state or part of the network that
serves to represent any particular proposition. The information encoded in
Network A is stored holistically and distributed throughout the network.
Whenever information is extracted from Network A, by giving it an input
string and seeing whether it computes a high or a low value for the output
unit, many connection strengths, many biases and many hidden units play a
role in the computation. And any particular weight or unit or bias will help
to encode information about many different propositions. It simply makes no
sense to ask whether or not the representation of a particular proposition plays
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a causal role in the network’s computation. It is in just this respect that our
connectionist model of memory seems radically incongruent with the propo-
sitional modularity of common sense psychology. For, as we saw in Section 3,
common sense psychology seems to presuppose that there is generally some
answer to the question of whether a particular belief or memory played a
causal role in a specific cognitive episode. But if belief and memory are
subserved by a connectionist network like ours, such questions seem to have
no clear meaning.

The incompatibility between propositional modularity and connectionist
models like ours can be made even more vivid by contrasting Network A with
a second network, we’ll call it Network B, depicted in Figures 13.8 and 13.9.
Network B was trained up just as the first one was, except that one additional
proposition was added to the training set (coded as indicated below the line
in Figure 13.3). Thus Network B encodes all the same propositions as Network
A plus one more. In semantic network models, and other traditional cognitive
models, it would be an easy matter to say which states or features of the system
encode the added proposition, and it would be a simple task to determine
whether or not the representation of the added proposition played a role in 
a particular episode modeled by the system. But plainly in the connec-
tionist network those questions are quite senseless. The point is not that there
are no differences between the two networks. Quite the opposite is the 
case; the differences are many and widespread. But these differences do not
correlate in any systematic way with the functionally discrete, semantically
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interpretable states posited by folk psychology and by more traditional 
cognitive models. Since information is encoded in a highly distributed manner,
with each connection weight and bias embodying information salient to many
propositions, and information regarding any given proposition scattered
throughout the network, the system lacks functionally distinct, identifiable
sub-structures that are semantically interpretable as representations of indi-
vidual propositions.

The contrast between Network A and Network B enables us to make our
point about the incompatibility between common sense psychology and these
sorts of connectionist models in a rather different way. We noted in Section 3 
that common sense psychology treats predicates expressing the semantic 
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properties of propositional attitudes as projectable. Thus ‘believes that dogs
have fur’ or ‘remembers that dogs have fur’ will be projectable predicates in
common sense psychology. Now both Network A and Network B might serve
as models for a cognitive agent who believes that dogs have fur; both networks
store or represent the information that dogs have fur. Nor are these the only
two. If we were to train up a network on the 17 propositions in Figure 13.3
plus a few (or minus a few) we would get yet another system which is as
different from Networks A and B as these two are from each other. The moral
here is that though there are indefinitely many connectionist networks that
represent the information that dogs have fur just as well as Network A does,
these networks have no projectable features in common that are describable
in the language of connectionist theory. From the point of view of the connec-
tionist model builder, the class of networks that might model a cognitive agent
who believes that dogs have fur is not a genuine kind at all, but simply a chaot-
ically disjunctive set. Common sense psychology treats the class of people who
believe that dogs have fur as a psychologically natural kind; connectionist
psychology does not.19

6 Objections and replies

The argument we’ve set out in the previous five sections has encountered 
no shortage of objections. In this section we will try to reconstruct the most
interesting of these, and indicate how we would reply.

Objection (i): Models like A and B are not serious models for human
belief or propositional memory.

Of course, the models we’ve constructed are tiny toys that were built to
illustrate the features set out in Section 4 in a perspicuous way. They were
never intended to model any substantial part of human propositional memory.
But various reasons have been offered for doubting that anything like these
models could ever be taken seriously as psychological models of propositional
memory. Some critics have claimed that the models simply will not scale up –
that while teaching a network to recognize fifteen or twenty propositions may
be easy enough, it is just not going to be possible to train up a network that
can recognize a few thousand propositions, still less a few hundred thousand.20

Others have objected that while more traditional models of memory, including
those based on sentence-like storage, those using semantic networks, and those
based on production systems, all provide some strategy for inference or gener-
alization which enables the system to answer questions about propositions it
was not explicitly taught, models like those we have constructed are incapable
of inference and generalization. It has also been urged that these models fail
as accounts of human memory because they provide no obvious way to
account for the fact that suitably prepared humans can easily acquire propo-
sitional information one proposition at a time. Under ordinary circumstances,
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we can just tell Henry that the car keys are in the refrigerator, and he can
readily record this fact in memory. He doesn’t need anything like the sort of
massive retraining that would be required to teach one of our connectionist
networks a new proposition.

Reply: If this were a paper aimed at defending connectionist models of
propositional memory, we would have to take on each of these putative short-
comings in some detail. And in each instance there is at least something to be
said on the connectionist side. Thus, for example, it just is not true that
networks like A and B don’t generalize beyond the propositions on which
they’ve been trained. In Network A, for example, the training set included:

Dogs have fur Cats have fur.
Dogs have paws Cats have paws.
Dogs have fleas Cats have fleas.

It also included

Dogs have legs.

but not

Cats have legs.

When the network was given an encoding of this last proposition, however, it
generalized correctly and responded affirmatively. Similarly, the network
responded negatively to an encoding of

Cats have scales

though it had not previously been exposed to this proposition.
However, it is important to see that this sort of point by point response to

the charge that networks like ours are inadequate models for propositional
memory is not really required, given the thesis we are defending in this paper.
For what we are trying to establish is a conditional thesis: if connectionist
models of memory of the sort we describe in Section 4 are right, then propo-
sitional attitude psychology is in serious trouble. Since conditionals with false
antecedents are true, we win by default if it turns out that the antecedent of
our conditional is false.

Objection (ii): Our models do not really violate the principle of propo-
sitional modularity, since the propositions the system has learned are
coded in functionally discrete ways, though this may not be obvious.

We’ve heard this objection elaborated along three quite different lies. The
first line – let’s call it Objection (iia) – notes that functionally discrete coding
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may often be very hard to notice, and cannot be expected to be visible on
casual inspection. Consider, for example, the way in which sentences are stored
in the memory of a typical von Neuman architecture computer – for concrete-
ness we might suppose that the sentences are part of an English text and are
being stored while the computer is running a word processing program. Parts
of sentences may be stored at physically scattered memory addresses linked
together in complex ways, and given an account of the contents of all rele-
vant memory addresses one would be hard put to say where a particular
sentence is stored. But nonetheless each sentence is stored in a functionally
discrete way. Thus if one knew enough about the system it would be possible
to erase any particular sentence it is storing by tampering with the contents
of the appropriate memory addresses, while leaving the rest of the sentences
the system is storing untouched. Similarly, it has been urged, connectionist
networks may in fact encode propositions in functionally discrete ways,
though this may not be evident from a casual inspection of the trained up
network’s biases and connection strengths.

Reply (iia) It is a bit difficult to come to grips with this objection, since
what the critic is proposing is that in models like those we have constructed
there might be some covert functionally discrete system of propositional
encoding that has yet to be discovered. In response to this we must concede
that indeed there might. We certainly have no argument that even comes close
to demonstrating that the discovery of such a covert functionally discrete
encoding is impossible. Moreover, we concede that if such a covert system
were discovered, then our argument would be seriously undermined. However,
we’re inclined to think that the burden of argument is on the critic to show
that such a system is not merely possible but likely; in the absence of any
serious reason to think that networks like ours do encode propositions in func-
tionally discrete ways, the mere logical possibility that they might is hardly a
serious threat.

The second version of Objection (ii) – well call it Objection (iib) – makes
a specific proposal about the way in which networks like A and B might be
discretely, though covertly, encoding propositions. The encoding, it is urged,
is to be found in the pattern of activation of the hidden nodes, when a given
proposition is presented to the network. Since there are four hidden nodes in
our networks, the activation pattern on presentation of any given input may
be represented as an ordered 4-tuple. Thus, for example, when network A is
presented with the encoded proposition Dogs have fur, the relevant 4-tuple
would be (21, 75, 73, 12), as shown in Figure 13.7. Equivalently, we may
think of each activation pattern as a point in a four dimensional hyperspace.
Since each proposition corresponds to a unique point in the hyperspace, that
point may be viewed as the encoding of the proposition. Moreover, that point
represents a functionally discrete state of the system.21

Reply (iib): What is being proposed is that the pattern of activation of the
system on presentation of an encoding of the proposition p be identified with
the belief that p. But this proposal is singularly implausible. Perhaps the best

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“CONNECTIONISM AND ELIMINATIVISM”

281



way to see this is to note that in common sense psychology beliefs and propo-
sitional memories are typically of substantial duration; and they are the sorts
of things that cognitive agents generally have lots of even when they are not
using them. Consider an example. Are kangaroos marsupials? Surely you’ve
believed for years that they are, though in all likelihood this is the first time
today that your belief has been activated or used.22 An activation pattern,
however, is not an enduring state of a network; indeed, it is not a state of the
network at all except when the network has had the relevant proposition as
input. Moreover, there is an enormous number of other beliefs that you’ve had
for years. But it makes no sense to suppose that a network could have many
activation patterns continuously over a long period of time. At any given time
a network exhibits at most one pattern of activation. So activation patterns
are just not the sorts of things that can plausibly be identified with beliefs or
their representations.

Objection (iic): At this juncture, a number of critics have suggested that
long standing beliefs might be identified not with activation patterns, which
are transient states of networks, but rather with dispositions to produce acti-
vation patterns. Thus, in network A, the belief that dogs have fur would not
be identified with a location in activation hyperspace but with the network’s
disposition to end up at that location when the proposition is presented. This
dispositional state is an enduring state of the system; it is a state the network
can be in no matter what its current state of activation may be, just as a sugar
cube may have a disposition to dissolve in water even when there is no water
nearby.23 Some have gone on to suggest that the familiar philosophical distinc-
tion between dispositional and occurrent beliefs might be captured, in
connectionist models, as the distinction between dispositions to produce acti-
vation patterns and activation patterns themselves.

Reply (iic): Our reply to this suggestion is that while dispositions to produce
activation patterns are indeed enduring states of the system, they are not the
right sort of enduring states – they are not the discrete, independently causally
active states that folk psychology requires. Recall that on the folk psycholog-
ical conception of belief and inference, there will often be a variety of quite
different underlying causal patterns that may lead to the acquisition and
avowal of a given belief. When Clouseau says that the butler did it, he may
have just inferred this with the help of his long standing belief that the train
is out of service. Or he may have inferred it by using his belief that the hotel
is closed. Or both long standing beliefs may have played a role in the infer-
ence. Moreover, it is also possible that Clouseau drew this inference some time
ago, and is now reporting a relatively long standing belief. But it is hard to
see how anything like these distinctions can be captured by the dispositional
account in question. In reacting to a given input, say p, a network takes on a
specific activation value. It may also have dispositions to take on other acti-
vation values on other inputs, say q and r. But there is no obvious way to
interpret the claim that these further dispositions play a causal role in the
network’s reaction to p – or, for that matter, that they do not play a role. Nor
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can we make any sense of the idea that on one occasion the encoding of q
(say, the proposition that the train is out of service) played a role while the
encoding of r (say, the proposition that the hotel is closed) did not, and on
another occasion, things went the other way around. The propositional modu-
larity presupposed by common sense psychology requires that belief tokens be
functionally discrete states capable of causally interacting with one another in
some cognitive episodes and of remaining causally inert in other cognitive
episodes. However, in a distributed connectionist system like Network A, the
dispositional state which produces one activation pattern is functionally insep-
arable from the dispositional state which produces another. Thus it is
impossible to isolate some propositions as causally active in certain cognitive
episodes, while others are not. We conclude that reaction pattern dispositions
won’t do as belief tokens. Nor, so far as we can see, are there any other states
of networks like A and B that will fill the bill.

7 Conclusion

The thesis we have been defending in this paper is that connectionist models
of a certain sort are incompatible with the propositional modularity embed-
ded in common sense psychology. The connectionist models in question are
those which are offered as models at the cognitive level, and in which the
encoding of information is widely distributed and subsymbolic. In such mod-
els, we have argued, there are no discrete, semantically interpretable states that
play a causal role in some cognitive episodes but not others. Thus there is, in
these models, nothing with which the propositional attitudes of common sense
psychology can plausibly be identified. If these models turn out to offer the best
accounts of human belief and memory, we will be confronting an ontologically
radical theory change – the sort of theory change that will sustain the conclu-
sion that propositional attitudes, like caloric and phlogiston, do not exist.

Notes

1 Thanks are due to Ned Block, Paul Churchland, Gary Cottrell, Adrian Cussins,
Jerry Fodor, John Heil, Frank Jackson, David Kirsh, Patricia Kitcher and Philip
Kitcher for useful feedback on earlier versions of this paper. Talks based on the
paper have been presented at the UCSD Cognitive Science Seminar and at confer-
ences sponsored by the Howard Hughes Medical Foundation and the University
of North Carolina at Greensboro. Comments and questions from these audiences
have proved helpful in many ways.

2 See, for example, Churchland (1981 and 1986), where explicitly eliminativist
conclusions are drawn on the basis of speculations about the success of cogni-
tive models similar to those we shall discuss,

3 Fodor, J. and Pylyshyn, Z. (1988).
4 We are aware that certain philosophers and historians of science have actually

entertained ideas similar to the suggestion that the planets spoken of by pre-
Copernican astronomers do not exist. See, for example, Kuhn (1970: Ch. 10),
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and Feyerabend (1981: Ch. 4). However, we take this suggestion to be singularly
implausible. Eliminativist arguments can’t be that easy. Just what has gone wrong
with the accounts of meaning and reference that lead to such claims is less clear.
For further discussion on these matters see Kuhn (1983), and Kitcher (1978 and
1983).

5 For some detailed discussion of scientific reduction, see Nagel (1961); Schaffner
(1967); Hooker (1981); and Kitcher (1984). The genetics case is not without
controversy. See Kitcher (1982 and 1984).

6 It’s worth noting that judgments on this matter can differ quite substantially. At
one end of the spectrum are writers like Feyerabend (1981), and perhaps Kuhn
(1962), for whom relatively small differences in theory are enough to justify the
suspicion that there has been an ontologically radical change. Toward the other
end are writers like Lycan, who writes:

I am at pains to advocate a very liberal view . . . I am entirely willing to
give up fairly large chunks of our commonsensical or platitudinous theory
of belief or of desire (or of almost anything else) and decide that we were
just wrong about a lot of things, without drawing the inference that we are
no longer talking about belief or desire. . . . I think the ordinary word
“belief” (qua theoretical term of folk psychology) points dimly toward a
natural kind that we have not fully grasped and that only mature psychology
will reveal. I expect that “belief” will turn out to refer to some kind of
information bearing inner state of a sentient being . . ., but the kind of state
it refers to may have only a few of the properties usually attributed to beliefs
by common sense. (Lycan 1988: 31–2.)

On our view, both extreme positions are implausible. As we noted earlier, the
Copernican revolution did not show that the planets studied by Ptolemy do not
exist. But Lavoisier’s chemical revolution did show that phlogiston does not exist,
Yet on Lycan’s “very liberal view” it is hard to see why we should not conclude
that phlogiston really does exist after all – its really oxygen, and prior to Lavoisier
“we were just very wrong about a lot of things”.

7 For an early and influential statement of the view that common sense psychology
is a theory, see Sellars (1956). More recently the view has been defended by
Churchland (1970, and 1979: Chs. 1 and 4); and by Fodor (1987: Ch. 1). For
the opposite view, see Wilkes (1978); Madell (1986); Sharpe (1987).

8 See Stich (1983: 237ff.).
9 Cherniak (1986: Ch. 3), notes that this sort of absent mindedness is common-

place in literature and in ordinary life, and sometimes leads to disastrous
consequences.

10 For sentential models, see John McCarthy (1968, 1980 and 1986); and Kintsch
(1974). For semantic networks, see Quillian (1969); Collins and Quillian (1972):
Rumelhart, Lindsay and Norman (1972); Anderson and Bower (1973); and
Anderson (1976, and 1980: Ch. 4). For production systems, see Newell and
Simon (1972); Newell (1973); Anderson (1983); and Holland et. al. (1986).

11 For the classic discussion of the distinction between projectable and non-
projectable predicates, see Goodman (1965).

12 See, for example, Anderson and Bower (1973).
13 Emphasis added.
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14 Smolensky (1988: 1).
15 Fodor and Pylyshyn (1988: 57).
16 Smolensky (1988: 15).
17 Broadbent, D. (1985); Rumelhart and McClelland (1985 Rumelhart, McClelland

and PDP Research Group) (1986: Ch. 4); Smolensky (1988); Fodor and Pylyshyn
(1988).

18 The notion of program being invoked here is itself open to a pair of quite different
interpretations. For the right reading, see Ramsey (1989).

19 This way of making the point about the incompatibility between connectionist
models and common sense psychology was suggested to us by Jerry Fodor.

20 This point has been urged by Daniel Dennett, among others.
21 Quite a number of people have suggested this move, including Gary Cottrell and

Adrian Cussins.
22 As Lycan notes, on the common sense notion of belief, people have lots of them

“even when they are asleep” (Lycan (1988: 57).
23 Something like this objection was suggested to us by Ned Block and by Frank

Jackson.
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14

D.C. Dennett “Real Patterns”*

Are there really beliefs? Or are we learning (from neuroscience and psychology,
presumably) that, strictly speaking, beliefs are figments of our imagination,
items in a superseded ontology? Philosophers generally regard such ontolog-
ical questions as admitting just two possible answers: either beliefs exist or
they do not. There is no such state as quasi existence; there are no stable
doctrines of semirealism. Beliefs must either be vindicated along with the
viruses or banished along with the banshees. A bracing conviction prevails,
then, to the effect that when it comes to beliefs (and other mental items) one
must be either a realist or an eliminative materialist.

I Realism about beliefs

This conviction prevails in spite of my best efforts over the years to under-
mine it with various analogies: are voices in your ontology?1 Are centers of
gravity in your ontology?2

It is amusing to note that my analogizing beliefs to centers of gravity has
been attacked from both sides of the ontological dichotomy, by philosophers
who think it is simply obvious that centers of gravity are useful fictions, and
by philosophers who think it is simply obvious that centers of gravity are
perfectly real:

The trouble with these supposed parallels . . . is that they are all strictly
speaking false, although they are no doubt useful simplifications for
many purposes. It is false, for example, that the gravitational attraction
between the Earth and the Moon involves two point masses; but it is a
good enough first approximation for many calculations. However, this
is not at all what Dennett really wants to say about intentional states.

288

*Thanks to Kathleen Akins, Akeel Bilgrami, Donald Davidson, Barbara Hannan,
Douglas Hofstadter, Norton Nelkin, W. V. O. Quine, Richard Rorty, George Smith,
Peter Suber, Stephen White, and the MIT/Tufts philosophy of psychology discussion
group for the discussions that provoked and shaped this paper.



For he insists that to adopt the intentional stance and interpret an agent
as acting on certain beliefs and desires is to discern a pattern in his
actions which is genuinely there (a pattern which is missed if we instead
adopt a scientific stance): Dennett certainly does not hold that the role
of intentional ascriptions is merely to give us a useful approximation to
a truth that can be more accurately expressed in non-intentional terms.3

Compare this with Fred Dretske’s4 equally confident assertion of realism:

I am a realist about centers of gravity . . . The earth obviously exerts a
gravitational attraction on all parts of the moon – not just its center of
gravity. The resultant force, a vector sum, acts through a point, but this
is something quite different. One should be very clear about what centers
of gravity are before deciding whether to be literal about them, before
deciding whether or not to be a center-of-gravity realist.5

Dretske’s advice is well-taken. What are centers of gravity? They are math-
ematical points – abstract objects or what Hans Reichenbach called abstracta
– definable in terms of physical forces and other properties. The question of
whether abstract objects are real – the question of whether or not “one should
be a realist about them” – can take two different paths, which we might call
the metaphysical and the scientific. The metaphysical path simply concerns the
reality or existence of abstract objects generally, and does not distinguish them
in terms of their scientific utility. Consider, for instance, the center of popula-
tion of the United States. I define this as the mathematical point at the
intersection of the two lines such that there are as many inhabitants north as
south of the latitude, and as many inhabitants east as west of the longitude.
This point is (or can be) just as precisely defined as the center of gravity or
center of mass of an object. (Since these median strips might turn out to be
wide, take the midline of each strip as the line; count as inhabitants all those
within the territorial waters and up to twenty miles in altitude – orbiting astro-
nauts do not count – and take each inhabitant’s navel to be the determining
point, etc.) I do not know the center of population’s current geographic loca-
tion, but I am quite sure it is west of where it was ten years ago. It jiggles
around constantly, as people move about, taking rides on planes, trains, and
automobiles, etc. I doubt that this abstract object is of any value at all in any
scientific theory, but just in case it is, here is an even more trivial abstract
object: Dennett’s lost sock center: the point defined as the center of the smallest
sphere that can be inscribed around all the socks I have ever lost in my life.

These abstract objects have the same metaphysical status as centers of
gravity. Is Dretske a realist about them all? Should we be? I do not intend to
pursue this question, for I suspect that Dretske is – and we should be – more
interested in the scientific path to realism: centers of gravity are real because
they are (somehow) good abstract objects. They deserve to be taken seriously,
learned about, used. If we go so far as to distinguish them as real (contrasting
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them, perhaps, with those abstract objects which are bogus), that is because
we think they serve in perspicuous representations of real forces, “natural”
properties, and the like. This path brings us closer, in any case, to the issues
running in the debates about the reality of beliefs.

I have claimed that beliefs are best considered to be abstract objects rather
like centers of gravity. Smith considers centers of gravity to be useful fictions
while Dretske considers them to be useful (and hence?) real abstractions, and
each takes his view to constitute a criticism of my position. The optimistic
assessment of these opposite criticisms is that they cancel each other out; my
analogy must have hit the nail on the head. The pessimistic assessment is that
more needs to be said to convince philosophers that a mild and intermediate
sort of realism is a positively attractive position, and not just the desperate
dodge of ontological responsibility it has sometimes been taken to be. I have
just such a case to present, a generalization and extension of my earlier
attempts, via the concept of a pattern. My aim on this occasion is not so much
to prove that my intermediate doctrine about the reality of psychological states
is right, but just that it is quite possibly right, because a parallel doctrine is
demonstrably right about some simpler cases.

We use folk psychology – interpretation of each other as believers, wanters,
intenders, and the like – to predict what people will do next. Prediction is not
the only thing we care about, of course. Folk psychology helps us understand
and empathize with others, organize our memories, interpret our emotions,
and flavor our vision in a thousand ways, but at the heart of all these is the
enormous predictive leverage of folk psychology. Without its predictive power,
we could have no interpersonal projects or relations at all; human activity
would be just so much Brownian motion; we would be baffling ciphers to each
other and to ourselves – we could not even conceptualize our own flailings.
In what follows, I shall concentrate always on folk-psychological prediction,
not because l make the mistake of ignoring all the other interests we have in
people aside from making bets on what they will do next, but because I claim
that our power to interpret the actions of others depends on our power –
seldom explicitly exercised – to predict them.6

Where utter patternlessness or randomness prevails, nothing is predictable.
The success of folk-psychological prediction, like the success of any predic-
tion, depends on there being some order or pattern in the world to exploit.
Exactly where in the world does this pattern exist? What is the pattern a
pattern of?7 Some have thought, with Fodor, that the pattern of belief must in
the end be a pattern of structures in the brain, formulae written in the language
of thought. Where else could it be? Gibsonians might say the pattern is “in
the light” – and Quinians (such as Donald Davidson and I) could almost agree:
the pattern is discernible in agents’ (observable) behavior when we subject it
to “radical interpretation’ (Davidson) “from the intentional stance” (Dennett).

When are the elements of a pattern real and not merely apparent?
Answering this question will help us resolve the misconceptions that have 
led to the proliferation of “ontological positions” about beliefs, the different
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grades or kinds of realism. I shall concentrate on five salient exemplars arrayed
in the space of possibilities: Fodor’s industrial-strength Realism (he writes it
with a capital ‘R’); Davidson’s regular strength realism; my mild realism;
Richard Rorty’s milder-than-mild irrealism, according to which the pattern is
only in the eyes of the beholders, and Paul Churchland’s eliminative materi-
alism, which denies the reality of beliefs altogether.

In what follows, I shall assume that these disagreements all take place
within an arena of common acceptance of what Arthur Fine8 calls NOA, the
natural ontological attitude. That is, I take the interest in these disagreements
to lie not in differences of opinion about the ultimate metaphysical status of
physical things or abstract things (e.g., electrons or centers of gravity), but in
differences of opinion about whether beliefs and other mental states are, shall
we say, as real as electrons or centers of gravity. I want to show that mild
realism is the doctrine that makes the most sense when what we are talking
about is real patterns, such as the real patterns discernible from the intentional
stance.9

In order to make clear the attractions and difficulties of these different posi-
tions about patterns, I shall apply them first to a much simpler, more readily
visualized, and uncontroversial sort of pattern.

II The reality of patterns

Consider the six objects in Figure 14.1 (which I shall call frames):
We can understand a frame to be a finite subset of data, a window on an

indefinitely larger world of further data. In one sense A–F all display different
patterns; if you look closely you will see that no two frames are exactly alike
(“atom-for-atom replicas,” if you like). In another sense, A–F all display the
same pattern; they were all made by the same basic process, a printing of ten
rows of ninety dots, ten black dots followed by ten white dots, etc. The overall
effect is to create five equally spaced black squares or bars in the window, I
take it that this pattern, which I shall dub bar code, is a real pattern if anything
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is. But some random (actually pseudo-random) “noise” has been allowed to
interfere with the actual printing. The noise ratio is as follows:

A: 25% B: 10%
C: 25% D: 1%
E: 33% F: 50%

It is impossible to see that F is not purely (pseudo-) random noise; you will
just have to take my word for it that it was actually generated by the same pro-
gram that generated the other five patterns; all I changed was the noise ratio.

Now, what does it mean to say that a pattern in one of these frames is real,
or that it is really there? Given our privileged information about how these
frames were generated, we may be tempted to say that there is a single pattern
in all six cases – even in F, where it is “indiscernible.” But I propose that the
self-contradictory air of “indiscernible pattern” should be taken seriously. We
may be able to make some extended, or metaphorical, sense of the idea of
indiscernible patterns (or invisible pictures or silent symphonies), but in the
root case a pattern is “by definition” a candidate for pattern recognition. (It
is this loose but unbreakable link to observers or perspectives, of course, that
makes “pattern” an attractive term to someone perched between instrumen-
talism and industrial-strength realism.)

Fortunately, there is a standard way of making these intuitions about the
discernibility-in-principle of patterns precise. Consider the task of, transmit-
ting information about one of the frames from one place to another. How
many bits of information will it take to transmit each frame? The least efficient
method is simply to send the “bit map,” which identifies each dot seriatim
(“dot one is black, dot two is white, dot three is white, . . .”). For a black-
and-white frame of 900 dots (or pixels, as they are called), the transmission
requires 900 bits. Sending the bit map is in effect verbatim quotation, accu-
rate but inefficient. Its most important virtue is that it is equally capable of
transmitting any pattern or any particular instance of utter patternlessness.

GregoryChaitin’s10 valuable definition of mathematical randomness invokes
this idea. A series (of dots or numbers or whatever) is random if and only if
the information required to describe (transmit) the series accurately is incom-
pressible: nothing shorter than the verbatim bit map will preserve the series.
Then a series is not random – has a pattern – if and only if there is some more
efficient way of describing it.11 Frame D, for instance, can be described as “ten
rows of ninety: ten black followed by ten white, etc., with the following excep-
tions: dots 57, 88, . . .” This expression, suitably encoded, is much shorter
than 900 bits long. The comparable expressions for the other frames will be
proportionally longer, since they will have to mention, verbatim, more excep-
tions, and the degeneracy of the “pattern” in F is revealed by the fact that its
description in this system will be no improvement over the bit map – in fact,
it will tend on average to be trivially longer, since it takes some bits to describe
the pattern that is then obliterated by all the exceptions.
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Of course, there are bound to be other ways of describing the evident
patterns in these frames, and some will be more efficient than others – in the
precise sense of being systematically specifiable in fewer bits.12 Any such
description, if an improvement over the bit map, is the description of a real
pattern in the data.13

Consider bar code, the particular pattern seen in A–E, and almost perfectly
instantiated in D. That pattern is quite readily discernible to the naked 
human eye in these presentations of the data, because of the particular pattern-
recognition machinery hard-wired in our visual systems – edge detectors,
luminance detectors, and the like. But the very same data (the very same
streams of bits) presented in some other format might well yield no hint of
pattern to us, especially in the cases where bar code is contaminated by salt
and pepper, as in frames A through C. For instance, if we broke the 900-bit
series of frame B into 4-bit chunks, and then translated each of these into
hexadecimal notation, one would be hard pressed indeed to tell the resulting
series of hexadecimal digits from a random series, since the hexadecimal
chunking would be seriously out of phase with the decimal pattern – and hence
the “noise” would not “stand out” as noise. There are myriad ways of
displaying any 900-bit series of data points, and not many of them would
inspire us to concoct an efficient description of the series. Other creatures with
different sense organs, or different interests, might readily perceive patterns
that were imperceptible to us. The patterns would be there all along, but just
invisible to us.

The idiosyncracy of perceivers’ capacities to discern patterns is striking.
Visual patterns with axes of vertical symmetry stick out like sore thumbs for
us, but if one simply rotates the frame a few degrees, the symmetry is often
utterly beyond noticing. And the “perspectives” from which patterns are
“perceptible” are not restricted to variations on presentation to the sense
modalities. Differences in knowledge yield striking differences in the capacity
to pick up patterns. Expert chess players can instantly perceive (and subse-
quently recall with high accuracy) the total board position in a real game, but
are much worse at recall if the same chess pieces are randomly placed on the
board, even though to a novice both boards are equally hard to recall.14 This
should not surprise anyone who considers that an expert speaker of English
would have much less difficulty perceiving and recalling

The frightened cat struggled to get loose.

than

Te ser.ioghehnde t srugfcalde go tgtt ohle

which contains the same pieces, now somewhat disordered. Expert chess
players, unlike novices, not only know how to play chess; they know how to
read chess – how to see the patterns at a glance.
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A pattern exists in some data – is real – if there is a description of the data
that is more efficient than the bit map, whether or not anyone can concoct it.
Compression algorithms, as general-purpose pattern describers, are efficient
ways of transmitting exact copies of frames, such as A–F, from one place to
another, but our interests often favor a somewhat different goal: transmitting
inexact copies that nevertheless preserve “the” pattern that is important to us.
For some purposes, we need not list the exceptions to bar code, but only
transmit the information that the pattern is bar code with n% noise. Following
this strategy, frames A and C, though discernibly different under careful
inspection, count as the same pattern, since what matters to us is that the
pattern is bar code with 25% noise, and we do not care which particular noise
occurs, only that it occurs.

Sometimes we are interested in not just ignoring the noise, but eliminating
it, improving the pattern in transmission. Copy-editing is a good example.
Consider the likely effoct thes santince wull hive hod on tha cupy adutor whu
preparis thas monescrupt fur prunteng. My interest in this particular instance
is that the “noise” be transmitted, not removed, though I actually do not care
exactly which noise is there.

Here then are three different attitudes we take at various times toward
patterns. Sometimes we care about exact description or reproduction of detail,
at whatever cost. From this perspective, a real pattern in frame A is bar code
with the following exceptions: 7, 8, 11, . . . At other times we care about the
noise, but not where in particular it occurs. From this perspective, a real
pattern in frame A is bar code with 25% noise. And sometimes, we simply
tolerate or ignore the noise. From this perspective, a real pattern in frame A
is simply: bar code. But is bar code really there in frame A? I am tempted to
respond: Look! You can see with your own eyes. But there is something more
constructive to say as well.

When two individuals confront the same data they may perceive different
patterns in them, but since we can have varied interests and perspectives, these
differences do not all count as disagreements. Or in any event they should not.
If Jones sees pattern � (with n% noise) and Brown sees pattern � (with m%
noise) there may be no ground for determining that one of them is right and
the other wrong. Suppose they are both using their patterns to bet on the next
datum in the series. Jones bets according to the “pure” pattern �, but budgets
for n% errors when he looks for odds. Brown does likewise, using pattern �.
If both patterns are real, they will both get rich. That is to say, so long as they
use their expectation of deviations from the “ideal” to temper their odds
policy, they will do better than chance – perhaps very much better.

Now suppose they compare notes. Suppose that � is a simple, easy-to-
calculate pattern, but with a high noise rate – for instance, suppose � is bar
code as it appears in frame E. And suppose that Brown has found some peri-
odicity or progression in the “random” noise that Jones just tolerates, so that
� is a much more complicated description of pattern-superimposed-on-
pattern. This permits Brown to do better than chance, we may suppose, at
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predicting when the “noise’ will come. As a result, Brown budgets for a lower
error rate – say only 5%. “What you call noise, Jones, is actually pattern,”
Brown might say. “Of course there is still some noise in my pattern, but my
pattern is better – more real – than yours! Yours is actually just a mere appear-
ance.” Jones might well reply that it is all a matter of taste; he notes how hard
Brown has to work to calculate predictions, and points to the fact that he is
getting just as rich (or maybe richer) by using a simpler, sloppier system and
making more bets at good odds than Brown can muster. “My pattern is
perfectly real – look how rich I’m getting. If it were an illusion, I’d be broke.”

This crass way of putting things – in terms of betting and getting rich – is
simply a vivid way of drawing attention to a real, and far from crass, trade-
off that is ubiquitous in nature, and hence in folk psychology. Would we prefer
an extremely compact pattern description with a high noise ratio or a less
compact pattern description with a lower noise ratio? Our decision may
depend on how swiftly and reliably we can discern the simple pattern, how
dangerous errors are, how much of our resources we can afford to allocate to
detection and calculation. These “design decisions” are typically not left to us
to make by individual and deliberate choices; they are incorporated into the
design of our sense organs by genetic evolution, and into our culture by
cultural evolution. The product of this design evolution process is what Wilfrid
Sellars15 calls our manifest image, and it is composed of folk physics, folk
psychology, and the other pattern-making perspectives we have on the buzzing
blooming confusion that bombards us with data. The ontology generated by
the manifest image has thus a deeply pragmatic source.16

Do these same pragmatic considerations apply to the scientific image,
widely regarded as the final arbiter of ontology? Science is supposed to carve
nature at the joints – at its real joints, of course. Is it permissible in science to
adopt a carving system so simple that it makes sense to tolerate occasional
misdivisions and consequent mispredictions? It happens all the time. The ubiq-
uitous practice of using idealized models is exactly a matter of trading off
reliability and accuracy of prediction against computational tractability. A
particularly elegant and handy oversimplification may under some circum-
stances be irresistible. The use of Newtonian rather than Einsteinian mechanics
in most mundane scientific and engineering calculations is an obvious example.
A tractable oversimplification may be attractive even in the face of a high error
rate; considering inherited traits to be carried by single genes “for” those traits
is an example; considering agents in the marketplace to be perfectly rational
self-aggrandizers with perfect information is another.

III Patterns in life

The time has come to export these observations about patterns and reality to
the controversial arena of belief attribution. The largish leap we must make
is nicely expedited by pausing at a stepping-stone example midway between
the world of the dot frames and the world of folk psychology: John Horton
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Conway’s Game of Life. In my opinion, every philosophy student should be
held responsible for an intimate acquaintance with the Game of Life. It should
be considered an essential tool in every thought-experimenter’s kit, a prodi-
giously versatile generator of philosophically important examples and thought
experiments of admirable clarity and vividness. In The Intentional Stance, I
briefly exploited it to make a point about the costs and benefits of risky predic-
tion from the intentional stance,17 but I have since learned that I presumed 
too much familiarity with the underlying ideas. Here, then, is a somewhat
expanded basic introduction to Life.18

Life is played on a two-dimensional grid, such as a checkerboard or a
computer screen; it is not a game one plays to win; if it is a game at all, it is
solitaire. The grid divides space into square cells, and each cell is either ON
or OFF at each moment. Each cell has eight neighbors: the four adjacent cells
north, south, east, and west, and the four diagonals: northeast, southeast,
southwest, and northwest. Time in the Life world is also discrete, not contin-
uous; it advances in ticks, and the state of the world changes between each
tick according to the following rule:

Each cell, in order to determine what to do in the next instant, counts
how many of its eight neighbors is ON at the present instant. If the
answer is exactly two, the cell stays in its present state (ON or OFF) in
the next instant. If the answer is exactly three, the cell is ON in the next
instant whatever its current state. Under all other conditions the cell 
is OFF.

The entire physics of the Life world is captured in that single, unexcep-
tioned law. [While this is the fundamental law of the “physics” of the Life
world, it helps at first to conceive this curious physics in biological terms: think
of cells going ON as births, cells going OFF as deaths, and succeeding instants
as generations. Either overcrowding (more than three inhabited neighbors) or
isolation (less than two inhabited neighbors) leads to death.] By the scrupu-
lous application of this single law, one can predict with perfect accuracy the
next instant of any configuration of ON and OFF cells, and the instant after
that, and so forth. In other words, the Life world is a toy world that perfectly
instantiates Laplace’s vision of determinism: given the state description of this
world at an instant, we finite observers can perfectly predict the future instants
by the simple application of our one law of physics. Or, in my terms, when
we adopt the physical stance toward a configuration in the Life world, our
powers of prediction are perfect: there is no noise, no uncertainty, no proba-
bility less than one. Moreover, it follows from the two-dimensionality of the
Life world that nothing is hidden from view. There is no backstage; there are
no hidden variables; the unfolding of the physics of objects in the Life world
is directly and completely visible.

There are computer simulations of the Life world in which one can set up
configurations on the screen and then watch them evolve according to the
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single rule. In the best simulations, one can change the scale of both time and
space, alternating between close-up and bird’s-eye view. A nice touch added
to some color versions is that ON cells (often just called pixels) are color-
coded by their age; they are born blue, let us say, and then change color each
generation, moving through green to yellow to orange to red to brown to black
and then staying black unless they die. This permits one to see at a glance how
old certain patterns are, which cells are co-generational, where the birth action
is, and so forth.19

One soon discovers that some simple configurations are more interesting
than others. In addition to those configurations which never change – the “still
lifes” such as four pixels in a square – and those which evaporate entirely –
such as any long diagonal line segment, whose two tail pixels die of isolation
each instant until the line disappears entirely – there are configurations with
all manner of periodicity. Three pixels in a line make a simple flasher, which
becomes three pixels in a column in the next instant, and reverts to three in
a line in the next, ad infinitum, unless some other configuration encroaches.
Encroachment is what makes Life interesting: among the periodic configura-
tions are some that swim, amoeba-like across the plane. The simplest is the
glider, the five-pixel configuration shown taking a single stroke to the south-
east in figure 14.2. Then there are the eaters, the puffer trains and space rakes,
and a host of other aptly named denizens of the Life world that emerge in the
ontology of a new level, analogous to what I have called the design level. This
level has its own language, a transparent foreshortening of the tedious descrip-
tions one could give at the physical level. For instance:

An eater can eat a glider in four generations. Whatever is being con-
sumed, the basic process is the same – A bridge forms between the 
eater and its prey. In the next generation, the bridge region dies from
overpopulation, taking a bite out of both eater and prey. The eater then
repairs itself. The prey usually cannot. If the remainder of the prey dies
out as with the glider, the prey is consumed.20

Note that there has been a distinct ontological shift as we move between levels;
whereas at the physical level there is no motion, and the only individuals, cells,
are defined by their fixed spatial location, at this design level we have the
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motion of persisting objects; it is one and the same glider that has moved
southeast in figure 14.2, changing shape as it moves, and there is one less glider
in the world after the eater has eaten it in figure 14.3. (Here is a warming-up
exercise for what is to follow: should we say that there is real motion in the
Life world, or only apparent motion? The flashing pixels on the computer
screen are a paradigm case, after all, of what a psychologist would call
apparent motion. Are there really gliders that move, or are there just patterns
of cell state that move? And if we opt for the latter, should we say at least that
these moving patterns are real?)

Notice, too, that at this level one proposes generalizations that require
‘usually’ or ‘provided nothing encroaches’ clauses. Stray bits of debris from
earlier events can “break” or “kill” one of the objects in the ontology at this
level; their salience as real things is considerable, but not guaranteed. To say
that their salience is considerable is to say that one can, with some small risk,
ascend to this design level, adopt its ontology, and proceed to predict –
sketchily and riskily – the behavior of larger configurations or systems of
configurations, without bothering to compute the physical level. For instance,
one can set oneself the task of designing some interesting supersystem out of
the “parts” that the design level makes available. Surely the most impressive
triumph of this design activity in the Life world is the proof that a working
model of a universal Turing machine can in principle be constructed in the
Life plane! Von Neumann had already shown that in principle a two-dimen-
sional universal Turing machine could be constructed out of cellular automata,
so it was “just” a matter of “engineering” to show how, in principle, it could
be constructed out of the simpler cellular automata defined in the Life world.
Glider streams can provide the tape, for instance, and the tape reader can be
some huge assembly of eaters, gliders, and other bits and pieces. What does
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this huge Turing machine look like? Poundstone calculates that the whole
construction, a self-reproducing machine incorporating a universal Turing
machine, would be on the order of 1013 pixels.

Displaying a 1013-pixel pattern would require a video screen about 3
million pixels across at least: Assume the pixels are 1 millimeter square
(which is very high resolution by the standards of home computers).
Then the screen would have to be 3 kilometers (about two miles) across.
It would have an area about six times that of Monaco.

Perspective would shrink the pixels of a self-reproducing pattern to
invisibility. If you got far enough away from the screen so that the entire
pattern was comfortably in view, the pixels (and even the gliders, eaters
and guns) would be too tiny to make out. A self-reproducing pattern
would be a hazy glow, like a galaxy.21

Now, since the universal Turing machine can compute any computable
function, it can play chess – simply by mimicking the program of any chess-
playing computer you like. Suppose, then, that such an entity occupies the Life
plane, playing chess against itself. Looking at the configuration of dots that
accomplishes this marvel would almost certainly be unilluminating to anyone
who had no clue that a configuration with such powers could exist. But from
the perspective of one who had the hypothesis that this huge array of black
dots was a chess-playing computer, enormously efficient ways of predicting
the future of that configuration are made available. As a first step one can shift
from an ontology of gliders and eaters to an ontology of symbols and machine
states, and, adopting this higher design stance toward the configuration,
predict its future as a Turing machine. As a second and still more efficient step,
one can shift to an ontology of chessboard positions, possible chess moves,
and the grounds for evaluating them; then, adopting the intentional stance
toward the configuration, one can predict its future as a chess player
performing intentional actions – making chess moves and trying to achieve
checkmate. Once one fixed on an interpretation scheme, permitting one to say
which configurations of pixels count as which symbols (either, at the Turing
machine level, the symbols ‘0’ or ‘1’, say, or at the intentional level, ‘QxBch’
and the other symbols for chess moves), one can use the interpretation scheme
to predict, for instance, that the next configuration to emerge from the galaxy
will be such-and-such a glider stream (the symbols for ‘RxQ,’, say). There is
risk involved in either case, because the chess program being run on the Turing
machine may be far from perfectly rational, and, at a different level, debris
may wander onto the scene and “break” the Turing machine configuration
before it finishes the game.

In other words, real but (potentially) noisy patterns abound in such a config-
uration of the Life world, there for the picking up if only we are lucky or
clever enough to hit on the right perspective. They are not visual patterns but,
one might say, intellectual patterns. Squinting or twisting the page is not apt
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to help, while posing fanciful interpretations (or what W. V. Quine would call
“analytical hypotheses”) may uncover a goldmine. The opportunity con-
fronting the observer of such a Life world is analogous to the opportunity
confronting the cryptographer staring at a new patch of cipher text, or the
opportunity confronting the Martian, peering through a telescope at the
Superbowl Game. If the Martian hits on the intentional stance – or folk
psychology – as the right level to look for pattern, shapes will readily emerge
through the noise.

IV The reality of intentional patterns

The scale of compression when one adopts the intentional stance toward the
two-dimensional chess-playing computer galaxy is stupendous: it is the differ-
ence between figuring out in your head what white’s most likely (best) move
is versus calculating the state of a few trillion pixels through a few hundred
thousand generations. But the scale of the savings is really no greater in the
life world than in our own. Predicting that someone will duck if you throw a
brick at him is easy from the folk-psychological stance; it is and will always
be intractable if you have to trace the photons from brick to eyeball, the neuro-
transmitters from optic nerve to motor nerve, and so forth.

For such vast computational leverage one might be prepared to pay quite
a steep price in errors, but in fact one belief that is shared by all of the repre-
sentatives on the spectrum I am discussing is that “folk psychology” provides
a description system that permits highly reliable prediction of human (and
much nonhuman) behavior.22 They differ in the explanations they offer of this
predictive prowess, and the implications they see in it about “realism.”

For Fodor, an industrial-strength Realist, beliefs and their kin would not be
real unless the pattern dimly discernible from the perspective of folk psychol-
ogy could also be discerned (more clearly, with less noise) as a pattern of
structures in the brain. The pattern would have to be discernible from the dif-
ferent perspective provided by a properly tuned syntactoscope aimed at the
purely formal (nonsemantic) features of Mentalese terms written in the brain.
For Fodor, the pattern seen through the noise by everyday folk psychologists
would tell us nothing about reality, unless it, and the noise, had the following
sort of explanation: what we discern from the perspective of folk psychology
is the net effect of two processes: an ulterior, hidden process wherein the 
pattern exists pure, overlaid, and partially obscured by various intervening
sources of noise: performance errors, observation errors, and other more or
less random obstructions. He might add that the interior belief-producing
process was in this respect just like the process responsible for the creation of
frames A–F. If you were permitted to peer behind the scenes at the program I
devised to create the frames, you would see, clear as a bell, the perfect bar-code
periodicity, with the noise thrown on afterward like so much salt and pepper.

This is often the explanation for the look of a data set in science, and Fodor
may think that it is either the only explanation that can ever be given, or at
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any rate the only one that makes any sense of the success of folk psychology.
But the rest of us disagree. As G. E. M. Anscombe put it in her pioneering
exploration of intentional explanation, “if Aristotle’s account [of reasoning
using the practical syllogism] were supposed to describe actual mental
processes, it would in general be quite absurd. The interest of the account is
that it describes an order which is there whenever actions are done with inten-
tions . . .”23

But how could the order be there, so visible amidst the noise, if it were not
the direct outline of a concrete orderly process in the background? Well, it
could be there thanks to the statistical effect of very many concrete minutiae
producing, as if by a hidden hand, an approximation of the “ideal” order.
Philosophers have tended to ignore a variety of regularity intermediate between
the regularities of planets and other objects “obeying” the laws of physics and
the regularities of rule-following (that is, rule-consulting) systems.24 These
intermediate regularities are those which are preserved under selection 
pressure: the regularities dictated by principles of good design and hence
homed in on by self-designing systems. That is, a “rule of thought” may be
much more than a mere regularity; it may be a wise rule, a rule one would
design a system by if one were a system designer, and hence a rule one would
expect self-designing systems to “discover” in the course of settling into their
patterns of activity. Such rules no more need be explicitly represented than do
the principles of aerodynamics that are honored in the design of birds’ wings.25

The contrast between these different sorts of pattern-generation processes
can be illustrated. The frames in figure 14.1 were created by a hard-edged
process (ten black, ten white, ten black, . . .) obscured by noise, while the
frames in figure 14.4 were created by a process almost the reverse of that: the
top frame shows a pattern created by a normal distribution of black dots
around means at x = 10, 30, 50, 70, and 90 (rather like Mach bands or inter-
ference fringes); the middle and bottom frames were created by successive
applications of a very simple contrast enhancer applied to the top frame: a
vertical slit “window” three pixels high is thrown randomly onto the frame;
the pixels in the window vote, and majority rules. This gradually removes the
salt from the pepper and the pepper from the salt, creating “artifact” edges
such as those discernible in the bottom frame. The effect would be more
striking at a finer pixel scale, where the black merges imperceptibly through
grays to white but I chose to keep the scale at the ten-pixel period of bar code.
I do not mean to suggest that it is impossible to tell the patterns in figure 14.4
from the patterns in figure 14.1. Of course it is possible; for one thing, the
process that produced the frames in figure 14.1 will almost always show edges
at exactly 10, 20, 30, . . . and almost never at 9, 11, 19, 21, . . . while there
is a higher probability of these “displaced” edges being created by the process
of figure 14.4 (as a close inspection, of figure 14.4 reveals). Fine tuning could
of course reduce these probabilities, but that is not my point. My point is that
even if the evidence is substantial that the discernible pattern is produced by
one process rather than another, it can be rational to ignore those differences
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and use the simplest pattern description (e.g., bar code), as one’s way of organ-
izing the data.

Fodor and others have claimed that an interior language of thought is the
best explanation of the hard edges visible in “propositional attitude
psychology.” Churchland and I have offered an alternative explanation of
these edges, an explanation for which the process that produced the frames in
figure 14.4 is a fine visual metaphor. The process that produces the data of
folk psychology, we claim, is one in which the multidimensional complexities
of the underlying processes are projected through linguistic behavior, which
creates an appearance of definiteness and precision, thanks to the discreteness
of words.26 As Churchland puts it, a person’s declarative utterance is a “one-
dimensional projection – through the compound lens of Wernicke’s and
Broca’s areas onto the idiosyncratic surface of the speaker’s language – a one-
dimensional projection of a four- or five-dimensional ‘solid’ that is an element
in his true kinematic state”.27

Fodor’s industrial-strength Realism takes beliefs to be things in the head –
just like cells and blood vessels and viruses. Davidson and I both like
Churchland’s alternative idea of propositional-attitude statements as indirect
“measurements” of a reality diffused in the behavioral dispositions of the brain
(and body).28 We think beliefs are quite real enough to call real just so long
as belief talk measures these complex behavior-disposing organs as predictively
as it does. What do we disagree about? As John Haugeland29 has pointed out,
Davidson is more of a realist than I am, and I have recently tracked down the
source of this disagreement to a difference of opinion we have about the status
of Quine’s principle of indeterminacy of translation which we both accept.

For Davidson, the principle is not the shocker it is often taken to be; in
fact, it is well-nigh trivial – the two different translation manuals between
which no fact of the matter decides are like two different scales for measuring
temperature.

We know there is no contradiction between the temperature of the air
being 32º fahrenheit and 0º celsius; there is nothing in this ‘relativism’
to show that the properties being measured are not ‘real’. Curiously,
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though, this conclusion has repeatedly been drawn. . . . Yet in the light
of the considerations put forward here, this comes to no more than the
recognition that more than one set of one person’s utterances might be
equally successful in capturing the contents of someone else’s thoughts
or speech. Just as numbers can capture all the empirically significant rela-
tions among weights or temperatures in infinitely many ways, so one
person’s utterances can capture all the significant features of another
person’s thoughts and speech in different ways. This fact does not 
challenge the ‘reality’ of the attitudes or meanings thus reported.30

On Davidson’s view, no substantive disagreements emerge from a comparison
of the two description schemes, and so they can quite properly be viewed as
competing descriptions of the same reality.

I think this is a flawed analogy. A better one is provided by the example of
“rival” descriptions of patterns-with-noise. Consider two rival intentional
interpretations of a single individual; they agree on the general shape of this
individual’s collection of beliefs (and desires, etc), but because of their different
idealizations of the pattern, they do not agree point-for-point. Recalling a
famous analogy of Quine’s31 and extending it beyond radical translation to
radical interpretation (as Davidson and I both wish to do), we get the image
in Figure 14.5.

To the left we see Brown’s intentional interpretation of Ella to the right,
Jones’s interpretation. Since these are intentional interpretations, the pixels or
data points represent beliefs and so forth, not (for instance) bits of bodily
motion or organs or cells or atoms, and since these are rival intentional inter-
pretations of a single individual, the patterns discerned are not statistical
averages (e.g., “Democrats tend to favor welfare programs”) but personal
cognitive idiosyncracies (e.g., “She thinks she should get her queen out early”).
Some of the patterns may indeed be simple observed periodicities (e.g., “Ella
wants to talk about football on Mondays”) but we are to understand the
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pattern to be what Anscombe called the “order which is there” in the rational
coherence of a person’s set of beliefs desires, and intentions.

Notice that here the disagreements can be substantial – at least before the
fact: when Brown and Jones make a series of predictive bets, they will not
always make the same bet. They may often disagree on what, according to
their chosen pattern, will happen next. To take a dramatic case, Brown may
predict that Ella will decide to kill herself; Jones may disagree. This is not a
trivial disagreement of prediction, and in principle this momentous difference
may emerge in spite of the overall consonance of the two interpretations.

Suppose, then, that Brown and Jones make a series of predictions of Ella’s
behavior, based on their rival interpretations. Consider the different categories
that compose their track records. First, there are the occasions where they
agree and are right. Both systems look good from the vantage point of these
successes. Second, there are the occasions where they agree and are wrong.
Both chalk it up to noise, take their budgeted loss and move on to the next
case. But there will also be the occasions where they disagree, where their
systems make different predictions and in these cases sometimes (but not
always) one will win and the other lose. (In the real world, predictions are not
always from among binary alternatives, so in many cases they will disagree
and both be wrong.) When one wins and the other loses, it will look to the
myopic observer as if one “theory” has scored a serious point against the other,
but when one recognizes the possibility that both may chalk up such victo-
ries, and that there may be no pattern in the victories which permits either
one to improve his theory by making adjustments, one sees that local triumphs
may be insufficient to provide any ground in reality for declaring one account
a closer approximation of the truth.

Now, some might think this situation is always unstable; eventually one
interpretation is bound to ramify better to new cases, or be deducible from
some larger scheme covering other data, etc. That might be true in many cases;
but – and this, I think, is the central point of Quine’s indeterminacy thesis –
it need not be true in all. If the strategy of intentional-stance description is, as
Quine says, a “dramatic idiom” in which there is ineliminable use of ideal-
ization, and if Fodor’s industrial-strength Realism is thus not the correct
explanation of the reliable “visibility” of the pattern, such radical indetermi-
nacy is a genuine and stable possibility.

This indeterminacy will be most striking in such cases as the imagined
disagreement over Ella’s suicidal mindset. If Ella does kill herself, is Brown
shown to have clearly had the better intentional interpretation? Not neces-
sarily. When Jones chalks up his scheme’s failure in this instance to a bit of
noise, this is no more ad hoc or unprincipled than the occasions when Brown
was wrong about whether Ella would order the steak not the lobster; and
chalked those misses up to noise. This is not at all to say that an interpreta-
tion can never be shown to be just wrong; there is plenty of leverage within
the principles of intentional interpretation to refute particular hypotheses – for
instance, by forcing their defense down the path of Pickwickian explosion
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(“You see, she didn’t believe the gun was loaded because she thought that
those bullet-shaped things were chocolates wrapped in foil, which was just a
fantasy that occurred to her because . . .”). It is to say that there could be two
interpretation schemes that were reliable and compact predictors over the long
run, but that nevertheless disagreed on crucial cases.

It might seem that in a case as momentous as Ella’s intention to kill herself,
a closer examination of the details just prior to the fatal moment (if not at an
earlier stage) would have to provide additional support for Brown’s interpre-
tation at the expense of Jones’s interpretation. After all, there would be at least
a few seconds – or a few hundred milliseconds – during which Ella’s decision
to pull the trigger got implemented, and during that brief period, at least, the
evidence would swing sharply in favor of Brown’s interpretation. That is no
doubt true, and it is perhaps true that had one gone into enough detail earlier,
all this last-second detail could have been predicted – but to have gone into
those details earlier would have been to drop down from the intentional stance
to the design or physical stances. From the intentional stance, these deter-
mining considerations would have been invisible to both Brown and Jones,
who were both prepared to smear over such details as noise in the interests of
more practical prediction. Both interpreters concede that they will make false
predictions, and moreover, that when they make false predictions there are 
apt to be harbingers of misprediction in the moments during which the
dénouement unfolds. Such a brief swing does not constitute refutation of the
interpretation, any more than the upcoming misprediction of behavior does.

How, then, does this make me less of a realist than Davidson? I see that
there could be two different systems of belief attribution to an individual
which differed substantially in what they attributed – even in yielding substan-
tially different predictions of the individual’s future behavior – and yet where
no deeper fact of the matter could establish that one was a description of the
individual’s real beliefs and the other not. In other words, there could be two
different, but equally real, patterns discernible in the noisy world. The rival
theorists would not even agree on which parts of the world were pattern and
which were noise, and yet nothing deeper would settle the issue.32 The choice
of a pattern would indeed be up to the observer, a matter to be decided on
idiosyncratic pragmatic grounds. I myself do not see any feature of Davidson’s
position that would be a serious obstacle to his shifting analogies and agreeing
with me. But then he would want to grant that indeterminacy is not such a
trivial matter after all.33

What then is Rorty’s view on these issues? Rorty wants to deny that any
brand of “realism” could explain the (apparent?) success of the intentional
stance. But since we have already joined Fine and set aside the “metaphysical”
problem of realism, Rorty’s reminding us of this only postpones the issue. Even
someone who has transcended the scheme/content distinction and has seen the
futility of correspondence theories of truth must accept the fact that within
the natural ontological attitude we sometimes explain success by correspon-
dence: one does better navigating off the coast of Maine when one uses an
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up-to-date nautical chart than one does when one uses a road map of Kansas.
Why? Because the former accurately represents the hazards, markers, depths,
and coastlines of the Maine coast, and the latter does not. Now why does one
do better navigating the shoals of interpersonal relations using folk psychology
than using astrology? Rorty might hold that the predictive “success” we folk-
psychology players relish is itself an artifact, a mutual agreement engendered
by the egging-on or consensual support we who play this game provide each
other. He would grant that the game has no rivals in popularity, due – in the
opinion of the players – to the power it gives them to understand and antici-
pate the animate world. But he would refuse to endorse this opinion. How,
then, would he distinguish this popularity from the popularity among a smaller
coterie of astrology?34 It is undeniable that astrology provides its adherents
with a highly articulated system of patterns that they think they see in the
events of the world. The difference, however, is that no one has ever been able
to get rich by betting on the patterns, but only by selling the patterns to others.

Rorty would have to claim that this is not a significant difference; the rest
of us, however, find abundant evidence that our allegiance to folk psychology
as a predictive tool can be defended in coldly objective terms. We agree that
there is a real pattern being described by the terms of folk psychology. What
divides the rest of us is the nature of the pattern, and the ontological impli-
cations of that nature.

Let us finally consider Churchland’s eliminative materialism from this
vantage point. As already pointed out, he is second to none in his apprecia-
tion of the power, to date, of the intentional stance as a strategy of prediction.
Why does he think that it is nevertheless doomed to the trash heap? Because
he anticipates that neuroscience will eventually – perhaps even soon – discover
a pattern that is so clearly superior to the noisy pattern of folk psychology
that everyone will readily abandon the former for the latter (except, perhaps,
in the rough-and-tumble of daily life). This might happen, I suppose. But
Churchland here is only playing a hunch, a hunch that should not be seen to
gain plausibility from reflections on the irresistible forward march of science.
For it is not enough for Churchland to suppose that in principle, neuroscien-
tific levels of description will explain more of the variance, predict more of
the “noise” that bedevils higher levels. This is, of course, bound to be true in
the limit – if we descend all the way to the neurophysiological “bit map.” But
as we have seen, the trade-off between ease of use and immunity from error
for such a cumbersome system may make it profoundly unattractive.35 If the
“pattern” is scarcely an improvement over the bit map, talk of eliminative
materialism will fall on deaf ears – just as it does when radical eliminativists
urge us to abandon our ontological commitments to tables and chairs. A truly
general-purpose, robust system of pattern description more valuable than the
intentional stance is not an impossibility, but anyone who wants to bet on it
might care to talk to me about the odds they will take.

What does all this show? Not that Fodor’s industrial-strength Realism must
be false, and not that Churchland’s eliminative materialism must be false, but
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just that both views are gratuitously strong forms of materialism – presump-
tive theses way out in front of the empirical support they require. Rorty’s 
view errs in the opposite direction, ignoring the impressive empirical track
record that distinguishes the intentional stance from the astrological stance.
Davidson’s intermediate position, like mine, ties reality to the brute existence
of pattern, but Davidson has overlooked the possibility of two or more
conflicting patterns being superimposed on the same data – a more radical
indeterminacy of translation than he had supposed possible. Now, once again,
is the view I am defending here a sort of instrumentalism or a sort of realism?
I think that the view itself is clearer than either of the labels, so I shall leave
that question to anyone who stills find illumination in them.
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THE MACHINERY OF
COMMONSENSE

PSYCHOLOGY: THEORY 
OR SIMULATION?
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P.M. Churchland “Folk Psychology and 
the Explanation of Human Behavior”

Folk psychology, insist some, is just like folk mechanics, folk thermodynamics,
folk meteorology, folk chemistry, and folk biology. It is a framework of con-
cepts, roughly adequate to the demands of everyday life, with which the
humble adept comprehends, explains, predicts, and manipulates a certain
domain of phenomena. It is, in short, a folk theory. As with any theory, it may
be evaluated for its virtues or vices in all of the dimensions listed. And as 
with any theory, it may be rejected in its entirety if it fails the measure of such
evaluation. Call this the theoretical view of our self understanding.

Folk psychology, insist others, is radically unlike the examples cited. It does
not consist of laws. It does not support causal explanations. It does not evolve
over time. Its central purpose is normative rather than descriptive, And thus
it is not the sort of framework that might be shown to be radically defective
by sheerly empirical findings. Its assimilation to theories is just a mistake. It
has nothing to fear, therefore, from advances in cognitive theory or the neuro-
sciences. Call this the anti-theoretical view of our self understanding.

Somebody here is deeply mistaken. The first burden of this paper is to argue
that it is the anti-theoretical view that harbors most, though not all, of those
mistakes. In the thirty years since the theoretical view was introduced (see esp.
Sellars 1956, Feyerabend 1963, Rorty 1965, Churchland 1970, 1979, 1981),
a variety of objections have been levelled against it. The more interesting of
those will be addressed shortly. My current view is that these objections moti-
vate no changes whatever in the theoretical view.

The second and more important burden of this paper, however, is to outline
and repair a serious failing in the traditional expressions of the theoretical
view, my own expressions included. The failing, as I see it, lies in representing
one’s commonsense understanding of human nature as consisting of an inter-
nally stored set of general sentences, and in representing one’s predictive and
explanatory activities as being a matter of deductive inference from those
sentences plus occasional premises about the case at hand.

This certainly sounds like a major concession to the anti-theoretical view,
but in fact it is not. For what motivates this reappraisal of the character 
of our self-understanding is the gathering conviction that little or none of
human understanding consists of stored sentences, not even the prototypically
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scientific understanding embodied in a practicing physicist, chemist, or
astronomer. The familiar conception of knowledge as a set of ‘propositional
attitudes’ is itself a central aspect of the framework of folk psychology,
according to the reappraisal at hand, and it is an aspect that needs badly to
be replaced. Our self-understanding, I continue to maintain, is no different in
character from our understanding of any other empirical domain. It is specu-
lative, systematic, corrigible, and in principle replaceable. It is just not so
specifically linguistic as we have chronically assumed.

The speculative and replaceable character of folk psychology is now some-
what easier to defend than it was in the 60s and 70s, because recent advances
in connectionist AI and computational neuroscience have provided us with 
a fertile new framework with which to understand the perception, cogni-
tion, and behavior of intelligent creatures. Whether it will eventually prove
adequate to the task of replacing folk psychology remains to be seen, but the
mere possibility of systematic alternative conceptions of cognitive activity and
intelligent behavior should no longer be a matter of dispute. Alternatives are
already abuilding. Later in the paper I shall outline the main features of this
novel framework and explore its significance for the issues here at stake. For
now, let me acquiesce in the folk psychological conception of knowledge as 
a system of beliefs or similar propositional attitudes, and try to meet the 
objections to the theoretical view already outstanding.

I Objections to the theoretical view

As illustrated in Churchland 1970, 1979, and 1984, a thorough perusal of 
the explanatory factors that typically appear in our commonsense explana-
tions of our internal states and our overt behavior sustains the quick
‘reconstruction’ of a large number of universally quantified conditional state-
ments, conditionals with the conjunction of the relevant explanatory factors
as the antecedent and the relevant explanandum as the consequent. It is 
these universal statements that are supposed to constitute the ‘laws’ of folk
psychology.

A perennial objection is that these generalizations do not have the character
of genuine causal /explanatory laws: rather, they have some other, less empir-
ical, status (e.g., that of normative principles, or rules of language, or analytic
truths). Without confronting each of the many alternatives in turn, I think we
can make serious difficulties for any objection of this sort.

Note first that the concepts of folk psychology divide into two broad classes.
On the one hand there are those fully intentional concepts expressing the
various propositional attitudes, such as belief and desire. And on the other
hand there are those nonintentional or quasi-intentional concepts expressing
all of the other mental states such as grief, fear, pain, hunger, and the full range
of emotions and bodily sensations. Where states of the latter kind are
concerned, I think it is hardly a matter for dispute that the common homilies
in which they figure are causal/explanatory laws. Consider the following.
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A person who suffers severe bodily damage will feel pain.
A person who suffers a sudden sharp pain will wince.
A person denied food for any length will feel hunger.
A hungry person’s mouth will water at the smell of food.
A person who feels overall warmth will tend to relax.
A person who tastes a lemon will have a puckering sensation.
A person who is angry will tend to be impatient.

Clearly these humble generalizations, and thousands more like them, are
causal/explanatory in character. They will and regularly do support simple
explanations, sustain subjunctive and counterfactual conditionals, and under-
write predictions in the standard fashion. Moreover, concepts of this simple
sort carry perhaps the major part of the folk psychological burden. The
comparatively complex explanations involving the propositional attitudes are
of central importance, but they are surrounded by a quotidian whirl of simple
explanations like these, all quite evidently of a causal/explanatory cast.

It won’t do then, to insist that the generalizations of folk psychology are
on the whole nonempirical or noncausal in character. The bulk of them, and
I mean thousands upon thousands of them, are transparently causal or nomo-
logical. The best one can hope to argue is that there is a central core of
folk-psychological concepts whose explanatory role is somehow discontinuous
with that of their fellows. The propositional attitudes, especially belief and
desire, are the perennial candidates for such a nonempirical role, for expla-
nations in their terms typically display the explanandum event as ‘rational’.
What shall we say of explanations in terms of beliefs and desires?

We should tell essentially the same causal/explanatory story, and for the
following reason. Whatever else humans do with the concepts for the propo-
sitional attitudes, they do use them successfully to predict the future behavior
of others. This means that, on the basis of presumed information about the
current cognitive states of the relevant individuals, one can non-accidentally
predict at least some of their future behavior some of the time. But any prin-
ciple that allows us to do this – that is, to predict one empirical state or event
on the basis of another, logically distinct, empirical state or event – has to be
empirical in character. And I assume it is clear that the event of my ducking
my head is logically distinct both from the event of my perceiving an incoming
snowball, and from the states of my desiring to avoid a collision and my belief
that ducking is the best way to achieve this.

Indeed, one can do more than merely predict: one can control and manip-
ulate the behavior of others by controlling the information available to them.
Here one is bringing about certain behaviors by steering the cognitive states
of the subject – by relating opportunities, dangers, or obligations relevant to
that subject. How this is possible without an understanding of the objective
empirical regularities that connect the internal states and the overt behaviors
of normal people is something that the anti-theoretical position needs to
explain.
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The confused temptation to find something special about the case of inten-
tional action derives primarily from the fact that the central element in a
full-blooded action explanation is a configuration of propositional attitudes
in the light of which the explanandum behavior can be seen as sensible or
rational, at least from the agent’s narrow point of view. In this rational-in-the-
light-of relation we seem to have some sort of super-causal logical relation
between the explanans and the explanandum, which is an invitation to see a
distinct and novel type of explanation at work.

Yet while the premise is true – there is indeed a logical relation between the
explanandum and certain elements in the explanans – the conclusion does not
begin to follow. Students of the subject are still regularly misled on this point,
for they fail to appreciate that a circumstance of this general sort is typical of
theoretical explanations. Far from being a sign of the nonempirical and hence
nontheoretical character of the generalizations and explanations at issue, it is
one of the surest signs available that we are here dealing with a high-grade
theoretical framework. Let me explain.

The electric current I in a wire or any conductor is causally determined by
two factors: it tends to increase with the electromotive force or voltage V that
moves the electrons down the wire, and it tends to be reduced according to
the resistance R the wire offers against their motion. Briefly, I = V/R. Less
cryptically and more revealingly.

(x)(V)(R)[(x is subject to a voltage of (V)) & (x offers a resistance 
of (R)) ⊃ (∃I((x has a current of (I)) & (I = V/R))]

The first point to notice here is that the crucial predicates – has a resistance of
(R), is subject to a voltage of (V) and has a current of (I) – are what might be
called ‘numerical attitudes’: they are predicate-forming functors that take sin-
gular terms for numbers in the variable position. A complete predicate is formed
only when a specific numeral appears in the relevant position. The second point
to notice is that this electrodynamical law exploits a relation holding on the
domain of numbers in order to express an important empirical regularity. The
current I is the quotient of the voltage V and the resistance R, whose values will
be cited in explanation of the current. And the third point to notice is that this
law and the explanations it sustains are typical of laws and explanations
throughout science. Most of our scientific predicates express ‘numerical atti-
tudes’ of the sort displayed, and most of our laws exploit and display relations
that hold primarily on the abstract domain of numbers. Nor are they limited to
numbers. Other laws exploit the abstract relations holding on the abstract
domain of vectors, or on the domain of sets, or groups, or matrices. But none
of this means they are nonempirical, or noncausal, or nonnomic.

Action explanations, and intentional explanations in general, follow the
same pattern. The only difference is that here the domain of abstract objects
being exploited is the domain of propositions, and the relations displayed are
logical relations. And like the numerical and vectorial attitudes typical of theo-
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ries, the expressions for the propositional attitudes are predicate-forming func-
tors. Believes that P, for example, forms a complete predicate only when a
specific sentence appears in the variable position P. The principles that
comprehend these predicates have the same abstract and highly sophisticated
structure displayed by our most typical theories. They just exploit the rela-
tions holding on a different domain of abstract objects in order to express the
important empirical regularities comprehending the states and activities of
cognitive creatures. That makes folk psychology a very interesting theory,
perhaps, but it is hardly a sign of its being nontheoretical. Quite the reverse
is true. (This matter is discussed at greater length in Churchland 1979, sec.
14, and 1981: 82–4.)

In summary, the simpler parts of folk psychology are transparently causal
or nomic in character, and the more complex parts have the same sophisti-
cated logical structure typical of our most powerful theories.

But we are not yet done with objections. A recurrent complaint is that in
many cases the reconstructed conditionals that purport to be sample ‘laws’ of
folk psychology are either strictly speaking false, or they border on the trivial
by reason of being qualified by various ceteris paribus clauses. A first reply is
to point out that my position does not claim that the laws of folk psychology
are either true or complete. I agree that they are a motley lot. My hope is to
see them replaced entirely, and their ontology of states with them. But this
reply is not wholly responsive, for the point of the objection is that it is implau-
sible to claim the status of an entrenched theoretical framework for a bunch
of ‘laws’ that are as vague, as loose, and as festooned with ceteris paribus
clauses as are the examples typically given.

I will make no attempt here to defend the ultimate integrity of the laws of
folk psychology, for I have little confidence in them myself. But this is not
what is required to meet the objection. What needs pointing out is that the
‘laws’ of folk theories are in general sloppy, vague, and festooned with qual-
ifications and ceteris paribus clauses. What the objectors need to do, in order
to remove the relevant system of generalizations from the class of empirical
theories, is to show that folk psychology is significantly worse in all of these
respects than are the principles of folk mechanics, or folk thermodynamics, or
folk biology, and so forth. In this they are sure to be disappointed, for these
other folk theories are even worse than folk psychology (see McCloskey 1983).
In all, folk psychology may be a fairly ramshackle theory, but a theory it
remains. Nor is it a point against this that folk psychology has changed little
or none since ancient times. The same is true of other theories near and dear
to us. The folk physics of the 20th century, I regret to say, is essentially the
same as the folk physics of the ancient Greeks (McCloskey 1983). Our concep-
tual inertia on such matters may be enormous, but a theory remains a theory,
however many centuries it may possess us.

A quite different objection directs our attention to the great many things
beyond explanation and prediction for which we use the vocabulary and
concepts of folk psychology. Their primary function, runs the objection, is not
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the function served by explanatory theories, but rather the myriad social func-
tions that constitute human culture and commerce. We use the resources of
folk psychology to promise, to entreat, to congratulate, to tease, to joke, to
intimate, to threaten, and so on. (See Wilkes 1981, 1984.)

The list of functions is clearly both long and genuine. But most of these
functions surely come under the heading of control or manipulation, which is
just as typical and central a function of theories as is either explanation or
prediction, but which is not mentioned in the list of theoretical functions
supplied by the objectors. Though the image may be popular, the idle musings
of an impotent stargazer provide a poor example of what theories are and
what theories do. More typically, theories are the conceptual vehicles with
which we literally come to grips with the world. The fact that folk psychology
serves a wealth of practical purposes is no evidence of its being non-theoretical.
Quite the reverse.

Manipulation aside, we should not underestimate the importance for social
commerce of the explanations and predictions that folk psychology makes
possible. If one cannot predict or anticipate the behavior of one’s fellows at
all, then one can engage in no useful commerce with them whatever. And
finding the right explanations for their past behavior is often the key to finding
the appropriate premises from which to anticipate their future behavior. The
objection’s attempt to paint the functions of folk psychology in an exclusively
non-theoretical light is simply a distortion born of tunnel vision.

In any case, it is irrelevant. For there is no inconsistency in saying that a
theoretical framework should also serve a great many non-theoretical
purposes. To use an example I have used before (1986), the theory of witches,
demonic possession, exorcism, and trial by ordeal, was also used for a variety
of social purposes beyond strict explanation and prediction. For example, its
vocabulary was used to warn, to censure, to abjure, to accuse, to badger, to
sentence, and so forth. But none of this meant that demons and witches were
anything other than theoretical entities, and none of this saved the ontology
of demon theory from elimination when its empirical failings became acute
and different conceptions of human pathology arose to replace it. Beliefs,
desires, and the rest of the folk psychological ontology all are in the same 
position. Their integrity, to the extent that they have any, derives from the
explanatory, predictive, and manipulative prowess they display.

It is on the topic of explanation and prediction that a further objection finds
fault with the theoretical view. Precisely what, begins the objection, is the
observable behavior that the ontology of folk psychology is postulated to
explain? Is it bodily behavior as kinematically described? In some cases
perhaps, but not in general, certainly, because many quite different kinemat-
ical sequences could count as the same intentional action, and it is generally
the action that is properly the object of folk psychological explanations of
behavior. In general, the descriptions of human behavior that figure in folk-
psychological explanations and predictions are descriptions that already imply
perception, intelligence, and personhood on the part of the agent. Thus it must
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be wrong to see the relation between one’s psychological states and one’s
behavior on the model of theoretical states postulated to explain the behavior
of some conceptually independent domain of phenomena (Haldane 1988).

The premise of this objection is fairly clearly true: a large class of behavior
descriptions are not conceptually independent of the concepts of folk
psychology. But this affords no grounds for denying theoretical status to the
ontology of folk psychology. The assumption that it does reflects a naive view
of the relation between theories and the domains they explain and predict.
The naive assumption is that the concepts used to describe the domain-to-be-
explained must always be conceptually independent of the theory used to
explain the phenomena within that domain. That assumption is known to be
false, and we need look no farther than the Special Theory of Relativity (STR)
for a living counterexample.

The introduction of STR brought with it a systematic reconfiguration of 
all of the basic observational concepts of mechanics: spatial length, temporal
duration, velocity, mass, momentum, etc. These are all one-place predicates
within classical mechanics, but they are all replaced by two-place predicates
within STR. Each ostensible ‘property’ has turned out to be a relation, and
each has a definite value only relative to a chosen reference frame. If STR is
true, and since the early years of this century it has seemed to be, then one 
cannot legitimately describe the observational facts of mechanics save in terms
that are drawn from STR itself.

Modern chemistry provides a second example. It is a rare chemist who does
not use the taxonomy of the periodic table and the combinatorial lexicon of
chemical compounds to describe both the observable facts and their theoret-
ical underpinnings alike. For starters, one can just smell hydrogen sulphide,
taste sodium chloride, feel any base, and identify copper, aluminum, iron, and
gold by sight.

These cases are not unusual. Our theoretical convictions typically reshape
the way we describe the facts-to-be-explained. Sometimes it happens immedi-
ately, as with STR, but more often it happens after long familiarity with the
successful theory, as is displayed in the idioms casually employed in any
working laboratory. The premise of the objection is true. But it is no point at
all against the theoretical view. Given the great age of folk psychology, such
conceptual invasion of the explanandum domain is only to be expected.

A different critique of the theoretical view proposes an alternative account
of our understanding of human behavior. According to this view, one’s
capacity for anticipating and understanding the behavior of others resides not
in a system of nomically-embedded concepts, but rather in the fact that one
is a normal person oneself, and can draw on one’s own reactions, to real or
to imagined circumstances, in order to gain insight into the internal states and
the overt behavior of others. The key idea is that of empathy. One uses oneself
as a simulation (usually imagined) of the situation of another, and then extrap-
olates the results of that simulation to the person in question (cf. Gordon 1986;
Goldman 1989).
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My first response to this line is simply to agree that an enormous amount
of one’s appreciation of the internal states and overt behavior of other humans
derives from one’s ability to examine and to extrapolate from the facts of one’s
own case. All of this is quite consistent with the theoretical view, and there is
no reason that one should attempt to deny it. One learns from every example
of humanity one encounters, and one encounters oneself on a systematic basis.
What we must resist is the suggestion that extrapolating from the particulars
of one’s own case is the fundamental ground of one’s understanding of others,
a ground that renders possession of a nomic framework unnecessary. Problems
for this stronger position begin to appear immediately.

For one thing, if all of one’s understanding of others is closed under extrap-
olation from one’s own case, then the modest contents of one’s own case must
form an absolute limit on what one can expect or explain in the inner life and
external behavior of others. But in fact we are not so limited. People who are
congenitally deaf, or blind, know quite well that normal people have percep-
tual capacities beyond what they themselves possess, and they know in some
detail what those capacities entail in the way of knowledge and behavior.
Moreover, people who have never felt profound grief, say, or love, or rejec-
tion, can nonetheless provide appropriate predictions and explanations of the
behavior of people so afflicted. And so on. In general, one’s immediately avail-
able understanding of human psychology and behavior goes substantially
beyond what one has experienced in one’s own case, either in real life or in
pointed simulations. First-person experience or simulation is plainly not neces-
sary for understanding the behavior of others.

Nor is it sufficient. The problem is that simulations, even if they motivate
predictions about others, do not by themselves provide any explanatory under-
standing of the behavior of others. To see this, consider the following analogy.
Suppose I were to possess a marvelous miniature of the physical universe, a
miniature I could manipulate in order to simulate real situations and thus
predict and retrodict the behavior of the real universe. Even if my miniature
unfailingly provided accurate simulations of the outcomes of real physical
processes, I would still be no further ahead on the business of explaining the
behavior of the real world. In fact, I would then have two universes, both in
need of explanation.

The lesson is the same for first-person and third-person situations. A simu-
lation itself, even a successful one, provides no explanation. What explanatory
understanding requires is an appreciation of the general patterns that compre-
hend the individual events in both cases. And that brings us back to the idea
of a moderately general theory.

We should have come to that idea directly, since the empathetic account 
of our understanding of others depends crucially on one’s having an initial
understanding of oneself. To extrapolate one’s own cognitive, affective, and
behavioral intricacies to others requires that one be able to conceptualize 
and spontaneously to recognize those intricacies in oneself. But one’s 
ability to do this is left an unaddressed mystery by the empathetic account.
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Self-understanding is not seen as a problem; it is other-understanding that is
held up as the problem.

But the former is no less problematic than the latter, If one is to be able to
apprehend even the first-person intricacies at issue, then one must possess a
conceptual framework that draws all of the necessary distinctions, a frame-
work that organizes the relevant categories into the appropriate structure, a
framework whose taxonomy reflects at least the more obvious of the rough
nomic regularities holding across its elements, even in the first-person case.
Such a framework is already a theory.

The fact is, the categories into which any important domain gets divided,
by a learning creature emerge jointly with an appreciation of the rough nomic
regularities that connect them. A nascent taxonomy that supports the expres-
sion of no useful regularities is a taxonomy that is soon replaced by a more
insightful one. The divination of useful regularities is the single most domi-
nant force shaping the taxonomies developed by any learning creature in 
any domain. And it is an essential force, even in perceptual domains, since 
our observational taxonomies are always radically underdetermined by our
untrained perceptual mechanisms. To suppose that one’s conception of one’s
own mental life is innocent of a network of systematic expectations is just
naive. But such a network is already a theory, even before one addresses the
question of others.

This is the cash value, I think, of P.F. Strawson’s insightful claim that to be
in a position to pose any question about other minds, and to be in a position
to try to construct arguments from analogy with one’s own case, is already 
to possess at least the rudiments of what is sought after, namely, a general
conception of mental phenomena, of their general connections with each other
and with behavior (Strawson, 1958). What Strawson missed was the further
insight that such a framework is nothing other than an empirical theory, one
justified not by the quasi-logical character of its principles, as he attempted
unsuccessfully to show, but by its impersonal success in explaining and
predicting human behavior at large. There is no special justificational story to
be told here. Folk psychology is justified by what standardly justifies any
conceptual framework: namely, its explanatory, predictive, and manipulative
success.

This concludes my survey of the outstanding objections to the theoretical
view outlined in the opening paragraph of the present paper. But in defending
this view there is a major difference between my strategy in earlier writings
and that of the present paper. In my 1970 paper, for example, the question
was framed as follows: “Are action explanations deductive-nomological
explanations?’ I would now prefer to frame the question thus: “Are action
explanations of the same general type as the explanations typically found in
the sciences?” I continue to think that the answer to this second question 
is pretty clearly yes. The reasons are as covered above. But I am no longer
confident that the D–N model itself is an adequate account of explanation in
the sciences or anywhere else.
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The difficulties with the D–N model are detailed elsewhere in the literature,
so I shall not pause to summarize them here. My diagnosis of its failings,
however, locates the basic problem in its attempt to represent knowledge and
understanding by sets of sentences or propositional attitudes. In this, the
framers of the D–N model were resting on the basic assumptions of folk
psychology. Let me close this paper by briefly exploring how we might
conceive of knowledge, and of explanatory understanding, in a systematically
different way. This is an important undertaking relative to the concerns of this
paper, for there is an objection to the theoretical view, as traditionally
expressed, that seems to me to have some real bite. It is as follows.

If one’s capacity for understanding and predicting the behavior of others
derives from one’s internal storage of thousands of laws or nomic generaliza-
tions, how is it that one is so poor at enunciating the laws on which one’s
explanatory and predictive prowess depends? It seems to take a trained
philosopher to reconstruct them! How is it that children are so skilled at
understanding and anticipating the behavior of humans in advance of ever
acquiring the complex linguistic skills necessary to express them? How is it
that social hunters such as wolves and lions can comprehend and anticipate
each other’s behavior in great detail, when they presumably store no internal
sentences at all?

We must resist the temptation to see in these questions a renewed motiva-
tion for counting folk psychology as special, for the very same problems arise
with respect to any other folk theory you might care to mention – folk physics,
folk biology, whatever. It even arises for theories in the highly developed
sciences, since, as Kuhn has pointed out, very little of a scientist’s under-
standing of a theory consists in his ability to state a list of laws. It consists
rather in the ability to apply the conceptual resources of the theory to new
cases, and thus to anticipate and perhaps manipulate the behavior of the rele-
vant empirical domain. This means that our problem here concerns the
character of knowledge and understanding in general. Let us finally address
that problem.

II An alternative form of knowledge representation

One alternative to the notion of a universal generalization about F is the 
notion of a prototype of F, a central or typical example of F which all other
examples of F resemble, more or less closely, in certain relevant respects.
Prototypes have certain obvious advantages over universal generalizations.
Just as a picture can be worth a thousand words, so a single complex proto-
type can embody the same breadth of information concerning the organization
of co-occurrent features that would be contained in a long list of complex
generalizations. Further, prototypes allow us a welcome degree of looseness
that is precluded by the strict logic of a universal quantifier: not all Fs need
be Gs, but the standard or normal ones are, and the non-standard ones 
must be related by a relevant similarity relation to those that properly are G.
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Various theorists have independently found motive to introduce such a notion
in a number of cognitive fields: they have been called paradigms and exem-
plars in the philosophy of science (Kuhn 1962), stereotypes in semantics
(Putnam 1970, 1975), frames (Minsky 1981) and scripts (Schank and Abelson
1977) in AI research, and finally prototypes in psychology (Rosch 1981) and
linguistics (Lakoff 1987).

Their advantages aside, prototypes also have certain familiar problems. The
first problem is how to determine just what clutch of elements or properties
should constitute a given prototype, and the second problem is how to deter-
mine the metric of similarity along which ‘closeness’ to the central prototype
is to be measured. Though they pose a problem for notions at all levels, these
problems are especially keen in the case of the so-called basic or simple prop-
erties, because common sense is there unable even to articulate any ‘deeper’
constituting elements (for example, what elements ‘make up’ a purple color,
a sour taste, a floral smell, or the phoneme å?). A final problem concerning
prototypes is a familiar one: how might prototypes be effectively represented
in a real cognitive creature?

This last question brings me to a possible answer, and to a path that leads
to further answers. The relevant research concerns the operations of artificial
neural networks, networks that mimic some of the more obvious organiza-
tional features of the brain. It concerns how they learn to recognize certain
types of complex stimuli, and how they represent what they have learned.
Upon repeated presentation of various real examples of the several features to
be learned (F, G, H, etc.), and under the steady pressure of a learning algo-
rithm that makes small adjustments in the network’s synaptic connections, the
network slowly but spontaneously generates a set of internal representations,
one for each of the several features it is required to recognize. Collectively,
those representations take the form of a set or system of similarity spaces, and
the central point or volume of such a space constitutes the network’s repre-
sentation of a prototypical F, G, or H. After learning is completed, the system
responds to any F-like stimulus with an internal pattern of neuronal activity
that is close to the prototypical pattern in the relevant similarity space.

The network consists of an initial ‘sensory’ layer of neurons, which is
massively connected to a second layer of neurons. The sizes or ‘weights’ of the
many connections determine how the neurons at the second layer collectively
respond to activity across the input layer. The neurons at the second layer are
connected in turn to a third layer (and perhaps a fourth, etc., but we will here
limit the discussion to three-layer networks). During learning, what the system
is searching for is a configuration of weights that will turn the neurons at the
second layer into a set of complex feature detectors. We then want the neurons
at the third or ‘output’ layer to respond in turn to the second layer, given any
F-like stimuli at the input layer, with a characteristic pattern of activity. All of
this is achieved by presenting the network with diverse examples of Fs, and
slowly adjusting its connection weights in the light of its initially chaotic
responses.
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Such networks can indeed learn to recognize a wide variety of surprisingly
subtle features: phonemes from voiced speech, the shapes of objects from grey-
scale photos, the correct pronunciation of printed English text, the presence
of metallic mines from sonar returns, and grammatical categories in novel
sentences. Given a successfully trained network, if we examine the behavior
of the neurons at the second or intermediate layer during the process of recog-
nition, we discover that each neuron has come to represent, by its level of
activity, some distinct aspect or dimension of the input stimulus. Taken
together, their joint activity constitutes a multi-dimensional analysis of the
stimuli at the input layer. The trained network has succeeded in finding a set
of dimensions, an abstract space, such that all more-or-less typical Fs produce
a characteristic profile of neuronal activity across those particular dimensions,
while deviant or degraded Fs produce profiles that are variously close to that
central prototype. The job of the third and final layer is then the relatively
simple one of distinguishing that profile-region from other regions in the 
larger space of possible activation patterns. In this way do artificial neural
networks generate and exploit prototypes. It is now more than a suggestion
that real neural networks do the same thing. (For a summary of these results
and how they bear on the question of theoretical knowledge, see Churchland
1989a. For a parade case of successful learning, see Rosenberg and Sejnowski
1987. For the locus classicus concerning the general technique, see Rumelhart
et al. 1986.)

Notice that this picture contains answers to all three of the problems about
prototypes noted earlier. What dimensions go into a prototype of F? Those
that allow the system to respond to diverse examples of F in a distinctive 
and uniform way, a way that reduces the error messages from the learning
algorithm to a minimum. How is similarity to a prototype measured? By
geometrical proximity in the relevant parameter space. How are prototypes
represented in real cognitive creatures? By canonical activity patterns across
an appropriate population of neurons.

Note also that the objective features recognized by the network can also
have a temporal component: a network can just as well be trained to recog-
nize typical sequences and processes as to recognize atemporal patterns. Which
brings me to my final suggestion. A normal human’s understanding of the
springs of human action may reside not in a set of stored generalizations about
the hidden elements of mind and how they conspire to produce behavior, but
rather in one or more prototypes of the deliberative or purposeful process. To
understand or explain someone’s behavior may be less a matter of deduction
from implicit laws, and more a matter of recognitional subsumption of the
case at issue under a relevant prototype. (For a more detailed treatment of this
view of explanation – the prototype activation model – see Churchland
1989b.)

Such prototypes are no doubt at least modestly complex, and presumably
they depict typical configurations of desires, beliefs, preferences, and so forth,
roughly the same configurations that I have earlier attempted to express in the
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form of universally quantified sentences. Beyond this, I am able to say little
about them, at least on this occasion. But I hope I have succeeded in making
intelligible to you a novel approach to the problem of explanatory under-
standing in humans. This is an approach that is grounded at last in what we
know about the brain. And it is an approach that ascribes to us neither reams
of universally quantified premises, nor deductive activity on a heroic scale.
Explanatory understanding turns out to be not quite what we thought it was,
because cognition in general gets characterized in a new way. And yet explana-
tory understanding remains the same sort of process in the case of human
behavior as in the case of natural phenomena generally. And the question of
the adequacy of our commonsense understanding remains as live as ever.
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16

A.I. Goldman “Interpretation 
Psychologized”

1 Introduction

A central problem of philosophy of mind is the nature of mental states, or the
truth-conditions for the ascription of such states. Especially problematic are
the propositional attitudes: beliefs, desires, and so forth. One popular strategy
for attacking these problems is to examine the practice of speakers in ascribing
these states, especially to others. What principles or procedures guide or
underlie the ascriber’s activity? In identifying such principles or procedures,
one hopes to glean the criteria or satisfaction conditions of the mentalistic
predicates (or something like this). Now the ascription of the attitudes involves
the assignment of some sort of ‘content’ or ‘meaning’ to the mind, which can
be seen as a kind of ‘interpretation’ of the agent or his behavior. (It is also
related, on many theories, to the interpretation of the agent’s utterances.) Thus,
ascription of mental states, especially the attitudes, can be thought of as a
matter of interpretation; and the strategy of studying the interpreter, in order
to extract the conditions of mentality, or propositional attitudehood, may be
called the interpretation strategy. I do not assume here that this strategy will
or can succeed. Nonetheless, its popularity, if nothing else, makes it worthy
of investigation.

The aim of this paper, then, is to study interpretation, specifically, to work
toward an account of interpretation that seems descriptively and explanato-
rily correct. No account of interpretation can be philosophically helpful, 
I submit, if it is incompatible with a correct account of what people actually
do when they interpret others. My question, then, is: how does the (naïve)
interpreter arrive at his/her judgments about the mental attitudes of others?
Philosophers who have addressed this question have not, in my view, been
sufficiently psychological, or cognitivist, even those who are otherwise psycho-
logically inclined. I shall defend some proposals about the activity of
interpretation that are, I believe, psychologically more realistic than their chief
competitors.

In the very posing of my question – how does the interpreter arrive at attri-
butions of propositional attitudes (and other mental state)? – I assume that
the attributor herself has contentful states, at least beliefs. Since I am not trying
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to prove (to the skeptic) that there is content, this is not circular or question-
begging. I assume as background that the interpreter has beliefs, and I inquire
into a distinctive subset of them, viz., beliefs concerning mental states. It is
conceivable, of course, that a proper theory of interpretation, together with
certain ontological assumptions, would undermine the ontological legitimacy
of beliefs. This is a prospect to which we should, in principle, stay alert, though
it is not one that will actively concern me here. I shall proceed on the premise
that the interpreter has beliefs. Indeed, it is hard to see how to investigate the
problem without that assumption.

Since I am prepared to explain the interpreter’s activity in terms of
contentful states, I am obviously not attempting to give a purely ‘naturalistic’
theory of interpretation, i.e., a theory that makes no appeal to semantical
notions. Interpretation theorists standardly hope to extract naturalistic truth-
conditions for the presence of content. I take it to be an open question,
however, whether the interpretation strategy can yield such fruit.

I structure the discussion in terms of three types of interpretation theories.
Two of these have tended to dominate the field: (1) rationality, or charity, theo-
ries, and (2) folk-theory theories. According to the first approach, an attributor
A operates on the assumption that the agent in question, S, is rational, i.e.
conforms to an ideal or normative model of proper inference and choice. 
The attributor seeks to assign to S a set of contentful states that fits such a
normative model. According to the second approach, the attributor somehow
acquires a common-sense or folk-psychological theory of the mental,
containing nomological generalizations that relate stimulus inputs to certain
mental states, mental states to other mental states, and some mental states to
behavioral outputs. She then uses this theory to infer, from stimulus inputs
and behavioral outputs, what states S is in. The related doctrine of analytical
functionalism asserts that our common-sense mentalistic predicates are implic-
itly defined in terms of this common-sense psychological theory.1 The third
approach, which I shall defend, is the simulation theory. This approach has
been placed in the field but has not received sustained development, and is not
yet sufficiently appreciated.2

2 The rationality approach

The most widely discussed version of the charity approach is that of Donald
Davidson (1980, 1984). Actually, Davidson’s approach to interpretation
involves three strands. First, there is a compositional postulate for assigning
meanings to the agent’s whole utterances as a function of the meanings of their
parts. Second, there is a charity principle that enjoins the interpreter (ceteris
paribus) to assign belief states to the agent so as to maximize (or optimize)
the proportion of truths in the agent’s belief set. Third, there is the rationality
principle that enjoins the interpreter (ceteris paribus) to assign beliefs and
desires so as to maximize the agent’s rationality. Another prominent specimen
of the rationality approach is that of Daniel Dennett (1971, 1987a). Dennett’s
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‘intentional stance’ is a method of attributing intentional states by first postu-
lating ideal rationality on the part of the target system, and then trying to
predict and/or explain the system’s behavior in terms of such rationality.

I shall say nothing here about Davidson’s compositional postulate. But a
brief comment on his truthfulness principle is in order before turning to more
extended discussion of rationality. Davidson holds that one constraint on inter-
pretation precludes the possibility of ascribing ‘massive’ or ‘preponderant’
error (by the interpreter’s lights) to the interpretee. In an early essay he writes:
‘A theory of interpretation cannot be correct that makes a man assent to very
many false sentences: it must generally be the case that a sentence is true when
a speaker holds it to be’ (Davidson 1984: 168). And in a more recent essay
he says: ‘Once we agree to the general method of interpretation I have
sketched, it becomes impossible correctly to hold that anyone could be mostly
wrong about how things are’ (Davidson 1986: 317). These contentions,
however, are dubious. Along with Colin McGinn (1977) I have presented
examples of possible cases in which it seems natural to ascribe to an agent 
a set of beliefs that are largely, in fact predominantly, false (Goldman 1986:
175–6). Furthermore, if Davidson were right in this matter, one could dismiss
the intelligibility of radical skepticism out of hand; but it seems implausible
that principles of interpretation should have this result (see McGinn 1986).
There are at least two sorts of context in which an attributor, A, will assign
beliefs to an agent, S, which are false by A’s lights: first, where S is exposed
to misleading evidence, and second, where S uses poor inductive methods such
as hasty generalization, or inferential maxims such as ‘Believe whatever your
cult leader tells you’. These points are stressed by David Lewis in his own
theory of interpretation (Lewis 1983a).

Let us turn to the rationality component of Davidson’s charity approach, a
component common to many writers. For the rationality principle to have
substance, there must be some specification of the norms of rationality. While
few writers say precisely how these norms are to be chosen or fixed, there
seems to be wide agreement that they are derived from a priori models of ideal
rationality, models inspired by formal logic, by the calculus of probability,
and/or by Bayesian decision theory (or its ilk). Even so, there is room for
stronger and weaker norms. Dennett often imputes to the intentional stance
the component of deductive closure. Davidson usually illustrates rationality
with the weaker norm of logical consistency. Let us test the rationality
approach by reference to logical consistency and probabilistic coherence. Do
interpreters impose these norms in making interpretations? I shall argue in 
the negative.

