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Foreword

This book marks a major step forward in cognitive science, an effective way of
thinking about minds and brains that isn’t just another computer metaphor.
Many of us have been looking for such a step, but where would it come from?
One promising possibility was dynamical systems theory, which indeed is
basic to Michael Spivey’s argument here. Until now, however, dynamical
systems have had little to say about genuinely cognitive achievements such as
language, categorization, or thought. Neural nets have been another promis-
ing possibility (one that also plays a role here), but most of them are still
essentially step-by-step computer models indifferent to the properties of real
neurons that live in real time. On the empirical side there have been many
ingenious new methods and exciting new findings in recent years, but until
now no coherent theory has emerged to hold them all together. How could
any theory deal with so much complexity?

Here’s how. First, any such theory will have to establish its own units
of analysis. What could those units be? They can’t just be responses: The early
behaviorists took responses as far as they would go, which wasn’t very far.
It also won’t do to start with information, the vehicle that made cognitive
psychology possible a generation ago. Of course, it’s still true that brains proc-
ess information, but saying so is no longer revolutionary or even very helpful.
Nor can the basic units be single neurons: that soon leads to “grandmother
cells,” implausible for many reasons. Spivey’s proposal here—a
seriously expanded version of dynamical systems theory with many original
twists—is based instead on trajectories through the state space of the
human brain. His insistence that those trajectories must be continuous
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has led him to new insights over a surprisingly broad range of cognitive
phenomena.

But what is a state space? What sorts of things move through state spaces?
What does it mean to assert that those movements are continuous? Taking the
last question first, “continuity” means that movements away from a given brain
state are always to an adjacent state and always take real time, a time during which
much can happen. Speech perception provides a convenient example. Although
a spoken word is not fully defined until its last syllable ends, the process of under-
standing it starts much earlier. Candle and candy, for example, both begin with
can. Spivey’s ingenious eye movement studies show that a listener presented with
one of these words will actively consider both those possibilities at first, making
a commitment only later as more information arrives. The moral here is that
word representations—indeed, all mental representations—are probabilistic and
overlapping rather than sharply bounded. The brain is “hungry” for informa-
tion, always using whatever it has and looking for more.

These characteristics have implications for the theory’s units of analysis.
A representation capable of overlapping widely and probabilistically with
other representations must involve a large number of neurons, some of which
are active at a given moment while others are not. Such collections of neurons
are distributed representations or population codes. Their interwoven patterns of
activation are what produce the effects we observe.

Important as they are, population codes are not the ultimate units of
analysis. To provide a richer description of the brain’s activity, Spivey uses a
multidimensional state space. Each brain neuron corresponds to one dimen-
sion of that space, which thus has a billion or so dimensions. At any given
moment, the total state of brain activity corresponds to a single point in the
space. Changes in that activity over time then produce trajectories through the
space. Regions of the space to which many trajectories go (and where they sort
of stay) are called attractor basins. In many contexts a given attractor basin
corresponds to a fully developed percept—to a word understood, a face recog-
nized, a stable perceived version of the Necker cube. The attractors are thus
very important, but Spivey is even more interested in the trajectories them-
selves. The basic units of his thinking are events, not states.

The Continuity of Mind is not an easy book, but its organization is clear.
After the introduction (chapter 1), Spivey devotes three chapters to intellec-
tual tools that the rest of the argument will require. The first of these, chapter 2,
reviews the logic of state space representations. Chapter 3 surveys such diverse
but relevant paradigms as reaction time, MEG, ERP, EEG, single-cell record-
ing, repetitive rhythmic motor tasks, 3D motion capture, and especially eye
movements. Eye tracking is Spivey’s favorite paradigm, not only because he
has worked on it so effectively himself but also because it is surprisingly good
at revealing rapid mental activity that occurs outside of consciousness. Then
comes the third conceptual-tool chapter, chapter 4, which is specifically
designed “to gently walk the reader through some of the mathematics of a few
simple demonstrations of dynamical systems.” It does help.
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With these conceptual tools in hand, Spivey sets out to show how his con-
tinuity assumption addresses the major issues of contemporary cognitive
science. The first of those issues is modularity a la Fodor, which he is at pains
to reject. (If we must have metaphors, the brain is not so much a Swiss army
knife with separate blades as a woven plaid of interlinked threads.) Then six
more issues get chapters of their own: categories, language, vision, motor
action, problem solving, and memory (mostly external memory). Each of
these chapters builds on references from the relevant literature to present an
array of stimulating new insights.

In keeping with his commitment to events rather than stable states, Spivey’s
last chapter is not a review of what has been covered but an account of what
may come next. Here, he has the mind/body problem in his sights. The pres-
ent book has focused primarily on trajectories through a neuronal state space,
but there’s a bigger space on the horizon, a “fully ecological dynamic account
of perception cognition and action.” When dualism is finally overthrown, we
will be able to see that the mind is made of “the same stuft” as the environ-
ment. Well, maybe so, maybe not. One thing is already clear: Cognitive science
is on a new trajectory, and it’s moving fast. Hold on to your hats!

—Ulric Neisser
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1

Toward a Continuity Psychology

The older dualism between sensation and idea is repeated in the
current dualism of peripheral and central structures and functions;
the older dualism of body and soul finds a distinct echo in the
current dualism of stimulus and response.

—John Dewey (1896)

The Continuity of Mind

In an attempt to raise awareness of the benefits of emphasizing continuous
processing, and therefore of continuous representation as well, this book ties
together selected findings from neuroscience, cognitive neuroscience, cogni-
tive psychology, ecological psychology, psycholinguistics, neural network
theory, and dynamical systems theory. Without slavishly adhering to the
dominant tenets of any one of those areas of research, I will build a case for a
perspective on mental life in which the human mind/brain typically construes
the world via partially overlapping fuzzy gray areas that are drawn out over
time, a thesis that I fondly refer to as “the continuity of mind.” In the service
of action and communication, these continuous and often probabilistic repre-
sentations are frequently collapsed into relatively discrete, rigid, nonover-
lapping response categories. Each hand usually grasps only one object at a
time. Each footstep is usually in only one particular direction at a time, not
multiple directions. When you talk, your mouth usually utters only one sound
at a time. The external discreteness of these actions and utterances is com-
monly misinterpreted as evidence for the internal discreteness of the mental
representations that led to them. Thus, according to the continuity of mind
thesis, the bottleneck that converts fuzzy, graded, probabilistic mental activity
into discrete easily labeled units is not the transition from perception to
cognition—contra cognitive psychology. Rather, that conversion does not
take place until the transition from motor planning to motor execution.
Everything up to and including that point is still distributed and probabilistic.

3



4  The Continuity of Mind

(And sometimes even the motor execution still has some multifarious grada-
tions in it as well.)

Although this main thesis may already seem agreeable to some contem-
porary psychologists, not all of them may realize that it is fundamentally
inconsistent with the symbolic-computation approach to cognition that
traditional cognitive psychology still assumes, implicitly if not explicitly.
Moreover, a wide range of other cognitive scientists, from philosophy, linguis-
tics, and computer science, as well as other circles in psychology, have yet to
seriously consider (or in some cases already strongly oppose) this perspective
on the format of representation employed by the human mind. I contend that
cognitive psychology’s traditional information-processing approach (bor-
rowed from the early days of computing theory), as well as certain tendencies
within the more recent connectionist approach (often using strictly feedfor-
ward neural networks), place too much emphasis on easily labeled static rep-
resentations that are claimed to be computed at intermittently stable periods
of time. Rather than focusing on those intermittent moments when the brain’s
pattern of activity may be brushing up next to an identifiable discrete mental
state representation, the continuity of mind thesis focuses on the continuous
trajectory that the mind travels through the set of possible brain states—the
entire thread of thought, if you will, rather than just the stitches that are visible
on the surface of the hem.

The pattern of exposition throughout this book will be to describe a
range of methodologies and findings that point to some innovative ways to
observe and simulate the genuine gradedness of those mental states over
time—not merely take them for granted. The continuity framework offered
here draws much of its inspiration from related theoretical frameworks that
preceded it, especially ecological and dynamical approaches to psychology
(e.g., Gibson, 1979; Kelso, 1995; Neisser, 1976; Port, 2002; Thelen & Smith,
1996; Turvey & Carello, 1995; van Gelder, 1998; Van Orden, Holden, & Turvey,
2003). However, at the same time, this book is intended to work largely within
the terminology and constraints of the dominant methodological and theo-
retical toolbox of contemporary cognitive psychology. For example, I will
continue to use words like representation and mental state, despite their
unpopularity in current dynamical and ecological approaches to cognition.
However, in the process of using these traditional conceptual tools for explor-
ing and describing the continuous nature of cognitive processing and repre-
sentation, it will become clear that some new conceptual tools (and eventually
a whole new toolbox) will be necessary to deal with the emerging landscape
of data.

As you work your way through this book, you should expect to gradually
lose some of the baggage associated with the term representation along the way.
It need not refer to an internal mental entity that symbolizes some external
object or event to an attentive central executive. Because representation appears
unlikely to fade in use, I suggest that instead of fighting the use of the word, we
can merely allow it to naturally shed that albatross of symbolizing something.
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The word can simply continue to refer to a kind of mediating stand-in (see
Markman & Dietrich, 2000), in between sensory stimulation and physical
action, which is implemented largely by neuronal assemblies. However, the
crucially important alteration to this stand-in function, to be touched on time
and time again throughout this book, is that it is not composed of “mediating
states” (Dietrich & Markman, 2003) but instead of something like “mediating
processes” As the neuronal assemblies that implement most of this stand-in
function never settle into truly stable states, we should not expect the mathe-
matical description of the mediation process to settle into stable states.
Therefore, my continued use of the term representation refers exclusively to
internal mental processing that is continuous in time, is contiguous in state
space, and whose function is to mediate between sensory stimulation and
physical action.

The overall goal of my endeavor here is to punctuate and perturb the cur-
rent instability in the metatheoretical system of cognitive science—the incon-
sistency between recent phenomena in the field and the accepted ways the
field has for talking about phenomena in general—thereby helping enable the
impending massive reorganization that the cognitive sciences so desperately
need. This book is intended to map an escape route out of traditional cogni-
tive psychology, with some hints and pointers for where to go next and build.

For those who already share this continuous, dynamical perspective on
the mind, the studies described herein will hopefully provide a greater appre-
ciation for the relationship between our multifarious, probabilistic, distri-
buted brain states and our illusory phenomenological sense of being in one
discrete unitary state of mind at a time. For those who already oppose this
perspective on the mind, the many examples littered throughout this book
will hopefully pose constructive challenges (some more difficult than others)
for their theories to tackle. For those of you who have not already made up
your minds, good for you.

These first two chapters provide a brief, easy-to-read tour through the
motivation and explication of what mental representations might look like
if they were indeed continuous, partially active, and partially overlapping
patterns. The first thing the reader will notice is that they begin to look less like
what representation was originally intended to mean. The reason I continue to
use the term is largely to ease the intellectual transition from cognitive
psychology’s traditional information-processing framework to a dynamical-
systems framework. I submit the notion of a trajectory through state space (a
temporally drawn-out pattern of multiple “representations” being simultane-
ously partially active) as a replacement for the traditional notion of a static
symbolic representation. To bring this notion to life, this chapter soon draws
an analogy to the concept of a wave function in quantum mechanics, which
attempts to describe the state of a system before it has been observed.
Although there are explicit quantum mechanical accounts of brain states and
consciousness (Goswami, 1990; Lockwood et al., 1996; Penrose, 1994; Zohar,
1995; but see Schrodinger, 1944; Scott, 1996), the continuity approach to
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cognition does not depend on them. The appeal to quantum mechanics at this
point is purely for expository purposes, with the goal of drawing an analogy
between distributed representational brain states (that are partially consistent
with multiple discrete mental states at once) and quantum mechanical super-
position. Based on reactions from my colleagues, the reader will most proba-
bly either like or hate my use of this analogy. An intermediate reaction is rare.

This notion of a wave function is then connected to the way populations
of neurons in the brain cooperate to represent individual perceptions. It does
not seem to be the case that thoughts, ideas, concepts, categories, words,
objects, or even faces are represented by solitary, individual neurons in the
brain. Individual neurons appear to represent minute pieces of words, objects,
and so forth. Large groups of neurons collectively represent entire words and
objects. These coordinated groups of neurons are variously referred to as popu-
lation codes, population vectors, cell assemblies, and cell ensembles, to name
a few. For simplicity, I stick with the term population code. The discussion
of population codes is then connected to quantitative descriptions of proba-
bilistic representations, along with a brief treatment of the history of proba-
bility theory. After addressing the relationship between probability theory and
fuzzy logic, this chapter walks the reader through two experiential demonstra-
tions of continuous dynamical transitions through probabilistic mental states.
The chapter finishes with some discussion of the conceptual reformulation
that will be necessary to make sense of continuous processing and continuous
representations in the mind.

The next chapter is devoted to offering some concrete (although vastly
oversimplified) examples of distributed brain states and probabilistic mental
states, in an attempt to make this thesis not only visualizable but indeed intui-
tively compelling. These examples will take us slightly (only slightly) in the
direction of the conclusion favored by Churchland and Churchland (1998),
that discrete nameable mental states, of the kind typically espoused by folk
psychology, simply do not exist. Rather than thinking in terms of an inventory
of discrete mental operands on which a central executive can perform logical
operations, a continuity psychology (drawing prodigiously from ecological
psychology, dynamical systems theory, and computational neuroscience) will
need to think in terms of a continuous and often recurrent trajectory through
a state space. Although different types of mental trajectories may be segre-
gated into different classes for descriptive convenience, it must be recognized
that the full metric range of the state space is always available to the system, in
principle, and this is precisely what allows unexpected (sometimes called
“productive” or “creative”) organized behavior to emerge.

The third chapter reviews some concrete experimental methods that
help provide a window into the continuous-time processes of the mind/brain.
The fourth chapter offers some formal treatment of dynamical systems in
general and describes not exactly a model but a “simulation arena” for imple-
menting and demonstrating the complex temporal dynamics arising from
biased competition (e.g., Desimone & Duncan, 1995) between idealized stable
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states in a localist attractor network. Chapter 5 then outlines cognitive psy-
chology’s obsession with naming apparent discontinuities in representation
and process, discusses the treatment of the overall cognitive architecture of
the mind, and addresses some of the consequences that the continuous
dynamical approach has for psychology. Later chapters will then review the
literature, and focus on a series of experiments and idealized neural network
simulations, providing compelling evidence for continuous, graded, partially
overlapping representations in the mind/brain during categorization (chapter 6),
language comprehension (chapter 7), visual attention (chapter 8), action
(chapter 9), and reasoning (chapter 10). Finally, in the last few chapters, this
book concludes by addressing some of the broader implications that a dyna-
mical psychology has for the cognitive science notions of modularity and
of representation, as well as for our own personal understandings of social
interaction, consciousness, and our intellectual lives in general.

Flowing Stimulus Array, Flowing Mind

In a nutshell, the message of this book is that the human mind is constantly in
motion. It does not receive individual stimuli and compute individual inter-
pretations of them. And yet, for several decades now, the dominant frame-
works of psychology have taken for granted that the mind’s job is to compute
individual interpretations of individual stimuli. After all, how else could we
recognize what a stimulus is, if we did not activate some internal stable repre-
sentation of it?

Before I get to what a temporally dynamic internal representation might
be, let me first note—as J. J. Gibson (1950) did—that, in the normal everyday
world, individual stimuli simply do not exist. If it is the case that individuated
stimuli do not normally exist in our sensory input, then it can hardly be said
that they have individuated representations devoted to them. For a given stim-
ulus to truly be an independent entity, activating its own independent sym-
bolic representation, it would need to be spatially and temporally separate
from all other stimuli. Look around you right now. See if there are any objects
that from your current perspective, are not intersecting or abutting the con-
tours of another (potential) object. Probably not. Now move some objects
around in a natural way. Take a sip from a cup, or move some paper from one
place to another. As the objects move, the changes in your field of view are
largely continuous through time, saccadic eye movements notwithstanding.
The changes aren’t freeze-frames of the object being in one location at one
point in time and then suddenly in another distant location at another point
in time. (Of course, it is possible to present individual objects in spatial and
temporal isolation in a dark laboratory, but if that never really happens in real
life, how generalizable will those lab results be?)

Now, listen to the ambient sound in your environment. Just like the visual
objects abutting and occluding one another, there are several different sounds
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that are overlaying one another at any one point in time. All of the sounds
have a temporal duration over which they may change in complexity, pitch,
volume, and so on. Just like the field of view in an interactive visual environ-
ment, the changes in your acoustic environment are largely continuous through
time as well. Even the sounds that seem most “object-like,” spoken words,
usually abut one another in time, rarely separated from one another by even a
millisecond of silence.

What this means is that the “flowing array of stimulus energy,” as Gibson
called it, is never presegmented into easily defined independent chunks, or
stimuli—even though we feel as though we perceive it that way. Now, if the
environmental stimulation impinging on our sensory systems is almost
always partially overlapping in space and continuous through time, why
would the mind work in a staccato fashion of entertaining one discrete stable
nonoverlapping representational state for a period of time, and then instanta-
neously flipping to entertain a different discrete stable nonoverlapping repre-
sentational state for another period of time? Why would the mind work like a
computer? This book is aimed—Ilike some other recent books (e.g., Kelso,
1995; Port & van Gelder, 1995; see also Fodor, 2000)—at responding to that
question with the following answer: “It doesn’t.”

The New Dualism

The computer metaphor for the mind was really just the latest in a historical
series of stage-based accounts of cognition. Whether the stages are the body-
and-soul of dualism, or the stimulus-and-response of behaviorism, or the
stimulus-and-interpretation of cognitive psychology, it may just be the ideal-
ized discrete separation of different functions that is most responsible for
leading the endeavor astray. In the middle of the seventeenth century, René
Descartes proposed that the mind worked by way of immaterial forces that
were separate from the physical forces of our material world, and that the
mind communicated with the brain via the pineal gland. Aside from the occa-
sional personal belief in a soul, this kind of magical thinking is no longer
prevalent in science. However, the same breed of dichotomous treatment of
the mind as separate from the body is still quite common in the cognitive
sciences—ijust with slightly less ethereal mechanisms being assumed.

In the middle of the twentieth century, cognitive psychology in particular,
and the cognitive sciences in general, came under the spell of a new form of
dualism—one fueled at least partially by our history of computing theory
and artificial intelligence. Since the 1950s, when computing theory was just
beginning, psychologists have likened the mind to a computer. Indeed, as
other scientists have noted, humankind has made a habit of conceiving of the
mind as working much like whatever happens to be the latest technological
advancement. For hundreds of years, philosophers and psychologists have
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written about the mind working like an hourglass, or like a clock, or like the
printing press, or like a telephone switchboard, and now like a computer.
Is there any reason to think this penchant for mechanical analogies is right
this time?

The worrisome dualism encouraged by this mind-as-computer analogy
is that it implies that the human brain is somehow functioning under very
different rules, or patterns of organization, than the rest of the body and
indeed, the rest of the natural world. Of course, this attitude existed well
before the computer, as evidenced by Kant’s (1785/1996) claim that human
intelligence followed “laws, which being independent of nature, are not
empirical but have their ground in reason alone.” Imbuing the human brain
with the power of discrete symbolic computation places it in a category by
itself in nature, with all the continuous and probabilistic phenomena exhi-
bited by the peripheral nervous system, and everything else in the natural
world, placed in a different category. It becomes a “mind versus the rest of the
world” attitude. But no mind is an island unto itself.

Contemporary psychology risks becoming a mockery of itself by its
addiction to hypothesizing discrete discontinuities of this sort. This is pre-
cisely what Dewey (1896), from whom a quote begins this introductory
chapter, was trying to curtail in his critique of the reflex arc concept. The reflex
arc concept was a relatively new idea at that time, framing the questions of
psychology in terms of causal arcs between (1) a sensory stimulus stage, (2) a
central (mental) activity stage, and (3) an action/response stage. Essentially,
studying the causal arcs between 1 and 2 or between 2 and 3 were to be con-
sidered legitimate scientific enterprises in and of themselves. In contrast,
treating the progression of the three components as one continuous process
that naturally loops back on itself was what Dewey was attempting to encour-
age. Actions take place over time and they continuously alter the stimulus
environment, which in turn continuously alters mental activity, which is con-
tinuously expressing and revising its inclinations to action.

Behaviorism’s unhelpful but long-standing solution after Dewey (1896)
was to hamfistedly eliminate the second (mental) stage. After a few decades of
behaviorism, the cognitive revolution, as they liked to call it, essentially resur-
rected that second stage and all but erased the third one (action). (At this level
of description, the theoretical alteration from behaviorism to cognitivism
appears minute enough that one wonders if it truly warrants being called a
“revolution,” see Leahey, 1992.) Essentially, cognitive psychology replaced
behaviorism’s emphasis on stimulus and response with an emphasis on sti-
mulus and interpretation. These incremental adjustments to the linear treat-
ment of the three stages reminds me of when I find myself trying to solve a toy
puzzle using parametric variations of the same losing strategy, rather than try-
ing a completely different strategy. Most of cognitive science and psychology
has missed the whole point of not studying these stages as a linear sequence of
separable components, but instead studying them as one continuous insepa-
rable loop. Is it any wonder that our progress is plateauing once again?



10 The Continuity of Mind

Curiously, Dewey’s (1896) reference to an “older dualism between sensa-
tion and idea” doesn’t actually sound that old to contemporary ears. In many
ways, the cognitive psychology that began with Newell, Shaw, and Simon
(1958), Chomsky (1957), and Neisser (1967) among others reinvigorated the
notion that sensation and perception could be part of a separate preliminary
(in every sense of the word) component of mental activity, with cognition
(i.e., the computation of ideas and reasoning) being a subsequent and more
psychologically relevant component. Perception was just perception. But
cognition was “the mind.” In fact, since around the time of Neisser’s (1967)
Cognitive Psychology (see also Pylyshyn, 1984), Dewey’s terms stimulus and
central activity have gradually become incorporated into the central nervous
system as the discontinuous modular suites of “perception” and “cognition”. So
when Dewey says, “the older dualism between sensation and idea,” I have to
say I feel a little bit of déja vu.

Meet Schrodinger’s Cat

Perhaps what is needed instead is a breaking down of these idealized distinc-
tions between putative stages, a reconceptualization of mental activity as con-
tinuous in time and graded in format. To illustrate my claim that mental
representations are fundamentally continuous, graded, and partially overlap-
ping (before overt behavior converts them into discrete actions), I draw an
analogy to a celebrity from popular physics: Schrédinger’s cat. First, for the
uninitiated, allow me to explain this feline’s rise to fame. When quantum
physics was gaining respectability and suggesting that the duality of light
being both a wave and a particle was mathematically acceptable, there were a
number of critics. Erwin Schrédinger (1935), a quantum physicist himself,
became one of those critics. In his discomfort with quantum physics’ claim
that a particle could be simultaneously in multiple spatial locations, Schrédinger
designed a thought experiment that he expected would prove quantum
physics wrong. In a typical version of this thought experiment, one places a cat
inside a box that also contains a chunk of mildly radioactive material, a Geiger
counter, and a vial of poison gas. According to its quantum mechanical pro-
perties, this particular chunk of radioactive material is 50% likely to emit one
radioactive particle per hour. If and when the Geiger counter detects this
emitted radioactive particle, it triggers a device that breaks the vial of poison
gas and thus kills the cat. After an hour has passed from the time you began
this experiment, you might naturally conclude that there is a 50% chance that
the cat is dead and a 50% chance that the cat is alive. Quantum physics would
disagree with you. Quantum physics, because it allows that particle to have
been emitted and not emitted at the same time, suggests that—before you
look inside the box—the cat is both dead and alive.! Schrédinger expected the
absurdity of this claim to invalidate the popular interpretation of quantum
physics once and for all. How could a cat possibly be both dead and alive at the
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same time?! However, to his shock and dismay, this thought experiment was
not generally taken as proof that quantum physics must be wrong. Indeed,
most quantum physicists of the time saw no absurdity in the prediction at all!
As far as they were concerned, Schrodinger had beautifully demonstrated how
quantum duality at the subatomic level could, under the right circumstances,
be recapitulated at the macroscopic level. His cat became a popular icon for
how wonderful and powerful quantum physics can be.?