Consider a paradox-of-the-preface example. My friend Hannah has just
completed a book manuscript. She says that although she is fully confident of
each sentence in her book, taken singly, she is also convinced of her own 
fallibility, and so believes that at least one of her claims is false. At least this 
is how she reports her beliefs to me. But if these were indeed Hannah’s 
beliefs, she would be guilty of believing each of a logically inconsistent set of
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propositions. Now if the consistency norm were part of our ordinary inter-
pretation procedure, an interpreter would try, other things equal, to avoid
ascribing to Hannah all the beliefs she ostensibly avows. Understood as a
description of interpretive practice, the rationality approach ‘predicts’ that
interpreters confronted with Hannah’s avowals will try to find a way to assign
a slightly different set of beliefs than Hannah seems to endorse. Interpreters
will feel some ‘pressure’, some prima facie reason, to revise their belief impu-
tation to be charitable to Hannah. Of course, as Davidson admits, other con-
straints on interpretation, e.g., the compositional meaning constraint, might
make a revision too costly. So an interpreter might settle for imputing incon-
sistency after all. But some vector will be exerted to avoid the imputation.

Does this approach accord with the facts? Speaking as one interpreter, I
would feel no temptation to avoid ascribing the inconsistent belief set to
Hannah. And I submit that other everyday interpreters would similarly feel
no such temptation. Admittedly, if Hannah said that she recognized she was
being inconsistent, but still believed all these things anyway, many people
might feel something is amiss. Recognition of inconsistency can be expected
to breed caution. But let us suppose that Hannah shows no sign of recognizing
the inconsistency. Surely, an ordinary interpreter would have no qualms in
attributing an inconsistent belief set to her.

An analogous example is readily produced for the norm of probabilistic
coherence. Suppose my friend Jeremy has just been the subject of a probability
experiment by the psychologists Amos Tversky and Daniel Kahneman (1983).
In this experiment, Jeremy is given a thumbnail sketch of someone called
‘Linda’, who is described as having majored in philosophy in college, as having
been concerned with issues of social justice, and having participated in an anti-
nuclear demonstration. Subjects are then asked to rate the probabilities that
Linda is now involved in certain vocations or avocations. Like so many other
subjects, Jeremy rates the probability of Linda being both a bank teller and a
feminist higher than he rates the probability of Linda being a bank teller. But
these comparative probability judgments violate the probability calculus: it is
impossible for any conjunctive event A and B to be more probable than either
of its conjuncts. So if I accept the coherent probabilities norm of interpretation,
my duty is to try to reassign contents so as to avoid the indicated imputations
to Jeremy.3

Again, as one interpreter, I report feeling no such duty. There seems nothing
even prima facie wrong about attributing to Jeremy this set of probability
assignments, despite their incoherence. I feel no reason to seek a revised inter-
pretation. So this norm must not in fact play its alleged role in interpretation.4

Perhaps the rationality approach should be weakened, so that it no longer
imposes ideal rationality as the norm for attitude attribution. Christopher
Cherniak (1986: 10) suggests that a better rationality condition is that an 
agent must display minimal deductive ability; he must make some, but not
necessarily all, of the sound inferences from his belief set. As a condition for
attitude attribution, this is certainly an improvement over an ideal deductive
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requirement. But Cherniak’s purely existential requirement is too vague. It
cannot yield any definite predictive or explanatory inferences that an inter-
preter would make about an agent’s beliefs.

Another variant of the rationality approach might say that interpreters
expect agents to make ‘obvious’ inferences. But obvious to whom? To the
interpreter? What is obvious to one interpreter is not necessarily obvious to
another. So the rationality approach could no longer maintain that a single set
of rationality principles constrain the ascription of the attitudes. Alternatively,
there might be an attempt to derive obviousness from pure logic. But this is
unpromising; obviousness is a psychological, not a logical, notion. Perhaps the
rationality theorist should abandon any attempt to distill norms of rationality
from logic, probability theory, decision theory, and the like. Perhaps the norms
should be distilled from actual human practices of inference and choice (see
Cohen 1981; Pollock 1986).

There are two problems with this approach. Experimental findings strongly
suggest that human agents think in ways that contravene widely accepted
norms. They often commit the so-called gambler’s fallacy; in making choices,
they commonly flout the ‘sure-thing’ principle (as Allais’s paradox shows); and
when it comes to deductive inference, they display a number of failings.5 It is
doubtful, therefore, whether actual practice can establish norms of rationality.
Secondly, it is dubious that the naïve interpreter has an accurate reflective grasp
of actual practice. But it is precisely the interpretive practice of naïve agents
that we seek to illuminate.

Assuming that correct norms of rationality can somehow be identified, is it
psychologically plausible to suppose that ordinary interpreters appeal to such
norms in making (or constraining) their interpretations? Untrained adults are
not generally acquainted with abstract principles like maximizing expected
utility, or the sure-thing principle, or probabilistic coherence. Furthermore, we
should bear in mind that children display interpretive skills quite early, at least
by age four, five, or six. It stretches credulity to suppose that such children
employ any of the abstract precepts that rationality theorists commonly
adduce. Thus, if we seek to extract principles of interpretation from the
psychological determinants of ordinary interpretive practice, norms of ration-
ality do not look promising.

It may be replied that although children lack any explicitly formulated
concept of rationality, or any articulated principles of reasoning, they do have
de facto patterns of reasoning that govern their own cognitive behavior.
Perhaps they simply apply those same tacit patterns in interpreting others. This
indeed strikes me as a plausible hypothesis. But it is, in effect, a statement of
the simulation approach that I shall be advocating shortly

3 The folk-theory approach

I turn next to the folk-theory approach to interpretation. Here again one must
wonder whether naïve interpreters, including children, really possess the sorts
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of principles or common-sense nomological generalizations that this approach
postulates, and whether such principles are indeed applied in (all) their inter-
pretive practice.

At least three sorts of problems face the theory theory: vagueness, inaccu-
racy, and non-universality. When philosophers try to formulate the laws, their
examples are typically larded with ceteris paribus clauses. This vagueness is a
problem because it is hard to see how an interpreter could draw any reason-
ably definite interpretive conclusion using laws so vague. How could they tell
when the ceteris paribus clauses are satisfied? Yet interpreters frequently do
manage to make quite definite assignments of desires and beliefs. The second
problem, the problem of accuracy, arises as follows. It is important for analyt-
ical functionalism that the laws be reasonably accurate. If the names of mental
states work like theoretical terms, especially in the Ramsey-sentence account
of theoretical terms, they do not name anything unless the theory (the cluster
of laws) in which they appear is more or less true (see Lewis 1983b and 1972).
It is doubtful, however, that ordinary interpreters do possess laws that are true.
Third, the standard version of this approach assumes that a single set of laws
or platitudes is shared by all competent users of mentalistic vocabulary. But
this universality assumption is very dubious.

As Stephen Schiffer (1987: ch. 2) argues, perceptual input conditions may
be in the worst shape on these scores. If people really possess laws that relate
perceptual input conditions to perceptual beliefs, there must be some way of
filling out a schema like ‘If there is a red block in front of x and . . . , then x
will believe that there is a red block in front of x’; and it must be filled out so
that it is true and really possessed by all competent speakers. But it is unlikely
that this requirement is satisfied. Can any ordinary speaker complete this
schema so that it yields a truth? (Notice that the gap has to be filled with
conditions entailing that x is ‘well enough’ sighted, is not colorblind, is sober
and undrugged, etc.) It is doubtful, moreover, that all speakers who possess
the concept of belief share the same perceptual input laws. A blind person, for
example, may grasp the concept of belief perfectly well, but not possess the
same laws of visual input as sighted people.

The accuracy problem also looms large for internal functional laws,
including laws that putatively link certain desires and beliefs with further
desires. One of the favorite sorts of platitudes offered by philosophers is some-
thing like ‘If x believes “p only if q” and x desires p, then x desires q’. But
the relationship formulated by this ‘platitude’ simply does not systematically
obtain. It ignores the fact that merely dispositional, unactivated desires and
beliefs do not have the same inference-inducing powers as activated desires
and beliefs (see Goldman 1986: section 10.1, and Goldman 1970: ch. 4). If
x’s belief in ‘p only if q’ is stored in memory and fails to get retrieved or acti-
vated, it does not influence x’s practical reasoning. The problem, of course, is
not merely that philosophers neglect these differences, but that it is unlikely
that common folk have any firm grasp of these relationships, at least in any
‘theoretical’ fashion.
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Perhaps the functionalist will reply that although the ‘folk’ do have (more
or less) true laws in their possession, philosophers have simply failed to artic-
ulate those laws correctly. But why, one wonders, should it be so difficult to
articulate laws if we appeal to them all the time in our interpretive practice?
Admittedly, they may be merely tacit generalizations, and tacit representations
are characteristically difficult to reconstruct. A skeptic is entitled to suspect,
however, that what goes on when philosophers proffer mentalistic platitudes
is not the extraction of pre-existing representations in the minds of the ‘folk’,
but the fresh creation of laws designed to accommodate philosophical precon-
ceptions about the character of ‘theoretical’ terms.6

Still more grounds for doubt center on the problem of acquisition. Recall
the point that children seem to display interpretive skills by the age of four,
five, or six. If interpretation is indeed guided by laws of folk psychology, the
latter must be known (or believed) by this age. Are such children sophisticated
enough to represent such principles? And how, exactly, would they acquire
them? One possible mode of acquisition is cultural transmission (e.g. being
taught them explicitly by their elders). This is clearly out of the question,
though, since only philosophers have ever tried to articulate the laws, and 
most children have no exposure to philosophers. Another possible mode of
acquisition is private construction. Each child constructs the generalizations
for herself, perhaps taking clues from verbal explanations of behavior that she
hears. But if this construction is supposed to occur along the lines of familiar
modes of scientific theory construction, some anomalous things must take
place. For one thing, all children miraculously construct the same nomolog-
ical principles. This is what the (folk-) theory theory ostensibly implies, since
it imputes a single folk psychology to everyone. In normal cases of hypothesis
construction, however, different scientists come up with different theories. This
is especially natural if they do not communicate their hypotheses, which is
what obtains in the present case where the hypotheses are presumed to be tacit
and unformulated. It is also surprising that the theory should stay fixed in each
cognizer once it is acquired, as functionalism apparently assumes. This too
contrasts with normal scientific practice, where theories are commonly
amended at least to some degree with the accumulation of new data.

Jerry Fodor, a staunch defender of the theory theory, endorses the
hypothesis that the folk theory is innate (Fodor 1987: 132–3). He cites three
pieces of ‘evidence’ for this: (1) intentional explanation appears to be a 
cultural universal; (2) a rudimentary awareness of the mental world is present
in toddlers and preschoolers; and (3) there are no (plausible) suggestions 
about how a child might acquire the apparatus of intentional explanation
‘from experience’. I agree with Fodor on these points. Indeed, I have just been
stressing how hard it is to swallow the supposition that toddlers and
preschoolers acquire functional laws by induction or theory construction.
Thus, if a grasp of the mental world and intentional explanation involves laws,
there is credibility in the hypothesis that these laws are possessed innately. 
But why accept the antecedent? Fodor simply ignores the possibility that the
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apparatus of intentional explanation may involve no theory at all. By contrast,
I submit that intentional explanation and prediction can be accounted for
without positing any large-scale theory or set of functional generalizations.
This is what I now proceed to argue, apropos of the attribution of intentional
states (and mental states generally) to others. The full story may well feature
innate components: perhaps an innate propensity to identify mental categories
within oneself (analogous to some innate propensities for individuating
material bodies), and an innate propensity to project such categories on others.
But it need not feature innate possession of laws.

4 The simulation approach

The account I favor may be introduced by reference to a proposal of Richard
Grandy (1973). Grandy proposes to replace charity principles with what he
calls the ‘humanity principle’. This is the constraint imposed on translations
that the imputed pattern of relations among beliefs, desires, and the world be
as similar to our own as possible. This conforms, says Grandy, with our actual
practice of predicting people’s behavior based on our attitudinal attributions.
We do not use mathematical decision theory (i.e. expected utility theory) to
make predictions; rather, we consider what we should do if we had the rele-
vant beliefs and desires. Now I do not think that naïve interpreters advert 
to Grandy’s humanity principle as an abstract precept. Rather, they ascribe
mental states to others by pretending or imagining themselves to be in the
other’s shoes, constructing or generating the (further) state that they would
then be in, and ascribing that state to the other. In short, we simulate the situ-
ation of others, and interpret them accordingly. This idea has been explicitly
put forward by Robert Gordon (1986, and 1987: ch. 7), and something like
it has been endorsed by Adam Morton (1980). The idea has been a dominant
motif in the Verstehen and hermeneutic traditions, and earlier precursors
include the eighteenth-century Scottish philosophers.7

Several writers on interpretation put forward somewhat analogous views
in discussing belief ascriptions. W. V. Quine explains indirect quotation in
terms of an ‘essentially dramatic act’ in which we project ourselves into the
speaker’s mind (Quine 1960: 219). Similarly, drawing on Davidson’s parat-
actic account of indirect discourse, Stephen Stich proposes that when I say
‘Andrea believes that lead floats on mercury’, I am performing a little skit: 
I am saying that Andrea is in a belief state content-identical to one that 
would lead me to assert the sentence which follows the ‘that’-clause (Stich
1983: 84). However, these writers do not explicitly develop the simulation 
approach; nor do I mean to endorse the proposed paraphrase of belief-state
ascriptions.

The simulation idea has obvious initial attractions. Introspectively, it seems
as if we often try to predict others’ behavior – or predict their (mental) choices
– by imagining ourselves in their shoes and determining what we would choose
to do. To use one of Gordon’s examples, if we are playing chess, I may try to
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anticipate your next move by imagining myself in your situation and deciding
what I would choose to do. Similarly, if we agree to meet for lunch tomorrow,
I (mentally) ‘predict’ that you will expect me at roughly the appointed time
and place. I ascribe this expectation to you because this is the expectation I
would form if I were in your (presumed) situation. The simulation procedure
can also be used for explanatory, or ‘retrodictive’, assignment of mental states.
(Indeed, this is the more central type of case for the theme of ‘interpretation’.)
If you make a surprising chess move, I may infer a new strategy on your part,
one that might have led me, if I were in your situation, to the observed move.
To assure the plausibility of this being your strategy, I would see whether I
could simulate both (a) arriving at this strategy from your presumed antece-
dent states, and (b) choosing the observed move given this strategy. Ascriptions
of intent that lie behind observed behavior would, on the simulation theory,
commonly take this second, explanatory form.

In all of these examples, my inference to a new state of yours draws on
assumptions about your prior mental states. Does this not threaten a regress?
How do I get any initial entrée into your mental world? Can that be explained
by simulation?8 Yes. The regress presumably stops at perceptual cases, and at
basic likings or cravings. From your perceptual situation, I infer that you have
certain perceptual experiences or beliefs, the same ones I would have in your
situation. I may also assume (pending information to the contrary) that you
have the same basic likings that I have: for food, love, warmth, and so on.

Simulation is also relevant in inferring actions from mental states, not just
mental states from other mental states. For ordinary ‘basic’ actions, I expect
your ‘choice’ of an action to issue in its production because my own choice
would so issue. In more problematic cases, such as uttering a tongue-twister,
simulation might lead me to doubt that you will succeed. Morton (1980)
points out that ‘analysis-by-synthesis’ accounts of speech perception invoke a
(tacit) simulation of motor activity. According to this approach, in trying to
categorize a speaker’s acoustic sequence as one or another phonemic string,
the perceiver constrains the choice of interpretation by ‘running a model’ of
how his own vocal apparatus might articulate those sounds.

It would be a mistake, of course, to use the simulation procedure too
simplistically, without adequate attention to individual differences. If I am a
chess novice and you are a master, or vice versa, it would be foolish to assume
that your analysis would match mine. To optimize use of the simulation proce-
dure, I must not only imagine myself in possession of your goals and beliefs
about the board configuration, but also in possession of your level of chess
sophistication. People may not always take such factors into account; and
frequently they lack information to make such adjustments accurately. In any
case, there is no assumption here that people are always successful or optimal
simulators. What I do conjecture is that simulation – whether explicit or
implicit – is the fundamental method used for arriving at mental ascriptions
to others. (A more complex variant of the simulation theme will be briefly
sketched in section 5.)
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I am not saying, it should be emphasized, that simulation is the only method
used for interpersonal mental ascriptions, or for the prediction of behavior.
Clearly, there are regularities about behavior and individual differences that
can be learned purely inductively. If Jones always greets people with a smile
whereas Brown greets them with a grunt, their acquaintances can form appro-
priate expectations without deploying simulation. If people who enter a car
in the driver’s seat regularly proceed to start it, this is the basis for future
expectations that need not appeal to simulation. The suggestion, then, is that
simulation is an intensively used heuristic, and one on which interpretation
fundamentally rests. Inductive or nomological information is not wholly
absent, but it is sparser than the folk-theory approach alleges.

Does the simulation approach accommodate the problems confronting the
rational norms approach? Very straightforwardly. The mere fact that the
‘preface’ belief (‘at least one of my claims is false’) produces inconsistency does
not tempt me to withhold attribution of this belief to Hannah. This is just the
belief I too would form, especially if I were unaware of the inconsistency (a
similar point is made by Stich, 1985). Similarly, the mere fact that Jeremy’s
probability assignments violate the probability calculus does not make me
shrink from attributing them; for I too can feel their intuitive pull.

The merits of the simulation approach are further demonstrated by seeing
how easily it handles a number of cases that the rival approaches cannot han-
dle, or can handle only with difficulty. In an experiment by Daniel Kahneman
and Amos Tversky (1982), subjects were given the following example:

Mr. Crane and Mr. Tees were scheduled to leave the airport on different
flights, at the same time. They traveled from town in the same limou-
sine, were caught in a traffic jam, and arrived at the airport 30 minutes
after the scheduled departure time of their flights. Mr. Crane is told that
his flight left on time. Mr. Tees is told that his was delayed, and just left
five minutes ago. Who is more upset?

Surely people do not possess a tacit folk-psychological theory that warrants
any particular answer to this question. But 96 percent of the subjects in the
experiment said that Mr Tees would be more upset. How did they severally
arrive at the same answer? Clearly, by simulation. They imagined how they
would feel in Mr Crane’s and Mr Tees’s shoes, and responded accordingly.

More evidence in a similar vein comes from the domain of verbal communi-
cation. Verbal communicators commonly make assumptions – often correct –
about the contextual information accessible to their audience and likely to be
used in the comprehension process. For example, inspired by the landscape,
Mary says to Peter, ‘It’s the sort of scene that would have made Marianne
Dashwood swoon.’ This allusion to Austen’s Sense and Sensibility is based 
on Mary’s expectation that this utterance will act as a prompt, making Peter
recall parts of the book that he had previously forgotten, and construct the
assumptions needed to understand the allusion. My question is: How does a
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communicator proceed to estimate what pieces of information will be
marshalled, or made salient, in the mind of the audience, in short, which pieces
of information are ‘calculable’?

Dan Sperber and Deirdre Wilson (1986), from whom the preceding example
was borrowed, have an interesting theory of the hearer, which postulates a
variety of pertinent cognitive traits. For example, they postulate that cognizers
have a number of rules of deductive inference, but these are all elimination
rules (e.g. from ‘P and Q’ you may infer ‘Q’) and not introduction rules (e.g.
from ‘P’ you may infer ‘P or Q’). Now assume that this piece of cognitive
psychology is correct. Clearly, it is not known or believed by the naïve speaker.
The speaker cannot appeal to any such theoretical knowledge to make predic-
tions of what is likely to be derived or calculated by the hearer. Nonetheless,
speakers are evidently pretty good at making such predictions; more precisely,
at predicting what kinds of ‘implicatures’ will be appreciated by an audience.
How do they do that? Again, I suggest, by simulation. They can simulate in
themselves the states that result from the inference rules, without knowing
what those rules are. Hence, they can project, with fairly substantial reliability,
what hearers will be able to infer and understand.

A related point concerns people’s intuitive grasp of what others will find
funny.9 Again it seems far-fetched to suppose that my ability to gauge what
will amuse you is based on a theory of humor (of what amuses people). I do
not possess any general theory of this sort. More plausibly, I gauge your prob-
able reaction to a joke by projecting my own. (There can be adjustments 
here for factual information about interpersonal differences, but this is just
a corrective to the basic tactic of simulation.) There are (arguably) two states
of yours that I judge or anticipate through simulation. I estimate by simula-
tion that you will grasp the intended point of the joke: a cognitive state. 
I also judge by simulation that you will be amused by it: not a purely cogni-
tive state.

Apropos of non-cognitive states, it is worth stressing that a virtue of the
simulation theory is its capacity to provide a uniform account of all mental
state attributions, not only of propositional attitudes but of non-propositional
mental states like pains and tickles. This contrasts with the rationality
approach, which has no resources for explaining the latter. No principle of
rationality dictates when a person should feel pain, or what one should do
when in pain. Similarly for tickles. Thus, a rationality (or charity) approach
to propositional attitude interpretation would have to be supplemented by an
entirely different element to account for attributions of sensations, and
perhaps emotions as well. Such bifurcation has less appeal than the unified
account offered by the simulation approach.

In a brief discussion of the simulation idea, Dennett (1987b) finds it very
puzzling. How can it work, he asks, without being a kind of theorizing? If I
make believe I am a suspension bridge and wonder what I will do when the
wind blows, what comes to mind depends on how sophisticated my know-
ledge is of the physics and engineering of suspension bridges. Why should
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making believe that I have your beliefs be any different? Why should it too
not require theoretical knowledge?

To answer this question, we need to say more about the general idea of
simulation. For a device to simulate a system is for the former to behave in a
way that ‘models’, or maintains some relevant isomorphism to, the behavior
of the latter. This is the sense in which a computer might simulate a weather
system or an economy. Now if a person seeks to simulate the weather or the
economy, in the sense of mentally constructing or anticipating an actual (or
genuinely feasible) sequence of its states, she is very unlikely to be accurate
unless she has a good theory of the system. A successful simulation of this
kind must be theory-driven, let us say. This is Dennett’s point. But must all
mental simulations be theory-driven in order to succeed? I think not. A simu-
lation of some target systems might be accurate even if the agent lacks such a
theory. This can happen if (1) the process that drives the simulation is the same
as (or relevantly similar to) the process that drives the system, and (2) the
initial states of the simulating agent are the same as, or relevantly similar to,
those of the target system. Thus, if one person simulates a sequence of mental
states of another, they will wind up in the same (or isomorphic) final states as
long as (A) they begin in the same (or isomorphic) initial states, and (B) both
sequences are driven by the same cognitive process or routine, it is not neces-
sary that the simulating agent have a theory of what the routine is, or how it
works. In short, successful simulation can be process-driven.

Now, in central cases of interpretation, the interpreter is not actually in the
very same initial states as the interpretee. While there may be overlap in beliefs
and goals, there are typically relevant differences as well. So how can the inter-
preter succeed via simulation? The critical move, of course, is that the
interpreter tries to imagine, or ‘feign’, the same initial states as the interpretee.
She ‘pretends’ or ‘makes believe’ she has the relevant initial states, and then
performs reasoning operations (or other cognitive operations) to generate
successive states in herself. But are these ‘pretend’ states – the pseudo-beliefs,
pseudo-desires, and so forth – relevantly similar to the genuine beliefs and
desires that they model? Is it plausible that imagined beliefs and actual beliefs
would yield the same, or analogous, outputs when operated upon by the same
cognitive operations?10

It is plausible, I submit. Consider hypothetical, or subjunctive, reasoning. 
I ask myself, ‘Suppose I did action A – what would be the result?’ How do I
proceed to answer this question? It seems that what I do is imagine myself
believing the proposition ‘I do A’, and then draw causal inferences from that
pseudo-belief together with (certain) antecedent genuine beliefs. Furthermore,
it seems that I use the very same inference processes as those I would use on
a set of wholly genuine belief inputs. (The output, though, is only a belief in
the same hypothetical mood, not a genuine belief.) Similarly, I make contin-
gency plans by executing practical reasoning operations on feigned beliefs in
certain contingencies; and these are the same planning operations that I would
apply to genuine beliefs in those contingencies. So it seems that ‘pretend’ belief

A.I. GOLDMAN

338



states are relevantly similar to belief states; there are significant isomorphisms.
The possibility of isomorphisms between ‘genuine’ states and imaginatively,
or artificially, generated ‘copies’ is further illustrated in the imagery domain.
Roger Shepard, Stephen Kosslyn, and their respective colleagues have pro-
duced striking evidence to support the claim that visual images are similar in
important respects to genuine visual perceptions (Shepard and Cooper 1982;
Kosslyn 1980). To determine the congruence or non-congruence of two shapes,
forming a mental image of one being rotated into alignment with the other
can be almost as reliable as actually seeing the results of this rotation. This
would hardly be possible if imagery were not relevantly similar to genuine
perception.11

5 Simulation and psychology

Let us explore the psychological defensibility of the simulation approach in
more detail. We may first note that several cognitive scientists have recently
endorsed the idea of mental simulation as one cognitive heuristic, although
these researchers stress its use for knowledge in general, not specifically know-
ledge of others’ mental states. Kahneman and Tversky (1982) propose that
people often try to answer questions about the world by an operation 
that resembles the running of a simulation model. The starting conditions 
for a ‘run’, they say, can either be left at realistic default values or modified
to assume some special contingency. Similarly, Rumelhart, Smolensky,
McClelland and Hinton (1986) describe the importance of ‘mental models’ of
the world, in particular, models that simulate how the world would respond
to one’s hypothetical actions. They first apply this idea to actual and imagined
conversations, and later describe a PDP (parallel distributed processing)
network for playing tic-tac-toe, a network that embodies ‘simulations’ of the
world’s (i.e. the opponent’s) response to the agent’s possible moves.

Since part of my argument rests on the superior plausibility of the simula-
tion approach in accounting for children’s interpretational ability, let us next
look at recent work by developmental psychologists that bears on this point.
The most striking findings are those by Heinz Wimmer and Josef Perner,
conjoined with a follow-up study by Simon Baron-Cohen, Alan Leslie, and
Uta Frith. Various experimental studies had previously shown that as early as
two and a half years, children use a substantial vocabulary about perception,
volition, major emotions, and knowledge. But experiments by Wimmer and
Perner (1983) strongly indicate that around the ages of four to six, an ability
to clearly distinguish between someone else’s belief state and reality becomes
firmly established. In their study, children between three and nine years of age
observed a sketch in which a protagonist put an object into a location X. The
children then witnessed that, in the absence of the protagonist, the object was
transferred from X to location Y. Since this transfer came as a surprise, they
should assume that the protagonist still believed that the object was in X.
Subjects were then required to indicate where the protagonist will look for the
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object on his return. None of the three- to four-year-olds, 57 percent of the
four- to six-year-olds, and 86 percent of the six- to nine-year-olds pointed
correctly to location X. In their related study, Baron-Cohen, Leslie and Frith
(1985) studied the ability of autistic children to perform this sort of task. Of
critical relevance here are two facts about autistic children. First, the main
symptom of autism is impairment in verbal and non-verbal communication.
Second, autistic children show a striking poverty of pretend play. Baron-Cohen
et al.’s experiment showed that when the tested children were asked where the
doll protagonist would look for her marble, 85 percent of the normal children
answered correctly, but only 20 percent of the autistic children (with a mean
age close to 12 and a relatively high mean IQ of 82) answered correctly.
Especially striking was the fact that the test also included a pool of Down’s
syndrome children, 86 percent of whom answered the crucial question cor-
rectly. This suggests that the failure of the autistic children is not due to general
mental retardation, a trait shared by Down’s syndrome children. Rather it is
a specific cognitive deficit. Baron-Cohen et al. hypothesize that autistic chil-
dren as a group fail to acquire a ‘theory of mind’, i.e. an ability to impute
beliefs to others and therefore predict their behavior correctly. This would
account for their social and communicational impairment. It might also be
related to their lack of pretend play. Perhaps, as Gordon (1995) suggests, all
this points to a prepackaged ‘module’ for simulation directed at other human
beings, a module that is impaired in autism.

One of the co-authors of the autism study, Alan Leslie, has sketched a
theory that interrelates pretend play and the representation of mental states
(Leslie 1987). He points out that pretending is in some ways an odd practice.
From an evolutionary point of view, one might expect a high premium on
maintaining an accurate and objective view of the world. A child who acts as
if dolls have genuine feelings is scarcely acting upon a veridical picture of the
world. Yet pretend play emerges at an early age, and becomes more elaborate
during development. It is not implausible to conjecture that pretend play is a
preliminary exercise of a mechanism the primary function of which is the simu-
lation of real people’s mental states. Roughly this theme is articulated both by
Leslie and by Paul Harris (1989). Such a mechanism, on the present theory,
underlies interpersonal interpretation, prediction, and perhaps communication
as well.

Whatever the force of these findings and speculations, there is a straight-
forward challenge to the psychological plausibility of the simulation approach.
It is far from obvious, introspectively, that we regularly place ourselves in
another person’s shoes and vividly envision what we would do in his circum-
stances. This is a natural thing to do while watching a tennis match, perhaps,
or while listening to someone relating their tragic life story. But the simula-
tion approach ostensibly makes this empathic attitude the standard mode of
interpretation. Is that not difficult to accept?

Two replies should be made. First, simulation need not be an introspec-
tively vivid affair. The approach can certainly insist that most simulation is
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semi-automatic, with relatively little salient phenomenology. It is a psycho-
logical commonplace that highly developed skills become automatized, and
there is no reason why interpersonal simulation should not share this charac-
teristic. (On the issue of conscious awareness, the simulation theory is no
worse off than its competitors. Neither the rationality approach nor the folk-
theory theory is at all credible if it claims that appeals to its putative principles
are introspectively prominent aspects of interpretation.)

A second point might be that many cases of rapid, effortless interpretation
may be devoid of even automatized simulation. When a mature cognizer 
has constructed, by simulation, many similar instances of certain action-
interpretation patterns, she may develop generalizations or other inductively
formed representations (schemas, scripts, and so forth) that can trigger analo-
gous interpretations by application of those ‘knowledge structures’ alone, sans
simulation. I have, of course, already acknowledged the role of inductively
based predictions of behavior and the need for standard empirical informa-
tion to make adjustments for individual differences. The present point is a
slightly larger concession. It agrees that in many cases the interpreter relies
solely (at the time of interpretation) on inductively acquired information. 
But this information, it suggests, is historically derived from earlier simula-
tions. If this story is right, then simulation remains the fundamental source 
of interpretation, though not the essence of every act (or even most acts) of
interpretation. We might call this the complex variant of the simulation
approach. It converges somewhat toward the folk-theory theory (though the
exact degree of convergence depends on the nature of the inductively based
knowledge structures it posits). It still remains distinct, however, (A) because
the folk-theory theory makes no allowance for simulation, and (B) because the
complex variant postulates simulation as the originating source of (most)
interpretation.

Commenting in part on an earlier version of this paper, Paul Churchland
(1989) poses two difficulties for the simulation theory. First, he says, simula-
tion is not necessary for understanding others. People who are congenitally
deaf, or blind, are quite capable of understanding normal people, and people
who have never themselves felt profound grief or rejection, can nevertheless
provide appropriate interpretations of others who are so afflicted. In general,
understanding goes beyond what one has personally experienced. I have
already granted, however, that straightforwardly empirical information is
required to accommodate individual differences, and these examples are just
more extreme illustrations of the point. We must certainly allow for the human
capacity to extrapolate from one’s own case, to project types of sensory or
emotional sensibility that one does not oneself instantiate. This concession
does not undermine the point that interpretation primarily starts from the
home base of one’s own experience.

Churchland further objects that while simulation may account for the
prediction of others’ behavior, it does not provide for explanation. The simu-
lation theory makes the understanding of others depend crucially on having
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an initial understanding of oneself. But it leaves mysterious, he says, the nature
of first-person understanding. More specifically, explanatory understanding
requires appreciation of the general patterns that comprehend individual
events in both cases. This requires a theory, which the simulation approach
spurns. In my opinion, however, explanation can consist of telling a story that
eliminates various alternative hypotheses about how the event in question
came about, or could have come about. This can effectively answer a ‘Why’-
question, which is the essence of explanation (see van Fraassen 1980: ch. 5).
In the case of interpretive explanation this is done by citing a specific set of
goals and beliefs, which implicitly rules out the indefinitely many alternative
desire-and-belief sets that might have led to the action.

Churchland rejects the deductive nomological theory of explanation on the
grounds that it presupposes a sentential, or propositional-attitude, account of
knowledge representation. He proposes to replace this picture of cognition
with a prototype-based picture, especially one that is elaborated within a
connectionist framework. He still wishes to count human cognition as signif-
icantly theoretical, but theory possession is apparently no longer associated
with nomologicality. Churchland is welcome to use the term ‘theory’ in this
neological fashion; but it cannot resuscitate the standard version of the 
folk-theory approach to interpretation. It is only in the usual, nomological
construal of theories that I am addressing (and rejecting) that approach. I 
am pleased to see Churchland also reject that approach, but it seems to have
ramifications for his other views that I shall mention below.

6 Simulation and similarity

Considering the complexity of the human organism, it may well be considered
remarkable that we are able to predict human behavior as well as we do. Is
this impressive success fully accounted for by the simulation theory? Only, I
think, with an added assumption, viz., that the other people, whose behavior
we predict, are psychologically very similar to ourselves. Just as the child
readily learns a grammar of a natural language because its native grammar-
learning structures mirror those of its language-creating mates, so a person
can successfully simulate the internal operations of others because they are
largely homologous to her own. The fuller picture, then, has strong affinities
to Noam Chomsky’s emphasis on the role of species-specific traits in mental
activity.

Although I view this theme as Chomskyesque, it is also similar to one made
by Quine (1969). Quine asks how the language learner manages to learn the
law of English verbal behavior connected with ‘yellow’. The answer, he says,
is that the learner’s quality spacing is enough like his neighbor’s that such
learning is almost a foregone conclusion: he is making his induction in a
‘friendly world’. He is playing a game of chance with favorably loaded dice.
Similarly, I am suggesting, people’s predictions of other people’s behavior,
based heavily on attributions of content, are so successful because people
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operate with the same set of fundamental cognitive constraints. (Notice, I need
not say that people are successful at assigning correct contents to people’s
mental states; that would assume that there is an independent fact of the matter
about content, prior to the activity of interpretation. Since some interpreta-
tion theorists would reject this thesis, I can confine my claim to successful
prediction of behavior.)

The constraints I have in mind must be constraints on the specific contents
assigned to an agent’s propositional attitudes. Without positing such
constraints, it is hard to account for the definiteness and interpersonal unifor-
mity in content attributions. There would seem to be too much ‘play’, too
much looseness, in the sorts of abstract constraints that a theorist like
Davidson, for example, imposes. Assuming the interpretations of the inter-
preter to be given, we need to explain why she makes those rather than the
innumerable other conceivable interpretations.

In a similar (though not identical) context, Lewis (1983c) worries whether
enough constraints on content are imposed by his theory to exclude prepos-
terous and perverse misinterpretations. To exclude perverse interpretations,
Lewis says we need a priori presumptions about just what sorts of things are
apt to be believed or desired. These presumptions should be thought of as built
into our interpretation procedures. Adopting a suggestion of Gary Merrill,
Lewis proposes that natural kinds are more eligible for content attributions
than non-natural kinds. Taking naturalness to be a graded affair, more natural
kinds have greater eligibility for content inclusion than less natural kinds.
Principles of content possession should therefore impute a bias toward
believing that things are green rather than grue, toward having a basic desire
for long life rather than for long-life-unless-one-was-born-on-Monday-and-in-
that-case-life-for-an-even-number-of-weeks.

I agree with Lewis that to get things right, i.e. to conform to our actual
content attributions, account must be taken of what is ‘natural’ and ‘unnat-
ural’. But only if this means ‘natural for us’: congenial to human psychology.
This is not what Lewis means. By ‘natural’ Lewis means properties Nature
herself deems natural, those categories that are objectively, independently, non-
anthropocentrically natural. This is not very plausible. Granted that the kind
‘a mass of molecules’ is more of a natural kind than, say, ‘table’, it is still less
plausible to attribute beliefs about masses of molecules to scientifically untu-
tored people than beliefs about tables. Or take the hue yellow. From an
objective, non-anthropocentric viewpoint, yellow is less natural than other
possible spectral or reflectancy categorizations. Nonetheless, it is more plau-
sible to attribute contents involving yellow than more objective categorizations
of light frequency. Clearly, it is concepts that are humanly more natural, i.e.
psychologically congenial, that are more eligible for content.12

What I am suggesting, then, is that uniformity in cross-personal interpre-
tations should be partly explained by psychological preferences for certain
modes of categorization and ‘entification’, or more basically, by operations
that generate categorial and entificational preferences. The precise nature of
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these operations and/or preferences remains to be spelled out by cognitive
science. But let me give some examples of what I mean.

Our entification practices include propensities to group together, or unify,
certain sets of elements rather than others in a perceptual display. The Gestalt
principles of similarity, proximity, closedness, and good continuation are
attempts to systematize the mental operations that underpin these unificational
practices. The Gestalt principles apply not only in the visual domain, but in
the temporal domain as well. Thus, presented with the opening passage of
Mozart’s fortieth symphony, principles of temporal proximity (and so forth)
make it natural to segment the passage into three distinct phrases (I oversim-
plify here). Other conceivable segmentations are highly unnatural. It is
plausible to conjecture that the same Gestalt principles are at work in fixing
our conceptual (as opposed to perceptual) intuitions of identity, or unity, of
objects through time (see Goldman 1987).

Another set of categorial preferences feature what Eleanor Rosch calls the
‘basic level’ of categories (Rosch 1975, 1978). Language (and presumably
thought) is full of category hierarchies such as poodle, dog, mammal, animal,
physical object. Experiments show that the categories in the middle of such
hierarchies, in the present case dog rather than poodle or physical object, have
a definite psychological primacy.

How do entitative and categorial preferences of the interpreter get deployed
in the interpretation process? Two slightly different hypotheses are possible.
First, the preferences may be registered directly; that is, the interpreter uses
her own categorial preferences to assign content to the interpretee. Second,
they might be used in conjunction with the simulation heuristic. In assigning
reference and meaning, the interpreter imagines what the agent’s concept-
forming or proposition-forming devices might generate in the present context,
and this imaginative act is structured by the interpreter’s own concept-forming
and judgment-forming operations.

In either case, the hypotheses I am advancing would account for a substan-
tial degree of uniformity in specific content attributions. It would also mesh
with Davidson’s theme of belief similarity among interpreters and interpretees,
but only subject to important qualifications. The simulation hypothesis
assumes that the interpreter tends to impute to the interpretee the same funda-
mental categories as her own, or at least the same basic category-forming (and
proposition-forming) operations. She also tends to project the same basic
belief-forming processes. But these practices still leave room for wide diver-
gence in belief content. The simulation procedure can take account of
differences in the agent’s evidential exposures, and in the special inferential
habits, algorithms, and heuristics that he has learned or acquired.13 Differences
along these dimensions can ramify into substantial differences in belief sets.

My emphasis on conspecific psychological traits may suggest the possi-
bility that only other people are interpretable by us. That is not a claim I
endorse. On the contrary, we certainly think of ourselves as interpreting 
other animals; and although we may partly deceive ourselves with misplaced
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anthropomorphism, we do have moderate predictive success. Of course, the
use of straightforward inductively gathered information is prominent here.
But, as indicated earlier, we also use our own psychology as a home base, and
make conservative revisions from that starting point. Perhaps this is why it is
more difficult to construct right-seeming interpretations of heterospecifics than
conspecifics. Dolphins seem to be highly intelligent and to communicate
among themselves, yet no human has constructed a plausible interpretation of
their language.

Although my discussion centers on the psychological dimensions involved
in content attributions, it by no means precludes an important role for the
external world, especially causal relations with the external world, in the
choice of semantic assignments to thoughts. In deciding what is the referent
of an imputed thought, in particular, it seems clear that the interpreter takes
into account the thought’s causal history. Similarly, it is plausible to suppose
that imputation of other semantic dimensions of thought involves mind–world
connections. These are plausibly part of the conceptual background with
which the interpreter operates. Although I am not addressing these issues,
which lie at the heart of much current debate, they are complementary to the
themes I am pursuing.

7 Philosophical ramifications

In this final section I briefly address several possible philosophical ramifica-
tions of the simulation approach, including the interpretation strategy with
which I began.

Does the simulation approach imply a sharp divide between explanations
of the mental and the physical? If so, it would vindicate the claim of the
hermeneutic tradition, which contrasts understanding of human action with
understanding of physical phenomena. No sharp contrast necessarily follows
from the simulation theory. For one thing, we have already noted that simu-
lation or mental modeling is sometimes postulated as a cognitive heuristic for
representing physical phenomena as well as mental states. Admittedly, this
realization of the simulation heuristic would presumably be theory-driven
rather than process-driven. Still, this already admits an important parallel.
Furthermore, proponents of interpretational simulation need not maintain that
nomological explanation of human phenomena is impossible. They just main-
tain that common-sense explanations and predictions of the mental do not (in
the main) invoke laws.

A second philosophical issue raised by the simulation theory is the episte-
mology of other minds. Ostensibly, the theory is a version of the ‘analogical’
theory of mental state ascription. It seems to impute to interpreters inferences
of roughly the following form: ‘If he is psychologically like me, he must be in
mental state M; he is psychologically like me; therefore, he is in mental state
M.’ But there is a long-standing suspicion of such arguments from analogy,
centering on the second premise. How can the interpreter know (or believe
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justifiably) that the agent is psychologically like her? Can physical and behav-
ioral similarity support this premise? Is not an analogy based on a single case
a thin reed on which to rest?

The best line of reply, I think, is to deny that interpreters must believe the
second premise. Many beliefs are formed by mechanisms, or routines, that are
built into the cognitive architecture. Although these mechanisms might be
described in terms of ‘rules’ or ‘principles’, it would be misleading to say that
the cognizers believe those rules or principles. For example, it is plausible to
say that people form perceptual beliefs (or representations) in accord with
Gestalt rules, but implausible to say that they literally believe those rules. They
represent certain partly occluded figures as being single, unitary objects when
there is sufficient ‘continuity’ between their perceived parts, but they do not
believe the continuity principle itself. In our case, cognizers make interpreta-
tions in accordance with a routine that could be formulated by the principle,
‘Other people are psychologically like me’. But this is not really a believed
‘premise’ on which they inferentially base their interpretations.

Could a belief that is produced by such a routine qualify as justified, or as
a piece of knowledge, if the rule is not believed? Reliabilism is one species of
epistemology that would be congenial to this result. If the routine, or process,
is a generally reliable one, then reliabilism (in certain forms) may be prepared
to count its output beliefs as justified (see Goldman 1986). So there is at least
one type of epistemology that promises to resolve the epistemic challenge to
the simulation theory.14

A third noteworthy philosophical point concerns the ramification of aban-
doning the folk-theory theory. This theory has been a salient premise in the
argument for eliminativism about propositional attitudes. Eliminativists stan-
dardly begin by emphasizing that the attitudes – and all our commonsense
mentalistic notions – are part of a folk-psychological theory. They then point
to the bleak history of past folk scientific theories, suggesting that the same
scenario is in store for folk psychology (see Churchland 1981). Since folk
psychology will ultimately prove to have poorer predictive value than scien-
tific psychology, its constructs will need to be replaced or eliminated, just 
like the constructs of, say, alchemy. However, if it turns out that there is no
folk theory, in the sense of a set of commonsense generalizations that define 
the mental terms, then an important premise for eliminativism is no longer
available. (This point has been made by Gordon.)

Let me turn now to what is probably the most pressing philosophical issue
posed by the simulation theory. What is the relation, it maybe asked, between
the simulation approach and what it is for mental ascriptions to be correct?
The simulation theory purports to give an account of the procedure used in
ascribing mental states to others. What light does this shed, however, on the
conditions that are constitutive of mental state possession (especially posses-
sion of the attitudes)? The interpretation strategist hopes to extract from the
interpretation procedure some criteria of correctness for mentalistic ascrip-
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tions. Certainly the rationality and functionalist theories would generate
answers to this question. (Whether or not the answers they generate are correct
is another matter. Functionalist definitions, for example, have many familiar
problems.) But the simulation theory looks distinctly unpromising on this
score. Since simulation is such a fallible procedure, there is little hope of
treating ‘M is ascribed (or ascribable) to S on the basis of simulation’ as consti-
tutive of ‘S is in M’. Furthermore, simulation assumes a prior understanding
of what state it is that the interpreter ascribes to S. This just re-raises the same
question: what state is it that the interpreter is imputing to the agent when she
ascribes state M? What does her understanding of the M-concept consist in?

As far as the interpretation strategy is concerned, it indeed appears that if
the simulation theory is correct, the interpretation strategy is fruitless. One
cannot extract criteria of mentalistic ascription from the practice of interper-
sonal interpretation if that practice rests on a prior and independent
understanding of mentalistic notions. As far as the interpretation strategy goes,
then, the moral of the simulation theory is essentially a negative one. It should
be recalled, however, that I warned from the outset that the hope of the 
interpretation strategy may not be well founded.

Since the simulation theory is only a theory of interpretation, a theory of
how people apply mental terms to others, it is officially neutral about the
meaning of these terms. It is even compatible with, say, a functionalist account
of their meaning! It is conceivable that what people mean by mental terms is
given by functionalism, yet they use simulation as a heuristic procedure for
ascertaining or inferring the mental states of others. Although this is compat-
ible with the simulation theory, we have already given independent reasons
for concluding that the central presupposition of (commonsense) function-
alism, viz., the existence of a folk theory, is not satisfied. Furthermore, other
well-known difficulties with functionalism, such as absent qualia problems and
(other) threats of liberalism and chauvinism, render its prospects quite bleak
(see Block 1980). The time is ripe to reconsider the prospects of the first-
person approach to the understanding of mental concepts. It has always
seemed plausible, prior to philosophical theorizing, that our naïve under-
standing of mental concepts should prominently involve introspective and not
merely causal /relational elements. Some such approach to the concept of the
mental would nicely complement the simulation theory of interpretation.
However, this topic cannot be pursued here.15

Whether or not I have mounted a successful defense of the simulation
theory, I hope I have at least persuaded the reader of the importance of getting
the descriptive story of interpretive activity right. Although I think that the
evidence in favor of the simulation account is substantial, I am even more
convinced of the thesis that philosophers (as well as cognitive scientists) must
pay closer attention to the psychology of the interpreter. Making that point
has been the principal aim of this paper.
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Notes

Earlier versions of this paper were presented to the philosophy of mind seminar of the
Centre National de la Recherche Scientifique in Paris, a conference on the Chomskyan
turn in Jerusalem, the Oxford Philosophical Society, the Society for Philosophy and
Psychology, and the philosophy departments at King’s College, London and Rutgers
University. Commentator and audience comments on all of these occasions were most
helpful. I am particularly indebted to Michael Ayers, Michael Bratman, Pascal Engel,
Jerry Fodor, Elizabeth Fricker, Samuel Guttenplan, J. Christopher Maloney, Christopher
Peacocke, Stephen Schiffer, and Robert van Gulick. Special thanks are due to Holly
Smith, who read and commented on several previous drafts.

1 Functionalism, or the folk-theory theory, has not usually been presented under
the ‘interpretation’ label. Nonetheless, I believe it causes no distortion, and
indeed provides illumination, to view it in this guise.

2 Not all theories of content are discussed here. Many of these theories are not
conveniently formulated as theories of interpretation, i.e. as accounts of the inter-
preter. For example, the causal, covariational, or information-theoretic approach
(Fodor 1987; Dretske 1981) is normally stated directly as a theory of content,
not in terms of the methods or constraints employed by an interpreter. The same
holds of the evolutionary, ‘selectionist’, or learning historical, approaches to
content (Millikan 1984; Dennett 1987c; Dretske 1988). Furthermore, some of
these approaches (especially in their pure forms) do not seem promising as full
theories of content ascription unless they are supplemented by one of the three
approaches I discuss. The covariational approach seems best suited to handle
only beliefs, and indeed only that fraction of beliefs under ‘direct’ causal control
of their referents. To handle all types of beliefs, and the other attitudes, the
approach probably needs to be incorporated into a larger, functional framework
(or another such framework). Even Fodor, for example, who defends a covaria-
tional theory of content, also endorses a functional account of the attitude types
(Fodor 1987: 69–70); and he acknowledges that the content of certain mental
representations, viz., the logical vocabulary, should be handled in terms of their
functional roles (Fodor 1990: 110–11), Furthermore, many of the foregoing theo-
ries would be extremely dubious accounts of how we ordinarily understand and
ascribe contentful states, which is our present topic. A person can grasp and
apply the concept of belief, for example, without any knowledge of, or any
commitment to, either evolutionary theory or operant conditioning.

3 Hartry Field (1977) appeals to probabilistic coherence in the context of a theory
of content.

4 It may be argued that Jeremy’s judgments are not expressions of ‘probability’ judg-
ments, but merely degrees of inductive support, which need not obey the proba-
bility calculus (see Levi 1985). However, even if the Linda-style case does not
make the point at hand, other cases involving genuine probabilities could do so.

5 A convenient set of readings on the sure-thing principle appears in Gärdenfors
and Sahlin (1988: part III). For a survey of deductive failings, see Anderson
(1985: ch. 10). For empirically based misgivings about the charity approach,
similar to those expressed here, see Thagard and Nisbett (1983).

6 Putnam (1988) contains some new difficulties for functionalism. But this critique
does not challenge the use of functional-style generalizations by interpreters.
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7 A classical statement of the Verstehen approach is Collingwood (1946). Other
recent writers who find the simulation approach congenial include Heal (1986),
Ripstein (1987), Putnam (1978: lecture VI), Nozick (1981: 637–8), Montgomery
(1987), and Johnson (1988). Heal and Ripstein, in particular, anticipate a
number of points made here. Unfortunately, those papers came to my attention
only after this one was complete.

8 The threat of a regress was pointed out by Stephen Schiffer.
9 Here I am indebted to Michael Ayers.

10 This question is raised by Dennett (1987b), and its importance was impressed
upon me by J. Christopher Maloney. For helpful discussion, see Ripstein (1987).

11 I am indebted here to Christopher Peacocke. Notice that I am not assuming any
sort of ‘pictorial’ theory of imagery, only the ‘perception-similitude’ thesis about
imagery (see Goldman 1986: ch. 12).

12 This answer would admittedly not serve Lewis’s purposes, since he wants (roughly)
purely ‘physicalistic’ constraints. This is implied by his own formulation of the
problem of radical interpretation (in his paper of that title), as well as by the fact
that he is trying to meet Hilary Putnam’s challenge to resolve problems of content
indeterminacy from an ‘externalist’ perspective. Although my answer would not
serve Lewis’s purposes, the crucial point of my argument is that his own answer
just is not satisfactory.

13 Here I place significant weight on my distinction between basic ‘processes’ and
acquired ‘methods’ (see Goldman 1986). It is assumed that the interpreter spon-
taneously uses the same processes as the interpretee, but may differ in the
methods she deploys.

14 Another variant of the problem of other minds is presented by Wittgenstein and
reconstructed by Kripke (1982). According to this problem, if the primary concept
of a mental state is derived from my own case, I cannot coherently form even a
conception of another person’s being in that state. For a good reply to this
problem, see Loar (1990).

15 For a first-person, or subjective, rendering of mental content, see Loar (1987).
Interestingly, Loar couples his internalist account of content with a ‘projective’,
or simulational, account of understanding others.
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17

R.M. Gordon, “Simulation Without
Introspection or Inference from Me to You”

Many philosophers and psychologists would agree that people often predict
what another will do in a given situation by imagining being in such a situa-
tion and then deciding what to do. In deciding what to do they call on their
own motivational and emotional resources and their own capacity for prac-
tical reasoning. But like actors, they modify these resources as needed, on the
basis of evidence, especially the other’s past and present behavior. A similar
story holds for attributing mental states to others and explaining their 
actions. That people do sometimes resort to such simulation is not in serious
dispute. What is in dispute is the claim that simulation is fundamental to folk
psychology or at least is of deep psychological and philosophical significance.
In this essay I address some narrower issues that I believe have a considerable
bearing on the question of psychological and philosophical significance. They
chiefly concern what may be called the epistemology of simulation.

Most proponents as well as most critics of the simulation theory have
supposed simulation to be founded on an implicit inference from oneself to
others. The form of inference is essentially the old argument from analogy
(Mill 1869), which requires that one first recognize one’s own mental states
under actual or imagined conditions and then infer that the other is in similar
state.1 This is usually linked to an introspectionist account of how one recog-
nizes and ascribes one’s own mental states (Harris 1995; Perner and Howes
1995; Gopnik and Wellman 1995; Goldman 1993a). It is further assumed that,
to recognize and ascribe one’s own mental states and to mentally transfer these
states over to the other, one would need to be equipped with the concepts of
the various mental states (Fuller 1995; Heal 1995). According to this account,
in short, simulation is

1 an analogical inference from oneself to others
2 premised on introspectively based ascriptions of mental states to oneself,
3 requiring prior possession of the concepts of the mental states ascribed.

Most friends of simulation, such as Gary Fuller, Alvin Goldman, Paul
Harris, and Jane Heal, accept all three of these components in their accounts
of simulation. I reject all three. I have several reasons for doing so. I believe
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these components – the argument from analogy, introspective self-knowledge,
and the solipsistic possession of mental concepts – would add greatly to the
burden of establishing the simulation theory. They are targets of well-known
objections by Wittgenstein, Ryle, Strawson, Dennett, and other philosophers.
No philosopher of the late twentieth century should make use of these notions
without confronting the objections. In short, a conception of simulation that
incorporates the three components listed above is initially problematic.

Further, even if the objections can be answered, such a conception of simu-
lation would appear to be prejudicial against the simulation theory. Various
critics have argued that a background theory would be needed to warrant the
(supposedly implicit) argument from analogy, and that this background theory
would have to be at least in part a psychological theory. If they are right about
this, then the inference component threatens to collapse the simulation theory
into a form of theory theory. In addition, most of the empirical arguments
against the simulation theory, especially those presented in Gopnik and
Wellman (1995) and Perner and Howes (1995), crucially depend on the
assumption that in simulating another one recognizes one’s own mental states
by introspection and then infers that the other is in similar states. That is why
Gopnik and Wellman say that if the simulation theory were true, then chil-
dren would initially develop the capacity to make first person attributions of
belief, and only later, after mastering the inferential step, develop the capacity
for third-person attributions. And they cite studies showing that both capac-
ities emerge at about the same time.2

Philosophers and psychologists gravitate toward a conception of simulation
founded on the above three components mainly for the same reason many
philosophers and psychologists have held onto the theory theory: because they
see no clear alternative. I have had all along an alternative conception of simu-
lation. In this essay I will try to make it more explicit than in my earlier
writings on the topic.

I have argued at some length (1995a) that simulation should not be viewed
as having the logical structure of an analogical inference from one’s own
mental states to the mental states of others (component 1 above). Resuming
the discussion, I will respond in section 1 to Fuller and Heal, who argue that
if simulation is to yield attributions of mental states to others, then it cannot
avoid an analogical leap from one’s own states to the other’s states – a leap
that is possible, they further argue, only if one already possesses the concepts
of the relevant states (component 3). In section 2 I will reject the common
view that introspection plays an important, even an essential role, in simula-
tion (component 2).

1 Not a transfer but a transformation

Fuller (1995) and Heal (1995) each present as a major objection to my posi-
tion what I believe is essentially the same argument. Both note that for a
simulator S to ascribe a mental state of type M to O, it is not enough that 
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S merely be in a state of type M, in pretend mode or off-line. For example, it
is not enough, as Heal points out, that S merely “catch” O’s mental state by
some sort of contagion.

I agree that merely to be in a state M, even to be in M in off-line pretend
mode, is not sufficient for attributing M to some particular other person (or
even to oneself). But what else is needed? According to Fuller and Heal, what
is needed is for S to assign or mentally transfer to O the state S is in. Such a
transfer, they both suggest, requires that S believe the following: O is in a state
similar to this state I myself am in now, in pretend mode, as I simulate O. As
in Stich’s account of belief ascription (1983: 83–4), S picks out a state of S
and assigns to O a similar state. Fuller and Heal do not concern themselves,
as they certainly should if they accept this Stich-like account of belief ascrip-
tion, with Stich’s well-founded worries about “similarity in what respect?”
They simply suppose S to have the capacity to pick out a state of a particular
mental-state type M and then to assign to O a state of the same type. And to
have this capacity, they properly note, S must already have the concept of a
state of type M. This line of reasoning leads both Fuller and Heal to agree
with Goldman’s view that “simulation assumes a prior understanding of what
state it is that the interpreter ascribes to [the other]” (1989: 94).

Fuller and Heal seem here to overlook the crucial difference between simu-
lating oneself in O’s situation and simulating O in O’s situation. An additional
inferential step of roughly the sort Fuller and Heal describe would indeed be
required when I simulate myself in O’s situation, asking, “What would I
(RMG) do, think, want, and feel in O’s situation?” For an answer to this ques-
tion leaves open the question, “What about O: what does O do, think, want,
or feel in O’s situation?” But it is also possible to simulate O in O’s situation.
Following Goldman and Fuller, I will use the Kahneman and Tversky example
of the man who misses his flight by just five minutes. Suppose Mr Tees is an
acquaintance of mine.3 I have the option of imagining in the first person Mr
Tees barely missing his flight, rather than imagining myself, a particular indi-
vidual distinct from Mr Tees, in such a situation and then extrapolating to Mr
Tees. (See Williams 1966; Gordon 1986, 1995a.)

To simulate Mr Tees in his situation requires an egocentric shift, a recen-
tering of my egocentric map on Mr Tees (Gordon 1986). He becomes in my
imagination the referent of the first person pronoun “I,” and the time and
place of his missing the plane become the referents of “now” and “here.” And
I, RMG, cease to be the referent of the first person pronoun: what is imag-
ined is not the truth of the counter-identical, “RMG is Mr Tees”. Such
recentering is the prelude to transforming myself in imagination into Mr Tees
much as actors become the characters they play. Although some actors
(“method” actors, for example) occasionally step back from the role they are
playing and ask, “What would I myself do, think, and feel in this situation?”
and then transfer their answer (with or without adjustments) to the character,
the typical stance of modern actors is that of being, not actors pretending to
be characters in a play, but the characters themselves.4
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The point I am making is that once a personal transformation has been
accomplished, there is no remaining task of mentally transferring a state from
one person to another, no question of comparing Mr Tees to myself. For
insofar as I have recentered my egocentric map on Mr Tees, I am not consid-
ering what RMG would do, think, want, and feel in the situation. Within the
context of the simulation, RMG is out of the picture altogether. In short, when
I simulate Mr Tees missing his flight, I am already representing him as having
been in a certain state of mind.

Of course, there remains the possibility that my representation is incorrect:
that Tees’ state of mind after he learned of the barely missed flight was in fact
not as my simulation depicts it. But from this possibility it does not follow
that I am implicitly making an assumption that Mr Tees’ state of mind was in
fact what I am representing it to be in my simulation. In general, from the
possibility of my being wrong in believing, depicting, or otherwise representing
things to be a certain way, it does not follow that in addition to representing
things to be that way I am assuming that I am not wrong in representing them
to be that way.

A dogmatic theory theorist might react as follows to my assertion that in
simulating Mr Tees missing his flight, I am already representing him as having
been in a certain state of mind:

But in simulating him you are not representing him as being or as having
been in a certain state of mind. To represent someone as in a state of
mind is to represent him as in an inner state or states of a sort postu-
lated by belief–desire theory – for that is what states of mind are. Unless
simulation implicitly refers to such theoretical states – for example,
implying that Mr Tees was is in belief–desire theoretical states similar to
one’s own current off-line belief–desire theoretical states – it makes no
commitment as to states of mind. It is obvious, therefore, that to repre-
sent Mr Tees as being in a particular state of mind, indeed as having
mental states of any stripe, you have to step outside your simulation and
regard him, not from his own first-person point of view but “from the
outside,” as an object of a certain kind, namely, a “black box” possessing
theoretical states of the sort postulated by belief–desire psychology.

The only response I will offer here to this possible reaction is to counter-
balance it with what may appear to be another bit of dogmatism:

It is obvious that, if I wish to represent to myself a thinking being, I must
put myself in his place, and thus substitute, as it were, my own subject
for the object I am seeking to consider (which does not occur in any
other kind of investigation). (Kant 1781/1953: 336)

In Kant’s opinion, it is only by performing an egocentric shift and taking
the point of view of x (“the object I am seeking to consider”) that one
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represents x as a thinking being, and thus as having mental states. Thus there
is no option of stepping outside one’s simulation in order to check and see
“objectively” what state of mind a person actually is in.5 Whether or not Kant
is right in this matter, it does appear counter-intuitive to deny that a way of
representing what is going on in someone’s mind is to imagine it in the first
person. And Kant’s position may become very credible if I am right in specu-
lating that other minds, that is, the mental attributes of other people, are
represented in our brains as sets of transformational operations, with informa-
tion about a particular individual coded as the set of changes or adjustments
required to transform oneself mentally into that individual, rather than as an
inventory of the individual’s theoretical states, processes, and tendencies
(Gordon 1995b).

2 Self-ascription of belief and desire6

There is one more reason why it might be thought that simulation must be
supplemented by an inference from the simulator’s mental states to those of
the individual simulated. This is the widely held assumption that simulation
is or is part of an introspection-based methodology. As the term “introspec-
tion” is commonly understood, one can introspect only one’s own mental
states. So if an introspection-based methodology is to provide information
about another’s mental states, then it must do so by inference from one’s own.
Although Fuller and Heal do not explicitly link simulation to introspection,
an assumption that there is such a link may be guiding their thinking. Making
the assumption explicit, they could mount the following argument against my
position.

Let it be granted that, transforming ourselves much as actors do, we can
simulate Mr Tees in his situation, as opposed to merely simulating ourselves
in his situation. We would still have to decide what mental states he is in. We
would still have to determine, for example, whether he was extremely upset,
whether he thought it was the driver’s fault, and so forth. Assuming that we
do not in general decide these matters by applying a theory, how can we decide
them? The answer is that we seem to have a fairly reliable (if far from perfect)
means of accessing our own states: a special quasi-perceptual capacity to
monitor or “introspect” them. Unfortunately, the capacity for introspection
extends exclusively to our own mental states: no matter what imaginative
adjustments we make in simulating another, we cannot strictly speaking intro-
spect the other’s mental states. The only way to exploit introspection in the
detection of another’s states would be to introspect our own states and then
to attribute the same or similar states to the other.

The argument continues: Our own actual mental states often fail to match
the states another is in. That is precisely why we must transform ourselves in
imagination, imagining not only being in Mr Tees’ situation, but being Mr
Tees in his situation. In making this transformation we modify our regular
stock of mental states with a complement of artificially induced pretend states,
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keeping the resulting adjusted stock of mental states off-line. Then we intro-
spectively read off this adjusted stock of mental states, in the hope that they
will now match Mr Tees’ states. The important point is that, even when we
imagine being Mr Tees in his situation, it is only our own (adjusted) states
we are capable of reading by introspection. So an inference from ourselves to
Mr Tees is unavoidable.

Although I have not seen this argument put forward by Fuller, Heal, or any
other proponent of the analogical-inference interpretation of simulation, I
think it is the best argument for that interpretation. It assumes, of course, that
the method we ordinarily use to identify our own mental states is exclusively
a one-person procedure, suited only to our own states, as introspection is
supposed to be. My own view, as I shall explain shortly, is that the method
we ordinarily use is limited to identifying states in the first person, but, thanks
to our capacity for imaginatively transforming ourselves into other “first
persons,” it is not exclusively a one-person method. It is just as well suited to
labeling another’s states as it is to labeling our own, provided we represent
these states in the first person, that is, by an egocentric shift. At least this 
is the method used to identify those mental states that figure most centrally in
the explanation of behavior, namely belief and desire. These are the states 
I shall be concerned with here.

On the question of how we identify our own beliefs and desires, many
philosophers and psychologists evidently reason as follows. If our self-
ascriptions are to be generally reliable, then they must be the product of a
decision procedure that gives us some (internal, or subjective) justification or
basis for thinking we are in the states ascribed. In short, we must ascribe on
the basis of evidence of one sort or another. But the only sorts of evidence we
have generally available to us are behavioral and situational evidence assessed
in the light of a theory, and phenomenological or qualitative evidence. So either
it is by applying a theory that we ascertain what our present beliefs and desires
are, as many theory theorists would have it; or, as Goldman (1993a) and
Harris (1989) maintain, we decide on the basis of direct non-inferential intro-
spective access, recognizing our own beliefs and desires by their (alleged)
phenomenological or qualitative marks.

Goldman (1993a) briefly considers an alternative view that does not involve
a justificatory decision procedure. This is the “classical” functionalist account,
which holds that

Classification of a present state does not involve the comparison of
present information with anything stored in long term memory. Just
being in a mental state automatically triggers a classification of yourself
as being in that state. (1993a: 22)

But he dismisses this “nonrecognitional” account as useless for cognitive
science, because it tells us nothing about the process by which the system
makes these “automatic” classifications. Because cognitive science must
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account for the reliability of the process, it would have to explain how the
system “knows” what classification to make.

I will briefly sketch a nonrecognitional account that readily accounts for the
reliability of the process. Here is an illustration. We commonly train children
to preface nouns like “banana” and “chocolate milk” with “[I] want . . .”
under the appropriate circumstances: for example, when they look longingly
at a banana. Then we treat their utterance, “[I] want banana,” as a request
or demand for a (or the) banana. Whatever may be the case for adults, young
children, at least – two-year-olds, say – request or demand a � only when 
they actually want a �. So well-trained children will say, “[I] want banana,”
only when they want a (or the) banana. (Indeed, young children probably say
this virtually whenever they want a banana, given the right audience: they
haven’t learned yet to show restraint in the face of conflicting desires.)

Such training obviously won’t give children mastery of the concept of
wanting or desiring, and it won’t even teach them that “I” refers to the
speaker. So it isn’t sufficient for training children to make genuine ascriptions
to themselves. But it gives them a remarkable headstart on self-ascription.7

Given the right audience (and perhaps within certain other constraints), they’re
already employing the linguistic form of a self-ascription of desire when and
only when they have the corresponding desire. They already have the relia-
bility: now all they need are the concepts! If this account is right, then
reliability, at least in the self-ascription of particular desires, does not demand
that we or our “system” somehow know when we are in the state ascribed.
It doesn’t require either theoretical knowledge or introspective access.

Goldman (1993b) objects that the child who learns to say, “I want a
banana” only when it wants a banana must have learned “some sort of
(internal) cue by which it identifies its present state as a wanting.” But he gives
no grounds for saying this. Nor is it clear whether he thinks it is just the “I
want” device for getting a banana that demands introspective recognition of
wanting something, or that introspective recognition is a general requirement,
a precondition of acting to get what one wants, even of plaintively uttering,
“Banana!” or just reaching out and grabbing a banana. Neither option looks
very plausible, absent a compelling argument.

I turn from desire to belief. Here is a question I invite you take a moment
to answer before reading further:

Do you believe the planet Neptune has rings?

I doubt that in answering the question you examined your recent behavior
in the light of a theory. And I doubt that you introspectively searched for a
telltale feeling or other experiential mark of belief. You probably just reinter-
preted the question as, “Does Neptune have rings?” If your answer to this
outer-directed question was affirmative, then you were prepared to say, “Yes,
I do believe that Neptune has rings.” If your answer was negative, then you
were prepared to say, “No, I don’t believe that Neptune has rings,” or more
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strongly, “No, I believe that Neptune does not have rings.” If you had no
answer to the lower-order question, then you might have said, “No, I don’t
believe one way or the other.” (There appear to be constraints that rule out,
among other things, taking excessive time to retrieve or derive the answer and
relying on external sources of information.) Because this procedure answers a
metacognitive question by answering a question at the next lower semantic
level, I will call it an ascent routine.8

A point that needs emphasis is that, unlike introspection, an ascent routine
for identifying beliefs would be as well suited to identifying another’s beliefs
as it is to identifying one’s own. Whether in my own person or within simu-
lation of O, I can settle the question, “Do I believe that p?” by asking, within
the constraints indicated earlier, whether it is the case that p. But in a simu-
lation of O, remember, “I” refers exclusively to O, the individual on whom
my egocentric map has been recentered. So I settle the question of whether 
O believes that p simply by asking, within the context of a simulation of O,
whether it is the case that p. That is, I simply concern myself with the world
– O’s world, the world from O’s perspective (metaphors we can now moor
securely to a particular operation or procedure) – and, reporting what is there,
I am reporting O’s beliefs. That is, reporting O’s beliefs is just reporting what
is there. That is why I held (in Gordon 1986) that to ascribe to O a belief that
p is to assert that p within the context of a simulation of O.

Heal is right, however, to note (1995: 43) that I introduced a problematic
element in the “sketchy proposal” (which indeed it was) presented in Gordon
(1986). For I suggested that to ascribe to Smith a belief that Dewey won the
election could be understood as saying the same as,

Let’s do a Smith simulation. Ready? Dewey won the election.

But “Let’s do a Smith simulation” is an invitation or request to simulate Smith,
and this may suggest the view that ascriptions of belief are speech acts quite
distinct from assertions or descriptive claims. And as Heal remarks, this would
make the account problematic in some of the ways ascriptivist or speech-act
accounts of moral discourse are problematic.9 For example, in the antecedent
of a conditional (“If Smith believes that Dewey won the election then . . .”),
how do we embed an invitation to simulate?

The difficulty is avoidable, as Heal says, if I drop the prefatory speech act
and explain belief attribution in terms of simulation alone. To develop the
point, note that there is no problem embedding a supposition or off-line belief
within the antecedent of a conditional – not, at least, if we regard the antece-
dent of a conditional as itself a supposition or off-line belief (as protrayed in
the Ramsey test, for example.) To answer the question, “If I believed that p,
would I do x?” I simply suppose or pretend that p, using my motivational and
other resources to “decide,” or at least to form an off-line intention, whether
or not to do x (Gordon 1986). Where I am supposing another person, Mary,
to believe that p, I embed the supposition that p within a simulation of Mary
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and, using my adjusted motivational and other resources, “decide” whether
or not to do x. There are complications, of course. An example that calls for
thinking on two different semantic levels is this: “If I now believed I was about
to inherit a million dollars, I would be a fool.”10 For although I am supposing
or pretending that I am about to inherit a million dollars, I am also holding
on to the facts as I actually see them when I deem myself a fool. A different
sort of “split-level” conditional is the following: “If I were about to inherit a
million dollars, then I would believe I were about to inherit a million dollars
(that is, I would know about it).” I will take up these complications and also
discuss propositional attitudes other than belief in a more detailed presentation
(Gordon, forthcoming).

Earlier I described a way in which children can be trained to use the
linguistic form of a self-ascription of desire only when they have the corre-
sponding desire. There is a parallel way of training children to use the form
of a self-ascription of belief. It would be possible to take a child – say, a two-
year-old – who can make just a few simple assertions, like, “It’s raining,” and
in one easy step train her to sound very sophisticated. Just get her to preface
her assertions, optionally, with “I believe.” She’ll then say, for example, “I
believe it’s raining.”11 What anomalous precocity: The child is barely able to
express simple first-order beliefs, and yet here she is expressing metabeliefs!
Not only that, they appear to be remarkably reliable metabeliefs! That is, we
would usually find such self-ascriptions borne out by situational and behav-
ioral evidence. And, as in the case of desire, such reliability would not demand
theoretical knowledge or introspective access.

As in the case of desire, such training would not give children mastery of
the concept of belief. Merely to train children to preface assertions with the
formula, “I believe,” would not enable them to distinguish self-ascription of
belief from assertion of fact. They would not learn that the belief that p, unlike
the fact that p, may be false, or at variance with fact. Nor would they learn
that someone may fail to believe that p even if p. And they would not learn
that what one individual believes may differ from what another believes. In
short, they are not being trained to make genuine ascriptions to themselves.
They will not have learned that they believe it is raining, or even that they
have beliefs. As far as they are concerned, they are just parroting a formula
before saying what they really mean to say, namely, that it’s raining.

But suppose that in simulating another (or herself at a time other than the
present) – in describing “the world” as it is within the context of the simula-
tion – she sometimes makes assertions that contradict assertions of her own,
that is, those she makes from her “home” perspective. In other words, she
allows “the facts” within a simulation to deviate from the actual facts. And
suppose further that she introduces these deviations, not in an arbitrary way,
but in response to situational and behavioral evidence, in a way that reduces
errors in explanation and prediction. All she has to do then is to preface these
deviant assertions with “I believe . . .” – or to follow the slightly more sophis-
ticated ascent routine, answering the question, “Do I believe that p?” by
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answering the lower-level question, “Is it the case that p?” – and she will be
making motivated attributions of false belief.12 Whether she “passes” a partic-
ular false belief test will depend, of course, on how sophisticated she is in
making these adjustments.

Although a capacity to pass a stringent false belief test maybe sufficient for
routine proficiency in using the concept of belief, a sophisticated under-
standing would require much more. For one thing, the child is not yet in a
position to understand that her own present beliefs may themselves deviate
from the facts. She will not come to understand this as long as she ascertains
what her own present beliefs are simply by asking what the facts are. To see
her own present beliefs as distinguishable from the facts she will have to simu-
late another for whom the facts are different – or, more broadly, adopt a
perspective from which the facts are different, whether this perspective is occu-
pied by a real person or not – and then, from the alien perspective, simulate
herself. Or at least she will have to realize abstractly that from a perspective
distinct from her own present perspective what she now counts as fact may
be, not fact, but nothing more than fact-from-her-particular-perspective.

Strictly speaking, this realization does not require a capacity to simulate
others. It can arise with development of the capacity to demote some of one’s
own memories to off-line status. For example, suppose the child saw on a table
what appeared to be a rock but later proved to be a sponge that looked like
a rock. Now she no longer remembers that there was a rock on the table, for
that “fact” is no longer available as a basis for action, emotion, desire, or
factual inference. It attains that status only off-line, for example, when she
tries to reconstruct a coherent explanatory narrative for her past actions,
emotions, expectations, and inferences. What she learns to report is that she
remembers believing that there was a rock on the table. The point here is that
by simulating a possible later perspective of her own the child may come to
conceptualize in a more sophisticated way what she now counts naïvely as fact
pure and simple. She comes to think of it instead as fact relative to her present
perspective.

Now consider some developmental consequences. If an introspectionist
version of the simulation theory, such as that of Goldman or Harris, is right,
then we should expect children to be able to identify their own present beliefs
with at least fair reliability before they can ascribe beliefs to others or to them-
selves in the past. For according to that version of the simulation theory, as
we have seen, ascriptions to others or to oneself in the past would depend on
the capacity to introspectively identify one’s own present beliefs.

But if my view is right, and we ordinarily identify our own present beliefs
by using an ascent routine, then there is an important distinction to be made
between comprehending and uncomprehending ascriptions: that is, ascriptions
made with and ascriptions made without the understanding that the beliefs
ascribed may be false. On the one hand, a capacity for reliable uncompre-
hending identification of one’s own present beliefs should emerge before one
can ascribe beliefs to others or to oneself in the past. It emerges extremely
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quickly, if my view is right, and does not even await development of a capacity
to introspect, much less a capacity to recognize a belief by its introspected
phenomenological marks. For as I said earlier, a child who makes only the
simplest assertions is already in a position to use the linguistic form of a
present-tense self-ascription of belief in a highly reliable way. And with just a
little more sophistication a child can learn to answer questions of the form,
“Do I believe that p?” by answering, “Is it the case that p?” If on the other
hand we are speaking of genuine, comprehending ascriptions of belief, ascrip-
tions made with the understanding that the beliefs ascribed may be false, then
present-tense self-ascriptions ought to come last of all. For these require
conceptually prising one’s own present beliefs apart from the facts, so that,
like the beliefs of another, they may be false or at variance with the facts. This
difficult feat requires taking a vantage point outside one’s present perspective,
whether by simulating another or by memory demotion, and then reflecting
back from that vantage point on what one now counts as fact pure and simple
and relegating it to a perspectival status.

My coupling of simulation with an ascent routine for self-attribution of
belief has further important consequences concerning the attribution of belief.
Because an ascent routine is, unlike introspection, as well suited to labeling
another’s states (after an egocentric shift) as it is to labeling one’s own, it may
yield conflicting attributions.13 For example, consider the question, “Should
fathers devote as much time to child care as mothers?” Suppose that when I
ask myself this question, I answer, “Yes.” But you, simulating me on the basis
of behavioral evidence, answer for me, within the simulation, “No.” So, using
an ascent routine, I say, “I believe that fathers should devote as much time as
mothers.” But using the same routine within your simulation of me, you say,
“No, I believe fathers should not devote as much time as mothers” – with “I”
of course referring to me, RMG. (You would also be entitled to say, “I do not
believe fathers should devote as much time . . .”) Even if you think I believe I
am being sincere in asserting that fathers should devote as much time, you
might still deny that I believe it – that is, really believe it, as opposed to merely
believing that I believe it. Here, it would seem, is the opening for unconscious
belief. I am thinking not only of Freudian unconscious belief but also uncon-
scious belief of the sort often posited in cognitive science – arising, say, from
a decoupling of speech from other systems that control motor behavior.

Finally, the conflict need not be between attributions made by me and attri-
butions made by someone else. Both attributions may be made by the same
individual. Just as you might simulate me on the basis of behavioral evidence,
so I might simulate myself on that basis, as if I were another person (but with
the benefit of behavioral evidence that may be unavailable to others). Speaking
for that “other” character I am simulating, I might say or think, “No, fathers
should not devote as much time as mothers.” I might play myself best, in other
words, if I pretend that fathers should not devote as much time. Thus I may
find myself giving contradictory belief reports. Speaking for myself, RMG, my
ascent routine yields, “I believe fathers should devote as much time.” But,

R.M. GORDON

362



speaking for this fellow RMG that I am simulating, my ascent routine yields,
“I believe fathers should not devote as much time.”

At the beginning of this chapter I suggested that the assumption that simu-
lation involves an implicit inference from oneself to others is propped up by
the assumption that simulation is, or is part of, an introspection-based
methodology. Rather than rehearse the well-known objections to introspec-
tion, I have argued that ascent routines, coupled with our capacity for
recentering our egocentric maps, enable us directly, rather than by inference
from our own case, to identify the mental states of others.14

Notes

1 “I am conscious in myself of a series of facts connected by an uniform sequence,
of which the beginning is modifications of my body, the middle is feelings, the
end is outward demeanour. In the case of other human beings I have the evidence
of my senses for the first and last links of the series, but not for the intermediate
link . . . by supposing the link to be of the same nature as in the case of which
I have experience, . . . I bring other human beings, as phenomena, under the
same generalizations which I know by experience to be the true theory of my own
existence” (Mill 1869).

2 These findings are contested by Harris (1995) and also by Goldman (1993a).
But if my alternative to the introspection-plus-inference conception of simulation
is right, the significance of these findings for the simulation-versus-theory debate
changes dramatically.

3 If (as in the actual example from Kahneman and Tversky) “Mr Tees” is just a
placeholder designating no particular individual – any “typical” person – then
there is nothing at issue here. You fill the bill just as well as anyone else, unless
you have characteristics that might make your answer to the question an atyp-
ical one. But if we are talking about a real person or a person referred to in some
existing body of fiction, then there is a difference.

4 One very perceptive actor, the late Ray McAnally of the Abbey Theatre in Dublin,
described his thoughts while filming a scene in which he played a future British
Prime Minister:

I had a very interesting moment in 10 Downing Street, surrounded by pictures
of all the previous Prime Ministers and me in the middle of it. And I realized
it was true, I was the Prime Minister. It’s not that I’m pretending to be the
Prime Minister . . . I am the Prime Minister. (New York Times, “A Living
Definition of Acting,” Jan. 15, 1989)

Of course, McAnally was in fact pretending to be the Prime Minister, only he was
doing it so well that he was oblivious to that fact.

5 Kant’s larger aim in this passage, it should emphatically be noted, is to combat
metaphysical dogma: to criticize the tradition of Cartesian “rational” psychology,
which he regards as fallaciously drawing ontological, e.g. dualistic or idealistic,
conclusions from this “obvious” truth about the mere form of our representation
of thinking beings qua thinking beings. Thus it would be consistent with this
merely formal truth to assert that mental predicates are true only of bodies and

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“SIMULATION WITHOUT INTROSPECTION”

363



(although Kant does not address the topic) that mental states are token- or even
type-identical with physical states. Scholarly note: The passage quoted appears
only in the First Edition of the Critique of Pure Reason, under the “Second
Paralogism of Pure Reason.” But in both editions we find the following:

Now I cannot have any representation whatsoever of a thinking being, through
any outer experience, but only through self-consciousness. Objects of this kind
are, therefore, nothing more than the transference of this consciousness of
mine to other things, which in this way alone can be represented as thinking
beings. (Kant 1781/1953: 347/332)

(The term objects as used here should be interpreted as “objects of thought.”)
6 The major portion of this section is adapted from my commentary on target arti-

cles by Goldman and Gopnik in The Behavioral and Brain Sciences (Gordon
1993).

7 Goldman (1993b) comments that if, as I admit, such training is not sufficient to
give children the concept of wanting, “then the training story sheds no light on
what it is to grasp the concept of wanting.” This doesn’t seem to follow. Such
training, although not sufficient for acquisition of the concept, may be the most
important step in the acquisition of the concept. (To be specific, it links the name
of a propositional attitude with the verbal expression of that attitude; and the
child who can also expressively use “I want” when speaking for another (that is,
in the context of a simulation) comes close, in my view, to having grasped the
general concept of wanting.)

8 Compare Gareth Evans: “I get myself in position to answer the question whether
I believe that p by putting into operation whatever procedure I have for answering
the question whether p” (Evans 1982: 225). Also compare the “answer check
procedure” described in Wimmer, Hogrefe, and Sodian (1988): If asked whether
you know the answer to a question q (for example, about the location of some-
thing), simply check to see if you have an answer to q.

Descartes says,

Whatever enables us to know anything else cannot but lead us to a much surer
knowledge of our own mind. . . . For it may perhaps be the case that I judge
that I am touching the earth even though the earth does not exist at all; but
it cannot be that when I make this judgment, my mind which is making this
judgment does not exist. (Principles of Philosophy I: 11)

Descartes is right in thinking he can peel off an “I believe” from all his asser-
tions about the world. But this requires no reliance on the assumption that minds
have a capacity for introspection, much less on the further assumption that intro-
spection yields indubitable knowledge. Becoming aware of something as going
on “in himself” when judging that the Earth exists isn’t a matter of becoming
aware (much less indubitably aware) of something other than the Earth. (On this,
see Collins, 1987. But as I note at the end of this paper, Collins fails to see that
the ascent routine may be used to make attributions, to others or to oneself, on
the basis of evidence.) I believe a similar case can be made with regard to desire,
emotions, and even pleasure and pain, but I postpone the details.

9 Brian Loar and Andrew Melnyk made a similar point in conversation.
10 An example like this was provided by Piers Rawling.
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11 Although it is common practice to train children to use the form of a self-ascrip-
tion in order to “express a desire for something,” it is neither a common nor in
general a useful practice to train young children to use the form “I believe that
p” as a way of “expressing a belief,” that is, as a way of asserting that p. (Adults
often employ the linguistic form of a self-ascription of belief as a way of making
an assertion, though they typically do so in order to qualify the assertion, that is,
to add a Gricean, “implicature.”)

12 If within her “home” perspective there is an answer to the lower-level question
but from the other’s perspective there is no answer at all – one draws a blank –
she attributes ignorance of fact (failure to believe what is true) to the other. Where
the asymmetry is reversed, the matter gets more complex.

13 This is the important point that Collins (1987) overlooks.
14 Although this may appear to be a new way to look at simulation, it underlies and

makes plausible the comments on belief ascription I made in Gordon (1986).
But I was certainly not clear, when I wrote that paper, that my intuitions about
simulation were colored by a belief in self-ascription by ascent routines. And I
probably would not have become clear, but for some very articulate defenders of
a different conception of simulation.
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PART III

REPRESENTATION AND
COGNITIVE ARCHITECTURE
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INTRODUCTION

It is almost a commonplace among philosophers and cognitive scientists that
cognition is in some sense a form of information-processing (although some
philosophers, particularly those adopting what I have termed the picture of the
autonomous mind, make a sharp distinction between personal-level thought and
the subpersonal information-processing that makes it possible). Unsurprisingly,
however, there is no agreement on how information is represented in the
mind/brain, or on how those representations are processed (what is often called
the architecture of cognition). Each of the five subsections that follow deals with
a different dimension of the general problem of how best to understand repre-
sentation and cognitive architecture.

Part IIIA presents three different perspectives on the basic idea that cognition
is a form of computation. The discussion here focuses on what is often called
the classical approach to cognitive architecture. In Part IIIB, in contrast, we
consider the non-classical approach to computation, which favors models of
information-processing in which representations are distributed across patterns
of neural activation. One of the key questions in thinking about how information
is processed in the mind-brain is the extent to which information-processing is
modular – that is, the extent to which specific processing tasks are carried out
by dedicated and specialized cognitive systems. The papers in Part IIIC present
three different perspectives on modularity. In Part IIID we move to a pressing
issue that arises when one starts to think about the relation between subpersonal-
level information-processing and personal-level cognition: How are the
representations postulated at the subpersonal level related to personal-level
beliefs and capacities? Finally, Part IIIE offers three different perspectives on the
relation between thought and language. 

IIIA Cognition as computation

The two guiding ideas of what has come to be known as the “cognitive revolu-
tion” in psychology and other cognitive sciences are, first, the idea that the
mind-brain is an information-processing device and, second, the idea that cogni-
tion is a form of computation. The information-processing approach to the
mind-brain can be developed in a number of different ways, depending upon how
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computation is understood. The papers in this section explore what is often called
the classical approach to computation, which treats the mind-brain as a symbol-
processing device analogous to a digital computer and draws its inspiration from
mathematical logic and theoretical computer science (as sketched out in the
paper by Newell and Simon). Within the artificial intelligence literature (discussed
in the papers by Newell and Simon and by Dennett) the classical approach is
often termed good old-fashioned artificial intelligence (GOFAI), in contrast with
the non-classical approach drawing upon dynamical systems theory and models
of parallel distributed processing (see ID and IIB above, and IIIB below). 

One fundamental tenet of the information-processing approach to cognition is
that an information-processing task must be studied and modeled at different
levels. The canonical exposition of the multi-level approach is to be found in
David Marr’s book A Theory of Vision, from which we have reprinted selections.
According to Marr, any information-processing analysis of a given cognitive system
(such as Marr’s own example, the visual system) has to begin with a computa-
tional theory of the task carried out by the system. Analysis at the computational
level provides a detailed specification of the task being carried out and the func-
tion that performing that task plays in the organism as a whole. We can
understand this task analysis as a specification of how the system transforms a
given form of input into a given form of output. With this specification in hand,
the next level of analysis is the representational level, where the job is to specify
a process for carrying out the input-output transformation identified at the compu-
tational level. Marr thinks that providing such a specification involves, first,
specifying how the input information is represented in the system and, second,
giving an algorithm (i.e. a series of simple computational steps, such as those
that take one from one line to the next in a proof in the predicate calculus) that
can actually transform that input into the required output. The final level of
analysis is the implementational level, which provides an account of how the
representations and algorithm identified at the representational level are physi-
cally realized. Marr illustrates the tri-level analysis by sketching out how he
applies it to the visual system, with particular reference to analysis at the compu-
tation and representational levels.

In thinking about how to carry forward the project of information-processing
analysis outlined by Marr, perhaps the most pressing question is how the repre-
sentational level is to be understood – what is the format of the representations,
and how should we understand the algorithms that operate on them. Allen Newell
and Herbert Simon’s “Computer Science as Empirical Inquiry: Symbols and
Search” offers an influential answer that clearly states the main principles of the
classical approach to computation. Newell and Simon are interested primarily in
the artificial intelligence end of computer science, which they see as primarily
the study of intelligent action. Just as biology is guided by the principle that cells
are the basic building blocks of living organisms and plate tectonics by the prin-
ciple that the surface of the earth is made up of a small number of moving 
plates, they take computer science to be guided by two basic principles. The first
basic principle is the physical-symbol system hypothesis, according to which any
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sufficiently complex physical system capable of storing and processing symbols
is capable of intelligent action and any system capable of intelligent action will
turn out on analysis to be a physical-symbol system. Newell and Simon show how
the physical symbol hypothesis has its origins in the formalization of mathemat-
ical logic in the 1920s and 1930s and the genesis of the theory of computability
in the work of Alan Turing and others. As they note, the physical-symbol is an
empirical hypothesis that stands or falls with its success in modeling intelligent
action. In constructing such models, Newell and Simon propose that computer
scientists are guided by a second basic principle, the heuristic search hypoth-
esis, which is a hypothesis about how physical-symbol systems solve problems.
It states that problems are solved by generating and modifying symbol structures
until a suitable solution structure is reached. Newell and Simon see the enter-
prise of artificial intelligence as driven by these two hypotheses. Recent develop-
ments in non-classical models have challenged this view, but this paper remains
the canonical statement of the central claims of good old-fashioned AI. 

Daniel Dennett’s “Cognitive Wheels: The Frame Problem of AI” explores some
of the difficulties associated with the frame problem in artificial intelligence –
difficulties that arise for anyone pursuing Newell and Simon’s heuristic search
hypothesis, for example. The frame problem is essentially the problem of deter-
mining which of the indefinitely many deductive consequences of a piece of
information are relevant in a given situation. As the amusing vignette with which
Dennett opens the paper makes clear, any intelligent system needs to be able to
store, access, and process real-world “knowledge” efficiently, and, in particular,
it needs to be able to ignore most of what it knows. Dennett reviews some of the
proposals that workers in artificial intelligence have proposed for tackling the
frame problem, such as the scripts and frames proposed by Marvin Minsky and
Roger Schank. According to Dennett, what all these approaches have in common
is that they are attempts to formalize the essentially non-monotonic nature of
ordinary commonsense reasoning (where reasoning is non-monotonic only if, as
is emphatically not the case in ordinary predicate logic for example, conclusions
can be defeated by the addition of new information). As he notes, there is a
danger that the proposed solutions to the frame problem will all turn out to be
“cognitive wheels”, by which he means theoretical entities that solve theoretical
problems but have no biological plausibility. Nonetheless (very much in the spirit
of Marr’s injunction to careful task analysis) he suggests that constructing artifi-
cial models is a necessary first step in understanding the information-processing
tasks that the biological brain carries out. 

IIIB Non-classical cognitive architecture

Issues to do with representation and cognitive architecture have been prominent
in a number of the articles in Parts I and II. So, for example, whereas the picture
of the representational mind is closely bound up with the idea of the mind as an
information-processing device that works in much the same way as a digital
computer, the picture of the neurocomputational mind favors a fundamentally
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different, sub-symbolic conception of information-processing. Correspondingly,
these two pictures of the mind understand representation in very different ways.
Proponents of the representational mind think that information is represented in
discrete and causally efficacious symbol structures, whereas neurocomputational
theorists typically see representations as distributed across patterns of neural 
activation. The distinction here is often put as the distinction between classical
and non-classical cognitive architectures. Whereas the classical approach was
primarily the focus of Part IIIA, the two papers in this section explore the non-
classical approach. 

Terence Horgan and John Tienson’s “Levels of Description in Non-classical
Cognitive Science” is a careful discussion of the relation between connectionist
information-processing models and Marr’s account of levels of description in
cognitive science (as expounded in the extract from Marr’s Theory of Vision
reprinted in Part IIIA). As they and others have noted, it is possible to subsume
connectionist models within classical cognitive science by locating them at Marr’s
implementational level – that is, by viewing them as proposals about how classi-
cally specifiable algorithms are implemented in the brain. Horgan and Tienson
argue, however, that the mathematics of connectionist models makes possible,
and indeed plausible, ways of interpreting them as genuine alternatives to clas-
sical approaches to cognitive architecture. One of the guiding assumptions of
classical cognitive science is that transitions between cognitive states are effected
by functions that are algorithmic, in the sense that an algorithm exists that will
compute the function in a finite number of computationally simple, single steps
(as in the machine table of a Turing machine). Connectionist networks, however,
are dynamical systems and the transitions between complete states of dynamical
systems do not always fit the algorithmic model. According to Horgan and Tienson,
Gordon Berg’s connectionist model of natural language sentence parsing is an
example of a non-algorithmic dynamical system, and hence one that cannot be
subsumed within the classical approach. Horgan and Tienson end with the radical
non-classical proposal that functions governing transitions between cognitive
states might not even be what they term “computationally tractable”. If cogni-
tive transitions are subserved by dynamical systems then it might well be the
case that there are no general laws over cognitive states that will fix the relevant
transitions, even though at a lower level of description the mathematical transi-
tions between the states of the dynamical system are themselves computationally
tractable.

One of the key issues in dispute between classical and non-classical
approaches to cognitive architecture is whether representations are composition-
ally structured. Proponents of classicism such as Fodor and Pylyshyn (1988)
argue that, since cognition requires compositionally structured representations
and the representations in connectionist models are not compositionally struc-
tured, connectionist networks can only at best be implementations of classical
models. Similar issues arise in debates about the implications of connectionist
networks for how we think about propositional attitudes (see the article by
Ramsey, Stich, and Garon in Part IIB). Tim van Gelder’s “Compositionality:
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Connectionist Variations on a Classical Theme” distinguishes two types of compo-
sitionality – concatenative compositionality and functional compositionality. A
representational system is compositional in the concatenative sense when its
representations mirror the structure of what they represent, in the way that an
assertoric sentence contains elements corresponding to the constituents of the
fact that it reports. Concatenatively compositional systems of representation
include natural languages and the various formal languages employed in mathe-
matics, computer science, and so on. A representational system is functionally
compositional, on the other hand, just if it can represent structured objects in
such a way that there are effective and reliable processes for producing such an
expression given its constituents and decomposing the expression back into its
constituents. All concatenative compositional systems are functionally composi-
tional, but the converse does not hold. Van Gelder argues with examples that,
although connectionist networks are not concatenatively compositional, many of
them are functionally compositional and suggests that functionally compositional
representations are structured in a sufficiently robust sense to meet the concerns
raised by Fodor and Pylyshyn. 

IIIC Conceptions of modularity

It has become common among psychologists and cognitive scientists to draw a
distinction between modular and non-modular cognitive processes. This is, in
essence, the distinction between high-level cognitive processes that are open-
ended and involve bringing a wide range of information to bear upon very general
problems, and lower-level cognitive processes that work quickly to provide rapid
solutions to highly determinate problems. The distinction is also often drawn at
the level of cognitive architecture, where it has become common for cognitive
scientists to identify different cognitive systems (modules) responsible for
different types of modular processing. Although the basic idea of modularity is
well-established in psychology and cognitive science, it can be understood in a
range of different ways. Three of these are represented in this section. 

The canonical exposition of the hypothesis of modularity at the level of cogni-
tive architecture is Jerry Fodor’s 1975 book The Modularity of Mind. A summary
of the book is reprinted here. Fodor offers his conception of modularity as a way
of trying to do justice to elements of two very different ways of thinking about 
perception. According to the behaviorist paradigm that was dominant in psychol-
ogy until the “cognitive revolution” of the 1960s, perception can be understood
as a complex form of reflex behavior. Identifying an object perceptually is, in the
behaviorist view, simply a matter of being able to discriminate it and discrimina-
tive responding can be understood purely in terms of conditioned responses that
are, to all intents and purposes, completely non-cognitive. In reacting against
behaviorism, the cognitivist movement in psychology went to the other extreme,
essentially assimilating perception to high-level cognition by arguing (on the basis
of poverty of the stimulus arguments) that perception involves complex forms of
computation and inference. Fodor argues that the straightforward opposition
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between cognitivism and behaviorism is mistaken. Some perceptual processes
(the modular ones) are reflex-like in the sense that they are informationally encap-
sulated. That is, they operate independently of the organism’s beliefs, desires, 
and so on. (Fodor takes this to be shown by the fact that visual illusions persists
even when one knows them to be illusory.) Nonetheless, they are unlike reflexes
in the sense that they involve information-processing. The fact that modular
processes are encapsulated allows them to involve information-processing and
inference without thereby being assimilated to high-level cognitive processes. 

According to Fodor, modules are computational systems that take as inputs a
narrow range of the information available to the organism (typically, specifica-
tions of what is impinging on the sensory periphery); that have access only to a
limited database of proprietary information; that are largely innately specified;
that are characteristically associated with specific neuroanatomical areas; and for
which it is often possible to identify highly specific pathologies resulting from
damage to the module. These characteristics ensure that modular processes and
systems can be given standard information-processing analyses on the model set
out by Marr (see IIIA above) – and in fact, Marr’s analysis of the early visual
system can be seen as a paradigm of modular analysis. This positive thesis goes
hand in hand with a deeply pessimistic one, however. Fodor argues that non-
modular processes are profoundly resistant to psychological analysis. Ultimately,
for Fodor, cognitive science and scientific psychology can aspire to understand
the modular aspect of cognition, but none of the techniques that will work for
modular systems can be applied to non-modular cognition, and we have no idea
of what other techniques could be used. 