Population Codes in the Brain

What does a confused cat have to do with the human mind/brain? The ana-
logy I wish to draw from Schrédinger’s cat to the human mind/brain is in the
understanding that being in multiple states at once is a condition in which one
can be. In fact, one might argue that it is basically impossible for the human
brain to ever be in one single, entirely stable state—except for death, of course.
If it were, it would not be able to gravitate out of such a state without external
input. But even when the brain is cut off from all external input, during
sleep or sensory deprivation, it continues to travel from one brief nearly stable
state to the next: we dream, or we hallucinate, or we experience a “stream of
consciousness.”

When we look at how the brain encodes information, we see that it is a lot
like the wave function that characterizes the multifarious state Schrodinger’s
cat is in. The majority of neurons studied in mammalian brains send their sig-
nals in the form of relatively discrete all-or-none action potentials, brief but
intense depolarizations (1-10 milliseconds) of their electrochemical mem-
brane potentials. However, it does not appear to be the case that the firing of
individual neurons is used to signal the presence of things like objects, words,
and concepts (see Damasio & Damasio, 1994; Hebb, 1949; Pouget, Dayan, &
Zemel, 2000; Rose, 1996; see also Barlow, 1972). For some time now, neuro-
scientists have been able to record the activity of many neurons at once in vari-
ous regions of the nonhuman primate brain and have generally been finding
that populations of neurons participate together to embody a representation.
For example, in the 1970s, David Sparks and colleagues showed that the
neural signal that tells the eye muscles to move the eyes in a particular direc-
tion is made up of many neurons, in the superior colliculus of the macaque
monkey, each of which represents a different direction of eye movement. It
is the distribution of activity across this population of neurons that determines
the direction of the eye movement, not just the activation of those neurons
that specifically code for the actual direction the eyes wind up going in (Sparks,
Holland, & Guthrie, 1976). In the 1980s, Georgopoulos and colleagues found
similar evidence for population codes of arm movements in the motor cortex
of the macaque (Georgopoulos et al., 1982). Moreover, it appears that popula-
tion codes are used not only for representing and producing motor output
(e.g., eye and arm movements) but also for representing perceptual input.
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For example, in the 1990s, Wilson and McNaughton (1993) demonstrated
that ensembles of cells in the rat hippocampus cooperate to encode the ani-
mal’s knowledge of what environment it is in. And Tanaka (1996, 1997)
showed that visual objects (faces included; see Gauthier & Lokothetis, 2000;
Perret, Oram, & Ashbridge, 1998) are represented by populations of cells
within the inferotemporal region of visual cortex in the macaque.’

One of the things that makes population codes (i.e., distributed represen-
tations) robust and powerful is that under noisy or degraded stimulus condi-
tions or following physical injury, they will often still be able to approximate
the original input signal: graceful degradation (Rumelhart & McClelland, 1986a).
For example, imagine that a particular set of 100 neurons participate in the
representation of your grandmother’s face, such that when you look at her, the
ideal, perfect recognition would happen if those 100 neurons were at their
appropriate activation levels (firing rates). If she laughs and covers her mouth,
then some of those 100 neurons will reduce in activation because the parts of
her face to which they especially respond are occluded. Nonetheless, if 80 of
those 100 neurons are still doing what they are supposed to do, that popula-
tion code for grandmother (with its 80% “confidence”) will still be by far the
most coherent code available in the brain. In contrast, if you had only one
neuron devoted to recognizing grandmother, this “grandmother cell” (Lettvin,
1995) may not be able to do its job when grandmother covers her mouth,
turns her head, or makes a funny face. You'd suddenly fail to recognize her!

What this means is that with population codes, we are always dealing with
internal representations that have what you might call percentages of confi-
dence (or probabilities, loosely) associated with them. The image on your
retina of your grandmother will almost never be the same at any two points in
time. Therefore, the input to those 100 neurons (your grandmother popula-
tion code) will never be exactly perfect to turn them all on. This population
code will be in a nearly stable state. What often happens then is that the con-
nections between the members of this population code will pass the activity
back and forth and increase the percentage of them that are active. This
pattern completion process (e.g., Grossberg, 1980) will gradually increase the
population code’s “confidence,” and thus its probability of producing an asso-
ciated behavior—such as pushing air out of your lungs to vibrate your vocal
chords while articulating parts of your mouth to make the sound, “Grandma!”
Importantly, that discrete behavior—saying one particular word and not any
other words—is often interpreted by the people around you as indicating that
your internal representation for grandmother is 100% “confident.” The conti-
nuity of mind thesis posits that your representation is not 100% confident and
can never be 100% confident.

Although the process of pattern completion will increase the total activa-
tion (or probability) of a representation over time, its associated action will be
produced long before the representation ever reaches maximum activation
(or probability 1.0). This action (even something as benign as moving your
eyes to a chair, near Grandma, that you plan to sit in) then inevitably changes
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the sensory array, so that the original input to that population code is now
crucially altered, and a new pattern completion process must begin—gravitating
the system toward a new and different probabilistic mental representation.

Versions of Probability

If we accept this account of population codes as probabilistic representations
of multiple unitary concepts (see Zemel, Dayan, & Pouget, 1998), for example,
0.8 Grandma, 0.02 Kathryn Hepburn, 0.01 Mother Teresa, and hundreds of
other representations with very low confidence, that together add up to 1.0,
then we begin to see how the mind is indeed like Schrédinger’s cat: in multi-
ple identifiable states at once. However, we must acknowledge that this is
using a particular connotation of probability, a term which has taken on
many senses in the last couple of centuries. Because a form of probabilism is
infused in a great deal of the theoretical treatment throughout this book, the
following section will describe some of the different interpretations of proba-
bility, cover some of its history, and also jog your memory with just a touch
of math.

In the eighteenth and nineteenth centuries, a great many philosophers,
mathematicians, economists, and physicists (as well life insurance statisti-
cians!) were employing the tools of probability to essentially make predictions
about future events. Much of early probability theory was actually developed
in the interest of using death statistics (i.e., mortality tables) to determine
profitable life insurance coverage and premiums. Crucially, the dominant
meaning of probability at the time was one of describing the likelihood (as a
value between 0 and 1) that a future event will end up discretely in one state
or another. Thomas Bayes formulated an extremely influential theorem that
instructs exactly how to do this (Bayes, 1763/1958).

Let’s walk though an example. Imagine that you just lost all your money
at the roulette table of a new casino. Let’s assume you usually at least break
even at roulette (95% of the time), so youre now suspicious—for the first
time in your life—that the wheel might be rigged. Bayes’s theorem lets you pit
the likelihood of your rare event against the general likelihood of casinos
cheating, to calculate the probability that this particular casino just cheated
you. For the sake of argument, assume that based on crime reports, 1 out of
100 casinos rig their roulette tables to cheat gamblers out of their money.
Understanding equation (1) is easier than you might think.

P(C)P(LIC)

= 1.1
P(C)P(L1C)+P(n0tC) P(L1 notC) " (LD

P(CIL)

Let P(C I L) be read as “the probability of this casino cheating, C, given that
you just lost all your money, L.” For the numerator, we multiply the base rate,
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or prior probability, of C (i.e., 1/100) by the probability of your losing if the
casino cheated, P(L| C); let’s assume that would be 1.0. In the denominator,
that same product, P(C) P(LIC), must be added to the probability of the
casino being fair, P(n0tC), multiplied by the probability of your losing at a
fair casino, P(L | notC). This is necessary to normalize your suspicion against
the alternative possibility: that you just got unlucky. Dividing the numerator
(0.01 * 1) by the denominator (0.01 * 1 + 0.99 * 0.05), results in P(CIL) =
0.168. Certainly a much higher likelihood than the base rate of 1 in 100,
but not quite enough confidence to warrant contacting the police. Perhaps
if it happens to you three times in a row at that same casino, then it might
be time for an investigation . . . or then again, maybe you’ve just lost your
touch.

Probability theory also allows us to compute the probability of combina-
tions of events. For example, the probability of a flipped coin coming up heads
twice in a row is computed by simply multiplying the probability of the first
event with the probability of the second event: 0.5 * 0.5 = 0.25. (Of course, this
only really works when the probabilities are independent of one another.) The
probability of that casino not cheating, even though you’ve lost at roulette
three times in a row there, could be calculated as (1 — 0.168) * (1 — 0.168) *
(1 —0.168) = 0.576. Thus, it would appear that Bayesian theorists can make
some pretty sophisticated predictions, not only of individual events but also
of combined events.

However, the Bayesian interpretation of those mathematical results is not
accepted by everyone. A frequentist’s view of probability would emphasize
that although the 0.25 probability of flipping two heads in a pair of coin flips
tells us to expect about 25 heads-heads out of 100 pairs of coin flips, proba-
bility can say nothing about which face of the coin is actually up on any one
flip. We must rely on observation to tell us that. In the strict frequentist
account of probability, there is no discussion of the degrees to which an indi-
vidual event is likely to be in one state or another—and certainly no acknowl-
edgment of the degrees to which an individual event is in one state and another
at the same time!

The way I would like to encourage the reader to think of probability in the
mind is a far cry from the frequentist’s interpretation and even subtly differ-
ent from the Bayesian interpretation. The continuity of mind thesis holds that
simultaneously partially active mental representations can be treated as sum-
ming to 1.0 and thus may represent the probability of their individual associ-
ated actions being elicited. In this view, it is the fact that the body’s effectors
(limbs, hands, eyes, speech apparatus, etc.) can each typically only do one
action at a time, which causes the multifarious amalgam of mental states to
warp itself over time toward largely approximating only one mental state just
long enough to produce that mental state’s associated action. Thus, when
relating these multiple graded mental states to possible actions, the thesis
looks decidedly probabilistic, but when examining the mental states for their
own sake, the thesis might be best compared to fuzzy logic.
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Following some initial work by logicians on elements of a formal logic
that allowed for “vague” truth values, Lotfi Zadeh introduced the notion of
fuzzy logic (Zadeh, 1975; see also Massaro, 1997). In fuzzy logic, the truth
value of a proposition (such as “Donald is rich”) has a range between 0 and 1.
Moreover, the truth value of a conjunction of propositions (such as “Donald
is rich and I am poor”) is equal to the truth value of one proposition multiplied
by the truth value of the other proposition. Sound familiar? The mathematics of
fuzzy logic and the mathematics of probability are essentially the same. It is
the interpretation that differs. Fuzzy logic takes the mathematical results of
traditional probability statistics and accepts them at face value as “the (multi-
farious) state of the system,” not as “a prediction of the possible discrete states
the system might be in.” This is precisely what quantum physics does with its
mathematical description of the probability that Schrédinger’s cat is dead and
the probability that it is alive. It accepts the math as a conjunctive description of
the world, not as a disjunctive prediction about it.

"Warping” the Probabilities

You can begin to see the tension here between the notions of probability and
fuzzy logic. I will perhaps add to that tension when I note here that the “prob-
abilistic” activations of mental representations discussed throughout this
book often do not adhere to the mathematics of Bayesian probability theory
(see chapter 4 for details). From this perspective, my use of the term proba-
bility may seem somewhat glib. The conjunctive description of mental con-
tents provided by fuzzy logic is converted into a disjunctive prediction, via
probabilities, of the motor responses being recorded by the psychological
experimenter. The way in which probability truly does apply here is in the stip-
ulation that these fuzzy logical activations of mental states are treated as “the
probability that the mind will activate a motor action that is associated with a
particular perceptual category.” However, because their activations change
continuously, these partially active mental representations should not really
be interpreted as “the mind computing the probability of a given stimulus
belonging to a particular category.” At a very deep level, this claim is actually
quite shocking, if not preposterous. It amounts to saying that A and B (below)
are true, but C is not always true.

A. There are Bayesian probabilistic relationships between external states in
the environment.
B. There are Bayesian probabilistic relationships between mental states in
the mind and motor actions in that environment.
*C. There are Bayesian probabilistic relationships between external states in
the environment and mental states in the mind.

What could be so special about that transition from stimulus to percept
(statement C) that it dares defy the mathematics of Bayesian probability?
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In fact, a considerable amount of research in a subfield that calls itself
Bayesian perception adheres rather strongly to statement C (e.g., Kersten, 1991;
Knill, 1998; see also Rao, Olshausen, & Lewicki, 2002). Bayesian approaches to
perception usually acknowledge the gradedness of internal mental states;
however, they still tend to treat them as static in time. The temporal dynamics
of cognition is largely ignored by the Bayesian approach to perception. Thus,
although an experiment in Bayesian perception can often demonstrate an
accurate mathematical prediction (in the form of some probabilities) about
the overt categories into which an observer will place her percepts, it usually
demonstrates nothing about the temporally extended process by which the
sensory input eventually led to a particular categorical response. In the con-
text of having considered the pattern completion process exhibited by neural
population codes and by attractor dynamics, this two-step process of stimulus
and then probability is reminiscent of the two-step “stimulus and then response”
attitude criticized by Dewey (1896).

There are properties inherent to dynamical systems that are often respon-
sible for the mind not quite adhering to probability theory. There is a kind
of momentum that the mind develops as it travels through the state space,
causing it to warp and exaggerate its deterministic influences. The mind has a
tendency to gravitate closer to the nearest attractor (mental state) than war-
ranted. That is, dynamical systems often settle toward stable states, with one
attractor being almost, but not perfectly, satisfied (i.e., its “interpretation” of
the input being somewhere near 1.0 probability)—even when the input is
unresolvably ambiguous. As mentioned earlier, this pattern completion process
takes place over a period of time (whether it be a few hundred milliseconds or
a few seconds). One must look inside this pattern completion process to find
evidence of probabilistic mental states. Too often, researchers examine the final
result of a mental process, such as the category or accuracy of the solicited
overt motor response. Although informative for characterizing the hypothe-
sized representations that putatively get computed, this mindset largely neg-
lects the process of settling toward those representations and the fact that
many amalgams of representations are often considered along the way. The
continuity of mind thesis is not particularly aimed at discounting the exposi-
tory usefulness of those idealized discrete representations of pure mental
states. Rather, it is aimed at bringing to the reader’s attention the fact that
“getting there is half the fun.”

Nonlinear Attraction, Stability, and
Instability in Visual Perception

Figure 1.1 shows a cartoon example of a two-dimensional perspective on
a vector landscape for the high-dimensional state space of a dynamical
system. This is a way to visualize the temporal dynamics of a system’s state
as it would traverse through its state space. Pick a location anywhere on that
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Figure 1.1. A schematic example of a vector landscape for
a dynamical system with two attractor basins.

two-dimensional map (recognizing that it would actually correspond to a
location in the high-dimensional state space of the dynamical system itself),
and put your finger on the location. There are arrows nearby that (with a
little interpolation) give an indication of what direction the system would
move in. Longer arrows imply stronger attraction and hence faster movement.
Move your finger in the direction of the attraction, and check the direction of
the arrows near your finger’s new location. Continue moving your finger so,
and you’ll simulate the continuous trajectory of a dynamical system as it
moves through its state space. Note that the two attractor basins are spiral-
shaped, such that the system would take a while to settle motionlessly into the
point attractor, tending to make smaller and smaller orbits almost indefi-
nitely. Thus the vector landscape itself is likely to change shape (due to new
sensory input and/or planned motor output) before the state of the system
actually becomes static.

Figure 1.2 shows a different kind of rendition of a similar state space
manifold. The energy landscape in figure 1.2 shows the two attractor basins as
actual bowls in the surface. The vertical axis is treated as energy, and the
dynamics will always push the state of the system toward a reduction in
energy. Imagine placing a marble on the mesh surface of figure 1.2, and envi-
sion where it would roll. Thus would be the trajectory of the system over time.

Any time there is more than one attractor in a dynamical system, it is con-
sidered a nonlinear dynamical system. With more attractors comes greater
potential for any given trajectory to meander quite nonlinearly in its high-
dimensional state space. What is crucial to defining a dynamical system is its
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Figure 1.2. An energy landscape similar to the vector landscape
in figure 1.1.

balance of stability and instability (e.g., Glendinning, 1994; Spencer &
Schoner, 2003; Ward, 2002; see also Bak, 1994).# Nonlinear attraction is how a
system achieves relative stability, as it travels from unstable point to unstable
point in state space to gradually settle into the basin of a point attractor.
However, too much stability can be a bad thing. If the system settles all the way
into the point attractor—rather than just orbiting its basin®—then the system
is stuck there until external perturbation dislodges it. In thermodynamics, this
kind of true stability is affectionately referred to as heat death.

One easy way to undo a relatively stable state in a dynamical neural sys-
tem, and reachieve instability, is through fatigue. If a neural population code
is continuously stimulated for a significant amount of time, one can naturally
expect that the refractory periods of the individual neurons will accumulate in
number and duration until it becomes quite difficult to substantially excite
that population code for some time. This has been demonstrated in neural
firings rates in monkeys (e.g., Baylis & Rolls, 1987; Carandini, 2000; Maffei,
Fiorentini, & Bisti, 1973; Sekuler & Pantle, 1967), in human neuroimaging (e.g.,
Noguchi, Inui, & Kakigi, 2004; Thompson-Schill, D’Esposito, & Kan, 1999),
and in neural network simulations (e.g., Huber & O’Reilly, 2003; Kawamoto &
Anderson, 1985). This fatigue of the population code results in the reduction
of its attraction strength in the state space, and other nearby attractors (popu-
lation codes) will now be able to pull the system toward them. Such neural
fatigue is a common explanation for a wide range of perceptual alternations
and illusions, including the following experiential demonstration. It has long
been suggested that the perspective alternations of the Necker cube (figure 1.3)
are due to fatigue, or satiation, of neural representations (e.g., Orbach, Ehrlich, &
Heath, 1963; see also Kohler & Wallach, 1944).
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Figure 1.3. The Necker cube. At first glance,
it appears to be a wireframe box with one
particular perspective, for example, viewed
from slightly above it. However, after star-
ing at it for a few seconds, the perspective
will change to one in which the box is being
viewed from slightly underneath it. See text
for discussion of these perspective reversals.

When looking at this wire frame cube, the lower square will often appear
to be the front (or closer) panel of the cube, as if your head is slightly above
the cube and you are looking down at it. However, after staring at it for several
seconds, your percept will switch to having the upper square appear to be the
front panel, as if your head is slightly below the cube and you are looking up
at it. A few seconds later, the percept will switch back for a little while. As the
perspective with the upper square appearing in front is a somewhat unusual
one (requiring the cube to be suspended in air or resting on a glass shelf), it is
perhaps not surprising that this percept usually lasts for a slightly shorter
period than the more canonical one (see Wallach & Slaughter, 1988). Over
time, this oscillation between perspectives of the Necker cube tends to
increase in rate. Thus, if you were to report when the perspective reverses over
time, the graph of those reversals would look something like figure 1.4.

The bistable pattern of Necker cube perspectives has been described as a
dynamical system in which two attractors compete against one another

View from Above

Perspective

'View from Underneath

T T I ] I
1 2 3 4 5 6 7 8 9 10
Time (seconds)

Figure 1.4. An example time course plot of reported perspective reversals
during viewing of the Necker cube.
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(DeMaris, 2000; Kawamoto & Anderson, 1985; Kelso, 1995; see also Hock,
Kelso, & Schoner, 1993, and van Leeuwen, Steyvers, & Nooter, 1997, for simi-
lar dynamical treatment of bistable visual input). The perceptual alternations
observed with the Necker cube (as well as other ambiguous figures, such as the
classic vase/faces silhouette and the Schroder stairs) are consistent with a
dynamical systems account of a nonlinear trajectory settling into one attrac-
tor basin and then into the other, and back, and so on. However, flipping back
and forth between two relatively stable states is something that a logical sym-
bolic (computerlike) system can do as well. What a logical symbolic system
cannot do is visit intermediate gradations between the two identifiable states,
as a dynamical system naturally does. Therefore, the important observation
to note regarding the perceptual alternations of the Necker cube is not
simply that they bounce back and forth but that they take a nonzero amount
of time to do so. The transition from one identifiable percept to the other is
not instantaneous. Based on numerous informal phenomenological reports,
when a stable Necker cube perspective begins to transition to the alternative
perspective, it seems to take somewhere around half a second for that current
percept to finally give way and be replaced by the alternative percept. If this is
the case, then the actual perceptual state is not quite accurately described by
the instantaneous transitions plotted in figure 1.4. The discrete step-function
quality of the data may be more an artifact of the constraints of the experi-
mental task, for example, “press this button or that one, not both,” than a true
indication of the internal mental state of the observer. (For similar circum-
stances of response discreteness being misinterpreted as mental discreteness, see
the discussion of categorical perception in chapter 6.) Rather than discretely
jumping from one perspective to the next with a step function, perhaps it
would be more accurate to plot the Necker cube perspectives as transitioning
with a sigmoid function (i.e., an S-shaped curve). See figure 1.5.

In fact, some observers report being able to perceive some visual proper-
ties of the intermediate conditions during the transition. The perceptual tran-
sition is often described as the back panel moving closer in depth and the
front panel moving away in depth, until they are at the same depth plane, and
the image looks something like a wire frame mobile that is collapsed. The two
panels continue their movement, crossing each other, and eventually take each
other’s previous places. And, believe it or not, there is even one introspective
report of the percept “getting stuck” in one of those intermediate conditions
for a couple of seconds!