Many cognitive scientists have tried to resist Fodor’s pessimistic conclusion by
extending the concept of modularity beyond the very circumscribed domain to
which Fodor confined it (essentially the early stages of perceptual and linguistic
processing). Whereas Fodor is emphatic that beliefs, desires, and other common-
sense psychological states are fundamentally non-modular, it has become
common for cognitive scientists to postulate modules corresponding to bodies 
of personal-level knowledge, such as the social intelligence module (responsible
for social understanding and social coordination), or the naïve physics module
(responsible for our basic understanding of the physical world). In “How to Think
About the Modularity of Mind-reading” Gregory Currie and Kim Sterelny assess
the plausibility of thinking of social intelligence as modular. As they note, it is
very implausible to think of social intelligence as informationally encapsulated in
the manner required for a Fodorean module. Social intelligence as a whole cannot
be modular, since just about any type of information can be potentially relevant
to, and is frequently deployed in, social understanding. It would be more plau-
sible, they suggest, to think of social intelligence as modular in the modest sense
that processes of social understanding take inputs from encapsulated modules
that lie between input perceptual processing and “central” belief fixation and
that serve the function of attaching social “markers” to representations of people
(who might be marked as friendly, for example) and social situations (which might
be marked as dangerous). These second-order encapsulated modules are not
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themselves Fodorean, since their inputs are not from transducers. Currie and
Sterelny suggest that postulating second-order modules can do justice to many
of the motivations for taking social intelligence as a whole to be modular, from
the existence of social illusions to understanding breakdowns in social skills such
as autism. 

Evolutionary psychology provides a very different and much more radical
perspective on modularity. In “Origins of Domain Specificity: The Evolution of
Functional Organization” the evolutionary psychologists Leda Cosmides and John
Tooby make the case for what has come to be known as the massive modularity
hypothesis. They argue that there is no such thing as central processing under-
stood in the way that Fodor understands it. All cognition is domain-specific and
we should view the mind as made up of a large number of specialized modules
that evolved to deal with highly specific problems confronted by our hominid and
pre-hominid ancestors. Evolutionary psychologists postulate the existence of
Darwinian modules governing different types of social interaction; our everyday
understanding of number; our naïve physics (viz. our understanding of the
dynamic and kinematic properties of ordinary objects); our naïve biology (viz. our
understanding of the basic properties of living things); and so on. According to
the massive modularity hypothesis, the mind is a complex structure of superim-
posed Darwinian modules.

Evolutionary psychologists start from the assumption that, since the mind is
a product of evolution, the best way to understand it is as a set of cognitive mech-
anisms that evolved to deal with specific problems that arose in human
evolutionary history. Cosmides and Tooby maintain that these cognitive mecha-
nisms must be domain-specific in form (i.e. specialized for dealing with highly
specific information-processing problems). They argue for this by arguing that
domain-general processes of the sort that Fodor and others have taken to govern
central processing and belief fixation cannot guide behavior in fitness-preserving
ways (and hence cannot be the product of evolution). They draw attention, for
example, to the fact that there can be no domain-general criterion of success or
failure that correlates with fitness. What promotes fitness varies from domain to
domain. It is fitness-promoting to refrain from sexual intercourse with close rela-
tives, but not to withhold assistance from them. It is the job of evolutionary
biology, they argue, to construct computational theories of adaptive information-
processing problems (which will, in effect, be evolutionary versions of Marr-style
task analysis) that will guide the analysis of the mechanisms that solve those
problems.

IIID Tacit knowledge

One question that frequently arises in thinking about representation and cogni-
tive architecture is how we should think about the relation between the
personal-level states of commonsense psychology and the subpersonal represen-
tational states postulated in, for example, computational theories of vision or
syntactic understanding. Many psychologists and cognitive scientists effectively
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treat the two types of representational state interchangeably, describing language-
users for example as knowing the rules of generative grammar that are claimed
to govern the modular parsing of syntactic information in the early stages of
language-processing. From a philosophical point of view, however, it is natural to
ask whether this usage is well grounded. Is there a principled distinction to be
drawn between two different types of representational state? 

Stephen Stich’s “Beliefs and Subdoxastic States” answers this question affir-
matively. He identifies two basic defining features of beliefs (and other
propositional attitudes) that are not shared by the sub-doxastic states appealed
to in subpersonal, information-processing models of particular cognitive abilities
and capacities. The first defining feature of beliefs is that they are inferentially
integrated with each other and with the propositional attitudes in general, whereas
sub-doxastic states are inferentially insulated from the propositional attitude
system. (Note the similarities with Fodor’s discussion of the informational encap-
sulation of modular systems as opposed to non-modular central processing.) I
may, for example, perhaps as a consequence of my studies in linguistics, come
to believe a certain principle about the syntactic structure of sentences in English
at the same time as having hard-wired in me a different and incompatible prin-
ciple that is actually put to work every time I understand an English sentence.
Nonetheless, this tension may never become apparent to me, since the informa-
tion stored in the databases of subpersonal modules is insulated from my
personal-level beliefs. Relatedly (and this is the second defining feature) beliefs
are consciously accessible. There is (according to Stich) a distinctive conscious
experience of being aware that p associated with believing that p (at least in the
occurrent rather than dispositional sense of “believing”), but nothing like this
occurs for sub-doxastic states. Stich proposes the doxastic/sub-doxastic distinc-
tion both as a corrective to the practices of psychologists and cognitive scientists
and as a vindication of the practice of epistemologists of not taking into account
the mechanisms that underlie belief formation in reflecting on how beliefs are
(inferentially) justified. 

Even if we grant that there is a sharp distinction to be drawn between propo-
sitional attitudes and sub-doxastic states there is a number of important questions
about the relation between them. One such question arises because linguists and
philosophers have appealed to conceptions of tacit knowledge to explain our
understanding of syntax and semantics. We have a syntactic/semantic theory
(either hard-wired or learnt) at the subpersonal level and our general capacity to
understand language is explained in terms of our tacit or implicit knowledge of
the principles of that theory. The best-known appeal to conceptions of tacit know-
ledge is in Chomskyan syntactic theory, but the first serious philosophical
discussion came in Gareth Evans’s “Semantic Theory and Tacit Knowledge”.
Evans’s principal interest is in what it is to know a theory of meaning, as opposed
to a Chomskyan syntactic theory, but roughly similar theoretical issues arise in
both cases. Evans starts from an objection that has been raised to the basic 
idea that appeals to tacit knowledge of a theory can be explanatory and infor-
mative. Philosophers such as Willard Quine have argued that no account of tacit
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knowledge can be anything other than a redescription of a speaker’s competence
(Quine 1972). The argument is that the meaning theorist has no way of identi-
fying which of a number of extensionally equivalent theories of meaning a speaker
can properly be described as tacitly knowing (where two theories are extension-
ally equivalent if they deliver the same set of theorems, even though they use
different axioms). In responding to this objection, Evans begins from the thought
that tacit knowledge of a theory of meaning involves having a disposition corre-
sponding to each axiom of the theory (the disposition being a disposition to react
to sentences in a certain way). These dispositions, he argues, should be inter-
preted in a full-blooded sense, as having categorical bases that causally explain
their manifestations. Ascriptions of tacit knowledge do not simply redescribe regu-
larities in the subject’s verbal behavior, but also claim that there is a single state
of the subject (typically, a sub-doxastic representational state) that causally
explains why she behaves in this regular manner. This way of thinking about the
causal basis of comprehension offers a way of distinguishing between extension-
ally equivalent meaning theories, and hence of responding to the skeptical
challenge. It also explains how a hearer can understand a previously unencoun-
tered sentence S. The hearer understands S in virtue of a complex set of
dispositions corresponding to the constituents of S and derived from exposure to
those constituents in different sentences and different contexts.

IIIE Thinking and language

Debates about representation and cognitive architecture often turn on issues to
do with the relation between thought and language. The language of thought
hypothesis, which is the cornerstone of the picture of the representational mind
(see the chapters in IC), is essentially the claim that thinking requires a language-
like representational vehicle. Arguments for the language of thought hypothesis
frequently turn on claims about the systematicity and compositionality of thought,
claims that themselves have implications for how we think about propositional
attitudes (see IIB above) and about the possibility of non-classical cognitive archi-
tectures (see IIIB above). The three papers in this section all tackle the relation
between thought and language directly. 

In “Language, Thought, and Communication” Gilbert Harman contrasts two
views about how we use natural language. Each view rests upon a very different
conception of the relation between language and thought. According to the 
view that language is used primarily in thought, the majority of thinking (if not 
most thinking) is carried out in some natural language. Propositional attitudes,
although they are not attitudes to natural language sentences, are best seen as
attitudes involving natural language sentences. When we communicate we do so
using the same language that we use in thought. This means that linguistic under-
standing does not pose any major theoretical or practical problems. The words we
utter when we communicate a thought are the same words that we use in think-
ing that thought in the first place. As Harman puts it, our translation scheme is
the identity relation. According to the communicative conception of language, in
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contrast, language is fundamentally a tool for communicating thoughts, and
thought needs to be analyzed completely independently of language in such a
way that we can use our account of thought to explain the meanings of natural
language sentences. The communicative conception of language is a natural
companion to the language of thought hypothesis. In this view, communication
involves the speaker encoding a Mentalese thought in a natural language
sentence, which is then decoded by the hearer back into Mentalese. 

Harman discusses a number of different arguments put forward in support of
the communicative conception. Some of these arguments derive from the claim
that theories of meaning must be compositional (i.e. they must explain how the
meanings of sentences are derived in a rule-governed way from the meanings of
their constituent words). Others derive from linguistic phenomena such as ambi-
guity and synonymy. It might be argued, for example, that we can only identify
and disambiguate ambiguous sentences by assigning different Mentalese mean-
ings to them. Conversely, we can only recognize that two expressions are synony-
mous by assigning the same Mentalese sentence to them. Harman identifies
weaknesses in all these arguments. Arguments from compositionality are flawed,
he suggests, because they either presuppose the communicative conception of
language or merely shift the problem from our understanding of natural languages
to our understanding of Mentalese. He objects to arguments from ambiguity and
synonymy on the grounds that people distinguish different understandings of
ambiguous words not by assigning different “meanings” to them, but by using
the expressions in different ways. In the case of synonymous expressions, what
matters is that people use the expressions in the same way. 

Peter Carruthers’s “The Cognitive Functions of Language” is focused more
directly on issues of cognitive architecture and representational format than
Harman’s paper, but he too begins with the basic distinction between the commu-
nicative conception of language and what he calls the cognitive conception.
Carruthers distinguishes a number of different ways of formulating the cognitive
conception, rejecting some and endorsing others. The formulations he rejects
include the very general thesis that language is necessarily required for thought
(which he takes to be incompatible with what is known about animal cognition)
and the thesis, associated with Daniel Dennett among others, that language serves
as a “Joycean machine” imposing a serial and compositionally structured cogni-
tive architecture on what (in non-human animals and prelinguistic infants) 
is essentially a bundle of competing, specialized parallel distributed networks.
Carruthers’s own positive proposal needs to be seen against the background 
of the idea that the mind is essentially modular in organization. Unlike Fodor,
however, Carruthers assumes a version of central-process modularism, allowing
for modules (such as the putative social intelligence module) that operate on
high-level conceptual inputs). Language is not required for modules to operate
successfully, but it is required, Carruthers claims, for thinking that compares,
evaluates, and coordinates the outputs of these modules. According to Carruthers,
natural language is the medium of inter-modular communication. 
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Carruthers draws upon some of Chomsky’s ideas about linguistic processing to
flesh out this basic idea. Chomsky postulates a level at which linguistic items are
represented that he calls the level of logical form (LF). These representations
have no imagistic/phonological features, but they consist of natural language
lexical items organized into syntactic structures. Carruthers’s suggestion is that
the language module (for Carruthers is committed to there being such a thing)
constructs LF representations that draw upon and integrate the outputs of central-
process modules. These thoughts can become conscious when they are built up
into a fully fledged phonological representation (an “imaged sentence”) that is
consciously accessible to the thinker. Carruthers’s account is, as he recognizes,
a somewhat speculative empirical hypothesis about the representational format
for certain types of subpersonal information-processing, but it is consistent with
both a wide range of empirical data and a number of deep-rooted assumptions
in contemporary cognitive science. 

In “Language and Thinking about Thoughts”, drawn from his book Thinking
without Words, José Luis Bermúdez addresses the question (very relevant to the
issues explored by Harman and Carruthers) of whether there are any types of
thinking that are in principle unavailable to creatures lacking a public language.
He begins by discussing some of the different ways in which Andy Clark has
suggested that language can function as a cognitive tool, arguing that none of
them marks a fundamental difference in type between linguistic and non-
linguistic thinking. Nonetheless, Bermúdez claims that there are certain thoughts
that are not available to non-linguistic creatures. These thoughts all involve
thinking about thinking (what is often termed metarepresentation). Examples of
these types of thinking include thinking about other people’s mental states and
the sort of higher-order reflection that one engages in when one assesses the plau-
sibility of one’s beliefs, or the suitability of one’s aims and goals. Bermúdez argues
that intentional ascent (i.e. the move from thinking thoughts to thinking about
thoughts) requires semantic ascent (i.e. thinking about the sentences that express
thoughts).

Bermúdez’s argument turns on considerations of representational format.
Suppose we distinguish first-order target thoughts from the higher-order thoughts
that are directed at them. It is clear, he claims, that target thoughts must have
a representational format (a vehicle) that will allow them to be the objects of
higher-order thoughts. We can only think about thoughts if they are suitably repre-
sented. For the types of thinking that he is discussing (all of which typically
involve direct, conscious reflection), it is plausible to think that the vehicles 
of target thoughts must be at the personal rather than the subpersonal level. This
rules out sentences in the language of thought (and, for that matter, sentences
in LF) and, Bermúdez argues, leaves only two possibilities. On the one hand,
representation might be secured symbolically through the complex symbols of a
natural language (complex symbols being required since what are being repre-
sented are thoughts about states of affairs). A thought would be represented,
therefore, through its linguistic expression and would appear as a potential object
of thought qua linguistic entity. On the other hand, representation might be
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secured in an analog manner, through some kind of pictorial model. Of the two,
only natural language sentences, Bermúdez claims, can reveal the structure of a
target thought in a way that allows the thinker to appreciate its inferential connec-
tions with other thoughts. The identity of a thought (what makes it the thought
that it is) is a function of its structure, and hence that structure must be perspic-
uous in the vehicle of a target thought. 
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D. Marr, “Vision”

Understanding complex information-processing systems

[. . .] Almost never can a complex system of any kind be understood as a simple
extrapolation from the properties of its elementary components. Consider, for
example, some gas in a bottle. A description of thermodynamic effects –
temperature, pressure, density, and the relationships among these factors – is
not formulated by using a large set of equations, one for each of the particles
involved. Such effects are described at their own level, that of an enormous
collection of particles, the effort is to show that in principle the microscopic
and macroscopic descriptions are consistent with one another. If one hopes to
achieve a full understanding of a system as complicated as a nervous system,
a developing embryo, a set of metabolic pathways, a bottle of gas, or even a
large computer program, then one must be prepared to contemplate different
kinds of explanation at different levels of description that are linked, at least
in principle, into a cohesive whole, even if linking the levels in complete detail
is impractical. For the specific case of a system that solves an information-
processing problem, there are in addition the twin strands of process and
representation, and both these ideas need some discussion.

Representation and description

A representation is a formal system for making explicit certain entities or types
of information, together with a specification of how the system does this. And
I shall call the result of using a representation to describe a given entity a
description of the entity in that representation (Marr and Nishihara 1978).

For example, the Arabic, Roman, and binary numeral systems are all formal
systems for representing numbers. The Arabic representation consists of a
string of symbols drawn from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and the rule
for constructing the description of a particular integer n is that one decom-
poses n into a sum of multiples of powers of 10 and unites these multiples
into a string with the largest powers on the left and the smallest on the right.
Thus, thirty-seven equals 3 × 101 + 7 × 100, which becomes 37, the Arabic
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numeral system’s description of the number. What this description makes
explicit is the number’s decomposition into powers of 10. The binary numeral
system’s description of the number thirty-seven is 100101, and this descrip-
tion makes explicit the number’s decomposition into powers of 2. In the
Roman numeral system, thirty-seven is represented as XXXVII.

This definition of a representation is quite general. For example, a repre-
sentation for shape would be a formal scheme for describing some aspects of
shape, together with rules that specify how the scheme is applied to any partic-
ular shape. A musical score provides a way of representing a symphony; the
alphabet allows the construction of a written representation of words; and so
forth. The phrase “formal scheme” is critical to the definition, but the reader
should not be frightened by it. The reason is simply that we are dealing with
information-processing machines, and the way such machines work is by using
symbols to stand for things – to represent things, in our terminology. To say
that something is a formal scheme means only that it is a set of symbols with
rules for putting them together – no more and no less.

A representation, therefore, is not a foreign idea at all – we all use repre-
sentations all the time. However, the notion that one can capture some aspect
of reality by making a description of it using a symbol and that to do so can
be useful seems to me a fascinating and powerful idea. But even the simple
examples we have discussed introduce some rather general and important
issues that arise whenever one chooses to use one particular representation.
For example, if one chooses the Arabic numeral representation, it is easy to
discover whether a number is a power of 10 but difficult to discover whether
it is a power of 2. If one chooses the binary representation, the situation is
reversed. Thus, there is a trade-off; any particular representation makes certain
information explicit at the expense of information that is pushed into the
background and may be quite hard to recover.

This issue is important, because how information is represented can greatly
affect how easy it is to do different things with it. This is evident even from
our numbers example: It is easy to add, to subtract, and even to multiply if
the Arabic or binary representations are used, but it is not at all easy to do
these things – especially multiplication – with Roman numerals. This is a key
reason why the Roman culture failed to develop mathematics in the way the
earlier Arabic cultures had.

An analogous problem faces computer engineers today. Electronic tech-
nology is much more suited to a binary number system than to the
conventional base 10 system, yet humans supply their data and require the
results in base 10. The design decision facing the engineer, therefore, is: Should
one pay the cost of conversion into base 2, carry out the arithmetic in a binary
representation, and then convert back into decimal numbers on output; or
should one sacrifice efficiency of circuitry to carry out operations directly in
a decimal representation entation? On the whole, business computers and
pocket calculators take the second approach, and general purpose computers
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take the first. But even though one is not restricted to using just one repre-
sentation system for a given type of information, the choice of which to use
is important and cannot be taken lightly. It determines what information is
made explicit and hence what is pushed further into the background, and it
has a far-reaching effect on the ease and difficulty with which operations may
subsequently be carried out on that information.

Process

The term process is very broad. For example, addition is a process, and so is
taking a Fourier transform. But so is making a cup of tea, or going shopping.
For the purposes of this book, I want to restrict our attention to the mean-
ings associated with machines that are carrying out information-processing
tasks. So let us examine in depth the notions behind one simple such device,
a cash register at the checkout counter of a supermarket.

There are several levels at which one needs to understand such a device,
and it is perhaps most useful to think in terms of three of them. The most
abstract is the level of what the device does and why. What it does is arith-
metic, so our first task is to master the theory of addition. Addition is a
mapping, usually denoted by +, from pairs of numbers into single numbers,
for example, + maps the pair (3, 4) to 7, and I shall write this in the form 
(3 + 4) → 7. Addition has a number of abstract properties, however. It is
commutative: both (3 + 4) and (4 + 3) are equal to 7; and associative: the sum
of 3 + (4 + 5) is the same as the sum of (3 + 4) + 5. Then there is the unique
distinguished element, zero, the adding of which has no effect: (4 + 0) → 4.
Also, for every number there is a unique “inverse,” written (–4) in the case of
4, which when added to the number gives zero: [4 + (–4)] → 0.

Notice that these properties are part of the fundamental theory of addition.
They are true no matter how the numbers are written – whether in binary,
Arabic, or Roman representation – and no matter how the addition is
executed. Thus part of this first level is something that might be characterized
as what is being computed.

The other half of this level of explanation has to do with the question of
why the cash register performs addition and not for instance multiplication
when combining the prices of the purchased items to arrive at a final bill. The
reason is that the rules we intuitively feel to be appropriate for combining the
individual prices in fact define the mathematical operation of addition. These
can be formulated as constraints in the following way:

1 if you buy nothing, it should cost you nothing; and buying nothing and
something should cost the same as buying just the something. (The rules
for zero.)

2 The order in which goods are presented to the cashier should not affect
the total. (Commutativity.)
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3 Arranging the goods into two piles and paying for each pile separately
should not affect the total amount you pay. (Associativity: the basic oper-
ation for combining prices.)

4 If you buy an item and then return it for a refund, your total expenditure
should be zero. (Inverses.)

It is a mathematical theorem that these conditions define the operation of addi-
tion, which is therefore the appropriate computation to use.

This whole argument is what I call the computational theory of the cash
register. Its important features are (1) that it contains separate arguments about
what is computed and why and (2) that the resulting operation is defined
uniquely by the constraints it has to satisfy. In the theory of visual processes,
the underlying task is to reliably derive properties of the world from images
of it; the business of isolating constraints that are both powerful enough to
allow a process to be defined and generally true of the world is a central theme
of our inquiry.

In order that a process shall actually run, however, one has to realize it in
some way and therefore choose a representation for the entities that the
process manipulates. The second level of the analysis of a process, therefore,
involves choosing two things: (1) a representation for the input and for the
output of the process and (2) an algorithm by which the transformation may
actually be accomplished. For addition, of course, the input and output repre-
sentations can both be the same, because they both consist of numbers.
However this is not true in general. In the case of a Fourier transform, for
example, the input representation may be the time domain, and the output,
the frequency domain. If the first of our levels specifies what and why this
second level specifies how. For addition, we might choose Arabic numerals for
the representations, and for the algorithm we could follow the usual rules
about adding the least significant digits first and “carrying” if the sum exceeds
9. Cash registers, whether mechanical or electronic, usually use this type of
representation and algorithm.

There are three important points here. First, there is usually a wide choice
of representation. Second, the choice of algorithm often depends rather criti-
cally on the particular representation that is employed. And third, even for a
given fixed representation, there are often several possible algorithms for
carrying out the same process. Which one is chosen will usually depend on
any particularly desirable or undesirable characteristics that the algorithms
may have; for example, one algorithm may be much more efficient than
another, or another may be slightly less efficient but more robust (that is, less
sensitive to slight inaccuracies in the data on which it must run). Or again,
one algorithm may be parallel, and another, serial. The choice, then, may
depend on the type of hardware or machinery in which the algorithm is to be
embodied physically.

This brings us to the third level, that of the device in which the process is
to be realized physically. The important point here is that, once again, the
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same algorithm may be implemented in quite different technologies. The child
who methodically adds two numbers from right to left, carrying a digit when
necessary, may be using the same algorithm that is implemented by the wires
and transistors of the cash register in the neighborhood supermarket, but the
physical realization of the algorithm is quite different in these two cases.
Another example: Many people have written computer programs to play tic-
tac-toe, and there is a more or less standard algorithm that cannot lose. This
algorithm has in fact been implemented by W.D. Hillis and B. Silverman in a
quite different technology, in a computer made out of Tinkertoys, a children’s
wooden building set. The whole monstrously ungainly engine, which actually
works, currently resides in a museum at the University of Missouri in St. Louis.

Some styles of algorithm will suit some physical substrates better than
others. For example, in conventional digital computers, the number of connec-
tions is comparable to the number of gates, while in a brain the number of
connections is much larger (×104) than the number of nerve cells. The under-
lying reason is that wires are rather cheap in biological architecture, because
they can grow individually and in three dimensions. In conventional tech-
nology, wire laying is more or less restricted to two dimensions, which quite
severely restricts the scope for using parallel techniques and algorithms; the
same operations are often better carried out serially.

The three levels

We can summarize our discussion in something like the manner shown in table
18.1, which illustrates the different levels at which an information-processing
device must be understood before one can be said to have understood it
completely. At one extreme, the top level, is the abstract computational theory
of the device, in which the performance of the device is characterized as a
mapping from one kind of information to another, the abstract properties of
this mapping are defined precisely, and its appropriateness and adequacy for
the task at hand are demonstrated. In the center is the choice of representation
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Table 18.1 The three levels at which any machine carrying out an information-
processing task must be understood

Computational theory Representation and algorithm Hardware 
implementation

What is the goal of the How can this computational How can the 
computation, why is theory be implemented? representation and 
it appropriate, and In particular, what is the algorithm be realized 
what is the logic of the representation for the input physically?
strategy by which it can and output, and what is the 
be carried out? algorithm for the 

transformation?



for the input and output and the algorithm to be used to transform one into
the other. And at the other extreme are the details of how the algorithm and
representation are realized physically – the detailed computer architecture, so
to speak. These three levels are coupled, but only loosely. The choice of an
algorithm is influenced for example, by what it has to do and by the hard-
ware in which it must run. But there is a wide choice available at each level,
and the explication of each level involves issues that are rather independent
of the other two.

Each of the three levels of description will have its place in the eventual
understanding of perceptual information processing, and of course they are
logically and causally related. But an important point to note is that since 
the three levels are only rather loosely related, some phenomena may be
explained at only one or two of them. This means, for example, that a correct
explanation of some psychophysical observation must be formulated at the
appropriate level. In attempts to relate psychophysical problems to physiology,
too often there is conflation about the level at which problems should be
addressed. For instance, some are related mainly to the physical mechanisms
of vision – such as afterimages (for example, the one you see after staring at
a light bulb) or such as the fact that any color can be matched by a suitable
mixture of the three primaries (a consequence principally of the fact that we
humans have three types of cones). On the other hand, the ambiguity of the
Necker cube (figure 18.1) seems to demand a different kind of explanation. 
To be sure, part of the explanation of its perceptual reversal must have to do
with a bistable neural network (that is, one with two distinct stable states)
somewhere inside the brain, but few would feel satisfied by an account that
failed to mention the existence of two different but perfectly plausible three-
dimensional interpretations of this two-dimensional image.
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(a) (b) (c)

Figure 18.1 The so-called Necker illusion, named after L.A. Necker, the Swiss natu-
ralist who developed it in 1832. The essence of the matter is that the two-dimensional
representation (a) has collapsed the depth out of a cube and that a certain aspect of
human vision is to recover this missing third dimension. The depth of the cube can
indeed be perceived, but two interpretations are possible, (b) and (c). A person’s percep-
tion characteristically flips from one to the other.



For some phenomena, the type of explanation required is fairly obvious.
Neuroanatomy, for example, is clearly tied principally to the third level, the
physical realization of the computation. The same holds for synaptic mecha-
nisms, action potentials, inhibitory interactions, and so forth. Neurophysi-
ology, too, is related mostly to this level, but it can also help us to understand
the type of representations being used, particularly if one accepts something
along the lines of Barlow’s views that I quoted earlier.1 But one has to exer-
cise extreme caution in making inferences from neurophysiological findings
about the algorithms and representations being used, particularly until one 
has a clear idea about what information needs to be represented and what
processes need to be implemented.

Psychophysics, on the other hand, is related more directly to the level of 
algorithm and representation. Different algorithms tend to fail in radically dif-
ferent ways as they are pushed to the limits of their performance or are deprived
of critical information. As we shall see, primarily psychophysical evidence
proved to Poggio and myself that our first stereo-matching algorithm (Marr and
Poggio 1976) was not the one that is used by the brain, and the best evidence
that our second algorithm (Marr and Poggio 1979) is roughly the one that is
used also comes from psychophysics. Of course, the underlying computational
theory remained the same in both cases, only the algorithms were different.

Psychophysics can also help to determine the nature of a representation.
The work of Roger Shepard (1975), Eleanor Rosch (1978), or Elizabeth
Warrington (1975) provides some interesting hints in this direction. More
specifically, Stevens (1979) argued from psychophysical experiments that
surface orientation is represented by the coordinates of slant and tilt, rather
than (for example) the more traditional (p, q) of gradient space. He also
deduced from the uniformity of the size of errors made by subjects judging
surface orientation over a wide range of orientations that the representational
quantities used for slant and tilt are pure angles and not, for example, their
cosines, sines, or tangents.

More generally, if the idea that different phenomena need to be explained
at different levels is kept clearly in mind, it often helps in the assessment of
the validity of the different kinds of objections that are raised from time to
time. For example, one favorite is that the brain is quite different from a
computer because one is parallel and the other serial. The answer to this, of
course, is that the distinction between serial and parallel is a distinction at the
level of algorithm; it is not fundamental at all – anything programmed in
parallel can be rewritten serially (though not necessarily vice versa). The
distinction, therefore, provides no grounds for arguing that the brain operates
so differently from a computer that a computer could not be programmed to
perform the same tasks.

Importance of computational theory

Although algorithms and mechanisms are empirically more accessible, it is the
top level, the level of computational theory, which is critically important from
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an information-processing point of view. The reason for this is that the nature
of the computations that underlie perception depends more upon the compu-
tational problems that have to be solved than upon the particular hardware
in which their solutions are implemented. To phrase the matter another way,
an algorithm is likely to be understood more readily by understanding the
nature of the problem being solved than by examining the mechanism (and
the hardware) in which it is embodied.

In a similar vein, trying to understand perception by studying only neurons
is like trying to understand bird flight by studying only feathers: It just cannot
be done. In order to understand bird flight, we have to understand aerody-
namics; only then do the structure of feathers and the different shapes of birds’
wings make sense. More to the point, as we shall see, we cannot understand
why retinal ganglion cells and lateral geniculate neurons have the receptive
fields they do just by studying their anatomy and physiology. We can under-
stand how these cells and neurons behave as they do by studying their wiring
and interactions, but in order to understand why the receptive fields are as
they are – why they are circularly symmetrical and why their excitatory and
inhibitory regions have characteristic shapes and distributions – we have to
know a little of the theory of differential operators, band-pass channels, and
the mathematics of the uncertainty principle.

Perhaps it is not surprising that the very specialized empirical disciplines of
the neurosciences failed to appreciate fully the absence of computational
theory, but it is surprising that this level of approach did not play a more
forceful role in the early development of artificial intelligence. For far too long,
a heuristic program for carrying out some task was held to be a theory of that
task, and the distinction between what a program did and how it did it was
not taken seriously. As a result, (1) a style of explanation evolved that invoked
the use of special mechanisms to solve particular problems, (2) particular data
structures, such as the lists of attribute value pairs called property lists in the
LISP programming language, were held to amount to theories of the repre-
sentation of knowledge, and (3) there was frequently no way to determine
whether a program would deal with a particular case other than by running
the program.

Failure to recognize this theoretical distinction between what and how also
greatly hampered communication between the fields of artificial intelligence
and linguistics. Chomsky’s (1965) theory of transformational grammar is a
true computational theory in the sense defined earlier. It is concerned solely
with specifying what the syntactic decomposition of an English sentence
should be, and not at all with how that decomposition should be achieved.
Chomsky himself was very clear about this – it is roughly his distinction
between competence and performance, though his idea of performance did
include other factors, like stopping in midutterance – but the fact that his
theory was defined by transformations, which look like computations, seems
to have confused many people. Winograd (1972), for example, felt able to crit-
icize Chomsky’s theory on the grounds that it cannot be inverted and so cannot
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be made to run on a computer; I had heard reflections of the same argument
made by Chomsky’s colleagues in linguistics as they turn their attention to
how grammatical structure might actually be computed from a real English
sentence.

The explanation is simply that finding algorithms by which Chomsky’s
theory may be implemented is a completely different endeavor from formu-
lating the theory itself. In our terms, it is a study at a different level, and both
tasks have to be done. This point was appreciated by Marcus (1980), who
was concerned precisely with how Chomsky’s theory can be realized and with
the kinds of constraints on the power of the human grammatical processor
that might give rise to the structural constraints in syntax that Chomsky found.
It even appears that the emerging “trace” theory of grammar (Chomsky and
Lasnik 1977) may provide a way of synthesizing the two approaches –
showing that, for example, some of the rather ad hoc restrictions that form
part of the computational theory may be consequences of weaknesses in the
computational power that is available for implementing syntactical decoding.

The approach of J.J. Gibson

In perception, perhaps the nearest anyone came to the level of computational
theory was Gibson (1966). However, although some aspects of his thinking
were on the right lines, he did not understand properly what information
processing was, which led him to seriously underestimate the complexity of
the information-processing problems involved in vision and the consequent
subtlety that is necessary in approaching them.

Gibson’s important contribution was to take the debate away from the
philosophical considerations of sense-data and the affective qualities of sensa-
tion and to note instead that the important thing about the senses is that they
are channels for perception of the real world outside or, in the case of vision,
of the visible surfaces. He therefore asked the critically important question,
How does one obtain constant perceptions in everyday life on the basis of
continually changing sensations? This is exactly the right question, showing
that Gibson correctly regarded the problem of perception as that of recovering
from sensory information “valid” properties of the external world. His
problem was that he had a much oversimplified view of how this should be
done. His approach led him to consider higher-order variables – stimulus
energy, ratios, proportions, and so on – as “invariants” of the movement of
an observer and of changes in stimulation intensity.

“These invariants,” he wrote, “correspond to permanent properties of the
environment. They constitute, therefore, information about the permanent
environment.” This led him to a view in which the function of the brain was
to “detect invariants” despite changes in “sensations” of light, pressure, or
loudness of sound. Thus, he says that the “function of the brain, when looped
with its perceptual organs, is not to decode signals, nor to interpret messages,
nor to accept images, nor to organize the sensory input or to process the data,
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in modern terminology. It is to seek and extract information about the
environment from the flowing array of ambient energy,” and he thought of
the nervous system as in some way “resonating” to these invariants. He then
embarked on a broad study of animals in their environments, looking for
invariants to which they might resonate. This was the basic idea behind the
notion of ecological optics (Gibson 1966: 1979).

Although one can criticize certain shortcomings in the quality of Gibson’s
analysis, its major and, in my view, fatal shortcoming lies at a deeper level and
results from a failure to realize two things. First, the detection of physical
invariants, like image surfaces, is exactly and precisely an information-
processing problem, in modern terminology. And second, he vastly underrated
the sheer difficulty of such detection. In discussing the recovery of three-dimen-
sional information from the movement of an observer, he says that “in motion,
perspective information alone can be used” (Gibson 1966: 202). And perhaps
the key to Gibson is the following:

The detection of non-change when an object moves in the world is not
as difficult as it might appear. It is only made to seem difficult when we
assume that the perception of constant dimensions of the object must
depend on the correcting of sensations of inconstant form and size. The
information for the constant dimension of an object is normally carried
by invariant relations in an optic array Rigidity is specified. (emphasis
added)

Yes, to be sure, but how? Detecting physical invariants is just as difficult as
Gibson feared, but nevertheless we can do it. And the only way to understand
how is to treat it as an information-processing problem.

The underlying point is that visual information processing is actually very
complicated, and Gibson was not the only thinker who was misled by the
apparent simplicity of the act of seeing. The whole tradition of philosophical
inquiry into the nature of perception seems not to have taken seriously enough
the complexity of the information processing involved. For example, Austin’s
(1962) Sense and Sensibilia entertainingly demolishes the argument, appar-
ently favored by earlier philosophers, that since we are sometimes deluded by
illusions (for example, a straight stick appears bent if it is partly submerged
in water), we see sense-data rather than material things. The answer is simply
that usually our perceptual processing does run correctly (it delivers a true
description of what is there), but although evolution has seen to it that our
processing allows for many changes (like inconstant illumination), the pertur-
bation due to the refraction of light by water is not one of them. And
incidentally, although the example of the bent stick has been discussed since
Aristotle, I have seen no philosophical inquiry into the nature of the percep-
tions of, for instance, a heron, which is a bird that feeds by pecking up fish
first seen from above the water surface. For such birds the visual correction
might be present.
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Anyway, my main point here is another one. Austin (1962) spends much
time on the idea that perception tells one about real properties of the external
world, and one thing he considers is “real shape” (p. 66), a notion which had
cropped up earlier in his discussion of a coin that “looked elliptical” from
some points of view. Even so,

it had a real shape which remained unchanged. But coins in fact are
rather special cases. For one thing their outlines are well defined and very
highly stable, and for another they have a known and a nameable shape.
But there are plenty of things of which this is not true. What is the real
shape of a cloud? . . . or of a cat? Does its real shape change whenever
it moves? If not, in what posture is its real shape on display?
Furthermore, is its real shape such as to be fairly smooth outlines, or
must it be finely enough serrated to take account of each hair? It is pretty
obvious that there is no answer to these questions – no rules according
to which, no procedure by which, answers are to be determined.
(emphasis added) (p. 67)

But there are answers to these questions. There are ways of describing the
shape of a cat to an arbitrary level of precision, and there are rules and proce-
dures for arriving at such descriptions. That is exactly what vision is about,
and precisely what makes it complicated.

A representational framework for vision

Vision is a process that produces from images of the external world a descrip-
tion that is useful to the viewer and not cluttered with irrelevant information
(Marr 1976; Marr and Nishihara 1978). We have already seen that a process
may be thought of as a mapping from one representation to another, and in
the case of human vision, the initial representation is in no doubt – it consists
of arrays of image intensity values as detected by the photoreceptors in the
retina.

It is quite proper to think of an image as a representation; the items that
are made explicit are the image intensity values at each point in the array,
which we can conveniently denote by I (x,y) at coordinate (x,y). In order to
simplify our discussion, we shall neglect for the moment the fact that there
are several different types of receptor, and imagine instead that there is just
one, so that the image is black-and-white. Each value of I (x,y) thus specifies
a particular level of gray; we shall refer to each detector as a picture element
or pixel and to the whole array I as an image.

But what of the output of the process of vision? We have already agreed
that it must consist of a useful description of the world, but that requirement
is rather nebulous. Can we not do better? Well, it is perfectly true that, unlike
the input, the result of vision is much harder to discern, let alone specify
precisely, and an important aspect of this new approach is that it makes quite
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concrete proposals about what that end is. But before we begin that discus-
sion, let us step back a little and spend a little time formulating the more
general issues that are raised by these questions.

The purpose of vision

The usefulness of a representation depends upon how well suited it is to the
purpose for which it is used. A pigeon uses vision to help it navigate, fly, and
seek out food. Many types of jumping spider use vision to tell the difference
between a potential meal and a potential mate. One type, for example, has a
curious retina formed of two diagonal strips arranged in a V. If it detects a
red V on the back of an object lying in front of it, the spider has found a mate.
Otherwise, maybe a meal. The frog detects bugs with its retina; and the rabbit
retina is full of special gadgets, including what is apparently a hawk detector,
since it responds well to the pattern made by a preying hawk hovering over-
head. Human vision, on the other hand, seems to be very much more general,
although it clearly contains a variety of special-purpose mechanisms that can,
for example, direct the eye toward an unexpected movement in the visual field
or cause one to blink or otherwise avoid something that approaches one’s head
too quickly.

Vision, in short, is used in such a bewildering variety of ways that the visual
systems of different animals must differ significantly from one another. Can
the type of formulation that I have been advocating, in terms of representa-
tions and processes, possibly prove adequate for them all? I think so. The
general point here is that because vision is used by different animals for such
a wide variety of purposes, it is inconceivable that all seeing animals use the
same representations; each can confidently be expected to use one or more
representations that are nicely tailored to the owner’s purposes.

As an example, let us consider briefly a primitive but highly efficient visual
system that has the added virtue of being well understood. Werner Reichardt’s
group in Tübingen has spent the last 14 years patiently unraveling the visual
flight-control system of the housefly, and in a famous collaboration, Reichardt
and Tomaso Poggio have gone far toward solving the problem (Reichardt and
Poggio 1976, 1979; Poggio and Reichardt 1976). Roughly speaking, the fly’s
visual apparatus controls its flight through a collection of about five indepen-
dent, rigidly inflexible, very fast responding systems (the time from visual
stimulus to change of torque is only 21 ms). For example, one of these systems
is the landing system; if the visual field “explodes” fast enough (because a
surface looms nearby), the fly automatically “lands” toward its center. If this
center is above the fly, the fly automatically inverts to land upside down. When
the feet touch, power to the wings is cut off. Conversely, to take off, the fly
jumps; when the feet no longer touch the ground, power is restored to the
wings, and the insect flies again.

In-flight control is achieved by independent systems controlling the fly’s
vertical velocity (through control of the lift generated by the wings) and hori-
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zontal direction (determined by the torque produced by the asymmetry of the
horizontal thrust from the left and right wings). The visual input to the hori-
zontal control system, for example, is completely described by the two terms

r(�)�̇ + D(�)

where r and D have the form illustrated in figure 18.2. This input describes
how the fly tracks an object that is present at angle � in the visual field and
has angular velocity �̇. This system is triggered to track objects of a certain
angular dimension in the visual field, and the motor strategy is such that if the
visible object was another fly a few inches away, then it would be intercepted
successfully. If the target was an elephant 100 yd away, interception would
fail because the fly’s built-in parameters are for another fly nearby, not an
elephant far away.

Thus, fly vision delivers a representation in which at least these three things
are specified: (1) whether the visual field is looming sufficiently fast that the
fly should contemplate landing; (2) whether there is a small patch – it could
be a black speck or, it turns out, a textured figure in front of a textured ground
– having some kind of motion relative to its background; and if there is such
a patch, (3) � and �̇ for this patch are delivered to the motor system. And that
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Figure 18.2 The horizontal component of the visual input R to the fly’s flight system
is described by the formula R = D(�) – r(�)�̇, where � is the direction of the stimulus
and �̇ is its angular velocity in the fly’s visual field. D(�) is an odd function, as shown
in (a), which has the effect of keeping the target centered in the fly’s visual field; r(�)
is essentially constant as shown in (b).



is probably about 60% of fly vision. In particular, it is extremely unlikely that
the fly has any explicit representation of the visual world around him – no
true conception of a surface, for example, but just a few triggers and some
specifically fly-centered parameters like � and �̇.

It is clear that human vision is much more complex than this, although it
may well incorporate subsystems not unlike the fly’s to help with specific and
rather low-level tasks like the control of pursuit eye movements. Nevertheless,
as Poggio and Reichardt have shown, even these simple systems can be under-
stood in the same sort of way, as information-processing tasks. And one of
the fascinating aspects of their work is how they have managed not only to
formulate the differential equations that accurately describe the visual control
system of the fly but also to express these equations, using the Volterra series
expansion, in a way that gives direct information about the minimum possible
complexity of connections of the underlying neuronal networks.

Advanced vision

Visual systems like the fly’s serve adequately and with speed and precision the
needs of their owners, but they are not very complicated; very little objective
information about the world is obtained. The information is all very much
subjective – the angular size of the stimulus as the fly sees it rather than the
objective size of the object out there, the angle that the object has in the fly’s
visual field rather than its position relative to the fly or to some external refer-
ence, and the object’s angular velocity, again in the fly’s visual field, rather than
any assessment of its true velocity relative to the fly or to some stationary
reference point.

One reason for this simplicity must be that these facts provide the fly with
sufficient information for it to survive. Of course, the information is not
optimal and from time to time the fly will fritter away its energy chasing a
falling leaf a medium distance away or an elephant a long way away as a direct
consequence of the inadequacies of its perceptual system. But this apparently
does not matter very much – the fly has sufficient excess energy for it to be
able to absorb these extra costs. Another reason is certainly that translating
these rather subjective measurements into more objective qualities involves
much more computation. How, then, should one think about more advanced
visual systems – human vision, for example. What are the issues? What kind
of information is vision really delivering, and what are the representational
issues involved?

My approach to these problems was very much influenced by the fasci-
nating accounts of clinical neurology, such as Critchley (1953) and Warrington
and Taylor (1973). Particularly important was a lecture that Elizabeth
Warrington gave at MIT in October 1973, in which she described the capac-
ities and limitations of patients who had suffered left or right parietal lesions.
For me, the most important thing that she did was to draw a distinction
between the two classes of patient (see Warrington and Taylor 1978). For those
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with lesions on the right side, recognition of a common object was possible
provided that the patient’s view of it was in some sense straightforward. 
She used the words conventional and unconventional – a water pail or a clar-
inet seen from the side gave “conventional” views but seen end-on gave
“unconventional” views. If these patients recognized the object at all, they
knew its name and its semantics – that is, its use and purpose, how big it was,
how much it weighed, what it was made of, and so forth. If their view was
unconventional – a pail seen from above, for example – not only would the
patients fail to recognize it, but they would vehemently deny that it could be
a view of a pail. Patients with left parietal lesions behaved completely differ-
ently. Often these patients had no language, so they were unable to name 
the viewed object or state its purpose and semantics. But they could convey
that they correctly perceived its geometry – that is, its shape – even from the
unconventional view.

Warrington’s talk suggested two things. First, the representation of the
shape of an object is stored in a different place and is therefore a quite different
kind of thing from the representation of its use and purpose. And second,
vision alone can deliver an internal description of the shape of a viewed 
object, even when the object was not recognized in the conventional sense of
understanding its use and purpose.

This was an important moment for me for two reasons. The general trend
in the computer vision community was to believe that recognition was so diffi-
cult that it required every possible kind of information. The results of this
point of view duly appeared a few years later in programs like Freuder’s (1974)
and Tenenbaum and Barrow’s (1976). In the latter program, knowledge about
offices – for example, that desks have telephones on them and that telephones
are black – was used to help “segment” out a black blob halfway up an image
and “recognize” it as a telephone. Freuder’s program used a similar approach
to “segment” and “recognize” a hammer in a scene. Clearly, we do use such
knowledge in real life; I once saw a brown blob quivering amongst the lettuce
in my garden and correctly identified it as a rabbit, even though the visual
information alone was inadequate. And yet here was this young woman calmly
telling us not only that her patients could convey to her that they had grasped
the shapes of things that she had shown them, even though they could not
name the objects or say how they were used, but also that they could happily
continue to do so even if she made the task extremely difficult visually by
showing them peculiar views or by illuminating the objects in peculiar ways.
It seemed clear that the intuitions of the computer vision people were
completely wrong and that even in difficult circumstances shapes could be
determined by vision alone.

The second important thing, I thought, was that Elizabeth Warrington had
put her finger on what was somehow the quintessential fact of human vision
– that it tells about shape and space and spatial arrangement. Here lay a way
to formulate its purpose – building a description of the shapes and positions
of things from images. Of course, that is by no means all that vision can do; it
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also tells about the illumination and about the reflectances of the surfaces that
make the shapes – their brightnesses and colors and visual textures – and about
their motion. But these things seemed secondary; they could be hung off a 
theory in which the main job of vision was to derive a representation of shape.

To the desirable via the possible

Finally, one has to come to terms with cold reality. Desirable as it may be to
have vision deliver a completely invariant shape description from an image
(whatever that may mean in detail), it is almost certainly impossible in only
one step. We can only do what is possible and proceed from there toward
what is desirable. Thus we arrived at the idea of a sequence of representations,
starting with descriptions that could be obtained straight from an image but
that are carefully designed to facilitate the subsequent recovery of gradually
more objective, physical properties about an object’s shape. The main step-
ping stone toward this goal is describing the geometry of the visible surfaces,
since the information encoded in images, for example by stereopsis, shading,
texture, contours, or visual motion, is due to a shape’s local surface proper-
ties. The objective of many early visual computations is to extract this
information.

However, this description of the visible surfaces turns out to be unsuitable
for recognition tasks. There are several reasons why, perhaps the most promi-
nent being that like all early visual processes, it depends critically on the
vantage point. The final step therefore consists of transforming the viewer-
centered surface description into a representation of the three-dimensional
shape and spatial arrangement of an object that does not depend upon the
direction from which the object is being viewed. This final description is object
centered rather than viewer centered.

The overall framework described here therefore divides the derivation of
shape information from images into three representational stages (table 18.2):
(1) the representation of properties of the two-dimensional image, such as
intensity changes and local two-dimensional geometry; (2) the representation
of properties of the visible surfaces in a viewer-centered coordinate system,
such as surface orientation, distance from the viewer, and discontinuities 
in these quantities; surface reflectance; and some coarse description of the
prevailing illumination; and (3) an object-centered representation of the three-
dimensional structure and of the organization of the viewed shape, together
with some description of its surface properties.

This framework is summarized in table 18.2.

Synopsis

Our survey of this new, computational approach to vision is now complete.
Although there are many gaps in the account, I hope that it is solid enough
to establish a firm point of view about the subject and to prompt the reader
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to begin to judge its value. In this brief chapter, I shall take a very broad view
of the whole approach, inquiring into its most important general features 
and how they relate to one another, and trying to say something about the
style of research that this approach implies. It is convenient to divide the
discussion into four main points.

The first point is one that we have met throughout the account – the notion
of different levels of explanation. The central tenet of the approach is that to
understand what vision is and how it works, an understanding at only one
level is insufficient. It is not enough to be able to describe the responses of
single cells, nor is it enough to be able to predict locally the results of psycho-
physical experiments. Nor is it enough even to be able to write computer
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Table 18.2 Representational framework for deriving shape information from images

Name Purpose Primitives

Image(s) Represents intensity Intensity value at each point in 
the image

Primal sketch Makes explicit Zero-crossings
important information Blobs
about the two-dimensional Terminations
image, primarily the and discontinuities
intensity changes there Edge segments
and their geometrical Virtual lines
distribution and Groups
organization Curvilinear organization

21⁄2-D sketch Makes explicit the Local surface
orientation and rough orientation (the
depth of the visible surfaces, “needles” primitives)
and contours of Distance from viewer
discontinuities in Discontinuities in depth
these quantities in a Discontinuities in
viewer-centered surface orientation
coordinate frame

3-D model Describes shapes and 3-D models
representation their spatial organization arranged

in an object-centered hierarchically, each 
coordinate frame, using a one based on a spatial
modular hierarchical configuration of a few 
representation that sticks or axes, to which
includes volumetric volumetric or surface 
primitives (i.e., primitives shape primitives are
that represent the volume attached
of space that a shape
occupies) as well as
surface primitives



programs that perform approximately in the desired way. One has to do all
these things at once and also be very aware of the additional level of expla-
nation that I have called the level of computational theory. The recognition of
the existence and importance of this level is one of the most important aspects
of this approach. Having recognized this, one can formulate the three levels
of explanation explicitly (computational theory, algorithm, and implementa-
tion), and it then becomes clear how these different levels are related to the
different types of empirical observation and theoretical analysis that can be
conducted. I have laid particular stress on the level of computational theory,
not because I regard it as inherently more important than the other two levels
– the real power of the approach lies in the integration of all three levels of
attack – but because it is a level of explanation that has not previously been
recognized and acted upon. It is therefore probably one of the most difficult
ideas for newcomers to the field to grasp, and for this reason alone its import-
ance should not be understated. [. . .]

The second main point is that by taking an information-processing point
of view we have been able to formulate a rather clear overall framework for
the process of vision. This framework is based on the idea that the critical
issues in vision revolve around the nature of the representations used – that
is, the particular characteristics of the world that are made explicit during
vision – and the nature of the processes that recover these characteristics,
create and maintain the representations, and eventually read them. By
analyzing the spatial aspects of the problem of vision, we arrived at an overall
framework for visual information processing that hinges on three principal
representations: (1) the primal sketch, which is concerned with making explicit
properties of the two-dimensional image, ranging from the amount and dispo-
sition of the intensity changes there to primitive representations of the local
image geometry, and including at the more sophisticated end a hierarchical
description of any higher-order structure present in the underlying reflectance
distributions; (2) the 21⁄2-D sketch, which is a viewer-centered representation
of the depth and orientation of the visible surfaces and includes contours of
discontinuities in these quantities; and (3) the 3-D model representation,
whose important features are that its coordinate system is object centered, that
it includes volumetric primitives (which make explicit the organization of 
the space occupied by an object and not just its visible surfaces), and that 
primitives of various size are included, arranged in a modular, hierarchical
organization.

The third main point concerns the study of processes for recovering the
various aspects of the physical characteristics of a scene from images of it. The
critical act in formulating computational theories for such processes is the
discovery of valid constraints on the way the world behaves that provide suffi-
cient additional information to allow recovery of the desired characteristic.
The power of this type of analysis resides in the fact that the discovery of valid,
sufficiently universal constraints leads to conclusions about vision that have
the same permanence as conclusions in other branches of science.
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Furthermore, once a computational theory for a process has been formu-
lated, algorithms for implementing it may be designed, and their performance
compared with that of the human visual processor. This allows two kinds of
results. First, if performance is essentially identical, we have good evidence
that the constraints of the underlying computational theory are valid and may
be implicit in the human processor; second, if a process matches human
performance, it is probably sufficiently powerful to form part of a general
purpose vision machine.

The final point concerns the methodology or style of this type of approach,
and it involves two main observations. First, the duality between representa-
tions and processes, which is set out explicitly in figure 18.3, often provides
a useful aid to thinking how best to proceed when studying a particular
problem. In the study both of representations and of processes, general prob-
lems are often suggested by everyday experience or by psychophysical or even
neurophysiological findings of a quite general nature. Such general observa-
tions can often lead to the formulation of a particular process or represen-
tational theory, specific examples of which can be programmed or subjected
to detailed psychophysical testing. Once we have sufficient confidence in the
correctness of the process or representation at this level, we can inquire about
its detailed implementation, which involves the ultimate and very difficult
problems of neurophysiology and neuroanatomy.
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Figure 18.3 Relationships between representations and processes



The second observation is that there is no real recipe for this type of research
– even though I have sometimes suggested that there is – any more than there
is a straightforward procedure for discovering things in any other branch of
science. Indeed, part of the fun is that we never really know where the next
key is going to come from – a piece of daily experience, the report of a neuro-
logical deficit, a theorem about three-dimensional geometry, a psychophysical
finding in hyperacuity, a neurophysiological observation, or the careful
analysis of a representational problem. All these kinds of information have
played important roles in establishing the framework that I have described,
and they will presumably continue to contribute to its advancement in an inter-
esting and unpredictable way. I hope only that these observations may
persuade some of my readers to join in the adventures we have had and to
help in the long but rewarding task of unraveling the mysteries of human visual
perception.

Notes

1 Editor’s note: the passages to which Marr here refers are as follows (from pp.
12–13 of Vision).

If one explores the responsiveness of single ganglion cells in the frog’s retina
using handheld targets, one finds that one particular type of ganglion cell is most
effectively driven by something like a black disc subtending a degree or so moved
rapidly to and fro within the unit’s receptive field. This causes a vigorous discharge
which can be maintained without much decrement as long as the movement is
continued. Now, if the stimulus which is optimal for this class of cells is presented
to intact frogs, the behavioral response is often dramatic; they turn towards the
target and make repeated feeding responses consisting of a jump and snap. The
selectivity of the retinal neurons and the frog’s reaction when they are selectively
stimulated, suggest that they are “bug detectors” (Barlow 1953) performing a
primitive but vitally important form of recognition. The result makes one suddenly
realize that a large part of the sensory machinery involved in a frog’s feeding
responses may actually reside in the retina rather than in mysterious “centers”
that would be too difficult to understand by physiological methods. The essen-
tial lock-like property resides in each member of a whole class of neurons and
allows the cell to discharge only to the appropriate key pattern of sensory stim-
ulation. Lettvin et al. (1959) suggested that there were five different classes of
cell in the frog, and Barlow, Hill, and Levick (1964) found an even larger number
of categories in the rabbit. [Barlow et al.] called these key patterns “trigger
features,” and Maturana et al. (1960) emphasized another important aspect of
the behavior of these ganglion cells; a cell continues to respond to the same
trigger feature in spite of changes in light intensity over many decades. The prop-
erties of the retina are such that a ganglion cell can, figuratively speaking, reach
out and determine that something specific is happening in front of the eye. Light
is the agent by which it does this, but it is the detailed pattern of the light that
carries the information, and the overall level of illumination prevailing at the time
is almost totally disregarded (Barlow 1972: 373).

The cumulative effect of all the changes I have tried to outline above has been
to make us realize that each single neuron can perform a much more complex
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and subtle task than had previously been thought [emphasis added]. Neurons do
not loosely and unreliably remap the luminous intensities of the visual image onto
our sensorium, but instead they detect pattern elements, discriminate the depth
of objects, ignore irrelevant causes of variation and are arranged in an intriguing
hierarchy. Furthermore, there is evidence that they give prominence to what is
informationally important, can respond with great reliability, and can have their
pattern selectivity permanently modified by early visual experience. This amounts
to a revolution in our outlook. It is now quite inappropriate to regard unit activity
as a noisy indication of more basic and reliable processes involved in mental
operations: instead, we must regard single neurons as the prime movers of these
mechanisms. Thinking is brought about by neurons and we should not use phrases
like “unit activity reflects, reveals or monitors thought processes,” because the
activities of neurons, quite simply, are thought processes.

This revolution stemmed from physiological work and makes us realize that the
activity of each single neuron may play a significant role in perception (ibid.:
380).
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19

A. Newell and H.A. Simon, 
“Computer Science as Empirical Enquiry: 

Symbols and Search”

Computer science is the study of the phenomena surrounding computers. 
The founders of this society understood this very well when they called them-
selves the Association for Computing Machinery. The machine – not just the
hardware, but the programmed living machine – is the organism we study.

This is the tenth Turing Lecture. The nine persons who preceded us on this
platform have presented nine different views of computer science. For our
organism, the machine, can be studied at many levels and from many sides.
We are deeply honoured to appear here today and to present yet another view,
the one that has permeated the scientific work for which we have been cited.
We wish to speak of computer science as empirical enquiry.

Our view is only one of many; the previous lectures make that clear.
However, even taken together the lectures fail to cover the whole scope of our
science. Many fundamental aspects of it have not been represented in these
ten awards. And if the time ever arrives, surely not soon, when the compass
has been boxed, when computer science has been discussed from every side,
it will be time to start the cycle again. For the hare as lecturer will have to
make an annual sprint to overtake the cumulation of small, incremental gains
that the tortoise of scientific and technical development has achieved in his
steady march. Each year will create a new gap and call for a new sprint, for
in science there is no final word.

Computer science is an empirical discipline. We would have called it an
experimental science, but like astronomy, economics, and geology, some of its
unique forms of observation and experience do not fit a narrow stereotype 
of the experimental method. Nonetheless, they are experiments. Each new
machine that is built is an experiment. Actually constructing the machine poses
a question to nature; and we listen for the answer by observing the machine
in operation and analysing it by all analytical and measurement means avail-
able. Each new program that is built is an experiment. It poses a question to
nature, and its behaviour offers clues to an answer. Neither machines nor
programs are black boxes; they are artefacts that have been designed, both
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hardware and software, and we can open them up and look inside. We can
relate their structure to their behaviour and draw many lessons from a single
experiment. We don’t have to build 100 copies of, say, a theorem prover, to
demonstrate statistically that it has not overcome the combinatorial explosion
of search in the way hoped for. Inspection of the program in the light of a few
runs reveals the flaw and lets us proceed to the next attempt.

We build computers and programs for many reasons. We build them to
serve society and as tools for carrying out the economic tasks of society. But
as basic scientists we build machines and programs as a way of discovering
new phenomena and analysing phenomena we already know about. Society
often becomes confused about this, believing that computers and programs
are to be constructed only for the economic use that can be made of them (or
as intermediate items in a developmental sequence leading to such use). It
needs to understand that the phenomena surrounding computers are deep and
obscure, requiring much experimentation to assess their nature. It needs to
understand that, as in any science, the gains that accrue from such experi-
mentation and understanding pay off in the permanent acquisition of new
techniques; and that it is these techniques that will create the instruments to
help society in achieving its goals.

Our purpose here, however, is not to plead for understanding from an
outside world. It is to examine one aspect of our science, the development of
new basic understanding by empirical enquiry. This is best done by illustra-
tions. We will be pardoned if, presuming upon the occasion, we choose our
examples from the area of our own research. As will become apparent, these
examples involve the whole development of artificial intelligence, especially in
its early years. They rest on much more than our own personal contributions.
And even where we have made direct contributions, this has been done in 
co-operation with others. Our collaborators have included especially Cliff
Shaw, with whom we formed a team of three through the exciting period of
the late fifties. But we have also worked with a great many colleagues and
students at Carnegie Mellon University.

Time permits taking up just two examples. The first is the development of
the notion of a symbolic system. The second is the development of the notion
of heuristic search. Both conceptions have deep significance for understanding
how information is processed and how intelligence is achieved. However, they
do not come close to exhausting the full scope of artificial intelligence, though
they seem to us to be useful for exhibiting the nature of fundamental know-
ledge in this part of computer science.

1 Symbols and physical-symbol systems

One of the fundamental contributions to knowledge of computer science has
been to explain, at a rather basic level, what symbols are. This explanation is
a scientific proposition about Nature. It is empirically derived, with a long and
gradual development.
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Symbols lie at the root of intelligent action, which is, of course, the primary
topic of artificial intelligence. For that matter, it is a primary question for all
of computer science. For all information is processed by computers in the
service of ends, and we measure the intelligence of a system by its ability to
achieve stated ends in the face of variations, difficulties, and complexities
posed by the task environment. This general investment of computer science
in attaining intelligence is obscured when the tasks being accomplished are
limited in scope, for then the full variations in the environment can be accu-
rately foreseen. It becomes more obvious as we extend computers to more
global, complex, and knowledge-intensive tasks – as we attempt to make them
our agents, capable of handling on their own the full contingencies of the
natural world.

Our understanding of the system’s requirements for intelligent action
emerges slowly. It is composite, for no single elementary thing accounts for
intelligence in all its manifestations. There is no ‘intelligence principle’, just as
there is no ‘vital principle’ that conveys by its very nature the essence of life.
But the lack of a simple deus ex machina does not imply that there are no
structural requirements for intelligence. One such requirement is the ability to
store and manipulate symbols. To put the scientific question, we may para-
phrase the title of a famous paper by Warren McCulloch (1961): What is a
symbol, that intelligence may use it, and intelligence, that it may use a symbol?

Laws of qualitative structure

All sciences characterize the essential nature of the systems they study. These
characterizations are invariably qualitative in nature, for they set the terms
within which more detailed knowledge can be developed. Their essence can
often be captured in very short, very general statements. One might judge these
general laws, because of their limited specificity, as making relatively little
contribution to the sum of a science, were it not for the historical evidence
that shows them to be results of the greatest importance.

The cell doctrine in biology

A good example of a law of qualitative structure is the cell doctrine in biology,
which states that the basic building block of all living organisms is the cell.
Cells come in a large variety of forms, though they all have a nucleus
surrounded by protoplasm, the whole encased by a membrane. But this
internal structure was not, historically, part of the specification of the cell
doctrine; it was subsequent specificity developed by intensive investigation.
The cell doctrine can be conveyed almost entirely by the statement we gave
above, along with some vague notions about what size a cell can be. The
impact of this law on biology, however, has been tremendous, and the lost
motion in the field prior to its gradual acceptance was considerable.
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Plate tectonics in geology

Geology provides an interesting example of a qualitative structure law, inter-
esting because it has gained acceptance in the last decade and so its rise in
status is still fresh in our memory. The theory of plate tectonics asserts that
the surface of the globe is a collection of huge plates – a few dozen in all –
which move (at geological speeds) against, over, and under each other into the
centre of the earth, where they lose their identity. The movements of the plates
account for the shapes and relative locations of the continents and oceans, for
the areas of volcanic and earthquake activity, for the deep sea ridges, and so
on. With a few additional particulars as to speed and size, the essential theory
has been specified. It was of course not accepted until it succeeded in
explaining a number of details, all of which hung together (e.g. accounting for
flora, fauna, and stratification agreements between West Africa and Northeast
South America). The plate tectonics theory is highly qualitative. Now that it
is accepted, the whole earth seems to offer evidence for it everywhere, for we
see the world in its terms.

The germ theory of disease

It is little more than a century since Pasteur enunciated the germ theory of
disease, a law of qualitative structure that produced a revolution in medicine.
The theory proposes that most diseases are caused by the presence and multi-
plication in the body of tiny single-celled living organisms, and that contagion
consists in the transmission of these organisms from one host to another. A
large part of the elaboration of the theory consisted in identifying the organ-
isms associated with specific diseases, describing them, and tracing their life
histories. The fact that the law has many exceptions – that many diseases are
not produced by germs – does not detract from its importance. The law tells
us to look for a particular kind of cause; it does not insist that we will always
find it.

The doctrine of atomism

The doctrine of atomism offers an interesting contrast to the three laws of
qualitative structure we have just described. As it emerged from the work of
Dalton and his demonstrations that the chemicals combined in fixed propor-
tions, the law provided a typical example of qualitative structure: the elements
are composed of small, uniform particles, differing from one element to
another. But because the underlying species of atoms are so simple and limited
in their variety, quantitative theories were soon formulated which assimilated
all the general structure in the original qualitative hypothesis. With cells,
tectonic plates, and germs, the variety of structure is so great that the under-
lying qualitative principle remains distinct, and its contribution to the total
theory clearly discernible.
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Conclusion

Laws of qualitative structure are seen everywhere in science. Some of our
greatest scientific discoveries are to be found among them. As the examples
illustrate, they often set the terms on which a whole science operates.

Physical-symbol systems

Let us return to the topic of symbols, and define a physical-symbol system.
The adjective ‘physical’ denotes two important features:

1 Such systems clearly obey the laws of physics – they are realizable by engi-
neered systems made of engineered components;

2 although our use of the term ‘symbol’ prefigures our intended interpreta-
tion, it is not restricted to human symbol systems.

A physical-symbol system consists of a set of entities, called symbols, which
are physical patterns that can occur as components of another type of entity
called an expression (or symbol structure). Thus a symbol structure is
composed of a number of instances (or tokens) of symbols related in some
physical way (such as one token being next to another). At any instant of time
the system will contain a collection of these symbol structures. Besides these
structures, the system also contains a collection of processes that operate on
expressions to produce other expressions: processes of creation, modification,
reproduction, and destruction. A physical-symbol system is a machine that
produces through time an evolving collection of symbol structures. Such a
system exists in a world of objects wider than just these symbolic expressions
themselves.

Two notions are central to this structure of expressions, symbols, and
objects: designation and interpretation.

Designation. An expression designates an object if, given the expression,
the system can either affect the object itself or behave in ways depending
on the object.

In either case, access to the object via the expression has been obtained, which
is the essence of designation.

Interpretation. The system can interpret an expression if the expression
designates a process and if, given the expression, the system can carry
out the process.

Interpretation implies a special form of dependent action: given an expression,
the system can perform the indicated process, which is to say, it can evoke and
execute its own processes from expressions that designate them.
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A system capable of designation and interpretation, in the sense just indi-
cated, must also meet a number of additional requirements, of completeness
and closure. We will have space only to mention these briefly; all of them are
important and have far-reaching consequences.

1 A symbol may be used to designate any expression whatsoever. That is,
given a symbol, it is not prescribed a priori what expressions it can desig-
nate. This arbitrariness pertains only to symbols: the symbol tokens and
their mutual relations determine what object is designated by a complex
expression.

2 There exist expressions that designate every process of which the machine
is capable.

3 There exist processes for creating any expression and for modifying any
expression in arbitrary ways.

4 Expressions are stable; once created, they will continue to exist until expli-
citly modified or deleted.

5 The number of expressions that the system can hold is essentially
unbounded.

The type of system we have just defined is not unfamiliar to computer scien-
tists. It bears a strong family resemblance to all general-purpose computers. 
If a symbol-manipulation language, such as LISP, is taken as defining a
machine, then the kinship becomes truly brotherly. Our intent in laying out
such a system is not to propose something new. Just the opposite: it is to 
show what is now known and hypothesized about systems that satisfy such a
characterization.

We can now state a general scientific hypothesis – a law of qualitative 
structure for symbol systems:

The Physical-Symbol System Hypothesis. A physical-symbol system has
the necessary and sufficient means for general intelligent action.

By ‘necessary’ we mean that any system that exhibits general intelligence
will prove upon analysis to be a physical-symbol system. By ‘sufficient’ we
mean that any physical-symbol system of sufficient size can be organized
further to exhibit general intelligence. By ‘general intelligent action’ we wish
to indicate the same scope of intelligence as we see in human action: that in
any real situation behaviour appropriate to the ends of the system and adap-
tive to the demands of the environment can occur, within some limits of speed
and complexity.

The Physical-Symbol System Hypothesis clearly is a law of qualitative struc-
ture. It specifies a general class of systems within which one will find those
capable of intelligent action.

This is an empirical hypothesis. We have defined a class of systems; we wish
to ask whether that class accounts for a set of phenomena we find in the real
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world. Intelligent action is everywhere around us in the biological world,
mostly in human behaviour. It is a form of behaviour we can recognize by its
effects whether it is performed by humans or not. The hypothesis could indeed
be false. Intelligent behaviour is not so easy to produce that any system will
exhibit it willy-nilly. Indeed, there are people whose analyses lead them to
conclude either on philosophical or on scientific grounds that the hypothesis
is false. Scientifically, one can attack or defend it only by bringing forth
empirical evidence about the natural world.

We now need to trace the development of this hypothesis and look at the
evidence for it.

Development of the symbol-system hypothesis

A physical-symbol system is an instance of a universal machine. Thus the
symbol-system hypothesis implies that intelligence will be realized by a
universal computer. However, the hypothesis goes far beyond the argument,
often made on general grounds of physical determinism, that any computa-
tion that is realizable can be realized by a universal machine, provided that it
is specified. For it asserts specifically that the intelligent machine is a symbol
system, thus making a specific architectural assertion about the nature of intel-
ligent systems. It is important to understand how this additional specificity
arose.

Formal logic

The roots of the hypothesis go back to the program of Frege and of Whitehead
and Russell for formalizing logic: capturing the basic conceptual notions of
mathematics in logic and putting the notions of proof and deduction on a
secure footing. This effort culminated in mathematical logic – our familiar
propositional, first-order, and higher-order logics. It developed a characteristic
view, often referred to as the ‘symbol game’. Logic, and by incorporation 
all of mathematics, was a game played with meaningless tokens according to
certain purely syntactic rules. All meaning had been purged. One had a
mechanical, though permissive (we would now say non-deterministic), system
about which various things could be proved. Thus progress was first made by
walking away from all that seemed relevant to meaning and human symbols.
We could call this the stage of formal symbol-manipulation.

This general attitude is well reflected in the development of information
theory. It was pointed out time and again that Shannon had defined a system
that was useful only for communication and selection, and which had nothing
to do with meaning. Regrets were expressed that such a general name as
‘information theory’ had been given to the field, and attempts were made to
rechristen it as ‘the theory of selective information’ – to no avail, of course.
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Turing machines and the digital computer

The development of the first digital computers and of automata theory, starting
with Turing’s own work in the thirties, can be treated together. They agree in
their view of what is essential. Let us use Turing’s own model, for it shows
the features well.

A Turing machine consists of two memories: an unbounded tape and a 
finite-state control. The tape holds data, i.e. the famous zeros and ones. The
machine has a very small set of proper operations – read, write, and scan oper-
ations – on the tape. The read operation is not a data operation, but provides
conditional branching to a control state as a function of the data under the read
head. As we all know, this model contains the essentials of all computers, in
terms of what they can do, though other computers with different memories
and operations might carry out the same computations with different require-
ments of space and time. In particular, the model of a Turing machine contains
within it the notions both of what cannot be computed and of universal
machines – computers that can do anything that can be done by any machine.

We should marvel that two of our deepest insights into information
processing were achieved in the thirties, before modern computers came into
being. It is a tribute to the genius of Alan Turing. It is also a tribute to the
development of mathematical logic at the time, and testimony to the depth of
computer science’s obligation to it. Concurrently with Turing’s work appeared
the work of the logicians Emil Post and (independently) Alonzo Church.
Starting from independent notions of logistic systems (Post productions and
recursive functions, respectively), they arrived at analogous results on unde-
cidability and universality – results that were soon shown to imply that all
three systems were equivalent. Indeed, the convergence of all these attempts
to define the most general class of information-processing systems provides
some of the force of our conviction that we have captured the essentials of
information-processing in these models.

In none of these systems is there, on the surface, a concept of the symbol
as something that designates. The data are regarded as just strings of zeros
and ones – indeed that data be inert is essential to the reduction of computa-
tion to physical process. The finite-state control system was always viewed as
a small controller, and logical games were played to see how small a state
system could be used without destroying the universality of the machine. No
games, as far as we can tell, were ever played to add new states dynamically
to the finite control – to think of the control memory as holding the bulk of
the system’s knowledge. What was accomplished at this stage was half the
principle of interpretation – showing that a machine could be run from a
description. Thus this is the stage of automatic formal symbol-manipulation.

The stored program concept

With the development of the second generation of electronic machines in the
mid-forties (after the Eniac) came the stored program concept. This was right-
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fully hailed as a milestone, both conceptually and practically. Programs now
can be data, and can be operated on as data. This capability is, of course,
already implicit in the model of Turing: the descriptions are on the very same
tape as the data. Yet the idea was realized only when machines acquired
enough memory to make it practicable to locate actual programs in some
internal place. After all, the Eniac had only twenty registers.

The stored program concept embodies the second half of the interpretation
principle, the part that says that the system’s own data can be interpreted. But
it does not yet contain the notion of designation – of the physical relation that
underlies meaning.

List-processing

The next step, taken in 1956, was list-processing The contents of the data-
structures were now symbols, in the sense of our physical-symbol system:
patterns that designated, that had referents. Lists held addresses which
permitted access to other lists – thus the notion of list-structures. That this
was a new view was demonstrated to us many times in the early days of list-
processing when colleagues would ask where the data were – that is, which
list finally held the collection of bits that were the content of the system. They
found it strange that there were no such bits, there were only symbols that
designated yet other symbol structures.

List-processing is simultaneously three things in the development of
computer science.

1 It is the creation of a genuine dynamic memory structure in a machine
that had heretofore been perceived as having fixed structure. It added to
our ensemble of operations those that built and modified structure in addi-
tion to those that replaced and changed content.

2 It was an early demonstration of the basic abstraction that a computer
consists of a set of data types and a set of operations proper to these data
types, so that a computational system should employ whatever data types
are appropriate to the application, independent of the underlying machine.

3 List-processing produced a model of designation, thus defining symbol-
manipulation in the sense in which we use this concept in computer science
today.

As often occurs, the practice of the time already anticipated all the elements
of list-processing: addresses are obviously used to gain access, the drum
machines used linked programs (so-called one-plus-one addressing), and so on.
But the conception of list-processing as an abstraction created a new world in
which designation and dynamic symbolic structure were defining characteris-
tics. The embedding of the early list-processing systems in languages (the IPLs,
LISP) is often decried as having been a barrier to the diffusion of list-processing
techniques throughout programming practice; but it was the vehicle that held
the abstraction together.
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LISP

One more step is worth noting: McCarthy’s creation of LISP in 1959–60
(McCarthy 1960). It completed the act of abstraction, lifting list-structures out
of their embedding in concrete machines, creating a new formal system with
S-expressions, which could be shown to be equivalent to the other universal
schemes of computation.

Conclusion

That the concept of the designating symbol and symbol-manipulation does not
emerge until the mid-fifties does not mean that the earlier steps were either
inessential or less important. The total concept is the join of computability,
physical realizability (and by multiple technologies), universality, the symbolic
representation of processes (i.e. interpretability), and, finally, symbolic struc-
ture and designation. Each of the steps provided an essential part of the whole.

The first step in this chain, authored by Turing, is theoretically motivated,
but the others all have deep empirical roots. We have been led by the evolu-
tion of the computer itself. The stored program principle arose out of the
experience with Eniac. List-processing arose out of the attempt to construct
intelligent programs. It took its cue from the emergence of random access
memories, which provided a clear physical realization of a designating symbol
in the address. LISP arose out of the evolving experience with list-processing.

The evidence

We come now to the evidence for the hypothesis that physical-symbol systems
are capable of intelligent action, and that general intelligent action calls for a
physical-symbol system. The hypothesis is an empirical generalization and not
a theorem. We know of no way of demonstrating the connection between
symbol systems and intelligence on purely logical grounds. Lacking such a
demonstration, we must look at the facts. Our central aim, however, is not to
review the evidence in detail, but to use the example before us to illustrate the
proposition that computer science is a field of empirical enquiry. Hence, we
will only indicate what kinds of evidence there are, and the general nature of
the testing process.

The notion of physical-symbol system had taken essentially its present form
by the middle of the 1950s, and one can date from that time the growth of
artificial intelligence as a coherent subfield of computer science. The twenty
years of work since then has seen a continuous accumulation of empirical
evidence of two main varieties. The first addresses itself to the sufficiency of
physical-symbol systems for producing intelligence, attempting to construct
and test specific systems that have such a capability. The second kind of
evidence addresses itself to the necessity of having a physical-symbol system
wherever intelligence is exhibited. It starts with Man, the intelligent system
best known to us, and attempts to discover whether his cognitive activity can
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be explained as the working of a physical-symbol system. There are other
forms of evidence, which we will comment upon briefly later, but these two
are the important ones. We will consider them in turn. The first is generally
called artificial intelligence, the second, research in cognitive psychology.

Constructing intelligent systems

The basic paradigm for the initial testing of the germ theory of disease was:
identify a disease, then look for the germ. An analogous paradigm has inspired
much of the research in artificial intelligence: identify a task-domain calling
for intelligence, then construct a program for a digital computer that can
handle tasks in that domain. The easy and well structured tasks were looked
at first: puzzles and games, operations-research problems of scheduling and
allocating resources, simple induction tasks. Scores, if not hundreds, of
programs of these kinds have by now been constructed, each capable of some
measure of intelligent action in the appropriate domain.

Of course intelligence is not an all-or-none matter, and there has been steady
progress towards higher levels of performance in specific domains, as well as
towards widening the range of those domains. Early chess programs, for
example, were deemed successful if they could play the game legally and with
some indication of purpose; a little later, they reached the level of human
beginners; within ten or fifteen years, they began to compete with serious
amateurs. Progress has been slow (and the total programming effort invested
small) but continuous, and the paradigm of construct-and-test proceeds in a
regular cycle – the whole research activity mimicking at a macroscopic level
the basic generate-and-test cycle of many of the AI programs.

There is a steadily widening area within which intelligent action is attain-
able. From the original tasks, research has extended to building systems 
that handle and understand natural language in a variety of ways, systems for
interpreting visual scenes, systems for hand–eye co-ordination, systems that
design, systems that write computer programs, systems for speech under-
standing – the list is, if not endless, at least very long. If there are limits beyond
which the hypothesis will not carry us, they have not yet become apparent.
Up to the present, the rate of progress has been governed mainly by the rather
modest quantity of scientific resources that have been applied and the
inevitable requirement of a substantial system-building effort for each new
major undertaking.

Much more has been going on, of course, than simply a piling up of exam-
ples of intelligent systems adapted to specific task-domains. It would be
surprising and unappealing if it turned out that the AI programs performing
these diverse tasks had nothing in common beyond their being instances of
physical-symbol systems. Hence, there has been great interest in searching for
mechanisms possessed of generality, and for common components among
programs performing a variety of tasks. This search carries the theory beyond
the initial symbol-system hypothesis to a more complete characterization of
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the particular kinds of symbol systems that are effective in artificial intelli-
gence. In the second section of this paper, we will discuss one example of a
hypothesis at this second level of specificity: the heuristic-search hypothesis.

The search for generality spawned a series of programs designed to sepa-
rate out general problem-solving mechanisms from the requirements of
particular task-domains. The General Problem Solver (GPS) was perhaps the
first of these; while among its descendants are such contemporary systems as
PLANNER and CONNIVER. The search for common components has led to
generalized schemes of representation for goals and plans, methods for
constructing discrimination nets, procedures for the control of tree search,
pattern-matching mechanisms, and language-parsing systems. Experiments are
at present under way to find convenient devices for representing sequences of
time and tense, movement, causality, and the like. More and more, it becomes
possible to assemble large intelligent systems in a modular way from such basic
components.

We can gain some perspective on what is going on by turning, again, to the
analogy of the germ theory. If the first burst of research stimulated by that
theory consisted largely in finding the germ to go with each disease, subse-
quent effort turned to learning what a germ was – to building on the basic
qualitative law a new level of structure. In artificial intelligence, an initial burst
of activity aimed at building intelligent programs for a wide variety of almost
randomly selected tasks is giving way to more sharply targeted research aimed
at understanding the common mechanisms of such systems.

The modelling of human symbolic behaviour

The symbol-system hypothesis implies that the symbolic behaviour of man
arises because he has the characteristics of a physical-symbol system. Hence,
the results of efforts to model human behaviour with symbol systems become
an important part of the evidence for the hypothesis, and research in artificial
intelligence goes on in close collaboration with research in information-
processing psychology, as it is usually called.

The search for explanations of man’s intelligent behaviour in terms of
symbol systems has had a large measure of success over the past twenty years;
to the point where information-processing theory is the leading contemporary
point of view in cognitive psychology. Especially in the areas of problem-
solving, concept attainment, and long-term memory, symbol-manipulation
models now dominate the scene.

Research in information-processing psychology involves two main kinds of
empirical activity. The first is the conduct of observations and experiments on
human behaviour in tasks requiring intelligence. The second, very similar to
the parallel activity in artificial intelligence, is the programming of symbol
systems to model the observed human behaviour. The psychological observa-
tions and experiments lead to the formulation of hypotheses about the
symbolic processes the subjects are using, and these are an important source 
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of the ideas that go into the construction of the programs. Thus many of the
ideas for the basic mechanisms of GPS were derived from careful analysis of
the protocols that human subjects produced while thinking aloud during the
performance of a problem-solving task.

The empirical character of computer science is nowhere more evident than
in this alliance with psychology. Not only are psychological experiments
required to test the veridicality of the simulation models as explanations of
the human behaviour, but out of the experiments come new ideas for the
design and construction of physical-symbol systems.

Other evidence

The principal body of evidence for the symbol-system hypothesis that we have
now considered is negative evidence: the absence of specific competing
hypotheses as to how intelligent activity might be accomplished – whether by
man or by machine. Most attempts to build such hypotheses have taken place
within the field of psychology. Here we have had a continuum of theories 
from the points of view usually labelled ‘behaviourism’ to those usually
labelled ‘Gestalt theory’. Neither of these points of view stands as a real
competitor to the symbol-system hypothesis, and for two reasons. First,
neither behaviourism nor Gestalt theory has demonstrated, or even shown
how to demonstrate, that the explanatory mechanisms it postulates are suffi-
cient to account for intelligent behaviour in complex tasks. Second, neither
theory has been formulated with anything like the specificity of artificial
programs. As a matter of fact, the alternative theories are so vague that it is
not terribly difficult to give them information-processing interpretations, and
thereby assimilate them to the symbol-system hypothesis.

Conclusion

We have tried to use the example of the Physical-Symbol System Hypothesis
to illustrate concretely that computer science is a scientific enterprise in the
usual meaning of that term: it develops scientific hypotheses which it then
seeks to verify by empirical enquiry. We had a second reason, however, for
choosing this particular example to illustrate our point. The Physical-Symbol
System Hypothesis is itself a substantial scientific hypothesis of the kind that
we earlier dubbed ‘laws of qualitative structure’. It represents an important
discovery of computer science, which if borne out by the empirical evidence,
as in fact appears to be occurring, will have major continuing impact on the
field.

We turn now to a second example, the role of search in intelligence. This
topic, and the particular hypothesis about it that we shall examine, has also
played a central role in computer science in general and in artificial intelligence
in particular.
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2 Heuristic search

Knowing that physical-symbol systems provide the matrix for intelligent
action does not tell us how they accomplish this. Our second example of a
law of qualitative structure in computer science addresses this latter question,
asserting that symbol systems solve problems by using the processes of
heuristic search. This generalization, like the previous one, rests on empirical
evidence, and has not been derived formally from other premisses. We shall
see in a moment, however, that it does have some logical connection with the
symbol-system hypothesis, and perhaps we can expect to formalize the connec-
tion at some time in the future. Until that time arrives, our story must again
be one of empirical enquiry. We will describe what is known about heuristic
search and review the empirical findings that show how it enables action 
to be intelligent. We begin by stating this law of qualitative structure, the
Heuristic Search Hypothesis.

Heuristic Search Hypothesis. The solutions to problems are represented
as symbol structures. A physical-symbol system exercises its intelligence
in problem-solving by search – that is, by generating and progressively
modifying symbol structures until it produces a solution structure.

Physical-symbol systems must use heuristic search to solve problems
because such systems have limited processing resources; in a finite number of
steps, and over a finite interval of time, they can execute only a finite number
of processes. Of course that is not a very strong limitation, for all universal
Turing machines suffer from it. We intend the limitation, however, in a
stronger sense: we mean practically limited. We can conceive of systems that
are not limited in a practical way but are capable, for example, of searching
in parallel the nodes of an exponentially expanding tree at a constant rate for
each unit advance in depth. We will not be concerned here with such systems,
but with systems whose computing resources are scarce relative to the
complexity of the situations with which they are confronted. The restriction
will not exclude any real symbol systems, in computer or man, in the context
of real tasks. The fact of limited resources allows us, for most purposes, to
view a symbol system as though it were a serial, one-process-at-a-time device.
If it can accomplish only a small amount of processing in any short time
interval, then we might as well regard it as doing things one at a time. Thus
‘limited resource symbol system’ and ‘serial symbol system’ are practically
synonymous. The problem of allocating a scarce resource from moment to
moment can usually be treated, if the moment is short enough, as a problem
of scheduling a serial machine.

Problem-solving

Since ability to solve problems is generally taken as a prime indicator that 
a system has intelligence, it is natural that much of the history of artificial
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intelligence is taken up with attempts to build and understand problem-solving
systems. Problem-solving has been discussed by philosophers and psycholo-
gists for two millennia, in discourses dense with a feeling of mystery. If you
think there is nothing problematic or mysterious about a symbol system
solving problems, you are a child of today, whose views have been formed
since mid-century. Plato (and, by his account, Socrates) found difficulty under-
standing even how problems could be entertained, much less how they could
be solved. Let me remind you of how he posed the conundrum in the Meno:

MENO: And how will you inquire, Socrates, into that which you know
not? What will you put forth as the subject of inquiry? And if you find
what you want, how will you ever know that this is what you did not
know?

To deal with this puzzle, Plato invented his famous theory of recollection:
when you think you are discovering or learning something, you are really just
recalling what you already knew in a previous existence. If you find this expla-
nation preposterous, there is a much simpler one available today, based upon
our understanding of symbol systems. An approximate statement of it is:

To state a problem is to designate (1) a test for a class of symbol struc-
tures (solutions of the problem), and (2) a generator of symbol structures
(potential solutions). To solve a problem is to generate a structure, using
(2), that satisfies the test of (1).

We have a problem if we know what we want to do (the test), and if we
don’t know immediately how to do it (our generator does not immediately
produce a symbol structure satisfying the test). A symbol system can state and
solve problems (sometimes) because it can generate and test.

If that is all there is to problem-solving, why not simply generate at once
an expression that satisfies the test? This is, in fact, what we do when we wish
and dream. ‘If wishes were horses, beggars might ride.’ But outside the world
of dreams, it isn’t possible. To know how we would test something, once
constructed, does not mean that we know how to construct it – that we have
any generator for doing so.

For example, it is well known what it means to ‘solve’ the problem of
playing winning chess. A simple test exists for noticing winning positions, the
test for checkmate of the enemy king. In the world of dreams one simply gener-
ates a strategy that leads to checkmate for all counter strategies of the
opponent. Alas, no generator that will do this is known to existing symbol
systems (man or machine). Instead, good moves in chess are sought by gener-
ating various alternatives, and painstakingly evaluating them with the use of
approximate, and often erroneous, measures that are supposed to indicate the
likelihood that a particular line of play is on the route to a winning position.
Move generators there are; winning-move generators there are not.
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Before there can be a move generator for a problem, there must be a
problem space: a space of symbol structures in which problem situations,
including the initial and goal situations, can be represented. Move generators
are processes for modifying one situation in the problem space into another.
The basic characteristics of physical-symbol systems guarantee that they can
represent problem spaces and that they possess move generators. How, in any
concrete situation they synthesize a problem space and move generators appro-
priate to that situation is a question that is still very much on the frontier of
artificial intelligence research.

The task that a symbol system is faced with, then, when it is presented with
a problem and a problem space, is to use its limited processing resources to
generate possible solutions, one after another, until it finds one that satisfies
the problem-defining test. If the system had some control over the order in
which potential solutions were generated, then it would be desirable to arrange
this order of generation so that actual solutions would have a high likelihood
of appearing early. A symbol system would exhibit intelligence to the extent
that it succeeded in doing this. Intelligence for a system with limited processing
resources consists in making wise choices of what to do next.

Search in problem-solving

During the first decade or so of artificial intelligence research, the study of
problem-solving was almost synonymous with the study of search processes.
From our characterization of problems and problem-solving, it is easy to see
why this was so. In fact, it might be asked whether it could be otherwise. But
before we try to answer that question, we must explore further the nature of
search processes as it revealed itself during that decade of activity.

Extracting information from the problem space

Consider a set of symbol structures, some small subset of which are solutions
to a given problem. Suppose, further, that the solutions are distributed
randomly through the entire set. By this we mean that no information exists
that would enable any search generator to perform better than a random
search. Then no symbol system could exhibit more intelligence (or less intel-
ligence) than any other in solving the problem, although one might experience
better luck than another.

A condition, then, for the appearance of intelligence is that the distribution
of solutions be not entirely random, that the space of symbol structures exhibit
at least some degree of order and pattern. A second condition is that pattern
in the space of symbol structures be more or less detectable. A third condition
is that the generator of potential solutions be able to behave differentially,
depending on what pattern it detected. There must be information in the
problem space, and the symbol system must be capable of extracting and using
it. Let us look first at a very simple example, where the intelligence is easy to
come by.
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Consider the problem of solving a simple algebraic equation:

AX + B = CX + D

The test defines a solution as any expression of the form, X = E, such that 
AE + B = CE + D. Now one could use as generator any process that would
produce numbers which could then be tested by substituting in the latter equa-
tion. We would not call this an intelligent generator.

Alternatively, one could use generators that would make use of the fact that
the original equation can be modified – by adding or subtracting equal quan-
tities from both sides, or multiplying or dividing both sides by the same
quantity – without changing its solutions. But, of course, we can obtain even
more information to guide the generator by comparing the original expression
with the form of the solution, and making precisely those changes in the equa-
tion that leave its solution unchanged, while at the same time bringing it into
the desired form. Such a generator could notice that there was an unwanted
CX on the right-hand side of the original equation, subtract it from both sides,
and collect terms again. It could then notice that there was an unwanted B on
the left-hand side and subtract that. Finally, it could get rid of the unwanted
coefficient (A – C) on the left-hand side by dividing.

Thus by this procedure, which now exhibits considerable intelligence, the
generator produces successive symbol structures, each obtained by modifying
the previous one; and the modifications are aimed at reducing the differences
between the form of the input structure and the form of the test expression,
while maintaining the other conditions for a solution.

This simple example already illustrates many of the main mechanisms that
are used by symbol systems for intelligent problem-solving. First, each succes-
sive expression is not generated independently, but is produced by modifying
one produced previously. Second, the modifications are not haphazard, but
depend upon two kinds of information. They depend on information that is
constant over this whole class of algebra problems, and that is built into the
structure of the generator itself: all modifications of expressions must leave
the equation’s solution unchanged. They also depend on information that
changes at each step: detection of the differences in form that remain between
the current expression and the desired expression. In effect, the generator
incorporates some of the tests the solution must satisfy, so that expressions
that don’t meet these tests will never be generated. Using the first kind of
information guarantees that only a tiny subset of all possible expressions is
actually generated, but without losing the solution expression from this subset.
Using the second kind of information arrives at the desired solution by a suc-
cession of approximations, employing a simple form of means-ends analysis
to give direction to the search.

There is no mystery where the information that guided the search came
from. We need not follow Plato in endowing the symbol system with a previous
existence in which it already knew the solution. A moderately sophisticated
generator-test system did the trick without invoking reincarnation.
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Search trees

The simple algebra problem may seem an unusual, even pathological, example
of search. It is certainly not trial-and-error search, for though there were a 
few trials, there was no error. We are more accustomed to thinking of problem-
solving search as generating lushly branching trees of partial solution possi-
bilities which may grow to thousands, or even millions, of branches, before
they yield a solution. Thus, if from each expression it produces, the generator
creates B new branches, then the tree will grow as BD, where D is its depth.
The tree grown for the algebra problem had the peculiarity that its branchi-
ness, B, equalled unity.

Programs that play chess typically grow broad search trees, amounting in
some cases to a million branches or more. Although this example will serve
to illustrate our points about tree search, we should note that the purpose of
search in chess is not to generate proposed solutions, but to evaluate (test)
them. One line of research into game-playing programs has been centrally
concerned with improving the representation of the chess board, and the
processes for making moves on it, so as to speed up search and make it possible
to search larger trees. The rationale for this direction, of course, is that the
deeper the dynamic search, the more accurate should be the evaluations at the
end of it. On the other hand, there is good empirical evidence that the strongest
human players, grand masters, seldom explore trees of more than one hundred
branches. This economy is achieved not so much by searching less deeply than
do chess-playing programs, but by branching very sparsely and selectively at
each node. This is only possible, without causing a deterioration of the eval-
uations, by having more of the selectivity built into the generator itself, so that
it is able to select for generation only those branches which are very likely to
yield important relevant information about the position.

The somewhat paradoxical-sounding conclusion to which this discussion
leads is that search – successive generation of potential solution structures – is
a fundamental aspect of a symbol system’s exercise of intelligence in problem-
solving but that amount of search is not a measure of the amount of intelligence
being exhibited. What makes a problem a problem is not that a large amount
of search is required for its solution, but that a large amount would be required
if a requisite level of intelligence were not applied. When the symbolic system
that is endeavouring to solve a problem knows enough about what to do, it
simply proceeds directly towards its goal; but whenever its knowledge becomes
inadequate, when it enters terra incognita, it is faced with the threat of going
through large amounts of search before it finds its way again.

The potential for the exponential explosion of the search tree that is present
in every scheme for generating problem solutions warns us against depending
on the brute force of computers – even the biggest and fastest computers – as
a compensation for the ignorance and unselectivity of their generators. The
hope is still periodically ignited in some human breasts that a computer can
be found that is fast enough, and that can be programmed cleverly enough,
to play good chess by brute-force search. There is nothing known in theory
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about the game of chess that rules out this possibility. But empirical studies
on the management of search in sizable trees with only modest results make
this a much less promising direction than it was when chess was first chosen
as an appropriate task for artificial intelligence. We must regard this as one of
the important empirical findings of research with chess programs.

The forms of intelligence

The task of intelligence, then, is to avert the ever-present threat of the expo-
nential explosion of search. How can this be accomplished? The first route,
already illustrated by the algebra example and by chess programs that only
generate ‘plausible’ moves for further analysis, is to build selectivity into the
generator: to generate only structures that show promise of being solutions or
of being along the path towards solutions. The usual consequence of doing
this is to decrease the rate of branching, not to prevent it entirely. Ultimate
exponential explosion is not avoided – save in exceptionally highly structured
situations like the algebra example – but only postponed. Hence, an intelli-
gent system generally needs to supplement the selectivity of its solution
generator with other information-using techniques to guide search.

Twenty years of experience with managing tree search in a variety of task
environments has produced a small kit of general techniques which is part of
the equipment of every researcher in artificial intelligence today. Since these
techniques have been described in general works like that of Nilsson (1971),
they can be summarized very briefly here.

In serial heuristic search, the basic question always is: What shall be done
next? In tree search, that question, in turn, has two components: (1) from what
node in the tree shall we search next, and (2) what direction shall we take
from that node? Information helpful in answering the first question may be
interpreted as measuring the relative distance of different nodes from the goal.
Best-first search calls for searching next from the node that appears closest to
the goal. Information helpful in answering the second question – in what direc-
tion to search – is often obtained, as in the algebra example, by detecting
specific differences between the current nodal structure and the goal structure
described by the test of a solution, and selecting actions that are relevant to
reducing these particular kinds of differences. This is the technique known as
means-ends analysis, which plays a central role in the structure of the General
Problem Solver.

The importance of empirical studies as a source of general ideas in AI
research can be demonstrated clearly by tracing the history, through large
numbers of problem-solving programs, of these two central ideas: best-first
search and means-ends analysis. Rudiments of best-first search were already
present, though unnamed, in the Logic Theorist in 1955. The General Problem
Solver, embodying means-ends analysis, appeared about 1957 – but combined
it with modified depth-first search rather than best-first search. Chess
programs were generally wedded, for reasons of economy of memory, to
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depth-first search, supplemented after about 1958 by the powerful alpha-beta
pruning procedure. Each of these techniques appears to have been reinvented
a number of times, and it is hard to find general, task-independent, theoret-
ical discussions of problem-solving in terms of these concepts until the middle
or late 1960s. The amount of formal buttressing they have received from math-
ematical theory is still minuscule: some theorems about the reduction in search
that can be secured from using the alpha-beta heuristic, a couple of theorems
(reviewed by Nilsson 1971) about shortest-path search, and some very recent
theorems on best-first search with a probabilistic evaluation function.

‘Weak’ and ‘strong’ methods

The techniques we have been discussing are dedicated to the control of expo-
nential expansion rather than its prevention. For this reason, they have been
properly called ‘weak methods’ – methods to be used when the symbol system’s
knowledge or the amount of structure actually contained in the problem space
are inadequate to permit search to be avoided entirely. It is instructive to
contrast a highly structured situation, which can be formulated, say, as a
linear-programming problem, with the less structured situations of combina-
torial problems like the travelling salesman problem or scheduling problems.
(‘Less structured’ here refers to the insufficiency or nonexistence of relevant
theory about the structure of the problem space.)