This account is based on introspective reports, of course, and therefore
should be taken with a grain of salt. But then, so is the original measure of
the Necker cube’s perspective reversals, as exemplified in figure 1.4. The only
difference is that the introspective report for the data in figure 1.4 is methodo-
logically constrained to a two-alternative forced choice. That is, the observer is
explicitly instructed to press one button when one perspective comes into
view, and then press another button when the other perspective comes into
view. Pressing both buttons at once is not an option. This requirement of
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Figure 1.5. A hypothetical time course plot of the actual perceptual state dur-
ing viewing of the Necker cube. The flat horizontal portions of this oscillating
curve are, in dynamical systems terminology, the stable states, where the system
is nestled in one of the attractor basins in the state space. The diagonal and
curved portions characterize the periods of time when the system is unstable
and not inside either attractor basin, but is in the process of being attracted to
one of them.

discrete, categorical responses is quite common in cognitive psychology. In
contrast, if we allow observers to (at least attempt to) provide more than just
a selection of one of two categories, then we have a chance at obtaining
a measure of the continuous probabilistic character of mental activity.
Throughout this book, there are many different examples of ways to measure
and observe, with considerable experimental rigor, that continuous proba-
bilistic character of mind. Consider the sigmoid curves in figure 1.5 our first
data visualization (of many to come) of what I call the continuity of mind.
Another compelling data visualization of the continuous manner in
which a percept gradually comes into view can be found in neurophysiology
research. Recordings from multiple neurons in the inferotemporal cortex of
the macaque monkey suggest that it takes a few hundred milliseconds for the
right population of cells to achieve their appropriate firing rates for fully iden-
tifying a fixated object or face (Rolls & Tovee, 1995; see also Perrett, Oram, &
Ashbridge, 1998). The cumulative information (in bits) provided by an infero-
temporal neuron in the service of recognizing a face or object accrues con-
tinuously (though nonlinearly) over the course of about 350+ milliseconds
(see figure 1.6). About 80 milliseconds after the presentation of the visual
stimulus, these cells begin firing, and during the first 70 milliseconds of firing,
about 50% of the total information to be encoded is already accumulated.
Thus, very quickly the network is able to project itself into the right general
“neighborhood” in its state space. (This allows some coarse visual discrimina-
tions to actually be made with 100 milliseconds or less of stimulus presentation



22 The Continuity of Mind

0.60 A
0.50 A
5
5 040 1
¥
]
S ]
g 030
=
a .20 1
0.10 7
0.00 y T ¥ : '
0 100 200 300 400 500 600
Time

Figure 1.6. Average cumulative information accrued over milli-
seconds by inferotemporal cells representing objects and faces
(adapted from Rolls & Tovee, 1995).

time; see Potter, 1976, 1993; Van Rullen & Thorpe, 2001.) However, over the
next 200+ milliseconds, the process of object or face recognition is still in
progress, during which the remaining 50% of the information to be repre-
sented by the distributed population code is gradually accumulated.

Admittedly, 350 milliseconds for a population code to be in transit on the
way toward achieving its potentially stable state might not seem like a lot of
time. The stable states depicted for the Necker cube in figure 1.5 certainly take
up a substantial amount of the total time. Are the transition periods perhaps
just interesting curiosities, and the important observation is that a stable state
is eventually reached, and it is that on which logical mental computations are
performed? I think not. Throughout the course of this book, I hope to con-
vince you that the transitions are the important observations, not the seem-
ingly stable states. It is my hypothesis that in more complex visual (as well as
auditory, olfactory, etc.) environments, the proportion of time spent in these
unstable regions of state space—that is, in the process of traveling toward an
attractor basin, but not in one yet—is actually much greater than the propor-
tion of time spent in relatively stable (or, more precisely, metastable) orbit-
prone regions of state space.

This gradual accrual of the information comprising a population code
(figure 1.6) has powerful consequences for how we conceptualize what the brain
is doing when we go about our business of naturally perceiving the world
around us. Consider how your eyes move around a complex scene like the
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one in front of you right now. Your eyes rest, with the two foveas fixating
a particular location in the visual field, for about 200-300 milliseconds on
average (e.g., Rayner, 1998). They then make a fast, ballistic jump (lasting a
few dozen milliseconds or so) away from that location to fixate another loca-
tion in the visual field. After resting there for another 200-300 milliseconds,
they jump yet again to another location. Each new fixation brings a new word,
object, or object part, into the high-resolution view of your foveas for little
more than a quarter of a second. Now, if it takes almost half a second for the
appropriate population code to get fully settled in recognizing a fixated object,
but your eyes normally move to a new object every quarter of a second, how
can the brain achieve a genuinely stable state for any object recognition event?

Perhaps a stable state is not necessary. Perhaps the relevant neural net-
works in the brain need only approach an attractor basin in their state space
closely enough so that it is unambiguously the most coherent of the many
partially active population codes, and then that attractor’s associated motor
actions and anticipated perceptions go on to carry out their own activation
processes. From this perspective, the image of a mental trajectory is now
decidedly different from one in which the state of the system lands in one
attractor in state space, to consider one thought or percept, and then it lands
in another attractor to consider another thought or percept. Rather, the image
is one in which the neural system continuously traverses intermediate regions
of its state space and occasionally briefly brushes up near an attractor basin
just long enough to bring that attractor’s associated percepts and actions into
prominence. The empbhasis is on the journey, not the destinations.

Thinking of objects (or words) as living in a high-dimensional space is a
little bit like shooting pool, if you treat the cue ball as the current state of the
system, and the object ball (the one you're aiming at) as the next upcoming
attractor. A good pool player thinks not only about how to sink the object ball
but also about where the cue ball will go after that. Where the state of the sys-
tem goes after brushing up next to the current attractor is incredibly impor-
tant. The process of recognizing the next word or object does not begin from
some neutral central location in state space. It begins from where the system
last left off. In a dynamical neural system, the mind travels a continuous
trajectory in this state space; it cannot teleport itself to neutral locations in the
state space in between recognition events, the way a computer can instanta-
neously flip its states to some context-free unbiased baseline. Therefore, pre-
cisely where in state space the previous word/object left the system has a
powerful influence on the trajectory it takes to get to the location in state space
corresponding to recognition of the next word/object. Hence, one should
expect “priming” effects from the previous word/object on the recognition of
the current word/object. And of course, as every cognitive psychologist
knows, the literature is rife with reports of words priming one another
(e.g., Lukatela, Lukatela, & Turvey, 1993; Neely, 1977; see also Trueswell & Kim,
1998) and reports of objects priming one another (e.g., Cooper, Beiderman, &
Hummel, 1992; Gauthier & Tarr, 1997; see also Dill & Edelman, 2001).
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Nonlinear Attraction, Stability, and
Instability in Language Processing

If you are one those people who feel as though they can catch a glimpse of what
the Necker cube looks like—sort of—during the time course of its transition
from one perspective to the other, then you have witnessed, firsthand, the con-
tinuity of mind. However, if such a glimpse eludes you, fear not. I have a
second experiential demonstration of the neural fatigue of a population code
that just might work for you. In much the same way that staring at a bistable
visual image and perceiving it in one of its two possible perspectives for
several seconds essentially overexposes the population of neurons that repre-
sents that percept, one can induce the same kind of effect in language. Look at
the word in figure 1.7. This is a familiar, easy-to-recognize word. On looking
at it, you feel as though your mind achieves a stable interpretation of its mean-
ing. However, if you overexpose the system to this input, you can actually
fatigue that meaning to the point that it no longer produces a stable state but
instead a clearly introspectively unstable one. Fixate the word in figure 1.7 and
read it out loud to yourself, about once per second, for one minute. Each time
you say the word, run a kind of mental inventory check on what the word is
making you think of at that point in time.

For most people, most of the time, the meaning of the word seems to dis-
appear after many repetitions. The word will begin to look and sound like an
unfamiliar nonsense word or perhaps a word from a foreign language.
Sometimes you can notice the gradualness with which the original meaning
fades. Moreover, one can also occasionally become aware of strange associa-
tions that arise, which are indicative of more than just a loss of the original
meaning but instead a gradual transition of the system into unusual regions
of state space. That is, as the neurons comprising the population code for
the meaning of giraffe begin to fatigue, other slightly related populations codes
become relatively more prominent. For example, as the meaning “a very-long-
necked orange quadruped from Africa” dwindles, you might find yourself
making peculiar observations, such as the fact that the g is ambiguous with
respect to its pronunciation (e.g., as in giant and gimlet). Or similar sounding
words may come to mind, such as raffle, draft, or even rafter (if you speak fast
and the syllables exchange order). Or perhaps, you'll think of names, like

gi r affe Figure 1.7. To demonstrate semantic satia-

tion, look at this word and read it out loud
to yourself, about once per second, for a
minute. As the repetitions continue, the
meaning of the word will seem to fade.
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Al Jaffe, a cartoonist for Mad magazine, or Daniel Jurafsky, a well-respected
computational linguist and recent MacArthur Fellow. One colleague even said
that the word began to sound like a pretentious French-derived adjective, as in
“he’s so giraffe,” meaning something like gauche or jejune. This odd stream of
consciousness, occurring as the original meaning diminishes, should not be
surprising if one conceives of word meanings as living in a high-dimensional
state space. With each dimension being represented by the activation of its
corresponding neuron in the network, reducing the coherence of the popula-
tion code for the word giraffe unavoidably means increasing the coherence of
other population codes in nearby regions of state space. As the system gravitates
away from the giraffe attractor basin, it cannot help but travel somewhat near
others. Figure 1.8 is a simplified caricature of a hypothetical two-dimensional
perspective through this high-dimensional space that would allow one to
watch the trajectory of the system exhibiting fatigue of the giraffe attractor
and therefore meandering slightly near some other attractors.

This bizarre phenomenon has actually been well studied for decades and
is commonly referred to as semantic satiation (e.g., Jakobovits, 1967; Smith &
Klein, 1990; see also Tuller, Ding, & Kelso, 1997). Although early theories
about semantic satiation treated the effect as though it was a discrete loss of
meaning that took place at a particular point in time (e.g., Mason, 1941;
Severance & Washburn, 1907), Lambert and Jakobovits (1960) demonstrated

P iraffe

Dan Jurafsky
®

raffle

Al ‘]ZIIT%

dimension 2

. @
jejune
®

gauche

dimension |

Figure 1.8. During semantic satiation, the meaning of a word
diminishes, and similar associations can come to mind. This
schematic two-dimensional state-space depicts a hypothetical
trajectory away from the satiated word, giraffe, and skimming
near other words/concepts in the space.
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the gradual nature of this reduction in meaning over time. Using Osgood,
Suci, and Tannenbaum’s (1957) semantic differential measure, which projects
the meaning of a word into a several-dimensional space, Lambert and
Jakobovits had participants provide responses for locating the word in that
space after longer periods of word repetition. As semantic satiation accrued
over more repetitions, the resulting projections of word meanings in the
semantic differential space indicated a gradual and continuous movement
toward but not all the way into the null origin of the space.

Osgood et al’s (1957) three to six dimensions for representing the mean-
ings of words was an important breakthrough, but it was still quite different
from the high-dimensional state space of a neural network. Their dimensions
were based on rather abstract concepts, such as good/bad, active/passive, and
potent/impotent, for which participants simply provided metacognitive rat-
ings for any one word (e.g., on a scale of +3 to —3, how good/bad, active/
passive, and potent/impotent is a giraffe?). Moreover, the physical mecha-
nisms by which these abstract dimensions might be instantiated were not
forthcoming. In fact, precisely because the actual space in which these words
live is high-dimensional, which is merely approximated by Osgood et al’s
abstract dimensions, almost any set of concepts that are sufficiently different
from one another could probably serve as the basis vectors for a several-
dimensional projection of that high-dimensional neural space (e.g., Edelman,
1998, 1999). For example, if one had participants report how similar any word
is to a peanut, an airplane, and a horse, one could probably produce a three-
dimensional mock-up that would exhibit important clusterings of abstract
concepts such animate/ inanimate, natural/artifact, and so on. But it’s proba-
bly not the case that the principal dimensions on which our brains encode the
world are peanutness, airplaneness, and horseness.

Nonetheless, Osgood et al’s (1957) insight that word representation should
be carried out in a metric space, where graded similarity is easily embodied as
the distance between representations, was important—yet was quickly swept
under the rug as the computer metaphor of the mind took hold in the 1960s.
In cognitive psychology, the dominant account of word representation became
symbolic entries for words (like in a dictionary), with their relationships to
one another encoded by logical rules and/or sharing of an integral number of
discrete semantic features. Essentially, if one could easily imagine coding the
representation scheme in the popular programming language of the time
(LISP), then it was considered a legitimate representation scheme. Coding a
high-dimensional metric space, with each word being a continuous vector in
that space, was not what LISP was best at doing. However, now that symbolic
programming is nowhere near as dominant as it was in the 1960s and 1970s,
and numerical computation has become quite popular, perhaps it is not
surprising that high-dimensional geometric accounts of word representation
are becoming accepted again (e.g., Landauer & Dumais, 1997; Lund &
Burgess, 1996; Schutze, 1993).
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Deprogramming the Cognitive Psychologist

The change in styles of programming languages from symbolic to numerical
is only one of many transitions that have recently taken place to help set the
stage for what promises to be the next paradigm shift in psychology and the
cognitive sciences. For example, connectionism, though not quite becoming
the dominant paradigm in psychology, managed to make the concept of dis-
tributed representations an acceptable notion (e.g., Clark, 1993; Elman et al.,
1996; O’Reilly, Munakata, & McClelland, 2000; Rogers & McClelland, 2004;
Rumelhart & McClelland, 1986a; but see Dietrich & Markman, 2003; Fodor &
Pylyshyn, 1995; Marcus, 2001). One could argue that much of the connection-
ist literature has devoted slightly too much of its attention to trajectories
through synaptic-weight-space as an account of learning and not enough to
trajectories through activation-space as an account of real-time processing.
Nonetheless, the step to having knowledge live as partially overlapping dis-
tributed representations in the high-dimensional state space of a network has
been a crucial departure from cognitive psychology’s traditional symbolic
computation approach.

Moreover, improvements in continuous and semi-continuous measures
of cognitive processing have helped open the door to visualizing the continu-
ous dynamics of mental activity. For example, speech shadowing (repeating
continuous speech as quickly and accurately as possible) provided important
insights into language processing (e.g., Marslen-Wilson, 1973, 1975). Recordings
of electrical potentials from the scalp (e.g., Hillyard & Kutas, 1983) as well as
from the peripheral muscles (e.g., Tuller, Kelso, & Harris, 1982) have provided
continuous measures of a wide range of perceptual, cognitive, and motor
processes. Recording from multiple neurons at once (e.g., Georgopoulos et al.,
1982), recording from neurons in awake behaving animals (e.g., Motter, 1993),
and microstimulating neurons in awake behaving animals (e.g., Gold & Shadlen,
2000) has provided concrete examples of the distributed probabilistic states in
which neural systems spend much of their time. Eye tracking has provided
real-time semi-continuous measures of language and vision (e.g., Rayner,
1998; Tanenhaus et al., 1995). These relatively recent advancements in method-
ologies (as well as many others; see chapter 3) have made it possible to catch
glimpses of the graded states that the mind travels through on its way to
produce discrete actions.

Another development in the cognitive and neural sciences that assists
in placing us at the brink of a significant movement away from traditional
cognitive psychology is that of dynamical systems theory. As a field of its own,
dynamical systems theory has advanced a great deal in both sophistication as
well as popularity since the days of Hamilton, Boltzmann, and Poincare. For
example, recent treatments of dynamical systems theory benefit considerably
from computer simulations (Polking, 1995; Scheinerman, 1995; Strogatz, 1994).
Most relevant to the cognitive sciences, dynamical systems theory is being
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successfully applied to a wide range of human behaviors, such as categoriza-
tion (Anderson et al., 1977), language (Tabor & Tanenhaus, 1999), visual per-
ception (Grossberg, 1980), motor movement (Kelso, 1995), as well as music
perception (Large & Palmer, 2002), and developmental processes (Thelen &
Smith, 1994). I genuinely suspect at this point that these advances of dynami-
cal systems in various subfields of psychology spell doom for the computer
metaphor of the mind.

As should be evident by now, the purpose of this book is to deprogram
the cognitive psychologist in us all. We all have a tendency to want to draw a
circle around a set of phenomena and label that set with a name like perception
and perhaps label another set of phenomena with the name cognition. Even
within those circles, we feel the need to draw smaller circles of things like
“word recognition,” as if it was completely unrelated to “object recognition.”
We all have a tendency to want to draw boxes around presumed transforma-
tions of information (e.g., combining spoken sounds over time to map onto
words representations, or combining visual features and surfaces to map onto
object representations), and call them processors or modules. We have these
tendencies because without these overidealized categorical separations and
discrete labels, we feel at a loss for how to talk about these phenomena. But
how do I refer to a process that combines spoken sounds and visual features
over time to map onto possible motor actions? The vocabulary of traditional
cognitive psychology is simply not built for it. In contrast, the intersection of
dynamical systems theory, neural network modeling, and ecological psy-
chology, a nexus that I refer to as continuity psychology, is developing not only
the vocabulary but also the conceptual and mathematical tools for it.

As we watch traditional cognitive psychology giving way to continuity
psychology, one is tempted to ask, as Douglas Hintzman (1993) did, “Was the
cognitive revolution a mistake?” And I think the answer is clearly “no”—but
not because it got anything right about the mind. The cognitive revolution of
the 1960s was the right thing to do at the time because, in opposing the anti-
mentalism of the behaviorist tradition, it provided the necessary realization
that the mind has sufficient complexity of processing to make it required
reading, as it were. Psychology could no longer focus solely on the stimulus
and the response, ignoring the complex nested dynamical processes that take
place in between. The first-order associationism of the 1940s simply wasn’t
powerful enough to fit the data (Lashley, 1951; see also Chomsky, 1959).
Unfortunately, where cognitive psychology in particular and cognitive science
in general went wrong was in its marriage to the computer metaphor of the
mind. Box-and-arrow diagrams, borrowed from computer engineering, ran
amok in the scientific journals, and serial digital processes were used as the
square pegs to be forced into the round holes of cognition. The mind was
treated as an independent system, somehow composed of multiple internal
independent subsystems.

However, in the past few decades, evidence from ecological psychology,
neuroscience, and real-time methodologies in cognitive psychology has cast
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doubt on this serial digital computational perspective on the mind. Rather
than the mind being composed of independent systems for perception, cogni-
tion, and action, the entire process is perhaps better conceived of as a continuous
loop through perceptionlike processes, partially overlapping with cognition-
like processes, and actionlike processes, producing continuous changes in the
environment, which in turn, continuously influence the perceptionlike processes
(see Neisser, 1976). In this large feedback loop, the brain itself is more of an
interdependent subsystem contributing to mind than a system comprising mind.
It carries out more of a subprocess than a process.

Given the tumultuous history of psychology and its relatively late appli-
cation of mathematical techniques from dynamical systems theory, one could
argue that the symbolic-computation approach to cognition, spanning from
the 1960s to the 1990s, was a necessary first approximation at characterizing
mental activity—a first approximation that has run its course and served
its purpose. For the new psychology on the horizon, perhaps we are ready to
discard the metaphor of the mind as a computer, because its drawbacks now
outweigh its advances, and replace it with a treatment of the mind as a
natural continuous dynamical event—whose decidedly nonmetaphorical
substrate consists of the brain and body and the environment with which they
interact.



2

Some Conceptual Tools for Tracking

Continuous Mental Trajectories

I can best illustrate this conception of nervous action by picturing
the brain as the surface of a lake. The prevailing breeze carries
small ripples in its direction, the basic polarity of the system.
Varying gusts set up crossing systems of waves, which do not
destroy the first ripples, but modify their form, a second level in the
system of space coordinates. A tossing log with its own period of
submersion sends out periodic bursts of ripples, a temporal rhythm.
The bow wave of a speeding boat momentarily sweeps over the
surface, seems to obliterate the smaller waves yet leaves them
unchanged by its passing, the transient effect of a strong stimulus.
—Karl Lashley (1951)

Timing Is Everything

Time is continuous. We are generally forced to talk about it in discrete quanta,
be it billions of years in astronomy, millions of years in geology and in evolu-
tion, centuries in history, decades in sociology, years in economics, days in our
personal lives, seconds in cognitive psychology, milliseconds in cognitive
neuroscience, microseconds in chemistry, nano- and picoseconds in computer
engineering, and femto- and attoseconds in physics. These discrete labels that
carve up time into delineated chunks are certainly useful descriptive conven-
iences. However, it would be foolish to think that they are real. That is, it seems
highly unlikely that naturally organized systems of multiple interacting units,
such as a brain, a society, or a planet, would function in lockstep to the pace of
some systemwide counter using a particular temporal quanta, such that each
new second, or millisecond, or attosecond signaled an instantaneous and
simultaneous updating of the discrete state of each and every unit in the
system. This is not a straw man I'm building. This is the kind of lockstep
synchronization that would genuinely be necessary for the brain to function
like a digital computer.

If, at the spatial scale of neurons and behavior, time truly is continuous,
that is, not decomposable into discrete quanta, then changes in a system’s state
(or even its units’ states) over time must also be continuous. Thus, claiming
that a system was in a particular “state,” X, at a particular point in time, really
boils down to saying that the average of the system’s states during that period

30
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of time was X. This kind of coarse averaging measurement is often a practical
necessity in science, but should not be mistaken as genuine evidence for the
system actually resting in a discrete stable state.

Real time does not function like a digital computer’s clock. It does not
move forward and then stop to be counted, and then move forward again only
to stop again. At the level of human behavior, real time does not have an objec-
tive functional unit. The system of temporal units that we have settled on—
based on one second equaling 9,192,631,770 periods of radiation from the
cesium-133 atom—is relatively arbitrary. Historically speaking, one rotation
of the Earth around the sun, which is almost naturally carved up into 365 day
units—Ileap years notwithstanding—is arguably a rather terracentric basis for
setting the clock of the universe, is it not? We could just as easily have devel-
oped a system that treated the equivalent of 1.37 femtoseconds as a unit of
time, given it its own funny name, and built the rest of the time scale system
around multiples of that unit. In any case, for pragmatic day-to-day concerns
of humans, there are still many time scale systems that could have been
devised to fit into Earth’s solar and lunar cycles, and it is simply a series of
disconnected scientific endeavors over centuries (some based on the metric
system and others not) that have meandered onto the one we now use
planetwide. Time itself has no idea, nor does it care, what method we use for
pretending to carve it up. It just keeps flowing continuously.!

If, for the purposes of analyzing physical processes at the molar scale, time
is best described as continuous and unhesitating, then it is perhaps difficult to
imagine that the time-dependent trajectories of the mind, through the brain’s
state space, could be any different. The firing rates of all the billions of neu-
rons in the brain do not and could not all remain simultaneously constant for
any significant period of time. What this means is that there is no point in
time during which the mind is not changing. There is simply no such thing
as a static internal representation, as required by the computer metaphor of
the mind.

Trajectories in Neural State Space

This practice of treating time as though it was comprised of discrete inde-
pendent units is at the heart of why a somewhat unexpected clash of mindsets
exists between connectionist modelers and dynamical systems theorists of
cognition (see van Gelder, 1998). One of the reasons dynamical cognition theo-
rists criticize connectionist modelers is precisely because most artificial neural
networks (including the simulations in this book) treat the updating of all the
neuronal activations as though they took place in lockstep to the beat of some
arbitrary and nondecomposable temporal quanta (but see Pearlmutter, 1989,
1995; Williams & Zipser, 1989). In contrast, a differential equation from
dynamical systems theory describes a truly continuous trajectory existing in a
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state space with time included as a continuous dimension. For example, the
basic dynamical system is described by the following simple equation:

90X /9t = f(X), (2.1)

where X is the vector of coordinates describing the system’s location in its state
space, and t is time. The derivative of the vector X is proportional to the
change in time as a result of the function f. Nowhere in this equation is there
reference to steps in time or in space. There is only flow.

Although such mathematical accounts are indeed elegant and probably
closer to the truth about temporal dynamics, they are at times criticized for
being descriptions of the phenomena rather than explanations. Understanding
why a brain does something equivalent to following a particular trajectory in
state space could perhaps be aided by simulations in an architecture that
resembles actual neural assemblies, rather than one that merely provides a
metaphor of their temporal dynamics. Thus we arrive at the compensatory
strengths and weaknesses of dynamical systems theory and of artificial neural
networks. Dynamical systems theory accommodates the genuine continuity
of time and state space but says little about neurophysiology. Neural network
simulations provide some approximated account of the actual neural hard-
ware that carries out these functions, but they chop their time, and therefore
their state space, into segmented periods and regions of artificial stasis.