In solving linear-programming problems, a substantial amount of compu-
tation may be required, but the search does not branch. Every step is a step
along the way to a solution. In solving combinatorial problems or in proving
theorems, tree search can seldom be avoided, and success depends on heuristic
search methods of the sort we have been describing.

Not all streams of AI problem-solving research have followed the path we
have been outlining. An example of a somewhat different point is provided
by the work on theorem-proving systems. Here, ideas imported from mathe-
matics and logic have had a strong influence on the direction of enquiry. For
example, the use of heuristics was resisted when properties of completeness
could not be proved (a bit ironic, since most interesting mathematical systems
are known to be undecidable). Since completeness can seldom be proved for
best-first search heuristics, or for many kinds of selective generators, the effect
of this requirement was rather inhibiting. When theorem-proving programs
were continually incapacitated by the combinatorial explosion of their 
search trees, thought began to be given to selective heuristics, which in many
cases proved to be analogues of heuristics used in general problem-solving
programs. The set-of-support heuristic, for example, is a form of working
backward, adapted to the resolution theorem-proving environment.

A summary of the experience

We have now described the workings of our second law of qualitative struc-
ture, which asserts that physical-symbol systems solve problems by means of
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heuristic search. Beyond that, we have examined some subsidiary characteris-
tics of heuristic search, in particular the threat that it always faces of
exponential explosion of the search tree, and some of the means it uses to
avert that threat. Opinions differ as to how effective heuristic search has been
as a problem-solving mechanism – the opinions depending on what task
domains are considered and what criterion of adequacy is adopted. Success
can be guaranteed by setting aspiration levels low – or failure by setting them
high. The evidence might be summed up about as follows: few programs are
solving problems at ‘expert’ professional levels. Samuel’s checker program and
Feigenbaum and Lederberg’s DENDRAL are perhaps the best-known excep-
tions, but one could point also to a number of heuristic search programs for
such operations-research problem domains as scheduling and integer program-
ming. In a number of domains, programs perform at the level of competent
amateurs: chess, some theorem-proving domains, many kinds of games and
puzzles. Human levels have not yet been nearly reached by programs that have
a complex perceptual ‘front end’: visual scene recognizers, speech under-
standers, robots that have to manoeuvre in real space and time Nevertheless,
impressive progress has been made, and a large body of experience assembled
about these difficult tasks.

We do not have deep theoretical explanations for the particular pattern of
performance that has emerged. On empirical grounds, however, we might
draw two conclusions. First, from what has been learned about human expert
performance in tasks like chess, it is likely that any system capable of matching
that performance will have to have access, in its memories, to very large stores
of semantic information. Second, some part of the human superiority in tasks
with a large perceptual component can be attributed to the special-purpose
built-in parallel-processing structure of the human eye and ear.

In any case, the quality of performance must necessarily depend on the char-
acteristics both of the problem domains and of the symbol systems used to
tackle them. For most real-life domains in which we are interested, the domain
structure has so far not proved sufficiently simple to yield theorems about
complexity, or to tell us, other than empirically, how large real-world prob-
lems are in relation to the abilities of our symbol systems to solve them. That
situation may change, but until it does, we must rely upon empirical explor-
ations, using the best problem solvers we know how to build, as a principal
source of knowledge about the magnitude and characteristics of problem diffi-
culty. Even in highly structured areas like linear programming, theory has been
much more useful in strengthening the heuristics that underlie the most
powerful solution algorithms than in providing a deep analysis of complexity.

Intelligence without much search

Our analysis of intelligence equated it with the ability to extract and use
information about the structure of the problem space, so as to enable a prob-
lem solution to be generated as quickly and directly as possible. New directions
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for improving the problem-solving capabilities of symbol systems can be
equated, then, with new ways of extracting and using information. At least
three such ways can be identified.

Non-local use of information

First, it has been noted by several investigators that information gathered in
the course of tree search is usually only used locally, to help make decisions
at the specific node where the information was generated. Information about
a chess position, obtained by dynamic analysis of a subtree of continuations,
is usually used to evaluate just that position, not to evaluate other positions
that may contain many of the same features. Hence, the same facts have to be
rediscovered repeatedly at different nodes of the search tree. Simply to take
the information out of the context in which it arose and use it generally does
not solve the problem, for the information may be valid only in a limited range
of contexts. In recent years, a few exploratory efforts have been made to trans-
port information from its context of origin to other appropriate contexts.
While it is still too early to evaluate the power of this idea, or even exactly
how it is to be achieved, it shows considerable promise. An important line of
investigation that Berliner (1975) has been pursuing is to use causal analysis
to determine the range over which a particular piece of information is 
valid. Thus if a weakness in a chess position can be traced back to the move
that made it, then the same weakness can be expected in other positions
descendant from the same move.

The HEARSAY speech-understanding system has taken another approach
to making information globally available. That system seeks to recognize
speech strings by pursuing a parallel search at a number of different levels:
phonemic, lexical, syntactic, and semantic. As each of these searches provides
and evaluates hypotheses, it supplies the information it has gained to a
common ‘blackboard’ that can be read by all the sources. This shared informa-
tion can be used, for example, to eliminate hypotheses, or even whole classes
of hypotheses, that would otherwise have to be searched by one of the
processes. Thus increasing our ability to use tree-search information non-
locally offers promise for raising the intelligence of problem-solving systems.

Semantic recognition systems

A second active possibility for raising intelligence is to supply the symbol
system with a rich body of semantic information about the task-domain it is
dealing with. For example, empirical research on the skill of chess masters
shows that a major source of the master’s skill is stored information that
enables him to recognize a large number of specific features and patterns of
features on a chess board, and information that uses this recognition to
propose actions appropriate to the features recognized. This general idea has,
of course, been incorporated in chess programs almost from the beginning.
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What is new is the realization of the number of such patterns and associated
information that may have to be stored for master-level play: something on
the order of 50,000,

The possibility of substituting recognition for search arises because a partic-
ular, and especially a rare, pattern can contain an enormous amount of
information, provided that it is closely linked to the structure of the problem
space. When that structure is ‘irregular’, and not subject to simple mathe-
matical description, then knowledge of a large number of relevant patterns
may be the key to intelligent behaviour. Whether this is so in any particular
task-domain is a question more easily settled by empirical investigation 
than by theory. Our experience with symbol systems richly endowed with
semantic information and pattern-recognizing capabilities for accessing it is
still extremely limited.

The discussion above refers specifically to semantic information associated
with a recognition system. Of course, there is also a whole large area of AI
research on semantic information processing and the organization of semantic
memories that falls outside the scope of the topics we are discussing in this
paper.

Selecting appropriate representations

A third line of enquiry is concerned with the possibility that search can be
reduced or avoided by selecting an appropriate problem space. A standard
example that illustrates this possibility dramatically is the mutilated chequer-
board problem. A standard 64-square chequer-board can be covered exactly
with 32 tiles, each a 1 x 2 rectangle covering exactly two squares. Suppose,
now, that we cut off squares at two diagonally opposite corners of the chequer-
board, leaving a total of 62 squares. Can this mutilated board be covered
exactly with 31 tiles? With (literally) heavenly patience, the impossibility of
achieving such a covering can be demonstrated by trying all possible arrange-
ments. The alternative, for those with less patience and more intelligence, is
to observe that the two diagonally opposite corners of a chequer-board are of
the same colour. Hence, the mutilated chequer-board has two fewer squares
of one colour than of the other. But each tile covers one square of one colour
and one square of the other, and any set of tiles must cover the same number
of squares of each colour. Hence, there is no solution. How can a symbol
system discover this simple inductive argument as an alternative to a hopeless
attempt to solve the problem by search among all possible coverings? We
would award a system that found a solution high marks for intelligence.

Perhaps, however, in posing these problems we are not escaping from search
processes. We have simply displaced the search from a space of possible
problem solutions to a space of possible representations. In any event, the
whole process of moving from one representation to another, and of discov-
ering and evaluating representations, is largely unexplored territory in the
domain of problem-solving research. The laws of qualitative structure

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“COMPUTER SCIENCE”

429



governing representations remain to be discovered. The search for them is
almost sure to receive considerable attention in the coming decade.

Conclusion

That is our account of symbol systems and intelligence. It has been a long road
from Plato’s Meno to the present, but it is perhaps encouraging that most of
the progress along that road has been made since the turn of the twentieth
century, and a large fraction of it since the mid-point of the century. Thought
was still wholly intangible and ineffable until modern formal logic interpreted
it as the manipulation of formal tokens. And it seemed still to inhabit mainly
the heaven of Platonic ideals, or the equally obscure spaces of the human 
mind, until computers taught us how symbols could be processed by machines. 
A. M. Turing made his great contributions at the mid-century crossroads of
these developments that led from modern logic to the computer.

Physical-symbol systems

The study of logic and computers has revealed to us that intelligence resides
in physical-symbol systems. This is computer science’s most basic law of qual-
itative structure.

Symbol systems are collections of patterns and processes, the latter being
capable of producing, destroying, and modifying the former. The most
important properties of patterns are that they can designate objects, processes,
or other patterns, and that when they designate processes, they can be inter-
preted. Interpretation means carrying out the designated process. The two
most significant classes of symbol systems with which we are acquainted are
human beings and computers.

Our present understanding of symbol systems grew, as indicated earlier,
through a sequence of stages. Formal logic familiarized us with symbols,
treated syntactically, as the raw material of thought, and with the idea of
manipulating them according to carefully defined formal processes. The Turing
machine made the syntactic processing of symbols truly machinelike, and
affirmed the potential universality of strictly defined symbol systems. The
stored-program concept for computers reaffirmed the interpretability of
symbols, already implicit in the Turing machine. List-processing brought to
the forefront the denotational capacities of symbols, and defined symbol-
processing in ways that allowed independence from the fixed structure of the
underlying physical machine. By 1956 all of these concepts were available,
together with hardware for implementing them. The study of the intelligence
of symbol systems, the subject of artificial intelligence, could begin.

Heuristic search

A second law of qualitative structure for AI is that symbol systems solve prob-
lems by generating potential solutions and testing them – that is, by searching.
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Solutions are usually sought by creating symbolic expressions and modifying
them sequentially until they satisfy the conditions for a solution. Hence,
symbol systems solve problems by searching. Since they have finite resources,
the search cannot be carried out all at once, but must be sequential. It leaves
behind it either a single path from starting-point to goal or, if correction and
backup are necessary, a whole tree of such paths.

Symbol systems cannot appear intelligent when they are surrounded by pure
chaos. They exercise intelligence by extracting information from a problem
domain and using that information to guide their search, avoiding wrong turns
and circuitous bypaths. The problem domain must contain information – that
is, some degree of order and structure – for the method to work. The paradox
of the Meno is solved by the observation that information may be remem-
bered, but new information may also be extracted from the domain that the
symbols designate. In both cases, the ultimate source of the information is 
the task-domain.

The empirical base

Research on artificial intelligence is concerned with how symbol systems must
be organized in order to behave intelligently. Twenty years of work in the area
has accumulated a considerable body of knowledge, enough to fill several
books (it already has), and most of it in the form of rather concrete experi-
ence about the behaviour of specific classes of symbol systems in specific
task-domains. Out of this experience, however, there have also emerged some
generalizations, cutting across task-domains and systems, about the general
characteristics of intelligence and its methods of implementation.

We have tried to state some of these generalizations here. They are mostly
qualitative rather than mathematical. They have more the flavour of geology
or evolutionary biology than the flavour of theoretical physics. They are suffi-
ciently strong to enable us today to design and build moderately intelligent
systems for a considerable range of task domains, as well as to gain a rather
deep understanding of how human intelligence works in many situations.

What next?

In our account we have mentioned open questions as well as settled ones; there
are many of both. We see no abatement of the excitement of exploration that
has surrounded this field over the past quarter century. Two resource limits
will determine the rate of progress over the next such period. One is the
amount of computing power that will be available. The second, and probably
the more important, is the number of talented young computer scientists 
who will be attracted to this area of research as the most challenging they 
can tackle.

A. M. Turing concluded his famous paper ‘Computing Machinery and
Intelligence’ with the words: ‘We can only see a short distance ahead, but we
can see plenty there that needs to be done.’
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Many of the things Turing saw in 1950 that needed to be done have been
done, but the agenda is as full as ever. Perhaps we read too much into his
simple statement above, but we like to think that in it Turing recognized the
fundamental truth that all computer scientists instinctively know. For all phys-
ical-symbol systems, condemned as we are to serial search of the problem
environment, the critical question is always: What to do next?
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D.C. Dennett, “Cognitive Wheels: 
The Frame Problem of AI”

Once upon a time there was a robot, named R1 by its creators. Its only task
was to fend for itself. One day its designers arranged for it to learn that its
spare battery, its precious energy supply, was locked in a room with a time
bomb set to go off soon. R1 located the room, and the key to the door, and
formulated a plan to rescue its battery. There was a wagon in the room, and
the battery was on the wagon, and R1 hypothesized that a certain action which
it called PULLOUT (WAGON, ROOM) would result in the battery being removed
from the room. Straightaway it acted, and did succeed in getting the battery
out of the room before the bomb went off. Unfortunately, however, the bomb
was also on the wagon. R1 knew that the bomb was on the wagon in the 
room, but didn’t realize that pulling the wagon would bring the bomb out
along with the battery. Poor R1 had missed that obvious implication of its
planned act.

Back to the drawing board. ‘The solution is obvious,’ said the designers.
‘Our next robot must be made to recognize not just the intended implications
of its acts, but also the implications about their side-effects, by deducing these
implications from the descriptions it uses in formulating its plans.’ They called
their next model, the robot-deducer. R1D1. They placed R1D1 in much the same
predicament that R1 had succumbed to, and as it too hit upon the idea of
PULLOUT (WAGON, ROOM), it began, as designed, to consider the implications
of such a course of action. It had just finished deducing that pulling the wagon
out of the room would not change the colour of the room’s walls, and was
embarking on a proof of the further implication that pulling the wagon out
would cause its wheels to turn more revolutions than there were wheels on
the wagon – when the bomb exploded.

Back to the drawing board. ‘We must teach it the difference between rele-
vant implications and irrelevant implications,’ said the designers, ‘and teach
it to ignore the irrelevant ones.’ So they developed a method of tagging impli-
cations as either relevant or irrelevant to the project at hand, and installed the
method in their next model, the robot-relevant-deducer, or R2D1 for short.
When they subjected R2D1 to the test that had so unequivocally selected its
ancestors for extinction, they were surprised to see it sitting, Hamlet-like,
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outside the room containing the ticking bomb, the native hue of its resolution
sicklied o’er with the pale cast of thought, as Shakespeare (and more recently
Fodor) has aptly put it. ‘Do something!’ they yelled at it. ‘I am,’ it retorted.
‘I’m busily ignoring some thousands of implications I have determined to be
irrelevant. Just as soon as I find an irrelevant implication, I put it on the list
of those I must ignore, and . . .’ the bomb went off.

All these robots suffer from the frame problem.1 If there is ever to be a
robot with the fabled perspicacity and real-time adroitness of R2D2 robot-
designers must solve the frame problem. It appears at first to be at best an
annoying technical embarrassment in robotics, or merely a curious puzzle for
the bemusement of people working in Artificial Intelligence (AI). I think, on
the contrary, that it is a new, deep epistemological problem – accessible in prin-
ciple but unnoticed by generations of philosophers – brought to light by the
novel methods of AI, and still far from being solved. Many people in AI have
come to have a similarly high regard for the seriousness of the frame problem.
As one researcher has quipped, ‘We have given up the goal of designing an
intelligent robot, and turned to the task of designing a gun that will destroy
any intelligent robot that anyone else designs!’

I will try here to present an elementary, non-technical, philosophical intro-
duction to the frame problem, and show why it is so interesting. I have no
solution to offer, or even any original suggestions for where a solution might
lie. It is hard enough, I have discovered, just to say clearly what the frame
problem is – and is not. In fact, there is less than perfect agreement in usage
within the AI research community. McCarthy and Hayes, who coined the term,
use it to refer to a particular, narrowly conceived problem about representa-
tion that arises only for certain strategies for dealing with a broader problem
about real-time planning systems. Others call this broader problem the frame
problem – ‘the whole pudding,’ as Hayes has called it (personal correspon-
dence) – and this may not be mere terminological sloppiness. If ‘solutions’ to
the narrowly conceived problem have the effect of driving a (deeper) difficulty
into some other quarter of the broad problem, we might better reserve 
the title for this hard-to-corner difficulty. With apologies to McCarthy and
Hayes for joining those who would appropriate their term, I am going to
attempt an introduction to the whole pudding, calling it the frame problem. 
I will try in due course to describe the narrower version of the problem, ‘the 
frame problem proper’ if you like, and show something of its relation to 
the broader problem.

Since the frame problem, whatever it is, is certainly not solved yet and may
be, in its current guises, insoluble, the ideological foes of AI such as Hubert
Dreyfus and John Searle are tempted to compose obituaries for the field, citing
the frame problem as the cause of death. In What Computers Can’t do
(Dreyfus 1972), Dreyfus sought to show that AI was a fundamentally mistaken
method for studying the mind, and in fact many of his somewhat impres-
sionistic complaints about AI models and many of his declared insights into
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their intrinsic limitations can be seen to hover quite systematically in the 
neighbourhood of the frame problem. Dreyfus never explicitly mentions the
frame problem,2 but is it perhaps the smoking pistol he was looking for but
didn’t quite know how to describe? Yes, I think AI can be seen to be holding
a smoking pistol, but at least in its ‘whole pudding’ guise it is everyone’s
problem, not just a problem for AI, which, like the good guy in many a mystery
story, should be credited with a discovery, not accused of a crime.

One does not have to hope for a robot-filled future to be worried by the
frame problem. It apparently arises from some very widely held and
innocuous-seeming assumptions about the nature of intelligence, the truth of
the most undoctrinaire brand of physicalism, and the conviction that it must
be possible to explain how we think. (The dualist evades the frame problem
– but only because dualism draws the veil of mystery and obfuscation over all
the tough how-questions; as we shall see, the problem arises when one takes
seriously the task of answering certain how-questions. Dualists inexcusably
excuse themselves from the frame problem.)

One utterly central – if not defining – feature of an intelligent being is that
it can ‘look before it leaps’. Better, it can think before it leaps. Intelligence is
(at least partly) a matter of using well what you know – but for what? For
improving the fidelity of your expectations about what is going to happen
next, for planning, for considering courses of action, for framing further
hypotheses with the aim of increasing the knowledge you will use in the future,
so that you can preserve yourself by letting your hypotheses die in your stead
(as Sir Karl Popper once put it). The stupid – as opposed to ignorant – being
is the one who lights the match to peer into the fuel tank,3 who saws off the
limb he is sitting on, who locks his keys in his car and then spends the next
hour wondering how on earth to get his family out of the car.

But when we think before we leap, how do we do it? The answer seems
obvious: an intelligent being learns from experience, and then uses what it has
learned to guide expectation in the future. Hume explained this in terms of
habits of expectation, in effect. But how do the habits work? Hume had a
hand-waving answer – associationism – to the effect that certain transition
paths between ideas grew more likely-to-be-followed as they became well
worn, but since it was not Hume’s job, surely, to explain in more detail the
mechanics of these links, problems about how such paths could be put to 
good use – and not just turned into an impenetrable maze of untraversable
alternatives – were not discovered.

Hume, like virtually all other philosophers and ‘mentalistic’ psychologists,
was unable to see the frame problem because he operated at what I call a
purely semantic level, or a phenomenological level. At the phenomenological
level, all the items in view are individuated by their meanings. Their meanings
are, if you like, ‘given’ – but this just means that the theorist helps himself to
all the meanings he wants. In this way the semantic relation between one item
and the next is typically plain to see, and one just assumes that the items
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behave as items with those meanings ought to behave. We can bring this out
by concocting a Humean account of a bit of learning.

Suppose that there are two children, both of whom initially tend to grab
cookies from the jar without asking. One child is allowed to do this unmo-
lested but the other is spanked each time she tries. What is the result? The
second child learns not to go for the cookies. Why? Because she has had experi-
ence of cookie-reaching followed swiftly by spanking. What good does that
do? Well, the idea of cookie-reaching becomes connected by a habit path to
the idea of spanking, which in turn is connected to the idea of pain . . . so of
course the child refrains. Why? Well, that’s just the effect of that idea on that
sort of circumstance. But why? Well, what else ought the idea of pain to do
on such an occasion? Well, it might cause the child to pirouette on her left
foot or recite poetry, or blink, or recall her fifth birthday. But given what the
idea of pain means, any of those effects would be absurd. True; now how can
ideas be designed so that their effects are what they ought to be, given what
they mean? Designing some internal things – an idea, let’s call it – so that it
behaves vis-à-vis its brethren as if it meant cookie or pain is the only way of
endowing that thing with that meaning; it couldn’t mean a thing if it didn’t
have those internal behavioural dispositions.

That is the mechanical question the philosophers left to some dimly imag-
ined future researcher. Such a division of labour might have been all right, but
it is turning out that most of the truly difficult and deep puzzles of learning
and intelligence get kicked downstairs by this move. It is rather as if philoso-
phers were to proclaim themselves expert explainers of the methods of a stage
magician, and then, when we ask them to explain how the magician does the
sawing-the-lady-in-half trick, they explain that it is really quite obvious: the
magician doesn’t really saw her in half; he simply makes it appear that he does.
‘But how does he do that?’ we ask. ‘Not our department’, say the philosophers
– and some of them add, sonorously: ‘Explanation has to stop somewhere.’4

When one operates at the purely phenomenological or semantic level, where
does one get one’s data, and how does theorizing proceed? The term ‘phenom-
enology’ has traditionally been associated with an introspective method – an
examination of what is presented or given to consciousness. A person’s
phenomenology just was by definition the contents of his or her conscious-
ness. Although this has been the ideology all along, it has never been the
practice. Locke, for instance, may have thought his ‘historical, plain method’
was a method of unbiased self-observation, but in fact it was largely a matter
of disguised aprioristic reasoning about what ideas and impressions had to be
to do the jobs they ‘obviously’ did.5 The myth that each of us can observe our
mental activities has prolonged the illusion that major progress could be made
on the theory of thinking by simply reflecting carefully on our own cases. For
some time now we have known better: we have conscious access to only the
upper surface, as it were, of the multi-level system of information-processing
that occurs in us. Nevertheless, the myth still claims its victims.
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So the analogy of the stage magician is particularly apt. One is not likely
to make much progress in figuring out how the tricks are done by simply sitting
attentively in the audience and watching like a hawk. Too much is going 
on out of sight. Better to face the fact that one must either rummage around
backstage or in the wings, hoping to disrupt the performance in telling 
ways; or, from one’s armchair, think aprioristically about how the tricks 
must be done, given whatever is manifest about the constraints. The frame
problem is then rather like the unsettling but familiar ‘discovery’ that so far
as armchair thought can determine, a certain trick we have just observed is
flat impossible.

Here is an example of the trick. Making a midnight snack. How is it that
I can get myself a midnight snack? What could be simpler? I suspect there is
some leftover sliced turkey and mayonnaise in the fridge, and bread in the
breadbox – and a bottle of beer in the fridge as well. I realize I can put these
elements together, so I concoct a childishly simple plan: I’ll just go and check
out the fridge, get out the requisite materials, and make myself a sandwich,
to be washed down with a beer. I’ll need a knife, a plate, and a glass for the
beer. I forthwith put the plan into action and it works! Big deal.

Now of course I couldn’t do this without knowing a good deal – about
bread, spreading mayonnaise, opening the fridge, the friction and inertia that
will keep the turkey between the bread slices and the bread on the plate as I
carry the plate over to the table beside my easy chair. I also need to know
about how to get the beer out of the bottle into the glass.6 Thanks to my
previous accumulation of experience in the world, fortunately, I am equipped
with all this worldly knowledge. Of course some of the knowledge I need
might be innate. For instance, one trivial thing I have to know is that when
the beer gets into the glass it is no longer in the bottle, and that if I’m holding
the mayonnaise jar in my left hand I cannot also be spreading the mayonnaise
with the knife in my left hand. Perhaps these are straightforward implica-
tions – instantiations – of some more fundamental things that I was in effect
born knowing such as, perhaps, the fact that if something is in one location
it isn’t also in another, different location; or the fact that two things can’t be
in the same place at the same time; or the fact that situations change as the
result of actions. It is hard to imagine just how one could learn these facts
from experience.

Such utterly banal facts escape our notice as we act and plan, and it is not
surprising that philosophers, thinking phenomenologically but introspectively,
should have overlooked them. But if one turns one’s back on introspection,
and just thinks ‘hetero-phenomenologically’7 about the purely informational
demands of the task – what must be known by any entity that can perform
this task – these banal bits of knowledge rise to our attention. We can easily
satisfy ourselves that no agent that did not in some ways have the benefit 
of the information (that beer in the bottle is not in the glass, etc.) could
perform such a simple task. It is one of the chief methodological beauties 
of AI that it makes one be a phenomenologist in this improved way. As a
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hetero-phenomenologist, one reasons about what the agent must ‘know’ or
figure out unconsciously or consciously in order to perform in various ways.

The reason AI forces the banal information to the surface is that the tasks
set by AI start at zero: the computer to be programmed to simulate the agent
(or the brain of the robot, if we are actually going to operate in the real, non-
simulated world), initially knows nothing at all ‘about the world’. The
computer is the fabled tabula rasa on which every required item must
somehow be impressed, either by the programmer at the outset or via subse-
quent ‘learning’ by the system.

We can all agree, today, that there could be no learning at all by an entity
that faced the world at birth as a tabula rasa, but the dividing line between
what is innate and what develops maturationally and what is actually learned
is of less theoretical importance than one might have thought. While some
information has to be innate, there is hardly any particular item that must be:
an appreciation of modus ponens, perhaps, and the law of the excluded
middle, and some sense of causality. And while some things we know must be
learned – e.g. that Thanksgiving falls on a Thursday, or that refrigerators keep
food fresh – many other ‘very empirical’ things could in principle be innately
known – e.g. that smiles mean happiness, or that unsuspended, unsupported
things fall. (There is some evidence, in fact, that there is an innate bias in
favour of perceiving things to fall with gravitational acceleration.)8

Taking advantage of this advance in theoretical understanding (if that is
what it is), people in AI can frankly ignore the problem of learning (it seems)
and take the shortcut of installing all that an agent has to ‘know’ to solve a
problem. After all, if God made Adam as an adult who could presumably solve
the midnight snack problem ab initio, AI agent-creators can in principle make
an ‘adult’ agent who is equipped with worldly knowledge as if it had labori-
ously learned all the things it needs to know. This may of course be a
dangerous short cut.

The installation problem is then the problem of installing in one way or
another all the information needed by an agent to plan in a changing world.
It is a difficult problem because the information must be installed in a usable
format. The problem can be broken down initially into the semantic problem
and the syntactic problem. The semantic problem – called by Allen Newell the
problem at the ‘knowledge level’ (Newell 1982) – is the problem of just what
information (on what topics, to what effect) must be installed. The syntactic
problem is what system, format, structure, or mechanism to use to put that
information in.9

The division is clearly seen in the example of the midnight snack problem.
I listed a few of the very many humdrum facts one needs to know to solve the
snack problem, but I didn’t mean to suggest that those facts are stored in me
– or in any agent – piecemeal, in the form of a long list of sentences explicitly
declaring each of these facts for the benefit of the agent. That is of course 
one possibility, officially: it is a preposterously extreme version of the ‘language
of thought’ theory of mental representation, with each distinguishable 
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‘proposition’ separately inscribed in the system. No one subscribes to such a
view; even an encyclopedia achieves important economies of explicit expres-
sion via its organization, and a walking encyclopedia – not a bad caricature
of the envisaged AI agent – must use different systemic principles to achieve
efficient representation and access. We know trillions of things; we know that
mayonnaise doesn’t dissolve knives on contact, that a slice of bread is smaller
than Mount Everest, that opening the refrigerator doesn’t cause a nuclear 
holocaust in the kitchen.

There must be in us – and in any intelligent agent – some highly efficient,
partly generative or productive system of representing – storing for use – all
the information needed. Somehow, then, we must store many ‘facts’ at once
– where facts are presumed to line up more or less one-to-one with non-
synonymous declarative sentences. Moreover, we cannot realistically hope for
what one might call a Spinozistic solution – a small set of axioms and defin-
itions from which all the rest of our knowledge is deducible on demand – since
it is clear that there simply are no entailment relations between vast numbers
of these facts. (When we rely, as we must, on experience to tell us how the
world is, experience tells us things that do not at all follow from what we have
heretofore known.)

The demand for an efficient system of information storage is in part a space
limitation, since our brains are not all that large, but more importantly it is a
time limitation, for stored information that is not reliably accessible for use
in the short real-time spans typically available to agents in the world is of no
use at all. A creature that can solve any problem given enough time – say a
million years – is not in fact intelligent at all. We live in a time-pressured world
and must be able to think quickly before we leap. (One doesn’t have to view
this as an a priori condition on intelligence. One can simply note that we do
in fact think quickly, so there is an empirical question about how we manage
to do it.)

The task facing the AI researcher appears to be designing a system that can
plan by using well-selected elements from its store of knowledge about the
world it operates in. ‘Introspection’ on how we plan yields the following
description of a process: one envisages a certain situation (often very sketchily);
one then imagines performing a certain act in that situation; one then ‘sees’
what the likely outcome of that envisaged act in that situation would be, and
evaluates it. What happens backstage, as it were, to permit this ‘seeing’ (and
render it as reliable as it is) is utterly inaccessible to introspection.

On relatively rare occasions we all experience such bouts of thought,
unfolding in consciousness at the deliberate speed of pondering. These are
occasions in which we are faced with some novel and relatively difficult
problem, such as: How can I get the piano upstairs? or Is there any way to
electrify the chandelier without cutting through the plaster ceiling? It would
be quite odd to find that one had to think that way (consciously and slowly)
in order to solve the midnight snack problem. But the suggestion is that even
the trivial problems of planning and bodily guidance that are beneath our
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notice (though in some sense we ‘face’ them) are solved by similar processes.
Why? I don’t observe myself planning in such situations. This fact suffices to
convince the traditional, introspective phenomenologist that no such planning
is going on.10 The hetero-phenomenologist, on the other hand, reasons that
one way or another information about the objects in the situation, and about
the intended effects and side-effects of the candidate actions, must be used
(considered, attended to, applied, appreciated). Why? Because otherwise the
‘smart’ behaviour would be sheer luck or magic. (Do we have any model for
how such unconscious information-appreciation might be accomplished? The
only model we have so far is conscious, deliberate information-appreciation.
Perhaps, AI suggests, this is a good model. If it isn’t, we are all utterly in the
dark for the time being.)

We assure ourselves of the intelligence of an agent by considering counter-
factuals: if I had been told that the turkey was poisoned, or the beer explosive,
or the plate dirty, or the knife too fragile to spread mayonnaise, would I have
acted as I did? If I were a stupid ‘automaton’ – or like the Sphex wasp who
‘mindlessly’ repeats her stereotyped burrow-checking routine till she drops11

– I might infelicitously ‘go through the motions’ of making a midnight snack
oblivious to the recalcitrant features of the environment.12 But in fact, my
midnight-snack-making behaviour is multifariously sensitive to current and
background information about the situation. The only way it could be so sensi-
tive – runs the tacit hetero-phenomenological reasoning – is for it to examine,
or test for, the information in question. The information manipulation may be
unconscious and swift, and it need not (it better not) consist of hundreds or
thousands of seriatim testing procedures, but it must occur somehow, and its
benefits must appear in time to help me as I commit myself to action.

I may of course have a midnight snack routine, developed over the years,
in which case I can partly rely on it to pilot my actions. Such a complicated
‘habit’ would have to be under the control of a mechanism of some complexity,
since even a rigid sequence of steps would involve periodic testing to ensure
that subgoals had been satisfied. And even if I am an infrequent snacker, I no
doubt have routines for mayonnaise-spreading, sandwich-making, and getting-
something-out-of-the-fridge, from which I could compose my somewhat novel
activity. Would such ensembles of routines, nicely integrated, suffice to solve
the frame problem for me, at least in my more ‘mindless’ endeavours? That is
an open question to which I will return below.

It is important in any case to acknowledge at the outset, and remind oneself
frequently, that even very intelligent people do make mistakes; we are not only
not infallible planners; we are quite prone to overlooking large and retro-
spectively obvious flaws in our plans. This foible manifests itself in the familiar
case of ‘force of habit’ errors (in which our stereotypical routines reveal them-
selves to be surprisingly insensitive to some portentous environmental changes
while surprisingly sensitive to others). The same weakness also appears on
occasion in cases where we have consciously deliberated with some care. How
often have you embarked on a project of the piano-moving variety – in which
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you’ve thought through or even ‘walked through’ the whole operation in
advance – only to discover that you must backtrack or abandon the project
when some perfectly foreseeable but unforeseen obstacle or unintended side-
effect loomed? If we smart folk seldom actually paint ourselves into corners,
it may be not because we plan ahead so well as that we supplement our sloppy
planning powers with a combination of recollected lore (about fools who paint
themselves into corners, for instance) and frequent progress checks as we
proceed. Even so, we must know enough to call up the right lore at the right
time, and to recognize impending problems as such. To summarise: we have
been led by fairly obvious and compelling considerations to the conclusion
that an intelligent agent must engage in swift information-sensitive ‘planning’
which has the effect of producing reliable but not foolproof expectations of
the effects of its actions. That these expectations are normally in force in intel-
ligent creatures is testified to by the startled reaction they exhibit when their
expectations are thwarted. This suggests a graphic way of characterizing the
minimal goal that can spawn the frame problem: we want a midnight-snack-
making robot to be ‘surprised’ by the trick plate, the unspreadable concrete
mayonnaise, the fact that we’ve glued the beer glass to the shelf. To be sur-
prised you have to have expected something else, and in order to have expected
the right something else, you have to have and use a lot of information about
the things in the world.13

The central role of expectation has led some to conclude that the frame
problem is not a new problem at all, and has nothing particularly to do with
planning actions. It is, they think, simply the problem of having good expecta-
tions about any future events, whether they are one’s own actions, the actions
of another agent, or the mere happenings of nature. That is the problem of
induction – noted by Hume and intensified by Goodman (Goodman 1965),
but still not solved to anyone’s satisfaction. We know today that the problem
of induction is a nasty one indeed. Theories of subjective probability and belief
fixation have not stabilized in reflective equilibrium, so it is fair to say that no
one has a good, principled answer to the general question: given that I believe
all this (have all this evidence), what ought I to believe as well (about the
future, or about unexamined parts of the world)?

The reduction of one unsolved problem to another is some sort of progress,
unsatisfying though it may be, but it is not an option in this case. The frame
problem is not the problem of induction in disguise. For suppose the problem
of induction were solved. Suppose – perhaps miraculously – that our agent
has solved all its induction problems or had them solved by fiat; it believes,
then, all the right generalizations from its evidence, and associates with all of
them the appropriate probabilities and conditional probabilities. This agent,
ex hypothesi, believes just what it ought to believe about all empirical matters
in its ken, including the probabilities of future events. It might still have a bad
case of the frame problem, for that problem concerns how to represent (so it
can be used) all that hard-won empirical information – a problem that arises
independently of the truth value, probability, warranted assertability, or
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subjective certainty of any of it. Even if you have excellent knowledge (and
not mere belief) about the changing world, how can this knowledge be repre-
sented so that it can be efficaciously brought to bear?

Recall poor R1D1, and suppose for the sake of argument that it had perfect
empirical knowledge of the probabilities of all the effects of all its actions that
would be detectable by it. Thus it believes that with probability 0.7864,
executing PULLOUT (WAGON, ROOM) will cause the wagon wheels to make
an audible noise; and with probability 0.5, the door to the room will open in
rather than out; and with probability 0.999996, there will be no live elephants
in the room, and with probability 0.997 the bomb will remain on the wagon
when it is moved. How is R1D1 to find this last, relevant needle in its haystack
of empirical knowledge? A walking encyclopedia will walk over a cliff, for all
its knowledge of cliffs and the effects of gravity, unless it is designed in such
a fashion that it can find the right bits of knowledge at the right times, so it
can plan its engagements with the real world.

The earliest work on planning systems in AI took a deductive approach.
Inspired by the development of Robinson’s methods of resolution theorem
proving, designers hoped to represent all the system’s ‘world knowledge’ expli-
citly as axioms, and use ordinary logic – the predicate calculus – to deduce
the effects of actions. Envisaging a certain situation S was modelled by having
the system entertain a set of axioms describing the situation. Added to this
were background axioms (the so-called ‘frame axioms’ that give the frame
problem its name) which describe general conditions and the general effects
of every action type defined for the system. To this set of axioms the system
would apply an action – by postulating the occurrence of some action A in
situation S – and then deduce the effect of A in S, producing a description of
the outcome situation S′. While all this logical deduction looks like nothing
at all in our conscious experience, research on the deductive approach could
proceed on either or both of two enabling assumptions: the methodological
assumption that psychological realism was a gratuitous bonus, not a goal, of
‘pure’ AI, or the substantive (if still vague) assumption that the deductive
processes described would somehow model the backstage processes beyond
conscious access. In other words, either we don’t do our thinking deductively
in the predicate calculus but a robot might; or we do (unconsciously) think
deductively in the predicate calculus. Quite aside from doubts about its
psychological realism, however, the deductive approach has not been made 
to work – the proof of the pudding for any robot – except for deliberately
trivialized cases.

Consider some typical frame axioms associated with the action-type: move
x onto v.

1 If z ≠ x and I move x onto y, then if z was on w before, then z is on w
after.

2 If x is blue before, and I move x onto y, then x is blue after.
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Note that (2), about being blue, is just one example of the many boring ‘no-
change’ axioms we have to associate with this action-type. Worse still, note
that a cousin of (2), also about being blue, would have to be associated with
every other action-type – with pick up x and with give x to y, for instance.
One cannot save this mindless repetition by postulating once and for all some-
thing like

3 If anything is blue, it stays blue,

for that is false, and in particular we will want to leave room for the intro-
duction of such action-types as paint x red. Since virtually any aspect of a
situation can change under some circumstance, this method requires intro-
ducing for each aspect (each predication in the description of S) an axiom to
handle whether that aspect changes for each action-type.

This representational profligacy quickly gets out of hand, but for some ‘toy’
problems in AI, the frame problem can be overpowered to some extent by a
mixture of the toyness of the environment and brute force. The early version
of SHAKEY, the robot at SRI, operated in such a simplified and sterile world,
with so few aspects it could worry about that it could get away with an exhaus-
tive consideration of frame axioms.14

Attempts to circumvent this explosion of axioms began with the proposal
that the system operate on the tacit assumption that nothing changes in a situ-
ation but what is explicitly asserted to change in the definition of the applied
action (Fikes and Nilsson 1971). The problem here is that, as Garrett Hardin
once noted, you don’t do just one thing. This was R1’s problem, when it failed
to notice that it would pull the bomb out with the wagon. In the explicit repre-
sentation (a few pages back) of my midnight snack solution, I mentioned
carrying the plate over to the table. On this proposal, my model of S′ would
leave the turkey back in the kitchen, for I didn’t explicitly say the turkey would
come along with the plate. One can of course patch up the definition of ‘bring’
or ‘plate’ to handle this problem, but only at the cost of creating others. (Will
a few more patches tame the problem? At what point should one abandon
patches and seek an altogether new approach? Such are the methodological
uncertainties regularly encountered in this field, and of course no one can
responsibly claim in advance to have a good rule for dealing with them.
Premature counsels of despair or calls for revolution are as clearly to be
shunned as the dogged pursuit of hopeless avenues; small wonder the field is
contentious.)

While one cannot get away with the tactic of supposing that one can do
just one thing, it remains true that very little of what could (logically) happen
in any situation does happen. Is there some way of fallibly marking the likely
area of important side-effects, and assuming the rest of the situation to stay
unchanged? Here is where relevance tests seem like a good idea, and they may
well be, but not within the deductive approach. As Minsky notes:
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Even if we formulate relevancy restrictions, logistic systems have a
problem using them. In any logistic system, all the axioms are necessarily 
‘permissive’ – they all help to permit new inferences to be drawn. Each
added axiom means more theorems; none can disappear. There simply
is no direct way to add information to tell such a system about kinds 
of conclusions that should not be drawn! . . . If we try to change this 
by adding axioms about relevancy, we still produce all the unwanted
theorems, plus annoying statements about their irrelevancy (Minsky
1981: 125).

What is needed is a system that genuinely ignores most of what it knows,
and operates with a well-chosen portion of its knowledge at any moment.
Well-chosen, but not chosen by exhaustive consideration. How, though, can
you give a system rules for ignoring – or better, since explicit rule-following
is not the problem, how can you design a system that reliably ignores what it
ought to ignore under a wide variety of different circumstances in a complex
action environment?

John McCarthy calls this the qualification problem, and vividly illustrates
it via the famous puzzle of the missionaries and the cannibals.

Three missionaries and three cannibals come to a river. A rowboat that
seats two is available, if the cannibals ever outnumber the missionaries
on either bank of the river, the missionaries will be eaten. How shall they
cross the river?

Obviously the puzzler is expected to devise a strategy of rowing the
boat back and forth that gets them all across and avoids disaster . . .

Imagine giving someone the problem, and after he puzzles for a while,
he suggests going upstream half a mile and crossing on a bridge. ‘What
bridge?’ you say. ‘No bridge is mentioned in the statement of the
problem.’ And this dunce replies, ‘Well, they don’t say there isn’t a
bridge.’ You look at the English and even at the translation of the English
into first order logic, and you must admit that ‘they don’t say’ there is
no bridge. So you modify the problem to exclude bridges and pose it
again, and the dunce proposes a helicopter, and after you exclude that,
he proposes a winged horse or that the others hang onto the outside of
the boat while two row.

You now see that while a dunce, he is an inventive dunce. Despairing
of getting him to accept the problem in the proper puzzler’s spirit, you
tell him the solution. To your further annoyance, he attacks your solu-
tion on the grounds that the boat might have a leak or lack oars. After
you rectify that omission from the statement of the problem, he suggests
that a sea monster may swim up the river and may swallow the boat.
Again you are frustrated, and you took for a mode of reasoning that will
settle his hash once and for all (McCarthy 1980: 29–30).
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What a normal, intelligent human being does in such a situation is to engage
in some form of non-monotonic inference. In a classical, monotonic logical
system, adding premisses never diminishes what can be proved from the
premisses. As Minsky noted, the axioms are essentially permissive, and once
a theorem is permitted, adding more axioms will never invalidate the proofs
of earlier theorems. But when we think about a puzzle or a real-life problem,
we can achieve a solution (and even prove that it is a solution, or even the
only solution to that problem), and then discover our solution invalidated by
the addition of a new element to the posing of the problem; e. g. ‘I forgot to
tell you – there are no oars’ or ‘By the way, there’s a perfectly good bridge
upstream.’

What such late additions show us is that, contrary to our assumption, other
things weren’t equal. We had been reasoning with the aid of a ceteris paribus
assumption, and now our reasoning has just been jeopardized by the discovery
that something ‘abnormal’ is the case. (Note, by the way, that the abnormality
in question is a much subtler notion than anything anyone has yet squeezed
out of probability theory. As McCarthy notes, ‘The whole situation involving
cannibals with the postulated properties cannot be regarded as having a prob-
ability, so it is hard to take seriously the conditional probability of a bridge
given the hypothesis’ (ibid.).)

The beauty of a ceteris paribus clause in a bit of reasoning is that one does
not have to say exactly what it means. ‘What do you mean, “other things
being equal”? Exactly which arrangements of which other things count as
being equal?’ If one had to answer such a question, invoking the ceteris paribus
clause would be pointless, for it is precisely in order to evade that task that
one uses it. If one could answer that question, one wouldn’t need to invoke
the clause in the first place. One way of viewing the frame problem, then, is
as the attempt to get a computer to avail itself of this distinctively human style
of mental operation. There are several quite different approaches to non-
monotonic inference being pursued in AI today. They have in common only
the goal of capturing the human talent for ignoring what should be ignored,
while staying alert to relevant recalcitrance when it occurs.

One family of approaches, typified by the work of Marvin Minsky and
Roger Schank (Minsky 1981; Schank and Abelson 1977), gets its ignoring-
power from the attention-focusing power of stereotypes. The inspiring insight
here is the idea that all of life’s experiences, for all their variety, boil down to
variations on a manageable number of stereotypic themes, paradigmatic
scenarios – ‘frames’ in Minsky’s terms, ‘scripts’ in Schank’s.

An artificial agent with a well-stocked compendium of frames or scripts,
appropriately linked to each other and to the impingements of the world via
its perceptual organs, would face the world with an elaborate system of what
might be called habits of attention and benign tendencies to leap to particular
sorts of conclusions in particular sorts of circumstances. It would ‘automati-
cally’ pay attention to certain features in certain environments and assume that
certain unexamined normal features of those environments were present.
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Concomitantly, it would be differentially alert to relevant divergences from the
stereotypes it would always begin by ‘expecting’.

Simulations of fragments of such an agent’s encounters with its world reveal
that in many situations it behaves quite felicitously and apparently naturally,
and it is hard to say, of course, what the limits of this approach are. But there
are strong grounds for skepticism. Most obviously, while such systems perform
creditably when the world co-operates with their stereotypes, and even with
anticipated variations on them, when their worlds turn perverse, such systems
typically cannot recover gracefully from the misanalyses they are led into. In
fact, their behaviour in extremis looks for all the world like the preposterously
counter-productive activities of insects betrayed by their rigid tropisms and
other genetically hard-wired behavioural routines.

When these embarrassing misadventures occur, the system designer can
improve the design by adding provisions to deal with the particular cases. It
is important to note that in these cases, the system does not redesign itself (or
learn) but rather must wait for an external designer to select an improved
design. This process of redesign recapitulates the process of natural selection
in some regards; it favours minimal, piecemeal, ad hoc redesign which is tanta-
mount to a wager on the likelihood of patterns in future events. So in some
regards it is faithful to biological themes.15 Nevertheless, until such a system
is given a considerable capacity to learn from its errors without designer inter-
vention, it will continue to respond in insectlike ways, and such behaviour is
profoundly unrealistic as a model of human reactivity to daily life. The short
cuts and cheap methods provided by a reliance on stereotypes are evident
enough in human ways of thought, but it is also evident that we have a deeper
understanding to fall back on when our short cuts don’t avail, and building
some measure of this deeper understanding into a system appears to be a 
necessary condition of getting it to learn swiftly and gracefully.

In effect, the script or frame approach is an attempt to pre-solve the frame
problems the particular agent is likely to encounter. While insects do seem
saddled with such control systems, people, even when they do appear to be
relying on stereotypes, have back-up systems of thought that can deal more
powerfully with problems that arise. Moreover, when people do avail them-
selves of stereotypes, they are at least relying on stereotypes of their own
devising, and to date no one has been able to present any workable ideas about
how a person’s frame-making or scriptwriting machinery might be guided by
its previous experience.

Several different sophisticated attempts to provide the representational
framework for this deeper understanding have emerged from the deductive
tradition in recent years. Drew McDermott and Jon Doyle have developed a
‘non-monotonic logic’ (1980), Ray Reiter has a ‘logic for default reasoning’
(1980), and John McCarthy has developed a system of ‘circumscription’, a
formalized ‘rule of conjecture that can be used by a person or program for
“jumping to conclusions”’ (1980). None of these is, or is claimed to be, a
complete solution to the problem of ceteris paribus reasoning, but they might
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be components of such a solution. More recently, McDermott has offered a
‘temporal logic for reasoning about processes and plans’ (McDermott 1982).
I will not attempt to assay the formal strengths and weaknesses of these
approaches. Instead I will concentrate on another worry. From one point of
view, non-monotonic or default logic, circumscription, and temporal logic all
appear to be radical improvements to the mindless and clanking deductive
approach, but from a slightly different perspective they appear to be more of
the same, and at least as unrealistic as frameworks for psychological models.

They appear in the former guise to be a step towards greater psychological
realism, for they take seriously, and attempt to represent, the phenomenolog-
ically salient phenomenon of common sense ceteris paribus ‘jumping to
conclusions’ reasoning. But do they really succeed in offering any plausible
suggestions about how the backstage implementation of that conscious
thinking is accomplished in people? Even if on some glorious future day a
robot with debugged circumscription methods manoeuvred well in a non-toy
environment, would there be much likelihood that its constituent processes,
described at levels below the phenomeno-logical, would bear informative 
relations to the unknown lower-level backstage processes in human beings?
To bring out better what my worry is, I want to introduce the concept of a
cognitive wheel.

We can understand what a cognitive wheel might be by reminding ourselves
first about ordinary wheels. Wheels are wonderful, elegant triumphs of tech-
nology. The traditional veneration of the mythic inventor of the wheel is
entirely justified. But if wheels are so wonderful, why are there no animals
with wheels? Why are no wheels to be found (functioning as wheels) in nature?
First, the presumption of that question must be qualified. A few years ago the
astonishing discovery was made of several microscopic beasties (some bacteria
and some unicellular eukaryotes) that have wheels of sorts. Their propulsive
tails, long thought to be flexible flagella, turn out to be more or less rigid
corkscrews, which rotate continuously, propelled by microscopic motors of
sorts, complete with main bearings.16 Better known, if less interesting for
obvious reasons, are the tumbleweeds. So it is not quite true that there are 
no wheels (or wheeliform designs) in nature.

Still, macroscopic wheels – reptilian or mammalian or avian wheels – are
not to be found. Why not? They would seem to be wonderful retractable
landing gear for some birds, for instance. Once the question is posed, plau-
sible reasons rush in to explain their absence. Most important, probably, are
the considerations about the topological properties of the axle/bearing
boundary that make the transmission of material or energy across it particu-
larly difficult. How could the life-support traffic arteries of a living system
maintain integrity across this boundary? But once that problem is posed, solu-
tions suggest themselves, suppose the living wheel grows to mature form in a
non-rotating, non-functional form, and is then hardened and sloughed off, like
antlers or an outgrown shell, but not completely off: it then rotates freely on
a lubricated fixed axle. Possible? It’s hard to say. Useful? Also hard to say,
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especially since such a wheel would have to be free-wheeling. This is an inter-
esting speculative exercise, but certainly not one that should inspire us to draw
categorical, a priori conclusions. It would be foolhardy to declare wheels
biologically impossible, but at the same time we can appreciate that they are
at least very distant and unlikely solutions to natural problems of design.

Now a cognitive wheel is simply any design proposal in cognitive theory
(at any level from the purest semantic level to the most concrete level of ‘wiring
diagrams’ of the neurones) that is profoundly unbiological, however wizardly
and elegant it is as a bit of technology.

Clearly this is a vaguely defined concept, useful only as a rhetorical abbre-
viation, as a gesture in the direction of real difficulties to be spelled out
carefully. ‘Beware of postulating cognitive wheels’ masquerades as good advice
to the cognitive scientist, while courting vacuity as a maxim to follow.17 It
occupies the same rhetorical position as the stockbroker’s maxim: buy low and
sell high. Still, the term is a good theme-fixer for discussion.

Many critics of AI have the conviction that any AI system is and must be
nothing but a gearbox of cognitive wheels. This could of course turn out to
be true, but the usual reason for believing it is based on a misunderstanding
of the methodological assumptions of the field. When an AI model of some
cognitive phenomenon is proposed, the model is describable at many different
levels, from the most global, phenomenological level at which the behaviour
is described (with some presumptuousness) in ordinary mentalistic terms,
down through various levels of implementation all the way to the level of
program code – and even further down, to the level of fundamental hardware
operations if anyone cares. No one supposes that the model maps onto the
process of psychology and biology all the way down. The claim is only that
for some high level or levels of description below the phenomenological level
(which merely sets the problem) there is a mapping of model features onto
what is being modelled: the cognitive processes in living creatures, human or
otherwise. It is understood that all the implementation details below the 
level of intended modelling will consist, no doubt, of cognitive wheels – bits
of unbiological computer activity mimicking the gross effects of cognitive
subcomponents by using methods utterly unlike the methods still to be discov-
ered in the brain. Someone who failed to appreciate that a model composed
microscopically of cognitive wheels could still achieve a fruitful isomorphism
with biological or psychological processes at a higher level of aggregation
would suppose there were good a priori reasons for generalized skepticism
about AI.

But allowing for the possibility of valuable intermediate levels of modelling
is not ensuring their existence. In a particular instance a model might descend
directly from a phenomenologically recognizable level of psychological
description to a cognitive wheels implementation without shedding any light
at all on how we human beings manage to enjoy that phenomenology. I suspect
that all current proposals in the field for dealing with the frame problem have
that shortcoming. Perhaps one should dismiss the previous sentence as mere
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autobiography. I find it hard to imagine (for what that is worth) that any of
the procedural details of the mechanization of McCarthy’s circumscriptions,
for instance, would have suitable counter-parts in the backstage story yet to
be told about how human common-sense reasoning is accomplished. If these
procedural details lack ‘psychological reality’ then there is nothing left in the
proposal that might model psychological processes except the phenomeno-
logical-level description in terms of jumping to conclusions, ignoring, and the
like – and we already know we do that.

There is an alternative defence of such theoretical explorations, however,
and I think it is to be taken seriously. One can claim (and I take McCarthy to
claim) that while formalizing common-sense reasoning in his fashion would
not tell us anything directly about psychological processes of reasoning, it
would clarify, sharpen, systematize the purely semantic-level characterization
of the demands on any such implementation, biological or not. Once one has
taken the giant step forward of taking information-processing seriously as a
real process in space and time, one can then take a small step back and explore
the implications of that advance at a very abstract level. Even at this very
formal level, the power of circumscription and the other versions of non-
monotonic reasoning remains an open but eminently explorable question.18

Some have thought that the key to a more realistic solution to the frame
problem (and indeed, in all likelihood, to any solution at all) must require a
complete rethinking of the semantic-level setting, prior to concern with
syntactic-level implementation. The more or less standard array of predicates
and relations chosen to fill out the predicate-calculus format when representing
the ‘propositions believed’ may embody a fundamentally inappropriate
parsing of nature for this task. Typically, the interpretation of the formulae in
these systems breaks the world down along the familiar lines of objects with
properties at times and places. Knowledge of situations and events in the world
is represented by what might be called sequences of verbal snapshots. State S,
constitutively described by a list of sentences true at time t asserting various
n-adic predicates true of various particulars, gives way to state S′, a similar
list of sentences true at t′. Would it perhaps be better to reconceive of the
world of planning in terms of histories and processes?19 Instead of trying to
model the capacity to keep track of things in terms of principles for passing
through temporal cross-sections of knowledge expressed in terms of terms
(names for things, in essence) and predicates, perhaps we could model keeping
track of things more directly, and let all the cross-sectional information about
what is deemed true moment by moment be merely implicit (and hard to
extract – as it is for us) from the format. These are tempting suggestions, but
so far as I know they are still in the realm of handwaving.20

Another, perhaps related, handwaving theme is that the current difficulties
with the frame problem stem from the conceptual scheme engendered by 
the serial-processing von Neumann architecture of the computers used to date
in AI. As large, fast parallel processors are developed, they will bring in 
their wake huge conceptual innovations which are now of course only dimly
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imaginable. Since brains are surely massive parallel processors, it is tempting
to suppose that the concepts engendered by such new hardware will be more
readily adaptable for realistic psychological modelling. But who can say? For
the time being, most of the optimistic claims about the powers of the parallel-
processing belong in the same camp with the facile observations often
encountered in the work of neuroscientists, who postulate marvellous cogni-
tive powers for various portions of the nervous system without a clue how
they are realized.21

Filling in the details of the gap between the phenomenological magic show
and the well-understood powers of small tracts of brain tissue is the immense
research task that lies in the future for theorists of every persuasion. But before
the problems can be solved they must be encountered, and to encounter the
problems one must step resolutely into the gap and ask how-questions. What
philosophers (and everyone else) have always known is that people – and no
doubt all intelligent agents – can engage in swift, sensitive, risky-but-valuable
ceteris paribus reasoning. How do we do it? AI may not yet have a good
answer, but at least it has encountered the question.22

Notes

1 The problem is introduced by John McCarthy and Patrick Hayes in their 1969
paper. The task in which the problem arises was first formulated in McCarthy
(1968). I am grateful to John McCarthy, Pat Hayes, Bob Moore, Zenon Pylyshyn,
John Haugeland, and Bo Dahlbom for the many hours they have spent trying to
make me understand the frame problem. It is not their fault that so much of their
instruction has still not taken.

I have also benefited greatly from reading an unpublished paper, ‘Modelling
change: The frame problem’, by Lars-Erik Janlert, Institute of Information
Processing, University of Umea, Sweden. It is to be hoped that a subsequent
version of that paper will soon find its way into print, since it is an invaluable
vade-mecum for any neophyte, in addition to advancing several novel themes.

2 Dreyfus mentions McCarthy (1968: 213–14), but the theme of his discussion
there is that McCarthy ignores the difference between a physical state descrip-
tion and a situation description, a theme that might be succinctly summarized:
a house is not a home.

Similarly, he mentions ceteris paribus assumptions (in the introduction to the
rev. edn, pp. 56ff.), but only in announcing his allegiance to Wittgenstein’s idea
that ‘whenever human behaviour is analyzed in terms of rules, these rules must
always contain a ceteris paribus condition . . .’ But this, even if true, misses the
deeper point, the need for something like ceteris paribus assumptions confronts
Robinson Crusoe just as ineluctably as it confronts any protagonist who finds
himself in a situation involving human culture. The point is not, it seems,
restricted to Geisteswissenschaft (as it is usually conceived); the ‘intelligent’ robot
on an (otherwise?) uninhabited but hostile planet faces the frame problem as
soon as it commences to plan its days.

3 The example is from an important discussion of rationality by Christopher
Cherniak (1983), in ‘Rationality and the structure of memory’.
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4 Note that on this unflattering portrayal, the philosophers might still be doing some
valuable work; think of the wild goose chases one might avert for some investi-
gator who had rashly concluded that the magician really did saw the lady in half
and then miraculously reunite her. People have jumped to such silly conclusions,
after all; many philosophers have done so, for instance.

5 See my 1982a, a commentary on Goodman (1982).
6 This knowledge of physics is not what one learns in school, but in one’s crib. See

Hayes (1978, 1979).
7 For elaborations of hetero-phenomenology, see Dennett (1978: ch. 10, ‘Two

approaches to mental images’), and Dennett (1982b). See also Dennett (1982c).
8 Gunnar Johannsen has shown that animated films of ‘falling’ objects in which the

moving spots drop with the normal acceleration of gravity are unmistakably dis-
tinguished by the casual observer from ‘artificial’ motions. I do not know whether
infants have been tested to see if they respond selectively to such displays.

9 McCarthy and Hayes (1969) draw a different distinction between the ‘epistemo-
logical’ and the ‘heuristic’. The difference is that they include the question ‘In
what kind of internal notation is the system’s knowledge to be expressed?’ in the
epistemological problem (see p. 466), dividing off that syntactic (and hence
somewhat mechanical) question from the procedural questions of the design of
‘the mechanism that on the basis of the information solves the problem and
decides what to do’.

One of the prime grounds for controversy about just which problem the frame
problem is springs from this attempted division of the issue. For the answer to
the syntactical aspects of the epistemological question makes a large difference
to the nature of the heuristic problem. After all, if the syntax of the expression
of the system’s knowledge is sufficiently perverse, then in spite of the accuracy
of the representation of that knowledge, the heuristic problem will be impossible.
And some have suggested that the heuristic problem would virtually disappear if
the world knowledge were felicitously couched in the first place.

10 Such observations also convinced Gilbert Ryle, who was, in an important sense,
an introspective phenomenologist (and not a ‘behaviourist’). See Ryle (1949).

One can readily imagine Ryle’s attack on AI: ‘And how many inferences do I
perform in the course of performing my sandwich? What syllogisms convince me
that the beer will stay in the glass?’ For a further discussion of Ryle’s skeptical
arguments and their relation to cognitive science, see my ‘Styles of mental repre-
sentation’ (Dennett 1983).

11 ‘When the time comes for egg laying the wasp Sphex builds a burrow for the
purpose and seeks out a cricket which she stings in such a way as to paralyze
but not kill it. She drags the cricket into her burrow, lays her eggs alongside,
closes the burrow, then flies away, never to return. In due course the eggs hatch
and the wasp grubs feed off the paralyzed cricket, which has not decayed, having
been kept in the wasp equivalent of deep freeze. To the human mind, such an
elaborately organized and seemingly purposeful routine conveys a convincing
flavour of logic and thoughtfulness – until more details are examined. For
example, the wasp’s routine is to bring the paralyzed cricket to the burrow, leave
it on the threshold, go inside to see that all is well, emerge, and then drag the
cricket in. If, while the wasp is inside making her preliminary inspection the
cricket is moved a few inches away, the wasp, on emerging from the burrow, will
bring the cricket back to the threshold, but not inside, and will then repeat the
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preparatory procedure of entering the burrow to see that everything is all right.
If again the cricket is removed a few inches while the wasp is inside, once again
the wasp will move the cricket up to the threshold and re-enter the burrow for a
final check. The wasp never thinks of pulling the cricket straight in. On one occa-
sion, this procedure was repeated forty times, always with the same result’
(Wooldridge 1963).

This vivid example of a familiar phenomenon among insects is discussed by
me in Brainstorms, and in Hofstadter (1982).

12 See my 1982c: 58–9, on ‘Robot theater’.
13 Hubert Dreyfus has pointed out that not expecting x does not imply expecting y

(where x ≠ y), so one can be startled by something one didn’t expect without it
having to be the case that one (unconsciously) expected something else. But this
sense of not expecting will not suffice to explain startle. What are the odds against
your seeing an Alfa Romeo, a Buick, a Chevrolet, and a Dodge parked in alpha-
betical order some time or other within the next five hours? Very high, no doubt,
all things considered, so I would not expect you to expect this; I also would not
expect you to be startled by seeing this unexpected sight – except in the sort of
special case where you had reason to expect something else at that time and
place.

Startle reactions are powerful indicators of cognitive state – a fact long known
by the police (and writers of detective novels). Only someone who expected the
refrigerator to contain Smith’s corpse (say) would be startled (as opposed to mildly
interested) to find it to contain the rather unlikely trio: a bottle of vintage Chablis,
a can of cat food, and a dishrag.

14 This early feature of SHAKEY was drawn to my attention by Pat Hayes. See also
Dreyfus (1972: 26). SHAKEY is put to quite different use in Dehnett (1982b).

15 In one important regard, however, it is dramatically unlike the process of natural
selection, since the trial, error, and selection of the process is far from blind. But
a case can be made that the impatient researcher does nothing more than tele-
scope time by such foresighted interventions in the redesign process.

16 For more details, and further reflections on the issues discussed here, see
Diamond (1983).

17 I was interested to discover that at least one researcher in AI mistook the rhetor-
ical intent of my new term on first hearing; he took ‘cognitive wheels’ to be an
accolade. If one thinks of AI, as he does, not as a research method in psychology
but as a branch of engineering attempting to extend human cognitive powers,
then of course cognitive wheels are breakthroughs. The vast and virtually infal-
lible memories of computers would be prime examples: others would be
computers’ arithmetical virtuosity and invulnerability to boredom and distraction.
See Hofstadter (1982) for an insightful discussion of the relation of boredom to
the structure of memory and the conditions of creativity.

18 McDermott (1982, ‘A temporal logic for reasoning about processes and plans’,
§6, ‘A sketch of an implementation’) shows strikingly how many new issues are
raised once one turns to the question of implementation, and how indirect (but
still useful) the purely formal considerations are.

19 Patrick Hayes has been exploring this theme, and a preliminary account can be
found in ‘Naïve physics 1: The ontology of liquids’ (Hayes 1978).

20 Oliver Selfridge’s Tracking and Trailing (1992), promises to push back this
frontier, I think, but I have not yet been able to assimilate its messages. There
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are also suggestive passages on this topic in Ruth Garrett Millikan’s Language,
Thought, and Other Biological Categories.

21 To balance the ‘top-down’ theorists’ foible of postulating cognitive wheels, there
is the bottom-up’ theorists’ penchant for discovering wonder tissue. (Wonder
tissue appears in many locales. J. J. Gibson’s theory of perception, for instance,
seems to treat the whole visual system as a hunk of wonder tissue, for instance,
resonating with marvellous sensitivity to a host of sophisticated ‘affordances’. See
e.g. Gibson 1979.)

22 One of the few philosophical articles I have uncovered that seem to contribute
to the thinking about the frame problem – though not in those terms – is Ronald
de Sousa’s ‘The rationality of emotions’ (de Sousa 1979). In the section entitled
‘What are emotions for?’ de Sousa suggests, with compelling considerations, 
that: the function of emotion is to fill gaps left by [mere wanting plus] ‘pure
reason’ in the determination of action and belief. Consider how Iago proceeds 
to make Othello jealous. His task is essentially to direct Othello’s attention, to
suggest questions to ask . . . Once attention is thus directed, inferences which,
before on the same evidence, would not even have been thought of, are experi-
enced as compelling. In de Sousa’s understanding, ‘emotions are determinate
patterns of salience among objects of attention, lines of inquiry, and inferential
strategies’ (p. 50) and they are not ‘reducible’ in any way to ‘articulated propo-
sitions’. Suggestive as this is, it does not, of course, offer any concrete proposals
for how to endow an inner (emotional) state with these interesting powers. Another
suggestive – and overlooked – paper is Howard Darmstadter’s ‘Consistency of
Belief’ (Darmstadter 1971: 301–10). Darmstadter’s exploration of ceteris paribus
clauses and the relations that might exist between beliefs as psychological states
and sentences believers may utter (or have uttered about them) contains a number
of claims that deserve further scrutiny.
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21

T. Horgan and J. Tienson, “Levels of
Description in Nonclassical Cognitive Science”

David Marr (1982) provided an influential account of levels of description in
classical cognitive science. In this paper we contrast Marr’s treatment with
some alternatives that are suggested by the recent emergence of connectionism.
Marr’s account is interesting and important both because of the levels of
description it distinguishes, and because of the way his presentation reflects
some of the most basic, foundational, assumptions of classical AI-style cogni-
tive science (classicism, as we will call it henceforth). Thus, by focusing on
levels of description, one can sharpen foundational differences between clas-
sicism and potential non-classical conceptions of mentality that might emerge
under the rubric of connectionism.

We say ‘potential conceptions’ of mentality because at present there is no
such thing as ‘the connectionist conception of the mind’, in the form of a deter-
minate set of foundational assumptions differing in specific, explicit, ways
from those of classicism. There may be several, incompatible conceptions of
mind that could develop from or be wedded to connectionism. At present,
connectionism is primarily an alternative way of doing things in cognitive
science, rather than an alternative set of doctrines or theses. One constructs
network models and trains them up with learning algorithms, rather than
writing programs.

We will ‘genericize’ Marr’s three levels of description, yielding a tripartite
levels-typology that remains neutral about key foundational assumptions of
classicism that are built into Marr’s original formulation. With this generic
typology as a guide, we will set forth a succession of approaches to mentality
which, although they all conform to the generic format, deviate increasingly
from classicism.

Each of these approaches could potentially get articulated and defended in
the context of connectionist work in cognitive science – although none is neces-
sarily tied to connectionist-style network structures per se. The final approach
we will describe – the one which differs most radically from classicism – is the
one we think probably embodies the truth about human cognition. We will
not attempt to argue this here, however; we have done so elsewhere. Our main
purposes at present are to propose a map of the intellectual landscape of
possible views about mentality, and to call attention to several options on that
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landscape that have been largely overlooked – not only by philosophers, but
also by practising cognitive scientists, connectionists included.

1 Marr’s three levels

Marr suggests that in order to understand complex information-processing
systems, qua processors of information, one needs to consider such systems
from a tripartite theoretical perspective. He writes:

At one extreme, the top level, is the abstract computational theory of the
device, in which the performance of the device is characterized as a
mapping from one kind of information to another, the abstract proper-
ties of this mapping are defined precisely, and its appropriateness and
adequacy for the task are demonstrated. In the center is the choice of
representation for the input and output and the algorithm to transform
one into the other. At the other extreme are the details of how the algo-
rithm and representation are realized physically – the detailed computer
architecture, so to speak (1982: 24–25).

He labels these three levels, respectively, (1) the theory of the computation; (2)
representation and algorithm; and (3) hardware implementation.

The top level involves systematic transitional connections among inten-
tional state types as such. For a cognitive system as a whole, these are total
cognitive states (TCS’s), sometimes comprising several individual cognitive
states that are simultaneously co-instantiable (perhaps in various different
cognitive subsystems). The theory of computation delineates a cognitive tran-
sition function (CTF) over TCS’s. For all TCS’s instantiable by the system, the
CTF specifies the appropriate immediate-successor TCS’s. The CTF is the func-
tion to be computed by the system.

The middle level involves the account of how cognitive transitions are
subserved by computation. This level addresses the kinds of structured states
that serve as representations, and the computational processes by which these
representations are manipulated. These processes conform to programmable
rules that are purely formal, i.e., that advert solely to the form or structure of
the representations and not to their content. The formal rules over the repre-
sentations constitute an algorithm for computing the CTF; i.e., under the
relevant assignment of content to the representations, processing in confor-
mity to the rules is guaranteed to effect the cognitive transitions described by
the theory of the computation.

The level of implementation, in turn, involves the account of how the
formal/syntactic representations are themselves subserved by physico-chemical
states and structures, and how the rule-describable manipulations of these
representations are subserved via physico-chemical causal processes.

Within classical cognitive science, theorizing at Marr’s top level typically
involves a whole vertical hierarchy of sub-levels. In terms of familiar flow-
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chart analyses (‘boxology’, as Cummins (1983) puts it), one adds another,
lower, sub-level by adding more interconnected boxes to one’s flow chart,
either between existing ones or within them. Each box in a flowchart depicts
a specific function that gets computed, within the system. The entire flowchart,
for a total cognitive system, depicts the system’s CTF; thus the system’s TCS,
at any moment t, is the full set of inputs and outputs (at t) to and from each
box in the overall flowchart. Elaborating the flowchart, by adding additional
boxes within or between the current ones, is essentially the boxological coun-
terpart of hypothesizing that the system computes the functions represented
by the boxes in the original flow chart by computing compositions of other
functions – where the compositions are depicted by the more detailed
boxology. (The function f is a composition of the functions g and h if f(x) =
g[h(x)].) The system thus computes each CTF in the hierarchy by computing
a more fine-grained CTF in which it is embedded. Impressive cognitive tran-
sitions are thus ultimately composed of numerous cognitive ‘baby steps’, many
of which are presumed to be rapid and unconscious. Each of these baby steps
is simple enough to be subservable by symbol manipulation conforming to
rules that advert only to the syntactic structure of the symbols, not to their
content. Choice of symbol forms and rules adverting to those forms moves
one to Marr’s middle level.

For both Marr’s top (cognitive-transition) level and his middle (algorithm)
level, the downward inter-level relation between (i) state-types at that level,
and (ii) state-types at the level just below it, is evidently the relation commonly
called realization. How best to characterize the realization relation is a meta-
physical question beyond our concerns in this article. But two key features of
the relation bear emphasis. First, it is transitive: if a state-type S realizes a
state-type R, and R in turn realizes a state-type T, then S realizes T. Second,
it is a many-one relation: in general, a realizable state-type is multiply realiz-
able by a variety of different lower-level state types.1

Philosophers and cognitive scientists undoubtedly think of the relation
between Marr’s middle level and his bottom level as realization, in the sense
just characterized. Indeed, Marr’s term ‘implementation’, which he invokes to
name the bottom level, is essentially the computer scientist’s word for what
philosophers call realization. But among philosophers at least, it has not
always been appreciated that the relation between Marr’s top and middle levels
is also best viewed as realization; there has been a tendency to instead construe
the latter as type identity. Yet the case for realization as the top/middle
bridging relation is quite straightforward, and goes as follows. Since a single
computable function can generally be computed by a variety of distinct algo-
rithms (some employing different representations than others), there is bound
to be a one-many relation between (i) the cognitive transition function at
Marr’s top level, and (ii) the algorithms (with their associated representations)
that compute that function. But middle-level state-types are individuated func-
tionally, in terms of the specific algorithms in which they figure; distinct
algorithms yield distinct middle-level state types. Hence, the intentional mental
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states posited by the theory of the computation are multiply realizable at the
middle level, by various different computational state-types.2

As he presents it, Marr’s tripartite account seems to build in the assumption
that human cognitive processing is deterministic at the intentional level of
description. For what a computational system computes is a function from
TCS’s to TCS’s; and such a function pairs each TCS with a unique TCS as its
successor. (Marr’s immediate concern was to provide theoretical underpinnings
for his own computational theory of vision, which was deterministic at the cog-
nitive level.) But classical cognitive science can, and often does, allow for non-
deterministic cognitive transitions. And it can, and often does, apply the notion
of computation to the middle-level processes that subserve such transitions.

It is not difficult to generalize Marr’s characterization of the three levels 
of description in classicism, to explicitly accommodate non-deterministic 
cognitive transitions and ‘non-deterministic computation’. The basic idea is
essentially this: the middle-level processes still count as computation because
they still conform to programmable rules over representations; it’s just that
these rules include occasional ‘dice throws’ (involving, say, the system’s con-
sulting a random-number table), with subsequent processing steps depending
on the outcome of the dice throws.

2 Foundational assumptions of classicism

The classical view that cognition is mathematically realized by an algorithm,
i.e., by rule-governed symbol manipulation, involves three basic assumptions:

1 Intelligent cognition employs structurally complex mental representations.
2 Cognitive processing is sensitive to the structure of these representations,

and thereby is sensitive to their content.
3 Cognitive processing conforms to precise, exceptionless rules, statable

over the representations themselves and articulable in the format of a
computer program.

Claims (2) and (3) are frequently not distinguished at all or are taken to be
equivalent. But it is crucial to avoid this conflation; (3) implies (2), but (2)
does not imply (3). This becomes important in Sections 7 and 8, below.

We will call the rules mentioned in (3) programmable, representation level,
rules (for short, PRL rules). It is important that these rules are supposed to be
statable at the level of the representations themselves; i.e., they refer solely to
those structural aspects of the representations that play representational roles.
Although processing in certain systems may also conform with rules statable
at one or more lower levels (e.g., the level of machine language in a conven-
tional computer), such lower-level rules are not the kind that count. This is
important because there can be (non-classical) systems that conform to
programmable rules at lower levels, but do not conform to rules statable only
at the level of representations, as we discuss in Section 8, below.
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Classicism does not assert that the PRL rules of cognitive processing must
be represented by (or within) the cognitive system itself. Although programs
are explicitly represented as stored data structures in the ubiquitous general
purpose computer, stored programs are not an essential feature of the classical
point of view. Rather, a classical system can conform with representation-level
rules simply because it is hardwired to do so. It is, for example, plausible from
the classical point of view to regard some innate processes as hardwired.

Assumptions (1)–(3) are widely recognized. However, to assert that cogni-
tive transitions are subserved by an algorithm that computes those transitions
is to presuppose something further, something so basic that its status as an
assumption is often not even noticed, viz.,

4 Human cognitive transitions conform to a tractably computable function
over total cognitive states (TCS’s).4

This is hardly a truism; on the contrary, it is a very strong assumption
indeed. Even granting that human cognitive transitions conform to a function,
there is nothing independent of the assumptions of classicism to indicate that
the cognitive transition function must be computable, let alone tractably
computable. However, this assumption is never, to the best of our knowledge,
argued for on independent grounds.

It is obviously presupposed by classicism, since cognitive transitions
couldn’t possibly be subserved by computation unless those transitions were
themselves tractably computable.

With respect to assumptions (1)–(4), an attitude of ‘What Else Could
Cognition Be?’ has pervaded classicism since its inception. The intended force
of the rhetorical question is that there is nothing else it could be. Cognitive
states have content-based causal roles, and it is felt that the only way they
could have such roles is via computational processes. The question is rhetor-
ical, but taken literally as a question it is fair enough; below we will sketch
some answers.

Assumptions (1)–(4) of classicism are built right into Marr’s tri-level
typology for cognitive science. But classicism makes an additional founda-
tional assumption, which is not officially presupposed in the three levels as
characterized:

5 Many mental representations encode propositional information via
language-like syntactic structure.

Although classicists can, and sometimes do, allow that some computational
processes subserving human cognition might operate on representations with
some kind of formal structure other than language-like syntactic structure,
they also maintain that the systematic semantic coherence of human thought
rests largely, and essentially, on computational manipulation of language-like
mental representations.
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3 Genericizing Marr’s three levels

Marr’s tri-level typology for cognitive science is a species of a more generic
tri-level topology. Table 21.1 describes both versions. The generic version will
serve as a touchstone below when we describe some potential alternatives to
classicism.

Notice, to begin with, that Marr’s three levels conform to this more gene-
ric characterization. A cognitive function will determine cognitive state-
transitions. And the theory of algorithms is, of course, a part of mathematics.
An algorithm, or program, is a mathematical beast, a set of rules for manipu-
lating symbols or data-structures purely on the basis of their formal/structural
properties, independently of any intentional content they might have; and the
symbols and data-structures, so described, are themselves mathematical objects.

Cognitive science, since its inception, has embodied the following central
and important idea about cognitive design, an idea reflected both in Marr’s
own typology and the generic one. What is important about the brain, vis-à-
vis mentality, is not its specific neurobiological properties, but rather the
abstract functional/organizational properties in virtue of which the physical
state-transitions are systematically appropriate to the content of the mental
states they subserve. These properties involve neither physical states and struc-
tures qua physical, nor mental states and structures qua mental; they are
mathematical. The mathematical level of description is the appropriate one for
characterizing the abstract system of functional/organizational features that
constitutes Nature’s engineering design for human cognition. This level medi-
ates between the other two: cognitive states are realized by mathematical
states, which in turn are realized by physical states of the cognizer’s hardware
or wetware.

The seminal idea that a system of mathematical state-transitions is the locus
of cognitive design is built into classicism, with its emphasis on the algorithm.
The genericization of Marr’s three levels retains this key idea, but does so with-
out building in assumptions (1)–(5) of classicism. There is more to mathe-
matics, of course, than those branches of it that have traditionally figured most
prominently in computer science. Part of what’s important about connection-
ism is the mathematics that goes most naturally with it. We turn next to that.
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Table 21.1

Marr Generic

Top level COGNITIVE COGNITIVE STATE-
FUNCTION TRANSITIONS

Middle level ALGORITHM MATHEMATICAL 
STATE-TRANSITIONS

Bottom level IMPLEMENTATION IMPLEMENTATION



4 Connectionist networks and dynamical systems5

If one focuses on the theoretical and mathematical aspects of the recent
connectionist movement in cognitive science, one finds connectionists increas-
ingly invoking a rich mathematical framework with a distinguished history:
the mathematical theory of dynamical systems. This framework fundamentally
involves continuous mathematics rather than discrete mathematics – even
though it can be brought to bear on systems which, at the relevant level of
description, are literally discrete (say, because they evolve in discrete time-
steps). In classicism, on the other hand, discrete mathematics is the natural
mode of description: computation, as investigated in logic and computability
theory, is the discrete, stepwise, rule-governed manipulation of symbols and
data structures. An algorithm, or a program, is a set of rules for such discrete
symbol manipulation.

To treat a system as a dynamical system is to specify in a certain way its
temporal evolution, both actual and hypothetical. The set of all possible states
of the system – so characterized – is the system’s abstract state space. Each
possible state of the system is a point in its state space, and each magnitude
or parameter is a separate dimension of this space. The dynamical system, as
such, is essentially the full collection of temporal trajectories the system would
follow through state space – with a distinct trajectory emanating from each
possible point in state space. A dynamical system can be identified with a set
of state space trajectories in roughly the same sense in which a formal system
can be identified with the set of its theorems. Just as there are many different
axiomatizations of a formal system such as S5 or the classical propositional
calculus, so likewise there might be many different mathematical ways of delin-
eating a certain dynamical system or class of dynamical systems. (It is common
practice to use the term ‘dynamical system’ ambiguously for abstract mathe-
matical systems and for physical systems – such as planetary systems and
certain networks – whose behaviour can be specified via some associated math-
ematical dynamical system. In the present paper, we will use the term mainly
for mathematical systems.)

In classical mechanics, for instance, the magnitudes determining the state
space of a given mechanical system are the instantaneous positions, masses, and
velocities of the various bodies in the system. Temporal evolution of such a sys-
tem, from one point in its state space to another, is determined by Newton’s
laws, which apply globally to the entire state of the system at an initial time.6

An attractor in state space is a point, or a set of points, in state space toward
which the system will evolve from any of various other points. These others
are said to lie within the basin of the attractor – the idea being that the attrac-
tor itself lies at the ‘bottom’ of the basin. The boundary of an attractor basin
separates those points in state space lying within the basin from those lying
outside it. A point attractor is a single stable point in state space; when a sys-
tem evolves to a point attractor, it will remain in that state (unless perturbed).
A periodic attractor is an orbit in state space that repeats back on itself; when
a system evolves to a periodic attractor, it will oscillate perpetually through the
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same sequence of states (unless perturbed). A quasiperiodic attractor is an orbit
in state space which, although it is not literally periodic, is asymptotic to a peri-
odic trajectory. A chaotic (or strange) attractor is a nonrepeating orbit in state
space that is not quasiperiodic. (Chaotic attractors are probably important in
the brain’s information processing. See Skarda and Freeman (1987), and
Freeman (1991).)

A dynamical system is a geometrical/topological sort of mathematical
critter. A useful geometrical metaphor for dynamical systems is the notion of
a landscape. Consider a system involving just two magnitudes; its associated
state space is two dimensional, and thus can be envisioned as a Cartesian
plane. Now imagine this plane being topologically molded into a contoured,
non-Euclidean, two dimensional surface. Imagine this ‘landscape’ oriented
horizontally, in three dimensional space, in such a way that for each point p
in the system’s two dimensional state space, the path along the landscape that
a ball would follow if positioned at p and then allowed to roll freely is the
temporal trajectory that the network itself would follow, through its state
space, if it were to evolve (without perturbation) from p. A dynamical system
involving n distinct magnitudes can be thought of as a landscape too; it is the
n-dimensional analog of such a two dimensional, non-Euclidean, contoured
surface: i.e., a topological molding of the n-dimensional state space such that,
were this surface oriented ‘horizontally’ in an (n+l) dimensional space, then a
ball would ‘roll along the landscape’, from any initial point, in a way that
corresponds to the way the system itself would evolve through its state space
(barring perturbation) from that point.

Connectionist systems are naturally describable, mathematically, as dynam-
ical systems. The magnitudes determining the state space of a given connec-
tionist system are the instantaneous activation levels of each of the nodes in
the network. Thus the state space of a network is frequently called its ‘acti-
vation space’. The activation space of a network has as many dimensions as
the network has nodes. The rules governing the system’s temporal evolution
apply locally, at each node of the system; this simultaneous local updating of
all nodes determines the system’s evolution through time.7 The topology of a
given network’s activation landscape will be jointly determined by two factors:
(i) the structural features of the network, in particular the pattern of connec-
tions between nodes and the weights on these connections; and (ii) the rules
by which the individual nodes update their own activations and output signals.
In connectionist models, cognitive processing is typically construed as the
system’s evolution along its activation landscape from one point in activation
space to another – where the initial point in the temporal trajectory, and also
the final point, and perhaps certain intermediate points, have certain repre-
sentational contents (whereof more presently). In typical systems a problem 
is posed to the system by activating a set of nodes which are interpreted as
having a certain content. From a dynamical systems perspective, this amounts
to positioning the system at some point in its state or activation space. (Which
specific point this is will often depend also upon the activation level of nodes
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other than those involved in posing the problem.) The network eventually
settles into a stable state which constitutes its ‘solution’ to the problem –
another point in its activation space. From the dynamical systems perspective,
the system has evolved to a point attractor, from an initial point – the posed
problem – within the associated attractor basin.

Learning too is typically construed, within connectionism, as temporal evo-
lution of a connectionist network through a state space. When the issue is
learning as opposed to processing, however, the weights on the network’s 
connections are viewed as malleable rather than fixed; learning involves incre-
mental changes in the weights. Hence the relevant states of the system are given
by total specifications of its weights, at a given moment of time during learn-
ing. From the dynamical systems perspective, learning is thus a matter of the
network’s temporal evolution through its weight space (with the weight of each
inter-node connection being a dimension of this space). However, a connec-
tionist network as it evolves through weight space is not by itself a full-fledged
dynamical system, because weight changes are effected not by the network
itself, but by system-external application of a weight change algorithm.

Henceforth in this paper, we will frame our discussion with an eye toward
connectionist networks as the sorts of physical devices that are to subserve
cognitive processing. For simplicity, our focus will be on cognitive processing
in a fixed network, rather than on learning; since the relevant dynamical
systems will thus be ones whose dimensions correspond to activation levels of
individual nodes, we will frequently refer to such a mathematical system as
an ‘activation landscape’.

Also for simplicity, we will couch our remarks in terms of entire connec-
tionist networks, and the entire activation landscape subserved by a given
network. But it should be kept in mind that a total connectionist network 
can consist of distinct, though interacting, subnetworks; and hence can be
mathematically analysed as subserving separate, though coupled, dynamical
systems. At the mathematical level of description, in such a case, the compo-
nent dynamical systems are embedded in a larger, higher-dimensional, total
dynamical system – just as the component physical sub-networks are
embedded in a larger total network.

Though we focus on connectionism for concreteness, our discussion below
is not necessarily limited to connectionist systems per se. Human-like cogni-
tion might only be subservable by physical systems quite different in nature
from current connectionist networks; and in principle, our subsequent discus-
sion would carry over, mutatis mutandis, to such alternative systems. More-
over, it is probably a mistake to treat the notion of a connectionist system as
determined by the sorts of networks currently being explored under the rubric
of connectionism. In a broader sense, a ‘connectionist system’ might better be
construed simply as any dynamical system, physically realized by a network
architecture. In this broader sense, there are numerous possible connectionist
systems (including human brains, perhaps) that differ substantially from the
kinds of networks currently being explored by connectionists.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“NONCLASSICAL COGNITIVE SCIENCE”

465



Several points about connectionist systems as dynamical systems should be
borne in mind, with respect to the remarks to follow. First, we again stress that
the dynamical system, the activation landscape, is not itself a physical system;
rather, it is a high-dimensional mathematical entity, a topologically complex
surface in a high dimensional space. This space is not directly, but indirectly and
abstractly, related to the physical space of the network that realizes it.

That is, second, although this abstract entity is indeed physically realized
by a network, local regions of the activation landscape will not, in general,
correspond to physically local portions of the network; quite the contrary. A
point in activation space is determined by activation values for every node in
the network; i.e., by the network as a whole. Conversely, a given value for a
single node in an n-node network determines an n–l dimensional region of
activation space.

Hence, third, the more physically distributed the scheme of representation
– so that representations are physically subserved by activation patterns
involving many nodes, rather than by activation in single nodes or small node-
pools – the more efficiently the abstract space is used for realizing represen-
tational states; i.e., the more physically distributed the representations, the
more abstractly local! If representation is relatively local physically, so that
relatively few nodes are required to take on certain values in order for a given
TCS to be realized, then numerous total activation states of the system will
realize that TCS; and each of these total activation states corresponds to a
different point in activation space. Conversely, if representation is highly
distributed, then in general comparatively fewer points in activation space will
count as realizers of the TCS. In the extreme case of distributed representa-
tion, a TCS is realizable only by a single total activation pattern over all the
nodes of the network; mathematically, the corresponding activation vector
specifies a unique point in activation space.

Fourth, as dramatic recent developments in the mathematics of dynamical
systems have shown, physical systems in nature can realize dynamical systems
involving enormously complex, and enormously non-homogeneous, variation
in local topography at different local regions of the abstract temporal land-
scape.8 (This local topological complexity can involve, among other factors,
the nature of the attractors, including chaotic ones; the nature of the basin
boundaries, including fractal ones; and highly intricate intertwinings of
attractor basins, some of them fractal.) Hence, fifth, the more distributed the
scheme of representation, and hence the more localized the representational
states are in abstract space, the greater are the opportunities for harnessing
this local topological complexity, on the abstract activation landscape, to
subserve sophisticated cognitive processing.

5 Connectionist systems as implementation architecture

With the discussion in Sections 1–4 as groundwork, we turn now to a succes-
sion of potential approaches to mentality that all fall under the generic tri-level
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typology of Section 3, and yet differ in increasingly radical ways from classi-
cism. We will proceed ‘up from the bottom’ through the three levels. In this
section, without yet calling into question classicism’s assumptions about math-
ematical transitions or about cognitive transitions, we consider connectionist
networks as potential implementations of the classical conception of cognition.
Then in Section 6 we will turn to the view that the mathematical transitions,
although they do involve algorithmic manipulation of representations, employ
only representations whose formal/mathematical structure is non-sentential. In
Section 7 we will consider the possibility that human cognition is mathemati-
cally subserved by a (network-realizable) dynamical system that is non-algo-
rithmic. Finally, in section 8 we will consider the possibility that human
cognitive transitions do not conform to a tractably computable function at all.

The dynamical-systems mathematical framework is quite broad and
general, and is not intrinsically incompatible with the classical theory of
computation. In principle, a connectionist network might be characterizable
both (i) as executing an algorithm over representations, and (ii) as realizing
a certain dynamical system. That is, mathematically, the network would
subserve both an algorithm for computing a cognitive transition function, and
a dynamical system whose trajectories through its state space subserve that
function. If so, then in terms of the three levels of description from Section 3,
the algorithmic characterization would belong to the mathematical level,
whereas the dynamical-system characterization would belong to the imple-
mentation level. For, the latter would specify, albeit mathematically rather than
physically, one way among many of implementing the algorithm – a way that
is itself physically realizable via a network structure.9

So the least radical possibility for connectionism is that it might provide for
new ways of implementing computational processes over structurally complex
mental representations, including language-like representations. This might
lead to interesting new developments at higher levels of description – for
instance, to new kinds of algorithms, ones that are more naturally implemented
in connectionist architecture than in von Neumann machines. Important as
such new developments might be, however, they would not amount to a new
conception of cognition, over against classicism’s conception. On the contrary,
as long as assumptions (1)–(5) from Section 2 remain in force, cognition is 
still being conceived classically. Implementational connectionism would be no
deviation from classicism at all, but merely a species of it.10

6 Non-syntactic computationalism

One way to depart from classicism, however, is to reject assumption (5), while
still retaining (1)–(4). On this view of the mind, human cognitive transitions
do conform to a tractably computable transition function over total cognitive
states; and these transitions are still subserved by an algorithm that computes
that function – i.e., by PRL rules over mental representations. However, the
representations themselves are not sentential, and thus their structure is not
syntactic structure.
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With connectionist networks in mind one might claim, for instance, that
mental representations are non-sentential vectors, and that the algorithm
effects vector-to-vector transformations that are systematically sensitive to
vectorial structure, and thereby are systematically sensitive to the content of
these non-sentential representations. Connectionist networks, on this view of
things, are devices that are naturally suited to perform such non-sentential
computation; vectors are realized as activation patterns over sets of nodes.
Thus, the claim goes, connectionism can and should evolve toward non-
sentential computationalism as an alternative to classicism.11

This approach fits naturally, although perhaps not inevitably, with the idea
that human cognition, at the top level of description, involves state-transitions
that are all essentially associative – in the sense that they reflect statistical
correlations among items the cognitive system can represent, and can be
analysed as the drawing of statistical inferences. Many fans of connectionism
evidently see things this way, and tend to regard connectionism as breathing
new life into associationism. Prominent foes of connectionism, notably Fodor
and Pylyshyn (1988), also see things this way; but they regard the link with
associationism as grounds for maintaining that connectionism, in so far as it
strives to do more than implement classicism, is bound to founder on the same
kinds of problems that plagued traditional associationism. Concerning the
non-implementational prospects for connectionist networks in cognitive
science, Fodor and Pylyshyn write:

A good bet is that networks sustain such processes as can be analysed
as the drawing of statistical inferences; as far as we can tell, what
network models really are is just analog machines for computing such
inferences. Since we doubt that much of cognitive processing does consist
of analysing statistical relations, this would be quite a modest estimate
of the prospects for network theory. (p. 68)

We ourselves share Fodor and Pylyshyn’s doubts about the prospects for
associationism, given the problems this doctrine faces in accommodating 
the semantic coherence of thought. On the more general question whether
human cognitive transitions conform to a transition function that is tractably
computable via computational processes operating entirely over non-sentential
representations, we are also pessimistic; again, it is hard to see how rule-based
transformations of representations could reflect the systematic semantic 
coherence of thought, for the vastly many distinct cognitive states that humans
are capable of instantiating, unless many of those representations encode
propositional information in systematic, productive ways, i.e., syntactically.

More fundamentally, however, we doubt whether cognition in general is
subserved by representation-level computation at all – i.e., that it is subserved
by transformations of representations in accordance with PRL rules.12 Still
more fundamentally, we doubt whether human cognitive transitions even
conform to a tractably computable transition function, either a deterministic
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one or a nondeterministic one. Connectionism, we think, might well be wedd-
able to non-classical conceptions of mentality that are more radical than non-
sentential computationalism, and that have little to do with associationism. 
It is time to turn to these.

7 Non-algorithmic dynamical systems

Perhaps human cognitive transitions are subserved by a dynamical system that
is not also an algorithm for computing those transitions. Even if human cogni-
tive transitions happen to be tractably computable, as classicism assumes, they
might not be subserved via representation-level computation – i.e., via manip-
ulation of language-like mental representations, in conformity with PRL rules
adverting to the structure of those representations. Instead, the system’s tran-
sitions from one total cognitive state to another might leap fairly large cogni-
tive gaps in single steps that are not decomposable, via classicist ‘boxology’,
into computationally subservable cognitive baby steps (either serial ones, or
simultaneous ones, or both).13 This possibility, obviously, is quite radically at
odds with classicism.

Here is a simple hypothetical example, to illustrate what we mean. Consider
standard decision theory, viewed as a putative psychological model of human
deliberation and choice, rather than a normative theory. According to this
model, a deliberating agent will choose an action with maximum expected
utility. The expected utility of an envisioned act is a certain kind of weighted
sum: the sum of the respective numerical values the agent assigns to the various
envisioned potential outcomes of that act, with each value being weighted by
the agent’s subjective probability of the given outcome’s resulting from the act.

Now, one way that such a decision-making system might work would be
computational. For instance, it might actually calculate this weighted sum, for
each envisioned act; then compare the totals for the acts and calculate which
act or acts have maximal expected utility; and then pick an act with maximal
expected utility. But here is another possibility, without representation-level
computation. There are various beliefs and desires at work in the system, with
various strengths. They all enter the hopper at once and interact directly –
somewhat in the manner of a complex combination of interacting physical
forces in a planetary system, with the various bodies exerting mutual gravita-
tional influence on one another. The way they interact is via a kind of ‘resolu-
tion of forces’, where the forces get resolved in such a way that the cognitive
system eventually settles on an alternative with maximal expected utility.14

Under this second mode of mathematical realization, there would be no
separate baby steps (either sequential or simultaneous) of actually calculating
weighted sums, of actually comparing them pairwise, and the like. Instead
there would be a mathematically more direct route to a decision: viz., the
system’s settling, by evolving quickly and automatically to a point attractor
realizing a decision to go with one of the acts that has maximal expected utility.
One of the potential acts wins out.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“NONCLASSICAL COGNITIVE SCIENCE”

469



It is important to appreciate that this hypothetical scenario would indeed
constitute a very important departure from classicism. At the mathematical
level of description, we would have not an algorithm that subserves cognitive
transitions via representation level computational baby-steps (either sequen-
tial or simultaneous), but instead a dynamical system that subserves cognitive
transitions via non-algorithmic, leaps-and-bounds-ish, state transitions.15

It is also important to realize that connectionist networks could, in prin-
ciple, subserve non-algorithmic cognitive transitions, even though each node
in the network updates its own activation, locally, in accordance with an algo-
rithm. For, the local updatings of individual nodes need not be parallel
baby-steps in some algorithm over representations – some set of program-
mable rules for manipulating and transforming complex representations on
the basis of their representation-level structure. Instead, the node-level compu-
tation in the network might be entirely sub-representational, and hence
implementational. This possibility seems especially salient for connectionist
systems in which activation-levels of individual nodes do not have any specific,
determinate, representational content – for instance, systems employing a
representation scheme in which all representations, even the semantically
atomic ones, are distributed activation-patterns.

The example of a non-algorithmic decision maker is hypothetical. We turn
now to an actual connectionist model which is a good prima facie candidate
for being a system that performs a sophisticated information-processing task
in a non-algorithmic way. It is a model of natural-language sentence parsing,
due to George Berg (1992).16 The system receives, as external input, a temporal
sequence of word-representations, each of which represents a successive word
in an English sentence. It constructs a representation of the sentence’s syntactic
structure; and it can recursively decompose this parse-representation, in order
to successively represent the sentence’s main syntactic constituents, then the
main sub-constituents of each of these constituents, and so on – all the way
down to the constituent words.