Such computer simulations of state space trajectories over time are some-
times called iterated maps, because with each discrete iteration in time the
simulation plots a new point in space to describe the state of the system. With
neural network models that proceed in lockstep, it is as though the state of the
system doesn’t move through its state space but rather teleports from one spe-
cific location to another, resting statically in each location for the duration of
the temporal quantum. The answer that most connectionist modelers give in
response to this criticism—and the one that I give in response as well when
I use neural networks—is that, as long as the time steps are small, the loss
of some temporal contiguity is a minor simplification that allows several bene-
fits in explication and visualization. Essentially, this amounts to advocating
the approximation of continuous dynamical systems by discrete dynamical
systems. In employing any model, one must choose where the oversimpli-
fications will be permitted, and where the crucial mechanisms will be more
precisely implemented.

Importantly, once the decision to use artificial neural networks has been
made, there is still a choice to be made about temporal resolution. This choice
is crucial for simulating perceptual/cognitive phenomena. For example, a sig-
nificant proportion of connectionist models of cognition have focused on the
temporally static spatial resolution of “stored” exemplars and categories of
individuated stimuli in the state space of the network (e.g., the feedforward
networks of Browne, 2002; Kruschke, 1990; Rosenblatt, 1967; Rumelhart &
Todd, 1993) rather than on the temporal dynamics of the internal processing
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of input (e.g., the recurrent attractor networks of Anderson et al., 1977;
Grossberg, 1980; Hinton, Plaut, & Shallice, 1993; McClelland & Elman, 1986;
McRae, deSa, & Seidenberg, 1997). As indicated by the demonstrations offered
in chapter 1 and the many experimental results described in chapters 6-9, it will
become clear that even when an individual stimulus input is artificially isolated
for presentation to the sensory systems, a temporally dynamic perceptual/
cognitive process ensues such that the brain travels continuously through its
state space, gravitating toward multiple semi-stable attractor basins. This tem-
porally dynamic process is arguably best modeled by recurrent attractor net-
works (rather than by feedforward networks) because they combine the
benefits of semi-continuous processing (rather than one time step per one
stimulus) with approximate neural plausibility.

In chapter 1, the concepts of a neural population code and of an attractor
basin were used almost interchangeably. However, the link between the two
was not quite fully mapped out. Chapter 2 is designed to do exactly that. That
said, keep in mind that the use of a high-dimensional state space, and the
mathematical insight from dynamical systems theory, are for modeling how
the mind works. The emergence of mind takes place in the medium of
patterns of activation across neuronal cell assemblies in conjunction with the
interaction of their attached sensors (eyes, ears, etc.) and effectors (hands,
speech apparatus, etc.) with the environment in which they are embedded.
Make no mistake about it, that is the stuff of which human minds are made:
brains, bodies, and environments. Trajectories through high-dimensional
state spaces are merely convenient ways for scientists to describe, visualize,
and model what is going on in those brains, bodies, and environments.

The reason for using a metaphor to approach one’s object of study is
the same as that for using any model. When the farget domain, for example,
the mind, is too complex to understand in its full detail, we can import a
richer understanding of other similar and somewhat simpler source domains,
for example, dynamical systems theory and attractor networks, to provide
descriptions and explanations of how the mind might function. Done prop-
erly, this requires a cyclic interplay between empirical predictions made by the
metaphor/model, and results of those empirical tests being used to improve
the metaphor/model (for more details, see chapter 4).

To conceptualize thought as a trajectory through state space, first visual-
ize in front of you a very high-dimensional space. Let’s say, one for each
neuron—at least a few billion dimensions. All right, perhaps that is more
difficult than it sounds. It’s usually easier to cheat a little and visualize a large
three-dimensional space and just tell yourself that it has more dimensions
than that. If each neuron is treated as a dimension of the system’s state space,
then any pattern of activation that is exhibited by the neural network corres-
ponds to a location in that high-dimensional state space. That is, the firing
rates of all the neurons (averaged over some short, sliding temporal window)
can stand as the coordinates of that location in the state space. A number of
researchers have encouraged a focus on this kind of geometric framework
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for representing brain states (e.g., Aleksander, 1973; Anderson et al., 1977;
Braitenberg, 1977; Churchland, 1986; Churchland & Sejnowski, 1992; Edelman,
1999, 2002; Pasupathy & Connor, 2002; see also Kiss, 1972; Osgood, Suci, &
Tennenbaum, 1957; Shepard, 1962).

The demonstrations included in this chapter are intended to provide sim-
plified visual examples of distributed brain states and probabilistic mental
states over time. As the cognitive and neural sciences gradually let go of the
computer metaphor of the mind, where a central executive performs logical
operations on discrete mental entities, a continuity framework (inspired by
ecological psychology, dynamical systems theory, and computational neuro-
science) can replace that abstracted metaphor with the concrete and neurally
plausible notion of a continuous trajectory through a neuronal state space.

Probabilistic Versus Pure Mental States

One can think of the set of possible brain states as a high-dimensional space
with as many dimensions as you have neurons. If you could know the activity
level of each neuron, that would provide you with the coordinates in that
high-dimensional space that correspond to that brain state’s location in the
space. Similar brain states will be in nearby locations in that space. Mental
states, by contrast, can be thought of as a subset of particular locations in that
brain state space that have been visited frequently enough and are familiar
enough to be easily labeled by the scientist/observer with linguistic identifiers
that describe that mental state (such as the mental state of being hungry, or of
recognizing Grandma, or perhaps of grasping the continuity of mind thesis).2
You can think of this as the folk psychology in the machine.

The important point to be made by the continuity of mind thesis is that
these specific locations in state space which seem to have easily labeled identi-
ties, these “pure mental states,” can only ever be approximated by the actual
neural system for which this state space is a metaphor. That is not to say those
pure mental states are irrelevant or nonexistent. They do exist, as possible
locations in the neural system’s state space. They just never happen. The neu-
ral population codes get sufficiently activated (i.e., the system approaches
close enough to a frequently visited and identifiable attractor basin) to fool
everyone—including the self—into thinking that the pure mental state has
been perfectly instantiated. However, for this dynamical system comprised of
billions of neurons to perfectly instantiate a pure discrete logical symbolic
state, such as I am hungry, in exactly the same way every time that state is com-
puted would require more precision than the system is capable of achieving.

One counterargument that a rule-and-symbol theorist might launch at
this account is that rather than the mental state being a mathematically
unachievable attractor point, as assumed in this description, perhaps it is the
entire attractor basin, which includes many locations in a nearby region of
space (e.g., a delimited contiguous manifold). For example, a neural subsystem
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could enter one of its attractor basins, travel around within that basin, and
send its output to a second neural subsystem in a sufficiently coarse format
that the receiving subsystem is unable to distinguish among the subtle changes
in the exact neural activation patterns resulting from changes in location
within that basin. The second subsystem could only discern that the first sub-
system is somewhere in that attractor basin and thus would be forced to treat
the entire set of locations within the basin as belonging completely and indis-
criminately to one discrete symbolic category (see the discussion of symbolic
dynamics in chapter 4, and the discussion of categorical perception in chapter
6). This arrangement can seem an intuitively pleasing hybrid notion of con-
tinuous distributed patterns at a lower (perceptual?) level of the system and
discrete symbolic entities at a higher (cognitive?) level of the system.

However, two related problems quickly arise with this hybrid framework:
One is perhaps technical, whereas the other is arguably a deal-breaker. The
first problem is in deciding precisely where to put the discrete threshold defin-
ing the inside and outside of the attractor basin. This arbitrary threshold
problem is one of the major bugbears of symbolic dynamics, because a tiny
misplacement of a threshold can cause massive inconsistencies in the system’s
behavior over time (Bollt et al., 2000). Essentially, a “receiving” subsystem that
computes symbols based on the (even slightly misplaced) threshold crossings
of a “sending” continuous dynamical subsystem can wind up frequently and
drastically misinterpreting the actual behavior of the subsystem.

The second, and probably more fatal problem with the hybrid dynamic-
to-symbolic cognition idea concerns the temporal continuousness of real-
world sensory stimulation. The continuous input that characterizes most
ecologically valid cognitive phenomena generally will not allow the system to
languish in an attractor basin for any significant amount of time. For exam-
ple, by the time a listener has understood a particular word in a spoken utter-
ance, and thus traveled to the appropriate attractor basin in her state space,
a new word is already being delivered in the speech stream that will impose
its own influences on the listener’s movement through her state space (see
chapter 7). Corresponding observations hold for visual perception in a mov-
ing observer (Gibson, 1950). In most natural human behaviors, an incremen-
tal achievement of understanding is not meditated on for even a second. New
sensory stimulation, new imagined stimulation, new motor movement, and/
or new imagined movement are continuously in play. Thus, in naturalistic
circumstances, the amount of time spent in an attractor basin is likely to be far
outweighed by the amount time spent traveling toward attractor basins.

One promising solution to these problems with symbolic dynamics is
to forgo using strict thresholds and instead measure the system’s current
distances to its many point attractors. Thus, rather than merely reporting a
single attractor partition containment, as in symbolic dynamics, reporting
instead the profile of proximities to all the attractors, a kind of fuzzy symbolic
dynamics. In such a framework, we go from talking about pure mental states,
which are discrete logical, perfectly repeatable symbols, to probabilistic mental
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states, which are fuzzy, graded, partially overlapping distributed patterns.
Although this format of description clearly uses labeled symbols (albeit fuzzy
ones), they are purely for expository ease in scientific communication. It is not
to be claimed that some part of the system itself actually uses them.

That said, these probabilistic mental states may nonetheless appear to
satisfy, to some degree, at least one of the demands of classical computational
cognition: an internal mediating state between sensory input and motor out-
put (e.g., Dietrich & Markman, 2003; see also Fodor & Pylyshyn, 1981, 1995;
Marcus, 2001; Markman & Dietrich, 2000). However, if the brain is a dynam-
ical system, that is, best defined by its changes in state rather than by the states
themselves, then the mediating representational system we are talking about
is, oddly enough, one that does not generate mediating representational states,
in the usual sense. The mediating representational space instantiated by the
brain—in between sensory input and motor output—is one that generates a
continuously dynamic trajectory and never really stops long enough to be in a
logical state per se. Strictly speaking, a state requires stasis. When we talk
about states in a continuous dynamical systems framework, we’re really refer-
ring to artificial freeze-frames of time for the purpose of analysis, not because
the states actually behave like real states. Perhaps a fruitful step toward com-
promise between classical computational cognition and dynamical cogni-
tion would be to speak of internal mediating processes, rather than internal
mediating states.

Visualizing a Probabilistic Mental State

Despite my eschewing of mental states in favor of a mental trajectory, in this
next section, I start out discussing and offering visualizations of how a brain
might instantiate a probabilistic mental state. Once the concept of a prob-
abilistic mental state is clear, the discussion and the visualizations will turn to
the state space trajectory that results from stringing together a continuous
series of probabilistic mental states in real time. I will walk through an exam-
ple of how the brain’s pattern completion processes deal with ambiguous
input, traveling through many brain states and occasionally getting close to
particular mental states.

The toy demonstration begins now. Imagine you go for an after dinner
stroll through your neighborhood, and the sun goes down before you get
home. A few blocks from your home, you notice an animal approaching you
in the street from some distance. At that instant, before you have determined
exactly how to respond to the situation, your brain will be exhibiting a pattern
of activity that is partially consistent with a number of alternative states
of mind. Figure 2.1 is a cartoon version of that brain state—if you had only
14 neurons, instead of about 100 billion.