Berg’s model adapts and extends an approach for representing recursive
structures first developed by Jordan Pollack (1990), called ‘recursive auto-
associative memory’, or RAAM. In Pollack’s RAAM networks, the represen-
tations all have so-called ‘fixed bandwidth’; i.e., for any node-pool in which
representations are instantiated, each representation is a fully distributed acti-
vation pattern involving every node in the pool. In one part of a RAAM
system, fixed-bandwidth representations can be constructed for recursive
structures of arbitrary complexity; in the other part, such representations 
can be recursively decomposed, thereby successively reconstructing the 
representations of the successive substructures.

The overall structure of Berg’s network is depicted in Figure 21.1. It has
five layers, with recurrent feedback from the hidden layer back to the input
layer. Nodes are segmented into specific pools, as shown. The input layer has
two pools, one for word-representations and the other which duplicates the
current hidden-layer representation. The output layer has four pools, one for
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each of the four syntactic roles – specifier, head word, first complement, and
second complement – of an ‘X-Bar template’ of the sort posited in the form
of theoretical syntax known as ‘government and binding theory’ (cf. Chomsky
1981; Sells 1985). Such X-Bar structures can exhibit recursive embedding,
because the roles of specifier, first complement, and second complement can
be filled by X-Bar structures themselves.

Representations in Berg’s model are fixed-bandwidth activation patterns.
Words get represented as distributed activation patterns in the word pool of
the input layer, and in the head-word pool of the output layer. These two pools
have the same number of nodes, this number being the bandwidth of the word-
representations. X-Bar structures themselves, including the ‘null’ structure, get
represented as distributed activation patterns in the hidden layer, in the context
pool of the input layer, and in the specifier and complement pools of the output
layer. Each of these pools has the same number of nodes, this number being
the bandwidth of the X-Bar representations.

Construction of parse representations occurs in the first three layers of
Berg’s network, in the following way. A representation of the first word of an
English sentence is activated in the word pool of the input layer, with the
context pool initially dormant; activation then passes forward through the
encoder layer to the hidden layer, thereby generating in the hidden layer a
tentative, partial, parse representation. This tentative representation is then
copied back to the ‘context’ pool in the input layer, at the same time that the
next word of the English sentence is being activated in the ‘word’ pool; acti-
vation then passes forward from the context and word pools of the input layer,
through the encoder layer to the hidden layer, thereby generating a new tenta-
tive parse representation. This process continues, with as many feed-forward
passes from input to hidden layer as there are words in the English sentence.
The hidden layer ends up containing a fully distributed representation of the
sentence’s syntactic structure.

Recursive decomposition of the parse representations occurs in the bottom
three layers of the network, as follows. When the total parse representation is
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Figure 21.1 The basic structure of Berg’s parser network (Berg 1992)



present in the hidden layer, activation is fed forward through the decoder layer
to the output layer; this generates, within the four respective pools in the
output layer, fixed-bandwidth representations of the sentence’s four primary
X-Bar constituents – the specifier, head word, first complement, and second
complement respectively. (Some of these constituents might be null.) If the
specifier-representation, and/or either complement-representation, is not null,
then it can be copied back into the hidden layer, and then decomposed by
another forward activation-pass through the decoder layer to the output layer.
This process can be conducted recursively; along the way, fixed-bandwidth
representations of all the sentence’s syntactic constituents and sub-constituents
get recovered. (The atomic constituents, i.e., the words, all turn up at one point
or another in the head-word (or specifier) pool of the output layer.)

Since the parse representations all have fixed bandwidth, regardless of the
complexity of the parse structures they represent, recursive complexity in the
representations themselves is obviously not a matter of parse-substructures
being represented by activation patterns that are physical components of the
activation patterns representing the larger structures. But recursive informa-
tion is systematically encoded nonetheless, since the representations of X-Bar
sub-structures are recursively recoverable from representations of the larger
structures.

Berg trains up his network, as did Pollack his original RAAM systems, 
by means of a sophisticated adaptation of the back-propagation learning 
algorithm, incorporating what Pollack calls the ‘moving target strategy’. Back-
propagation is a method which adjusts the weights of the network in the
direction of the correct, ‘target’ output, doing this repeatedly until the network
produces the correct output. Pollack divides the training regimen into succes-
sive ‘epochs’. With the moving target strategy, in each epoch, the ‘target’
representations, for whole tree structures and for their constituent sub-
structures, are the ones the system itself has developed in the preceding epoch.
The representations thus change along with the weights from epoch to epoch, 
in a process of controlled co-evolution.17 The system, as it learns, gradually
discovers appropriate representations. With sufficient training, it gradu-
ally converges on a combination of weights and representations under which
the representations of parsing structures and substructures are recursively
recoverable, accurately and systematically.

Berg’s connectionist parser works quite well, on a wide range of sentences
of varying recursive depth. It also generalizes quite effectively to new sentences
that were not part of the training corpus. Berg writes:

Testing and training are done on separate corpora each containing 
the patterns for 1000 sentences. The average sentence is between 6.5 to
7 words long . . . The corpora contain sequential presentations of
randomly generated, syntactically legal sentences. There is no restriction
on the length or ‘depth’ of the generated sentences . . . This results in 
most of the sentences being between 2 and 8 phrases deep, with fewer
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sentences of greater depths, typically with a maximum between 14 and
20 . . . [These] networks typically converge to 1–8% overall error for
both training and testing corpora. (p. 5)

From the successive decoding of the phrases of a sentence, one can read off
the X-Bar syntax of that sentence. Figure 21.2, for instance, is an ‘unrolled
network’ diagram showing how a series of decodings reveals the overall
syntactic structure of a sample sentence.

It seems highly unlikely that this connectionist system does this parsing by
executing an algorithm at the level of representations themselves. There are
two interrelated reasons to think so. First, the representations are quite 
thoroughly distributed: activation values of individual nodes are not assigned
any specific, determinate, representational content. Since rules for activation-
updating apply locally at individual nodes, whereas representation is fully
non-local, the node-level computations appear to be purely subrepresenta-
tional, rather than being component steps in some set of (highly parallel)
representation-level rules. Second, although the structures being represented
have varying, arbitrarily deep, recursive complexity, all such structures are
represented by activation patterns of the same bandwidth, within the same
pools of nodes; hence, recursive complexity of representational content is quite
unrelated to the physical part/whole structure of the representations them-
selves. Since the activation patterns representing complex structures are not
anything like ‘physical sums’ of smaller activation patterns representing the
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spaghetti

doga a fork

withwith

boythe ate

(INFL)

Figure 21.2 The ‘unrolled’ network for the sentence ‘the boy with a dog ate spaghetti
with a fork’. Unlabelled phrases at the output level are empty (Berg 1992)



component sub-structures, it is all the more unlikely that the system’s manip-
ulation of these patterns can be analysed as conforming to PRL rules involving
numerous simultaneous representation-level baby-steps.

But how else, it might be asked, could the system be accomplishing its
parsing task so successfully, if not by implementing some representation-level
algorithm? What other sort of characterization might it have, at the mathe-
matical level of description, that would constitute a successful design for the
subserving of systematically content-appropriate transitions over intentional
states?

Part of what we find interesting and exciting about Berg’s model, and also
about Pollack’s RAAM’s, is that their use of the ‘moving target’ training strat-
egy suggests a general answer to this question: an alternative, non-classical,
approach to mathematical design for information-processing systems. The key
ideas are as follows. As the network gets progressively altered at the physical
level during learning, via successive changes in the weights on the connections,
at higher levels of description what’s happening is the progressive co-evolution
of two interrelated factors. On one hand, the dynamical system itself is 
being altered by weight changes; the local topography throughout the high-
dimensional activation landscape is being progressively molded. On the other
hand, because of the moving target strategy, there is also progressive alteration
of the position of representations on the activation landscape.18 This reposi-
tioning effects a refinement of the realization relation from intentional states
(i.e., representational states qua representational) to points on the activation
landscape. The realization relation exhibits increasing systematicity, coming to
reflect, in the way it positions representation-realizing points relative to one
another on the activation landscape, important relations among the intentional
states being realized. The realization relation and the landscape topography
end up ‘made for each other’, with respect to the information-processing task
the system is being trained to perform: the final weight setting for the network
subserves a high-dimensional activation landscape whose overall local topog-
raphy yields systematically content-appropriate temporal trajectories, under
the operative intentional/mathematical realization relation. Thus, the key to
the system’s design is that the shape of the activation landscape, and the over-
all positioning of representation-realizing points on that landscape, are jointly
just right to subserve the relevant intentional transition function, for a very
large class of potential intentional states. Moreover, it’s neither an accident nor
a miracle that this is so; rather, it’s the understandable result of applying a
learning algorithm in a way that incorporates the moving target strategy.

There is nothing in this story about cognitive design that requires that a
cognitive system even conform to programmable rules over representations,
let alone proceed by executing such rules. This story evidently is true of Berg’s
system. So we have a possible answer to the question: how else, if not by a
representation-level algorithm, could the system accomplish its parsing task?

In addition, the story is obviously quite general in its potential scope: it is
entirely possible that the abstract ‘engineering design’ for much of human
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cognition does not involve any representation-level algorithm, but instead
involves a high-dimensional activation landscape and a cognitive/mathemat-
ical realization relation that fit together like hand and glove to subserve the
system’s cognitive transition function. For a human, of course, the CTF
involves an enormous range of distinct total cognitive states the system can
instantiate – vastly more than it ever will instantiate in its lifetime. Given this
fact, and given that all trajectories on the activation landscape that commence
from any TCS-realizing point must yield content-appropriate cognitive tran-
sitions, a suitable cognitive/mathematical realization relation would probably
have to exhibit a very high degree of systematicity: i.e., it would position all
the TCS-realizing points throughout the landscape in such a way that their
various relative-position relations reflect many important semantic relations
among the TCS’s themselves.

The semantic relations reflected in this way would very likely include rela-
tions of semantic constituency among complex intentional states: for instance,
the relation being about the same individual, or the relation predicating
the same property. In so far as (i) such semantic constituency relations get
systematically reflected in the positioning in activation space of representation-
realizing points, and (ii) this fact is important in the dynamical system’s
successfully subserving content-appropriate cognitive transitions, these 
relative-position relations would function as syntactic relations. That is, the
overall distribution of representation-realizations in high-dimensional activa-
tion space would structurally encode the kinds of semantic relations that get
encoded in public languages by names, predicates, quantifiers, and so forth;
and would do so in a manner that is directly implicated in the design whereby
the system subserves cognition – and in particular is directly implicated in the
explanation of the systematicity of cognition that Fodor et al. have rightly
insisted on. This is not what Fodor and McLaughlin (1990) call classical
syntax, by which they mean a kind of structural constituency in which the
constituents of a complex representation are always tokened whenever the
representation itself is tokened. It is, however, the kind of syntax that looks
natural for an approach to cognitive design in which cognition is subserved,
at the mathematical level of description, by a dynamical system rather than
an algorithm over representations.19

8 Cognition without (tractable) computability

Classicism’s most fundamental foundational supposition, the one we listed as
assumption (4) in Section 2, is that human cognitive transitions conform to a
tractably computable transition function (CTF) over total cognitive states
(TCS’s) – either a deterministic function or a non-deterministic one. As yet we
have not questioned this assumption. The burden of Section 7 was that even
if it is true, classicism might be mistaken anyway. For, human cognitive tran-
sitions might be subserved not by an algorithm that computes the CTF, but
rather by a non-algorithmic dynamical system.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“NONCLASSICAL COGNITIVE SCIENCE”

475



It is very important, however, that the general approach to cognitive engi-
neering just sketched does not presuppose that a human CTF is tractably
computable. Thus arises an even more radically non-classicist possibility: viz.,
that a human CTF is not a tractably computable function at all, either deter-
ministic or non-deterministic. A CTF that is not tractably computable 
might be subservable by a non-algorithmic dynamical system which is itself
subservable by a neural network.20

What would it mean for a human CTF not to be tractably computable? In
addressing this question, it is useful to think about ways the function might,
or might not, be specifiable. The CTF itself can be construed as an enormous
set of ordered pairs, each of which associates a single TCS with a set of one
or more successor TCS’s. One way to specify this function would be via a huge
(possibly infinite) list: each ordered pair in the CTF being specified by a sepa-
rate entry on the list. Such a list, even if finite, would be truly gargantuan –
far too big to itself constitute a tractable set of programmable rules.21 So to
be tractably computable, given the enormous number of distinct cognitive
transitions, a CTF would have to be fully specifiable in some way other than
via a brute list.

What classicism assumes, of course, is that a human CTF is specifiable via
some set of general laws over cognitive states; each cognitive transition is just
a particular instance of these laws, and the function the laws delineate is itself
tractably computable. Conversely, if the CTF is not tractably computable then
it will not be thus specifiable. If cognitive transitions are effected by a dynam-
ical system of the sort imagined in the previous section, there is no reason why
the CTF would have to be tractably computable.

This would not necessarily mean that there would be no interesting, system-
atic, psychological laws. For, there remain these two possibilities: either (i)
there are psychological laws that fully specify the CTF, but happen to delin-
eate a transition function that is not tractably computable; or (ii) there are
laws that only partially specify the CTF, because they contain ineliminable
ceteris paribus clauses adverting to potential psychology-level factors that
could prevent ceteris from being paribus.22

In general, the failure of a CTF to be tractably computable could be the
result of either or both of the following factors: (i) the dynamical system itself,
whose mathematical state-transitions might not be tractably computable; or
(ii) the way TCS’s are realized as points in the dynamical system’s state space.
Concerning the first factor, it may well be possible for non-computable dynam-
ical systems to be subserved by neural networks – especially if the networks
are made more analog in nature by letting the nodes take on a continuous
range of activation values, and/or letting them update themselves continuously,
rather than by discrete time steps.

Moreover, even if the mathematical state-transitions of the dynamical
system are tractably computable (as they are, for instance, for current connec-
tionist systems – which are usually simulated on standard computers), the CTF
subserved by the dynamical system might fail to be tractably computable
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anyway. Consider the converse of the realization relation between TCS’s and
points in a dynamical system’s state-space. This is a function – call it the
realizes-function – mapping points in a dynamical system’s state space to
TCS’s. (It is a function because it never pairs a point in state space with more
than one TCS.) This function itself might not be tractably computable. If not,
then obviously it would not be possible to compute cognitive transitions this
way; given the initial mathematical state of the dynamical system, (i) compute
the dynamical system’s trajectory through state space; and (ii) for each point
p on the trajectory, compute the TCS (if any) realized by p. And if the cogni-
tive transitions subserved by the dynamical system are not computable in this
way, it seems likely that they would turn out not to be tractably computable
in any other way either. That is, there might well be a network-subservable
dynamical system S, a CTF C, and a realizes-function R, such that

(i) S’s mathematical state-transitions are tractably computable;
(ii) C is not tractably computable; and yet

(iii) S subserves C, under R.

Needless to say, therefore, one should not infer from the fact that a system’s
non-cognitive state transitions are tractably computable that it cannot
subserve a CTF which fails to be tractably computable.

The possibility that cognitive transitions are not tractably computable
deserves to be taken very seriously. Given what we have said in the last two
sections, tractably computable CTF’s might well be only a rather small subset
of the CTF’s that nature could have evolved the hardware to subserve. Thus
there is no obvious reason to suppose that nature’s CTF’s are tractably
computable.

Moreover, we have elsewhere argued (Horgan and Tienson 1989, 1990,
1993, 1994) that when one reflects carefully on certain problems (like the
frame problem) that have persistently arisen in classicism and that largely
spawned connectionism, a strong case emerges for the contention that human
cognition is just too complex and too subtle to conform to programmable
representation-level rules. If so, then the heart of Nature’s evolutionary blue-
print for human cognition cannot be an algorithm; instead it might well be a
non-algorithmic dynamical system, subserving cognitive transitions that are
not tractably computable at all

Notes

1 Multiple realizability is no doubt ubiquitous in nature. The case most discussed
is higher-level state-types being differently realized in different species or crea-
ture-kinds. But the same higher-level state-type might be multiply realizable in
different members of the same species; or in a single individual at distinct
moments in its own history; or even in a single individual at a single moment in
its own history.
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2 For further elaboration of this point, see Horgan (1992). Marr himself evidently
saw the point quite clearly – as evidenced in the following passage from Marr
(1977). The passage sets forth an example to illustrate the distinction between
the computational level of description and the algorithm level, in a way that also
brings in the hardware/wetware level: ‘[T]ake the case of Fourier analysis. The
(computational) theory of the Fourier transform is well understood, and is
expressed independently of the particular way in which it is computed. There are,
however, several algorithms for implementing the Fourier transform – the Fast
Fourier transform . . ., which is a serial algorithm, and the parallel “spatial” algo-
rithms that are based on the mechanisms of coherent optics. All these algorithms
carry out the same computation, and the choice of which one to use depends
upon the available hardware. In passing, we also note that the distinction between
serial and parallel also resides at the algorithm level and is not a deep property
of a computation’ (Marr 1977: 37). Note that in this passage he uses the term
‘implementation’ to characterize the relation between the computational level and
the algorithm level. The idea is that computations are implemented via algo-
rithms, which themselves get implemented in hardware (or wetware); multiple
modes of implementation are possible between each level and the one immedi-
ately below it.

3 In keeping with the classical idea that cognition is computation, this means
generalizing the notion of computation in some appropriate way. We suggest one
way of doing it in Chapter 2 of Horgan and Tienson (1993). The reader should
keep in mind, for the discussion that follows, that classicism allows for the possi-
bility that a human CTF is non-deterministic, and that the notion of ‘computing’
a TCS should be understood accordingly. (A non-deterministic CTF is a function
that takes each CTF to the set of its potential successor TCS’s or to a probability
distribution over the members of that set.)

4 The commonly heard term ‘tractably computable’ is vague and perhaps also some-
what context dependent. ‘Not tractably computable’ means something stronger,
of course, than simply not easily computable. ‘Not tractably computable’ seems
sometimes to be used to mean something like: not computable with the compu-
tational resources that are available or likely to become available. It also seems
to be used with a – not unrelated – sense something like: not computable with
roughly the order of computational resources of the human brain, whatever that
may be. It does not matter for our present purposes which sense is used. To over-
come the vagueness of the term, when we discuss below the possibility that
human cognitive transitions do not conform to a tractably computable function,
we will mean that they do not do so under any reasonable resolution of the vague-
ness of ‘tractably computable’.

5 This section is largely adapted from section 3 of Horgan and Tienson (1992a).
6 Some dynamical systems, including many that have been studied in physics,

evolve in accordance with relatively simple laws, typically involving global states
of the system. Usually such laws are expressed via differential equations, or differ-
ence equations if discrete time-steps are involved. But it is very important to
appreciate that in general, a dynamical system need not conform to such laws.

7 Thus, connectionist networks need not, in general, conform to simple update-
rules expressible over global activation-states, Cf. note 6.

8 This is especially true when the physical systems involve nonlinear dynamical
behaviour. Connectionist networks are like this, as they provably must be to avoid
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well known limitations in their computational power similar to the limitations of
two-layer perceptrons. Each node updates its activation in accordance with a non-
linear function.

9 This way of putting the point involves seeing the implementation level as hierar-
chically stratified, involving one or more mathematically specified sub-levels before
‘bottoming out’ in physical states and state-transitions in a physical machine. This
kind of implementational hierarchy is ubiquitous in conventional computers: there
is a mathematically describable ‘virtual machine’, executing algorithms over
sentences that belong to a high-level formal language and whose content is the
information the system is supposed to be processing; this mathematical machine
is simulated by another mathematically describable machine, executing algorithms
over sentences in a different formal language whose sentences have different
representational content (typically, some sort of number-crunching content); this
simulational embedding of one mathematical virtual machine within another
proceeds down to the level of machine language, and then bottoms out in phys-
ical realization of the lowest-level mathematical machine.

One could, alternatively, think of the hierarchy as belonging to the middle,
design level, and the implementation level as involving only physical realization.
However one chooses to put it, the point is that there is typically an implemen-
tational hierarchy between the level of cognitive design and bottoming out in
physical realization.

10 Cf. Fodor and Pylyshyn (1988). For a more detailed discussion of the matter of
‘mere implementation,’ see Horgan and Tienson (1992b).

11 Paul Churchland (1989) is a fan of connectionism who appears to see the matter
this way.

12 It is the PRL rules we doubt, not the representations; this is why we have else-
where called our view ‘representations without rules.’ We also maintain that
human cognition requires representations with some form of syntax. But if the
proper middle level of description in cognitive science involves a dynamical
system and not an algorithm, as we believe, then syntactic constituency relations
are likely to look very different than in classicism. See the end of Section 7.

13 The metaphor of connectionist systems leaping large cognitive gaps in a single
bound is from Lloyd (1991). He there floats, as worth serious consideration, the
limit-case view that all mental states are conscious ones – there are no uncon-
scious, intervening mental steps between conscious mental states.

14 The analogy with the interaction of physical forces is not exact, since the cogni-
tive system must settle into cognitive states, and in general a relatively small
portion of the physical states of the system will realize cognitive states.
(Equivalently, only relatively few points in activation space realize cognitive
states.) Simple summation of forces in a network would in general not lead to
cognitive states. Thus, there must be some sort of ‘winner-take-all’ feature built
into the cognitive system that ensures that it ends up in cognitive states (and by
and large, relevant ones).

15 With non-algorithmic dynamical systems, in general one might expect there to be
many fewer cognitive transitions than are posited in classicism, because classical
models often require numerous sequential cognitive baby-steps (many of which
are supposed to occur rapidly and unconsciously); cf. note 13 above. When the
temporal trajectory subserving a cognitive transition passes through a number of
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intermediate points on the activation landscape, it may be that few or none of
those points realize cognitive states.

16 The task is sophisticated enough that it probably cannot be accomplished by a
purely associative/statistical algorithm, one that merely performs statistical infer-
ences involving, for instance, transition-frequencies among words of English. And
as we discuss below, the network generalizes substantially beyond the English
sentences that constitute its training corpus – which means that it presumably
doesn’t learn by merely encoding a ‘look-up table’ correlating each input in its
training regimen with the correct output. Thus, Berg’s model is a plausible candi-
date for being a system that performs a non-associative information-processing
task in a non-algorithmic way.

17 Berg’s training procedure implements the moving target strategy somewhat differ-
ently than does Pollack; but the differences need not concern us here.

18 At the physical level of description, intentional states are realized in networks by
activation patterns. But mathematically, the activation vector describing a partic-
ular physical pattern is also a specification of a set of coordinates in the dynamical
system’s state-space. Thus, from the dynamical systems perspective, the states
realizing a given intentional state are the points on the activation landscape that
have the coordinates specified in that vector.

19 Some might object to calling relations of relative position, among points in acti-
vation space, syntactic constituency relations, even though they do reflect
relations of semantic constituency in a way that figures centrally in the system’s
design. We ourselves think that this usage is indeed sanctioned by the ordinary,
pre-theoretical notion of syntax. But the important question, of course, is whether
the relative-position relations can play this role – not whether their doing so would
suffice to sanction calling them syntactic.

20 Most of what we say in this section applies if a human CTF is not computable
at all – which may be the case if there are literally infinitely many distinct cogni-
tive states that a cognizer can instantiate. If there are only finitely many such
states, then the cognizer’s CTF is computable in the official mathematical sense.
We take no stand on whether there are literally infinitely many cognitive states
that human cognizers can instantiate, or only a huge finite number. Our view is
that if human CTF’s are computable at all in the mathematical sense, it is only
because they are finite. But tractable computability is the important concept in
the context of classical cognitive science, so we will focus on this.

21 This is our answer to the main argument of Aizawa (1994). To get a sense of how
huge the list would have to he, there are on the order of 1020 English sentences
of 20 words or less (Miller 1965). For most of these there is a potential corre-
sponding thought, and potential thoughts far outstrip sentences because of our
ability to make relevant discriminations that we lack linguistic resources to
describe. For comparison, there are 1015 or so neurons in the human brain, and
there have been around 107 seconds in the history of the universe.

22 The second possibility is the one we ourselves think most likely for human
cognizers. Cf. Horgan and Tienson (1989, 1990, 1993).
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22

T. van Gelder, “Compositionality: A
Connectionist Variation on a Classical Theme”

Connectionism has been attacked on the grounds that it does not employ
compositionally structured representations (e.g., Fodor and Pylyshyn
1988). This article develops the response that Connectionist models can,
and in fact sometimes do, employ compositionally structured represen-
tations without, thereby, simply implementing a Classical “Language 
of Thought.” Focusing on the mode of combination employed in
constructing representations, it distinguishes concatenative composition-
ality, essential to the Classical approach, from a merely functional
counterpart increasingly common in Connectionist research. On the
basis of this distinction it is possible to demonstrate that Connectionist
representations can be compositional without being Classical, and
further, that Fodor and Pylyshyn’s supposedly conclusive arguments in
favor of the Classical approach do not in fact support that approach 
over the Connectionist alternative (as opposed to an “associationist”
straw man).

Must mental representations be structured objects? If so, in what sense? These
very general questions, never far below the surface in both the theory and
practice of cognitive science, have arisen once again in the guise of a clash
between defenders of mainstream symbolic or “Classical” orthodoxy, and
advocates of the rival Connectionist approach to the modeling of cognition,
Classicalists, such as Fodor and Pylyshyn (1988), have argued that the expla-
nation of cognition requires representations with a combinatorial syntax 
and semantics; Connectionism is doomed, it is claimed, unless it finds a way
to implement such representations. Smolensky, meanwhile, has proposed a
formidable defense: Connectionist representations can be compositional
without being strictly combinatorial in the Classical sense, and on this basis
Connectionism can account for cognition needing to implement a “Language
of Thought” (Smolensky 1987b, 1988).

There is at least one basic point of agreement among the various parties:
In order to exhibit any reasonably sophisticated cognitive functions, a system
must be able to represent complex structured items. To take an obvious

482



example, engaging in conversation requires, at some level, the ability to repre-
sent to oneself the sentences being used. The conflict between the two
approaches is, in large part, a disagreement over how to do this. What kind
of structure (if any) is needed in the representations themselves in order to
represent such items effectively? And how does such structure interact with
mental processes to generate complex cognitive behavior? At the core of this
debate is the notion of compositional structure. Both sides agree that repre-
sentations need to be compositional1 but disagree over what this entails and
how such structure contributes to the explanation of cognition.

This article takes up and develops Smolensky’s insight that mental repre-
sentations can be compositional without being Classical. It begins with an
examination of the notion of compositionality, and argues that at least two
broad kinds need to be distinguished carefully. One is extremely familiar, and
characteristic of the Classical approach; while the other, previously virtually
unknown, is increasingly common in Connectionism, for reasons deeply tied
to the nature of Connectionist theorizing. The question, then, is which kind
is to be preferred for the purpose of modeling cognition? Although any general
answer to this question is far beyond the scope of the current article, it 
is shown in the final section that Fodor and Pylyshyn’s supposedly conclu-
sive arguments for a Language of Thought, in fact, fail to rule out the
Connectionist alternative. Connectionism is therefore in a position to avoid
the apparent dilemma of either implementing a Language of Thought or failing
to account for cognition. With its distinctive style of compositionality in hand,
it may well do neither.

1 Styles of compositionality

In the most general (and vague) sense, any item is appropriately said to have
a compositional structure when it is built up, in a systematic way, out of
regular parts drawn from a certain determinate set; those parts are then the
components or constituents of the item.2 There are, however, a number of
ways in which an item can be “built up” out of parts, and a number of corre-
sponding notions of “part” or “constituent.” To see this, it is useful to start
with a commonplace example of compositionality, generalizing from there to
some minimal abstract conditions that a scheme of representation should
satisfy to count as compositional. It will then be apparent that there are a
variety of ways that a particular scheme might satisfy those conditions.

Consider, then, a paradigm of compositionally structured representation,
the expressions of the propositional or sentential logic (PL). Here are some
samples:

(1) P
(2) (P&Q)
(3) ((P&Q)&R)
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It is immediately apparent that each of these expressions has been constructed
out of tokens drawn from a restricted set of primitive types; for example,
connectives such as & and sentential variables such as P, Q and so on. These
are the primitive constituents of the expressions. Some expressions, such as
(3), also have expressions as constituents; this can be stated, in a general way,
as the principle that expressions of Type (3) have expressions of Type (2) as
constituents. Generalizing, it would seem that a compositional scheme of
representation must satisfy at least the following conditions.

(a) There is a set of primitive types (symbols, words, etc.) Pi; for each type,
there is available an unbounded number of instances or tokens

(b) There is a (possibly unbounded) set of expression types3 Ri; likewise, for
each type, there is available an unbounded number of tokens

(c) There is a set of transitive and nonreflexive constituency relations over
these primitive and expression types. Thus, expressions of type Rj (such
as ((P&Q)&R)) might have as constituents expressions of type Ri

(such as (P&Q)), in which case the situation can be described more
succinctly using the general schema C(Ri, Rj).

Clearly, these are extremely general conditions, and do not themselves amount
to a specification of any particular scheme. If one wants a real, usable compo-
sitional scheme, a scheme one could actually say something with or deploy in
cognitive modeling, one has to flesh out the various abstract notions employed
in the general conditions. One has to specify, for instance, just what primitives
and expressions are to be allowed in the scheme and the constituency relations
obtaining among them. How is this to be done?

The first thing to notice is that this specification task has to be carried out
at two quite distinct levels, corresponding to the crucial distinction between
primitive and expression types and their corresponding instances or tokens
that is stressed in conditions (a) and (b). In general, any compositional 
scheme, such as, for example, a natural language, can be thought of either in
terms of its abstract structure or in terms of the details of its particular,
concrete implementation. One important kind of difference between English
and German is that these languages begin with different primitives (vocabu-
laries) and they combine those primitives according to their distinctive
grammatical rules to obtain quite distinct expression types (sentences). These
are differences at the level of abstract structure. Expressions of a particular
language such as English, moreover, can be realized or instantiated in a wide
variety of different ways: spoken utterances, typescript, electrical signals in a
computer memory, Braille script, to name just a few. The crucial point is that
in order to specify a compositional scheme of representation fully, the details
at both these levels must be filled. On the one hand, it must be known what
general types of primitives and expressions there are; while on the other, it
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must be known what kinds of things (physical items) are to count as instances
or tokens of each type.

A second crucial fact is that virtually all compositional schemes of any
interest are infinite, in the sense that there is an unbounded number of distinct
expression types. (Indeed, one reason compositional schemes are so widely
employed is precisely because they allow the generating, in a systematic
fashion, of an unbounded number of distinct expressions.) For this reason, in
specifying a compositional scheme simple lists cannot be relied upon; finite
creatures would never have time to complete the list, so the specification task
would remain incomplete. The appropriate response, of course, is to use recur-
sive methods, which give recipes for constructing, from a set of primitives
which is given via a simple list, any expression, as long as one is prepared to
invest some finite amount of work.

These are, of course, both familiar points, but when put together they lead
to a point that is not so familiar: Namely, that there must be recursive specifi-
cation at both levels of the compositional scheme. On one hand, recursive rules
that specify the infinite expression types in the language are needed; a set of
rules performing this task is just a grammar for the compositional scheme.
(Conveniently, from the order of application of these rules, one can typically
read off the abstract constituency relations among expression types.) Gram-
matical rules, however, do not themselves tell what the primitives or expres-
sions of the language look like; they do not tell what kinds of things are to 
count as tokens of the language. Indeed, this is a very important feature of an
abstract grammar; it is because grammars are not constrained in this way that,
for example, one grammar can be used to describe a given language in all its
different concrete manifestations. Consequently, in order to specify a particu-
lar compositional scheme fully, it is necessary to supplement the grammatical
rules with recursive principles telling how expressions of the scheme happen 
to be instantiated. A systematic recipe for generating tokens of any given
expression type is needed. This is typically done by providing sample tokens of
each of the primitive types, together with a mode of combination, which, in
accordance with the abstract grammatical rules, takes primitive tokens and
combines them to generate instances of compound expressions. The samples of
the primitive types provide (generally implicitly, or “ostensively”) criteria for
the identification of tokens of the primitives (e.g., having a certain shape and
size). Then, having identity criteria for primitives and knowing the systematic
effects of the mode of combination, criteria for the identification of instances
of expressions are automatically provided. In the case of standard PL, for exam-
ple, the mode of composition is spatial concatenation; consequently, knowing
what primitive symbol tokens look like (since sample tokens are provided on
the page), and knowing how to write symbols alongside one another according
to the grammatical rules, it is automatically known what kinds of inscriptions
count as tokens of any of an unbounded number of formulae of PL.
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In virtually all descriptions of compositional schemes, both these specifica-
tion tasks are rolled together into one. Thus, in standard versions of PL,
grammatical rules stated in something like the following way are usually
found:

If A and B are well-formed formulae, then |̄ (A&B) |̄ is a well-formed
formula.

The fact that the symbols or expressions are to be combined by spatial concate-
nation is not mentioned explicitly, but rather is implicit in the way the rule 
is written down. It is, nevertheless, very important for the following analysis
that the two levels and their respective specification tasks be teased apart, 
for without doing so it is easy to overlook an important distinction among
styles of compositionality. Above, I suggested that essential to a compositional
scheme is the requirement that its expressions stand in certain abstract
constituency relations. It is through the mode of combination, which relates
primitive tokens to compound expression tokens, that these constituency rela-
tions are realized in a particular scheme; and it is because there can be
important differences between modes of combination that various styles of
compositionality can be distinguished.

Since the discussion began with PL, the first general mode of combination
to be considered is that of concatenation.4 As noted, standard versions of 
PL utilize spatial concatenation: Tokens of constituents of an expression are,
quite literally, placed alongside each other to generate a token of the com-
pound expression. But of course this kind of spatial juxtaposition is only one
particular form of concatenation. Another is temporal juxtaposition: When
successively uttering the constituents of a PL formula, one is concatenating
tokens no less then when writing them down. Symbolic sequences in a
computer memory, moreover, can be concatenated even though they happen
to be scattered in complex ways throughout the memory; here, the juxtaposi-
tion, if it can be called that, is really an operational variety, implemented via
pointers which provide a way of getting from the location of one primitive
constituent token to the location of the next. Intuitively, it seems that the
essence of a concatenative mode of combination is not really juxtaposition at
all; rather, it is that it provides a way of linking or ordering successive
constituents without altering them in any way as it forms the compound
expression. Thus, tokens of the symbol “P” are the same whether appearing
standing alone, P, or in the context of an expression such as (P&Q). The
crucial difference is that in the latter case, from the fact that it has been placed
directly between instances of the “(” and “&” symbols, we can infer the
appropriate constituency and grammatical relations.

If this is right, it suggests the following minimal condition: For a mode of
combination to be concatenative, it must preserve tokens of an expression’s
constituents (and the sequential relations among tokens) in the expression
itself. More formally, given any expression of type Rj, then for every primitive
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or expression type �i such that C(�i, Rj), it must at least be the case that any
Rj token contains a token of each �i, in the sense that some part of the Rj
token satisfies the identity criteria for counting as an instance of type �i.5 By
extension, a compositional scheme can be described as concatenative if it uses
a concatenative mode of composition in generating its compound representa-
tions, and a particular representation as concatenative just in case it belongs
to such a scheme.

Virtually every standardly familiar compositional scheme is concatenative
in this sense; this includes natural languages,6 the formal languages of math-
ematics, logic, and computer science, and so on. Given the way concatenation
is defined, it is obvious that when describing a representation as having a
concatenative structure, one is making more than just the grammatical point
that it stands in certain abstract constituency relations, and also more than
just the quasi-historical point that it happened to have been built up out of a
certain set of (recoverable) constituents. One is also saying that it will have
an internal formal structure of a certain kind; that is, such that the abstract
constituency relations among expression types find direct, concrete instantia-
tion in the physical structure of the corresponding tokens. An appropriate
name for this kind of internal structure is syntactic structure.7 Thus, the
syntactic structure of a representation is the kind of formal structure that
results when a concatenative mode of combination is used.

Largely because concatenative modes are so common and familiar, it is easy
to lose sight of the fact that concatenation, even as generically described here,
is not the only way of implementing the combination of tokens in order to
obtain expressions. In the general case, all that is required of a mode of combi-
nation is to have systematic methods for generating tokens of compound
expressions, given their constituents, and for decomposing them back into
those constituents again. From the point of view of generating expressions
satisfying the abstract constituency relations, there is no inherent necessity 
that these methods preserve tokens of constituents in the expressions them-
selves; rather, all that is important is that the expressions exhibit a kind
functional compositionality. Functional compositionality is obtained when
there are general, effective, and reliable processes for (a) producing an expres-
sion given its constituents, and (b) decomposing the expression back into those
constituents. Such processes are general if they can be applied, in principle, in
constructing and decomposing arbitrarily complex representations; thus,
simple look-up table techniques, for example, are ruled out. To be effective
they must be mechanistically implementable; that is, it must be possible to
build a machine that can carry out these processes. This rules out appeals to
oracles and the like. Finally, for these processes to be reliable, they must always
generate the same answer for the same inputs.

Standardly, of course, concatenative schemes are functionally composi-
tional. Indeed, this is one major reason concatenative schemes are so pervasive:
The operation of concatenation is a very straightforward way of implement-
ing the composition processes and facilitating the decomposition processes
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necessary for functional compositionality. Nevertheless, it is important to real-
ize that it is quite possible to have compositional schemes of representation
that are not concatenative, that is, that are merely functionally compositional.
What would such a scheme look like? Below, a number of examples drawn
from Connectionist research will be discussed. For the moment, however, a 
useful illustration is found in the notion of a Gödel numbering scheme for a
formal language. The technique of Gödel numbering provides simple, general
recipes for assigning a unique natural number to every expression of a given
compositional scheme. One such recipe for PL assigns the following numbers:

PL expression Gödel number
P 32
(P&Q) 51342984000
((P&Q)&R) 388282251281722597800000
etc. etc.

Imagine, now, that instead of writing down standard tokens of expressions of
PL, the corresponding Gödel numerals were to be written down in their place.
In one sense, this would just be a notational shift. Since there is a unique Gödel
number for every expression of PL, one could express – just by writing down
Gödel numerals – everything that could have been expressed by writing regular
PL formulae. This notational alternative, which might be called “Gödelese,” is
just a different way of realizing the abstract structure of PL in concrete tokens.

A crucial feature of a Gödel numbering scheme is that it is completely
reversible. From the Gödel number of any expression one can (by virtue of 
the prime decomposition theorem) easily determine the Gödel numbers of the
primitive constituents of that expression. For this reason, Gödelese counts 
as functionally compositional; given Gödel numeral constituents, there are 
general, effective, and reliable processes for generating “complex” Gödel num-
eral expressions, and vice versa. Yet, and this is a crucial fact, the Gödel 
numeral for a complex expression does not literally contain the Gödel numer-
als of its constituents, except perhaps entirely fortuitously. You cannot, for
example, find an instance of the sign design 32 anywhere in the sign design
51342984000; it simply does not occur there. This is just a blunt fact about
the shapes of the various inscriptions on the page; it is not at all impugned by
the obvious truth that, by using a little straightforward mathematics, a quite
distinct token of 32 can be generated. Whatever reasonable, systematically
applicable criteria are used for counting something as a 32 inscription, those
criteria are not satisfied by any part of the token 51342984000.

In principle, then, it is easy enough to imagine a group of eccentric logi-
cians writing down their arguments in Gödelese rather than in standard PL.
While they would, strictly speaking, suffer no loss of expressive power, such
logicians would be using a language that is compositional without being
concatenative; which is just to say that there are systematic processes for gener-
ating individual Gödelese expressions, and for decomposing them back into
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their primitive constituents again, but the complex Gödelese expressions them-
selves do not literally contain tokens of their constituents.

In general, devising a feasible compositional but nonconcatenative system
of representation involves overcoming at least one major hurdle: designing and
implementing the required combination and decomposition processes. To do
this without simply concatenating tokens is, to say the least, a difficult engi-
neering problem. It may appear easy enough to solve in the case of Gödelese
– after all, multiplication and prime factorization are not particularly difficult
to implement – but Gödelese is, in fact, an immensely impractical proposal,
not least because Gödel numerals tend to be so embarrassingly large. For this
reason, it is both interesting and encouraging that Connectionists are finding
various ways to implement nonconcatenative schemes making use of the
massive and distinctive processing capacities of neural networks.

Since representations in a nonconcatenative scheme do not contain tokens
of their constituents, they are without syntactic structure in the sense defined
above. This gives rise to an important general point: A nontrivial represen-
tation of a complex structured item need not itself have an internal composi-
tional structure.8 The absence of strictly syntactic structure, however, does not
imply the absence of significant structure of any kind. There simply couldn’t
be the kinds of reliable and effective processes needed for functional compo-
sitionality unless the internal physical constitutions of the tokens involved are
such as to be systematically compatible with the composing and decomposing
processes. In particular, the internal structure of a “compound” representa-
tion must be such as to constrain the decomposing process to issue in the
correct set of constituent tokens again. Thus, for example, the fact that one
could easily construct decomposition processes for expressions of Gödelese,
depends crucially on the fact that Gödelese numerals have the internal formal
structure that they do. Any mechanistic manipulator that could extract the
Gödelese constituents of 51342984000 would be relying on the fact that 
the expression has a characteristic physical make-up that is systematically
distinguishable from that of, say, 51342911111. Nevertheless, this kind of
internal structure does not count as syntactic structure, since its parts do not,
in general, satisfy the identity criteria for the various constituents. This distinc-
tion between formal structure and strictly syntactic structure will turn out to
be of central importance in Section 3.

The basic distinction between concatenative and nonconcatenative compo-
sitionality has been defined in terms of the notion of constituent tokens being
“literally present” or “contained” in an expression. That notion has in turn
been characterized in terms of the applicability of the criteria of identification
appropriate to primitive constituents to the expression itself. Before moving
on, it is important to make a few points about this characterization. First, if
there is a real distinction to be made between the two kinds of composition-
ality, it must be possible to identify constituent tokens in expressions
independentIy of the processes by virtue of which these expressions count as
functionally compositional. Another way of putting this is that the identity
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criteria for constituent tokens have to be independent of the processes that
generate and decompose expressions, in the sense that they can be applied,
and provide answers, without making use of those processes. If the only handle
on the presence of tokens is via the very processes responsible for the attri-
bution of functional compositionality, then concatenative compositionality
simply collapses into the wider functional variety.

Second, the criteria used for this independent identification have to be
constrained by considerations of explanatory utility in the context of the
system or model in which the representations are employed. By this, I mean
that the tokens identified by means of these criteria must be capable of figuring
in explanations of the various relevant functional properties of the represen-
tations themselves. In general, whenever there is a scheme of representations
possessing systematically interesting causal properties, including of course
functional compositionality, there is always an outstanding problem: Namely,
explaining how it is that those interactions turn out the way they do. Very
often, it will be enormously useful to discern in the representations themselves
tokens of their constituents, such that the behavior of the system manipulating
these representations can then be explained by reference to the causal effects
of such constituent tokens. (Think, for example, of how you might go about
explaining to someone the behavior of a pocket calculator.) In order to make
such a move, criteria for the identification of tokens are needed, criteria that
earn their keep precisely because they make possible such explanations.
Conversely, proposed criteria are to be accepted if there is substantial explana-
tory payoff in employing them. Whether a representation is appropriately said
to be concatenative, then, ultimately boils down to a determinate empirical
question: Is there a way of identifying constituent tokens such that the var-
ious causal interactions of the representation as a whole can be explained in
the system in which it is employed, by reference to the causal role of the
constituent tokens?

2 Classicalism versus Connectionism: differing 
styles of compositionality

Having made this distinction between strictly concatenative and merely func-
tional compositionality, it is natural to ask: Which kind is characteristic of
mental representations? Are tokens in the head syntactically structured or not?
Now, this might at first seem like a rather uninteresting question, since, in one
sense, all that is being talked about is the “shape” of the expression tokens
themselves; in other respects, concatenative and nonconcatenative schemes
appear to be formally equivalent. There is, however, a real issue here. Classical
theorists, it turns out, have a deep theoretical commitment to the idea that men-
tal representations are strictly concatenative, while in Connectionist research
an increasing tendency can be discerned to reject syntactic structure in the 
representations themselves in favor of a merely functional compositionality.
This has at least one important consequence for the current debate: Namely, it
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can be seen how Connectionsts can use compositional representations, while
at the very same time correctly claim to reject the traditional Language-of-
Thought hypothesis. On this way of looking at things, the most pertinent and
informative contrast between the Classical approach and Connectionism is not,
as Fodor and Pylyshyn (1988) have suggested, between a commitment to struc-
tured (Classical) as opposed to unstructured (Connectionist) representations;
rather, it is between two very different ways of implementing compositional
structure.

2.1 The Classical approach: concatenative
compositionality

Although the distinction between concatenative and merely functional compo-
sitionality is obvious enough, the issue has not often been explicitly considered.
For this reason, when looking back over the various canonical descriptions of
the Classical approach, it is often difficult to find succinct statements clearly
indicating a preference for one style of compositionality over the other, even
though standard practice in mainstream symbolic modeling has always been
to utilize the stronger style. Fortunately, however, in their recent definitive
restatement of the Classical approach, Fodor and Pylyshyn (1988) indicate
quite clearly and unambiguously that the Language of Thought is syntacti-
cally structured in the sense used here; as they put it, mental representations
must have

a combinatorial syntax and semantics, in which (a) there is a distinction
between structurally atomic and structurally molecular representations;
(b) structurally molecular representations have syntactical constituents
that are themselves either structurally molecular or structurally atomic;
and (c) the semantic content of a (molecular) representation is a func-
tion of the semantic contents of its syntactic parts, together with its
constituent structure. (p. 12)

The fact that there must be structurally molecular representations that have
syntactical constituents indicates that they take Classical representations to
possess a strictly concatenative compositionality. Nevertheless, so as to guard
against the slightest possibility of misinterpretation, they go on at numerous
other points to make it abundantly clear that a representation must have
tokens of its constituents as literal parts:

In the Classical machine, the objects to which the content A&B is
ascribed (viz., tokens of the expression “A&B”) literally contain, as
proper parts, objects to which the content A is ascribed (viz., tokens of
the expression “A”) . . . In short, it is characteristic of Classical systems
. . . to exploit arrays of symbols some of which are atomic (e.g., expres-
sions like “A”) but indefinitely many of which have other symbols as
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syntactic and semantic parts (e.g., expressions like “A&B”) (Fodor and
Pylyshyn 1988: I6)

The presence of this kind of internal syntactical structure in the representa-
tions themselves plays a crucial theoretical role in the whole Classical
approach to modeling cognition. The problem, stated in its most general form,
is this: It is necessary to be able to explain how a physical system, such as a
brain or a computer, can exhibit complex, semantically coherent behavior;
how, in other words, its state changes, which are governed by normal phys-
ical laws, can at the same time make sense in various ways. Virtually any
approach to solving this very general problem will involve a crucial role for
representations: States of the system, which on the one hand have semantic
properties (i.e., are meaningful, can be interpreted as being about something),
while on the other play a causal role in the generation of the system’s behavior.
Representations, thus, mediate between the semantic and the physical
constraints on behavior. The Classical approach goes on to offer a particular
story about what mental representations (and the corresponding mental
processes) must be like in order to be able to play this central mediating role
in any reasonably complex system. Briefly, they must have an internal syntactic
structure, which can be set up in systematic correspondence with semantic
features; in this way, semantic properties of representations come to be
reflected in their syntactic (and hence physical) properties. It is then possible
to construct physical systems whose state changes are systematically deter-
mined, in an appropriate way, by the syntactic structure of its representations.
The result is a purely physical system that can respect semantic criteria in its
behavior by virtue of the causal role in the system of the syntactic structure
of its representations; it is a purely “syntactic engine” generating meaningful
activity. As Fodor and Pylyshyn (1988) put it,

If, in principle, syntactic relations can be made to parallel semantic rela-
tions, and if, in principle, you can have a mechanism whose operations
on formulas are sensitive to their syntax, then it may be possible to
construct a syntactically driven machine whose state transitions satisfy
semantical criteria of coherence. Such a machine would be just what’s
required for a mechanical model of the semantical coherence of thought:
Correspondingly, the idea that the brain is such a machine is the 
foundational hypothesis of Classical cognitive science. (p. 30)

Clearly, internal constituent structure plays a critical role here. The presence
of tokens of constituents in the representations themselves is the key to both
sides of the account. On one hand, the meaning of the representation as a
whole is fixed by the meanings assigned to the constituent tokens, and on the
other, the presence of these tokens simply is the formal syntactic structure
which drives the causal processes in the system. For this reason, no true
Classicalist could possibly be satisfied with mental representations exhibiting
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a merely functional compositionality, since, by definition, such representations
are without syntactic structure, and so cannot play anything like the role that
representations are required to play in the Classical account of cognitive
processes. Without syntactic structure (and, hence, concatenative composi-
tionality) you simply cannot tell the classic Classical story.

Does this description of the Classical approach ascribe to such theorists too
strong a position? Classicalists, it is often argued, clearly distinguish the cogni-
tive level, the level at which it is crucial that representations be syntactically
structured, from the implementation level. They are explicit, moreover, that
the cognitive level is the level of the functional architecture of the system.
When they claim that mental representations must be syntactically structured,
they mean only that representations must have the right kind of functional
properties, which is to say, roughly, that in all causal interactions they must
behave as if they did have such structure. How this behavior is in fact achieved
is a mere implementation detail; there is no requirement that it result from
representations having syntactic structure in the current strong sense. In short,
according to this objection, my version of the Classical position errs in failing
to see that just because mental representations have to be conceived as syntac-
tically structured, it does not follow that their real physical counterparts at
the implementation level have to be. To suppose otherwise is to forget the
difference between the functional architecture of a cognitive system and its
actual implementation.

Now, although this objection carries a certain initial plausibility, it in fact
misunderstands the essence of the Classical approach. The mainstream
symbolic view purports to be telling a story about how it is possible for a
physical system to exhibit semantically coherent behaviors. A story about how
it is possible for an actual system to realize certain patterns of systematic
behaviors must be, at some suitable level, an implementation story; it must
describe the underlying physical mechanisms responsible for generating those
behaviors. The Classical claim is that the only way a physical system could
possibly exhibit such subtle and complex behaviors is by instantiating repre-
sentations with syntactic structure and utilizing processes sensitive to that very
structure. Thus, representations must not merely be syntactically structured at
the functional level, there must also be some level at which that structure can
actually be found to be instantiated in the hardware itself. Fodor and Pylyshyn
(1988) go to great lengths to stress this point:

. . . the symbol structures in a Classical model are assumed to correspond
to real physical structures in the brain and the combinatorial structure
of a representation is supposed to have a counterpart in structural rela-
tions among physical properties of the brain. For example, the relation
“part of,” which holds between a relatively simple symbol and a more
complex one, is assumed to correspond to some physical relation among
brain states . . . This bears emphasis because the classical theory is
committed not only to there being a system of physically instantiated
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symbols, but also to the claim that the physical properties onto which
the structure of the symbols is mapped are the very properties that cause
the system to behave as it does. (pp. 13–14)

They go on to describe, in detail, the nature of the instantiation mapping from
the syntactic structure of the (cognitive-level) representations onto features of
the brain. There is of course a certain trivial sense in which the Classical theo-
rist would be satisfied if he could be shown a system that exhibits sophisticated
cognitive behaviors on the basis of representations that do not have syntactic
structure. The trouble is, the orthodox Classicalist believes there never will be
such a thing, because he believes that, as a matter of contingent fact, only
systems with structured representations and structure-sensitive processes can
exhibit such behaviors. If you propose to substitute for Classical syntactically
structured representations their merely functionally compositional counter-
parts, you must have somewhere up your sleeve, a quite different story about
how that functional compositionality, and the semantic coherence of behavior
more generally, is mechanistically implemented. But, according to the
Classicalist, you will not be able to provide such a story. It is a contingent,
empirical truth about the world that only physical symbol systems can exhibit
sophisticated cognitive behaviors.

2.2 The Connectionist approach: functional
compositionality

The general theoretical framework surrounding the wide variety of connec-
tionist attempts to model aspects of cognition is, by comparison, relatively
undeveloped; consequently, it is rather more difficult to make the corre-
sponding argument that Connectionists have any kind of deep theoretical
commitment to nonconcatenative representations. Nevertheless, it is possible
to discern in their work an increasing tendency to utilize this style of compo-
sitionality. Three examples are briefly discussed in this section: Pollack’s
Recursive Auto-Associative Memory (RAAM), Hinton’s techniques for 
the representation of hierarchical structures via reduced descriptions, and
Smolensky’s tensor product framework. In all three cases, the adoption of a
merely functional compositionality resulted fairly directly from the attempt to
represent complex structured items using the kinds of strictly limited resources
available in networks of simple processing units. Insofar as Connectionists are
committed to those kinds of limited resources, then, the rejection of concate-
nation (and hence syntactic structure) does indeed seem to be an essential part
of the Connectionist paradigm.

Note that the particular approaches to be described here have been chosen
primarily because, at time of writing, they constitute useful illustrations of 
the central point at issue. Nothing of importance to my argument is staked
either on any of their idiosyncratic details, or on future development of the
approaches.
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2.2.1 Pollack’s Recursive Auto-Associative Memory (RAAM)

One of the standard assumptions of Connectionist modeling is that the
network of processing units one has to work with is always of a certain fixed
size. It is also clear, however, that many of the complex items one might need
to represent are quite unpredictable in size. Sentences of natural language, for
example, do not come limited to a certain length of, say, 4 or 10 or 20 words.
The most convenient way to represent such items is to have a system of
dynamic memory allocation, which can always provide just enough by way of
memory resources, no matter what size the item happens to be. Conventional
digital computers generally work this way, but no such simple solution is avail-
able to Connectionists. Pollack (1988) confronted this problem head on,
aiming to produce a general method for representing variable sized data struc-
tures over strictly limited Connectionist resources. His approach was to train
a network to be able to function as a stack, and in particular to implement,
in network processes, the standard stack operations of push and pop. In this
network, a state of the stack (i.e., having a certain series of elements stored)
is just a particular pattern of activity over a fixed set of 10 hidden units. Every
possible stack state thus corresponds to a different 10-place vector describing
an activity pattern over this central group of units. Pushing a new element
onto the current stack means generating the appropriate new pattern, corre-
sponding to the expanded stack, over the hidden units. This new pattern is
formed by the network in a process that merges the previous stack state with
the new element. Popping an element off the top of the stack is just reversing
this process. From a central stack pattern, the network generates two new
patterns: one is the topmost element, and the other constitutes the stack minus
that element.

Of course, storing a complex structured item, such as a tree, involves more
than simply storing the individual basic elements; it is also necessary to record
the structural relations among elements. Pollack solved this problem by real-
izing that whole stack states themselves can be pushed onto and popped off
other stacks, just as if they were simple elements. Thus, for example, one
branch of a binary tree could be stored in one stack, the other in another stack,
and then one stack pushed onto the other. This process can be performed
recursively, with the result that any given recursively structured sequence can
be stored in an appropriately trained network.

In short, Pollack’s RAAM model provides the means to build representa-
tions of complex structured items out of representations of their components,
and the ability to decompose those representations again reliably. It provides
a way of implementing the full range of constituency relations needed in
building compositional representations of those complex items. Consequently,
the stack states in an appropriately trained network constitute a compositional
scheme according to the abstract characterization offered above. The crucial
point, however, is that the mode of combination is not concatenation. If one
carefully dissects the pattern of activity, which is the stack representation of a
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structured item, it is apparent that nothing in the pattern counts as a token of
any of the various constituents, even though those constituents are (given 
the network) extractable from that pattern. Pollack’s RAAM representations
are functionally compositional without being concatenative, that is, without
having internal syntactic structure.

2.2.2 Representing hierarchies via reduced descriptions

In a classic example of researchers converging on the same problem area and
producing alternative solutions embodying some of the same key ideas, Hinton
has proposed a solution to the problem of “how to map a part–whole hier-
archy into a finite amount of parallel hardware” (Hinton 1988: 52). Suppose
one wanted to represent some hierarchically structured situation in which 
one level of the hierarchy has much in common with the next. In Hinton’s
example, one of the constituents of “Bill was annoyed that John disliked
Mary” bears a strong structural similarity to the overall sentence. While the
standard approach using conventional methods would be to assign separate
memory resources to each level, with pointers to keep the hierarchical
structure intact, this has some drawbacks from a Connectionist standpoint: 
First, to store an arbitrarily complex structure requires arbitrarily extended
resources, and second, such a method fails to capitalize on the fact that there
are structural similarities between levels. In his novel approach, Hinton
proposes that the fixed network be used as if it were a window looking only
onto a certain level in the hierarchy at a given time. For effective representa-
tion of the whole hierarchy, it must be possible to move the window up or
down levels as necessary, and so Hinton proposes methods doing exactly this.
To move from one level down to the next, the network focuses on what is
only a constituent at that upper level, and expands it into representation of a
whole lower level. So, for example, to move from a representation of Bill was
annoyed that [?] to John disliked Mary the network needs to focus on the [?]
constituent and expand it into full-fledged representation, over the whole
network, of John disliked Mary. This process is only possible if the [?]
constituent contains enough information to allow the recovery of the full situ-
ation; it must therefore amount, in Hinton’s terms, to a “reduced description”
of that situation. There is, of course, a structural similarity between the levels
to be represented, and so the Connectionist hardware can be designed to take
advantage of these similarities in order to facilitate the expansion process.

Like a stack representation in Pollack’s (1988) RAAM model, then, a top-
level representation of a part–whole hierarchy allows recovery of all the
constituents of that hierarchy; in that sense it can be described as a composi-
tionally structured representation. But, like a stack representation, this is not
achieved by having first concatenated those constituents. There is no require-
ment that constituents figure, in the representation of the whole, in anything
like the form they appear in when the constituent has been fully expanded; as
Hinton (1988) puts the point:
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The crucial property of the moveable window scheme is that the pattern
of activity that represents the current whole is totally different from the
pattern of activity that represents the very same object when it is viewed
as being a constituent of some other whole. (p. 52)

In fact, the point can be put even more forcefully: A constituent buried deeply
in the hierarchy may have no distinct pattern of activity representing it at all
when the focus is on the top level. What is true is only that the constituent
can eventually be recovered from the top-level pattern. Thus, the contrast with
strictly concatenative compositionality, which (by definition) must preserve
tokens of the constituents, could not be greater.

2.2.3 Tensor product representations

For a final example of nonconcatenative compositionality emerging from
Connectionist research, it is important to consider Smolensky’s (1987a) tensor
product framework for the representation of structured objects. On one hand,
this framework has been the subject of more extensive formal development
then any other Connectionist proposal, while on the other, Smolensky himself
has given considerable attention to the difference between representation 
(and indeed the compositionality of representation) in his approach and that
characteristic of Classical theorizing.

Again, the basic problem facing Smolensky is that of representing complex
structured objects with the kinds of limited resources available in Connec-
tionist networks. Since Connectionist representations are most usefully
thought of as vectors (whether describing patterns of activity over processing
units or the connections between such units) Smolensky conceives of the
problem as that of “finding a mapping from a set of structured objects (e.g.,
trees) to a vector space” (Smolensky 1987a: 2). This mapping should, more-
over, preserve the various constituency relations among representations, such
that a representation of a complex item as a combination of the representa-
tions of its parts can be generated, and recover those parts as necessary.

Connectionists have always been aware that, under the right circumstances,
the operation of vector addition can be used to combine two representations
to generate a representation of a more complex object.10 Smolensky’s first
insight is to see the extensive applicability, within Connectionist theorizing, 
of the more complex but also more powerful operation of tensor product
formation. The tensor product of an n-place vector v and an m-place vector
w is the (n × m)-place vector whose values consist in all the pairwise products
of the values of v and w. The tensor product is thus very similar to the more
familiar outer product of two vectors, except that the result is considered as
a vector rather than a matrix (Smolensky 1988: 12). Since a tensor product is
itself a vector, it can enter into vector sums and tensor products just like any
other vector.
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Smolensky’s second insight is the introduction of the notion of “role decom-
position,” a general framework for reducing complex structured items to sets
of pairs. In this framework, the complex item to be represented is analyzed as
being made up of a set of distinct roles with each role having a certain filler.
For example, the complex concept cup of coffee would be analyzed as having
two roles: contains, and contained by. The first role is occupied by cup, the
second by coffee (for more sophisticated examples, see Smolensky 1987a:
15–20). Analysis via role decomposition, on the one hand, and the generation
of compound vectors via addition and tensor product formation on the other,
then fit together as hand and glove. Each distinct role and filler is assigned a
distinctive primitive vector, fillers are “bound” to roles by forming the tensor
product of their respective primitive vectors, and the resulting tensor products
are added together to obtain a single compound representation of the whole
structured item. The remarkable fact is that, within certain limits,11 the filler
for any role can be extracted from the representation of the whole structure
by simply multiplying the overall tensor product representation by the vector
corresponding to that role (and vice versa). In this way, the whole structure
can be effectively recovered from the vectorial representation. Thus, the 
representation is more than just a representation of a structured object: It 
is also managing, by virtue of its compositional properties, to capture the
structure of that object.

Smolensky develops the tensor product framework for representing struc-
tured items with considerable imagination and precision. He shows how the
framework encompasses a considerable number of previous Connectionist
schemes of representation, and he and others are utilizing it in development
of further models of various kinds. He is also careful to distinguish vectorial
representations in the tensor product framework from the kinds of symbolic
representations characteristic of the Classical approach, stressing at least two
major differences. First, in the tensor product framework, primitive vector
constituents are unlike standard symbolic constituents in that they are typi-
cally context-dependent; that is, the vector constituent standing for a given
concept can be expected to vary somewhat from one composite representa-
tion to the next, with the consequence that there is no single canonical vector
for that concept. Rather, a concept will generally be represented via a cluster
of vectors related by a kind of “family resemblance.” It also has the conse-
quence that the breakdown of a composite is not, in general, “precise and
uniquely defined.” Second, the mode of combination of these primitive
constituents (i.e., vector addition and tensor product formation) is subject to
various kinds of imperfections; for example, various kinds of ambiguities and
interference effects can also prevent any precise breakdown into the original
constituents (for further elaboration, see Smolensky 1988: 14).

For these reasons, Smolensky (1988) takes it that tensor product represen-
tations provide “new instantiations of compositionality principles” (p. 16) and
hence offer a genuine alternative to the Language of Thought. Now this 
may be true, but from the current point of view there is an equally important
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difference, leading to the same conclusion, which Smolensky did not note,
namely, that while Classical representations are essentially concatenative, the
compositionality of tensor product representations is merely functional. The
vectors which result from forming and then adding together successive
role/filler bindings are not syntactically structured; they do not contain tokens
of the primary constituents (i.e., the primitive vectors assigned to the original
roles and fillers) in any sense other than that there are processes that can
generate those constituents given the compound representation. Close exami-
nation of a tensor product representation of a complex structure fails to reveal
the vectors that represent the parts of that structure considered independently;
to get those, you first have to apply the various decomposition operations.
Thus, even if one carefully constrains the tensor product methods to the 
point where the constituent vectors are in fact “precise and uniquely defined,”
there will still always remain an important conceptual gulf between the
resulting tensor product representations and their more traditional symbolic
counterparts.

Understanding this point is essential in order to be able to characterize 
properly the compositionality of tensor product representations, and hence,
the relation between Connectionist models based on such representations 
and their Classical counterparts. Smolensky often describes tensor product
representations as “compositionally structured” or as having “constituent
structure,” but these phrases are, to say the least, ambiguous between concate-
native and merely functional compositionality. Indeed, to say that a represen-
tation has compositional structure generally implies that one is talking about
the internal structure of the representation itself (i.e., syntactic structure, in
the current sense), rather than just its various functionally implemented
constituency relations; but tensor product representations do not have such
internal structure.

Failing clearly to distinguish these kinds of compositionality led Smolensky
to two different conceptions of the causal role of compositional structure 
in cognitive processes, conceptions that stand in manifest tension with each
other. For example, on the one hand, he claims that it is possible to design
“structure sensitive processes” (Smolensky 1988: 1), with the result that 
“the systematic behavior of the cognitive system is to be explained by appeal-
ing to the systematic constituent structure of the representational vectors”
(Smolensky 1988: 22). Statements like these imply that the constituent struc-
ture of the representations has a direct causal role in the behavior of the system;
that, in other words, the explanation of cognitive processes will proceed
in basically the same manner as the Classical explanation, although the 
constituents themselves are perhaps not as precise and unique.

In other places, however, Smolensky (1988) denies any causal role for
constituent structure:

. . . the constituency relation among distributed representations is one
that is important for the analysis of connectionist models, and for
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explaining their behavior, but it is not a part of the information-
processing mechanism within the connectionist model . . . (p. 10)

and he stresses that the behavior of the system cannot be explained precisely
at the level at which semantic assignments are made (i.e., at the level of repre-
sentations and their constituents). Since tensor product representations do not
have internal constituent structures, this must be the correct general approach.
It does, however, immediately generate a rather difficult problem: Explaining
exactly how the functional compositionality of representations can “influence”
(in whatever sense it does) mental processes, or, to put it a different way, 
how one can explain the behavior of Connectionist models by reference to
constituency relations, even if those relations are not “part of the information-
processing mechanism within the model.” (In Section 3 some points will be
made that should facilitate such explanation.) At any rate, for the moment,
the point is this: The distinction between concatenative and merely functional
compositionality clarifies the compositionality of tensor product representa-
tions; it reveals the inherent awkwardness in describing such representations
as “compositionality structured,” and it removes the temptation to think 
of Connectionist explanations of cognitive processes as being closer to the
Classical style than they in fact are.

2.2.4 Concatenation versus distribution

All three of these researchers have been facing essentially the same problem:
that of representing arbitrarily complex structures over finite resources. Their
solutions, although different in details, all agree in rejecting any role for simple
concatenation of constituent representations. Not surprisingly, there is a broad
underlying reason for this. The essence of concatenation is the preservation of
constituent tokens, and each token must take up a certain amount of the avail-
able representational resources. Thus, in order to represent an arbitrarily
complex structure via concatenative methods requires arbitrarily extended
resources, something not available in the typical Connectionist framework. In
each case, it was found that the resource restrictions entailed that the various
parts of a given complex structure had to be represented at once, in what is
effectively a superimposed fashion, over the same space; that, in other words,
it was necessary to employ distributed representations of the complex 
structures. Distributing transformations, which take various constituents and
superimpose them to achieve a new representation of the whole over the same
space, inevitably destroys those tokens in the process (although not necessarily
their recoverability), and hence are incompatible with any variety of concate-
nation. In short, the finite resource restrictions characteristic of Connectionism
preclude concatenative styles of compositionality in favor of distributed (and
so merely functional) styles. The fact that a broad alternative conception of
compositionality is emerging in Connectionist research is thus a fairly direct
consequence of one of its basic commitments, a commitment that stands in
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stark contrast with the Classical assumption that resources are always, at least
in principle, arbitrarily extendable (as in, e.g., the unbounded tape on a Turing
Machine). (For a clear statement of this Classical assumption, and why it is
made, see Fodor and Pylyshyn 1988: 33–6.)

3 Styles of compositionality and the 
explanation of cognition

The fact that classical cognitive architectures are essentially committed to
representations with concatenative compositional structure, while Connec-
tionist architectures tend to opt for a merely functional alternative, gives rise
to an obvious question: Which is to be preferred? Is there any reason to
suppose that a commitment to strict syntactic compositionality is essential 
to the success of cognitive modeling? It is, of course, impossible in the context
of this article to offer any general evaluation of the many and varied consid-
erations that argue either in favor of, or against, the Classical approach. 
My more modest aim is to show that the supposedly conclusive arguments
which Fodor and Pylyshyn (1988) have recently offered in favor of the
Classical approach do not, in fact, support that approach over the emerging
Connectionist alternative.

In “Connectionism and Cognitive Architecture” Fodor and Pylyshyn (1988)
maintain that if we suppose mental representations have a combinatorial 
syntax, we are in a position to give a straightforward causal explanation of
some very general and important aspects of our cognitive lives. The aspects
they focus on can be described, generically, as the systematicity of cognition.
Systematicity consists in such mundane facts as these: that we are capable of
having indefinitely many different kinds of thoughts; that the ability to enter-
tain one kind of thought always goes along with the ability to entertain
systematically related thoughts;12 and that the ability to perform one kind of
inference always goes along with the ability to perform systematically related
inferences.13 Now, if mental representations have a combinatorial syntax and
semantics, these kinds of systematicities will be just what we would expect.
The fact that we can have indefinitely many thoughts, for example, is explained
by the fact that a combinatorial syntax gives us indefinitely many well-formed
expressions with which to represent thoughts. Other kinds of systematicity are
explained if the further assumption is made that there are mental processes
which are “sensitive to” the combinatorial structure of the representations.
(The term “sensitive to,” although widely used, is conveniently vague; in 
this context it can only mean something like “causally influenced by.”) Thus,
the fact that everybody who can infer P from (P&Q) can also infer P from
((P&Q)&R), is explained by reference to the structural similarity of the 
representations involved and the fact that there are cognitive processes which
can pick up on (i.e., are causally influenced by) that structural similarity.

It is essential to be clear about the form of argument involved here. Fodor
and Pylyshyn are claiming that if mental representations have combinatorial
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structure, then there is a natural explanation of certain sorts of facts about
people’s mental lives; from this they infer that mental representations must
have combinatorial structure. In the philosophy of science, this kind of
argument is generally known as something like an “inference to the best expla-
nation.” As a form of argument, it amounts to little more than the old fallacy
of affirming the consequent, unless those advancing it also take the further
step of somehow ruling out alternative explanations of the same empirical
phenomena. Fully aware of this, Fodor and Pylyshyn canvass and argue
against an alternative, non-Classical strategy for explaining the systematicity
of cognition.

On this alternative picture, which they label “associationist,” mental repre-
sentations are (ex hypothesi) unstructured, which is to say, they have no
significant internal structure at all. Since representations are without internal
structure, there cannot be mental processes sensitive to such structure.
Therefore, according to Fodor and Pylyshyn, any model based on such repre-
sentations must employ purely associationist mental processes. The hallmark
of an associationist process is that it is based not on the content or the internal
structure of the representations themselves, but only on the extent of their
correlation in previous “experience” (e.g., in the training set). Associationist
processes ignore formal or structural features of a representation except
insofar as they are relevant in determining its identity, which, in turn, deter-
mines its associative connections. Since associationist processes are based only
on prior experience, there is no guarantee that mental processes will be system-
atic; rather, they will be at most as systematic as the experience upon which
they are based. Consequently, according to Fodor and Pylyshyn, the system-
aticity of thought, which goes well beyond that contained in experience, is an
unexplained mystery if it is assumed that the mind is non-Classical, that is,
associationist in character.

It is this argument which they take in order to refute Connectionism as an
account of the human cognitive architecture; for, insofar as Connectionist
models are truly non-Classical, they must (according to Fodor and Pylyshyn
1988) be simply associationist in the above sense and must fail for the same
reason.

As mentioned, this “inference to the Classical explanation” is only legiti-
mate insofar as they rule out alternative explanations of the same phenomena.
Consequently, their argument is only as good as their supporting argument
that the alternative they considered – the broadly associationist architecture –
is the only plausible alternative there is. Nowhere, however, do they provide
any such discussion or argument. Rather, that crucial premise is simply implicit
in their choice of language: Their favored architectures are “Classical,”
anything else must be “non-Classical.” However, in doing this they are overtly
assimilating all “non-Classical” representations with their completely unstruc-
tured “associationist” representations, and thereby rather deftly leaving
entirely out of consideration the intermediate case: representations that have
significant internal structure while nevertheless not counting as syntactically
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structured. A cognitive architecture based on such representations cannot
properly be classified as either Classical or associationist under the terms of
their taxonomy. If the argument in the previous sections is correct, moreover,
this is precisely the kind of architecture that Connectionists are in the process
of developing. Consequently, in only taking the trouble to rule out the asso-
ciationist alternative, they are not ruling out the position that Connectionists
are increasingly taking up. Their diatribes against associationism simply miss
the intended target. Associationism is thus serving as a convenient straw man
(as is so often its lot in the philosophy of psychology); all Connectionist
approaches are first misassimilated to a crude associationism, and then the
latter is shot down in flames without further ado

Now, one does not refute an inference to what is currently the best expla-
nation of a certain phenomenon by simply pointing out some bizarre
alternative that has not yet been conclusive eliminated. If that were all that
were required, I could refute contemporary astronomy, for example, by
alluding to the fact that astronomers have failed to rule out conclusively the
common hypothesis that celestial events turn out the way they do because 
the moon is made of green cheese. Likewise, in order to refute the Fodor and
Pylyshyn argument fully, it is not sufficient merely to point out that there are
other possible architectures out there; it also has to be demonstrated that it is
at least plausible (to the best of our knowledge at this stage) that such an archi-
tecture could be employed in generating explanations (and perhaps even
superior explanations) of cognitive functioning, and in particular the system-
aticity of cognition. The most convincing demonstration, of course, would
actually be to build Connectionist models of systematic cognitive functioning.
But that demands lots of hard empirical work, and the issue here is precisely
whether it is worth investing that kind of effort, or whether (as Fodor and
Pylyshyn believe) there are principled reasons for supposing that such an enter-
prise is doomed from the very start. In what follows it will be shown that
Connectionist architectures should in fact be regarded as serious candidates,
since they offer exactly the kind of basic resources that, according to Fodor
and Pylyshyn themselves, are necessary in order to generate an explanation 
of systematicity.

In short, I wish to counter Fodor and Pylyshyn’s (1988: 33) ambitious claim
to have provided “something close to a demonstration that . . . the mind
cannot be, in its general structure, a Connectionist network.” My strategy
directly parallels a response that the Wright brothers might have made to those
doubting the value of experimenting with their new and somewhat implau-
sible flying machines. Imagine a balloon enthusiast, for example, arguing the
following way:

In order for any object to fly, it must be able to stay up in the air, in
which case the total forces pushing it upwards must be at least as great
as gravity. The only remotely feasible way for that to happen is for the
object itself to be lighter than air. Birds, kites and so forth are all very
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well, but they are invariably suited only to low-level flight; the princi-
ples in play there could never shape up to general kinds of transportation,
such as carrying people and cargo. In fact, your machines do little more
than exhume the old idea that mere propulsion is sufficient for flight (i.e.,
Propulsionism), an idea thoroughly discredited many years ago; as far as
we can tell, nothing has changed in the meantime.

Now the Wrights, with more faith in aerodynamics than in hot air, would no
doubt have agreed that the upward forces must be at least as great as gravity,
but would point out that propulsion, when combined with an appropriate
wing (and hull?) shape, can produce the required upward forces. Conse-
quently, their kind of machine has, at least in principle, exactly the sort of
feature the balloonist himself believes is necessary for sustainable flight. In
responding this way, the Wrights would have effectively discredited the
balloonist’s argument even if the Kitty Hawk had not yet actually flown; and
they would be quite justified in continuing their efforts to demonstrate that
aeroplanes, in general, can fly.

Returning, then, to the main line of argument: Fodor and Pylyshyn (1988)
summarize the crucial inference from systematicity to a Classical cognitive
architecture as follows:

It is perhaps obvious by now that all the arguments we’ve been reviewing
– the argument from systematicity, the argument from compositionality,
and the argument from inferential coherence – are really much the same:
If you hold the kind of theory that acknowledges structured representa-
tions, it must perforce acknowledge representations with similar or iden-
tical structure . . . So, if your theory also acknowledges mental processes
that are structure sensitive, then it will predict that similarly structured
representations will generally play similar roles in thought. (p. 48)

So the real key to explaining the systematicity of cognition is to have a scheme
of representations that stand in the right kinds of similarity relations; that is,
such that representations of similar things can be treated in similar ways by
mental processes. That’s what having strict syntactic structure in the represen-
tations themselves buys for you. If representations are constructed by
concatenation according to regular principles, then you are guaranteed to have
a scheme in which representations bear structural similarities to each other,
which can, in turn, be capitalized on by mental processes. Thus the expression
(P&Q,) bears an obvious structural similarity to the expression ((P&Q)&R),
and it is straightforward enough to design processes for extracting conjuncts
that will treat these – and indeed all conjunctions – “similarly.”

The crucial question, then, is whether it is possible to have a scheme of
presentations that stands in those kinds of structural similarity relations with-
out utilizing Classical compositionality. If the notion of structural similarity is
restricted to similarities of syntactic structure, then of course the answer will
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be no. But it was stressed above that representations can have internal struc-
ture that is not strictly syntactic; indeed, such structure is the key to the
possibility of merely functional compositionality. Consequently, there can also
be nonsyntactic structural similarities among representations. In fact, if a
scheme of representations exhibiting merely functional compositionality is
utilized, then useful kinds of formal similarities over the space of representa-
tions are exactly what would be expected. Since general, reliable, and effective
processes for combination and decomposition are needed, tokens corre-
sponding to (P&Q), for example, are expected to bear certain similarities
(which may have to be defined relative to the particular machine carrying out
the composition and decomposition processes) to tokens corresponding to
(PvQ), even though those similarity relationships will not be a matter of
having the same constituents literally present.

What kinds of similarities will these be? In general, this will depend very
much on the nature of the functionally compositional scheme in question and
the details of its implementation. Fortunately, however, in the case of the
Connectionist approaches described above, this general point can be cashed
out in fairly concrete terms. In these approaches the representations themselves
are vectors in a certain high-dimensional space describing the activity levels
over a set of units. These vectors stand in similarity relations by virtue of their
internal configuration, relations that can be measured using standard vector
comparison methods. These similarities are usefully understood as similarities
(or indeed dissimilarities) of location in the space, and they are of direct causal
significance in Connectionist networks, since the behavior of these networks,
which are complex dynamical systems, depends crucially on the particular
current activity values of the units themselves (i.e., on the precise location 
of the current representation). Moreover, the requirement that we be able to
map systematically an indeterminate number of arbitrarily complex structured
items onto points in that space has the consequence that the abstract con-
stituency relations among the representations themselves are mirrored in the
similarity relations thus detected (i.e., structurally similar sequences are
mapped into “neighboring” points in the space). It is, in fact, these “spatial”
similarities, which underlie the general and effective processes, that are used
to generate and decompose these representations.

Thus, merely functionally compositional schemes of representations can, in
fact, provide the crucial basic resources needed in generating an explanation
of the systematicity of cognition; that is, a system of representations standing
in systematic structural similarity relationships. The only task that remains in
order to put the Fodor and Pylyshyn argument finally to rest is to construct
actual models of systematic cognitive processing on the basis of such noncon-
catenative representations. Having devised their flying machines, Connec-
tionists now need to show they can actually stay in the air. This means devel-
oping processes that are causally sensitive to, and hence constrained by, the
systematic structural similarities among the representations themselves, so that
the overall system exhibits the right kinds of systematic behaviors. (Classical
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theorists, of course, face exactly the same kind of challenge. Even given syntac-
tically structured representations, adequate processes over those representa-
tions do not come free; if they did, there wouldn’t be such a discipline as
computer programming, let alone AI.)

It is important to stress that there are, broadly speaking, at least two ways
Connectionists might go about meeting the design challenge posed when non-
concatenative representations are to be centrally incorporated in a model of
cognitive processing. A first and somewhat unsatisfying approach always
proceeds by initially utilizing the decomposition processes (by virtue of which
their representations count as functionally compositional) in order to extract
the basic constituents, and then having the general structure-sensitive processes
operate on the constituents in their separated form. In this approach, although
storage in the system uses representations that are merely functionally compo-
sitional, the processes responsible for generating cognitive activity operate in
the straightforwardly concatenative domain. A good example is Touretzky’s
(1986) BoltzCONS, a variety of distributed connectionist production system.
In this model a central working memory stores complex data structures in
what is, in fact, a merely functionally compositional form, but the first step
in any processing cycle is to use subsidiary networks to pull out more basic
constituent triples; it is on these that the primary structure-sensitive operations
take place.

A second and more radical approach is to devise models in which struc-
ture-sensitive processes operate on the compound representations themselves
without first stopping to extract the basic constituents. These processes must
capitalize directly on the inherent and systematic structural similarities among
the nonconcatenative representations. In such models it is not only storage
that takes place in the nonconcatenative domain, but the primary processing
responsible for systematic cognitive behavior as well. Thus, if the ability to
extract conjuncts is an observed systematic feature of human cognition, then
a model of this feature will have to be capable of mapping the nonconcate-
native vectorial representation of a conjunction directly to the vectorial
representation of one of its conjuncts, without first extracting the constituents,
identifying the dominant connective as a conjunction symbol, and so on.
Mapping one vector directly to another without intermediate rule-governed
processing steps is, of course, exactly what Connectionist networks are good
at. The crucial point here is that such a network can be expected to be able
to do so systematically because (a) in this functionally compositional scheme
of representation, all conjunctions will have been systematically grouped in
certain regions of the vector space (i.e., they are structurally similar); and (b)
it is in the nature of Connectionist networks as dynamical systems that they
map all points from a given (more or less widely specified) region onto similar
points in the output, in a way that is subtly sensitive to the precise location
of that point.

Thus, there are at least two significantly different kinds of cognitive 
architecture that Connectionists might develop, each of which in some sense
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incorporates nonconcatenative representations in central processing. Only the
second approach, however, presents any real threat to Classical orthodoxy.
The first, in performing the primary structure-sensitive processing on the basis
of regular Classical representations, really just amounts to a trivial variant on
the overall Classical picture. In moving to the concatenative domain whenever
real action is called for, it is effectively conceding to the Classicalist that
systematic cognitive processing can only take place on the basis of syntactically
structured representations. It is the second approach that offers a distinctively
Connectionist strategy in the explanation of systematic cognitive functioning,
and it is models along these lines that will need to be fully developed in finally
meeting the Fodor and Pylyshyn challenge.

At this stage relatively little real progress has been made in this direction.
None of the methods discussed in this article, for example, achieve general
structure-sensitive processing wholly within the nonconcatenative domain.
They are directed only at solving the first stage in developing such capabilities,
that of generating the functionally compositional representations themselves.
RAAMs are an excellent case in point: They are simply a method for storing
structured symbol sequences and retrieving them again, and no other kinds 
of interesting processing take place on the basis of the representations in their
superimposed, nonconcatenative form. However, this lack of progress cannot
yet be attributed to inherent difficulties in the second approach itself, 
since, by and large, Connectionists have simply not yet gotten around to taking
up the challenge. If the arguments in this article are broadly correct,
Connectionism is entering a critical stage in the process of developing an alter-
native paradigm to supersede the Classical approach. Early indications at least
are promising. Pollack (1990), who has probably taken this line of develop-
ment further than any other Connectionist to date, has reported success in
using his RAAM mechanisms to generate representations of short sequences,
which then form the basis, in other networks, for direct structure-sensitive
processing in the nonconcatenative domain. Whether such initial explorations
can in fact be developed into comprehensive accounts of systematic cognitive
processing is a matter for further investigation (which is just another way 
of pointing out that the disagreement between the Classicalist and the
Connectionist, construed this way, is a straightforwardly empirical one). What
the current considerations show is simply that Classical architectures are 
not the only ones that have access to the raw resources required to generate
such accounts. Connectionist architectures that use compositional but noncon-
catenative representations in their primary processing will be able to take
advantage of systematic structural similarities among representations, and yet
it is precisely this feature that Fodor and Pylyshyn assume to be crucial for
the explanation of systematicity and (erroneously) take to be uniquely char-
acteristic of Classical architectures. Connectionism therefore constitutes a
plausible alternative according to Fodor and Pylyshyn’s very own criteria of
plausibility, and so their general “inference to the Classical explanation” does
not go through.
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Obviously, the argument provided here does not give any positive reason
to prefer Connectionist methods for representing complex objects over their
Classical, syntactically structured counterparts. At least superficially, it might
even seem somewhat perverse to design models using nonconcatenative repre-
sentations. After all, one reason concatenation is so common is that having
syntactic structure manifest in the representations themselves is extremely
useful (although, as I have argued, not necessary) from the point of view 
of designing structure-sensitive operations. There are, in short, immensely
appealing practical engineering considerations that argue in favor of the
Classical view. The Connectionist will counter, however, that there are other,
different, but equally compelling considerations that argue in favor of noncon-
catenative methods. There is some reason to believe, for example, that by
working within their favored high-dimensional vector spaces, Connectionists
are able to develop methods of representation, including compositional repre-
sentation, which are in fact expressively more rich (i.e., sensitive to more subtle
differences and similarities), than any feasible Classical alternative. Whether
that is true or not, it is undoubtedly the case that a Connectionist implemen-
tation of a compositional scheme offers certain distinctive computational
advantages as compensation for its apparent drawbacks. (See, e.g., Smolensky
1988: 11–15 for a discussion of some computational advantages of tensor
product representations.) In general, the commitment to nonconcatenative
compositionality will be made as part of a quite general commitment to
Connectionist architectures over their Classical counterparts, and conse-
quently the choice of nonconcatenative methods will turn out to be vindicated
insofar as Connectionist approaches in general prove to be superior (if they
do). I have not tried to say anything here that would help decide this latter
question, except (a) to draw the lines of battle in a more perspicuous way, and
(b) to point out that it would be a serious mistake to suppose that Classical
architectures are superior in principle because only they have the basic
resources necessary to account for the systematicity of cognition.

4 Conclusion

When paradigms clash, issues and problems that were previously dormant are
brought into the open. The dispute between Connectionists and Classicalists
over the nature of mental representation has done exactly that for (inter alia)
the notion of the compositional structure of a representation. The fact that
various senses had typically been assimilated in one uncritical notion of
compositionality was crucial in allowing Fodor and Pylyshyn to formulate
their seemingly powerful attack on Connectionism. Once these senses are
pulled apart, however, one is left with a clearer idea of exactly what the
Language of Thought hypothesis consists in, and consequently what kinds 
of representations Connectionists can employ without merely implementing
the Classical approach. Since nonconcatenative compositional schemes have
at least the raw materials for an explanation of the systematicity of cognition,
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Connectionists models employing such representations can, at least for the
moment, be taken seriously as candidates for the explanation of cognition
while nevertheless remaining quite distinct from the Classical approach.

Notes

1 Fodor and Pylyshyn (1988: 42) use the term “combinatorial” in circumstances
where the currently predominant tendency in cognitive science is, for better or
for worse, to use “compositional.” They then proceed to use “compositional” to
refer to the situation where a syntactic constituent makes roughly the same
semantic contribution in all places it occurs.

2 From here on I will reserve “constituent” for a part of a representation, and
“component’ for a part of the represented item.

3 Expression types here are not to be confused with their grammatical category. In
the current sense, there can be many different expression types, which are all,
for example, conjunctions.

4 Concatenation is a notion that has been given a specific formal treatment by 
logicians and linguists (see Quine 1960: 283–4). In those contexts, concatena-
tion is taken to be a linear and associative relation intended primarily to pin down,
at the level of tokens, the notion of successor of. My concern here, by contrast,
is to capture a more general and intuitive notion inherent in the academic
layman’s understanding of the term; apologies to those who feel their termino-
logical toes have been trodden on.

5 Strictly speaking, this condition should be stated in an even stronger fashion:
Each token must contain a �i token for every occurrence of a constituent of type
�i. Here, of course, the notion of an occurrence of a constituent must be defined
in terms of the application of the grammatical rules in generating expressions.

6 At least, natural languages as they are written. Phonemic distortions in phrases
of spoken languages make it awkward to claim that the spoken versions are strictly
concatenative.

7 This use of ‘’syntactic structure’’ is appropriate in the context of the debate over
styles of mental representation to which this article is intended as a contribu-
tion. In some other contexts, “syntax” is used in a more abstract way; see, for
example, Brandom’s (1987) very important contribution to the study of linguistic
structure.

8 Classical theorists, who (it will be argued below) are committed to concatenative
representations, sometimes read this slogan as making a point that is too obvious
to be worth mentioning. After all, they point out, the word “Chicago” is syntac-
tically unstructured but it represents a very highly structured object. Note,
however, that while “Chicago” represents Chicago, and Chicago is structured, the
word “Chicago” is not in any way representing the structure of Chicago. Thus, a
stranger in Chicago will not be able to find her way around if all she knows is
that the city she is in is called “Chicago.” Even the more precise expression “the
structure of Chicago” would not be much help. To represent the structure of
Chicago in any nontrivial way using Classical representations requires a (quite
lengthy) description; that is, complex syntactic structure.

9 Note also: “Real constituency does have to do with parts and wholes; the symbol
‘Mary’ is literally a part of the symbol ‘John loves Mary.’ It is because their symbols
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enter into real-constituency relations that natural languages have both atomic
symbols and complex ones . . .” (Fodor and Pylyshyn 1988: 22).

10 The notion of vector addition in play here is the standard one: The sum of two
n-place vectors, v + w, is simply the n-place vector whose values are the sum of
the corresponding values of v and w.

11 These limits are explored in careful detail in Smolensky (1987a: 22–3); see also
Smolensky (1988: 11–15). These limitations are one reason the tensor product
framework does not simply amount to a Language of Thought.

12 For example, everyone who can have the thought that John loves the girl can also
have the thought that the girl loves John. Although their discussion is not alto-
gether clear on this point, Fodor and Pylyshyn (1988) suggest that these kinds
of thoughts are systematically related in two ways: on a structural level, and also
“from a semantic point of view” (pp. 31–42). This is the difference between the
“systematicity of cognitive representation” and the “compositionality of repre-
sentations.”

13 Thus, for example, if you can infer P from P&Q then you can also infer Q from
P&Q and P from P&Q&R (see Fodor and Pylyshyn 1988: 46–8).
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23

J.A. Fodor, “Précis of The Modularity 
of Mind”

Everybody knows that something is wrong. But it is uniquely the achievement
of contemporary philosophy – indeed, it is uniquely the achievement of
contemporary analytical philosophy – to have figured out just what it is. What
is wrong is that not enough distinctions are being made. If only we made all
the distinctions that there are, then we should all be as happy as kings. (Kings
are notoriously very happy.)

The Modularity of Mind (henceforth Modularity) is a monograph much in
the spirit of that diagnosis. I wanted to argue there (and will likewise argue
here) that modern Cognitivism failed, early on, to notice a certain important
distinction: roughly, a distinction between two ways in which computational
processes can be “smart.” Because it missed this distinction, Cognitivism failed
to consider some models of mental architecture for which a degree of empir-
ical support can be marshaled, models that may, indeed, turn out to be true.
If these models are true, then standard accounts of the nature of cognition 
and perception – and of the relations between them – are seriously misled,
with consequences that can be felt all the way from artificial intelligence to
epistemology. That was my story, and I am going to stick to it.

“What,” you will ask, “was this missed distinction; who missed it; and how
did missing it lead to these horrendous consequences?” I offer a historical
reconstruction in the form of a fairy tale. None of what follows actually
happened, but it makes a good story and has an edifying moral.

So then: Once upon a time, there was a Wicked Behaviorist. He was, alas,
a stingy and dogmatic creature of little humor and less poetry; but he did keep
a clean attic. Each day, he would climb up to his attic and throw things out,
for it was his ambition eventually to have almost nothing in his attic at all.
(Some people whispered that this was his only ambition, that the Wicked
Behaviorist was actually just a closet Ontological Purist. For all I know, they
were right to whisper this.)

Anyhow, one day when the Wicked Behaviorist was upstairs cleaning out
his attic, the following Very Interesting Thought occurred to him. “Look,” he
said to himself, “I can do without perceptual processes.” (Because he had been
educated in Vienna, the Wicked Behaviorist usually thought in the formal
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mode. So what actually occurred to him was that he could do without a theory
of perceptual processes. It comes to much the same thing.) “For,” it continued
to occur to him, “perceptual identification reduces without residue to discrim-
inative responding. And discriminative responding reduces without residue to
the manifestation of conditioned (as it might be, operant) reflexes. And the
theory of conditioned reflexes reduces without residue to Learning Theory. So,
though learning is one of the things that there are, perceptual processes are
one of the things there aren’t. There also aren’t: The True, or The Beautiful,
or Santa Claus, or Tinkerbell; and unicorns are metaphysically impossible and
George Washington wore false teeth. So there. Grrr!” He really was a very
Wicked Behaviorist.

Fortunately, however, in the very same possible world in which the WB eked
out a meager existence as a value of a bound variable (for who would call
that living), there was also a Handsome Cognitivist. And whereas the WB had
this preference for clean attics and desert landscapes, the HC’s motto was:
“The more the merrier, more or less!” It was the HC’s view that almost nothing
reduces to almost anything else. To say that the world is so full of a number
of things was, he thought, putting it mildly; for the HC, every day was like
Christmas in Dickens, ontologically speaking. In fact, far from wishing to
throw old things out, he was mainly interested in turning new things up “Only
collect,” the HC was often heard to say. Above all – and this is why I’m telling
you this story – the HC wanted mental processes in general, and perceptual
processes in particular, to be part of his collection.

Moreover, the HC had an argument. “Perceptual processes,” he said, “can’t
be reflexes because, whereas reflexes are paradigmatically dumb, perceptual
processes are demonstrably smart. Perception is really a part of cognition; it
involves a kind of thinking.”1

“And what demonstrates that perceptual processes are smart?” grumbled
the Wicked Behaviorist.

“I will tell you,” answered the Handsome Cognitivist. “What demonstrates
that perceptual processes are smart is Poverty of The Stimulus Arguments.” (A
Poverty of The Stimulus Argument alleges that there is typically more informa-
tion in a perceptual response than there is in the proximal stimulus that
prompts the response; hence perceptual integration must somehow involve the
contribution of information by the perceiving organism. (See Chomsky 1980.))
No one knows how to quantify the relevant notion of information, so it is hard
to show conclusively that this sort of argument is sound. On the other hand,
such phenomena as the perceptual constancies have persuaded almost every-
body – except Gibsonians and Wicked Behaviorists (see Ullman 1980; and
Rachlin 1985 – that Poverty of The Stimulus Arguments have to be taken very
seriously. I shall assume, in what follows, that that is so.) “Poverty of The
Stimulus Arguments,” continued the HC, “show that perceptual identifications
can’t be reflexive responses to proximal stimulus invariants. In fact, Poverty 
of The Stimulus Arguments strongly suggest that perceptual identifications 
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depend on some sort of computations, perhaps on computations of quite 
considerable complexity. So, once we have understood the force of Poverty of
The Stimulus Arguments, we see that there probably are perceptual processes
after all.” “And,” the HC added in a rush, “I believe that there are Truth and
Beauty and Santa Claus and Tinkerbell too (only you have to read the exis-
tential quantifier leniently). And I believe that for each drop of rain that falls
/ A flower is born. So there.” (Some people whispered that the Handsome
Cognitivist, though he was very handsome, was perhaps just a little wet. For
all I know, they were right to whisper that, too.) End of fairy tale.

My point is this: Modern cognitivism starts with the use of Poverty of The
Stimulus Arguments to show that perception is smart, hence that perceptual
identification can’t be reduced to reflexive responding. However – and I think
this is good history and not a fairy tale at all – in their enthusiasm for this
line of argument, early Cognitivists failed to distinguish between two quite
different respects in which perceptual processes might be smarter than reflexes.
Or, to put it the other way around, they failed to distinguish between two
respects in which perception might be similar to cognition. It’s at precisely this
point that Modularity seeks to insert its wedge.

Reflexes, it is traditionally supposed, are dumb in two sorts of ways: They
are noninferential and they are encapsulated.2 To say that they are noninfer-
ential is just to say that they are supposed to depend on “straight-through”
connections. On the simplest account, stimuli elicit reflexive responses directly,
without mediating mental processing. It is my view that the HC was right about
perceptual processes and reflexive ones being different in this respect; Poverty
of The Stimulus Arguments do make it seem plausible that a lot of inference
typically intervenes between a proximal stimulus and a perceptual identification.

By contrast, to describe reflexes as encapsulated is to say that they go off
largely without regard to the beliefs and utilities of the behaving organism; to
a first approximation, all that you need do to evoke a reflex is to present the
appropriate eliciting stimulus. Here’s how Modularity put this point:

Suppose that you and I have known each other for many a long year 
. . . and you have come fully to appreciate the excellence of my character.
In particular, you have come to know perfectly well that under no
conceivable circumstances would I stick my finger in your eye. Suppose
that this belief of yours is both explicit and deeply felt. You would, in
fact, go to the wall for it. Still, if I jab my finger near enough to your
eyes, and fast enough, you’ll blink . . . [The blink reflex] has no access
to what you know about my character or, for that matter, to any other
of your beliefs, utilities [or] expectations. For this reason the blink reflex
is often produced when sober reflection would show it to be uncalled 
for. . . . (p. 71)

In this respect reflexes are quite unlike a lot of “higher cognitive” behavior, or
so it would certainly seem. Chess moves, for example, aren’t elicited willy-nilly
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by presentations of chess problems. Rather, the player’s moves are determined
by the state of his utilities (is he trying to win? or to lose? or is he, perhaps,
just fooling around?) and by his beliefs, including his beliefs about the current
state of the game, his beliefs about the structure of chess and the likely conse-
quences of various patterns of play, his beliefs about the beliefs and utilities 
of his opponent, his beliefs about the beliefs of his opponent about his beliefs
and utilities, and so on up through ever so many orders of intentionality.

So, then, cognition is smart in two ways in which reflexes are dumb. Now
the question arises: What is perception like in these respects? Modularity offers
several kinds of arguments for what is, really, a main thesis of the book:
Although perception is smart like cognition in that it is typically inferential, it
is nevertheless dumb like reflexes in that it is typically encapsulated. Perhaps
the most persuasive of these arguments – certainly the shortest – is one that
adverts to the persistence of perceptual illusions. The apparent difference in
length of the Mueller–Lyer figures, for example, doesn’t disappear when one
learns that the arrows are in fact the same size. It seems to follow that at least
some perceptual processes are insensitive to at least some of one’s beliefs. Very
much wanting the Mueller–Lyer illusion to go away doesn’t make it disappear
either; it seems to follow that at least some perceptual processes are insensitive
to at least some of one’s utilities. The ecological good sense of this arrangement
is surely self-evident. Prejudiced and wishful seeing makes for dead animals.

This sort of point seems pretty obvious; one might wonder how Cognitivist
enthusiasm for “top down,” “cognitively penetrated” perceptual models man-
aged to survive in face of it. I think we have already seen part of the answer:
Cognitivists pervasively confused the question about the encapsulation of 
perception with the question about its computational complexity. Because 
they believed – rightly – that Poverty of The Stimulus Arguments settled the
second question, they never seriously considered the issues implicit in the first
one. You can actually see this confusion being perpetrated in some of the 
early Cognitivist texts. The following passage is from Bruner’s “On Perceptual
Readiness”:

Let it be plain that no claim is being made for the utter indistinguisha-
bility of perceptual and more conceptual inferences. . . . I may know that
the Ames distorted room that looks so rectangular is indeed distorted,
but unless conflicting cues are put into the situation . . . the room still
looks rectangular. So too with such compelling illusions as the Mueller–
Lyer: In spite of knowledge to the contrary, the line with the extended
arrowheads looks longer than the equal-length line with arrowheads
inclined inward. But these differences, interesting in themselves, must not
lead us to overlook the common feature of inference underlying so much
of cognitive activity. (Bruner 1973: 8; emphasis added)

The issue raised by the persistence of illusion is not, however, whether some
inferences are “more conceptual” than others – whatever, precisely, that might
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mean. Still less is it whether perception is in some important sense inferential.
Rather, what’s at issue is: How rigid is the boundary between the information
available to cognitive processes and the information available to perceptual
ones? How much of what you know/believe/desire actually does affect the way
you see? The persistence of illusion suggests that the answer must be: “at most,
less than all of it.”

So far, my charge has been that early Cognitivism missed the distinction
between the inferential complexity of perception and its cognitive penetrability.
But, of course, it’s no accident that it was just that distinction that Cognitivists
confused. Though they are independent properties of computational systems,
inferential complexity and cognitive penetrability are intimately related – so
intimately that, unless one is very careful, it’s easy to convince oneself that the
former actually entails the latter. (For discussion see Pylyshyn 1980.)

What connects inferential complexity and cognitive penetrability is the
truism that inferences need premises. Here’s how the argument might seem 
to go: Poverty of The Stimulus Arguments show that the organism must
contribute information to perceptual integrations; “perceptual inferences” just
are the computations that effect such contributions. Now, this information
that the organism contributes – the premises, as it were, of its perceptual infer-
ences – must include not just sensory specifications of current proximal inputs
but also “background knowledge” drawn from prior experience or innate
endowment; for what Poverty of The Stimulus Arguments show is precisely
that sensory information alone underdetermines perceptual integrations. But,
surely, the availability of background knowledge to processes of perceptual
integration is the cognitive penetration of perception. So if perception is 
inferentially elaborated, it must be cognitively penetrated. Q.E.D.

What’s wrong with this argument is that it depends on what one means by
cognitive penetration. One might mean the availability to perceptual integra-
tion of some information not given in the proximal array. Because Poverty of
The Stimulus Arguments show that some such information must be available
to perceptual integration, it follows that to accept Poverty of The Stimulus
Arguments is to accept the cognitive penetrability of perception in this sense.
But one might also mean by the cognitive penetrability of perception that
anything that the organism knows, any information that is accessible to any
of its cognitive processes, is ipso facto available as a premise in perceptual
inference. This is a much more dramatic claim; it implies the continuity of
perception with cognition. And, if it is true, it has all sorts of interesting epis-
temic payoff (see Fodor 1984). Notice, however, that this stronger claim does
not follow from the inferential complexity of perception.

Why not? Well, for the following boring reason. We can, in principle,
imagine three sorts of architectural arrangements in respect of the relations
between cognition and perception: no background information is available to
perceptual integration; some but not all background information is available
to perceptual integration; everything one knows is available to perceptual inte-
gration. Because Poverty of The Stimulus Arguments imply the inferential
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elaboration of perception, and because inferences need premises, the first 
of these architectures is closed to the Cognitivist. But the second and third 
are still open, and the persistence of illusions is prima facie evidence that the
second is the better bet.

We arrive, at last, at the notion of a psychological module. A module 
is (inter alia) an informationally encapsulated computational system – an
inference-making mechanism whose access to background information is
constrained by general features of cognitive architecture, hence relatively
rigidly and relatively permanently constrained. One can conceptualize a
module as a special-purpose computer with a proprietary database, under the
conditions that: (a) the operations that it performs have access only to the
information in its database (together, of course, with specifications of currently
impinging proximal stimulations), and (b) at least some information that is
available to at least some cognitive process is not available to the module. It
is a main thesis of Modularity that perceptual integrations are typically
performed by computational systems that are informationally encapsulated 
in this sense.

Modularity has two other main theses, which I might as well tell you about
now. The first is that, although informational encapsulation is an essential
property of modular systems, they also tend to exhibit other psychologically
interesting properties. The notion of a module thus emerges as a sort of
“cluster concept,” and the claim that perceptual processes are modularized
implies that wherever we look at the mechanisms that effect perceptual inte-
gration we see that this cluster of properties tends to recur. The third main
thesis is that, whereas perceptual processes are typically modularized – hence
encapsulated, hence stupid in one of the ways that reflexes are – the really
“smart,” really “higher” cognitive processes (thinking, for example) are not
modular and, in particular, not encapsulated. So Modularity advocates a prin-
cipled distinction between perception and cognition in contrast to the usual
Cognitivist claims for their continuity.

Since Modularity goes into all of this in some detail, I don’t propose to do
so here; otherwise, why would you buy the book? But I do want to stress 
the plausibility of the picture that emerges. On the one hand, there are the
perceptual processes; these tend to be input driven, very fast, mandatory,
superficial, encapsulated from much of the organism’s background knowledge,
largely organized around bottom-to-top information flow, largely innately
specified (hence ontogenetically eccentric), and characteristically associated
with specific neuroanatomical mechanisms (sometimes even with specific
neuroanatomical loci). They tend also to be domain specific, so that – to cite
the classic case – the computational systems that deal with the perception/
production of language appear to have not much in common with those 
that deal with, for example, the analysis of color or of visual form (or, for that
matter, the analysis of nonspeech auditory signals). So strikingly are these
systems autonomous that they often rejoice in their proprietary, domain-
specific pathologies: compare the aphasias and agnosias. Modularity takes the
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view that it is high time to praise Franz Joseph Gall for having predicted the
existence of psychological mechanisms that exhibit this bundle of properties.
(Gall was approximately a contemporary of Jane Austen’s, so you see how far
we have come in cognitive psychology – and in the novel, for that matter.) It
is precisely in the investigation of these “vertical faculties” that modern
Cognitivism has contributed its most important insights, and Modularity
suggests that this is no accident. Precisely because the perceptual mechanisms
are encapsulated, we can make progress in studying them without having to
commit ourselves about the general nature of the cognitive mind.

On the other hand, there are the true higher cognitive faculties. So little is
known about them that one is hard put even to say which true higher cogni-
tive faculties there are. But “thought” and “problem solving” are surely among
the names in the game, and here Modularity’s line is that these are everything
that perception is not: slow, deep, global rather than local, largely under volun-
tary (or, as one says, “executive”) control, typically associated with diffuse
neurological structures, neither bottom-to-top nor top-to-bottom in their
modes of processing, but characterized by computations in which information
flows every which way. Above all, they are paradigmatically unencapsulated;
the higher the cognitive process, the more it turns on the integration of
information across superficially dissimilar domains. Modularity assumes that
in this respect the higher cognitive processes are notably similar to processes
of scientific discovery – indeed, that the latter are the former writ large. Both,
of course, are deeply mysterious; we don’t understand non-demonstrative
inference in either its macrocosmic or its microcosmic incarnation.

If much of the foregoing is right, then mainstream Cognitive science has
managed to get the architecture of the mind almost exactly backwards. By
emphasizing the continuity of cognition with perception, it missed the compu-
tational encapsulation of the latter. By attempting to understand thinking in
terms of a baroque proliferation of scripts, plans, frames, schemata, special-
purpose heuristics, expert systems, and other species of domain-specific
intellectual automatisms – jumped-up habits, to put it in a nutshell – it missed
what is most characteristic, and most puzzling, about the higher cognitive
mind: its nonencapsulation, its creativity, its holism, and its passion for the
analogical. One laughs or weeps according to one’s temperament. It was,
perhaps, Eeyore who found precisely the right words: “‘Pathetic,’ he said,
‘That’s what it is, pathetic.’”

Well, yes, but is much of this right? I want at least to emphasize its plau-
sibility from several different points of view. Perception is above all concerned
with keeping track of the state of the organism’s local spatiotemporal environ-
ment. Not the distant past, not the distant future, and not – except for
ecological accidents like stars – what is very far away. Perception is built to
detect what is right here, right now – what is available, for example, for eating
or being eaten by. If this is indeed its teleology, then it is understandable that
perception should be performed by fast, mandatory, encapsulated, . . . etc.
systems that – considered, as it were, detection-theoretically – are prepared to
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trade false positives for high gain. It is, no doubt, important to attend to the
eternally beautiful and to believe the eternally true. But it is more important
not to be eaten.

Why, then, isn’t perception even stupider, even less inferential than it
appears to be? Why doesn’t it consist of literally reflexive responses to prox-
imal stimulations? Presumably because there is so much more variability in
the proximal projections that an organism’s environment offers to its sensory
mechanisms than there is in the distal environment itself. This kind of vari-
ability is by definition irrelevant if it is the distal environment that you care
about – which, of course, it almost always is. So the function of perception,
from this vantage point, is to propose to thought a representation of the 
world from which such irrelevant variability has been effectively filtered. 
What perceptual systems typically “know about” is how to infer current distal
layouts from current proximal stimulations: the visual system, for example,
knows how to derive distal form from proximal displacement, and the
language system knows how to infer the speaker’s communicative intentions
from his phonetic productions. Neither mechanism, on the present account,
knows a great deal else, and that is entirely typical of perceptual organization.
Perceptual systems have access to (implicit or explicit) theories of the mapping
between distal causes and proximal effects. But that’s all they have.

If the perceptual mechanisms are indeed local, stupid, and extremely
nervous, it is teleologically sensible to have the picture of the world that 
they present tempered, reanalyzed, and – as Kant saw – above all integrated
by slower, better informed, more conservative, and more holistic cognitive
systems. The purposes of survival are, after all, sometimes subserved by
knowing the truth. The world’s deep regularities don’t show in a snapshot, so
being bullheaded, ignoring the facts that aren’t visible on the surface – encap-
sulation in short – is not the cognitive policy that one wants to pursue in the
long run. The surface plausibility of the Modularity picture thus lies in the
idea that Nature has contrived to have it both ways, to get the best out of fast
dumb systems and slow contemplative ones, by simply refusing to choose
between them. That is, I suppose, the way that Nature likes to operate: “I’ll
have some of each” – one damned thing piled on top of another, and nothing
in moderation, ever.

It will have occurred to you, no doubt, that Cognitivism could quite
possibly have hit on the right doctrine, even if it did so for the wrong reasons.
Whatever confusions may have spawned the idea that perception and cogni-
tion are continuous, and however plausible the encapsulation story may
appear to be a priori, there is a lot of experimental evidence around that argues
for the effects of background knowledge in perception. If the mind really is
modular, those data are going to have to be explained away. I want to say just
a word about this.

There are, pretty clearly, three conditions that an experiment has to meet
if it is to provide a bona fide counter-instance to the modularity of a perceptual
system.
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1 It must, of course, demonstrate the influence of background informa-
tion in some computation that the system performs. But, more particularly,
the background information whose influence it demonstrates must be exoge-
nous from the point of view of the module concerned. Remember, each module
has its proprietary database; whatever information is in its database is ipso
facto available to its computations. So, for example, it would be no use for
purposes of embarrassing modularity theory to show that words are superior
to non-words in a speech perception task. Presumably, the language processing
system has access to a grammar of the language that it processes, and a
grammar must surely contain a lexicon. What words are in the language is
thus one of the things that the language module can plausibly be assumed 
to know consonant with its modularity.

2 The effect of the background must be distinctively perceptual, not post-
perceptual and not a criterion shift. For example, it is of no use to demonstrate
that utterances of “implausible” sentences are harder to process than utter-
ances of “plausible” ones if it turns out that the mechanism of this effect 
is the hearer’s inability to believe that the speaker could have said what it
sounded like he said. No one in his right mind doubts that perception inter-
acts with cognition somewhere. What’s at issue in the disagreement between
modularity theory and “New Look” Cognitivism (e.g., Bruner 1973) is the
locus of this interaction. In practice, it usually turns out that the issue is
whether the recruitment of background information in perception is predic-
tive. Modularity theory says almost never; New Look Cognitivism says quite
a lot of the time.

3 The cognitively penetrated system must be the one that shoulders the
burden of perceptual analysis in normal circumstances, and not, for example,
some backup, problem-solving type of mechanism that functions only when
the stimulus is too degraded for a module to cope with. Therefore, it is of no
use to show that highly redundant lexical items are easier to understand than
less redundant ones when the speech signal is very noisy – unless, of course,
you can also show that the perception of very noisy speech really is bona fide
speech perception.

So far as I know, there is very little in the experimental literature that is
alleged to demonstrate the cognitive penetration of perception that meets all
three of these conditions (to say nothing of replicability). This isn’t to claim
that such experiments cannot be devised or that, if devised, they might not
prove that New Look Cognitivism is right after all. I claim only that, contrary
to the textbook story, the empirical evidence for the continuity of perception
with cognition is not overwhelming when contemplated with a jaundiced eye.
There is, in any event, something for laboratory psychology to do for the 
next twenty years or so: namely, try to develop some designs subtle enough
to determine who’s right about all this.

“But look,” you might ask, “why do you care about modules so much?
You’ve got tenure; why don’t you take off and go sailing?” This is a perfectly
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reasonable question and one that I often ask myself. Answering it would
require exploring territory that I can’t get into here and raising issues that
Modularity doesn’t even broach. But roughly, and by way of striking a closing
note: The idea that cognition saturates perception belongs with (and is, indeed,
historically connected with) the idea in the philosophy of science that one’s
observations are comprehensively determined by one’s theories; with the idea
in anthropology that one’s values are comprehensively determined by one’s
culture; with the idea in sociology that one’s epistemic commitments, including
especially one’s science, are comprehensively determined by one’s class affilia-
tions; and with the idea in linguistics that one’s metaphysics is comprehensively
determined by one’s syntax. All these ideas imply a sort of relativistic holism:
because perception is saturated by cognition, observation by theory, values by
culture, science by class, and metaphysics by language, rational criticism of
scientific theories, ethical values, metaphysical world-views, or whatever can
take place only within the framework of assumptions that – as a matter of
geographical, historical, or sociological accident – the interlocutors happen to
share. What you can’t do is rationally criticize the framework.

The thing is: I hate relativism. I hate relativism more than I hate anything
else, excepting, maybe, fiberglass powerboats. More to the point, I think that
relativism is very probably false. What it overlooks, to put it briefly and
crudely, is the fixed structure of human nature. (This is not, of course, a novel
insight; on the contrary, the malleability of human nature is a doctrine that rel-
ativists are invariably much inclined to stress. See, for example, John Dewey
in Human Nature and Conduct (1922).) Well, in cognitive psychology the
claim that there is a fixed structure of human nature traditionally takes the
form of an insistence on the heterogeneity of cognitive mechanisms and on 
the rigidity of the cognitive architecture that effects their encapsulation. If there
are faculties and modules, then not everything affects everything else; not
everything is plastic. Whatever the All is, at least there is more than One of it.

These are, as you will have gathered, not issues to be decisively argued –
or even perspicuously formulated – in the course of a paragraph or two. Suffice
it that they seem to be the sorts of issues that our cognitive science ought to
bear on. And they are intimately intertwined: surely, surely, no one but a rela-
tivist would drive a fiberglass powerboat.

Coming in our next installment: “Restoring Basic Values: Phrenology in an
Age of License.” Try not to miss it!

Notes

1 See, for example, Gregory (1970: 30): “perception involves a kind of problem-
solving; a kind of intelligence.” For a more recent and comprehensive treatment
that runs along the same lines, see Rock (1983).

2 I don’t at all care whether these “traditional assumptions” about reflexes are in
fact correct, or even whether they were traditionally assumed. What I want is an
ideal type with which to compare perception and cognition.
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G. Currie and K. Sterelny, 
“How to Think About the Modularity 

of Mind-reading”

I Introduction

It is widely accepted that the complexities of hominid social life are respon-
sible for the evolution of distinctively human mental capacities. Certainly one
distinctive feature of human intelligence is social intelligence, and this is often
expressed as the idea that we are ‘mind-readers’, able to develop an intentional
profile of other agents in the course of explaining and predicting their behav-
iour.1 Mind-reading and the capacity to negotiate the social world are not the
same thing, but the former seems to be necessary for the latter: people with
autism are extremely restricted in their comprehension of mental states and
they have comparable difficulties in negotiating the social world. And no
wonder: while not every social fact is a mental fact, and not every social prop-
erty definable in mentalistic terms, our basic grip on the social world depends
on our being able to see our fellows as motivated by beliefs and desires we
sometimes share and sometimes do not. Social institutions are, then, intelli-
gible as (imperfect) devices for harnessing the agreement and resolving the
conflict. So it is no surprise that in evolutionary and developmental theories
of social intelligence the primary focus has been on our capacity for detecting,
thinking about and responding to the mental states of conspecifics, particu-
larly with a view to co-operating and/or competing with them. Clearly such
social understanding is deeply and almost exclusively mentalistic. It is that
subdomain of social understanding which concerns us here.

Is our mind-reading capacity a modular capacity? The question is inter-
esting for several reasons. One of them is this. Mind-reading is a cognitive
rather than a perceptual ability. It is not controversial that important aspects
of perception are modular; they are subserved by dedicated, specialized and
perhaps even informationally autonomous mechanisms. But the suggestion
that belief fixation might be modular is controversial. Developing an inten-
tional profile is further removed from immediate perception than are the
paradigms of modular cognition. So this is a good case for testing the hypoth-
esis that there are cognitive modules.
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We deny the strong claim that there is a modular central system wherein
the fixation of social belief takes place. But our doubts are not based on any
general animosity towards the idea of modularity in the design of human
beings; we think the mind is probably full of modules. We think a somewhat
less ambitious hypothesis about the modularity of social intelligence is plau-
sible. We argue that social intelligence exhibits a mix of modular and non-
modular aspects. This hybrid character cannot be explained on a strong,
centralist version of the modularity hypothesis, but it falls naturally out of the
picture we suggest.

II Fodorian modularity

It is very common for people who advocate the modularity of social intelli-
gence to represent themselves as revising in some fundamental way Fodor’s
picture of mental architecture.2 A common observation is that Fodor ‘did not
go far enough’, because he did not recognize that central belief fixing systems
can be modular, and that excellent evidence for this is to be found in the
domain of social intelligence. Jackendoff, for example, argues that ‘there is a
module or group of modules (a faculty) that is specialized for social cognition’,
and he remarks that this is contrary to Fodor’s view: ‘Fodor, for instance,
specifically denies that modularity applies to thought as well as to perception’.3

And Gigerenzer says ‘I disagree with Fodor’s opposition between modular sen-
sory processes (and language) and general-purpose central processes. Social
intelligence involves both perceptual processes and mechanisms for reasoning
and inductive inference.’4 In order to see what this commits advocates of the
modularity of social intelligence to, we should remind ourselves of Fodor’s 
picture of mental architecture.

In The Modularity of Mind Fodor argues that cognitive systems come in
two kinds. Systems of the first kind are domain-specific: they answer questions
from a restricted area. Such systems are often, Fodor suggests, encapsulated:
in dealing with their thus restricted domains they draw on a narrow and
proprietary range of information. In certain specific cases there may be
information flow between modules. My visual system imports information
about my head and eye-movements, and thus discriminates changes in the
retinal image caused by these movements from changes produced by external
causes. But in their processing they are not susceptible to influence by informa-
tion from higher levels, levels at or above that at which they deliver outputs.
This specific form of encapsulation is sometimes called ‘cognitive impenetra-
bility’: what we want or believe makes no difference to how the module works.

The actual cognitive systems Fodor identifies as encapsulated are the ‘input-
systems’, those that interpret transduced information and make it available for
central processing.5 And the input systems are, he says, perceptual systems plus
language processing. These are Fodor’s modules. And they are characterized
not just by being domain-specific and encapsulated. They are fast; they are
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independent of voluntary control; they are relatively inaccessible to central
systems not just in their informational encapsulation but also in being opaque
to introspection; the representations they compute are relatively shallow; they
are innately specified and have a fixed neural architecture; they are subject to
specific breakdown.

Fodor emphasized that he was not offering necessary and sufficient condi-
tions for modularity, but merely a list of features one is likely to find together.
He also said that encapsulation is the most important of these features (p. 37),
and on one occasion that it is the ‘essence’ of modularity (p. 71). Perhaps the
thought was that while other features like speed and inaccessibility are
indicative of modularity, they are all features that might be possessed by 
non-modular systems.6 But encapsulation, being the essence of modularity, is
what really makes a system modular and explains the other features. On this
reading, we move from the superficial features of putatively modular systems
(speed, inaccessibility, and the like) to their best explanation – encapsulation.
Thus a modular system is fast because its encapsulation drastically cuts
computational demands on it. Its informational autonomy explains its inac-
cessibility to introspection, and the possibility of selective loss of just that
capacity. Some more recent work on modularity takes domain-specificity
rather than encapsulation to be fundamental.7 The trouble is that domains
cannot in general be characterized independently of the modules that deal with
them. Whether mate choice is a domain, or an ensemble of distinct domains
concerning such things as fidelity, desertion, kin help and punishment, depends
on whether we think there is a module for dealing with it, or merely a set of
modules, one for each of these other domains. Would anyone think that face
recognition is a single domain of problems if there were no evidence that highly
selective brain damage can wipe out face recognition and leave other recog-
nition functions intact?

However, encapsulation is not merely a theoretical postulate. Fodor argued
that the encapsulation of perceptual systems is evidenced directly by the fact
that perception does not change when it conflicts with belief, as in cases of
visual illusion. He also argued along similar lines that the processing of the
semantics and syntax of language is encapsulated, but not the processing of
its pragmatics. So arguments about Fodor-style modules should primarily be
arguments about encapsulation, and in particular about whether the system
in question imports information from specifically higher cognitive systems.
Towards the end of the paper we return to one other feature, proneness to
breakdown.

Fodor did not claim that the mind is wholly or even largely modular. He
argued that while input systems are modular, central systems – those which
serve to fix belief – are not modular. For when it comes to the fixation of belief,
everything is potentially relevant to everything else. While the lines in a
Müller–Lyer experiment look dissimilar in length, you may conclude that they
are in fact the same length. You may believe this for any number of reasons:
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because measurement shows them to be the same, because someone you think
of as reliable said they were, because you know that when people show 
you such displays they are generally doing so to illustrate a certain perceptual
illusion, and so on.

What is the moral of this tale for us, whose interest is not perception 
but social understanding? It is that philosophers influenced by Fodor’s frame-
work and formulations who claim that social intelligence is modular might be
understood in one of two ways. They might be claiming that there really is 
a social belief fixation module, that the processes we engage in which deliver
social beliefs (‘This person thinks or wants so and so’, ‘That person would be
a good ally’, etc.) are encapsulated, and in particular are cognitively impene-
trable, and so are made on the basis of a narrow information base proprietary
to the system itself. In contrast, there is a more modest modularity thesis:
among the determinants of social judgements are outputs from processes that
are encapsulated. We start with the strong claim that social belief fixation is
cognitively impenetrable.

III The modularity of social intelligence: 
the strong thesis

Of all the areas one might choose, social intelligence looks the least likely
candidate for being an encapsulated system of belief fixation. Deciding what
other people think or want, whether they constitute a threat or offer an oppor-
tunity, are highly complex judgements. In making them, information from all
kinds of areas might be and often is seen as relevant. Machiavellian reasoning
seems to depend on integrating information from a wide variety of sources.
This difficulty for the modularist view of social intelligence might be eased by
taking advantage of Fodor’s further observation that encapsulation ‘comes in
degrees’. A system can be more or less encapsulated. But where is the evidence
that in making social judgements there is a significant area of knowledge on
which we cannot draw? If Max’s confederate says he withdrew money from
their London bank today there are all sorts of reasons why Max might suspect
him: because, it is a public holiday there; because there was a total blackout
of the city; because the confederate was spotted in New York at lunchtime.
Just where are the bits of information to which we are systematically blind in
making our social judgements? The whole genre of the detective story depends
on our interest and skill in bringing improbable bits of far-away information
to bear on the question of someone’s credibility. To suggest that we do not
have that skill defies belief.

We agree, of course, that there are features of social belief fixation which
look a bit like encapsulation. In practice we often do make inferences and deci-
sions in the social area on much less than optimal information, quickly and
in ways that seem to be at least close to being automatic and mandatory.8 But
this cannot be the test of encapsulation; otherwise you must say that a system
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is encapsulated unless all the information the subject possesses is always
brought to bear on a problem. Only an inferentially and informationally
optimal system would then be non-modular, leaving us with an extremely
impoverished and uninteresting sense of ‘encapsulated’. The fact that we do
not always exploit relevant information is not fixed by architectural features
of the mind. Given time, care and inclination we can bring all our knowledge
to bear on social questions. To resurrect the terminology of bygone days, this
suggests that these limitations on access are limitations of performance, not
competence.

It is not surprising, then, that believers in the social modularity thesis rarely
argue explicitly that there is a genuinely Fodorian social module, though we
have seen that they sometimes advertise their view in this way. We know of
only a couple of arguments specifically designed to show that social reasoning
is encapsulated – and then only to a degree. One is due to Gabriel Segal,9 and
it is an argument that raises issues that will occupy us throughout this paper.
He uses the example of fiction-watching to argue (p. 147) that what he calls
‘the psychology faculty’ exhibits a ‘degree of informational encapsulation’:

Watching a good actor can generate a sort of theory-of-mind illusion;
even though one knows that he is really not in pain, or in love, or trying
hard to solve a problem, it still seems to one that he is. It appears, then,
that relevant information about the actor’s real psychological states fails
to influence the workings of the psychology faculty.

Of course it does look to us as if the actor is in pain: the actor is, after all,
putting on a pained expression. But Segal needs more than this as evidence 
that ‘relevant information about the actor’s real psychological states fails to
influence the workings of the psychology faculty’. A psychology faculty, if there
is one, provides us with psychological beliefs. Segal seems to be suggesting that
this faculty, being encapsulated, delivers not merely recognition that the actor’s
look is a pained one, but the belief that the actor is in pain when we ‘know’
that he is not. Such an illusion would be cognitive, constituted by a belief that
is insulated from much else of what the agent knows.

This kind of case is central to the argument for the modularity of social
belief fixation. If social belief fixation is modular, we ought to find cases where
social belief is fixed by salient, largely perceptual, cues and in defiance of
general knowledge – just the kind of case that the actor feigning pain offers
us. But does the case really support modularity? It can seem so, especially if
we attend to the affective side of watching or reading fiction. Good actors can
make their make-believe threats feel very menacing; their make-believe offers
seem heartbreakingly generous. Do we believe these to be real threats or
generous offers? No. Despite various attempts to make it credible, the view
that we believe in the fictions we encounter, even when we get deeply absorbed
in those fictions, remains a nonstarter. We do not rush on stage to Desdemona’s
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defence, or seek to intervene in even the most naturalistically staged aggres-
sions. Since belief is a matter of degree, should we say that we give a limited
(very limited) credence to the proposition that the actor is in love, or in pain,
or whatever? We should not. Any measurable credence we gave to the propo-
sition that he is would be in conflict with our belief, indeed our knowledge,
that he is not. If we say that those engaged by a fiction are limited believers
of it, we are bound to say that being engaged by a fiction is an epistemic vice.
If we say that those engaged by a murder on stage believe, to some degree,
that a murder is about to be committed in front of them, we are bound to say
that their unwillingness to intervene is a moral vice. But fictions are not entrap-
ment tools, and responsiveness to fiction is an imaginative virtue, not a vice
of any kind. We must find some way of characterizing engagement with fictions
that does not depend on claiming that fiction induces belief.

One answer, already hinted at, is to invoke the imagination. Seeing the
actor’s contorted face, we imagine he is in pain, and imagining this can cause
us to have some of the uncomfortable sensations we would have if we really
believed that he was in pain. And it seems that none of this is a matter of deci-
sion or inference; about the only way to stop imagining what the fiction makes
it appropriate to imagine is to turn the TV off. If imagination is mandatory,
it is starting to sound as if we have found the modularity of social intelligence
in an unexpected place!

A modular theory of the imagination would be little help to advocates of
the modularity of social intelligence, whose concern, we take it, is with the
formation of social belief and the behaviour to which such beliefs lead.
Imagination may be automatic in something like the way a module is. Given
the right experience, imaginative engagement kicks in without conscious deci-
sion. But it cannot be a Fodorian module, since it is not encapsulated nor
domain-specific. Certainly it is not a social module. Responses to fiction are
not restricted to imagining just the thoughts and feelings of actors and fictional
characters. Science fiction addicts regularly imagine travel through black holes
and battles between giant aphids; they do not just imagine, Nagel-style, what
it would be like to fight a giant aphid. So what we are capable of imagining
goes beyond the realm of the social or the intentional even in the broadest of
senses. It is not plausible that imagination is a domain-specific skill.

It might be replied that there is an ambiguity in the idea of domain-
specificity, and that our science fiction examples are not decisive against one
disambiguation of the idea of a domain-specific imagination machine. Dan
Sperber has distinguished between the actual and the proper domain of a
module – the proper domain is the domain for which a cognitive device is
designed. He points out that radical changes in the human environment might
have generated a quite dramatic disjunction between the domain for which a
device is actually currently used and the reasoning tasks for which it is adapted
and which explain its evolution. So the proper domain of imagination could
be social reasoning, even though we actually imagine things in the non-social
domain. But we would, of course, need some independent evidence that this
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is so. It is easy enough to tell plausible Just So stories about other possibili-
ties. Imagination may exist at least partly to make it possible for us to predict
the results of our actions in our physical environment.

If this is right, imagination is not domain-specific in either sense. And it
certainly is not encapsulated. The arguments given already for saying that
social belief is not encapsulated apply just as well to social imagining. Our
responses to fictions are often informationally open, both synchronically and
diachronically. For one thing, those responses draw on general knowledge in
a potentially unlimited way. We import a great deal of background knowledge
into our responses to fictions, tacitly assuming that the world of the fiction
deviates only in minimal ways from the way we take the real world to be. And
our emotional and evaluative responses to the fiction are driven by and reflect
our desires and evaluative beliefs. This is not to suggest that we respond to
fictions exactly as we do to life, but merely to point out that no account of
our responses to fictions which claimed that they are encapsulated from
general belief could succeed. And not only is imagination open to the influence
of an unlimited range of beliefs; imaginings themselves combine in unrestricted
ways. The actor’s contorted face can cause us to imagine that the character he
plays is in pain – but not always. It can be part of the story that the character
is faking pain, and if we are sensitive to subtle clues available within what we
already imagine, we can come to imagine that the pain is phoney.

We note just one other place where someone is tempted to reach for the
encapsulation of social belief formation as a solution to a problem. Gigerenzer
(p. 270) mentions ‘the frame problem in artificial intelligence’ as one reason
for thinking that social intelligence is modular. The problem, he says, is that
an organism which has to take into account all possibly relevant information
(he calls this ‘the infinite possibilities to combine elements and relations’)
would be ‘paralysed and unable to react in time’. Assuming that distinct
domains, including the social domain, are dealt with by systems of intercon-
nected modules solves the problem, since (p. 277) ‘modules that are
hierarchically organized can act quickly, as only a few of the branches of the
combinatorial tree need to be travelled’.

But wait! What exactly is the problem and how is modularity a solution to
it? The frame problem is the problem of how to give an artificial system the
capacity to take account of all the information we know a human is able to
take account of in forming beliefs. That certainly is a problem, but how can
thinking that human intelligence is modular help to solve it? Gigerenzer seems
to be suggesting that by assuming modular structure, including some degree
of encapsulation, we can suppose that the human mind cuts down on relevant
information by having fast, dirty heuristics that act on highly restricted
information bases. That would be one way for humans to solve problems in
the social domain. But we know they do not do it in that way. We know that
people often take into account all sorts of information from all over the place
in solving social problems, and that is why it is difficult to mimic social intel-
ligence in an artificial system. Indeed, that is why there is a frame problem in
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the first place. The frame problem is, as Gigerenzer says, a problem for arti-
ficial intelligence: how can a machine take into account all that a human
believes? Gigerenzer seems to have it backwards: he wants to solve the frame
problem by devising a theory of the human mind for which no frame problem
would arise.

We conclude that the strong view of social modularity is too strong. Social
judgements are not produced by an encapsulated mechanism.

IV The modest thesis

Retreating from the strong modularity view, a natural-sounding alternative is
to treat our hypothetical social intelligence module as analogous to perceptual
modules. Perceptual modules, as Fodor often notes, do not fix belief. Seeing
is not believing, for we can sometimes realize (or think we realize) that percep-
tual appearances are misleading. But perceptions make a powerful and
functionally distinctive contribution to the fixation of belief. So a second
reading of the social modularity hypothesis is that the fixation of social belief
takes inputs from encapsulated systems.10

However, this second reading needs to be strengthened. Visual perception
is probably modular. In that case, since visual perception contributes to the
fixation of social belief; social intelligence would come out as modular on 
the present reading. That is too easy a victory for modularity. Instead we need
to say something like this: amongst the systems feeding input to the fixation
of social belief are modules that are specfically adapted for that very role.
Modularized systems for perceptual processing may contribute to the fixation
of social belief, but they contribute to the fixation of all sorts of other beliefs
as well. Our suggestion is that there is a modularized layer between percep-
tion and belief fixation, and this layer adds a specifically social content to what
are then the inputs to belief fixation. And the inputs of this module will be
the outputs of perceptual modules, not transducer outputs. We shall call a
module like this a ‘second-order module’.

Why call it a ‘module’ at all? We earlier decided to treat encapsulation, and
in particular encapsulation from higher cognitive systems, as the essence of
modularity. The claim that there is a social module is thus the claim that there
is a system which tags information from below with social markers, and does
so even in the face of the belief that those markers do not literally apply, as
when we believe, and indeed, know, that this person is not friendly, that 
this statue is not an intentional agent, that these are just geometric shapes –
examples we discuss immediately below.

V Saving the phenomena

Can a modularity hypothesis of this kind, one that avoids attributing modu-
larity to belief fixation, explain the phenomena that have been thought of as
suggestive of modularity in social cognition? We think it can. First, the thesis
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of modularity of inputs and the non-modularity of central systems was never
meant to suggest that belief fixation is like vote-counting in a democratic elec-
tion. Someone who believes that belief fixation is non-modular will also believe
that the perceptual beliefs we acquire will mostly reflect the contents of the
perceptual inputs; as we noted above, one does not search through all the
possibly relevant data from memory before forming those beliefs. Thus some
perceptual inputs play a privileged role in belief fixation, and their influence
can be turned aside only in unusual circumstances. So if there is an input
system – a system that provides inputs for belief fixation – which adds socially
relevant tags to data from perceptual inputs lower down, we can expect that
to be reflected in certain biases in social reasoning and judgement.11 And we
can expect this without supposing that the fixation of social belief is modular,
but merely on the supposition that certain inputs to social belief fixation – the
shiftiness of a look, the openness of a smile – play a privileged role in belief
fixation. That, after all, is what the social module is for. Just as the data from
perception push us in the direction of certain perceptual beliefs rather than
others, this social-intentional module will serve to push us in the direction of
certain social beliefs, without itself being the mechanism that fixes belief.
Bearing this in mind, we shall look at some relevant features of our response
to the social world.

Perceptual illusion is often cited as striking evidence for modularity in
perception. We think that there are persistent social illusions, that they add
weight to the case for the modularity of social cognition, but that they do not
involve the fixation of illusory belief. We have three different types of example
in mind.

First and most obvious are cases of anthropomorphism, where there is 
no on-reflection temptation actually to form social beliefs. Our responses to
cartoons and puppets indicate how easy it is to get us to imagine intentional-
ity in something that only vaguely resembles the face of a living creature. And
Heider and Simmel’s well known experiments with moving abstract shapes
show how natural we find it to imagine mental states around which we can
then structure a narrative of the shapes’ interaction.12 But, as with the experi-
ence of watching an actor, we ought not to take this as evidence for the
operation of encapsulated mechanisms which serve to fix our beliefs about
mental states – we do not end up believing that the shapes have intentionality,
any more than we believe that Desdemona has been murdered on stage.
Attributions of intentionality where they do not belong do sometimes get to
the level of belief, as with people who believe their pets understand English;
and such beliefs can certainly be resistant to evidence and reason. But this is
too general a phenomenon for it to support the modularity of belief in the
social domain. Rather it is evidence for the influence of desire on belief; no one
is tempted to suppose that beliefs like ‘My children are not taking drugs’ are
modularized simply because they are irrationally formed and persisted with.

In the second kind of case, we dislike or distrust someone even while
acknowledging an entire lack of rational basis for that judgement (there are
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cases that run the other way – the honest-faced scoundrel we find it difficult
to mistrust). And some of the time these attributions do influence our inter-
actions with people. What this suggests is that emotional responses, or some
of them, can be triggered in multiple ways. We can experience fear when we
know or believe that the man standing there means us harm, but also when a
perception, or even a perceptual memory, is tagged with the appropriate inten-
tional marker. In that case we experience the fear contrary to our judgement,
and may even be moved to action by it. Perhaps it is this experience of ‘being
moved to action’ against the dictates of reason that provides the most powerful
case for the claim we reject, that social belief fixation is modular. If the feeling
that this man is dangerous influences our behaviour, though we can find no
supporting reason for the aversion, that seems to be a case of a belief to the
effect that he is dangerous, but a belief on which our acknowledged lack of
evidence makes no impact. Supposing that the deliverance of an input system
can trigger emotion, and hence behaviour, provides an alternative way of
seeing the matter, and one for which there is independent evidence. Someone
may experience fear, and even behave aversively, at the sight of a spider he
knows is harmless. Not all human action is routed through belief fixation
followed by practical reasoning.

One other thing favours our modest modularism. It offers an evolutionarily
plausible compromise between two competing constraints, the need for social
intelligence to be highly intelligent, and the need for it to solve problems in
real time. People do attempt to deceive us, they sometimes smile when they
mean us harm; and the costs to us of their success can be very high indeed.
So we cannot afford an automatic transition from the perception of a smile
to the belief that this is a friend and ally. Encapsulated mechanisms are
exploitable. On the other hand, smiles are sufficiently highly correlated with
friendly intentions for us not to want the belief system to work through all
the possible scenarios for deceptive intent every time we see a smile. For one
thing, we would have lost many valuable allies during the time it would take
us to come to a conclusion. Tagging the perception with an intentional marker
serves to push the belief fixation system in the direction of one conclusion
rather than another. Without strong countervailing pressure from other beliefs,
we shall conclude quickly and efficiently that this is a friend. But the inten-
tional marker always leaves room for such countervailing pressure, and for
the consequent rejection of the friendliness hypothesis.

VI Ways to make this more complicated

We have been arguing that the modularity of social intelligence is very like the
modularity in perception that Fodor and others have advocated, and not at
all a radical modularity of belief fixation. The picture we have presented has
been kept simple so as not to lose sight of the contrast between these two
options. But there are complications to the simple picture which might be
forced upon us by the empirical data, as well as some open questions. For
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example, we have been supposing for the sake of the argument that percep-
tion, or at least some very substantial part of it, is modular in Fodor’s sense.
That might turn out not to be quite right: perhaps there are ways to train
people not to be subject to the Müller–Lyer illusion, and other bits of evidence
for the influence of top-down processing on input analysis. Perhaps there are
also ways in which belief can influence the application of lower-level inten-
tional markers. So it may turn out that neither perception nor social
intelligence is strictly modular after all.

We could live with that. Our bottom line is that the evidence, such as it is,
for modularity in social intelligence is at best evidence for modularity at a level
prior to that of belief fixation. While we believe that perception and social
intelligence both exhibit something close to this kind of modularity, it is
entirely an empirical question as to how close the relation really is.

Secondly, we have suggested that the intentionality module is ‘second
order’, distinct from and causally posterior to modular perceptual systems.
That also might turn out to be a simplification. It might be that social markers
get applied at various stages of perceptual processing, and not simply when
perception has done its work. Again this would not bother us, for it would
not disturb our claim that the adapted mechanisms of social intelligence
generate subdoxastic representations rather than beliefs. If those mechanisms
exist, their relations to more general perceptual mechanisms will depend on
the nature of the outputs from perceptual systems, and the richness and
complexity of the social markers that get applied prior to social belief fixation.
To those issues we briefly turn.

A question that arises concerning an input module is ‘How rich are its
computations?’ If the concepts deployed in our visual beliefs are also deployed
in the outputs of visual perception, the visual perception modules could not
be encapsulated diachronically, even if they are synchronically. If ‘T-34 ahead!’
is amongst the representations a visual module can present to the central
processor for acceptance or rejection, the concepts we learn over our lifetime
– ‘teapot’, ‘white-crowned babbler’, ‘T-34’, and the like – would have to be
made available to the visual modules. Alternatively, one might suppose that
the outputs of the module (more precisely, the assembled structure of modules)
of visual perception are much more shallow. Perhaps (as Fodor seems to
suggest) only something like Marr’s 21⁄2-dimensional sketch is computed by
encapsulated processes. An analogous issue arises for our social intelligence-
module. Social beliefs can be extraordinarily complex, as when I believe that
you hope that she believes that I want this or that. It seems to us unlikely that
social intelligence adds markers that have anything like this sophistication;
they are more likely to be concerned with basic intentional-cum-emotional
indicators like ‘means me harm’, ‘is friendly’, ‘is angry’. A further possibility
is that the outputs use representational categories that are not part of folk
psychology at all. It might be objected that it is simply dogma on our part to
assume that the markers provided by the social intelligence module are rela-
tively impoverished. But our point is simply that, in line with Fodor’s own
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views on perceptual modularity, we should assume that the descriptive appa-
ratus available to the module is thin unless the evidence strongly suggests that
it is not. Refinements much beyond this would then be the product of the
unencapsulated belief fixation mechanism.

This claim about the modularity of social intelligence affects the options
for understanding the ways in which a person’s capacity to deal with the social
world can break down or fail to develop. It makes a great deal of difference
to our interpretation of these breakdowns whether we locate them at the level
of belief fixation or at the level of what we have been calling a ‘second-order
module’. In recent years, for example, a number of psychologists have
suggested that the central features of autism are the result of damage to a
‘theory-of-mind module’, the purpose of which is to enable the agent to formu-
late beliefs about the mental states of others.13 There are a number of reasons
why such a view is probably an oversimplification, but our proposal suggests
a new way of reading it. Up to now the assumption has been that the theory-
of-mind module fixes belief. But our suggestion is that it merely provides
intentional markers to the inputs which help to fix belief. Damage to such a
module would not in itself mean that the agent was unable to formulate
thoughts about thoughts – and indeed there is evidence that people with autism
do not suffer so pervasive a disability as this. But if people with autism were
impaired in their capacity to apply intentional markers to perceptual contents,
it would not be surprising if they were then less than fully competent at
forming beliefs about beliefs. Indeed, the often heard remark that people with
autism are ‘mindblind’ would be more appropriate on our model, which assim-
ilates social intelligence to perceptual processing, than it is on a model that
pictures autism as a disability of belief fixation.

Indeed, there is some evidence that autistic people’s disability with the 
social is more like a perceptual disability than it is like a disability in belief
fixation itself. Psychologists have studied people’s responses to filmed displays
of points of light, produced by having people in a darkened setting wear reflec-
tive patches on their joints and at other places on their bodies. Normal adults
can recognize the resulting display as indicative of a human figure, even with
very brief display times, and infants only three months old respond selectively
to them. And it is clear that this is a matter of the provision of intentional
markers, rather than of a modularized system for belief fixation. Seeing such
displays in the context of, say, a cartoon or mechanized presentation, we are
likely to imagine the pattern as indicative of intentionality, in much the 
way that we respond to Heider and Simmel’s shape patterns. But we may 
very well not believe that the movement is that of an intentionally-animated
human body.

Peter Hobson and colleagues studied the responses of autistic subjects to
such patterns. While the autistic subjects in Hobson’s experiment had no diffi-
culty recognizing human figures as well as various objects from the displays,
they were much less apt than controls to describe what the human figures were
doing in emotional terms (whereas normal subjects readily described a figure 
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as, e.g., ‘sad’), and were poor at judging the emotional states of the figures
when specifically asked to do so.14 Conceivably this could be because we have
a module that fixes our beliefs about people’s emotional states, and because
people with autism suffer damage to the module. Our argument throughout
this paper has been that the existence of such a belief fixing module is unlikely.
But if there is a second-order module which adds (among other things)
emotional markers, and if the module is damaged in autism, then autistic 
difficulty with emotion recognition would be explained without making
implausible assumptions about the modularity of belief fixation.

Finally, a word on our responses to fiction. We have argued that they are
not to be explained in terms of our coming to believe in the reality of the pain
or the love that the actor’s expression suggests. But the second-order module
we postulate would certainly be triggered by the perceptual inputs from such
a scene. What, then, of fictions in modes that deny us the relevant kind of
perceptual access, such as literature? The words we see and read would not,
presumably, trigger those same responses, at least not directly. If second-order
modules play a role here it might be via the subject’s mental imagery, serving
as a kind of intermediary between the linguistically encoded narrative and our
emotionally charged imaginings. Whether imagery can really play this role
depends on the answers to questions we cannot settle here about how much
overlap there is between perceptual and imagistic systems, and in particular
whether imagery retains perception-like connections with affect.15 Literary
theorists have disagreed on the role of imagery in our encounters with litera-
ture; our suggestion at this point is simply that the question should be treated
as partly one of empirical science.

VII Conclusion

So our responses to fiction, the cognitive illusions generated by our response
to the expression of emotion and intention, our anthropomorphizing responses
to animals, devices and illustrations, all support the supposition that social
intelligence depends on a module that takes its input from perceptual modules
and which itself feeds to central belief forming mechanisms. But believers in
the modularity of social cognition make an error when they claim that their
thesis entails the modularity of central systems. We have suggested that a more
modest thesis, involving second-order modules as input systems, is capable of
explaining what genuinely needs to be explained. Our beliefs about the social
are no more modular than are our beliefs about the shapes, sizes and colours
of things.16
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L. Cosmides and J. Tooby, “Origins of
Domain Specificity: The Evolution of

Functional Organization”

By establishing that domain-specific machinery is necessary to explain human
cognitive performance, psychologists who advocate modular or domain-
specific approaches have found themselves in an unanticipated situation.
Metaphorically speaking, it is as if they had laboriously built a road up one
side of a nearly impassable mountain range into unexplored terrain, only to
find themselves met at the top by a foreign road construction crew – evolu-
tionary functionalist researchers – who had been building a road upward to
the same destination from the far side of the mountains. Quite unexpectedly,
cognitive psychologists find their field intimately connected to a whole new
intellectual landscape that had previously seemed remote, unfamiliar, and all
but irrelevant. Yet the proliferating connections tying together the cognitive
and evolutionary communities promise to transform both fields, with each
supplying necessary principles, methods, and a species of rigor that the other
lacks. Although the sudden conjunction of these two communities has led to
the customary level of mutual misunderstanding, the long-run significance of
these developments is unmistakable. From this emerging integrated perspec-
tive, the domain-specific mechanisms or modules cognitive psychologists have
been studying can be readily recognized for what they are – evolved adapta-
tions, produced by the evolutionary process acting on our hunter-gatherer
ancestors (Cosmides and Tooby 1987).

Natural selection and ancestral environments

Viewed from a more encompassing scientific framework, the confluence of
these two research communities seems inevitable (Tooby and Cosmides 1992).
The human brain did not fall out of the sky, an inscrutable artifact of unknown
origin, and there is no longer any sensible reason for studying it in ignorance
of the causal processes that constructed it. Rather, the reliably developing
cognitive mechanisms that collectively constitute the architecture of the human
mind acquired their particular functional organization through the process of

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

539



evolution. The evolutionary history leading to modern humans consisted of a
step-by-step succession of designs modified across millions of generations, with
two independent forces – chance and natural selection – governing at every
point whether each new modification would be incorporated into our species-
typical cognitive architecture.

Although chance plays a delimited role in evolution and explains the exist-
ence and distribution of many simple and trivial properties, one thing cannot
be plausibly explained as the product of chance processes: complex functional
design (Williams 1966; Dawkins 1986; Pinker and Bloom 1990; Tooby and
Cosmides 1990a, 1990b). Random walks do not systematically build intricate
and improbably functional arrangements such as the visual system, the 
language faculty, or motor control. The only known explanation for the exist-
ence of complex functional design in organic systems is natural selection.
Therefore, the existence of any complexly functional species-typical cognitive
mechanisms must be related to the cumulative operation of selection (Dawkins
1986; Pinker and Bloom 1990), Necessarily, then, the design or functional
organization of the mechanisms present in our cognitive architecture reflects
the principles and logic of natural selection. Thus, cognitive psychologists, like
physiologists, are usually studying adaptations and their effects, and they can
find a productive new analytic tool in a carefully reasoned adaptationist
approach (e.g., Cosmides 1989; Cosmides and Tooby 1989, 1992; Freyd 1987;
Gallistel 1990; Gigerenzer and Hug 1992; Jackendoff 1992; Leslie 1987, 1988;
Marr 1982; Pinker and Bloom 1990; Ramachadran 1990; Rozin 1976; Sherry
and Schacter 1987; Shepard 1981, 1984, 1987a, 1987b; Shiffrar and Freyd
1990; Staddon 1988).

Natural selection operates through the testing of alternative designs through
repeated encounters with evolutionarily recurrent situations (long-enduring
adaptive problems). In our evolutionary history, design changes that enhanced
their own propagation relative to alternative designs were selected for – that
is, they caused their own successive spread until they became universal,
species-typical features of our evolved architecture.1 The systematic contribu-
tion of a design to its own propagation was the exclusive criterion, aside from
chance, that determined which design changes became incorporated into our
psychological architecture and which were excluded. Cognitive psychologists
need to recognize that in explaining or exploring the reliably developing organ-
ization of a cognitive mechanism, the function of a design refers solely to how
it contributed to its own propagation in ancestral environments. It does not
refer to any of the various intuitive or folk definitions of function such as
“contributing to the attainment of the individual’s goals,” “contributing to
one’s well-being,” or “contributing to society.” These other kinds of utility
may or may not exist as side-effects of a given evolved design, but they can
play no role in explaining how such designs came into existence or why they
have the organization that they do. The fact that sexual jealousy, for example,
may not contribute to any individual’s well-being or to any positive social 
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good is irrelevant in explaining why the cognitive mechanisms that reliably
produce it under certain limited conditions became part of our species-typical
psychological architecture (Daly, Wilson, and Weghorst 1982; see Tooby and
Cosmides 1990a, for a cognitive-functionalist analysis of emotions).

Evolution is a historical process, not a foresightful one. The evolved design
of modern organisms was caused by events in the past without regard to the
problems of the present. Natural selection is not a teleological process capable
of foreseeing the future and planning ahead for it. Our evolved mechanisms
were constructed and adjusted in response to the statistical composite of situ-
ations actually encountered by our species during its evolutionary history
(Symons 1992; Tooby and Cosmides 1990a). These mechanisms were not
designed to deal with modern circumstances that are evolutionarily unprece-
dented. By the same token, they cannot have been designed to solve all
potential problems under all possible circumstances either, because our species
did not encounter all problems under all circumstances. For humans, the situ-
ations our ancestors encountered as Pleistocene hunter-gatherers define the
array of adaptive problems our cognitive mechanisms were designed to solve,
although these do not, of course, exhaust the range of problems they are
capable of solving. These mechanisms should be well-engineered for solving
this ancestral array of problems – and not necessarily any more inclusive class.

For these reasons, there is no warrant for thinking that selection would have
favored cognitive mechanisms that are well-engineered for solving classes of
problems beyond those encountered by Pleistocene hunter-gatherers. The
widespread prejudice among cognitive psychologists for theories positing
evolved architectures that consist of nothing but general-purpose problem-
solvers is therefore unjustified. The fact that a mechanism can sometimes solve
novel modern problems can play no role in explaining how that mechanism
came to have the design it does, because natural selection had no crystal ball.
The fact that our evolved mechanisms sometimes operate successfully in
changed modem circumstances is a purely secondary consequence of their
Pleistocene-forged design. Moreover, well-engineered performance should 
be evident only under conditions that mimic relevant aspects of the ancestral
environments in which these mechanisms were designed to operate.

In short, the statistically recurrent conditions encountered during hominid
evolutionary history constituted a series of adaptive problems. These condi-
tions selected for a set of cognitive mechanisms that were capable of solving
the associated adaptive problems. An adaptive problem can be defined as an
evolutionarily recurrent problem whose solution promoted reproduction,
however long or indirect the chain of causation by which it did so. Thus,
although enhanced lifetime reproduction of self or kin was the ultimate func-
tional product of adaptations, their proximate functional product need not
have been closely associated with reproduction per se. A hominid life history
of successfully achieved reproduction (including kin reproduction) required
accomplishing the entire tributary network of preconditions and facilitations
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to reproduction in complex ecological and social environments. This entailed,
of course, distinct families of specialized information gathering, inference, and
decision making for our hominid ancestors. For this reason, humans are
equipped with a diverse range of adaptations designed to perform a wide
variety of tasks, from solicitation of assistance from one’s parents, to language
acquisition, to modeling the spatial distribution of local objects, to coalition
formation and cooperation, to the deduction of intentions on the basis of facial
expressions, to avoiding incest, to allocating effort between activities, to the
interpretation of threats, to mate selection, to object recognition.

When abstracted from their ancestral hunter-gatherer contexts, such varied
competences may seem (or be) disconnected from modern reproduction, and
the operation of our cognitive architectures may appear instead to be a
haphazard expression of activities of no particular evolutionary significance
or patterning. This is an illusion produced by considering the operation of our
psychological designs in isolation from their natural ancestral environments
and without having developed task analyses – what Marr called computational
theories – of the adaptive problems our mechanisms evolved to solve (Marr
1982). An understanding of the nature of the problems to be solved and a
model of the detailed structure of these ancestral contexts makes functional
sense of the otherwise puzzling design features of our problem-solving mech-
anisms (for an example of such functional clarification, see Profet (1992) on
pregnancy sickness as an adaptation to the teratogenic effects of toxins present
in plant foods in hunter-gatherer diets).

Of course, the design of our mechanisms should reflect the structure of the
adaptive problems our ancestors faced only to the extent that natural selec-
tion is an effective process. Is it one? Evolutionary biologists since Darwin
have been aware that selection does not produce perfect designs (Darwin 
1859; Williams 1966; Dawkins 1976, 1982; for a recent convert from the posi-
tion that organisms are optimally designed to the traditional adaptationist
position, see Lewontin 1967 vs. 1978). Still, because natural selection is a hill-
climbing process that tends to choose the best of the variant designs that
actually appear, and because of the immense numbers of alternatives that
appear over the vast expanse of evolutionary time, natural selection tends to
cause the accumulation of increasingly and impressively functional designs.
The eye and visual system are collections of cognitive adaptations that are
well-engineered products of the evolutionary process, and although they may
not be “perfect” or “optimal” – however these somewhat vague concepts may
be interpreted – they are better at vision than any human-engineered system
yet developed.

In consequence, not only is natural selection the only explanation for the
functional organization of our cognitive mechanisms, but these mechanisms
can be expected to be relatively well-engineered for solving ancestral adaptive
problems. Two related questions arise when one assesses particular hypotheses
about our cognitive architecture. The first is a learnability (or solvability) ques-
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tion: What kind of mechanisms are capable of solving the adaptive problems
our ancestors are known to have faced and regularly solved – domain-general
mechanisms or domain-specific ones? The second is an evolvability question:
If there is an adaptive problem that can be solved either by a domain-general
or a domain-specific mechanism, which design is the better engineering
solution and, therefore, the design more likely to have been selected for?

What’s wrong with domain-general mechanisms: 
an evolutionary perspective

Evolutionary biology provides a series of reasons why it is implausible and
unparsimonious to assume that the human mind is an equipotential, general-
purpose machine (Cosmides and Tooby 1987; Tooby and Cosmides 1992).

In the first place, the more important the adaptive problem, the more
intensely natural selection specializes and improves the performance of the
mechanism for solving it. This is because different adaptive problems often
require different solutions, and different solutions can, in most cases, be imple-
mented only by different, functionally distinct mechanisms. Speed, reliability,
and efficiency can be engineered into specialized mechanisms because there 
is no need to engineer a compromise between competing task demands.
Competing task demands can, however, be handled by separate, specialized
systems. This accounts for the pervasive empirical finding that natural selec-
tion tends to produce functionally distinct adaptive specializations, such as a
heart to pump blood, a liver to detoxify poisons, an immune system to defeat
infections. As a rule, when two adaptive problems have solutions that are
incompatible or simply different, a single general solution will be inferior to
two specialized solutions. In such cases, a jack of all trades is necessarily a
master of none because generality can be achieved only by sacrificing effec-
tiveness. Consequently, domain-specific cognitive mechanisms, with design
features that exploit the stable structural features of evolutionarily recurring
situations, can be expected to systematically outperform (and hence preclude
or replace) more general mechanisms that fail to exploit these features.

The alarm calls of vervet monkeys illustrate this point clearly. Vervets have
three major predators: leopards, eagles, and snakes. Each of these predators
requires different evasive action: climbing a tree (leopard), looking up in the
air or diving straight into the bushes (eagle), or standing on hind legs and
looking into the grass (snake). Accordingly, vervets have evolved cognitive
mechanisms that produce (and respond to) a different alarm call for each of
these three predators (Cheney and Seyfarth 1990). A single, general-purpose
alarm call (and response system) would be less effective because the recipients
of the call would not know which of the three different and incompatible
evasive actions to take.

Simply to survive and reproduce, our Pleistocene ancestors had to be good
at solving an enormously broad array of adaptive problems – problems that
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would defeat any modern artificial intelligence system. A small sampling
includes foraging for food, navigating, selecting a mate, parenting, engaging
in social exchange, dealing with aggressive threat, avoiding pathogenic con-
tamination, avoiding predators, avoiding naturally occurring plant toxins,
avoiding incest, and so on. A woman who used the same caste preference
mechanisms in choosing a mate that she used to choose nutritious foods would
choose a very strange mate indeed, and such a design would rapidly select
itself out. These different adaptive problems are frequently incommensurate:
They cannot, in principle, be solved by the same mechanism (Sherry and
Schacter 1987). Even a restricted consideration of hunter-gatherer tasks
suggests that it is unlikely that any single general computational system could
solve them all under ancestral conditions. (Indeed, it is difficult to imagine a
domain-general computational system that could solve any of them.)

For this reason, the human mind can be expected to include a number 
of functionally distinct cognitive adaptive specializations (for discussion, see
Chomsky 1980; Cosmides and Tooby 1987; Rozin 1976; Rozin and Kalat
1971; Sherry and Schacter 1987; Tooby and Cosmides 1992). Both empiri-
cally and theoretically, there is no more reason to expect any two cognitive
mechanisms to be alike than to expect the eye and the spleen, or the pancreas
and the pituitary to be alike. The argument frequently made by advocates of
domain-general mechanisms – that a hypothetical and yet-to-be-described
general problem-solving design would solve a larger class of unencountered
or rarely encountered problems – is irrelevant: What governs the course of
evolution and, therefore, the design of the human mind, is the statistical distri-
bution of past situations that our ancestors actually encountered over
evolutionary time.

In fact, we think the case can be put even more strongly. It is not simply a
matter of plausibility, of efficiency, or of evolution being more likely to have
produced a better system. Even simple learnability analyses show that it is 
in principle impossible for a human psychology that contained nothing but
domain-general mechanisms to have evolved, because such a system cannot
consistently behave adaptively: It cannot solve the problems that must have
been solved in ancestral environments for us to be here today. A small number
of domain-general mechanisms are inadequate in principle to account for
adaptive behavior. We have developed this argument in detail elsewhere
(Cosmides and Tooby 1987; Tooby and Cosmides 1992), so we won’t belabor
it here. Instead, we will summarize a few of the relevant points.

First, the ground rules for the argument.
1 To be a viable hypothesis about human cognitive architecture, the 

proposed design must in principle be able to solve its target problem. At a 
minimum, any proposed cognitive architecture had to produce minimally
adaptive behavior in ancestral environments – we know this because we 
are here today. Just as a hypothesized set of cognitive mechanisms underlying
language must be able to account for the facts of human linguistic behavior, so
too must any hypothetical domain-general cognitive architecture solve all the
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problems that were necessary to survival and reproduction in the Pleistocene.
If it can be shown that there are essential adaptive problems that humans must
have been able to solve in order to have propagated, and that domain-general
mechanisms cannot solve them, then the domain-general hypothesis fails. 
We think there are a number of such problems, including inclusive fitness
regulation, nutritional regulation, incest avoidance, sexual jealousy, predator
avoidance – at a minimum, any kind of information-processing problem that
involves motivation, and many others as well.

2 Because we know that the human mind evolved primarily by natural
selection, hypotheses about the design of the mind gain or lose plausibility
depending on whether the proposed design would have enhanced function-
ality under ancestral conditions – in biological terminology, whether it
produced an increase in “fit” behavior. Evolutionary biology suggests that
there is no principled reason for parsimony to be a design criterion for the
mind, particularly when it conflicts with increased functionality. Enhanced
functionality is the only criterion to which natural selection responds. (Equally,
there is no reason why chance evolutionary processes would create cognitive
architectures that operate according to simple, general, parsimonious princi-
ples either.)

A domain-general psychological architecture cannot guide behavior in ways
that promote fitness for at least three related reasons:

1 What counts as fit behavior differs from domain to domain, so there is
no domain-general criterion of success or failure that correlates with
fitness.

2 Adaptive courses of action can be neither deduced nor learned by general
criteria, because they depend on statistical relationships between features
of the environment, behavior, and fitness that emerge over many genera-
tions and are, therefore, not observable during a single lifetime.

3 Combinatorial explosion paralyzes any truly domain-general system when
encountering real-world complexity.

Reason 1: The definition of error is domain-dependent. For a domain-general
system to learn what to do, it must have some criterion of success and failure;
trial-and-error learning requires some definition of error. But there is no
domain-independent criterion of success or failure that is correlated with
fitness. This is because what counts as fit behavior differs markedly from
domain to domain. For example, suppose our hypothetical domain-general
learning mechanism guiding an ancestral hunter-gatherer somehow inferred
that sexual intercourse is a necessary condition for producing offspring.
Should the individual, then, have sex at every opportunity? In fact, such a
design would rapidly be selected out. There are large fitness costs associated
with incest, to pick only a single kind of sexual error. Given a potential partner
with a physique, personality, or resources that would normally elicit sexual
desire, the information that the potential partner is a family member must
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inhibit sexual impulses. Now suppose that this equipotential psyche had
somehow learned that avoiding sex with kin had positive fitness consequences.
How then should it generalize this knowledge about kin to other domains of
human activity? Should one, for instance, avoid any interaction with kin? 
This would be a mistake; selectively avoiding sex with kin has positive fitness
consequences, but selectively avoiding helping kin has negative fitness conse-
quences. With relatives as with so many other things, what counts as adaptive
error differs from domain to domain. In the sexual domain, error = sex with
kin. In the helping domain, error = not helping kin given the appropriate 
envelope of circumstances. In cooperative exchanges, error = being cheated,
which is paying a cost without receiving the benefit to which this entitles you.
When a lion is looking for lunch, error = offering yourself as an appetizer.
Because what counts as the wrong thing to do differs from domain to domain,
there must be as many domain-specific cognitive mechanisms as there are
domains in which the definitions of successful behavioral outcomes are incom-
mensurate. This simple point has been underappreciated because of the
traditional emphasis within cognitive psychology on the acquisition of know-
ledge rather than on the regulation of action. The brain evolved mechanisms
to acquire knowledge because knowledge was important in the regulation of
successful action.

Reason 2: Many relationships necessary to the successful regulation of action
cannot be observed by any individual during his or her lifetime. Asking the
question of how a domain-general architecture could acquire all the classes of
necessary domain-specific knowledge exposes a fatal weakness in domain-
general systems: They are limited to knowing what can be validly derived by
general processes from perceptual information. Domain-specific mechanisms
are not limited in this way. The world has a statistically recurrent domain-
specific structure (e.g., snakes and spiders are often venomous, objects are
solid, self-propelled entities are usually animals, the person who nursed you
is likely to be your mother, human speech is consistent with Universal
Grammar). A domain-general system has to bring the same general procedures
to bear on spiders, speech, objects, mothers, and self-propelled entities, and
so cannot initially treat any of these categories differently. Its subsequent oper-
ation is limited to what can be perceptually derived based on the application
of general procedures. In contrast, content-sensitive architectures can come
equipped with domain-specific procedures, representations, or representa-
tional formats prepared to exploit unobserved and indeed, individually
unobservable – sequelae to membership in various domains. The individual
need not observe or experience death from a snake bite to manifest a caution
around snakes, or run a long-term epidemiological study of the effects of
inbreeding to manifest a distaste for sex with siblings. Chomsky’s argument
from the poverty of the stimuli is of this kind: Perception alone cannot supply
infants with a list of constraints on the hypothesis space of potential human
grammars (Chomsky 1975; Pinker 1984).
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In its most general form, the difficulty of discovering what fitness conse-
quences various actions or choices in knowledge representation have is fatal
to any proposed domain-general system. The systematic statistical conse-
quences of many courses of action on fitness are not stably assessable for
several generations, and then only by evolutionary biologists, Divine Beings,
or – and this is the essential point – natural selection. Because the promotion
of fitness means differential representation of genes in subsequent generations,
the time at which the consequences of an action can be assessed is remote from
the time at which the action must be taken. Adaptive courses of action can be
neither deduced nor learned by general criteria alone because they depend 
on statistical relationships between features of the environment, behavior, 
and fitness that emerge over many generations and are, therefore, often not
observable during a single lifetime.

For example, how would a general-purpose mechanism situated in an 
ancestral hunter-gatherer ever discover that it should regulate behavior in
approximate accordance with Hamilton’s kin selection equation – that X
should help Y whenever Cx < rxy?2 When an individual sees a relative, there
is nothing in the stimulus array that tells her how much she should help that
relative. And there is no consequence that she can observe that tells her
whether, from a fitness point of view, she helped too much, not enough, or
just the right amount. Even worse, there is no one in the situation from whom
she could learn, because selection will have created mechanisms in her rela-
tives that cause them to encourage her to behave in ways that violate the above
equation. A design feature that causes X to help her brother will spread
through the population when it causes her behavior toward her full brother
to fall within the bounds dictated by Cx < 1⁄2 Bbrother. But selection should also
have designed mechanisms that cause her brother to encourage her to help
him whenever 1⁄2Cx < Bbrother as well as mechanisms that cause their mother to
encourage her to help her brother whenever Cx < Bbrother. In other words, what
counts as adaptively “correct” behavior is individual-specific. Learnability
theorists of language have pointed out that a learning theory is inadequate if
the information required for induction is absent from the child’s environment.
In the case of helping kin, the information is not only absent, but other indi-
viduals in the situation should be designed to try to socialize the child into
behaving in ways that are contrary to the very rule that the child must induce.

In contrast, natural selection can detect these statistical relationships. This is
because natural selection does not work by inference or simulation. It takes the
real problem, runs the experiment, and retains those design features that lead
to the best available outcome. Natural selection “counts up” the results of alter-
native designs operating in the real world, over millions of individuals, over
thousands of generations, and weights alternatives by the statistical distribution
of their consequences. In this sense it is omniscient – it is not limited to what
could be validly deduced by one individual, based on a short period of experi-
ence, it is not limited to what is locally perceivable, and it is not confused by
spurious local correlations. It uses the statistical foundation of the actual lives 
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of organisms, in the actual range of environments they encounter, under the sta-
tistical regularities they experience and, using alternative developmental pro-
grams leading to alternative designs, tests for the best solution. Some statistical
regularities may be picked up by some kind of inductive learning system, but
many can only be detected by the feedback process of natural selection.

Reason 3: Combinatorial explosion paralyzes any system that is truly
domain-general. A domain-general evolved architecture is defined by what it
lacks: It lacks any content, either in the form of domain-specific knowledge
or domain-specific procedures, that can guide it toward the solution of an
adaptive problem. As a result, a domain-general system must evaluate all alter-
natives it can define. Permutations being what they are, alternatives increase
exponentially as the problem complexity increases. By the time you analyze
any biological problem of routine complexity, a mechanism that contains no
domain-specific rules of relevance, procedural knowledge, or privileged
hypotheses could not solve the problem in the amount of time the organism
has to solve it (e.g., Carey 1985; Cosmides and Tooby 1987; Gallistel, Brown,
Carey, Gelman, and Keil 1991; Keil 1989; Markman 1989; Tooby and
Cosmides 1992). Indeed, a great deal of research on domain-specific reasoning
in children has been motivated by this concern (see Carey and Gelman 1991;
Keil 1989; Markman 1989; and volume 14 of Cognitive Science).

In short, although some mechanisms in the cognitive architecture may be
domain-general, these could not have produced fit behavior under Pleistocene
conditions (and therefore could not have been selected for) unless they were
embedded in a constellation of specialized mechanisms that have domain-
specific procedures, or operate over domain-specific representations, or both.

Evolutionary biology, computational theories, 
and learnability

An evolutionary perspective can aid research on domain specificity in cogni-
tive development in two ways. (1) It allows one to pinpoint the important,
long-enduring adaptive problems for which humans are most likely to have
cognitive adaptive specializations – that is, it suggests what domains it might 
be fruitful to investigate. (2) Evolutionary biology provides richly contentful
theories and relevant data that allow one to construct detailed computational
theories or task analyses of these domains. This facilitates both the experi-
mental investigation of the associated cognitive mechanisms and the
application of learnability (or, more generally, solvability) criteria.

Why a theory of adaptive function is important

Many psychologists study the mind without asking what it was designed to
do. Instead, they hope to uncover its structure by studying things it is capable

L. COSMIDES AND J. TOOBY

548



of doing. Playing chess, remembering nonsense syllables or long strings of
numbers, programming computers, doing college-level statistics – these are all
activities that we can do, but they are certainly not activities that our minds
were designed to do. It is highly unlikely that the cognitive architecture of the
human mind includes procedures that are dedicated to solving any of these
problems: The ability to solve them well would not have enhanced the survival
or reproduction of the average Pleistocene hunter-gatherer, and the perform-
ance of modern humans on such tasks is generally poor and uneven. In all
probability, a wide and somewhat idiosyncratic array of mechanisms and
knowledge bases is mobilized when we try to solve this kind of problem, so
the study of such problems is unlikely to lead us to carve nature at the joints
(Marr and Nishihara 1978).

There is a big difference between studying what a mechanism can do, and
what it was designed to do. Suppose you have to figure out how an appliance
works by studying some of the things it can do. I tell you that it can be used
as a paperweight, that you can use it to warm your hands on a cold day, and
that you can kill someone who is taking a bath by throwing it into the tub
with him. By studying each of these uses of the appliance, you will learn a
little bit about its structure – it is heavy enough to keep paper from blowing
away, it generates heat, it is electrical – but you won’t get a very coherent idea
of what it is or how it works. It sounds like an electrical, heat-generating
paperweight. Where do you go from here? Where is the heuristic value in this
research strategy?

Suppose, on the other hand, that I tell you that the appliance is a mech-
anism that was designed to toast slices of bread – it is a “toaster.” Your
research strategy for discovering how it works would be completely different.
Knowing its function, you would look for mechanisms that were specially
designed for fulfilling that function; in this case, you would look for mecha-
nisms that were specially designed for toasting bread. For example, you might
hypothesize that the appliance has elements that generate heat; that it has two
of these heating elements, one for each side of a slice of bread; that these
elements are parallel to each other; that the distance between them is a little
wider than the width of the average slice of bread; that it has a mechanism
for detecting when the bread is toasted and for turning off the heat, a mech-
anism that allows you to retrieve the toasted bread without burning your
fingers, and so on. It also tells you what features of the toaster are function-
ally arbitrary; the trait, “heavy enough to use as a paperweight,” is not
relevant to a toaster’s function – it is merely a byproduct of the fact that the
toaster’s functioning parts are heavier than paper.

Knowing what the appliance was designed to do – what its function is –
has enormous heuristic value because it suggests what design features it is
likely to have. It allows you to pinpoint the kinds of problems a toaster should
be very good at solving. Although it does not tell you the exact structure of
the mechanisms that solve these problems (will the toast be delivered by a pop-
up mechanism or by opening a door?), it suggests sharply focused hypotheses
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about the structure of these design features. It allows you to develop a task
analysis for that problem, or what David Marr would call a “computational
theory” for that problem domain: a theory specifying what functional char-
acteristics a mechanism for solving that problem must have (Marr and
Nishihara 1978; Marr 1982).

Evolvability constraints and computational theories

The most important contribution that evolutionary biology can make in the
study of domain-specific mechanisms is in the development of computational
theories of adaptive information-processing problems. Natural selection
theory is a theory of function: it allows one to pinpoint adaptive information-
processing problems that the human mind was selected to solve and therefore
should be good at solving. Because an adaptive problem and its cognitive solu-
tion – a mechanism – need to fit together like a lock and a key, understanding
adaptive problems tells one a great deal about the associated cognitive mech-
anisms. Natural selection shapes domain-specific mechanisms so that their
structure meshes with the evolutionarily stable features of their particular
problem domains. Understanding the evolutionarily stable features of problem
domains – and what selection favored as a solution under ancestral conditions
– illuminates the design of cognitive specializations. Although a computational
theory of an adaptive problem cannot, by itself, tell you the exact structure of
the information-processing mechanisms that solve the problem, it does suggest
what design features they are likely to have and places important constraints
on the family of possible mechanisms.

For example, the evolution of altruism, or helping behavior, was a puzzle
for evolutionary theory. How can a new design feature spread through the
population until it becomes species-typical if it causes an individual to harm
its own reproductive success – the number of offspring it has – in order to
increase another individual’s reproductive success? The individual who has the
new design feature is, by definition, selecting itself out.

In 1964, W.D. Hamilton provided an answer to this question. Using math-
ematical game theory, he showed that if an organism helps a kin member
whenever the cost to itself (in reproductive terms) is less than the benefit to
its kin member, discounted by the probability that the kin member shares the
same design feature, then that helping design can spread through the popula-
tion. Any design feature that causes an individual to help more than this – or
less than this – would be selected against. This constraint is completely general:
It is inherent in the dynamics of natural selection, true of any species on any
planet at any time.

This means that the cognitive programs of an organism that confers bene-
fits on kin cannot violate the [Cost to self < (Benefit to kin member) x
(coefficient of relatedness to kin member)] constraint of Hamilton’s kin selec-
tion theory. Cognitive programs that systematically violate this constraint
cannot be selected for. Cognitive programs that satisfy this constraint can be
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selected for. A species may lack the ability to confer benefits on kin, but if it
has such an ability, then it has it by virtue of cognitive programs that produce
behavior that respects this constraint. One can call theoretical constraints of
this kind evolvability constraints; they specify the class of mechanisms that
can, in principle, evolve (Tooby and Cosmides 1992).

The specification of constraints imposed by the evolutionary process – the
specification of an adaptive function – does not, in itself, constitute a complete
computational theory. Evolvability constraints merely define what counts as
adaptive behavior. Cognitive programs are the means by which behavior –
adaptive or otherwise – is produced. The important question a computational
theory must address is: What kind of cognitive programs must an organism
have if it is to behave adaptively?

Evolutionary biologists do not usually think of their theories as defining
information-processing problems, yet this is exactly what they do. For
example, Hamilton’s kin selection theory raises – and answers – questions such
as: How should the information that X is your brother affect your decision to
help him? How should your assessment of the cost to you of helping your
brother, versus the benefit to your brother of receiving your help, affect your
decision? Will the information that Y is your cousin have a different effect on
your decision than if you thought Y were your brother? In general, how should
information about your relatedness to X, the costs and benefits to you of what
X wants you to do for him, and the costs and benefits to X of your coming
to his aid, affect your decision to help X?

As these questions show, an organism’s behavior cannot fall within the
bounds of the constraints imposed by the evolutionary process unless it is
guided by cognitive programs that can solve certain information-processing
problems that are very specific. To confer benefits on kin in accordance with
the evolvability constraints of kin selection theory, the organism must have
cognitive programs that allow it to extract certain specific information from
its environment: Who are its relatives? Which kin are close and which distant?
What are the costs and benefits of an action to itself? To its kin? The organism’s
behavior will be random with respect to the constraints of kin selection theory
unless (1) it has some means of extracting information relevant to these ques-
tions from its environment, and (2) it has well-defined decision rules that use
this information in ways that instantiate the theory’s constraints. We are one
of the species that has evolved the ability to help kin. Consequently, we 
can be expected to have evolved mechanisms that are dedicated to solving 
such problems, and can therefore solve them quickly, reliably, efficiently, auto-
matically, effortlessly, and unconsciously. Trying to study domain-specific
processes without a detailed computational theory that is either derived from,
or at least compatible with, evolutionary biology would be like trying to study
language acquisition without knowing the grammar of any human language.

The development of detailed computational theories of adaptive problems
not only facilitates the experimental investigation of human cognition, but it
also lays the groundwork for conducting a learnability (or, more generally, a
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solvability) analysis (e.g., Pinker 1979, 1984; Tooby and Cosmides 1992;
Wexler and Culicover 1980). The fact that many adaptive problems are of a
very specialized kind suggests that many cognitive processes will be far more
specific than is usually assumed, even by psychologists sympathetic to a
domain-specific viewpoint. For example, evolutionary biology identifies a large
number of distinct problems posed by social life that learnability analyses indi-
cate must involve very different procedures for their solution. Rules that will
cause one to accurately detect cheaters in a situation of social exchange, for
example, do not map onto the rules of inference of the propositional calculus
(Cosmides 1989; Cosmides and Tooby 1992; Gigerenzer and Hug 1992). Nor
do they map onto rules for detecting violations of aggressive threats. For
example, a social contract has a different cost–benefit structure from a threat;
a social contract is not in effect unless both parties agree to it, whereas a threat
is a unilateral speech act; a social contract does not have a biconditional
entailment structure whereas a threat does; from the point of view of a single
actor, there is only one way of violating a social contract, whereas there are
two ways of violating a threat, and so on. Rules of inference for detecting
cheaters on social contracts cannot, in principle, detect bluffs and double-
crosses in situations of threat. Different rules are required for these different
domains: The “grammar” of social contracts is very different from the gram-
mar of threat. If someone were to propose a learning mechanism that accounts
for the acquisition of both social contract algorithms and threat algorithms,
their theory would have to meet stringent learnability criteria: Given the infor-
mational environment to which a child is exposed, this same mechanism would
have to induce two entirely separate sets of rules that act on very different
mental representations, plus metarules for when to apply each set of rules.
Developing computational theories of different social problem domains has
led us to believe that it is unlikely that “social cognition” will turn out to be
a unitary domain (Cosmides and Tooby 1989, 1992).

Notes

1 In certain situations two or more alternative designs can be stably maintained in
a population through frequency-dependent selection, as in the case of contagion-
retarding protein variation. However, natural selection in interaction with sexual
recombination tends to impose a specieswide uniformity in our complex adapta-
tions, providing an explanation for the existence of a universally shared human
nature (Tooby and Cosmides 1990b). Nonfunctional traits can vary freely, but the
developmental programs underlying our complex adaptations are constrained to
be virtually species-typical.

2 In this equation, Ci and Bi refer to costs and benefits to individual i, measured
as decreases and increases in i’s reproduction caused by the design feature in
question. rij – the coefficient of relatedness between individuals i and j – refers
to the probability that i and j share the same design feature by virtue of common
descent.
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S.P. Stich*, “Beliefs and 
Subdoxastic States”

It is argued that the intuitively sanctioned distinction between beliefs and
non-belief states that play a role in the proximate causal history of beliefs
is a distinction worth preserving in cognitive psychology. The intuitive
distinction is argued to rest on a pair of features exhibited by beliefs but
not by subdoxastic states. These are access to consciousness and infer-
ential integration. Harman’s view, which denies the distinction between
beliefs and subdoxastic states, is discussed and criticized.

This is a paper about a distinction, one which is deeply imbedded in our
everyday, pre-theoretic thinking about human psychology. It is a distinction
which separates beliefs from a heterogeneous collection of psychological states
that play a role in the proximate causal history of beliefs, though they are not
beliefs themselves. I will call the states in this latter collection subdoxastic
states. The distinction is an intuitive one, in the sense that when confronted
with descriptions of various imaginable states it is intuitively clear that some
are to be counted as beliefs while others are not. Part of my project in this
paper is to explain these intuitive decisions by noting some of the character-
istics that we ordinarily take beliefs to have which are lacking in subdoxastic
states. Since these intuitive judgements mark part of the boundary of our pre-
theoretic concept of belief, an explanation of the principles underlying the
intuitions may also be viewed as part of an analysis of our ordinary concept
of belief. It is this analytic project that occupies the early sections of the paper.

The intuitive distinction between beliefs and subdoxastic states is of interest
quite apart from the insight it promises into our ordinary notion of belief. For
much of the best recent work in cognitive psychology has ignored it. The impli-
cation, albeit a tacit one, of this neglect is that the distinction entrenched in
intuition does not mark a psychologically interesting boundary. Now there is
surely no a priori argument for rejecting this view. There is no reason to expect
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that every distinction embedded in our intuitive, pre-scientific psychological
concepts reflects a distinction worth preserving in an empirically motivated
psychological theory. What is unsettling about the neglect of the distinction in
recent psychology is that it seems to be largely undefended. The fact that pre-
theoretically we recognize the distinction as readily and consistently as we do
is surely evidence that there is some basis to the distinction, some property or
cluster of properties that we tacitly take account of when we classify a given
example as a belief or as a subdoxastic state. The properties which we exploit
in drawing the distinction may be psychologically uninteresting. But to be
confident of this one would like to know what these properties are and why
they can be safely ignored in psychological theorizing. The psychologists who
ignore the distinction do not inspire confidence in this way. Such limited philo-
sophical discussion as there has been of the topic is not reassuring. Gilbert
Harman (1973) sketches an argument that might be construed as an attack
on the psychological significance of the distinction. So construed, the argu-
ment is singularly unconvincing. The latter sections of my paper will be
devoted to a critique of Harman’s view. I will also try to defend the view that
the boundary between beliefs and subdoxastic states marks an important
psychological distinction which serious cognitive psychology neglects to its
peril.

1 Our first job is to focus in on the particular intuitive distinction I have in
mind. Let me begin a bit obliquely by noting the shadow the distinction casts
in traditional epistemology. It is obvious that many of our beliefs are inferred
from other beliefs. But, as epistemologists were quick to note, there must 
be some beliefs which are not inferred from others, on pain of circularity or
infinite regress. Since Descartes, the orthodox position has been to take as non-
inferential those beliefs that concern the believer’s own cognitive states – beliefs
about what she believes, what she seems to be perceiving, what she seems to
remember, etc. In recent years, the orthodoxy has been challenged by philoso-
phers who advocate a much more expansive account of non-inferential belief.
The expansionists urge that most perceptually-based beliefs about our imme-
diate surroundings are non-inferential. Thus, while agreeing that our beliefs
about our current cognitive states are non-inferential, the expansionists would
also include among the non-inferential beliefs the belief that there is a pig
nearby, if acquired under unexceptional circumstances as the result of a 
pig coming into view a few meters away. (cf., for example, Austin [1964:
115ff.] and Dretske [1969: 159]). We need not pause here to trace the moves
in the debate between the expansionist and the advocate of orthodoxy. For
our purposes it is important only to note that despite their differences, both
sides in the dispute recognize that some beliefs must be non-inferential. These
non-inferential beliefs may serve as the premises for inferences but not as the
conclusion. The class of non-inferential beliefs marks the boundary between
two different sorts of psychological states. On one side of the boundary are
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beliefs, both inferred and non-inferential. On the other side are the psycho-
logical states which, though not beliefs, are part of the causal process leading
to belief formation. Typically, epistemologists have been silent on the nature
and workings of the mechanisms which underlie belief formation. Their
silence, no doubt, was rooted in the sensible suspicion that the study of
subdoxastic mechanisms is more properly the province of psychology.

2 To sharpen our intuitive feel for the distinction between beliefs and
subdoxastic states, let us look at a few examples of the sort of states that fall
in the latter category. Consider first the offering of grammatical intuitions.
Given a few well-chosen examples of grammatical sentences and a few well-
chosen examples of ungrammatical ones, speakers are able to go on to classify
new examples as either grammatical or ungrammatical with impressive
consistency. This ability seems to be largely independent of previous formal
grammatical training. Naive subjects (particularly bright ones) quickly get the
point. On the other hand, the ability plainly does depend on some elaborate
and little-understood system of psychological states and processes which is
gradually built up in the process of language acquisition. Moreover, it seems
plausible to speculate that the psychological mechanisms which underlie the
offering of grammatical intuitions also play a central role in the much more
important business of speech production and comprehension. (For a general
discussion of grammatical intuitions see Stich [1971, 1975]; for some critical
reaction, see Chomsky and Katz [1974] and Graves et al. [1973].)

Now suppose that a grammatically naive subject has just been taught by
example to apply the labels “grammatical” and “ungrammatical.” We give the
subject a new sentence and ask whether or not it is grammatical. The subject
replies – and presumably believes – that it is grammatical. But if we ask him
how he made the judgement and came to hold that belief, he will be at a loss
to say. On hearing the sentence, he simply comes to believe that it is gram-
matical. The belief is non-inferential. There is, of course, a mechanism of some
complexity mediating between the subject’s hearing the sentence and the
formation of the belief that it is grammatical. And, while we know little in
detail about the workings of this mechanism, it is plausible to speculate that
the mechanism exploits a system of psychological states which serve to store
information about the grammar of the subject’s language.1 If this speculation
proves accurate, then these states which store grammatical information are a
prime example of subdoxastic states. They play a role in the proximate causal
history of beliefs, though they are not beliefs themselves. I have, of course,
given no argument that these states are not beliefs. My claim, rather, is that
this is intuitively obvious. After we have seen a few more examples of subdox-
astic states, I will try to dissect out those aspects of our concept of belief which
are responsible for the intuitions.

3 For a second example of subdoxastic states, let us attend to the compli-
cated matter of depth perception. Our ability to judge the relative distances
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of objects in our visual field rests on a bewilderingly complex set of factors.
Perspective, size, surface texture, the perception of edges and corners, occlu-
sion, illumination gradients and stereopsis all play a role. (For a survey of this
topic, see Haber and Hershenson [1973: chapter 13].) Some of the informa-
tion available to our depth perception mechanisms would appear to be
redundant. We can, for example, make depth judgements with one eye closed,
or about the objects in a painting. In both cases stereopsis is irrelevant. Julesz
(1970), in an interesting series of experiments, has shown that binocular
disparity alone is enough to bring about perception of depth. The experiment
employed random patterns of black and white dots in a 100 x 100 cell matrix.
The randomness of the patterns served to guarantee that no depth informa-
tion was conveyed by the patterns themselves. When two identical copies of
a random dot pattern are presented to a subject, one to each eye, no depth is
perceived. However, if a section of one copy of the pattern is displaced later-
ally, there is a clear perception of depth, with the moved section appearing
either in front of or behind the rest of the pattern, depending on whether it
was moved toward the nose or toward the ears. When a subject in Julesz’s
experiment is presented with a pair of dot patterns one of which has a later-
ally displaced section, he will report – and presumably believe – that some of
the dots seem to be in front of or behind the rest. Asked why he believes this,
he will be unable to say. Some dots just do look to be in front of the others,
and the belief that they do is non-inferential. Underlying the belief there is, no
doubt, a complex psychological mechanism which serves to measure the
degree of binocular disparity and to use this information in the production of
an appropriate belief about apparent relative depth. If, as seems inevitable, the
process leading from retinal stimulation to belief involves various psycholog-
ical states which represent features of the retinal images, then these states are
subdoxastic. Though they are causal antecedents of belief, there is a strong
intuitive inclination to insist that they are not beliefs themselves.

4 Let us look now at a final example of subdoxastic states. In a series of
experiments, E.H. Hess (1965; see also Hess 1975) presented male subjects
with a pair of almost identical photos of a girl. One of the photos had been
retouched by enlarging the size of the girl’s pupils. The subjects regularly
reported (and presumably believed) that the girl in the retouched photo
appeared more attractive. However, subjects were quite unable to say why the
girl in the retouched photo was more attractive; indeed, they were generally
unable to identify any specific differences between the original and retouched
photos. Their belief that the girl is more attractive in one photo than in the
other is non-inferential. Plainly, there is some cognitive mechanism which
detects the enlarged pupil size and which gives rise to the belief that one photo
is more attractive than the other. As in the previous examples, we know little
about the detailed functioning of this mechanism. However, it is plausible to
suppose that there are psychological states which serve to record information
about pupil size, and that these states play a role in the process that leads to
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belief formation. If so, these states are another example of subdoxastic states.
They play a role in the proximate causal history of beliefs, but there is strong
intuitive inclination to deny that they are beliefs themselves.

5 Having surveyed some examples of states that fall on the subdoxastic side
of the belief-subdoxastic state distinction, let us now consider what the basis
may be for our strong intuitive inclination to insist that the sorts of states we
have been describing are not beliefs. I think there are two rather different prop-
erties that we ordinarily take to be characteristic of belief and which are
lacking in the examples of subdoxastic states. The first of these is actually a
cluster of properties that revolves around the sort of access we ordinarily have
to the contents of our beliefs; the second might be characterized as the infer-
ential integration of beliefs. I will consider them in turn.

It is ordinarily the case, for typical or paradigmatic examples of belief, that
adult subjects can report the contents of their belief. Thus, if a subject is
psychologically (and physiologically) normal, inclined to be cooperative and
has no motivation to deceive us, then if she believes that p and is asked whether
p is the case, she will generally say that it is. (The subject must, of course, be
asked in a language she understands and she must be paying attention.
Hereafter I will take this to be built into the notion of asking.) Normal coop-
erative adult subjects can also tell us whether they believe that p, if we ask
them. The two abilities are distinct. Toddlers, for example, are able to assent
to p if they believe it, but are often not able to answer the question: “Do you
believe that?” Nonetheless, the two abilities run in tandem in normal adults,
and it is hard to believe that they are not intimately connected.

Both of these abilities are themselves associated with an ability to become
aware of or to be conscious of the contents of one’s beliefs. Suppose, for
example, that a subject believes that p but fails to satisfy one or another of
the additional conditions which, conjoined with belief, generally guarantee
that a subject will assent to p if asked. The subject may be temporarily para-
lyzed and thus unable to assent to anything. Or he may have a strong desire
to mislead his questioner, or simply wish to say nothing. Still, under these
circumstances, if we ask a subject whether p is the case, he will generally have
a certain sort of characteristic experience which, as best I can discover, has 
no standard description in English. Some philosophers have labelled the
experience “having the occurrent belief that p.” One might also describe the
experience as being aware that p or being conscious that p. Often, but perhaps
not always, the experience of having an occurrent belief is accompanied by
(consists in?) a perceived inclination to respond to the inquirer’s question, or
perhaps a response which is thought but not spoken. I do not propose 
to attempt any thoroughgoing phenomenological account of the experience of
having an occurrent belief. Nor, in fact, am I much concerned whether it is a
single sort of experience or a group of related ones. My point is the (I hope)
uncontroversial one that in typical cases of belief a subject will have a certain 
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sort of characteristic conscious experience when his attention is suitably
directed to the content of the belief. While little is known about the psycho-
logical mechanisms responsible for the experience of having an occurrent
belief, it is certainly plausible to speculate that the processes underlying this
conscious experience and the processes underlying a subject’s assent to a
proposition he believes (under normal circumstances) are in important ways
interconnected.

I have been claiming that access to the contents of our beliefs is a general
characteristic of beliefs. However, there is a prima facie exception to this gen-
eralization: viz. the unconscious beliefs that figure prominently in psychoana-
lytic theory. While I admit to some qualms about how seriously psychoanalytic
theory ought to be taken, I do not think I need take on all of psychoana-
lytic theory to defend the claims I want to make about a subject’s access to the
contents of her beliefs. For all of my claims can be construed as subjunctive
conditionals about what would happen (or would be likely to happen) 
if a subject were normal and otherwise suitably situated. And psychoana-
lytic theory can be viewed as postulating a psychological mechanism capable
of interfering with the ordinary process leading from belief to assent or to 
conscious awareness. So to protect our generalizations about access, we 
will have to add to the conditions in the antecedent of our subjunctive condi-
tion a clause specifying that there are no psychological mechanisms at 
work blocking the ordinary process leading from belief to assent or conscious
awareness.

Now one of the ways in which our first two examples of subdoxastic states
differ from beliefs is just that subjects have no access to them. People do not
assent to a statement of a rule of their grammar as they do to a statement of
the contents of a belief. Nor do they have any conscious awareness of the 
rules of their grammar. Indeed, if they did writing a grammar for a language
would be a far less arduous business. Similarly, we cannot report, nor are we
consciously aware of, any information about binocular disparity. Awareness
stops at the level of apparent comparative depth. Of course, it might be 
the case that these seemingly subdoxastic states are actually analogous to
subconscious beliefs in that subjects would have access to them but for the
intervention of some presently unsuspected psychological mechanism which
blocks the ordinary processes that facilitate access. This possibility reflects
something important about our pre-theoretic concept of belief. We might be
willing to classify an apparent subdoxastic state as a belief if there were
evidence that a subject’s access is actively blocked by some mechanism. But
we would, I think, be much more reluctant to countenance a special category
of beliefs which are by nature not open to conscious awareness or reporting.
It is quite central to our concept of belief that subjects under ordinary circum-
stances have access to their beliefs.

Our third example of a subdoxastic state poses some special problems. In
Hess’ experiments, subjects were not consciously aware that the pupils in one
photo were larger than those in the other. However, at least some of the
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subjects might have become aware of it if their attention were suitably directed
by, say, asking them. In this respect, the state which serves to represent the
information that one pupil is larger than another is analogous to quite unex-
ceptional cases of belief. For we are ordinarily quite unaware of most of our
beliefs, and the experience of having the belief occurrently is provoked when
our attention is directed to the content of the belief. I think this similarity
between unproblematic cases of belief and the state that we have hypothesized
in the Hess example is reflected in our intuition. For of our three examples,
our intuitive inclination to rule that a state is not a belief is weakest in this
case. But still, I think there is a strong inclination to resist calling the supposed
state a belief. An attractive alternative is to say that, though not a belief itself,
the state can give rise to a belief under certain circumstances. And thus the
role of drawing a subject’s attention to the relative size of the pupils is not
analogous to what goes on when, for example, we ask a subject (who has been
thinking about other things) what her mother’s maiden name is. In the latter
case, the question serves to make occurrent or bring to consciousness a belief
which the subject has had all along. In the former case, however, questioning
the subject about relative pupil size serves rather to instigate a process of belief
formation in which, perhaps, the pre-existing subdoxastic state plays a role.
If I am right that this alternative account of what is going on sits better with
our intuition than the account which assimilates the Hess case to standard
examples of belief, then we are left with the question of why this should be
so. What is it about the state in the Hess example that makes us reluctant to
treat it as a belief? I think the answer is that this state shares with our other
two examples of subdoxastic states a sort of inferential isolation from the body
of our accessible beliefs. This is the topic to which I now will turn.

6 It is characteristic of beliefs that they generate further beliefs via inference.
What is more, beliefs are inferentially promiscuous. Provided with a suitable
set of supplementary beliefs, almost any belief can play a role in the inference
to any other. Thus, for example, if a subject believes that p and comes to
believe that if p then q, he may well come to believe that q – and do so as the
result of an inferential process. In addition to the well-integrated network of
potential deductive inferences, beliefs also generate other beliefs via inductive
inference. So there is generally a huge number of inferential paths via which
a given belief can lead to most any other. It is in this sense that a person’s
beliefs are inferentially integrated.

Of course, the patterns of valid inference specified in deductive logic and
those that would be specified by a theory of inductive logic, if there were such
a theory, correspond in no simple way to the inference pattern exhibited
among a person’s beliefs. We do not, for example, draw all logically possible
inferences from our beliefs. Nor are all our inferences logically valid. What is
more, there is no reason to suppose a priori that each logically permissible
inference is in fact psychologically possible. And it is at least possible that
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there are some beliefs that cannot be acquired by inference at all. The non-
inferential beliefs of traditional epistemology would be an example, if indeed
there are any such beliefs. However, none of these caveats detracts from our
principal point about the inferential integration of beliefs: a person’s body of
beliefs forms an elaborate and interconnected network with a vast number 
of potential inference patterns leading from every belief to almost any other.

Now it is my contention that part of the reason we are intuitively inclined
to say subdoxastic states are not beliefs is that subdoxastic states, as contrasted
with beliefs, are largely inferentially isolated from the large body of inferen-
tial integrated beliefs to which a subject has access. This is not to say that
subdoxastic states do not play any role in inference to and from accessible
beliefs, but merely that they are inferentially impoverished, with a compara-
tively limited range of potential inferential patterns via which they can give
rise to beliefs, and a comparatively limited range of potential inferential
patterns via which beliefs can give rise to them. This last remark may strike
some as paradoxical. For, it might be protested, inference is a relation among
beliefs. It is (one of) the ways beliefs generate other beliefs. And subdoxastic
states are not beliefs, then they cannot be inferentially related to anything. The
objection is an important one, and its central claim – that inference is a rela-
tion exclusively among beliefs – is one that will play a prominent role in the
following section. For the moment however, let us grant that at least some of
the routes by which subdoxastic states give rise to beliefs or other subdoxastic
states can sensibly be taken to be instances of inference. Granting this assump-
tion, the picture I am urging is this. Consciously accessible beliefs are
embedded in an elaborate network of potential inferential connections with
each other. Each belief is a potential premise in inferences to a vast array of
further beliefs. By contrast, the inferential contact between subdoxastic states
and beliefs is specialized and limited. When a subdoxastic state can serve as
a premise in an inference to beliefs, there is only a narrow range of beliefs to
which it may potentially lead. Similarly, when a subdoxastic state can result
from an inference with beliefs among the premises, the range of beliefs 
that can serve in this capacity is restricted and specialized. If we think in terms
of a cognitive simulation model, the view I am urging is that beliefs form a
consciously accessible, inferentially integrated cognitive subsystem. Subdox-
astic states occur in a variety of separate, special purpose cognitive subsys-
tems. And even when the subdoxastic states within a specialized subsystem
generate one another via a process of inference, their inferential interactions
with the integrated body of accessible beliefs is severely limited. Similarly, in
all likelihood, the potential inferential connections among subdoxastic states
in different specialized subsystems are extremely limited or non-existent. To
get a clearer view of my thesis about the inferential integration of beliefs, let
us see how it applies to our examples.

Even on the most generous assumptions about the inferential potential of
the states which store grammatical information, these states are largely isolated
from the body of a subject’s beliefs. These grammar storing states can plausibly
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be assumed to play a role in the formation of beliefs about what has been said
to a person (that is, in the process leading from auditory stimulation to
comprehension). They can also, as we have seen, be presumed to play a role
in the process leading to formation of beliefs about grammatical properties
and relations – the sorts of beliefs expressed when an informant is offering
grammatical intuitions. And let us suppose that the processes involved are
properly viewed as inferential. Then the states storing grammatical informa-
tion do have some limited inferential links with beliefs. But let us compare the
state storing a grammatical rule with the explicit belief in that rule, say on the
part of the linguist.2 The linguist’s explicit belief can enter into an almost
endless number of inferences in which the competent speaker’s subdoxastic
state cannot participate. For example, if a linguist believes a certain general-
ization to the effect that no transformational rule exhibits a certain charac-
teristic, and if he comes to believe a given transformation which violates the
generalization, he may well infer that the generalization is false. But merely
having the rule stored (in the way that we are assuming all speakers of the
language do) does not enable the linguist to draw the inference. As another
example, suppose that, for some putative rule r, you have come to believe that
if r then Chomsky is seriously mistaken. Suppose further that, as it happens,
r is in fact among the rules stored by your language processing mechanism.
That belief along with the subdoxastic state will not lead to the belief that
Chomsky is seriously mistaken. By contrast, if you believe (perhaps even
mistakenly) that r, then the belief that Chomsky is seriously mistaken is likely
to be inferred. It would be easy enough to marshal many more illustrations of
the fact that the subdoxastic states which store grammatical information are
largely inferentially isolated from beliefs.

The situation is, if anything, clearer for the states which process and store
information about binocular disparity. Let us suppose that at a given stage in
the process leading to the formation of judgements about apparent compara-
tive depth in Julesz’s experiments, a certain subdoxastic state represents the
information that a dot on a certain part of the left retina is displaced five
seconds further toward the nose then the similarly situated dot on the right
retina. It may well be that a fairly complicated process of computation and
inference is required for the formation of this subdoxastic state. The process
might, for example, utilize and compare information about the distribution of
dots on each separate retina in order to locate “corresponding” dots. It may
also be the case that the process leading from our hypothesized subdoxastic
state to the belief that the displaced dot appears in front of the others is itself
inferential. On this assumption, the subdoxastic state does have a potential
inferential path to an accessible belief. However, it is a vastly more restrictive
path than beliefs have to each other. Contrast, for example, the subdoxastic
state representing the information that a dot on a certain part of the left retina
is displaced five seconds further toward the nose than the similarly situated
dot on the right retina, with the belief that the dot in that part of the retina
is displaced five seconds further toward the nose than the similarly situated
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dot on the right retina. The subdoxastic state can lead directly only to a
restricted class of beliefs about apparent relative depth (and perhaps some
other aspects of the visual field). By contrast, the belief, if supplemented by
suitable additional beliefs, can lead to just about any belief. There is also a
striking contrast in the ways other beliefs can lead to either the subdoxastic
state or the belief. A subject might inferentially acquire the belief (that a dot
on a certain part of the left retina . . . etc.) in numerous and diverse ways. He
may be told that the dot is thus displaced by a person he takes to be trust-
worthy, and infer that it is on the basis of his belief about what his informant
believes. Or he may infer it from beliefs formed by observing the readings on
certain test instruments. Indeed, most any other belief, say the belief that p,
can inferentially give rise to the belief about the relative positions of the retinal
dots, provided that the subject also believes a proposition of the form if p then
d, where d is the proposition that a dot on a certain part of the left retina 
. . . etc. On the other hand, it is most likely the case that there are no beliefs
at all which can lead inferentially to the subdoxastic state that represents the
fact that d.

This example illustrates with particular clarity a feature also exhibited by
our other examples of subdoxastic states. Part of the reason we are inclined
to insist that a subdoxastic state is not a belief is that if it were, we would be
unable to say what belief it was. That is, if a subdoxastic state were taken to
be a belief, there would be no sentence p such that inserting p in “S believes
that ______” would express the fact that the subject was in the state. The
problem is most noticeable when, as in our current examples, we contrast the
belief that p with the subdoxastic state which stores or represents the informa-
tion that p. Since the subdoxastic state differs so markedly from the belief both
in its potential inferential connections and in the subject’s potential access to
it, we are disinclined to identify the subdoxastic state with the belief. But surely
if a state representing the information that p is a belief at all, then it is the
belief that p.

These reflections bring us perilously close to a cluster of questions I have
been doing my utmost to sidestep. All this glib talk about a state representing
information may get one wondering just what it might mean to say that a state
“represents (the information (or fact) that) p.” I do not think it would be
unreasonable to duck the issue entirely in this paper. For though this talk of
states representing facts is difficult to explicate in a philosophically tolerable
way, it is surprisingly easy to master intuitively. Even the barest introduction
to work in artificial intelligence and cognitive simulation quickly leaves one
comfortable with attributions of content or representational status to the states
of an information processing theory. And nothing I want to say here presup-
poses anything more than the ability to use these locutions as they are
customarily used. Still, a hint of how I think such talk is to be analyzed may
be welcome. On my view, saying that a state in an information processing
system represents (the information (or fact) that) p is to say that the state bears
some interesting resemblances to the belief that p. Generally the resemblances
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are with respect to the ordinary causes of the state, or some part of the infer-
ential pattern of the state, or some other (non-inferential) effect the state 
may have (or some combination of the three). On this account, of course, the
belief that p represents (the information (or fact) that) p; indeed, it is the proto-
type of such representation. Also, on my account, many different states can
represent p, and can do so to varying degrees. There is no minimum degree
of resemblance required for us to say that a state represents p. Rather the
appropriateness of the content attribution depends on the particular needs and
interests of the project at hand. For more on all this, along with a theory about
what we are saying when we say a belief is the belief that p, see my From Folk
Psychology to Cognitive Science (1983).

Our third example of a subdoxastic state, the Hess example, is quite parallel
to the second. The subdoxastic state which serves to represent the informa-
tion that the pupils in one photo are larger than those in the other is
significantly less inferentially integrated with the body of a subject’s beliefs
than is the belief that the pupils in one photo are larger. As in the previous
case, the paths leading to formation of the subdoxastic state are relatively few
and involve only a restricted range of beliefs (if any), while almost any belief
can play a direct role in an inference to the belief that the pupils in one photo
are enlarged. Also, the subdoxastic state has a significantly more restricted set
of possible inferences in which it may play a role. The belief that the pupils
in the retouched photo are larger, along with the belief that, say, the earlobes
in that photo are much enlarged, may lead to the belief that several facial
features are enlarged. But one of Hess’ subjects who has the second belief is
unlikely to infer the belief that several facial features are enlarged (unless, of
course, the subdoxastic state gives rise to the conscious belief that the pupils
are enlarged). I think it is the inferential isolation of the state Hess’ subjects
are in that incline us to insist these are not to be counted as beliefs.

It is time to take stock of our discussion so far. I began by noting the distinc-
tion between beliefs and subdoxastic states, which is quite fundamental to 
our ordinary, pre-theoretic thinking about beliefs. With some examples of
subdoxastic states on hand, we began to look for the basis of our intuitive
distinction. My thesis has been that the distinction is drawn on the basis of
two characteristics which beliefs exhibit and subdoxastic states do not: access
to consciousness and inferential integration. In the course of our discussion
we also noted, if only to then ignore, a further principle embedded in our pre-
theoretic notion of belief, which ties together the concepts of belief and
inference. The principle holds that inference (at least when viewed as a rela-
tion among psychological states) is a relation exclusively among beliefs. This
principle, along with the features which divide beliefs from subdoxastic states,
accounts for the location in traditional epistemology of non-inferential beliefs.
For if the psychological states causally underlying a belief are not themselves
beliefs, then, according to the principle, the process leading to the belief cannot
be inference.
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7 This principle that inference is a relation among beliefs deserves a less 
cavalier look than has been accorded it so far. For the principle plays a central
role in an argument advanced by Gilbert Harman aimed at undermining the
belief-subdoxastic distinction. Harman notes that “a person determines how
far away a perceived object is by means of cues involving overlapping of
surfaces and texture gradients.” It is natural, he continues, “to describe this
as a matter of inference: given these cues the perceiver infers that objects are
in those places. The relevant cues make it reasonable to suppose the objects
are where the perceiver infers they are” (1973: 175). Harman anticipates the
objection that talk of perceptual inference uses the word “inference” in a
peculiar or special sense. He replies as follows:

Contemporary psychologists tend to view a perceiver as an information
processing mechanism, a kind of analogue computer. . . . Now it is
natural to describe mechanical information-processing machines – like
computers – as if they could calculate, figure something out, and infer
conclusions. When the perceiver is conceived as an information
processing device, it becomes natural to describe him in the same way.
Having extended the application of ‘inference’ so that computers can be
said to infer, it is natural to extend it so that perceivers are also said to
infer. (1973: 176–7)

The view that inference is involved in the formation of beliefs about our
perceived environment is hardly novel. Descartes would have had no objec-
tion. But Descartes would have balked at Harman’s view of the premises for
such inferences. In the Cartesian tradition, the premises are beliefs about
experience, about how things look to the subject. Harman rejects this posi-
tion. “One problem is that some aspects of the way things appear is
determined by inference. For example, reasoning involving overlap, texture
gradients, and perspective figures in the apparent location of objects. Inference
gets into the story before it is determined how things look” (1973: 180). Nor,
on Harman’s view, is there any more basic level of visual experience to serve
as data. “there does not seem to be any more basic level of visual experience
not itself the product of inference, and used itself as data for inference to how
things look” (1973: 181). Instead, Harman traces the path of inference all 
the way back to retinal stimulations, which, he holds, are the basic data for
perceptual knowledge.

I suggested that the data are the sensory stimulations that provide the
input to the complex information processing system composed of brain
and nervous system. Perceptual knowledge is based on inference from
sensory stimulations. (1973: 185)

Finally, Harman claims that retinal stimulations and other sensory stimulations
which serve as the basic data for perceptual knowledge are themselves beliefs.
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Does he [the perceiver] believe the data? He uses them in the way one
uses beliefs in inference. So there is some reason to say that he believes
them. (1973: 186)

Now note that if we go along with Harman, then the distinction between
beliefs and subdoxastic states seems to vanish. For on Harman’s view, both
retinal stimulations and all of the various psychological states that may be
inferred from them count as beliefs. If Harman is right, then our intuitive
psychological theory has led us seriously astray; many states which intuition
insists are not beliefs turn out to be beliefs nonetheless. Let us take a more
careful look at just how Harman reaches this surprising conclusion.

I think the argument is best viewed as proceeding in two stages, the first
defending the view that retinal stimulations and various other intuitively
subdoxastic states are inferentially related to beliefs and to each other, and the
second marshaling the principle that inference is a relation among beliefs. The
claim of the first stage, in turn, follows from a pair of contentions: first, that
it is appropriate to use the word “inference” in describing the processes leading
to beliefs about our perceived surroundings; and second, that it is suitable to
describe these processes as inferential “all the way down,” to the level of
retinal stimulations.

I am largely in agreement with the claim that there are inferential relations
among (intuitively) subdoxastic states, and among subdoxastic states and
beliefs. However, I think that Harman’s defense of this view deflects attention
from the important issue involved. In arguing that inference is involved in the
process leading to the formation of beliefs about our perceptual environment,
Harman stresses the “naturalness” of this use of the word “inference,” a natu-
ralness which is allegedly enhanced by the analogous use in talk of computers.
It seems to me, however, that the intuitive naturalness of this use of “infer-
ence” is largely beside the point. What is important is not whether perceptual
psychologists are using “inference” in some natural extension of its ordinary
sense, but rather whether the phenomena they are describing are in important
ways similar to more standard cases of inference. Similarly, the conjecture that
inferential processes extend all the way down the causal chain to the level of
retinal stimulations does not turn on the intuitive naturalness of calling these
processes “inferential.” What is at stake is whether these processes are in fact
in fundamental ways similar to the process of inference in standard cases.
These are empirical questions, not to be settled by appeal to ordinary usage.
What we need to know are the similarities and differences between the process
leading from sensory stimulation to belief, and the process (ordinarily called
“inference”) leading from pre-existing beliefs to the formation of new beliefs.
If the processes are sufficiently similar, the proposed extension of “inference”
to cover the former is a reasonable one. At present neither perception nor 
more standard cases of inference are sufficiently well understood in detail to
settle the question definitively. But recent efforts at modeling perception and
at modeling inference and problem solving make it plausible that the two
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processes may be essentially congruent.3 If this speculation proves true, it will
be an empirical result of enormous importance.

The discovery that inference is involved in perception down to the level of
sensory stimulation is not, of course, enough to show that intuitively subdox-
astic states are beliefs. To get this conclusion we need the additional premise
that inference is a relation among beliefs. Harman, as we saw in the last
displayed quote above, endorses the premise and draws the conclusion. It is
just here that my dissent comes in. Harman and I are agreed that inference
likely relates states far removed from anything we would pre-theoretically call
a belief. This fact, if it is a fact, puts considerable strain on our pre-theoretic
views about beliefs. Harman would accommodate the strain by rejecting our
intuitions on what sorts of states to count as beliefs. By contrast, I would
accommodate the strain by simply rejecting the principle that inference is a
relation exclusively among beliefs. By my lights, what the supposed discovery
of inference in deep perceptual processes shows is not that intuitively subdox-
astic states are actually beliefs, but rather that the domain of the inference
relation includes other states in addition to beliefs.

There is something misleading in the account I have just given of the 
difference between Harman and myself. For it sounds as though the dispute
is largely terminological. He wants to call subdoxastic states “beliefs” and
preserve the principle that inference relates only beliefs; I want to renounce
the principle and abjure the expanded extension of “belief.” The issue,
however, is not simply a terminological one. What is at stake is not whether
we bloat the extension of “belief” to preserve a principle, but rather whether
the old intuitive boundary between beliefs and subdoxastic states divides 
states which are in fact psychologically different. If it does, then following
Harman’s terminological proposal would simply make it necessary to coin
some new term to denote the class of states we are now intuitively inclined to
call “beliefs.”

Harman nowhere addresses himself to the issue of the psychological import-
ance of the belief-subdoxastic state distinction. However, in light of his
proposed extension of “belief” to cover subdoxastic states and his failure to
propose some other way of marking the boundary, I think we might plausibly
attribute to him the view that the distinction is of small importance. Yet, as
some of Harman’s further remarks illustrate, this is not an easy position to
espouse consistently. Thus consider the following dilemma. After defending
the view that various (intuitively subdoxastic) states, including retinal stimu-
lations, are beliefs because they are used “the way one uses beliefs in
inference,” Harman is in something of a quandary about just what beliefs they
are. Just what belief are we to attribute to a perceiver, for example, when his
retinal nerve is stimulated in a certain way? An obvious answer: the perceiver
believes that his retinal nerve is being stimulated in that way. But, sensibly
enough, Harman is unwilling to buy that answer. For he conjures the following
objection:
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The typical perceiver knows little psychology and nothing about stimu-
lations of his retinal nerve. So if the data needed for his inference includes
claims about his sensory stimulation, he does not believe the data. (1973:
185)

Harman is plainly troubled by the objection, and his efforts to parry are a bit
bizarre. The perceiver, he concedes, does not have any beliefs about sensory
stimulations. Rather, the sensory stimulations themselves are the beliefs; it is
they which serve as data for perceptual inference

The data are not about sensory stimulations, they are sensory stimula-
tions. . . .

Does [the perceiver] believe the data? He uses them in the way one
uses beliefs in inference. So there is some reason to say that he believes
them. (1973: 186)

Well and good. The stimulations are beliefs. But beliefs that what?

Sensory stimulations serve the perceiver as non-linguistic representations
which cannot be easily put into words. . . .

In order to be able to express in words the input data, we would have
to know much more about the system of representation and its func-
tioning than we now know. Even then it might be impossible to find
linguistic representations equivalent to the non-linguistic representations
constituted by sensory stimulation. (1973: 186)

Now it is pretty clear that part of this reply is simply a bluff. Harman
suggests that we might be able to express the content of sensory stimulations
if only we knew more about the workings of the system. But it seems pretty
plain that there is no sentence which will serve to express the content of retinal
stimulations any better than a sentence asserting that the retina is being stim-
ulated in a certain way. Indeed, any sentence S which might be proposed as a
candidate for expressing the content of retinal stimulations would face just 
the same difficulties as a sentence specifying how the retina is being stimu-
lated. To see this, consider for a moment why we are unwilling to say of a
perceiver whose retina is being stimulated in a certain way that he believes it
is being stimulated in that way. Harman’s reply is that the typical perceiver
knows little psychology and nothing about the stimulation of his retinal nerve.
But why are we so sure of this? The answer, I think, is that if we were to
attribute beliefs about retinal stimulations to a naive perceiver, they would be
a most peculiar species of belief, for they would be beliefs to which the
perceiver had no access and which were largely inferentially isolated from the
remainder of his beliefs. The same would be true if we instead attributed to
the perceiver the belief that p, where p is an arbitrary candidate for expressing
the content of a retinal stimulation.
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Harman’s other strategy for parrying the problem that we cannot find suit-
able content sentences for retinal stimulations is to retreat into mysticism. Even
after we have a decent understanding of the functioning of the perceptual
system, “it might be impossible to find linguistic representations equivalent to
the non-linguistic representations constituted by sensory stimulations” (1973:
186). Their content is so mysterious that it is not expressible by words. 
It is tempting here to ponder whether it could make any sense to say that a
state represents something, but there is no saying what it represents. I shall,
however, resist the temptation. For it seems to me that by retreating to this
doctrine of the unspeakable, Harman has conceded the principal point that I
have been arguing. The states for whose contents it is impossible “to find
linguistic representation” are just those that we have been calling subdoxastic.
So Harman has conceded, however obliquely, that there is an important differ-
ence between beliefs and subdoxastic states. But if Harman and I agree on 
this central point, serious differences remain in how to characterize the differ-
ence. For Harman, the difference turns on the linguistic expressibility of the
contents of subdoxastic states. On my view, however, there is no particular
problem in expressing the contents of subdoxastic states. Harman sees a
problem because he insists that subdoxastic states are beliefs. But it is more
than his intuition will tolerate to attribute to a subject the belief that p, where
p expresses the content of the state. Thus he must postulate some mysterious
unspeakable content. As I see it, the problem is not in finding a content
sentence, but in failing to distinguish subdoxastic states from beliefs. Once the
distinction has been recognized, we can assign quite ordinary contents to
subdoxastic states without worrying that the subject fails to believe the content
sentence.

We began this section with the concern that Harman’s arguments appeared
to show the distinction between beliefs and subdoxastic states is untenable. 
I think it fair to conclude that we have found the fault to lie not with the
distinction but with the argument trying to undermine it.

8 Where does all this leave us? I believe we have a plausible case for the
claim that the intuitive distinction between beliefs and subdoxastic states
marks a real and psychologically interesting boundary. Moreover, it is a
boundary that has been largely overlooked by contemporary work in cogni-
tive simulation. The reasons for this neglect are not obvious. It would be my
guess that, like Harman, many of those concerned with cognitive simulation
have been so captivated with the promise of inferential accounts of the mech-
anisms underlying perception and thought that they have failed to note the
rather special and largely isolated nature of the inferential processes between
beliefs and subdoxastic states. Failure to take seriously the matter of access to
consciousness likely has a less creditable explanation. Since the heyday of
behaviorism, conscious awareness has had a bad name among many psychol-
ogists. And the attitude seems to persist even among those who have come to
see behaviorism as a dead end.
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If it is granted that the belief-subdoxastic state distinction is (at least prima
facie) an important one, then we are left with an intriguing question. Why do
inferential integration and access to consciousness run in tandem? Is this just
an accident, or is there some underlying mechanism that accounts for both
phenomena? My hunch is that it is more than an accident. But if I have inferred
that view, the premises I have used are well hidden from conscious access.

Notes

1 Speakers might, for example, have a system of states which serves to store or
internally represent each of the rules of the grammar. In judging whether a
sentence is grammatical, the relevant psychological mechanism might try to
produce a derivation of the sentence at hand, aided by some efficient derivation
finding heuristic. If it succeeds, it sets in motion a process which ordinarily leads
to an affirmative answer. I think this sort of “analysis by synthesis” strategy,
though surely logical possibly, is wildly implausible as an empirical hypothesis.
It does, however, have the advantage of being a particularly straightforward
example of the way internally represented grammatical information might be
exploited. For a much more subtle illustration of how grammatical information
might be represented and utilized, cf. Winograd (1972).

2 There are a pair of assumptions being made here. First, I assume that the gram-
matical information stored by a competent speaker consists (in part) of rules of
the speaker’s grammar. As noted in fn. 1, I suspect this is a counterfactual
assumption. Second, I assume that grammatical rules can be formulated in such
a way that it makes sense to talk of believing a rule. More specifically, I am
assuming that appending a formulation of a rule to ‘S believes that ______’
produces a well-formed sentence.

3 For problem solving see Newell and Simon (1973); for some interesting work in
inference, cf. Anderson and Bower (1974: ch. 13); for an account of perception
which stresses the parallels between perceptual representation and inference on
the one hand, and representation and inference among beliefs on the other hand,
see Anderson and Bower (1974: ch. 8; also Moran (1973) and Pylyshyn (1973).
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27

G. Evans, “Semantic Theory and 
Tacit Knowledge”

I

In his provocative paper, Crispin Wright threw down several challenges to
philosophers like myself* who have been attracted by, and supposed them-
selves to be participating in, the enterprise of constructing a systematic theory
of meaning for a natural language. I shall have time this evening to take up
only one of his challenges, which I hope is the most important.

Professor Wright notes that those who are interested in constructing a
theory of meaning for a natural language insist that it should be what he calls
‘structure-reflecting’; as he says, all the interest of the theories or sub-theories
which have been constructed lies in their capacity to exhibit the meanings of
complex expressions as a function of the meanings of their parts. Wright then
takes this ‘structure-reflecting’ requirement in one hand and examines various
accounts of the nature of a theory of meaning which might justify its imposi-
tion. He considers three such accounts.

The first is this: the task of a theory of meaning is simply to enable one to
state what each of the sentences of a language means. He argues, I think
correctly, that if this is the task of a theory of meaning, the structure-reflecting
requirement cannot be justified; indeed, and here again I agree with him, in
the special case in which the language under study is included in the language
in which the theory is being stated, the single axiom schema:

True (�̄) � �

will serve the purpose.
(Like Professor Wright, I will concentrate upon theories of meaning which

yield statements of sentences’ truth-conditions, since, as he says, his scepticism
about theories of meaning arises equally for theories whose central notion is
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not that of truth but, say, warranted assertibility, or falsibility. In order to focus
upon the question of structure, we can assume that no question is being raised
about the empirical content of the theorems of the theory of meaning; the
question is about the significance of their being derived from a finite set of
principles (axioms) in a structure-revealing way.)

Wright argues that if the structure-reflecting requirement is to be justified,
a theory of meaning must in some way or other be regarded as a theory of
the competence of speakers of the language, but in what way? We can say that
the theory states something which speakers of the language tacitly know, but
what does this mean? Two interpretations provide the second and third
accounts which Wright considers. One he finds relatively weak, and accept-
able, but unable to justify the requirement; the other he finds inadequately
explained and open to serious objection.

According to the weak sense of ‘tacit knowledge’, ‘to attribute implicit
knowledge of such a “theory” . . . is to do no more than obliquely to describe
their behaviour; it is to say that they behave in just the way which someone
would behave who successfully tried to suit his behaviour to . . . an explicit
statement [of the theory]’.1 Let us call two theories of meaning which attribute
the same meanings to sentences of a language – which agree in their theorems
– extensionally equivalent (by analogy with the notion of extensional equiva-
lence applied to grammars). According to Wright, to suit one’s behaviour to
a theory of meaning is to suit one’s behaviour to its theorems. Consequently,
if the behaviour of native speakers is the same as one who suits his behaviour
to the explicitly formulated theory T, it is the same as one who suits his behav-
iour to an explicit statement of any extensionally equivalent theory T. Hence,
native speakers tacitly know all extensionally equivalent theories, whether
those theories discern different structures in native sentences or, in the case of
a theory formulated with a single axiom schema, do not discern structure in
their sentences at all. So, while this weak notion of tacit knowledge is perfectly
clear, it does not provide one with the basis for preferring one extensionally
equivalent theory to another.

We come then to the third account which Wright considers. It would be
quite unfair to complain that Wright did not make this third option terribly
clear, for it is one of his points that is not very clear. But in the absence of an
explicit statement, we must rest content with hints. The notion of tacit know-
ledge is richer, and allows for the idea of ‘unconscious deployment of
information’, it is also capable of figuring in an explanation of a speaker’s
capacity to understand new sentences. Though this indicates the kind of direc-
tion in which Wright thinks one who seeks to justify the structure-reflecting
requirement must be pushed, he expresses doubt about whether a genuine
explanation could be provided by the use of the notion of tacit knowledge; to
invoke tacit knowledge of a theory of meaning to explain a speaker’s capacity
to understand new sentences is vacuous, in the way in which explanations
invoking the notion of a universal are vacuous. Secondly, he suggests that any
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such rich notion of tacit knowledge of a theory of meaning is only dubiously
consistent with Wittgenstein’s rule-following considerations:

the thesis seems to involve thinking of mastery of the language as
consisting in (unconscious) equipment with the information which
systematically settles the content of so far unconstructed and unconsid-
ered sentences. Such a conception is far from patently coherent with the
repudiation of the objectivity of sameness of use involved in the scepti-
cism about investigation-independence sketched above.2

Though it is not my intention to focus on this aspect of his paper, I am
unsure how Wittgenstein’s considerations, at least as interpreted by Wright,
can threaten this, as yet unborn, third option. Professor Wright says that
Wittgenstein’s rule-following considerations:

do not . . . impugn the legitimacy of at least the most basic purpose with
which such a theory might be devised: that of securing a description of
the use of . . . the object language of such a kind that to be apprised of
that description would be to know how to participate in the use of . . .
the language.3

Someone who knows a finite theory for an infinite language is in some sense
in possession of information which settles in advance (allows him to predict)
the meanings of as yet unconstructed sentences. It is unclear to me why those
who wish to argue that speakers of an infinite language tacitly know a finite
theory of meaning need suppose the theory to determine the meanings of
unconstructed sentences in any stronger, or more objectionable, sense than the
one Wright implicitly accepts in the passage I have just quoted.

However good or bad the reasons for Wright’s pessimism might be, he
certainly threw down a challenge, and I want to take it up. I want to try to
explain how the structure-reflecting requirement might be justified. But I must
immediately mention two limitations on my attempt. I do not pretend that it
is the only possible way of replying to Professor Wright’s challenge, nor do I
think that it would command universal assent among theorists of meaning.
For example, I am fairly sure that Donald Davidson would dissent from it,
since, contrary to what Wright suggests, he has conspicuously avoided refer-
ence to the psychological states of language users in his explanation of the
nature of a theory of meaning. Second, I propose to do merely what I say: to
defend the enterprise on which the structure-reflecting requirement is a
constraint. I do not propose to defend the claim that philosophical insights
and benefits accrue from taking the enterprise seriously.

Those who have followed recent debates in grammatical theory will be
aware that Wright’s challenge to the theorist of meaning is very similar to
Quine’s challenge to the grammarian:
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Implicit guidance is a moot enough idea to demand some explicit
methodology. If it is to make sense to say that a native was implicitly
guided by one system of rules rather than another, extensionally equiv-
alent one, this sense must link up somehow with the native’s dispositions
to behave in observable ways in observable circumstances.4

However, in a way Wright’s challenge is more radical, because it is not possible
to formulate even a merely extensionally adequate grammar by the use of a
single axiom schema. But this idea, that all a semantic theorist needs to say
about English in English can be encapsulated in a single axiom scheme, must
surely lead us to begin upon our task of meeting the challenge with a convic-
tion that it can be met. Can it seriously be suggested that there is nothing to
be said about the semantics of specific construction – of adverbs, tense,
modality, intensional contexts, pronouns, quantifiers, proper names, definite
descriptions, and the like? A good deal has already been said on these subjects
by Frege, Russell, Davidson, Geach, Dummett, and many others, and though
I can detect deficiencies in this work, they do not lead me to think that there
are simply no questions of the kind these theorists are attempting to answer.
Wright has criticized semantic theorists for ignoring the ideas of ‘the most orig-
inal philosophical thinker of the twentieth century’, but it is surely equally
deplorable if students of those ideas act as intellectual Luddites, dismissing the
entirety of a sophisticated and developing intellectual tradition without a
detailed consideration of its findings, and an alternative account of the enter-
prise to which the obviously compelling distinctions and observations it
contains do properly belong: I do not say that Wright would himself join, or
even encourage, the fanatics wrecking the machines, and I am prepared to
concede that his challenge has not been squarely faced, but I should have liked
to see a little more evidence that the questions he posed were ‘expecting the
answer “Yes”’, rather than ‘expecting the answer “No”’.

II

Let us begin by considering a little elementary and finite language which con-
tains ten names, a, b, c, . . . and ten monadic predicates F, G, H, . . .; in all, the
language has 100 possible sentences. I consider this case partly for simplicity,
but also in order to stress that the structure-reflecting requirement has nothing
whatever to do with finiteness. The fact that a language has an infinite num-
ber of possible sentences is a sufficient but not necessary condition of its having
semantically significant structure, as our little language will illustrate. (It is
unfortunate that Chomsky’s writings have led people to equate the creativity
of language use with the unboundedness natural languages display. Linguistic
creativity is manifested in the capacity to understand new sentences, and the
speaker of a finite language such as the one I have described can manifest it.)
I want to consider two possible theories of meaning for this language. T1 has
100 axioms; one for each sentence of the language. Examples would be:
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Fa is true iff John is bald
Fb is true iff Harry is bald
. . .
Ga is true iff John is happy
Gb is true iff Harry is happy.

T1 treats each of the sentences as unstructured. T2 on the other hand, has
twenty-one axioms – one for each ‘word’ of the language, and a general,
compositional one. Ten of the axioms are of the form:

a denotes John
b denotes Harry

and ten are of the form:

An object satisfies F iff it is bald
An object satisfies G iff it is happy.

The compositional axiom is:

A sentence coupling a name with a predicate is true iff the object denoted
by the name satisfies the predicate.

One can derive from these twenty-one axioms a statement of the truth condi-
tions of each of the 100 sentences of the language – the very statements which
T1 takes as axioms. T2 treats a sentence like Fa as structured; it discerns two
distinct elements in it: the name a and the predicate F. Thus, T1 and T2 are
extensionally equivalent in our sense, and our question is: what can be meant
by saying that the practice of speakers of the language shows that one of these
is to be preferred to the other, or equivalently, that they tacitly know one of
these theories rather than the other?

It is tempting to answer this question by saying that T1 is a theory tacitly
known by someone who has had to receive training with, or exposure to the
practice with, each one of the 100 sentences taken individually – someone 
who had not realized, or who could make no use of the fact, that the same
expressions occur in different sentences – whereas T2 is tacitly known by
someone who has the capacity to understand new sentences of this simple
subject-predicate form (e.g. Kc), provided that he has been exposed to the
practice with a sufficiency of sentences containing the name c and the predi-
cate K. However, though this contains the essence of the answer, it will not
do as it stands, since it may reasonably be objected that T1 also comprises a
statement of what Kc means, so that someone who tacitly knew T1 would be
able to understand it.

I suggest that we construe the claim that someone tacitly knows a 
theory of meaning as ascribing to that person a set of dispositions – one 
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corresponding to each of the expressions for which the theory provides a
distinct axiom. In the case of T1, it is easy to see what these dispositions are:
one tacitly knows T1 iff one has 100 distinct dispositions, each one being a
disposition to judge utterances of the relevant sentence type as having such-
and-such truth conditions. It is more difficult to specify the dispositions which
tacit knowledge of T2 requires of a speaker, because they are interconnected.
The only judgements which we are prepared to ascribe to speakers are judge-
ments about the truth conditions of whole sentences – this, of course, is why
we must speak of the knowledge of the axioms being tacit. However, if the
subject tacitly knows T2 we shall regard any such judgement as the exercise
of two distinct dispositions. Consequently, the dispositions which tacit know-
ledge of T2 requires can never be manifested singly. The dispositions must be
interdefined, but though this makes the task of specifying the dispositions more
difficult, it does not make it impossible.

For example we might say that a speaker U tacitly knows that the denota-
tion of a is John iff he has a disposition such that:

(�	) (��) if
(i) U tacitly knows that an object satisfies 	 iff it is �

(ii) U hears an utterance having the form 	�a
then U will judge the utterance is true iff John is �.

Connectedly, we say that a speaker U tacitly knows that an ‘object satisfies F
iff it is bald iff he has a disposition such that:

(�x) (��) if
(i) U tacitly knows that the denotation of � is x,

(ii) U hears an utterance having the form F ��,
then U will judge that the utterance is true iff x is bald.

In these formulations, ‘�’ is a universal substitutional quantifier, with vari-
ables having the following substitution classes: 	, names of predicate
expressions of the (object) language; �, names of names of the (object)
language; �, predicate expressions of our language (the metalanguage); and x,
proper names of our language.

Now, it is essential that the notion of a disposition used in these formula-
tions be understood in a full-blooded sense. These statements of tacit
knowledge must not be regarded as simple statements of regularity, for if they
were, anyone who correctly judged the meanings of complete sentences would
have a tacit knowledge of T2. When we ascribe to something the disposition
to V in circumstances C, we are claiming that there is a state S which, when
taken together with C, provides a causal explanation of all the episodes of the
subject’s V-ing (in C). So we make the claim that there is a common explana-
tion for all those episodes of V-ing. Understood in this way, the ascription of
tacit knowledge of T2 does not merely report upon the regularity in the way
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in which the subject reacts to sentences containing a given expression (for this
regularity can be observed in the linguistic behaviour of someone for whom
the sentence is unstructured). It involves the claim that there is a single state
of the subject which figures in a causal explanation of why he reacts in this
regular way to all the sentences containing the expression. Tacit knowledge of
T2 requires that there should be twenty such states of the subject – one corre-
sponding to each expression of the language which the theory treats separately
– such that the causal explanation of why the subject reacts in the way that
he does to any sentence of the language involves two of these states, and any
one of the states is involved in the explanation of the way he reacts to ten
sentences containing a common element.

The difference between the ascription of tacit knowledge of T1 and T2
can be brought out diagrammatically, with the diagrams representing two
extremely abstract and schematic psychological models of a subject’s capacity
to understand sentences. Tacit knowledge of T1 and T2 is incompletely repre-
sented in Figs. 27.1 and 27.2 respectively. Forget about the dotted lines for a
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moment. You will observe that in the first model, there are two independent
links between the speech-analysing device and the subject’s store of knowledge
of John (and in a full representation there would be ten such independent
links), whereas in the second model, there is just one link between the speech-
analysis device and the subject’s store of knowledge of John. The dotted lines
are intended to indicate what happens when the subject hears the sentence Fa.
If you imagine dotted lines drawn to trace the consequences of the subject’s
hearing the sentence Ga, you will observe that in the former case they will
not, and in the latter case they will, share a pathway with the dotted line
already on the diagram. This is a representation of the fact that in the former
case there is not, and in the latter case there is, a common factor which must
be invoked in the explanation of the speaker’s reaction to the two sentences.

It appears to me that there is a clear empirical difference between these 
two models of competence, and hence between tacit knowledge of T1 and T2
interpreted in the way I have suggested.

The decisive way to decide which model is correct is by providing a causal,
presumably neurophysiologically based, explanation of comprehension. With
such an explanation in hand, we can simply see whether or not there is an
appeal to a common state or structure in the explanation of the subject’s
comprehension of each of the sentences containing the proper name a.
However, even in the absence of such an explanation, we can have very good
empirical reasons for preferring one model of competence to the other.

In the first place, we can examine the way in which the dispositions to react
to sentences (the capacity to understand them) are acquired. We might find
that the acquisition of the language progressed in quite definite ways, and
involved a subject’s acquiring the capacity to understand sentences he had
never heard before. For example, suppose a subject had progressed in his
mastery of the language to the point where he understood all of the sentences
which could be constructed from the vocabulary a, b, c, d, e, and F, G, H, I,
J. Suppose further that he is exposed to the sentences Ff and Gf in surround-
ings which, or with instructions which, made it clear what they mean. Whether
this exposure leads to his acquiring the capacity to understand new sentences,
and which new sentences he was able to understand, would cast very consid-
erable light upon the structure of his competence with the language, both
antecedent and subsequent to the introduction of new vocabulary.

If he acquired the capacity to understand the sentences Hf, If, Jf, never
having heard them before (and no others), this would strongly confirm the
second model of his competence, for this is exactly what it predicts. On the
second model, the understanding of these sentences is consequential upon 
the subject’s possession of dispositions specific to the expressions H, I, J, and
f. Further, if the second model is correct, the subject’s understanding of the
fragment of the language without the new name f showed that he possessed
the first three relevant dispositions, while the exposure to just two sentences
containing the name f can suffice for the establishment of the fourth, provided
the circumstances are such that it is clear what those sentences mean. 
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So, according to the second model, all the ingredients of understanding of
some sentences are present before any of them have been heard, and they are
specifically the sentences Hf, If, Jf.

The first model generates no predictions as to the understanding of unheard
sentences. According to it, the understanding of each sentence is a separate
capacity, and there is absolutely no reason why the inculcation of competence
in the two sentences Ff and Gf should induce competence with any others. If
it does so, this can only be accommodated on the first model by additional
postulates, but why light dawns on the particular sentences Hf, If, ff, rather
than Li or Mj, must be left totally unexplained.

Thus, we can see more clearly what bearing the capacity to understand new
sentences has upon the choice between T1 and T2. The fact that someone has
the capacity to understand the unheard sentence Hf does not refute the ascrip-
tion to him of tacit knowledge of T1 outright – it just makes the ascription
extremely implausible.

Evidence of a parallel kind can be derived from the way in which compe-
tence is lost. Suppose a subject is such that, if he loses his competence with
any sentence of the form 	�a (while retaining his competence with some
sentences of the form 	��), he simultaneously loses his competence with every
sentence of that form. This would also favour the second model of the subject’s
competence, since this is, once again, what that model predicts. On the first
model, however, it is inexplicable why the loss of the capacity to understand
one sentence should drag the comprehension of other sentences with it.
(Evidence of this kind would be equally valuable whether the loss of compe-
tence was simply due to the subject’s forgetting the meanings of words, or to
brain damage.)

There is evidence of a third kind which might be used to decide between
the models, since they carry with them different accounts of sentence percep-
tion. The second model requires that the subject perceive the sentence Fa, for
example, as structured, that is to say, as containing the expression a. There is
a clear difference between perceiving a sentence which does in fact contain the
expression a, and perceiving a sentence as containing the expression a.
Consequently, we can regard as relevant to the decision between the two
models the various psychological tests which have been devised for identifying
perceived acoustic structure, for example, the click test originally devised by
Ladefoged and Broadbent.5

Thus, it seems to me that Crispin Wright’s challenge can be met. It is
possible to link tacit knowledge of one theory (rather than one of its exten-
sionally equivalent rivals) to ‘the native’s dispositions to behave in observable
ways in observable situations’. But to do this, one must look further than just
to the dispositions to respond to, or to use, whole sentences. It is possible that
the scepticism which Wright expresses is due in a small way to the mistaken
thought that facts of native usage which bear upon the content possessed by
whole sentences are all the facts to which a theory of meaning can or need 
be sensitive.
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Bearing in mind the interpretation of ‘tacit knowledge’ which I have
proposed, let us briefly consider infinite languages. What would be involved
in the tacit knowledge of the theory for such a language which is formulated
with the use of a single axiom schema?

An axiom schema is not a theory; it is a compendious specification by their
syntactic form of the sentences which do constitute the theory. In the case 
of an infinite language, there are an infinite number of such sentences.
Someone would possess tacit knowledge of such a theory only if he possessed
an infinite number of distinct linguistic dispositions: one corresponding to each
of the sentences of the language. This we know no one can possess. I have
concentrated upon the more challenging case of a finite language because it is
important to stress the point that there can be compelling evidence that
someone does not possess a battery of distinct dispositions other than the fact
that no one can possess them, so that we may want to do for a speaker of a
finite language what we are forced to do for a speaker of an infinite language.

Infinity in language results from recursiveness; syntactic and semantic rules
which operate upon their own output. A standard clause for the recursive
element ‘and’ runs like this:

A sentence of the form S�‘and’�S′ is true iff S is true
and S′ is true

Generalizing the procedure used earlier, we can say that a speaker U tacitly
knows this principle iff he has a disposition such that:

(�S) (�P) (�S′) (�P′) if:
(i) U is disposed to judge that S is true iff P
(ii) U is disposed to judge that S′ is true iff P′

(iii) U hears an utterance having the form S�‘and’�S′,
then U will judge that the utterance is true iff P and P′.

(The substitution classes for the variables S and S′, and P and P′, are names
of sentences of the object language, and sentences of the metalanguage, respec-
tively.) More difficult is the clause for an existential quantifier. It might run:

A sentence of the form ‘(∃x)’�	 is true iff there is something y such that,
letting � be its name, the sentence 	�/x is true.

This is a simplified ‘Fregean’ clause for an objectual quantifier.6 ‘	�/x’ abbre-
viates ‘the result of substituting � for all occurrences of x in 	’. Then we can
say that U tacitly knows this principle iff he has a disposition such that:

(�	) (��), if:
(i) (��) (�x) (If U tacitly knows the denotation of � is x, then U is 

disposed to judge that the sentence 	�/x is true iff x is �)
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(ii) U hears an utterance of the form ‘(∃x)’�	 then U is disposed to judge 
that the utterance is true iff something is � .

(In this instance, the substitution class for 	 are structural-descriptive names
of object-language propositional functions in the variable x.)

III

Professor Wright and I are agreed that tacit knowledge of the semantic rules
of a language is a ‘logical construction’ out of the use of whole sentences. I
have suggested that the idea that we may tacitly know one rather than another
of two extensionally equivalent theories which differ in the amount of struc-
ture they discern in sentences leads one to the thought of a correspondence
between the separable principles of a theory and a series of internal states of
the subject, dispositionally characterized. Nevertheless, I would agree with
Wright that to regard these states as states of knowledge or belief, that is to
say, states of the same kind as are identified by the ordinary use of those words,
is wrong and capable of leading to confusions of the kind he gestures at. 
To establish this point would require another paper. However, I shall say a
brief word about it now, since I believe it is to this point, rather than the very
idea of a psychological underpinning to the theory of meaning, that Wright’s
criticisms are legitimately directed.

There is no doubt in what the similarity between the states of tacit know-
ledge and the ordinary states of knowledge and belief is taken to consist. At
the level of output, one who possesses the tacit knowledge that p is disposed
to do and think some of the things which one who had the ordinary belief
that p would be inclined to do and think (given the same desires). At the level
of input, one who possesses the state of tacit knowledge that p will very prob-
ably have acquired that state as the result of exposure to usage which supports
or confirms (though far from conclusively) the proposition that p, and hence
in circumstances which might well induce in a rational person the ordinary
belief that p. But these analogies are very far from establishing tacit know-
ledge as a species of belief. After all, similar analogies at the level of input and
output exist between the state of a rat who avoids a certain food which has
upset it in the past (‘bait-shyness’) on the one hand, and the belief that a man
might have that a certain food is poisonous, on the other.

It is true that many philosophers would be prepared to regard the disposi-
tional state of the rat as a belief. But such a view requires blindness to the
fundamental differences which exist between the state of the rat and the belief
of the man – differences which suggest that fundamentally different mecha-
nisms are at work. We might begin with this disanalogy: the rat manifests the
‘belief’ in only one way – by not eating – whereas there is no limit to the ways
in which the ordinary belief that something is poisonous might be manifested.
The subject might manifest it by, for example, preventing someone else from
eating the food, or by giving it to a hated enemy, or by committing suicide
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with it. These variations stem from the different projects with which the belief
may interact, but similar variations arise from combining the belief with other
beliefs. It might, for example, lead to a subject’s consuming a small amount
of the food every day, when combined with the belief that the consumption
of small doses of a poison renders one immune to its effects. (The existence
of other beliefs induces a similar variability in the ways in which the belief
that something is poisonous might be established.) It is of the essence of a
belief state that it be at the service of many distinct projects, and that its influ-
ence on any project be mediated by other beliefs. The rat simply has a
disposition to avoid a certain food; the state underlying this disposition is not
a part of a system which would generate widely varying behaviour in a wide
variety of situations according to the different projects and further ‘beliefs’ it
may possess.

So, one who possesses a belief will typically be sensitive to a wide variety
of ways in which it can be established (what it can be inferred from), and a
wide variety of different ways in which it can be used (what can be inferred
from it) – if we think of plans for intentional action as being generated from
beliefs by the same kind of rational inferential process as yields further beliefs
from beliefs. To have a belief requires one to appreciate its location in a
network of beliefs; this is why Wittgenstein says, ‘When we first begin to
believe anything, what we believe is not a single proposition, it is a whole
system of propositions. (Light dawns gradually over the whole.)’.7 To think of
beliefs in this way forces us to think of them as structured states; the subject’s
appreciation of the inferential potential of one belief (e.g. the belief that a is
F) at least partly depending upon the same general capacity as his apprecia-
tion of the inferential potential of others (e.g. the belief that b is F). After all,
the principle of an inference, of reasoning, can never be specific to the set of
propositions involved.8 Possession of this general capacity is often spoken 
of as mastery of a concept, and the point I am making is frequently made by
saying that belief involves the possession of concepts (e.g. the concept of
poison). Behind the idea of a system of beliefs lies that of a system of concepts,
the structure of which determines the inferential properties which thoughts
involving an exercise of the various component concepts of the system are
treated as possessing. At the ground floor of the structure will be observational
concepts whose possession requires the subject to be able to discriminate (in
suitable favourable circumstances) instances of the concept. Inferential links
connect these concepts with more theoretical concepts ‘higher’ in the struc-
ture, and they in their turn will be connected with concepts yet more remote
from observation.

Concepts are exercised in the first instance in thoughts; beliefs may be
regarded as dispositions to entertain thoughts in the ‘believing mode’ – i.e. to
make judgements; if we think of belief in this way, we shall not be prepared
to attribute to a subject the belief that a is F (for some particular object a, and
property F) unless we can suppose the subject to be capable of entertaining
the supposition (having the thought) that b is F, for every object b of which
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he has a conception. For example, we will not be inclined to explain a subject’s
actions by attributing to him the belief that he is F (e.g. he is in pain) unless
we suppose him capable of entertaining the supposition with respect to indi-
viduals distinct from himself that they are F (e.g. that the person is in pain).9

Now, it is true that the ‘believing mode’ of thought cannot be characterized
without reference to its influence upon the subject’s actions; the traditional
accounts of belief which I am largely following went wrong in trying to iden-
tify the difference between judgement and mere thought in terms of some
introspectible feature of accompaniment of the thought. A judgement is (ceteris
paribus) a thought one acts upon (if a suitable plan for action is derived from
it). But we are now far away from the rat’s disposition to avoid certain food.
For one thing, there is an enormous gap between belief (a disposition to judge
that p when the question whether p is raised) and action. Even though a subject
believes a substance is poisonous he may not slip it to an enemy he wants to
kill and knows no other way to kill either because he ‘didn’t think of it’ or
because, having thought of it, he ‘forgot’ what to do when the time came.

Tacit knowledge of the syntactic and semantic rules of the language are not
states of the same kinds as the states we identify in our ordinary use of the
terms ‘belief’ and ‘knowledge’. Possession of tacit knowledge is exclusively
manifested in speaking and understanding a language; the information is not
even potentially at the service of any other project of the agent, nor can it
interact with any other beliefs of the agent (whether genuine beliefs or other
tacit ‘beliefs’) to yield further beliefs. Such concepts as we use in specifying it
are not concepts we need to suppose the subject to possess, for the state is
inferentially insulated from the rest of the subject’s thoughts and beliefs. There
is thus no question of regarding the information being brought by the subject
to bear upon speech and interpretation in rational processes of thought, or of
making sense of the subject’s continued possession of the information despite
incorrect performance, due to his ‘not thinking’ of the rule at the appropriate
time etc. Remarks which Wright makes (‘unconscious deployment of informa-
tion’ etc.) suggest that he considers the proponent of his third option as
holding that tacit knowledge is a real species of belief, but with all the rele-
vant inferential processes made by the subject somehow taking place outside
his ken. This is certainly a mysterious and confused position.

I disagree with Professor Wright only in denying that the proponent of a
structure-reflecting theory of meaning need have anything to do with it.

IV

I come finally to the question of whether there is any sense in which the theo-
rist of meaning provides an explanation of a speaker’s capacity to understand
new sentences. Now it is implicit in what has gone before that the notion 
of tacit knowledge of a structure-reflecting theory of meaning, explained as 
I have explained it, cannot be used to explain the capacity to understand 
new sentences. I have given a purely dispositional characterization of tacit
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knowledge, and though this does not just amount to a re-description of the
speaker’s capacities to understand sentences (including the new ones) what it
provides, in addition to a description of those capacities, is not itself some-
thing that could be involved in an explanation of them. The surplus concerned
the form which an explanation of the capacities would take, and to say that
a group of phenomena have a common explanation is obviously not yet to
say what the explanation is. So I agree with Wright when he writes:

there is no reason to think that it is within the power of the sort of theory
which we are considering to serve up anything which could rightly be
considered an explanation of the infinitary character of competence with
its object-language.10

But while I agree with this, I disagree with his claim that a proponent of struc-
ture-reflecting theories of meaning must somehow be committed to the view
that they are providing an explanation of speakers’ capacity to understand
new sentences.

Nevertheless, I believe that there is a way of explaining a speaker’s capacity
to understand new sentences to which provision of a structure-reflecting theory
of meaning is indispensable. For we can provide a genuine explanation of a
speaker’s capacity to understand a certain novel utterance by citing his expo-
sure, in the past, to the elements of that sentence occurring in sentences whose
meaning was, or was made, manifest. I envisage an explanatory chain like this:

Exposure to Complex set
corpus of of dispositions
sentences =
containing parts tacit Understanding
of the given => knowledge of => of a given new
sentence being clauses in sentence
used in theory of
determinate meaning
ways

This chain can be genuinely explanatory even though the last link of the chain
by itself is not. The attribution to a subject of tacit knowledge of T1 is neither
more nor less explanatory of the capacity to understand the given new
sentences than the attribution of T2, but tacit knowledge of T2 belongs in an
explanation of the capacity to understand a new sentence because we under-
stand how those dispositions might have been acquired as a result of exposure
to the corpus of utterances which the subject has heard. Now, we can cite a
subject’s exposure to a corpus of utterances in explanation of his capacity to
understand a new one only if we believe that the use of expressions in the new
sentence is in conformity with their use in the previously heard corpus. Only
in this case will we be able to show what set of dispositions the subject might
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have acquired which meets the two conditions: (1) exercising them yields the
observed (and correct) interpretation of the new sentence; (2) they would have
been exercised in, and hence could have been acquired by exposure to, the
previous use. Consequently, when a capacity to understand novel sentences is
observed, the theorist of meaning has an indispensable role to play in its expla-
nation, since he must exhibit the regularity between the old and the new.

I have more or less deliberately spoken in terms which might well offend
some of those present, for I believe that some of those present, though not, 
I think, Professor Wright, believe that Wittgenstein’s arguments on rule-
following show that the ambition to exhibit such regularity must be based
upon some kind of mistake. Perhaps this is so, and if it is so, I hope that we
shall hear tonight why it is so. Since I do not have time to discuss the argu-
ments of such philosophers, let me end by addressing two connected questions
to them.

Is it their opinion that all capacities to understand novel sentences (to
know, I stress, what they mean) are equally inexplicable, or do they
believe that scope is provided for one kind of explanation of how it is
that a speaker knows what a new sentence means when and only when
it can be shown to contain elements which also occur in sentences with
whose use he is already familiar?

On the assumption that their answer to my first question is ‘Yes’, I come to
my second:

Do they think that it is sufficient to provide an explanation of the kind
which the occurrence of familiar expressions makes possible simply by
showing that the new sentence does contain expressions which also occur
in sentences with whose use he is already familiar, or do they believe, in
view of the evident possibility of ambiguity, that something else must be
provided? If so, how does this further part of the explanation differ from
a statement of the regularity between the old use and the new?
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IIIE

THINKING AND LANGUAGE
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28

G. Harman, “Language, Thought, 
and Communication”

I shall discuss two apparently conflicting views about our use of natural
language. The first view, that language is used primarily in thought, has rarely
been given explicit formulation but may be associated with the theories of
Noam Chomsky, W. V. Quine, and Wilfrid Sellars. The second view, that
language is used primarily in communication, has been explicitly put forward
by J. A. Fodor and J. J. Katz and may also be associated (I think) with the
theories of Paul Ziff and Donald Davidson. I shall describe each view and then
try to say where I think the truth lies.

The view that language is used primarily in thought

Chomsky (1964) takes the primary function of language to be its use in the
free expression of thought. He speaks approvingly of Humboldt’s emphasis
on the connection between language and thought, especially the way in which
a particular language brings with it a world view that colours perception,
thought, and feeling. According to Chomsky’s description of Humboldt’s view,
to have a language is to have a system of concepts,

and it is the place of a concept within this system (which may differ
somewhat from speaker to speaker) that in part, determines the way in
which the hearer understands a linguistic expression . . . [T]he concepts
so formed are systematically interrelated in an ‘inner totality’, with
varying interconnections and structural relations . . . This inner totality,
formed by the use of language in thought, conception and expression of
feeling, functions as a conceptual world interposed through the constant
activity of the mind between itself and the actual objects, and it is within
this system that a word obtains its value . . . Consequently, a language
should not be regarded merely, or primarily, as a means of communi-
cation . . . and the instrumental use of language (its use for achieving
concrete aims) is derivative and subsidiary. It is, for Humboldt, typical
only of parasitic systems (e.g. . . . the lingua franca along the
Mediterranean coast). (1964: 58–9)
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Now this view, that language is used primarily in thought, need not imply
that all or even most thinking or theorizing is in some natural language. We
may reasonably suppose that animals think, that children can think before
they learn a natural language, and that speakers of a natural language can
have thoughts they cannot express in language. The view is, rather, that anyone
who fully learns a natural language can and does sometimes think in that
language. More precisely, it is that some of a speaker’s so-called propositional
attitudes are to be construed as, at bottom, attitudes involving sentences of
her language. A speaker of English may believe that the door is open by using
the sentence, ‘The door is open’. Another may fear that the door is open by
being in a state of fear that involves that sentence. A third may think of the
door’s being open by adopting an appropriate attitude involving the sentence.

Strictly speaking, sentential attitudes involve sentences with one or another
more or less detailed grammatical analysis. I shall return to this point near the
end of this essay. For now, I shall speak loosely of sentential attitudes as atti-
tudes involving sentences. (This is not to say that they are attitudes toward
sentences. They are not attitudes about sentences.)

In this view, linguistic communication is the communication of thought.
The parties involved typically communicate using the same language they use
in thinking. The words used to communicate a thought are the same as those
one ‘says to oneself’ when one has that thought. Linguistic communication
does not typically require any complicated system of coding and decoding.
Our usual translation scheme for understanding others is the identity relation.
Words are used to communicate thoughts that would ordinarily be thought in
those very words. It is true that allowance must sometimes be made for irony
and other such devices; but in that case the thought communicated is some
simple function of what would be normally communicated by a literal use of
those words.

More precisely, linguistic communication typically involves communication
of what is sometimes called ‘propositional content’. A speaker says, ‘The door
is shut’, ‘Shut the door’, ‘Is the door shut?’ or some such thing. He does so in
part to get his hearer to think of the door’s being shut. This first view holds
that in such a situation, if communication is successful, the hearer will think
of the door’s being shut by adopting a state of mind that consists in part in a
token of the sentence, ‘The door is shut’. There is no claim that a person can
think of the door’s being shut only by using the sentence, ‘The door is shut’.
There are various ways in which a person might think of the door’s being shut.
But, normally, when a speaker successfully communicates in English by saying,
‘The door is shut’, etc., both speaker and hearer think of the door’s being shut
by using the English sentence, ‘The door is shut’.

Even more precisely, sentential attitudes involve sentences with particular
grammatical analyses. It is sufficient that the hearer should use the sentence
uttered with the appropriate analysis. In this sense, linguistic communication
does not typically make use of complex principles of coding and decoding and
our usual translation scheme is the identity scheme. The hearer need only hear
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the sentence uttered as having the appropriate structural description and does
not need to go on to translate the sentence, under that analysis, into anything
else in order to understand it.

Proponents of the view that language is primarily used in thought can point
out that, although one can use a natural language as a code, so that one’s
listeners would have to use complicated principles of decoding in order to
understand what has been said, that is not an ordinary case of linguistic
communication. They can also point out that, when a person learns a second
language, she may at first have to treat the new language as a code; but hope-
fully the person soon learns to think directly in the second language and to
communicate with other speakers of that language in the ordinary way, which
does not involve complex coding and decoding or translation.

Furthermore, proponents can say, when a person thinks out loud, it is not
always true that she has to find a linguistic way to express something that
exists apart from language. Without language many thoughts and other
psychological attitudes would not even be possible. In learning her first natural
language, a child does not simply learn a code which she can use in communi-
cating her thoughts to others and in decoding what they say. She acquires a
system of representation in which she may express thoughts made possible by
that very system. This is obvious when one acquires for the first time the
language of a science or of mathematics. The claim is that it is no less true
when one learns one’s first natural language.

We now have a rough sketch of the view that language is used primarily in
thought, I shall say more about that view below. Now I want to describe the
apparently conflicting theory that communication provides the primary use of
language.

The view that language is used primarily 
in communication

A compositional theory of meaning holds that a hearer determines what the
meaning of an utterance is on the basis of her knowledge of the meaning of its
parts and her knowledge of its syntactic structure. Such a view follows natu-
rally from the picture of communication that takes it to involve complex
coding and decoding. On that picture, to understand (the meaning of) a sen-
tence is to know what (nonverbal) thought or thoughts the sentence encodes.
Meanings are identified with the relevant thoughts. Hence the view is that to
know the meaning of an expression is to know what meaning, i.e. thought, the
code associates with that sentence. In this view, a general theory of meaning of
a language is given by the principles of the code that defines the sound–mean-
ing correspondence for the language. Because of the unbounded nature of
language, these principles would have to be compositional or recursive.

The rules of coding and decoding are to be given by a grammar in a wide
sense of this term. The grammar has three components, a syntactic compo-
nent that connects a phonological component with a semantic component.
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And as Katz describes it, ‘[W]hereas the phonological component provides a
phonetic shape for a sentence, the semantic component provides a represen-
tation of that message which actual utterances having this phonetic shape
convey to speakers of the language in normal speech situations’ (1966b: 151).
Katz adds that

The hypothesis on which we will base our model of the semantic compo-
nent is that the process by which a speaker interprets each of the infinitely
many sentences is a compositional process in which the meaning of any
syntactically compound constituent of a sentence is obtained as a func-
tion of the meanings of the parts of the constituent . . .

This means that the semantic component will have two subcompo-
nents: a dictionary that provides a representation of the meaning of each
of the words in the language, and a system of projection rules that
provide the combinatorial machinery for projecting the semantic repre-
sentation for all supraword constituents in a sentence from the
representations that are given in the dictionary for the meanings of the
words in the sentence. (152–3)

Here meanings are to be identified with what Katz calls ‘readings’. He
continues,

Projection rules operate on underlying phrase markers that are partially
interpreted in the sense of having sets of readings assigned only to the
lower level elements in them. They combine readings already assigned to
constituents to form derived readings for constituents which, as yet, have
had no readings assigned to them . . . Each constituent of an underlying
phrase marker is thus assigned a set of readings, until the highest
constituent, the whole sentence, is reached and assigned a set of readings,
too. (164–5)

This theory would be appropriate as an account of the meaning of expressions
in one language, e.g. Russian, given in another language taken to be antece-
dently understood, e.g., English. In that case one would want some general
principles for translating Russian into English. Such principles would enable
one to know the meaning of Russian expressions because one already knows
(in the ordinary sense of this phrase) the meaning of the corresponding English
expressions. Katz tries to make the same trick work in order to give an account
of the meaning of sentences in English. In effect he envisages a theory that
gives principles for translating from English into Mentalese. He thinks these
principles are sufficient because one already knows Mentalese.

Meaning in Mentalese?

Katz’s theory of communication is circular, if Mentalese is simply English used
to think in. And, if Mentalese is not simply English used to think in, the theory
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simply shifts the problem back one step. How are we to give an account of
meaning for Mentalese? We cannot continue forever to give as our theory of
meaning a way to translate one system of representation into another. At some
point a different account is needed. Katz’s theory appears only to delay the
moment of confrontation.

There are two distinct issues here. The first is the difficult quasi-empirical
question whether thought is in the relevant sense verbal. Let us postpone
discussion of that issue for a moment. The second issue is the methodological
question whether a semantic theory may presuppose a theory of the nature of
thought. Proponents of the view that language is primarily used for thought
take semantics to be part of such a theory of the nature of thought. They
argue, as it were, that semantics must be concerned in the first instance with
the content of thoughts.

Katz assumes that no account need be given of the content of thoughts, as
if Mentalese were intrinsically intelligible. That is exactly the sort of view
Bloomfield (1933, 1955) attacked as ‘mentalistic’. In an influential article, Katz
(1966a) attempts to answer Bloomfield but only blurs the issue, since he never
considers whether Bloomfield’s criticisms of mentalism apply against a theory
that assumes semantics can be unconcerned with the meaning of thoughts
because of their supposed intrinsic intelligibility.

I argue that a theory of the meaning of messages must presuppose a theory
of the content of thoughts. The former theory might resemble that proposed
by Paul Grice. According to Grice (1957), the thought meant is the one the
speaker intends the hearer to think the speaker has, by virtue of his recogni-
tion of the speaker’s intention. However that may be, in normal linguistic
communication speakers and hearers rely on a regular association between
messages and thoughts. Those philosophers and linguists who think that
language is used primarily in communication suppose that this association is
between sentences in, for example, English (conceived under particular struc-
tural descriptions) and, as it were, sentences in Mentalese. Those who believe
that language is used primarily in thought suppose that the association is a
relatively trivial one, since the language used to communicate with is normally
the same as that used to think with.

A theory of the content of thought might exploit the Humboldtian idea that
the meaning of a linguistic expression is derived from its function in thought
as determined by its place in one’s total conceptual scheme. We might consider
the influence of perception on thought, the role of inference in allowing one
to pass from some thoughts to others, and the way thought leads to action.
The resulting theory might be like that proposed in Sellars (1963). Sellars iden-
tifies the meaning of an expression with its (potential) role in the
evidence-inference-action language game of thought. Similar theories have
been proposed by various philosophers, e.g. Carnap (1936, 1937, 1956), Ayer
(1936, 1940), and Hampshire (1959). And Quine (1960) has argued that
meaning at this level admits of a special sort of indeterminacy.
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According to proponents of the view that language is used primarily in
thought, a compositional theory of meaning of the sort defended in Katz
(1966b) provides neither an account of the meaning of language as used to
think with nor an account of the meaning of language as used to communicate
with. They claim that it cannot provide a theory of the meaning of thought,
since a speaker does not understand the words he uses in thinking by assigning
readings to them, and that it cannot provide a theory of the meaning of a
message, since it treats a relatively simple problem of interpretation as if it
were more complicated.

Composition and communication

Compositional theories of meaning assume that language is used primarily in
communication. Davidson (1965) argues for compositionality as follows. He
says, first, ‘[W]e are entitled to consider in advance of empirical study what
we shall count as knowing a language, how we shall describe the skill or ability
of a person who has learned to speak a language.’ He wants to argue for the
condition ‘that we must be able to specify, in a way that depends effectively
and solely on formal considerations, what every sentence means. With the right
psychological trappings, our theory should equip us to say, for an arbitrary
sentence, what a speaker of the language means by that sentence (or takes it
to mean).’ That last reference, to what a speaker takes the sentence to mean,
sounds like Katz’s view described above, which assumes that to give an account
of meaning for some language is to say how a ‘speaker–hearer’ is able to corre-
late meanings, qua thoughts, with sentences. This suspicion is confirmed by
Davidson’s explicit argument for the compositional theory:

These matters appear to be connected in the following informal way with
the possibility of learning a language. When we can regard the meaning
of each sentence as a function of a finite number of features of the
sentence, we have an insight not only into what there is to be learned;
we also understand how an infinite aptitude can be encompassed by finite
accomplishments. Suppose on the other hand the language lacks this
feature; then no matter how many sentences a would-be speaker learns
to produce and understand, there will remain others whose meanings are
not given by the rules already mastered. It is natural to say such a
language is unlearnable. This argument depends, of course, on a number
of empirical assumptions: for example, that we do not at some point
suddenly acquire an ability to intuit the meanings of sentences on no rule
at all; that each new item of vocabulary, or new grammatical rule takes
some finite time to be learned; that man is mortal. (1965: 387–8)

This argument makes sense only in the presence of an assumption, which
Davidson (1967) explicitly acknowledges, that ‘speakers of a language can
effectively determine the meaning or meanings of an arbitrary expression (if
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it has a meaning)’, where that is understood to mean that a speaker (hearer)
understands a sentence by translating it into its Mentalese counterpart (and
where Mentalese is not the language used in communication). If speakers of
a language can effectively determine the meaning of messages in ordinary
linguistic communication by using the identity mapping of verbal message
onto verbal thought, the assumption does not support Davidson’s argument
for a compositional theory of meaning.

In the end Davidson (1967) argues for a version of the theory that meaning
is given by truth conditions. That is not very different from Katz’s (1966b)
theory. According to Katz, a speaker knows the meaning of sentences of his
language because he has mastered the complicated rules that correlate
sentences with thoughts. According to Davidson, a speaker knows the meaning
of sentences of his language because he has mastered the complicated rules of
a truth definition for his language that correlate sentences with truth condi-
tions. Katz’s theory is in trouble if the relevant thoughts are verbal. The same
difficulty faces Davidson in a slightly different form, if the relevant knowledge
of truth conditions is verbal. Katz would say that the speaker understands the
sentence ‘Snow is white’ by virtue of the fact that he has correlated it with the
thought that snow is white. Davidson would (presumably) say that the speaker
understands that sentence by virtue of the fact that he knows it is true if and
only if snow is white. The difficulty in either case is that the speaker needs
some way to represent to himself snow’s being white. If the relevant speaker
uses the words ‘Snow is white’ to represent in the relevant way that snow is
white, both Katz’s and Davidson’s theories are circular. And if speakers have
available a form of Mentalese in which they can represent that snow is white,
so that the two theories avoid circularity, there is still the problem of meaning
for Mentalese.

The point is that no reason has been given for a compositional theory of
meaning for any system of representation we think in, be it Mentalese or
English. This point has obvious implications for linguistics, and for philoso-
phy too, if only of a negative sort. For example, Davidson (1965) uses his
theory in order to support objections to certain theories about the logical form
of belief sentences. Since his argument for a compositional theory of meaning
fails for the language one thinks in, those objections have no force against the-
ories about the logical form of belief sentences used in thinking or theorizing.

Similar remarks apply to the compositional theory of meaning in Ziff
(1960). Ziff asserts that ‘[T]he semantic analysis of an utterance consists in
associating with it some set of conditions [and] the semantic analysis of a
morphological element having meaning in the language consists in associating
with it some set of conditions . . .’ Very roughly speaking, the relevant condi-
tions are those that must obtain if something is to be uttered without deviance
from relevant nonsyntactic semantic regularities.

Ziff says, ‘In formulating the theory presented here I have had but one
objective in mind, viz. that of determining a method and a means of evalu-
ating and choosing between competing analyses of words and utterances’. If
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‘analysis’ here means ‘philosophical analysis’, Ziff’s enterprise must be counted
a success, especially in the light of his careful discussion of the analysis of the
word ‘good’ in the final chapter. And since analysis is perhaps a kind of trans-
lation or decoding, it may be possible to defend a compositional theory of
meaning as a compositional theory of analysis. (One must see that a proposed
analysis of a word is adequate for various contexts and is consistent with
analyses suggested for other words.)

But Ziff does not give quite that argument for a compositional theory of
meaning; and the argument he does give indicates that he wants more from
his theory than a way of evaluating philosophical analyses. His own argument
seems to assume that a speaker understands sentences by virtue of being able
to give analyses or explications of them. In Ziff (1960) the argument goes 
like this:

In a general form, the principle of composition is absolutely essential to
anything that we are prepared to call a natural language, a language that
can be spoken and understood in the way any natural language can in
fact be spoken or understood.

How is it that one can understand what is said if what is said has not
been said before? Any language whatever allows for the utterance of new
utterances both by the reiteration of old ones and by the formation of
new ones out of combinations of old elements. Hence any natural
language whatever allows for the utterance of both novel utterance
tokens and novel utterance types. If a new utterance is uttered and if the
utterance is not then and there to be given an arbitrary explication, that
one is able to understand what is said in or by uttering the utterance
must in some way at least be partially owing to one’s familiarity with
the syntactic structure of the utterance. (61)

Ziff (1966) is more explicit:

[P]art of what is involved in understanding an utterance is understanding
what conditions are relevantly associated with the utterance . . .

Someone says ‘Hippopotami are graceful’ and we understand what is
said. In some cases we understand what is said without attending to the
discourse the utterance has occurred in or without attending to the
context of utterance. How do we do it?

It seems reasonable to suppose that part of what is involved is this:
Such an utterance is understood on the basis of its syntactic structure
and morphemic constitution.

Assuming that part of what is involved in understanding an utterance
is understanding what conditions are relevantly associated with the utter-
ance, this means that we take a certain set of conditions to be associated
with such an utterance on the basis of its syntactic structure and
morphemic constitution. (104–5)
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To this the same remarks apply as to the theories of Katz and of Davidson. A
speaker can understand that certain conditions are associated with an utter-
ance and can take certain conditions to be associated with an utterance only
if he has some way to represent to himself that the conditions are associated
with the utterance. And even if the speaker uses Mentalese to represent utter-
ance-conditions correlations, the problem of meaning is merely pushed back
one step to Mentalese. Ziff fares no better than Katz or Davidson in showing
that we need a compositional theory of meaning for the system of represen-
tation that we think with. If speakers of English think in English and we rely
on that fact in communication, Ziff gives us no reason why we need a compo-
sitional theory of meaning for English.

Language used in thought

There are levels of meaning. A theory of the first level must account for the
meaning of an expression as a function of its role in thought. A theory of the
second level must account for the meaning of an expression used to communi-
cate a thought. A theory of the second level must presuppose the first, since
linguistic communication typically communicates a thought that can be
expressed (roughly speaking) in the same words used for communication.

Katz and Fodor (1964) put forward a level two theory of meaning in
communication. The theory is supposed to account for ‘the way that speakers
understand sentences’. That may suggest it is the sort of theory Grice (1957)
tries to develop. But Katz and Fodor describe it as an account of the meaning
or meanings a sentence has when taken in isolation from possible settings in
actual discourse. In other words, their theory is restricted to giving an account
of meaning for those cases in which the message communicates a thought that
in an alternative view can be expressed in (roughly) the same words as those
in which the message is expressed. Katz and Fodor say that an additional
theory is needed to account for the interpretation or interpretations assigned
when a sentence occurs in a particular setting. Furthermore, they argue that
the latter theory must presuppose the one they present. Thus they come close
to the distinction between levels one and two, and in a way they attempt to
provide a theory of level one. Or rather, in their approach three theories are
needed, although they do not acknowledge this. First, there is a theory of the
content of thought, an account of content for whatever system of representa-
tion one uses to think with. Katz and Fodor say nothing about this theory,
perhaps because they take thoughts to be intrinsically intelligible. On the alter-
native view, this theory is the most important part of the theory of meaning.
Second, there is the theory Katz and Fodor describe that would associate
sentences (under various structural descriptions) used in communication with
meanings they have (in isolation from setting and discourse). This theory
would associate sentences of English (with their structural descriptions) with
‘readings’ in the system of representation used in thinking. Katz and Fodor
take this theory to be the central part of the theory of meaning, which amounts
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to a theory of how sentences in e.g. English are to be translated into Mentalese.
The alternative view takes this part of the theory to be trivial, on the grounds
that speakers of English think in English and can use what amounts to the
identity scheme of translation. (I shall say more about this in a moment.)
Third, there is the theory of the meaning of a message in a particular linguistic
and nonlinguistic setting. Both sides agree that this is an important part of a
theory of meaning and that it presupposes the other parts.

How are we to decide between a view like Katz and Fodor’s, which takes
language to be used primarily in communication, and the alternative which
takes language to be used in thought? Katz (1967) claims that his and Fodor’s
semantic theory is needed in order to explain a great number of different 
things that cannot be explained on the alternative account, namely, ‘semantic
anomaly and ambiguity’, ‘synonymy, paraphrase, antonymy, semantic distinct-
ness, semantic similarity, inclusion of senses, inconsistency, analyticity, con-
tradiction, syntheticity, entailment, possible answers to a question, and so
forth’. We have no right to reject their semantic theory unless we have some
other method to explain or explain away the phenomena in question.

In the remainder of this essay I want to describe and defend one alterna-
tive method. I shall be concerned mainly with the level one theory of meaning,
that is, the theory of the content of language used to think in. I shall say some-
thing about level two, which is concerned with the meaning of messages, only
indirectly and in passing.

What is it for an expression to have a content on level one? It is certainly not
that the relevant person, the ‘thinker’, can assign it one or more ‘readings’. It is
rather that she can use it in thought, i.e. that it has a role in her evidence-infer-
ence-action language game. She may be able to use the expression in direct per-
ceptual reports. She must certainly be able to use it in (theoretical and practical)
reasoning. She must be able to recognize implications involving the expression.

Sometimes an implication is formal. It depends only on the logical or gram-
matical form of relevant expressions and is not a function of nonlogical or
nongrammatical vocabulary. In order to account for a person’s ability to recog-
nize such a formal implication, it is plausible to suppose that the sentences 
she uses in thought are grammatically structured. I shall return to this point
in a moment. But first I note that it is not sufficient for full understanding 
of an expression that one be able to recognize formal implications involving
that expression; at best this shows merely that one understands the expression
as having a particular grammatical form. One must also be able to give para-
phrases and notice implications that involve changes in nonlogical and
nongrammatical vocabulary. One must be able to see what sentences con-
taining the relevant expression imply, what they are equivalent to, etc.

It is here that Katz and others have thought that appeal must be made to
meaning, to entailment by virtue of meaning, to equivalence by virtue of mean-
ing, etc. Not so. The relevant notions of equivalence and of implication are
ordinary ones: equivalence or implication with respect to one’s background
assumptions, where no distinctions need be made between analytic or synthetic
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background assumptions. One has an understanding of an expression to the
extent that one can paraphrase sentences containing it, can make inferences
involving such sentences, etc. It adds nothing to one’s understanding if one can
distinguish ‘analytic’ equivalences and implications from ‘synthetic’ ones. In
fact, most people cannot do so. Only those who have been ‘indoctrinated’ can;
and they are not the only ones who understand the language they think in.

It might be objected that sentences used in thinking are often ambiguous.
How can we account for that – and for a person’s ability to understand or
interpret a sentence one way at one time and another way at another time?
Can we account for it without assuming that she assigns an interpretation or
‘reading’ to the sentence in the way in which Katz suggests? Well, we can and
we can’t. An expression is ambiguous if a person can sometimes treat it as
having one sort of role and at other times treat it as having a different role.
Treated one way it admits of paraphrases it does not admit when treated the
other way. This difference in paraphrasability represents the difference in inter-
pretation; but recall that paraphrasability is relative to background knowledge
and need not permit any analytic–synthetic distinction.

To account for the difference in the ways a person can use an ambiguous
expression we must suppose that she does not simply view it as a sequence of
words. She views it, or hears it, as having a particular syntactic structure and
as containing words in one or another of their possible senses. Let us consider
each of these things in turn.

Syntactically ambiguous sentences may be heard as having either of two (or
more) different syntactic structures They are like lines on paper which may be
seen as a staircase viewed from the back or from the front. Or they are like a
group of dots that may be seen as two groups in one way or as two other
groups in another way. Or they are like a figure that can be seen either as a
duck or as a rabbit. The sentence, ‘They are visiting philosophers,’ may be
understood in two different ways, depending on whether we take ‘are visiting’
together or ‘visiting philosophers’ together. We hear the sentence as admitting
either of two groups of paraphrases, either ‘They are philosophers who are
visiting, etc. or ‘They are visiting some philosophers’, etc. Similarly, the
sentence ‘Visiting Philosophers can be unpleasant’, differs in interpretation
depending on its grammatical structure, although the difference is not simply
a matter of grouping on the surface. It is rather a matter of the source of
‘visiting philosophers’. Roughly speaking, it may come from ‘someone visits
philosophers’ or from ‘philosophers visit someone’. It is true that the average
person is quite ignorant of the relevant linguistic principles. But that does not
mean he fails to hear that sentence as having one or another of the indicated
structures. A person can see lines on a page as forming one or another three-
dimensional structure without knowing any geometry. In order to account for
the way in which a person can deal with ambiguous sentences we must assume
that in some sense she uses a sentence in thought with one or another syntactic
structure. The same conclusion is needed in order to account for the formal
inferences a person can make, quite apart from considerations of ambiguity.
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Similarly, in order to account for the way in which a person deals with
ambiguous words, we must assume that she distinguishes a word used in one
sense from the same word used in another sense. But we can do that without
assuming that she makes the distinction by assigning different readings to the
word. She may mark the distinction in sentences by an arbitrary device as
simple as a subscript. The inferences and paraphrases that are then permis-
sible depend in general on the subscript selected (Harman 1966). One reason
why no more is needed than a subscript is that the relevant sorts of inference
and paraphrase are those possible by virtue of background information. Such
background information itself must be ‘stored’ as sentences under certain
structural descriptions including subscripted words. But a person can under-
stand the expressions she uses without having divided her background
information into a part that is true by ‘definition’ (the dictionary) and another
part that is not true by definition (the encyclopaedia).

We think with sentences that have particular structural descriptions, where
the subscripts that distinguish word senses are part of their structural descrip-
tions. So-called propositional attitudes are structured sentential attitudes,
where the relevant sentences have particular structural descriptions. In under-
standing what someone else says to us, we must determine the content of her
utterance taken literally. It is sufficient that we should hear her words as having
a particular syntactic structure. That is not to say that we come (even uncon-
sciously) to know that it has a particular structure; and it is certainly not to
say that we have knowledge of the principles that relate phonetic representa-
tions to structural descriptions. The situation is strictly analogous to other
cases of perceiving something as something. We perceive a series of lines as
making up a particular three-dimensional structure without explicitly thinking
about that structure, indeed without knowing anything about geometrical
structure. We can certainly do so without knowing rules that relate two-
dimensional figures and three-dimensional structures.

Sounds reach a person’s ears and, after physiological processes we know
little about, she perceives or conceives a sentence with a particular structural
description. Her understanding of that sentence is represented not by her
having assigned it a ‘reading’ in Mentalese but rather by her being able to use
the sentence with that structural description in her thought. If we like, we may
still speak of ‘decoding’ here. One decodes certain sounds into a sentence plus
structural description. But this is not enough for the sort of decoding that Katz
refers to, namely, decoding into intrinsically intelligible Mentalese ‘readings’.

I conclude that it is possible to give an account of how people understand
sentences without postulating that a speaker understands sentences by
assigning such readings to them.

Anomaly and synonymy

Katz and Fodor have one more argument. They claim that their semantic
theory can account for a couple of things that it would be difficult to handle
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in any other way. First, Katz and Fodor (1964) argue that their theory can
show how certain interpretations of a sentence that are grammatically possible
are semantically ruled out, so that they can account for a certain amount of
disambiguation with their theory. Second, Katz (1964, 1966b, 1967) argues
that the theory shows how certain sentences are analytic, others contradictory,
and still others synthetic, so that the theory can account for native speakers’
intuitive judgements about analyticity, etc.

In reply, I say that there is no such thing as semantic anomaly and no such
distinction as the analytic–synthetic distinction. To believe otherwise is to
suffer from a lack of imagination.

For example, Katz and Fodor argue as follows:

Now let S be the sentence The paint is silent. English speakers will at
once recognize that this sentence is anomalous in some way. For example,
they will distinguish it from such sentences as The paint is wet and The
paint is yellow by applying to it such epithets as ‘odd,’ ‘peculiar,’ and
‘bizarre’ . . . Hence, another facet of the semantic ability of the speaker
is that of detecting semantic anomalies. (1964: 402–3)

But I say that whatever anomaly there is in the phrase ‘silent paint’ arises from
the fact that paints do not emit noise. If some paints did and some did not,
‘silent paint’ would not be anomalous. And that is to say that there is nothing
peculiarly semantic about the anomaly. Its anomaly is a result of our general
nonlinguistic knowledge of the world.

Again, Katz and Fodor (1964) argue that a theory that incorporates only
the sort of considerations I have sketched above

will not be able to distinguish the correct sense of ‘seal’ in ‘One of the
oil seals in my car is leaking’ from such incorrect senses as ‘a device
bearing a design so made that it can impart an impression’ or ‘an impres-
sion made by such a device’ or ‘the material upon which the impression
is made’ or ‘an ornamental or commemorative stamp’ and so forth, since
all of these senses can apply to nominal occurrences of ‘seal’ (409)

But, surely, it requires only a little imagination to see that ‘seal’ may have any
of these senses, although in ordinary discourse it would be more likely to have
the sense the authors have in mind (Bolinger 1965).

McCawley (1970) makes a similar point with respect to purported syntactic
anomalies of a certain type

Moreover, it appears incorrect to regard many so-called ‘selectional
violations’ as not corresponding to possible messages, since many of
them can turn up in reports of dreams:

(2) I dreamed that my toothbrush was pregnant.
(3) I dreamed that I poured my mother into an inkwell.
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(4) I dreamed that I was a proton and fell in love with a shapely green-
and-orange-striped electron.

or in reports of the beliefs of other persons:

(5) John thinks that electrons are green with orange stripes.
(6) John thinks that his toothbrush is trying to kill him.
(7) John thinks that ideas are physical objects and are green with

orange stripes.

or in the speech of psychotics. While one might suggest that a paranoid
who says things like

(8) My toothbrush is alive and is trying to kill me.

has different selectional restrictions from a normal person, it is pointless
to do so, since the difference in ‘selectional restriction’ will correspond
exactly to a difference in beliefs as to one’s relationship with inanimate
objects; a person who utters sentences such as (8) should be referred to
a psychiatric clinic, not to a remedial English course.

McCawley’s argument supports the conclusion that there is no real distinction
between semantic anomaly and anomaly due to ‘extralinguistic factors’.

Similar points apply to Katz’s claims about analyticity, etc. First, the fact
that people have ‘intuitions’ about analyticity shows at best that there is a
distinction between ‘seems analytic to certain people’ and ‘seems synthetic to
them’. It does not show that there are sentences that are really analytic as
opposed to others that are synthetic. The fact that people once had intuitions
that some women were witches and others not, certainly fails to show that
there were women that really were witches as opposed to others that were not.

Second, the intuitive distinction Katz and others make between analytic and
synthetic truths is easily explained away without appeal to their semantic
theory. People who have such intuitions suffer from a lack of imagination. The
intuitions come from their inability to imagine that certain sentences are false.
But as Putnam (1962), Moravcsik (1965), and others have pointed out, after
a little practice such things can be imagined.

Final remarks

Consider the two views. On the first view, a person who speaks a natural
language can think in that language and does not need to translate sentences
conceived into some other system of representation, Mentalese. On this view,
Mentalese incorporates one’s natural language. On the second view, a person
cannot think in language and must translate sentences of her language into
Mentalese. The incorporation view has the advantage over the translation view
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that it provides a natural explanation of the way in which learning one’s first
language makes possible thoughts and other propositional attitudes one would
not otherwise have. The translation view must add some special principle to
account for this. Furthermore, the translation view suggests things that are
false about anomaly, synonymy, etc.

It is difficult to see how, say, neurophysiological evidence could support one
of the views against the other (except by pointing to further relatively behav-
ioural phenomena to be explained). For, as descriptions of the mechanism of
the brain, the two views must be taken to be descriptions of a fairly abstract
sort. And it is not easy to see how any neurological mechanism that might
account for the relevant behaviour and that could be interpreted as an instan-
tiation of one of the descriptions could not also be interpreted as an
instantiation of the other. So far then, I see no reason not to accept the incor-
poration view.
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29

P. Carruthers, “The Cognitive 
Functions of Language”

1 Introduction

Natural language looms large in the cognitive lives of ordinary folk. Although
proportions vary, many people seem to spend a good deal of their waking
activity engaged in “inner speech,” with imaged natural language sentences
occupying a significant proportion of the stream of their conscious mentality.

This bit of folk wisdom has been corroborated by Hurlburt (1990, 1993),
who devised a method for sampling people’s inner experience. Subjects wore
headphones during the course of the day, through which they heard, at various
intervals, a randomly generated series of bleeps. When they heard a bleep, they
were instructed to immediately “freeze” what was passing through their
consciousness at that exact moment and then make a note of it, before elab-
orating on it later in a follow-up interview. Although frequency varied widely,
all normal (as opposed to schizophrenic) subjects reported experiencing inner
speech on some occasions – with the minimum being 7 percent of occasions
sampled, and the maximum being 80 percent. Most subjects reported inner
speech on more than half of the occasions sampled. (The majority of subjects
also reported the occurrence of visual images and emotional feelings – on
between 0 percent and 50 percent of occasions sampled in each case.) Think
about it: more than half of the total set of moments which go to make up
someone’s conscious waking life occupied with inner speech – that’s well-nigh
continuous!

Admittedly, the sample-sizes in Hurlburt’s studies were small; and other
interpretations of the data are possible. (Perhaps the reports of linguistically-
clothed thoughts occurring at the time of the bleep were a product of
confabulation, for example, reflecting people’s naïve theory that thought must
be in natural language. If so, this should be testable.) But let us suppose that
inner verbalization is as ubiquitous as common-sense belief and Hulburt’s data
would suggest. Just what would all this inner verbalization be doing? What
would be its function, or cognitive role? The naïve common-sense answer is
that inner verbalization is constitutive of our thinking – it is that we think by
talking to ourselves in inner speech (as well as by manipulating visual images,
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etc.). Anyone who holds such a view endorses a version of what I shall call
“the cognitive conception of language,” which maintains that, besides its
obvious communicative functions, language also has a direct role to play in
normal human cognition (in thinking and reasoning).

Quite a different answer would be returned by most members of the cogni-
tive science community, however. They endorse what I shall call “the (purely)
communicative conception of language,” according to which language is but
an input-output system for central cognition. Believing that language is only
a channel, or conduit, for transferring thoughts into and out of the mind, they
are then obliged to claim that the stream of inner verbalization is more-or-less
epiphenomenal in character. (Some possible minor cognitive roles for inner
speech, which should nevertheless be acceptable to those adopting this
perspective, will be canvassed later.) The real thinking will be going on else-
where, in some other medium of representation.

One reason for the popularity of the communicative conception amongst
cognitive scientists is that almost all now believe that language is a distinct
input-output module of the mind (at least in some sense of “module,” if not
quite in Fodor’s classic – 1983 – sense). And they find it difficult to see 
how the language faculty could both have this status and be importantly 
implicated in central cognition. But this reasoning is fallacious. Compare 
the case of visual imagination: Almost everyone now thinks that the visual
system is a distinct input-module of the mind, containing a good deal of 
innate structure. But equally, most cognitive scientists now accept that visual
imagination re-deploys the resources of the visual module for purposes of
reasoning – for example, many of the same areas of the visual cortex are active
when imagining as when seeing. (For a review of the evidence, see Kosslyn
1994.)

What is apparent is that central cognition can co-opt the resources of
peripheral modules, activating some of their representations to subserve
central cognitive functions of thinking and reasoning. The same is then
possible in connection with language. It is quite consistent with language being
an innately structured input and output module, that central cognition should
access and deploy the resources of that module when engaging in certain kinds
of reasoning and problem solving.

Note, too, that hardly anyone is likely to maintain that visual imagery is a
mere epiphenomenon of central cognitive reasoning processes, playing no real
role in those processes in its own right. On the contrary, it seems likely that
there are many tasks which we cannot easily solve without deploying a visual
(or other) image. For example, suppose you are asked (orally) to describe the
shape which is enclosed within the capital letter “A.” It seems entirely plau-
sible that success in this task should require the generation of a visual image
of that letter, from which the answer (“a triangle”) can then be read off. So
it appears that central cognition operates, in part, by co-opting the resources
of the visual system to generate visual representations, which can be of use in
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solving a variety of spatial-reasoning tasks. And this then opens up the very
real possibility that central cognition may also deploy the resources of the
language system to generate representations of natural language sentences (in
“inner speech”), which can similarly be of use in a variety of conceptual
reasoning tasks.

There is at least one further reason why the cognitive conception of
language has had a bad press within the cognitive science community in recent
decades. (It continues to be popular in some areas of the social sciences and
humanities, including philosophy.) This is that many of the forms of the thesis
which have been defended by philosophers and by social scientists are implau-
sibly strong, as we shall see in section 3 below. The unacceptability of these
strong views has then resulted in all forms of the cognitive conception being
tarred with the same brush.

A crucial liberalizing move, therefore, is to realize that the cognitive concep-
tion of language can come in many different strengths, each one of which needs
to be considered separately on its own merits. In this paper I shall distinguish
between some of the many different versions of the cognitive conception. I
shall begin (in sect. 2) by discussing some weak claims concerning the cogni-
tive functions of language that are largely uncontroversial. This will help to
clarify just what (any interesting form of) the cognitive conception is, by way
of contrast. I shall then (in sect. 3) consider some claims which are so strong
that cognitive scientists are clearly right in rejecting them, before zeroing in
on those which are both interesting and plausible (in sects. 4 and 5). I shall
come to focus, in particular, on the thesis that natural language is the medium
of inter-modular integration. This is a theoretical idea which has now begun
to gather independent empirical support.

I should explain at the outset, however, that the thesis I shall be working
towards is that it is natural language syntax which is crucially necessary for
inter-modular integration. The hypothesis is that non-domain-specific thinking
operates by accessing and manipulating the representations of the language
faculty. More specifically, the claim is that non-domain-specific thoughts impli-
cate representations in what Chomsky (1995) calls “logical form” (LF). Where
these representations are only in LF, the thoughts in question will be non-
conscious ones. But where the LF representation is used to generate a
full-blown phonological representation (an imaged sentence), the thought will
generally be conscious.1

I should emphasize that I shall not be claiming that syntax is logically
required for inter-modular integration, of course. Nor shall I be claiming that
only natural language syntax – with its associated recursive and hierarchical
structures, compositionality, and generativity – could possibly play such a role
in any form of cognition, human or not. Rather, my claim will be that syntax
does play this role in human beings. It is a factual claim about the way in
which our cognition happens to be structured, not an unrestricted modal claim
arrived at by some sort of task-analysis.
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I should also declare at the outset how I shall be using the word “thought”
in this paper. Unless I signal otherwise, I intend all references to thought and
thinking to be construed realistically. Thoughts are discrete, semantically-
evaluable, causally-effective states, possessing component structure, and where
those structures bear systematic relations to the structures of other, related,
thoughts. So distinct thoughts have distinct physical realizations, which may
be true or false, and which cause other such thoughts and behavior. And
thoughts are built up out of component parts, where those parts belong to
types which can be shared with other thoughts. It is not presupposed, however,
that thoughts are borne by sentence-like structures. Although I shall be arguing
that some thoughts are carried by sentences (namely, non-domain-specific
thoughts which are carried by sentences of natural language), others might be
carried by mental models or mental images of various kinds.

It is hugely controversial that there are such things as thoughts, thus
construed, of course. And while I shall say a little in defense of this assump-
tion below (in sect. 3.3), for the most part it is just that – an assumption – for
present purposes. I can only plead that one can’t do everything in one article,
and that one has to start somewhere. Those who don’t want to share this
assumption should read what follows conditionally: if we were to accept that
there are such things as realistically-construed thoughts, then how, if at all,
should they be seen as related to natural language sentences?

Also, a word about the nature of the exercise before we proceed further.
This article ranges over a great many specialist topics and literatures in a
number of distinct disciplines. Of necessity, therefore, our discussion of any
given subject must be relatively superficial, with most of the detail, together
with many of the required qualifications and caveats, being omitted. Similarly,
my arguments against some of the competitor theories have to be extremely
brisk, and some quite large assumptions will have to get taken on board
without proper examination. My goal, here, is just to map out an hypothesis
space, using quite broad strokes, and then to motivate and discuss what I take
to be the most plausible proposal within it.

2 Weak claims

Everyone will allow that language makes some cognitive difference. For
example, everyone accepts that a human being with language and a human
being without language would be very different, cognitively speaking. In this
section I shall outline some of the reasons why.

2.1 Language as the conduit of belief

Everyone should agree that natural language is a necessary condition for
human beings to be capable of entertaining at least some kinds of thought.
Language is the conduit through which we acquire many of our beliefs and
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concepts, and in many of these cases we could hardly have acquired the
component concepts in any other way. Concepts which have emerged out of
many years of collective labor by scientists, for example – such as electron,
neutrino, and DNA – would de facto be inaccessible to someone deprived of
language. This much, at any rate, should be obvious. But all it really shows is
that language is required for certain kinds of thought; not that language is
actually involved in or is the representational vehicle of those thoughts.

It is often remarked, too, that the linguistic and cognitive abilities of young
children will normally develop together. If children’s language is advanced,
then so will be their abilities across a range of tasks; and if children’s language
is delayed, then so will be their cognitive capacities. To cite just one item from
a wealth of empirical evidence: Astington (1996) and Peterson and Siegal
(1998) report finding a high correlation between language-ability and chil-
dren’s capacity to pass false-belief tasks, whose solution requires them to
attribute, and reason from, the false belief of another person. Does this and
similar data show that language is actually involved in children’s thinking?

In the same spirit, we might be tempted to cite the immense cognitive deficits
that can be observed in those rare cases where children grow up without expo-
sure to natural language. Consider, for example, the cases of so-called “wolf
children,” who have survived in the wild in the company of animals, or of
children kept by their parents locked away from all human contact (Malson
1972; Curtiss 1977). Consider, also, the cognitive limitations of profoundly
deaf children born of hearing parents who have not yet learned to sign
(Schaller 1991; Sacks 1989). These examples might be thought to show that
human cognition is constructed in such away as to require the presence of
natural language if it is to function properly.

But all that such data really show is, again, that language is a necessary
condition for certain kinds of thought and types of cognitive process: not that
it is actually implicated in those forms of thinking. And this is easily explic-
able from the standpoint of someone who endorses the standard cognitive
science conception of language, as being but an input-output system for central
cognition, or a mere communicative device. For language, in human beings,
is a necessary condition of normal enculturation. Without language, there are
many things which children cannot learn; and with delayed language, there
are many things that children will learn only later. It is only to be expected,
then, that cognitive and linguistic development should proceed in parallel. 
It does not follow that language is itself actually used in children’s central
cognition.

Another way of putting the point is that this proposed cognitive function
of language is purely developmental – or diachronic – rather than synchronic.
Nothing is said about the role of language in the cognition of adults, once a
normal set of beliefs and concepts has been acquired. And the evidence from
aphasia suggests that at least many aspects of cognition can continue to
operate normally once language has been removed.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“THE COGNITIVE FUNCTIONS OF LANGUAGE”

615



Aphasias come in many forms, of course, and in many different degrees of
severity. And it is generally hard to know the extent of any collateral damage
– that is, to know which other cognitive systems besides the language faculty
may have been disabled as a result of the aphasia-causing brain-damage. But
many patients with severe aphasia continue to be adept at visuo-spatial
thinking, at least (Kertesz 1988), and many continue to manage quite well for
themselves in their daily lives.

Consider, for example, the agrammatic aphasic man studied in detail by
Varley (1998, 2002). He is incapable of either producing or comprehending
sentences, and he also has considerable difficulty with vocabulary, particularly
verbs. He has lost all mentalistic vocabulary (“belief,” “wants,” etc.), and his
language system is essentially limited to nouns. Note that there is not a lot of
explicit thinking that you can do using just nouns! (It should also be stressed
that he has matching deficits of input and output, suggesting that it is the
underlying system of linguistic knowledge which has been damaged.) Yet he
continues to drive, and to have responsibility for the family finances. He is
adept at communicating, using a mixture of single-word utterances and
pantomime. And he has passed a range of tests of theory of mind (the stan-
dard battery of false-belief and deception tasks, explained using nouns and
pantomime), as well as various tests of causal thinking and reasoning. It
appears that, once language has done its developmental work of loading the
mind with information, a good deal of adult cognition can thereafter survive
its loss.

Since natural language is the conduit for many of our beliefs and for much
of our enculturation, everyone should accept that language is immensely
important for normal cognitive development. That language has this sort of
cognitive function should be no news to anyone.2

2.2 Language as sculpting cognition

A stronger and more controversial thesis has been proposed and defended by
some researchers over recent decades. This is that the process of language
acquisition and enculturation does not merely serve to load the mind with
beliefs and concepts, but actually sculpts our cognitive processes to some
degree (Bowerman and Levinson 2001; Lucy 1992a, 1992b; Nelson 1996).3

For example, acquisition of Yucatec (as opposed to English) – in which
plurals are rarely marked and many more nouns are treated grammatically 
as substance-terms like “mud” and “water” – leads subjects to see similarities
amongst objects on the basis of material composition rather than shape (Lucy
1992b; Lucy and Gaskins 2001). And children brought up speaking Korean
(as opposed to English) – in which verbs are highly inflected and massive noun
ellipsis is permissible in informal speech – leads children to be much weaker
at categorization tasks, but much better at means-ends tasks such as using a
rake to pull a distant object towards them (Choi and Gopnik 1995; Gopnik
2001; Gopnik et al. 1996)
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Fascinating as these data are, they do not, in themselves, support any
version of the cognitive conception of language. This is because the reported
effects of language on cognition are still entirely diachronic and develop-
mental, rather than synchronic. The fact that acquiring one language as
opposed to another causes subjects to attend to different things and to reason
somewhat differently doesn’t show that language itself is actually involved in
people’s thinking. Indeed, on the hypothesis proposed by Gopnik (2001),
language-acquisition has these effects by providing evidence for a pre-linguistic
theorizing capacity, which operates throughout development to construct 
children’s systems of belief and inference.

2.3 Language as a cognitive scaffold

Other claims can be extracted from the work of Vygotsky (1934/1986), who
argues that language and speech serve to scaffold the development of cogni-
tive capacities in the growing child. Researchers working in this tradition have
studied the self-directed verbalizations of young children – for example,
observing the effects of their soliloquies on their behavior (Diaz and Berk
1992). They have found that children tend to verbalize more when task
demands are greater, and that those who verbalize most tend to be more
successful in problem-solving.

This claim of linguistic scaffolding of cognition admits, however, of a spec-
trum of readings. At its weakest, it says no more than has already been
conceded above, that language may be a necessary condition for the acquisi-
tion of certain cognitive skills. At its strongest, on the other hand, the idea
could be that language forms part of the functioning of the highest-level exec-
utive system – which would then make it a variant of the ideas to be discussed
in sections 4 and 5 below.

Clark (1998) argues for a sort of intermediate-strength version of the
Vygotskian idea, defending a conception of language as a cognitive tool.
(Chomsky, too, has argued for an account of this sort. See his 1976, Ch. 2.)
According to this view – which Clark labels “the supra-communicative con-
ception of language” – certain extended processes of thinking and reasoning
constitutively involve natural language. The idea is that language gets used, not
just for communication, but also to augment human cognitive powers.

Thus by writing an idea down, for example, I can off-load the demands on
memory, presenting myself with an object of further leisured reflection; and
by performing arithmetic calculations on a piece of paper, I may be able to
handle computational tasks which would otherwise be too much for me (and
my short-term memory). In similar fashion, it may be that inner speech serves
to enhance memory, since it is now well-established that the powers of human
memory systems can be greatly extended by association (Baddeley 1988). Inner
speech may thus facilitate complex trains of reasoning (Varley 1998).

Notice that according to this supra-communicative account, the involve-
ment of language in thought only arises when we focus on a process of
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thinking or reasoning extended over time. So far as any given individual
(token) thought goes, the account can (and does) buy into the standard input-
output conception of language. It maintains that there is a neural episode
which carries the content of the thought in question, where an episode of that
type can exist in the absence of any natural language sentence and can have
a causal role distinctive of the thought, but which in the case in question causes
the production of a natural language representation. This representation can
then have further benefits for the system of the sort which Clark explores 
(off-loading or enhancing memory).

According to stronger forms of the cognitive conception to be explored in
later sections, in contrast, a particular tokening of an inner sentence is (some-
times) an inseparable part of the mental episode which carries the content of
the thought-token in question. So there is no neural or mental event at the
time which can exist distinct from that sentence, which can occupy a causal
role distinctive of that sort of thought, and which carries the content in ques-
tion; and so language is actually involved in (certain types of) cognition, even
when our focus is on individual (token) thinkings.

In this section I have discussed two weak claims about the role of language
(that language is necessary for the acquisition of many beliefs and concepts;
and that language may serve as a cognitive tool, enhancing the range and
complexity of our reasoning processes). These claims should be readily accept-
able to most cognitive scientists. In addition, I have briefly introduced a more
controversial thesis, namely that the acquisition of one or another natural
language can sculpt our cognitive processes, to some degree. But this thesis
relates only to the developmental, or diachronic, role of language. It says
nothing about the role of language in adult cognition. We will in future focus
on more challenging versions of the cognitive conception of language.

3 Strong claims

As is starting to emerge, the thesis that language has a cognitive function
admits of a spectrum of readings. In this section I shall jump to the other end
of that spectrum, considering forms of the cognitive conception of language
which are too strong to be acceptable.

3.1 Language as necessarily required for thought

When the question of the place of natural language in cognition has been
debated by philosophers the discussion has, almost always, been conducted 
a priori in universalist terms. Various arguments have been proposed for 
the claim that it is a conceptually necessary truth that all thought requires
language, for example (Davidson 1975, 1982; Dummett 1981, 1989;
McDowell 1994; Wittgenstein 1921, 1953). But these arguments all depend,
in one way or another, upon an anti-realist conception of the mind – claiming,
for instance, that since we cannot interpret anyone as entertaining any given
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fine-grained thought in the absence of linguistic behavior, such thoughts
cannot even exist in the absence of such behavior (Davidson 1975). Since the
view adopted in this paper – and shared by most cognitive psychologists – is
quite strongly realist about thought, I do not propose to devote any time to
such arguments.

Notice, too, that Davidson et al. are committed to denying that any non-
human animals can entertain genuine thoughts, given that it is very doubtful
whether any such animals are capable of understanding and using a natural
language (in the relevant sense of “language,” that is; see Pinker 1994;
Premack 1986). This conclusion conflicts, not just with common-sense belief,
but also with what can be discovered about animal cognition, both experi-
mentally and by observation of their behavior in the wild (Allen and Bekoff
1997; Byrne 1995; de Waal 1982, 1996; Dickinson and Shanks 1995; Gallistel
1990; Hauser 2000; Povinelli 2000; Savage-Rumbaugh and Lewin 1994;
Walker 1983). So not only are the arguments of Davidson et al. unsound, but
we have independent reasons to think that their conclusion is false.

Dummett (1994) makes some attempt to accommodate this sort of point
by distinguishing between concept-involving thoughts (which are held to be
necessarily dependent upon language) and what he calls “proto-thoughts,”
which are what animals are allowed to possess. Proto-thoughts are said to
consist of “visual images superimposed on the visually perceived scene,” and
are said to be possible only when tied to current circumstances and behavior.
But such an account vastly underestimates the cognitive capacities of non-
human animals, I believe. If an animal can decide whom to form an alliance
with, or can calculate rates of return from different sources of food, or can
notice and exploit the ignorance of another, then these things cannot be
accounted for in Dummett’s terms. And given that conceptual thinking of 
this sort is possible for animals, then he will be left without any principled
distinction between animal thought and human thought.

I do not expect that these brief considerations will convince any of my philo-
sophical opponents, of course; and they aren’t meant to. Given the intended
readership of this target article, their position is not really one that I need to
take seriously. It is mentioned here just to set it aside, and (most important)
in order that other, more plausible, versions of the cognitive conception of
language shouldn’t be confused with it.

I propose, therefore, to take it for granted that thought is conceptually inde-
pendent of natural language, and that thoughts of many types can actually
occur in the absence of such language. But this leaves open the possibility that
some types of thought might de facto involve language, given the way in which
human cognition is structured. It is on this – weaker but nevertheless still
controversial – set of claims that I shall focus. Claims of this type seem to me
to have been unjustly under-explored by researchers in the cognitive sciences;
partly, no doubt, because they have been run together with the a priori and
universalist claims of some philosophers, which have been rightly rejected.
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3.2 The Joycean machine

Another overly strong form of cognitive conception of language – which has
been endorsed by some philosophers and by many social scientists – is that
language is, as a matter of fact, the medium of all human conceptual thinking.
Most often it has been associated with a radical empiricism about the mind,
according to which virtually all human concepts and ways of thinking, and
indeed much of the very structure of the human mind itself, are acquired by
young children from adults when they learn their native language – these
concepts and structures differing widely depending upon the conceptual
resources and structures of the natural language in question. This mind-
structuring and social-relativist view of language is still dominant in the social
sciences, following the writings early in this century of the amateur linguist
Whorf (many of whose papers have been collected together in his 1956) –
indeed, Pinker (1994) refers to it disparagingly as “the Standard Social Science
Model” of the mind.

Perhaps Dennett (1991) is one of the clearest exponents of this view. He
argues that human cognitive powers were utterly transformed following the
appearance of natural language, as the mind became colonized by memes
(ideas or concepts, which are transmitted, retained, and selected in a manner
supposedly analogous to genes; see Dawkins 1976). Prior to the evolution of
language, in this picture, the mind was a bundle of distributed connectionist
processors – which conferred on early hominids some degree of flexibility and
intelligence, but which were quite limited in their computational powers. The
arrival of language then meant that a whole new – serial and compositionally
structured – cognitive architecture could be programmed into the system.

This is what Dennett calls the Joycean machine (named after James Joyce’s
“stream of consciousness” writing). The idea is that there is a highest-
level processor which runs on a stream of natural-language representations,
utilizing learned connections between ideas and patterns of reasoning acquired
in and through the acquisition of linguistic memes. According to this account,
then, the concept-wielding mind is a kind of social construction, brought into
existence through the absorption of memes from the surrounding culture. And
in this view, the conceptual mind is both dependent upon, and constitutively
involves, natural language.

Admittedly, what Dennet will actually say is that animals and pre-linguistic
hominids are capable of thought, and engage in much intelligent thinking. But
this is because he is not (in my sense) a realist about thoughts. On the contrary,
he (like Davidson) is what is sometimes called an “interpretationalist” – he
thinks that there is nothing more to thinking than engaging in behavior which
is interpretable as thinking. Yet he does seem committed to saying that it is
only with the advent of natural language that you get a kind of thinking which
involves discrete, structured, semantically-evaluable, causally-effective states –
that is, thoughts realistically construed.

Bickerton’s proposals (1990, 1995) are somewhat similar, but more biolog-
ical in flavor. He thinks that, before the evolution of language, hominid

P. CARRUTHERS

620



cognition was extremely limited in its powers. According to his view, these
early forms of hominid cognition consisted largely of a set of relatively simple
computational systems, underpinning an array of flexible but essentially behav-
ioristic conditioned responses to stimuli. But then the evolution of language
some 100,000 years ago involved a dramatic re-wiring of the hominid brain,
giving rise to distinctively human intelligence and conceptual powers.4

Bickerton, like Dennett, allows that subsequent to the evolution of language
the human mind would have undergone further transformations, as the stock
of socially transmitted ideas and concepts changed and increased. But the basic
alteration was coincident with, and constituted by, a biological alteration –
namely, the appearance of an innately-structured language-faculty. For
Bickerton is a nativist about language. (Indeed, his earlier work on the
creolization of pidgin languages – 1981 – is often cited as part of an argument
for the biological basis of language; see Pinker 1994.) And it is language which,
he supposes, conferred on us the capacity for “off-line thinking” – that is, 
the capacity to think and reason about topics and problems in the abstract,
independent of any particular sensory stimulus.

These strong views seem very unlikely to be correct. This is so for two
reasons. First, they undervalue the cognitive powers of pre-linguistic children,
animals, and earlier forms of hominid. Thus Homo erectus and archaic forms
of Homo sapiens, for example, were able to survive in extremely harsh tundra
environments, presumably without language (see below). It is hard to see how
this could have been possible without a capacity for quite sophisticated plan-
ning and a good deal of complex social interaction (Mithen 1996). Second,
the views of Dennett and Bickerton are inconsistent with the sort of central-
process modularism which has been gaining increasing support in recent
decades. According to this account, the mind contains a variety of conceptual
modules – for mind-reading, for doing naïve physics, for reasoning about
social contracts, and so on – which are probably of considerable ancestry, pre-
dating the appearance of a modular language-faculty.5 So hominids were
already capable of conceptual thought and of reasoning in a complex, and
presumably “off-line,” fashion before the arrival of language.

In sections 3.3 and 3.4 following, I shall elaborate briefly on these points.
But first, I want to consider a potential reply which might be made by someone
sympathetic to Bickerton’s position. For Bickerton actually thinks that earlier
hominids probably used a form of “proto-language” prior to the evolution of
syntax, similar to the language used by young children and to pidgin
languages. (This is, in fact, a very plausible intermediate stage in the evolu-
tion of natural language.) It might be claimed, then, that insofar as hominids
are capable of intelligent thought, this is only because those thoughts are
framed in proto-language. So the view that thought is dependent upon
language can be preserved.

Such a reply would, indeed, give Bickerton a little extra wiggle-room; but
only a little. For as we shall see in section 3.3 below, a good deal of the
evidence for hominid thinking is provided by the capacities of our nearest
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relatives, the great apes, who are known to lack even a proto-language
(without a good deal of human enculturation and explicit training, at any rate;
Savage-Rumbaugh and Lewin 1994). And some of the other evidence – for
example, provided by hominid stone knapping – is not plausibly seen as under-
pinned by proto-language. Moreover, the various thought-generating central
modules, to be discussed in section 3.4 below, are almost surely independent
both of language and proto-language. So it remains the case that much
hominid thought is independent even of proto-language.

3.3 Hominid intelligence

Since social intelligence is something that we share with the other great apes
(especially chimpanzees), it is reasonable to conclude that the common
ancestor of all apes – and so, by implication, all earlier forms of hominid –
will also have excelled in the social domain. While it is still disputed whether
chimpanzees have full-blown mind-reading, or “theory of mind,” abilities, of
the sort attained by a normal four-year-old child, it is not in dispute that the
social behavior of great apes can be extremely subtle and sophisticated (Byrne
1995; Byrne and Whiten 1988, 1998; Povinelli 2000).

Two points are worth stressing in this context. One is that it is well-nigh
impossible to see how apes can be capable of representing multiple, complex,
and constantly changing social relationships (who is friends with whom, who
has recently groomed whom, who has recently fallen out with whom, and so
on) unless they are capable of structured propositional thought.6 This is a
development of what Horgan and Tienson (1996) call “the tracking argument
for Mentalese” (i.e., an argument in support of the claim that thoughts are
structured out of recombinable components). Unless the social thoughts of
apes were composed out of elements variously representing individuals and
their properties and relationships, then it is very hard indeed to see how they
could do the sort of one-off learning of which they are manifestly capable.
This surely requires separate representations for individuals and their proper-
ties and relations, so that the latter can be varied while the former are held
constant. So (contra Dennett and Bickerton) we have reason to think that all
earlier forms of hominid would have been capable of sophisticated conceptual
thought (realistically construed), at least in the social domain.7

The second point to note is that the social thinking of apes seems some-
times to be genuinely strategic in nature, apparently involving plans that are
executed over the course of days or months. Consider, for example, the way
in which a band of male chimpanzees will set out quietly and in an organized
and purposive manner toward the territory of a neighboring group, appar-
ently with the intention, either of killing some of the males of that group, or
of capturing some of its females, or both (Byrne 1995). Or consider the way
in which a lower-ranking male will, over the course of a number of months,
build up a relationship with the beta male, until the alliance is strong enough
for them to cooperate in ousting the alpha male from his position (de Waal
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1982). Presumably the thinking that would generate such long-term plans and
strategies would have to be “off-line,” in the sense of not being tied to or
driven by current perceptions of the environment.

We can conclude, then, that all of our hominid ancestors would have had
a sophisticated social intelligence. In addition, the stone-tool-making abilities
of later species of Homo erectus indicate a sophisticated grasp of fracture
dynamics and the properties of stone materials. Making stone tools isn’t easy.
It requires judgment, as well as considerable hand-eye coordination and upper-
body strength. And since it uses a reductive technology (starting from a larger
stone and reducing it to the required shape) it cannot be routinized in the way
that (presumably) nest-building by weaver birds and dam-building by beavers
can be. Stone knappers have to hold in mind the desired shape and plan two
or more strikes ahead in order to work toward it using variable and unpre-
dictable materials (Mithen 1996; Pelegrin 1993). Moreover, some of the very
fine three-dimensional symmetries produced from about half-a-million years
ago would almost certainly have required significant capacities for visual imag-
ination – in particular, an ability to mentally rotate an image of the stone
product which will result if a particular flake is struck off (Wynn 2000). And
this is surely “off-line” thinking if anything is!

We can also conclude that early humans were capable of learning and
reasoning about their natural environments with a considerable degree of
sophistication. They were able to colonize much of the globe, ranging from
Southern Africa to Northwestern Europe to Southeast Asia. And they were
able to thrive in a wide variety of habitats (including extremely harsh marginal
tundra environments), adapting their life-style to local – and sometimes rapidly
changing circumstances (Mithen 1990, 1996). This again serves as a premise
for a version of the “tracking argument,” suggesting that early humans were
capable of compositionally-structured thoughts about the biological as well 
as the social worlds.

3.4 The modular mind

The above claims about the cognitive powers of our early ancestors both
support, and are in turn supported by, the evidence of modular organization
in the minds of contemporary humans. According to this account, besides 
a variety of input and output modules (including, e.g., early vision, face-
recognition, and language), the mind also contains a number of innately
channeled conceptual modules, designed to process conceptual information
concerning particular domains. Although these would not be modules in
Fodor’s classic (1983) sense, in that they wouldn’t have proprietary trans-
ducers, might not have dedicated neural hardware, and might not be fully
encapsulated, they would still be innately channeled dedicated computational
systems, generating information in accordance with algorithms which are not
shared with, nor accessible to, other systems.

1111
2
3
4
51111
6
7
8
9
1011
1
2
3111
4
5
6
7
8
9
20111
1
2
3
4
5111
6
7
8
9
30111
1
2
3
4
5
6
7
8
9
40111
1
2
3
4
5111

“THE COGNITIVE FUNCTIONS OF LANGUAGE”

623



Plausible candidates for such conceptual modules might include a naïve
physics system (Baillargeon 1995; Leslie 1994; Spelke 1994; Spelke et al.
1995), a naïve psychology or “mind-reading” system (Baron-Cohen 1995;
Carey 1985; Leslie 1994), a folk-biology system (Atran 1990, 1998, 2002),
an intuitive number system (Dehaene 1997; Gallistel and Gelman 1992; Wynn
1990), a geometrical system for reorienting and navigating in unusual envi-
ronments (Cheng 1986; Hermer and Spelke 1994, 1996) and a system for
processing and keeping track of social contracts (Cosmides and Tooby 1992;
Fiddick et al. 2000).

Evidence supporting the existence of at least the first two of these systems
(folk-physics and folk-psychology) is now pretty robust. Very young infants
already have a set of expectations concerning the behaviors and movements
of physical objects, and their understanding of this form of causality develops
very rapidly over the first year or two of life. And folk-psychological concepts
and expectations also develop very early and follow a characteristic develop-
mental profile. Indeed, recent evidence from the study of twins suggests that
three-quarters of the variance in mind-reading abilities amongst three year olds
is both genetic in origin and largely independent of the genes responsible for
verbal intelligence, with only one quarter of the variance being contributed 
by the environment (Hughes and Plomin 2000).8

Now, of course the thesis of conceptual modularity is still highly contro-
versial and disputed by many cognitive scientists. And I cannot pretend to have
said enough to have established it here; nor is there the space to attempt to
do so. This is going to be one of the large assumptions that I need to ask my
readers to take on board as background to what follows. However, there is
one sort of objection to conceptual modularity which I should like to respond
to briefly here. This is that there simply hasn’t been time for all of these
modular systems to have evolved (or at any rate, not those of them that are
distinctively human – geometry and folk-physics might be the exceptions).

Tomasello (1999) argues that the mere six million years or so since the
hominid line diverged from the common ancestor of ourselves and chimpanzees
is just too short a time for the processes of evolution to have sculpted a 
whole suite of conceptual modules. He thinks that explanations of distinctively-
human cognition need to postulate just one – at most two – biological adapta-
tions, in terms of which all the other cognitive differences between us and
chimpanzees should be explained. His preferred option is theory of mind
ability, which underpins processes of cultural learning and cultural accumula-
tion and transmission. Others might argue in similar fashion that the only
major biological difference is the language faculty (Perner, personal communi-
cation).

The premise of this argument is false, however; six million years is a lot of
time, particularly if the selection pressures are powerful ones. (Only 10,000
years separate polar bears and grizzlies, for example.) And this is especially
so when, as in the present case, many of the systems in question don’t have
to be built ab initio, but can result from a deepening and strengthening of 
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pre-existing faculties. Thus theory of mind would surely have developed from
some pre-existing social-cognition module; folk-biology from a pre-existing
foraging system; and so on. In order to reinforce the point, one just has to
reflect on the major, and multiple, physical differences between ourselves and
chimpanzees – including upright gait, arm length, physical stature, brain size,
nasal shape, hairlessness, whites of eyes, and so on. These, too, have all
evolved – many of them independently, plainly – over the last six million years.

3.5 Taking stock

What has happened in the cognitive sciences in recent decades, then, is this.
Many researchers have become increasingly convinced, by neuropsychological
and other evidence, that the mind is more or less modular in structure, built
up out of isolable, and largely isolated, components (Barkow et al. 1992;
Fodor 1983; Gallistel 1990; Hirschfeld and Gelman 1994; Pinker 1997; Sacks
1985; Shallice 1988; Sperber et al. 1995). They have also become convinced
that the structure and contents of the mind are substantially innate (Carey
1985; Fodor 1981, 1983; Spelke 1994), and that language is one such isolable
and largely innate module (Chomsky 1988; Fodor 1983; Pinker 1994). There
has then been, amongst cognitive scientists, a near-universal reaction against
the cognitive conception of language, by running it together with the Whorfian
hypothesis. Most researchers have assumed, without argument, that if they
were to accept any form of cognitive conception of language, then that would
commit them to Whorfian linguistic relativism and radical empiricism, and
would hence be inconsistent with their well-founded beliefs in modularity and
nativism (Pinker 1994).

It is important to see, however, that someone endorsing the cognitive
conception of language does not have to regard language and the mind as
cultural constructs, either socially determined or culturally relative. In fact,
some form of cognitive conception of language can equally well be deployed
along with a modularist and nativist view of language and mind. There is a
range of positions intermediate between the input-output conception of
language on the one hand and Whorfian relativism (the Standard Social
Science Model) on the other, which deserve the attention of philosophers and
cognitive scientists alike. These views are nativist as opposed to empiricist
about language and much of the structure of the mind, but nevertheless hold
that language is constitutively employed in many of our thoughts.

4 Language and conscious thinking

What is at stake, then, is the question whether language might be constitu-
tively involved in some forms of human thinking. But which forms? In
previous work I suggested that language might be the medium in which we
conduct our conscious propositional thinking – claiming, that is, that inner
speech might be the vehicle of conscious-conceptual (as opposed to conscious
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visuo-spatial) thinking (Carruthers 1996). This view takes seriously and liter-
ally the bit of folk-wisdom with which this paper began – namely, that much
of our conscious thinking (namely, our propositional thinking) is conducted
in inner speech.

Now, if the thesis here is that the cognitive role of language is confined to
conscious thinking, then it will have to be allowed that much propositional
thinking also takes place independently of natural language – for it would
hardly be very plausible to maintain that there is no thinking but conscious
thinking. And there are then two significant options regarding the relations
between non-conscious language-independent thought, on the one hand, and
conscious language-involving thinking, on the other. For either we would have
to say that anything which we can think consciously, in language, can also be
thought non-consciously, independently of language; or we would have to say
that there are some thought-types which can only be entertained at all, by us,
when tokened consciously in the form of an imaged natural language sentence.

Suppose that it is the first – weaker and more plausible – of these options
that is taken. Then we had better be able to identify some element of the
distinctive causal role of an imaged sentence that is sufficiently thought-like
or inference-like for us to be able to say that the sentence in question is partly
constitutive of the (conscious) tokening of the thought-type in question, rather
than being merely expressive of it. For otherwise – if everything which we can
think consciously, in language, we can also think non-consciously, without
language – what is to block the conclusion that inner speech is merely the
means by which we have access to our occurrent thoughts, without inner
speech being in any sense constitutive of our thinking? (On this, at length, see
Carruthers 1998b.)

There would seem to be just two distinct (albeit mutually consistent) possi-
bilities here. One (implicit in Carruthers 1996) would be to propose a suitably
weakened version of Dennett’s Joycean machine hypothesis. While allowing
(contra Dennett) that much conceptual thinking (realistically construed) and
all conceptual thought-types are independent of language (in the sense of not
being constituted by it), we could claim that there are certain learned habits
and patterns of thinking and reasoning that are acquired linguistically, and
then restricted to linguistic (and conscious) tokenings of the thoughts that they
govern. It is surely plausible, for example, that exact long-division or multi-
plication can only be conducted consciously, in imaged manipulations of
numerical symbols. Similarly, it may be that the result of taking a course in
logic is that one becomes disposed to make transitions between sentences,
consciously in language, where one would otherwise not have been disposed
to make the corresponding transitions between the thoughts expressed. If these
sorts of possibilities are realized, then we would have good reason to say of
a token application of a particular inference-form, that the imaged natural
language sentences involved are constitutive of the inference in question, since
it could not have taken place without them.
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A second possibility, is proposed and defended by Frankish (1998a, 1998b,
2004; see also Cohen 1993). This is that the distinctive causal role of inner
speech is partly a function of our decisions to accept, reject, or act on the
propositions which our imaged sentences express. I can frame a hitherto
unconsidered proposition in inner speech and decide that it is worthy of accep-
tance, thereby committing myself to thinking and acting thereafter as if that
sentence were true. Then provided that I remember my commitments and
execute them, it will be just as if I believed the proposition in question. (In his
published work, Frankish describes this level of mentality as the “virtual
mind” and the beliefs in question as “virtual beliefs.”) But, by hypothesis, I
would never have come to believe what I do, nor to reason as I do reason,
except via the tokening of sentences in inner speech. Frankish argues, in effect,
that there is a whole level of mentality (which he now dubs “Supermind”)
which is constituted by our higher-order decisions and commitments to accept
or reject propositions; and that language is constitutive of the thoughts and
beliefs which we entertain at this level.

Such views have considerable plausibility; and it may well be that one, or
other, or both of these accounts of the causal role of inner speech is correct.
Indeed, the dual process theory of human reasoning developed over the years
by Evans and colleagues (Evans and Over 1996; Wason and Evans 1975), and
more recently by Stanovich (1999), combines elements of each of them.
According to this account, in addition to a suite of computationally powerful,
fast, and implicit reasoning systems (from our perspective, a set of conceptual
modules), the mind also contains a slow, serial, and explicit reasoning capaciy,
whose operations are conscious and under personal control, and which is said
(by some theorists at least; e.g., Evans and Over 1996) to involve natural
language. The emphasis here on learned rules in the operations of the explicit
system is reminiscent of Dennett’s “Joycean machine,” whereas the stress on
our having personal control over the operations of that system seems very
similar to Frankish’s conception of “supermind.”

Not only is some form of dual-process theory plausible, but it should also
be stressed that these accounts are independent of central-process modularism.
Those who deny the existence of any conceptual modules can still accept that
there is a level of thinking and reasoning which is both language-involving 
and conscious. It is surely plain, however, that none of the above accounts 
can amount to the most fundamental cognitive function of language once
conceptual modularity is assumed.

Given conceptual modularity, then unless the above views are held together
with the thesis to be developed in section 5 below – namely, that language pro-
vides the medium for inter-modular communication and non-domain-specific
thinking – we can set their proponents a dilemma. Either they must claim 
that a domain-general architecture was in place prior to the evolution of 
language or they must allow that there was no significant domain-general 
cognition amongst hominids prior to the appearance of language and language-
involving conscious thinking; and they must claim that such cognition still
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evolved as a distinct development, either at the same time or later. Since con-
temporary humans are manifestly capable of conjoining information across
different domains in both their theoretical thought and their planning, then
either pre-linguistic humans must already have had domain-general theoreti-
cal and practical reasoning faculties; or they must have evolved them separately
at the same time or after the evolution of the language faculty (that is, if it isn’t
language itself which enables us to combine information across modules).

The problem with the first alternative, however – namely, that domain-
general reasoning capacities pre-dated language – is that the evidence from
cognitive archaeology suggests that this was not the case. For although the
various sub-species of Homo erectus and archaic forms of Homo sapiens were
smart, they were not that smart. Let me briefly elaborate.

As Mithen (1996) demonstrates at length and in detail, the evidence from
archaeology is that the minds of early humans were in important respects 
quite unlike our own. While they successfully colonized diverse and rapidly
changing environments, the evidence suggests that they were incapable of
bringing together information across different cognitive domains. It seems that
they could not (or did not) mix information from the biological world (utilized
in hunting and gathering) with information about the physical world (used in
tool making); and that neither of these sorts of information interacted with
their social intelligence. Although they made sophisticated stone tools, they
did not use those tools for specialized purposes (with different kinds of arrow-
head being used for different kinds of game, for example); and they did not
make tools out of animal products such as antler and bone. There is no sign
of the use of artifacts as social signals in the form of body ornaments and
such, which is ubiquitous in modern human cultures. And there is no indica-
tion of totemization or other sorts of linkages between social and animal
domains, such as lion-man figurines, cave-paintings, or the burning of the dead
with (presumably symbolic) animal parts – which all emerge onto the scene
for the first time with modern humans. As Mithen summarizes the evidence,
it would appear that early humans had sophisticated special intelligences, but
that these faculties remained largely isolated from one another.

The problem with the second horn of the dilemma sketched above is just
that it is hard to believe, either that a domain-general reasoning faculty might
have evolved after the appearance of language some 100,000 years ago (in just
the 20,000 years or so before the beginning of the dispersal of modern humans
around the globe), or that language and domain-general capacities might have
coevolved as distinct faculties. For as we shall see in section 5, the evolution
of language would in any case have involved the language faculty taking inputs
from, and sending outputs to, the various modular systems, if there wasn’t
already a domain-general system for it to be linked to. And it is hard to discern
what the separate selection pressures might have been, which would have led
to the development of two distinct faculties at about the same time (language
and domain-general thought), when just one would serve.
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5 Language as the medium of non-domain-specific
thinking

The hypothesis that I particularly want to explore, then, is that natural lan-
guage is the medium of non-domain-specific thought and inference. Versions
of this hypothesis have been previously proposed by Carruthers (1996, 1998a),
by Mithen (1996), and by Spelke and colleagues (Hermer-Vazquez et al., 1999;
Spelke and Tsivkin 2001; Spelke, 2002). I shall sketch the thesis itself, outline
the existing experimental evidence in its support, and then (in the section
following) consider some of its ramifications and possible elaborations. Finally
(in sect. 7), I shall discuss what further evidence needs to be sought as a test
of our thesis.

5.1 The thesis

The hypothesis in question assumes a form of central-process modularism.
That is, it assumes that in addition to the various input and output modules
(vision, face-recognition, hearing, language, systems for motor-control, etc.),
the mind also contains a range of conceptual modules, which take conceptual
inputs and deliver conceptual outputs. Evidence of various sorts has been accu-
mulating in support of central-process modularism in recent decades (some of
which has already been noted above). One line of support is provided by evolu-
tionary psychologists, who have argued on both theoretical and empirical
grounds that the mind contains a suite of domain-specific cognitive adapta-
tions (Barkow et al., 1992; Pinker 1997; Sperber 1996). But many who would
not describe themselves as “evolutionary psychologists” have argued for a
modular organization of central cognition, on developmental, psychological,
and/or neuro-pathological grounds (Baron-Cohen 1995; Carey 1985; Carey
and Spelke 1994; Gallistel 1990; Hauser and Carey 1998; Leslie 1994; Smith
and Tsimpli 1995; Shallice 1988; Spelke 1994).

What cognitive resources were antecedently available, then, prior to the
evolution of the language faculty? Taking the ubiquitous laboratory rat as a
representative example, I shall assume that all mammals, at least, are capable
of thought – in the sense that they engage in computations which deliver struc-
tured (propositional) belief-like states and desire-like states (Dickinson 1994;
Dickinson and Balleine 2000). I shall also assume that these computations are
largely carried out within modular systems of one sort or another (Gallistel
1990) – after all, if the project here is to show how cross-modular thinking in
humans can emerge out of modular components, then we had better assume
that the initial starting-state was a modular one. Furthermore, I shall assume
that mammals possess some sort of simple non-domain-specific practical
reasoning system, which can take beliefs and desires as input, and figure out
what to do.

I shall assume that the practical reasoning system in animals (and perhaps
also in us) is a relatively simple and limited-channel one. Perhaps it receives
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as input the currently-strongest desire and searches amongst the outputs of the
various belief-generating modules for something which can be done in rela-
tion to the perceived environment which will satisfy that desire. So its inputs
have the form DESIRE [Y] and BELIEF [IF X THEN Y], where X should be some-
thing for which an existing motor-program exists. I assume that the practical
reasoning system is not capable of engaging in other forms of inference (gener-
ating new beliefs from old), nor of combining together beliefs from different
modules; though perhaps it is capable of chaining together conditionals to
generate a simple plan – for example, BELIEF [IF W THEN X], BELIEF [IF X

THEN Y], → BELIEF [IF W THEN Y].
The central modules will take inputs from perception, of course. And my

guess is that many of the beliefs and desires generated by the central modules
will have partially indexical contents – thus a desire produced as output by
the sex module might have the form, “I want to mate with that female,” and
a belief produced by the causal-reasoning module might have the form, “That
caused that.” So if the practical reasoning system is to be able to do anything
with such contents, then it, too, would need to have access to the outputs of
perception, to provide anchoring for the various indexicals. The outputs 
of the practical reasoning system are often likely to be indexical too, such as
an intention of the form, “I’ll go that way.”

The inputs to central-process modules can presumably include not only con-
ceptualized perceptions but also propositional descriptions (in the latter case
deriving from linguistic input – for we surely use our mind-reading system, for
example, when processing a description of someone’s state of mind as well as
when observing their behavior). And in some cases, too, the inputs to a mod-
ule will include the outputs of other central-process modules; for we might
expect that there will be cases in which modules are organized into some sort
of hierarchy. But what of the outputs from central-process modules? Besides
being directed to other modules (in some instances), and also to the practical
reasoning system, where is the information which is generated by central-
process modules normally sent? And in particular, is there some non-domain-
specific central arena where all such information is collated and processed?

The hypothesis being proposed here is that there is such an arena, but one
which crucially implicates natural language, and which cannot operate in the
absence of such language. Moreover, the hypothesis is not just that our
conscious propositional thinking involves language (as sketched in sect. 4
above), but that all non-domain-specific reasoning of a non-practical sort
(whether conscious or non-conscious) is conducted in language. And as for
the question of what a non-conscious tokening of a natural language sentence
would be like, we can propose that it would be a representation stripped of
all imagistic-phonological features, but still consisting of natural language
lexical items and syntactic structures.

Chomsky (1995) has maintained, for example, that there is a level of
linguistic representation which he calls “logical form” (LF), which is where
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the language faculty interfaces with central cognitive systems. We can then
claim that all cross-modular thinking consists in the formation and manipu-
lation of these LF representations. The hypothesis can be that all such thinking
operates by accessing and manipulating the representations of the language
faculty. Where these representations are only in LF, the thoughts in question
will be non-conscious ones. But where the LF representation is used to generate
a full-blown phonological representation (an imaged sentence), the thought
will nomally be conscious. And crucially for my purposes, the hypothesis is
that the language faculty has access to the outputs of the various central-
process modules, in such a way that it can build LF representations which
combine information across domains.

Let me say just a little more about the conscious/non-conscious distinction
as it operates here. As I shall mention again in a moment language is both an
input and an output module. Its production sub-system must be capable of
receiving outputs from the conceptual modules in order to transform their
creations into speech. And its comprehension sub-system must be capable of
transforming heard speech into a format suitable for processing by those same
conceptual modules. Now when LF representations built by the production
sub-system are used to generate a phonological representation, in “inner
speech,” that representation will be consumed by the comprehension sub-
system, and made available to central systems. One of these systems is a theory
of mind module. And on the sort of higher-order theory of consciousness
which I favor (Carruthers 2000), perceptual and imagistic states get to be
phenomenally conscious by virtue of their availability to the higher-order
thoughts generated by the theory of mind system (i.e., thoughts about those
perceptual and imagistic states). So this is why inner speech of this sort is
conscious: It is because it is available to higher-order thought.

The hypothesis, then, is that non-domain-specific, cross-modular, proposi-
tional thought depends upon natural language – and not just in the sense that
language is a necessary condition for us to entertain such thoughts, but in the
stronger sense that natural language representations are the bearers of those
propositional thought-contents. So language is constitutively involved in (some
kinds of) human thinking. Specifically, language is the vehicle of non-modular,
non-domain-specific, conceptual thinking which integrates the results of
modular thinking.

Before moving on to discuss the evidence in support of our thesis, consider
one further question. Why does it have to be language, and not, for example,
visual imagery that serves the integrative function? For visual images, too, can
carry contents which cross modular domains. But such visual thinking 
will access and deploy the resources of a peripheral input module. It cannot,
therefore, play a role in integrating information across conceptual modules,
because the latter exist down-stream of the input-systems. Vision provides
input to conceptual modules, and doesn’t receive output from them. The
language faculty, in contrast, while also “peripheral,” has both input and 
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output functions. (I shall return to this point again in sect. 6.2 below.) I would
hypothesize, therefore, that in cases where visual images have cross-modular
contents (and aren’t memory images), they are always generated from some
linguistic representation which originally served to integrate those contents.

5.2 The evidence

What evidence is there to support the hypothesis that natural language is the
medium of inter-modular communication, or of non-domain-specific inte-
grated thinking? Until recently, the evidence was mostly circumstantial. For
example, one indirect line of argument in support of our thesis derives from
cognitive archaeology, when combined with the evidence of contemporary
central-process modularism (Mithen 1996). For as we noted above, it seems
that we have significant evidence of cross-modular thought only following 
the emergence of contemporary humans some 100,000 years ago; whereas
independent evidence suggests that language, too, was a late evolutionary
adaptation, only finally emerging at about the same time (perhaps from an
earlier stage of “proto-language” – Bickerton 1990, 1995). So the simplest
hypothesis is that it is language which actually enables cross-modular thinking.

Another strand of indirect evidence can be provided if we take seriously the
idea that the stream of inner verbalization is constitutive of (some forms of)
thinking (Carruthers 1996). For as we saw in section 4, such views can only
plausibly be held (given the truth of central-process modularism) together with
the present hypothesis that language is the main medium of inter-modular
communication.

Much more important, however, direct tests of (limited forms of) our
hypothesis have now begun to be conducted. The most important of these is
Hermer-Vazquez et al. (1999), which provides strong evidence that the inte-
gration of geometric properties with other sorts of information (color, smell,
patterning, etc.) is dependent upon natural language. The background to their
studies with human adults is the parent discovery of a geometric module
in rats by Cheng (1986), as well as the discovery of a similar system in 
pre-linguistic human children (Hermer and Spelke 1994, 1996).

Cheng (1986) placed rats in a rectagonal chamber, and allowed them to
discover the location of a food source. They were then removed from the
chamber and disoriented, before being placed back into the box with the food
now hidden. In each case there were multiple cues available – both geometric
and non-geometric – to guide the rats in their search. For example, the
different walls might be distinctively colored or patterned, one corner might
be heavily scented, and so on. In fact in these circumstances the rats relied
exclusively on geometric information, searching with equal frequency, for
example, in the two geometrically-equivalent corners having a long wall on
the left and a short wall on the right. Yet rats are perfectly well capable of
noticing and remembering non-geometric properties of the environment and
using them to solve other tasks. So it appears that, not only are they incapable
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of integrating geometric non-geometric information in these circumstances,
but that geometric information takes priority.

(This makes perfectly good ecological-evolutionary sense. For in the rat’s
natural environment, overall geometrical symmetries in the landscape are
extremely rare, and geometrical properties generally change only slowly with
time; whereas object-properties of color, scent-markings, and so on will change
with the weather and seasons. So a strong preference to orient by geometrical
properties is just what one might predict.)

Hermer and Spelke (1994, 1996) found exactly the same phenomenon 
in pre-linguistic human children. Young children, too, rely exclusively on
geometric information when disoriented in a rectangular room, and appear
incapable of integrating geometrical with non-geometrical properties when
searching for a previously seen but now-hidden object. Older children and
adults are able to solve these problems without difficulty – for example, they
go straight to the corner formed with a long wall to the left and a short blue
wall to the right. It turns out that success in these tasks isn’t directly corre-
lated with age, nonverbal IQ, verbal working-memory capacity, vocabulary
size, or comprehension of spatial vocabulary. In contrast, the only significant
predictor of success in these tasks which could be discovered, was spontaneous
use of spatial vocabulary conjoined with object-properties (e.g., ‘It’s left of the
red one”). Even by themselves, these data strongly suggest that it is language
which enables older children and adults to integrate geometric with non-
geometric information into a single thought or memory.

Hermer-Vazquez et al. (1999) set out to test this idea with a series of dual-
task experiments with adults. In one condition, subjects were required to solve
one of these orientation problems while shadowing (i.e., repeating back) speech
played to them through a set of headphones. In another condition, they were
set the same problems while shadowing (with their hands) a rhythm played to
them in their headphones. The hypothesis was that speech-shadowing would
tie up the resources of the language faculty, whereas the rhythm-shadowing
tasks would not; and great care was taken to ensure that the latter tasks were
equally if not more demanding of the resources of working memory.

The results of these experiments were striking. Shadowing of speech severely
disrupted subjects’ capacity to solve tasks requiring integration of geometric
with non-geometric properties. In contrast, shadowing of rhythm disrupted
subjects’ performance relatively little. Moreover, a follow-up experiment
demonstrated that shadowing of speech didn’t disrupt subjects’ capacities 
to utilize non-geometric information per se – they were easily able to solve 
tasks requiring only memory for object-properties. So it would appear that 
it is language itself which enables subjects to conjoin geometric with non-
geometric properties, just as the hypothesis that language is the medium of
cross-modular thinking predicts.

Of course, this is just one set of experiments – albeit elegant and powerful
– concerning the role of language in enabling information to be combined
across just two domains (geometrical and object-properties). In which case,
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little direct support is provided for the more-demanding thesis that language
serves as the vehicle of inter-modular integration in general. But the evidence
does at least suggest that the more general thesis may be well worth pursing.

5.3 Challenging the data

The position taken by Hermer-Vazquez et al. (1999) has come under pressure
from two different directions. First, there are claims that other species
(chickens, monkeys) can integrate geometric and landmark information when
disoriented (Gouteux et al. 2001; Vallortigara et al. 1990). And second, there
is the finding that success in these tasks amongst young children is somewhat
sensitive to the size of the room – in a larger room, significantly more young
(four-year-old) children make the correct choice, utilizing both geometric and
landmark information; and even more five- and six-year-old children are also
able to make the correct choice (Learmonth et al. 2001, 2002).

To begin unpicking the significance of these new results, we need to return
to some of the original claims. It is too strong to say that the original data
with rats (Cheng 1986) showed the existence of a geometric module in that
species. For rats can use landmark information when navigating in other
circumstances. The fact is just that they don’t use such information when
disoriented. Nor is it established that rats cannot integrate geometric with
landmark information. The fact is just that they do not utilize both forms of
information when disoriented. So the data are consistent with the following
model: there are no modules; rather, geometric and landmark information are
both processed according to general-purpose algorithms and made available
to some sort of practical reasoning system. But when disoriented, rats only
pay attention to, and only make use of, the geometric information.

Even if one thinks (as I do) that other forms of evidence and other argu-
ments make some sort of modularist architecture quite likely, the following
proposal is still consistent with the data: both the geometric and landmark
modules normally make their information available to some sort of practical
reasoning system; but when disoriented, rats show a strong preference to make
use only of the geometric information.

Equally, however, the fact that other species are able to solve these prob-
lems doesn’t show that members of those species can integrate geometric with
landmark information into a single belief or thought. For it is possible to solve
these tasks by making use of the information sequentially. The problems can
be solved by first re-orienting to the landmark, and then using geometric
information to isolate the correct corner. So the data are consistent with the
following modularist model: Both the geometric and landmark modules make
their outputs available to a limited-channel practical reasoning system, where
the latter doesn’t have the inferential resources to integrate information from
different modules; rather, it can only utilize that information sequentially,
using a variety of heuristics (both innate and learned) in selecting the informa-
tion to be used, and in what order. According to this view, the difference
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between monkeys and rats is just that the former utilize landmark informa-
tion first, before using geometry; whereas the latter use geometry exclusively
in these circumstances. Neither species may in fact be capable of integrating
geometrical with landmark information.

(It is tempting to seek an adaptionist explanation of these species differ-
ences. Open-country dwellers such as rats and pre-linguistic humans may have
an innate pre-disposition to rely only on geometric information when disori-
ented because such information alone will almost always provide a unique
solution – given that rectagonal rooms don’t normally occur in nature! Forest
dwellers such as chickens and monkeys, in contrast, have an innate pre-
disposition to seek for landmark information first, only using geometric
information to navigate in relation to a known landmark. This is because
geometric information is of limited usefulness in a forest – the geometry is just
too complex to be useful in individuating a place in the absence of a landmark
such as well-known fruit-tree.)

What of the new data concerning the effects of room size? Well, the first
thing to say is that this data leaves intact the finding by Hermer-Vazquez et
al. (1999) that the best predictor of success in children (in small room exper-
iments) is productive use of left-right vocabulary. This suggests, both that
language has something to do with their success, and that it is specifically
syntax (the capacity to integrate different content-bearing items into a single
thought) that is required. For if the role of language were simply to help fix
the salience and importance of landmark information, one would expect that
it should have been productive use of color vocabulary, rather than spatial
vocabulary, which was the best predictor of success. For by hypothesis, after
all, children are already disposed to use geometric information in reorienting;
their problem is to make use of color information as well.

Equally untouched are the experiments with adults involving speech shad-
owing and rhythm shadowing, which found that the former greatly disrupts
the capacity to use geometric and landmark information together, whereas the
latter does not. These results, too, suggest that it is language which enables
adults to integrate the two forms of information.

Why should room size have any effect upon children’s performance,
however? Here is one testable possibility, which is consistent with the theo-
retical framework of Hermer-Vazquez et al. (1999) and the present author. In
a small room (4 feet by 6 feet) it requires but very little time and energy to
select a corner and turn over a card. In a larger room (8 feet by 12 feet), in
contrast, children have to take a few steps in order to reach a selected corner,
giving them both a motive, and the time, to reflect. It may then be that the
children who were able to succeed in the large-room condition were on the
cusp of having the linguistic competence necessary to integrate geometric and
landmark information. Perhaps they could do this, but only haltingly and with
some effort. Then it is only to be expected that such children should succeed
when given both the time and the motive to do so.
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5.4 More data: Language and arithmetic

We have examined one set of data which provides strong support for a limited
version of our thesis. Data is now available in one other domain – that of
number. This comes from a recent bilingual training study conducted by Spelke
and Tsivkin (2001). The background to this study is the discovery of numer-
ical capacities in animals and human infants, of two different sorts. One is the
capacity possessed by many different kinds of animal (including birds and fish)
to represent the approximate numerosity of largish sets of items (Dehaene
1997; Gallistel 1990). This capacity is utilized especially in foraging, enabling
animals to estimate rates of return from different food sources. The other
numerical capacity is possessed by monkeys and human infants, at least. It is
a capacity to represent the exact number of small sets of items (up to about
four), keeping track of their number using simple forms of addition and
subtraction (Gallistel and Gelman 1992; Hauser and Carey 1998).

The developmental hypothesis which forms the backdrop to Spelke and
Tsivkin’s study is that language-learning in human children – specifically,
learning to pair number words with items in a set through the process of
counting – builds upon these two pre-linguistic numerical capacities to enable
humans to represent exact numbers of unlimited magnitude. But the develop-
mental hypothesis could be interpreted in two ways. On one interpretation,
the role of language is to load the child’s mind with a set of language inde-
pendent exact numerical concepts – so that, once acquired, the capacity to
represent exact large magnitudes is independent of language. The other inter-
pretation is that it is the numerical vocabulary of a specific natural language
which forms the medium of exact-magnitude representation, in such a 
way that natural language is the vehicle of arithmetic thought. It is this latter
interpretation which Spelke and Tsivkin (2001) set out to test.

They conducted three different bilingual arithmetic training experiments. In
one experiment, bilingual Russian-English college students were taught new
numerical operations; in another, they were taught new arithmetic equations;
and in the third, they were taught new geographical and historical facts
involving both numerical and non-numerical information. After learning a set
of items in each of their two languages, subjects were tested for knowledge of
those and of new items in both languages. In all three studies subjects retrieved
information about exact numbers more effectively in the language in which
they were trained on that information, and they solved trained problems more
effectively than new ones. In contrast, subjects retrieved information about
approximate numbers and about non-numerical (geographical or historical)
facts with equal ease in their two languages, and their training on approxi-
mate number facts generalized to new facts of the same type.9 These results
suggest that one or another natural language is the vehicle of thought about
exact numbers, but not for representing approximate numerosity (a capacity
shared with other animals).
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What we have, then, is the beginnings of evidence in support of our general
thesis that natural language is the medium of inter-modular non-domain-
specific thinking.

8 Conclusion*

This paper has reviewed a wide range of claims concerning the cognitive 
functions of language. At one extreme is the purely communicative (or input-
output) conception of language, and at the other extreme is the claim that
language is required for all propositional thought as a matter of conceptual
necessity, with a variety of positions in between these two poles. Section 2
discussed some versions of the cognitive conception of language which are too
weak to be of any deep interest; and section 3 considered some claims which
are too strong to be acceptable. Section 4 expressed sympathy for a variety of
“dual process” models of cognition, especially the claim that language is the
vehicle of conscious-conceptual thinking. But it pointed out that to be plau-
sible (given the truth of central-process modularisrn) such views must depend
on the prior and more fundamental claim that language is the medium of cross-
modular thought. This then became the focus of our enquiries in section 5.

In closing, however, let me provide a reminder of the character of the exer-
cise we have undertaken. Almost every paragraph in this paper has contained
claims which are still controversial to some degree, and yet there hasn’t been
the space to pursue those controversies or to defend my assumptions. This has
been inevitable, given the array of theories we have considered, and the range
of considerations and types of evidence which are relevant to their truth,
drawn from a variety of academic disciplines. But then the task has only been
to survey those theories, and to show that some of them are well enough moti-
vated to warrant further investigation – not to nail down and conclusively
establish a precisely formulated thesis. And in that task, I hope, the target
article has succeeded.
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Notes

1 Philosophers and logicians should note that Chomsky’s LF is very different from
what they are apt to mean by “logical form.” In particular, sentences of LF don’t
consist just in logical constants and quantifiers, variables, and dummy names.
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Rather they are constructed from lexical items drawn from the natural language
in question. They are also syntactically structured, but regimented in such a way
that all scope-ambiguities and the like are resolved, and with pronouns cross-
indexed to their referents and so on. Moreover, the lexical items will be
semantically interpreted, linked to whatever structures in the knowledge-base
secure their meanings.

Note, too, that an appeal to LF isn’t strictly necessary for the purposes of the
main thesis of this article. I use it more by way of illustration, and for the sake
of concreteness. All that is truly essential is that there should exist a separate
mental faculty for processing natural language, with both input and output func-
tions, and that this faculty should deal in structured representations.

2 Admittedly, developmental psychologists have – until very recently – tended to
down-play the significance of testimony (and hence of language) in child devel-
opment. Following Piaget, they have mostly viewed children as individualistic
learners – acquiring information for themselves, and developing and testing theo-
ries in the light of the information acquired (e.g. Gopnik and Meltzoff 1997). See
Harris (2002) who makes a powerful plea for the role of testimony to be taken
much more seriously in accounts of child development.

3 This is, in fact, a weak version of the Whorfian hypothesis, to be discussed in its
strongest form in section 3.2.

4 This date for the first appearance of fully-syntactic natural language seems to be
quite widely adopted amongst cognitive archaeologists – see Mithen (1996) – so
I, too, propose to accept it (albeit tentatively) in what follows. But it is, of course,
still highly controversial. And it should be noted that at least some of the evidence
for it turns on assumptions about the cognitive role of language.

5 Here and throughout the remainder of this article I shall use the term “module”
loosely (following Smith and Tsimpli 1995, and others) especially when talking
about central-process, or conceptual, modules. (Another option would have been
to use the stylistically-barbaric term “quasi-module” throughout.) While these
systems might not be modular in Fodor’s classic (1983) sense – they will not
have proprietary inputs, for example, and might not be fully encapsulated – they
should be understood to conform to at least some of the main elements of
Fodorian modularity. As I shall henceforward understand it, modules should be
innately channeled (to some significant degree) and subject to characteristic
patterns of breakdown; their operations might be mandatory and relatively fast;
and they should process information relating to their distinctive domains
according to their own specific algorithms.

6 Note that the computer programme Chimp World which successfully simulated
chimpanzee behaviors and social structures without deploying higher-order
thoughts nevertheless did employ structured propositional representations
(Hughes 1993, reported in Povinelli 2000).

7 What is the status of arguments that take the form, “It is very hard to see how
otherwise?” Do they merely reflect a lack of imagination on our part? Perhaps.
But a more sympathetic gloss is that these are just standard arguments to the
best available explanation. All theorizing, of course, in whatever discipline, has
to work with those theories which can be imagined, or thought of, to explain the
data. And it is often the case that there is only one theory which can be thought
of to explain a given set of data.
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8 How does this square with the data mentioned earlier, that there is nevertheless
a substantial correlation between language ability and theory of mind in young
children? Well, first, the Hughes and Plomin finding is that the genes for theory
of mind and for verbal intelligence are not wholly independent of one another.
And second, a quarter of the variance in theory of mind ability comes from the
environment: and this may well be linguistically mediated in one way or another.

9 Note that geographical information isn’t the same as geometric information;
neither do the kinds of fact in question require integration with geometry.
(Knowing that Paris is the capital of France doesn’t need geometry.) So the finding
that recall of geographical information is independent of language isn’t incon-
sistent with the thesis that language is necessary to integrate geometric
information with information of other kinds.
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30

J.L. Bermúdez, “Language and Thinking 
about Thoughts”

There are different conceptions of the relation between linguistic and nonlin-
guistic thought, and correspondingly of the scope and limits of nonlinguistic
thought. These different conceptions fall naturally into two broad groups. At
one extreme are views that seek to drive as much of a wedge as possible
between linguistic and nonlinguistic thought. For example, there is the mini-
malist conception of nonlinguistic thought, according to which nonlinguistic
creatures are capable only of an etiolated and imagistic type of thinking, the
vehicles of which are “spatial images superimposed on spatial perceptions.”
If the minimalist conception is correct then it will provide us with a very clear
sense of the differences between linguistic thought and nonlinguistic thought.
So too would a view that goes naturally with the minimalist conception – the
view, namely, that considerations of sense and mode of presentation can get
no grip in the absence of language. But much of my book Thinking without
Words (from which this chapter is extracted) is devoted to arguing that, initial
appearances to the contrary, there is indeed room at the nonlinguistic level for
the ascription of thoughts that have determinate content and compositional
structure – and, more strongly, that such thoughts are indispensable for the
purpose of psychological explanation. So where does this leave us? Are there
any genuine differences at all between linguistic thought and nonlinguistic
thought?

The principal claim of this chapter is that an important class of thoughts
is in principle unavailable to nonlinguistic creatures. In the first section I briefly
discuss some of the claims that have been made about how language can func-
tion as a cognitive tool. It emerges that many of these functions do not actually
require a full-fledged language. If language is to have a distinctive, unique, 
and essential cognitive function, so that the difference between linguistic and
nonlinguistic cognition is qualitative rather than merely quantitative, then we
must look elsewhere. In section 2 I develop my own account of the contribu-
tion that language can make to cognition – and explain why it is a contribution
that can only be made by language. The central claim is that all thinking that
involves intentional ascent (roughly, all thinking that involves thinking about
thoughts) requires the capacity to think about words.
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1 Language as a cognitive tool

Andy Clark (1998) has usefully plotted out six fundamental respects in which
language can function as a tool, enhancing, extending, and facilitating thought
and cognition), as follows.1

1 Memory augmentation. The acquisition of a public language offers us
powerful means of systematically storing data (not simply in written
language but also in communicated oral traditions).

2 Environmental simplification. Applying linguistic labels is one way that
the perceived environment can be broken down into persisting objects and
properties.

3 Coordination. Language permits the mutual control of attention and
resource allocation in coordinated activities.

4 Transcending path-dependent learning. The learning patterns of linguistic
creatures are not constrained by the particular cognitive paths they have
followed, since linguistic communication allows ordinary learning
patterns to be circumvented and short-circuited.

5 Control loops. Language allows us to create control loops for our future
behavior (by writing down plans that might be too complicated to keep
in one’s head, for example) as well as to register and respond to the
instruction and regulation of others.

6 Data manipulation and representation. “Extended intellectual arguments
and theses are almost always the product of brains acting in concert with
multiple external resources. These resources enable us to pursue manipu-
lations and juxtapositions of ideas and data which would quickly baffle
the un-augmented brain” (Clark 1998: 173).

These are all, no doubt, important ways that language possession serves to
extend and enhance thinking. But they do not, I think, mark types of thinking
that are in principle available only to language-using creatures. As a first step
in plotting out the scope of nonlinguistic thought, it will be useful to explore
how several of the functions that Clark identifies can be carried out by nonlin-
guistic processes.

By “nonlinguistic process” I mean one or other of two things. On the one
hand a process can be straightforwardly nonlinguistic in virtue of not relying
on any symbols at all.2 On the other a process can be nonlinguistic even though
it is dependent on symbols, simply because it does not rely on the right sort
of symbols. Of course, to describe a process as nonlinguistic in this second
sense is hostage to a principled distinction between linguistic and nonlinguistic
symbol systems, and I shall have some more to say about that shortly. First,
though, consider how far one can get with the prosthetic functions of language
at an entirely nonsymbolic level.

The mutual control of attention and resource allocation in coordinated
social activities does not require the intervention of language. Coordination
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requires a degree of communication, but this communication can perfectly well
be nonsymbolic (hence, uncontroversially, nonlinguistic). It is well known, for
example, that human infants engage from a very early age in sustained periods
of coordinated activity with their caregivers. The process has aptly been called
one of affect attunement (Stern 1985). It is a process of exploring and
communicating emotional states through changes in facial expression, vocal-
izations, and gesture.

Affect attunement is the performance of behaviors that express the
quality of feeling of a shared affect state without imitating the exact
behavioral expression of the inner state. . . . The reason attunement
behaviors are so important is that true imitation does not permit the
partners to refer to the internal state. It maintains the focus of attention
on the forms of the external behaviors. Attunement behaviors, on the
other hand, recast the event and shift the focus of attention to what is
behind the behavior, to the quality of feeling that is being shared. (Stern
1985: 142)

In affect attunement, emotional states are communicated by being shared. The
infant’s participation in this sort of communication is intentional (as, of course,
is the caregiver’s), and the process of affect attunement is a type of coordi-
nated activity in which there is a mutual control of resource allocation.
Nonetheless, the process is not one of symbolic communication, because facial
expressions and vocalizations are not symbols for the emotional states that
are being communicated. The link between a scowl and a feeling of disagree-
ableness, for example, is expressive rather than symbolic. The behavioral
manifestations of emotions and feelings cannot be divorced from the emotions
and feelings that are being manifested. That is to say, the link between them
is not arbitrary and conventional, which is the essence of the symbolic.

A further example of coordination without symbols comes with the well-
studied dances carried out by worker honeybees (von Frisch 1967).3 Although
the details of the dances vary among the seven known species of the genus
Apis, the basic principles are similar. Worker bees returning to the nest site
after successful foraging land on the horizontal top of the nest and perform
what has come to be known as a waggle dance to inform their fellow workers
of the location of the food source. In the waggle dance the bee flies in a figure-
of-eight pattern, moving its abdomen back and forth laterally on the straight
line in between the two circles. Although there is of course a degree of error,
the waggle dances communicate information about the direction, distance, and
desirability of the food source. Each of these three dimensions of variation is
correlated with a dimension of variation in the dance. The angle of the dance
relative to the position of the sun indicates the direction of the food source.
The duration of a complete figure-of-eight circuit indicates the distance to the
food source (or rather the flying time to the food source, because it increases
when the bees would have to fly into a headwind). And the vigor of the dance
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indicates the desirability of the food to be found. Variation in all three environ-
mental features is preserved in the relevant dimensions of the bee dance.

The bee dance is an even clearer example than affect attunement of coor-
dination in resource allocation – and, as in the affect attunement case, it does
not seem appropriate to describe the coordination as resting on symbolic
communication. The bee dance is nonsymbolic because it does not involve
arbitrary signals. To appreciate the point, and in particular the distinction
between arbitrary and iconic signals, it is worth making a small digression into
the theory of signals. There can be no transfer of information without rules
for the encoding and decoding of signals (Green and Marler 1979). Viewed in
broad and abstract terms, the rules for the encoding of a signal govern the
transformations that lead from stimuli received at the sensory surfaces to
signaling behavior. The simplest such rules yield deterministic links from input
to output, as when the signaling behavior is what is sometimes called an
‘instinctive behavior pattern’ or an ‘innate releasing mechanism.’ Newly
hatched herring gulls, for example, are particularly sensitive to the sensory
input correlated with the length, movement, and coloration of the adult
herring gull’s bill. A transformation rule maps this onto the chick’s character-
istic signaling behavior, vigorous pecking at the adult’s bill tip (Tinbergen
1973). In this case the decoding signal is equally straightforward. The adult
herring gull responds by feeding the chick. More complex signaling behaviors
might involve a series of rules governing a series of transformations. In affect
attunement, for example, there will be rules governing the extraction of
various qualitative and quantitative aspects of vocal exclamations and gestures
by the partner in the exchange; rules mapping those aspects onto an amodal
‘common currency’; and rules that then generate responsive gestures or vocal-
izations (Stern 1985).

In an iconic signal system there is, for each dimension of variation in the
relevant environmental feature (the distance of the food source in the honeybee
case, for example), a single transformation rule mapping variation in that
parameter onto variation in the relevant dimension of the signal. The receiver
of the signal will decode the signal by an inverse mapping.4 Signs are arbi-
trary, as opposed to iconic, when no such general and continuous rules exist
to map variations in environmental parameters onto variations in signals. Each
member of the signal set is linked to a particular environmental feature by
specific assignments that can only be characterized one by one. Within the
framework set by the distinction between arbitrary and iconic signals, it seems
relatively uncontroversial, first, that the bee dances are iconic rather than arbi-
trary signaling practices and, second, that no practice that does not involve
arbitrary signals can plausibly be described as linguistic.

The bee dances, then, clearly illustrate how coordination in resource allo-
cation and communal activity can be achieved at the nonlinguistic level. They
also illustrate how control loops can be created without language and, more-
over, how path-dependent learning can be transcended. The whole point of
the bee dances is that the vast majority of worker bees do not need to seek
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the food for themselves. The worker bees that remain in the hive can profit
from the explorations of a small number of bees to circumvent the standard
search procedures.

Imitative learning is perhaps the most fundamental way of overcoming
path-dependence through permitting the social transmission of knowledge.
Imitation is extremely widespread in the animal kingdom and is present in
human infants more or less from birth (Meltzoff and Moore 1977, 1983). The
most straightforward form of imitative learning is simple mimicry, of the sort
that can be seen in the social transmission of bird songs and in neonatal imita-
tion of facial expressions. In many species, individual birds deprived (e.g., by
neonatal deafening or by being raised in isolation) of the opportunity to
imitate the songs of conspecifics develop either only very rudimentary versions
of the standard songs or radically abnormal songs (see, e.g. Marler 1970). At
a more sophisticated level we can identify various types of mimetic learning,
of different degrees of sophistication. It is known from studies of chimpanzee
tool use, for example, that chimpanzees are skilled at learning about the
dynamic properties of objects from observing them being manipulated by
others (Boesch and Boesch 1992). There is some debate about whether tool-
using chimpanzees are actually imitating patterns of behavior (Tomasello
1996), as opposed to picking up the dynamic affordances of objects and
learning about features of the environment, but these clearly illustrate some
form of the social transmission of knowledge.

The cognitive significance of mimetic learning within phylogeny has been
recognized by Merlin Donald in his speculative reconstruction of the emer-
gence of the modern mind (Donald 1991). Donald suggests that a long period
of mimetic culture served as the bridge between the episodic form of cogni-
tion characteristic of the apes and earliest hominids and the language-based
culture that emerged after the transition from the Middle Paleolithic to the
Upper Paleolithic. He associates mimetic culture with a wide range of social
cognitive phenomena that collectively served as an adaptive foundation for the
evolutionary emergence of language. The enormous development in techniques
of tool manufacture characteristic of the Middle Paleolithic period must have
been linked with new means for the transmission of information across a
community. From what we know of contemporary hunter-gatherer societies,
the process of tool manufacture is very much a social process, and clearly
dependent on successful communication among the participants (Reynolds
1993). If we follow the majority of archeologists in dating the emergence of
linguistic communication after the Middle Paleolithic (Bickerton 1990, 1996;
Lieberman 1984) then it is hard to see any alternative to group mimetic
learning as the crucial cognitive mechanism underpinning complex tool manu-
facture. Mimesis can also plausibly be viewed as the foundation for the social
expression of emotion – again a form of nonlinguistic communication that
circumvents the path-dependence of language.

Returning to Clark’s list of the instrumental cognitive functions served by
language, the function of environmental simplification does not require any

J.L. BERMÚDEZ

648



sort of communication, symbolic or otherwise. Human infants are born able
to parse the perceived environment into object-like segments that are taken to
obey certain basic higher-order physical principles. This is probably not
enough, however, for the type of environmental simplification that Clark
intends. His view, I suspect, is that the environmental simplification that
language provides applies to a perceived environment that is already parsed
into objects or object-like entities. Language does not enable us to perceive an
environment composed of discrete and continuously existing objects in the
way that many philosophers have argued.5 What it allows us to do is to impose
a simplified pattern that will allow us to make sense of the discrete and contin-
uously existing objects that we encounter in perception and action.

Even when the function of environmental simplification is understood in
this sense, however, it still seems clear that it can be achieved at the nonlin-
guistic level. It is at this point that it becomes pressing to say something about
quite how “linguistic” and “nonlinguistic” are being understood here. There
has been considerable discussion among philosophers, linguists, and psychol-
ogists as to what constitutes a language. Savage-Rumbaugh has argued, for
example, that language emerges with the appearance of symbolic communi-
cation (Savage-Rumbaugh 1986). Most linguists, on the other hand, think that
some form of grammar and syntactic structure is essential for a symbol system
to count as a genuine language (Chomsky 1980). The majority of philosophers
have followed the linguists in this respect (Bennett 1976), although David
Lewis (1983) has proposed in a rather more inclusive spirit that languages are
simply functions from expressions onto meanings. Confronted with this it is
hard not to be pulled in two directions. On the one hand it is tempting to
think that there is little point in trying to arbitrate in this debate. It is unclear
what criteria we should use to judge any of these proposals. If we are trying
to capture the essence of human language then it is clear where the answer
lies – but our project is broader than that. The ordinary meaning of the word
“language” is too vague to help us. After all, ordinary language allows us to
talk freely of the language of architecture and the language of the body. But,
on the other hand, it seems impossible to investigate the nature and scope of
nonlinguistic thought without a demarcation line between the linguistic and
the nonlinguistic.

I will adopt a middle way between these two extremes. A genuine language
must allow for the formation of complex symbols from simple symbols. The
essence of language is the combination of symbols with each other to express
thoughts, taking thoughts to be complex entities that can be assessed for truth
or falsity. The possibility of truth appears only with complex symbols. It
emerges only when a state of affairs is asserted to be the case, and this requires,
at a bare minimum, the combination of a naming symbol and a predicate
symbol. A lexicon of simple symbols will not support communicative utter-
ances that are assessable for truth or falsity (although they may, of course, be
adequate to perform speech acts such as issuing injunctions). So complex
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symbolic systems allow the formation of complex symbols, symbols whose
meaning is determined by the meaning of the symbols of which they are
composed. That is to say, complex symbol systems display what is often
known as compositionality, the possibility of recombining the members of a
finite number of simple symbols to produce a range of complex symbols. This
characteristic of complex symbol systems is frequently stressed in both philo-
sophical and psychological discussions of language. It tends to be taken as a
unitary phenomenon, but compositionality can be displayed in two funda-
mentally different ways, corresponding to two fundamentally different types
of complex symbol systems.

In the first category, the category of sequentially complex symbol systems,
complex symbols are formed in a purely additive or successive manner.
Correlatively, understanding a sequentially complex symbol is a matter of
successively understanding the simple symbols that make it up. A good
example of such a sequentially complex symbol system comes with the
communication systems spontaneously developed by very young children born
deaf but whose parents do not use sign language to them. Such children tend
without instruction to develop elementary signing systems employing combi-
nations of two signs (Goldin-Meadow 1979). The two-sign combinations
typically involve a pointing gesture combined with an action sign. An example
might be pointing at a door combined with a turning gesture to signify that
it should be opened. Pygmy chimpanzees, or bonobos (Pan paniscus), have
acquired similar abilities (Greenfield and Savage-Rumbaugh 1990). It is clear
that we are dealing here with the formation of complex symbols. In the given
example, it is the formation of a complex symbol communicating an injunc-
tion – the injunction to open the door. But the mode of formation is extremely
simple. The syntactic rules of the symbol system are such that the action sign
(the turning gesture) can only be conjoined with a sign that picks out an object.
There is no way of using the syntactical rules to build up further complex
symbols.

In what might be termed a hierarchically complex symbol system, on the
other hand, the logical and semantic relations between the components of a
complex symbol cannot in every case be read off from the sequential ordering
of simple symbols. The basic feature of a hierarchically complex symbolic
system is that it possesses a hierarchically organized compositional semantics
operating in such a way that understanding a complex symbol will not always
be a matter of successively understanding the simple symbols that make it up.
To get from a sequentially complex to a hierarchically complex symbol system
we must lift the basic restriction that complex symbols can only be formed by
combining a predicate symbol and the appropriate number of naming symbols.
Hierarchically complex symbol systems possess a variety of mechanisms that
allow the formation of complex symbols. Operators analogous to the definite
and indefinite articles in English will allow the formation of complex 
names (i.e., definite and indefinite descriptions), while reiterable operators that
apply to complete sentences will allow the formation of complex symbols
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compounded from sentences. The logical constants are a case in point, but so
too are the operators indicating possibility and necessity and indeed tense.

Returning to the matter at hand, it seems plausible that the function of
environmental simplification identified by Clark can be carried out by “label-
ing” environmental features with a simple symbol system. Environmental
simplification does not require complex symbols (although of course it would
be greatly enhanced by a complex symbol system) and hence does not require
a language. A classic example of how this might work (and one that provides
a further example of how the instrumental functions I have already considered
can be effected at the nonlinguistic level) comes with the alarm calls of vervet
monkeys (Cheney and Seyfarth 1990). Vervet monkeys have three alarm calls,
each geared to a different category of predator – eagle, leopard, and snake.
When vervets hear a particular alarm call they do not display an indiscrimi-
nate fear or avoidance response, but rather behave in ways appropriate to the
predator to whose presence they have been alerted. When they hear the eagle
alarm call, for example, they look up and scan the sky. Vervets also have two
further calls, the “wrr” and “chutter” calls, which communicate the nearby
presence of strange groups of vervets. According to Cheney and Seyfarth,
vervet monkeys are more likely to issue alarm calls when there are close kin in
the vicinity (1990: ch. 5). Something similar holds for the food signals issued
by macaque monkeys, who seem to scan for members of their social group
before issuing a food signal (Hauser and Marler 1993). Even if we assume that
the vervet alarm calls are symbolic, they do not constitute a complex symbol
system, since there is no scope for the formation of complex symbols. Yet it is
clear that the alarm calls are serving a function of environmental simplifica-
tion, and indeed permit the creation of control loops for regulating each
individual’s future behavior and the behavior of other members of the group.

Nor is it only in primates that we find such behaviors. A classic etholog-
ical example of environmental simplification and control loop creation comes
with the ways that different species of birds hide caches of seeds at specific
locations. Clark’s nutcrackers are known to deploy multiple cues to identify
the locations of nut caches. Experiments have shown that they are able to
reidentify nut stores even when experimenters manipulate the most obvious
landmarks (Balda and Turek 1984). In creating food stores, birds both simplify
the environment in terms of markers that allow them to reidentify the caches
and create control loops for future behavior in terms of a structure of inter-
cache trajectories that will determine their movements when retrieving food.

As far as Clark’s original list of six instrumental functions is concerned,
therefore, it looks as if we can make sense of at least four of them operating
at the nonlinguistic level. And the two that are left (memory augmentation
and data manipulation) do not seem very likely candidates for marking a
distinctive type of cognition only made available by the acquisition of
language. There are all sorts of ways that nonlinguistic creatures can augment
their limited memory capacities, some of which I have already considered in
thinking about how path-dependent learning might be transcended at the
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nonlinguistic level. And data manipulation is a characteristic of all thought.
The only differences between linguistic and nonlinguistic thought in either of
these dimensions are likely to be differences of degree. It would seem, there-
fore, that if there indeed are any fundamental differences of type between
linguistic and nonlinguistic cognition, they will lie elsewhere. In the next
section I will turn to a fundamentally different type of argument for the distinc-
tiveness of linguistic cognition.

2 Intentional ascent and semantic ascent

In the same article in which he puts forward the six instrumental functions of
language, Andy Clark offers the following conjecture about the role of
language in underpinning the distinctiveness of human cognition.

Perhaps it is public language that is responsible for a complex of rather
distinctive features of human thought – viz., our ability to display
second-order cognitive dynamics. By second-order cognitive dynamics I
mean a cluster of powerful capacities involving self-evaluation, self-
criticism and finely honed remedial responses. Examples would include:
recognizing a flaw in our own plan or argument, and dedicating further
cognitive efforts to fixing it; reflecting on the unreliability of our own
initial judgements in certain types of situation and proceeding with
special caution as a result; coming to see why we reached a particular
conclusion by appreciating the logical transitions in our own thought;
thinking about the conditions under which we think best and trying to
bring them about. The list could be continued, but the pattern should be
clear. In all these cases we are effectively thinking about our own cogni-
tive profiles or about specific thoughts. (Clark 1998: 177)

He explains how language makes these types of thought available in the
following terms.

It is easy to see in broad outline how this might come about. For as soon
as we formulate a thought in words (or on paper), it becomes an object
both for ourselves and for others. As an object it is the kind of thing we
can have thoughts about. In creating the object we need have no thoughts
about thoughts – but once it is there, the opportunity immediately exists
to attend to it as an object in its own right. The process of linguistic
formulation thus creates the stable structure to which subsequent think-
ings attach. (Clark 1998: 177)

It seems to me that the basic idea Clark is putting forward is essentially correct.
My aim in this section of the chapter will be to formulate the basic idea more
precisely and to provide an argument to back it up.
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Clark’s explanation of the role language plays in second-order cognitive
dynamics is incomplete, at least for my purposes. For one thing, all he really
offers is an account of how, given that we have language, we are able to engage
in second-order cognitive dynamics – whereas what we need is an argument
that second-order cognitive dynamics can only be undertaken by language-
using creatures. This links up directly with a more fundamental worry. The
natural way to derive an argument for the necessity of language from Clark’s
suggestions would be to claim that language is required for thinking about our
own thoughts. But this claim is hardly uncontroversial. It would be instantly
denied, for example, by language of thought theorists. It is an integral part of
the language of thought hypothesis that reflexive thinking is available in the
language of thought. Once again we find ourselves caught in the familiar grey
area between public languages and the language of thought. We need to inves-
tigate not simply whether some form of language is required but what type of
language that must be.

The basic premise from which we need to start here is that reflexive
thoughts can only be possible if the target thoughts have vehicles that allow
them to be the objects of further thoughts. The question, then, is what form
these vehicles must take. Broadly speaking, the candidates fall into two broad
categories. They might be either personal-level vehicles or subpersonal vehi-
cles. Any argument to show that reflexive thinking requires the target thoughts
to be vehicled in a public language will have to establish, first, that the vehi-
cles must be at the personal level and, second, that the only available vehicles
at the personal level are public language sentences.

The plausibility of the first step in the argument emerges when we reflect
that reflexive thinking will paradigmatically involve a direct and conscious
cognitive access to the target thoughts. As the first passage quoted from Clark
at the beginning of this section makes clear, typical examples of reflexive
thinking might include evaluating evidential and inferential relations between
thoughts. Such reflexive thinking involves having the target thoughts in mind
– entertaining them consciously and considering how they relate to each other
logically and evidentially. Yet it seems clear that we do not have the appro-
priate sort of direct and conscious cognitive access to subpersonal states.
Second-order cognitive dynamics is a matter of the conscious regulation and
policing of one’s own thoughts – and we do not consciously regulate and police
sentences in the language of thought. It might well be the case that certain
types of hypothesis testing and refinement do take place at the subpersonal.
level. Something like this happens, according to Fodor, when we learn a
language. Nothing I say is incompatible with that proposal, since my claim is
simply that such processes would not count as instances of second-order cogni-
tive dynamics. Nonetheless, one might want to question the proposal on other
grounds, such as the availability of alternative models of language acquisition,
particularly those developed within the connectionist tradition (for a survey
of recent work see McLeod et al. 1998).
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It is hard to see how a defender of the language of thought hypothesis could
maintain that we do have conscious access to sentences in the language of
thought, given that the language of thought hypothesis is a hypothesis about
subpersonal cognitive architecture, not about the medium of conscious
thought. It is generally accepted that subpersonal states are inferentially insu-
lated from the conscious processes of cognitive evaluation and self-criticism.
This is precisely the distinction between the personal and subpersonal levels
(see, for example, Stich 1978). A fortiori, therefore, it follows that the vehi-
cles of the thoughts that are the objects of what Clark calls second-order
cognitive dynamics cannot be sentences in a subpersonal language of thought.6

There are versions of the language of thought hypothesis, however, that are
not put forward purely as hypotheses about subpersonal cognitive architecture
and hence are not directly blocked by this line of argument. Some authors have
suggested that there might be a modular internal language in which thoughts
are encoded for conscious consideration. This general approach would sit well
with (although neither entails nor is entailed by) higher-order thought theories
of consciousness (Rosenthal 1993). It seems to me, however, that this proposal
lacks phenomenological plausibility. All the propositional thoughts that we
consciously introspect, whether thoughts that come unbidden into our minds
or thoughts that we consciously instigate and consider in solving a problem,
take the form of sentences in a public language. We do, of course, engage in
various types of nonsentential thinking – what might be termed thinking-
how in contrast to thinking-that – and it is only mistaking nonpropositional
thinking-how for propositional thinking-that that leads to the view that we 
can be aware of “pure” thoughts without any sentences featuring among the
contents of introspection.7 There are certain types of problem that we solve by
manipulating mental images and exercising the visual imagination. And we are,
of course, conscious of bodily sensations, emotional feelings, and other such
qualitative states (although these are not properly described as types of think-
ing at all). But we are not, I think, ever conscious of propositional thoughts
that do not have linguistic vehicles. When we are conscious of propositional
thoughts we are conscious of imaged sentences.8 What we introspect when we
introspect our propositional thoughts in the manner required for the processes
of second-order cognitive dynamics is inner speech.

This brings me to the second step of the argument. What needs to be shown
is that public language sentences are the only possible personal-level vehicles
for thoughts that are to be the objects of reflexive thinking. The conclusion
so far is that sentences in the language of thought are not appropriate vehi-
cles. The only way to proceed is by elimination – showing that there are no
viable alternatives to public language sentences. How else might the repre-
sentation relation work? There seem to be two possibilities. On the one hand
representation might be secured symbolically through the complex symbols 
of a natural language (complex symbols being required since what are 
being represented are thoughts about states of affairs). A thought would be
represented, therefore, through its linguistic expression and would appear as
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a potential object of thought qua linguistic entity. On the other hand, repre-
sentation might be secured in an analogue manner, through some kind of
pictorial model. On this conception of the vehicles of thought, which we find
developed in different ways in mental models theory in the psychology of
reasoning (originally proposed in Craik 1943 but most comprehensively
developed in Johnson-Laird 1983) and in the conception of mental maps put
forward by Braddon-Mitchell and Jackson (1996), the vehicle of a thought is
a pictorial representation of the state of affairs being thought about.9

The idea of structural isomorphism is at the heart of both theories. Both
mental models and maps are spatially isomorphic with what they represent.
The relations (or at least some of them) holding between elements of the
mental model/map can be mapped on to the relations holding between objects
in the represented state of affairs. In this way representation is secured through
the relations of exemplification and resemblance. The mental model/map
represents a state of affairs by exemplifying the structure of that state of affairs
– that is to say, by itself possessing a structure that resembles (at some suit-
able level of abstraction) the structure of the represented state of affairs. It
does so, however, in a way that does not have an independently identifiable
structure corresponding to the state of affairs exemplified. Braddon-Mitchell
and Jackson put the point clearly.

There is no natural way of dividing a map at its truth-assessable repre-
sentational joints. Each part of a map contributes to the representational
content of the whole map, in the sense that had that part of the map
been different, the representational content of the whole would have
been different. Change the bit of the map of the United States between
New York and Boston, and you change systematically what the map says.
This is part of what makes it true that the map is structured. However,
there is no preferred way of dividing the map into basic representational
units. There are many jigsaw puzzles you might make out of the map,
but no single one would have a claim to have pieces that were all and
only the most basic units. (Braddon-Mitchell and Jackson 1996: 171)

We need, therefore, to distinguish weak and strong senses in which a repre-
sentational vehicle might be structured. In the weak sense there is structure
whenever a structural isomorphism can be identified between the vehicle and
what it represents. In the strong sense, however, structure requires the exist-
ence of basic representational units combined according to independently
identifiable combinatorial rules. Natural language sentences (or for that matter
sentences in the language of thought) are clearly structured in the strong sense,
whereas mental maps/models only possess structure in the weak sense.

In mental models and maps, the representation relation will be secured
through some combination of isomorphic resemblance and exemplification
holding primarily between the model/map as a whole and the represented state
of affairs as a whole and only derivatively at the level of the distinguishable
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elements of the map/model and state of affairs, respectively). There are
important questions to ask about the nature, and even the possibility, of resem-
blance and exemplification-based representation – questions that go back to
early criticisms of the British Empiricists (and that have arisen more recently
in criticisms of the picture theory of the proposition offered by Ludwig
Wittgenstein in the Tractatus Logico-Philosophicus). I shall prescind from
these, however. There is a fundamental problem with either version of the
analogue proposal as an account of how it is possible for thoughts to have
vehicles that allow them to become the objects of further thoughts.

Second-order cognitive dynamics involves sensitivity to the inferential rela-
tions between thoughts, and we do not yet have an understanding of how
images can be inferentially connected to each other. The problem once again
derives from the intimate relation between inference and structure. There is a
sense in which mental models and maps are structured, since they contain
elements that can feature in further mental models/maps. Nonetheless, they
do not seem to be structured in the right sort of way to permit the reflexive
type of second-order cognitive dynamics under discussion. It will be helpful
to take maps and mental models separately.

A canonical example of second-order cognitive dynamics might be coming
to see the evidential basis for a particular belief and then evaluating the infer-
ential transition made on that basis. One might realize that one has made an
overly rash inductive generalization, or a faulty deductive inference. It is
perfectly easy to see how there could be some very basic forms of inferential
transition between maps. Such transitions might be modeled on broadly asso-
ciationist lines, and it is the possibility of such transitions that enables maps
to serve as guides to action. What is not possible, however, is for such transi-
tions to be understood and evaluated in terms of either deductive validity or
probabilistic support. Those very features of maps (their analogue nature and
structural isomorphism with what they represent) that make them so useful
for guiding action serve to make them inappropriate for the type of inferen-
tial evaluation characteristic of second-order cognitive dynamics. In order for
such evaluation to take place, the maps must be interpreted in broadly propo-
sitional terms. We must interpret one map as expressing one proposition and
the second as representing a further proposition, and then evaluate the infer-
ential relations (be they deductive, inductive, or probabilistic) between those
two propositions. Once again, our only understanding of how to do this rests
on the two propositions being linguistically formulated.

Braddon-Mitchell and Jackson do not directly address this issue, but they
do offer the following explanation of how maps can evolve over time in what
is clearly intended to be an analogy with inferential transitions between
linguistically vehicled representations.

Maps are physical entities whose structure can govern the way they
evolve over time. When cartographers update maps or put two maps
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together to make one that incorporates all the information in a single
map, these operations are governed in part by the structures of the maps
they are working on. And in order to find a target, rockets use a kind
of internal map that gets continually updated as new information comes
in. In these rockets, later maps are causal products of earlier maps plus
what comes in via the rocket’s sensors. Hence map theorists can tell an
essentially similar story to language of thought theorists about how
thoughts evolve over time as a function of their propositional objects.
(Braddon-Mitchell and Jackson 1996: 173)

There is a fundamental disanalogy here, however. The issue is not really
about how thoughts evolve over time. In a very important sense individual
thoughts quite simply do not evolve over time. It is systems of thought that
evolve, and they do so as a function of the inferential relations between the
thoughts that compose them. These inferential relations hold between distinct
thoughts, and nothing that Braddon-Mitchell and Jackson say in this short
passage gives us any way of understanding how we should understand infer-
ential relations between distinct thoughts at the level of mental maps. The
process of combining maps has only very limited analogies with the process
of inferring one thought from another. We do not have, for example, any idea
what a conditional map might look like – and consequently little under-
standing of how conditional reasoning might take place at the level of mental
maps. A fortiori, therefore, there seems no sense in which we can understand
second-order cognitive dynamics as applying to the inferential transitions
between mental maps.

The situation is somewhat more complicated with mental models theory.
How can mental models not be suitable targets for the type of reflexive
thinking characteristic of second-order cognitive dynamics, given that mental
models are explicitly proposed as providing a unified account of deductive,
probabilistic, and modal reasoning (Johnson-Laird 1999)? It is important to
be clear, however, about the precise claims of mental models theory. Mental
models theory is proposed as an alternative to the so-called mental logic theory
(Rips 1994), according to which reasoning is an exclusively syntactic matter
grounded in formal rules of inference.10 The key idea of mental models theory
is that arguments are evaluated by the construction of mental models of the
relevant premises. An argument is judged to be deductively valid if the conclu-
sion holds in all the constructed models of the premises, probabilistically valid
if it holds in most of the models, and so forth. The claim made is that this
model of reasoning provides a better explanation of the patterns discovered
in the experimental study of how subjects reason than the idea that reasoning
involves the manipulation of sentential representations according to formal
rules. Some of these patterns involve systematic susceptibility to formal
fallacies, which it is obviously difficult to explain on the mental logic
approach. Others are simply patterns in the time taken to carry out certain
inferences, which advocates of the mental models approach claim is directly
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correlated with the number of models that the reasoner needs to construct
(Johnson-Laird and Byrne 1991).

Mental models are indeed supposed to be structurally isomorphic to the
states of affairs described in the premises. But like mental maps, their struc-
ture is derivative. It is derived from the premises that they are modeling. The
models are constructed from constituents and properties that feature in the
premise being modeled. And those premises are of course linguistic entities. It
would be a mistake to think that mental models theory construes inference in
terms of transitions between mental models – any more than a model-theo-
retic approach to the sentence calculus construes inference in terms of
transitions between truth tables. Mental models theory construes inference as
a matter of transitions between sententially encoded propositions. What is
distinctive about it is that it construes those transitions between sententially
encoded propositions as taking place in virtue of relations between analogue
representations of the states of affairs portrayed in those sententially encoded
propositions (as opposed to formal relations holding between the syntactic
structures of the relevant sentences). Mental models theory is not a genuine
alternative to the sentential conception of reasoning, since the whole idea of
a mental model only makes sense within the framework of the sentential
conception. Mental models theory offers a particular way of developing the
sentential conception, not of supplanting it. Mental models are not the vehi-
cles of inference, but rather, as their name suggests, models of those inferences.

By a process of elimination, therefore, we have reached the conclusion that
thoughts can only be the objects of the type of reflexive thinking in which
thoughts are the objects of thought if they have natural language vehicles. This
is not, of course, to say that we cannot deploy mental maps and mental
models. It is clear that we do, and it is highly likely that nonlinguistic crea-
tures do as well. Nor is it to say that mental models and mental maps cannot
be the objects of thought. It seems clear that we can think about mental models
and mental maps as well as think by means of them. The point is that we
cannot use mental maps or mental models for thinking about thoughts in the
manner demanded by second-order cognitive dynamics. Natural language
sentences are the only proxies that will permit thoughts to function as the
objects of thought in this manner. To put the matter in the form of a slogan,
there can be no intentional ascent without semantic ascent. We think about
thoughts through thinking about the sentences through which those thoughts
might be expressed. The significance of this thesis depends, however, on the
types of thinking that constitutively involve intentional, and hence semantic,
ascent. We began this section with Clark’s programmatic suggestion that only
language-users can be capable of the types of cognitive self-criticism and self-
monitoring that he terms second-order cognitive dynamics. It turns out,
however (see ch. 9 of Bermúdez 2003), that second-order cognitive dynamics
is simply one species in the genus of reflexive thinking. Other varieties of
reflexive thinking include logical thinking; the ascription of propositional
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attitudes to others; and domain-general thinking. These are all unavailable to
nonlinguistic creatures, if the argument sketched above is sound.

Notes

1 As I will show hereafter, these six respects do not exhaust Clark’s conception of
the contribution that language can make to cognition.

2 I take it as uncontroversial that no system of communication can count as
linguistic unless it involves symbols. The characteristic of symbols is that they
are arbitrary as opposed to iconic signals (see further in the main text hereafter).

3 The bee dances have also received attention from philosophers. See Bennett
1964.

4 The definition of iconic signals just posed is significantly different from that
suggested by Charles Sanders Peirce, who is usually credited with having first
formulated the distinction between iconic and arbitrary signals (or rather, in his
terms, between iconic and symbolic signs). Peirce defines an icon as a “Sign that
represents its Object in resembling it” (1991: 270). He does not impose any
requirement that continuous variation in the object be matched by continuous
variation in the signal, and consequently takes as iconic signs that would not
count as iconic on the criteria just outlined. For example, he holds that linguistic
predicates are iconic as well as logical and mathematical proofs. Peirce's theory
of signs is discussed in chapters 4 and 6 of Hookway 1985.

5 Consider, for example, the following two passages from Michael Dummett's book
on Frege. “Our apprehension of reality as decomposable into discrete objects is
the product of our application to an originally unarticulated reality of the concep-
tual apparatus embodied in our language” (Dummett 1973: 505). And: “Our
ability to discriminate, within reality, objects of any particular kind results from
our having learned to use expressions, names or general terms, with which are
associated a criterion of identity which yields segments of reality of just that
shape: we can, in principle, conceive of a language containing names and general
terms with which significantly different criteria of identity were associated, and
the speakers of such a language would view the world as falling apart into discrete
objects in a different way from ourselves . . . For Frege, the world does not come
to us articulated in any way; it is we who, by the use of our language (or by
grasping the thoughts expressed in that language), impose a structure on it”
(1973: 503–504).

6 Nothing I say is intended to be incompatible with the substantive claims made
by the theorists in the language of thought tradition. In particular, it may well be
the case (as Fodor suggests) that the understanding of public language sentences
involves in some sense translating them into the language of thought. My point
is simply that reflexive thinking (in the sense in which I am understanding it,
namely, as involving, e.g., the evaluation of epistemic links between propositions)
is directed at the public language sentences rather than at the sentences in the
language of thought that give their meaning.

7 The point was well put by Wittgenstein, who has plausible things to say about
what is going on when it seems to one that one is introspecting a thought that
is not sententially vehicled: “What happens when we make an effort – say in
writing a letter – to find the right expression for our thoughts? – This phrase
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compares the process to one of translating or describing: the thoughts are already
there (perhaps were there in advance) and we merely look for their expression.
This picture is more or less appropriate in different cases. – But can't all sorts
of things happen here? – I surrender to a mood and the expression comes. Or a
picture occurs to me and I try to describe it. Or an English expression occurs to
me and I try to hit on the corresponding German one. Or I make a gesture and
ask myself: What words correspond to this gesture? And so on.” (Wittgenstein
1953, sec. 335). For further discussion of Wittgenstein's complex views on the
relation between language and thought see Budd 1989, chs. 5 and 6.

8 Peter Carruthers, who proposes that all domain-general cognition consists in the
formation and manipulation of linguistic representations at the level of what
Chomsky terms logical form, nonetheless thinks that we cannot be conscious of
these “stripped down” linguistic representations (Carruthers 1996). We are only
conscious of sentences with the full complement of natural language phonolog-
ical and structural features from which the level of logical form is an abstraction.

9 I will count mental models theory as a conception of pictorial models even though
the two notions cannot be straightforwardly mapped onto each other. It is true
that mental models, as proposed by Johnson-Laird, are intended to be semiper-
ceptual states that resemble the situations they represent. Nonetheless, there is
a crucial ambiguity in mental models theory. On the one hand the manipulation
of mental models is supposed to take place in working memory, the contents of
which are generally thought to be open to conscious access and report. On the
other hand it seems clear that introspection will have little role to play in deciding
the issue between mental logic and mental models as far as the psychology of
reasoning is concerned. To the extent that mental models theory is a theory of
the subpersonal mechanisms of thought, it will be correspondingly of less use as
a theoretical account of how thoughts might be vehicled in a way that would allow
them to be the objects of further reflexive thinking.

10 The difference between the mental logic and mental models theories is frequently
compared to that between proof-theoretic and model-theoretic approaches in
logic.
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