In the idealized brain state in figure 2.1, a few neurons are excited near
their maximum firing rate, several neurons are moderately above their resting
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An Idealized Brain State
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Figure 2.1. A hypothetical time slice of averaged activation for a set of
14 neurons.

level of tonic activation, and several neurons are conspicuously inhibited
below their resting level. (As these are firing rates and not action potentials,
this state is obviously averaged over a few dozen milliseconds.) Although this
pattern of neural activation can be treated as a discrete location in the space of
possible brain states, it does not correspond to a discrete, pure mental state.
That is, I have devised this demonstration such that the pattern of neural
activity in figure 2.1 corresponds to a brain state that is partially consistent
with two different identifiable mental states.

Figures 2.2 and 2.3 show what the pattern of neural activity would need
to be to perfectly instantiate the pure mental states, “I see a cat” and “I see

Pure Mental State: "I see a cat"

max
p resting
level
O T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12

Idealized Firing Rate

13 14

Idealized Neuron

Figure 2.2. A hypothetical idealized pattern of neuronal activity corre-
sponding to a discrete mental state.
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Pure Mental State: "I see a dog"
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Figure 2.3. A hypothetical idealized pattern of neuronal activity corre-
sponding to another discrete mental state.
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a dog,” respectively. In figure 2.2, one can see that neurons 1, 3, 6, 7, and 9
comprise the population code for the mental state of “I see a cat.” Partially
overlapping with this, in figure 2.3, it becomes clear that neurons 1, 4, 6, 7, and
10 comprise the population code for the mental state of “I see a dog.” Due
to the complexity of multiple sensory inputs, nonlinear dynamics in neural
processing, and noise in neural activity, these kinds of pure mental states are
practically unattainable, but they are regularly approximated by the brain’s
actual pattern of activity.

Figure 2.4 shows the same pattern of neural activity as in figure 2.1 but
with idealized interpretations for what each neuron represents. Thus, if we
pretend that we know what each neuron is coding for, we can folk psycholo-
gize that the brain has perceived a living object that has four legs and a tail.
The brain is telling the body to walk, not run, and to dilate the pupils of the
eyes because it is dark—and also perhaps because it is rather curious about the
four-legged creature that is approaching. Interestingly, this brain is not quite
sure if the animal is small or medium-sized, but—due to some partial hints of
recognition—it is beginning to suspect that the animal’s label begins with
either the letter c or the letter d.

Of course, there are thousands of other relevant features one could add to
this array. For the purposes of depicting it graphically, I have vastly oversim-
plified the features that might define the situation. Even more important than
that oversimplification is the oversimplification implied here about what
neurons can encode. Just as we probably do not have grandmother cells (see
chapter 1), we also probably do not have “has four legs” cells, or “starts with
the letter d” cells. Individual neurons usually represent far tinier details than
those depicted in figure 2.4. The term microfeatures has been used to refer to
the properties of the sensory input to which individual neurons respond
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An Idealized Brain State
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Figure 2.4. An “interpreted” version of the neurons from figure 2.1.

(Hinton, 1981). Often, these individual microfeatures are not easily deciphered,
either in artificial neural networks or in biological neural networks.

Now, despite my acknowledgment of the egregious oversimplifications in
these graphical demonstrations, I am going to commit one more. I am about
to convert the pattern of activity across those 14 neurons into individual
numbers indicating how closely the pattern resembles each of a handful of
pure mental states (such as those in the labels of figures 2.2 and 2.3). Each
pure mental state is a specific location in the 14-dimensional hypercube that
constitutes this brain’s state space. Figures 2.2 and 2.3 specify locations in state
space that belong to the two particular pure mental states to which this neural
pattern (in figure 2.4) is closest. In fact, the neural pattern is almost equally
close to the two of them. Figure 2.5 shows the same brain state again, but
presented in terms of a kind of normalized proximity to eight different pure
mental states. Essentially, one can think of figure 2.5 as representing the same
information as figure 2.4, but in the language of mental states rather than the
language of neural firing rates. In a sense, the brain state we are dealing with
here currently instantiates the pure mental states of “I see a dog” and “I see
a cat” with fuzzy truth values of 0.34 and 0.35, respectively. This brain is
approaching multiple pure mental states at once—or more precisely, it is in a
probabilistic mental state.

Within this framework, a brain state is a concrete physical thing: It is
the pattern of neural activation across the entire brain at a given point in time
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A Probabilistic Mental State
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Figure 2.5. Normalized proximity (the inverse of relative distance) to eight differ-
ent “pure mental states.”

(or averaged across a short period of time). A probabilistic mental state is
exactly that same thing, but represented in the form of its proximity to ideal-
ized pure (identifiable) mental states instead of activity levels of individual
neurons—and thus a probabilistic mental state refers to a concrete physical
thing as well. In contrast, a pure mental state refers to an ideal pattern of neu-
ral activation that—due to the complex and noisy dynamics of a brain with
billions of neurons and trillions of synapses—is never actually instantiated. A
pure discrete (i.e., symbolic) mental state is an abstract concept. It is a useful
construct for theory development, but an actual physical instantiation of it
never comes into being. Nonetheless, the labels attached to pure mental states
are extremely helpful in understanding probabilistic mental states. Without
the descriptive conveniences of the labels along the abscissa in figure 2.5, a
probabilistic mental state would be essentially uninterpretable.

Visualizing Trajectories Through State Space

The important thing about brain states, or probabilistic mental states, is that
they change over time. As it more and more closely approximates a pure
mental state via pattern completion, the brain can be visualized as traveling
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through its state space (a bit like a meteor in a solar system) toward a particu-
lar region that will actualize some motor output (or simulated motor behav-
ior, such as motor imagery or an internal monologue). This notion of a
trajectory through a state space is at the heart of the continuity of mind the-
sis. It allows one to conceive of the intermediate regions in state space that are
visited on the way toward an attractor basin that approximates some inter-
pretable pure mental state. Contrary to what traditional cognitive psychology
and philosophy of mind would lead you to believe, those intermediate regions
are where we spend most of our mental life—not in the easily labeled pure
mental states.

Although this informal description of trajectories and attractor basins
may seem intuitive enough, it can be quite difficult to actually depict them
when the dimensionality of the state space is very high. A common mathemat-
ical way to visualize these trajectories and attractor basins in high-dimensional
spaces is principal component analysis (PCA). In PCA, a low-dimensional per-
spective of the high-dimensional space is depicted, using orthogonal dimensions
that cut through the space in ways that maximize the variance of the data
points in the original space. Think of the array of stars you see in the night
sky. This is a two-dimensional perspective (with nary a depth cue) on a three-
dimensional space. Looked at from another solar system, a completely dif-
ferent set of constellations would be apparent. PCA can find the two- or
three-dimensional perspective that best reveals the separate clusters of fre-
quently visited locations (attractor basins) in the high-dimensional state
space, as well as the pathway traveled by a system (semi-) continuously gravi-
tating toward one or more of those attractor basins (e.g., Elman, 1991;
Pearlmutter, 1989; Tabor & Tanenhaus, 1999).

Much simpler than PCA, ternary diagrams (sometimes called chemo-
graphic representations) provide a relatively easy example of visualizing data in
fewer than the original number of dimensions. For example, if we were using
three factors to define the state of a brain, we might depict this brain-state-in-
a-box as a location in a three-dimensional cube (e.g., Anderson et al., 1977).
When there are three dimensions to a state space, but they need to be depicted
in two dimensions on a piece of paper, the values of the three factors can be
normalized to sum to 1.0. This projects them onto the triangular plane con-
necting coordinates [1, 0, 0], [0, 1, 0], and [0, 0, 1] of the three-dimensional
state space. In figure 2.6, these three corners of the triangular plane are labeled
as the pure mental states, where only one of the three factors has greater than
zero activation.

If you rotate this isosceles triangle so that you're facing it head-on, you
can depict the normalized state of this three-dimensional system in just two
dimensions; see figure 2.7. In this ternary diagram, the trajectory of the sys-
tem’s state over time can be plotted with numbers indicating time steps to
reveal changes in velocity (see Tabor, 1995). The system in figure 2.7 starts out
around coordinates [0.41, 0.26, 0.33], for the pure mental states 1, 2, and 3,
respectively. It initially gravitates toward Pure Mental State 2, and away from
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Pure Mental State 2

Pure Mgntal State 3

Dimension 2
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Pure Mental State 1

Figure 2.6. Defining a ternary diagram inside the 3D cube.

Pure Mental State 3. Then the system slows down in a somewhat equi-based
region of the state space, near a location called a saddle point, and then turns
its trajectory to Pure Mental State 1, toward which it gravitates precipitously.
In fact, this same technique can be used to concretely visualize four spatial
dimensions! A quaternary diagram represents, in three dimensions, the nor-
malized coordinates of a four-dimensional state space; see figure 2.8. And in
general, with a greater number of attractors in the state space, trajectories will
tend to be more nonlinear. Of course, in more realistic complex systems, such
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Figure 2.7. A ternary diagram with pure mental states in its corners and
a time-dependent trajectory.



Conceptual Tools for Tracking Continuous Mental Trajectories 43

Pure Mental State 2

Pure Mental State 4 Pure Mental State 1

Pure Mental State 3

Figure 2.8. A quaternary diagram with pure mental states in its corners and a
three-dimensional trajectory.

as biological neural networks, there are far greater than four dimensions, and
the stable locations in the state space may not always be in the corners of the
space, as idealized in these last three figures. Moreover, the stable states, or
point attractors, may not be equidistant from one another either, as depicted
here. Some population codes are nearby one another in the high-dimensional
state space of the brain, whereas others are quite distant from each other.

Visualizing a Probabilistic Mental State
Changing Over Time

What I hope to make clear in these visualizations is that the many references
to attractor basins and continuous trajectories in state space that crop up in so
many discussions of dynamical cognition are in fact grounded in quite con-
crete, tangible, visualizable, and mechanistic assumptions. They are not vague
abstract theoretical constructs or hand-wavy buzzwords. They correspond to
very real physical implementations.

Let us return now to the idealized probabilistic mental state illustrated for
encountering that mysterious animal during your evening stroll through the
neighborhood. Figure 2.5 is repeated here, for convenience, as figure 2.9—
with the added notation that it is but the first time step among many. Because
that pattern of neural activation is closer to the mental state of curiosity than
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Figure 2.9. Treating the normalized proximity plot (from figure 2.5) as
the first of several time steps.

to the mental state of fright (i.e., figure 2.9 shows you being twice as curious
as you are afraid), let’s say you stick around long enough to find out what
the animal really is. During this idealized freeze-frame, your mind is like
Schrodinger’s cat: in multiple states at once (i.e., especially “I see a cat” and “I
see a dog”). As the discrimination is being made, the probabilistic activation
of the mental states “I see a cat” and “I see a dog” will rise and compete, while
the probabilities of the other mental states will drop commensurately.

For example, in time step 2 (figure 2.10), the probabilistic activations
have changed somewhat. A very simple algorithm was used, in this example,
to carry out these changes in activations—or equivalently, the trajectory
through mental state space that this system follows. The probabilistic activa-
tions in figure 2.9 were each squared, and then they were all renormalized, that
is, each was divided by the total sum. This settling algorithm is called squared
normalization. Note that in this particular settling algorithm, it is guaranteed
that the probability value that starts out higher will be the eventual winner. It
is only a matter of time. After all, time is what it’s all about. However, there are
more complex versions of this kind of normalization-based settling algorithm
that do occasionally allow an initially lower probability representation to
eventually usurp an initially higher probability representation (see chapter 4).

Time step 3, figure 2.11, is achieved by applying squared normalization
again—>but this time to the values of time step 2 (figure 2.10). Note how
quickly the two mental states of “I see a cat” and “I see a dog” have taken over
the probability space, with the system moving toward those locations in space
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Figure 2.10. The normalized proximity pattern gravitates toward some
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A Probabilistic Mental State Over Time
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Figure 2.12. Ten time steps of the normalized proximity pattern settling
into a “pure mental state.”

and away from the other mental states. This probabilistic mental state,
depicted as a pattern of activations associated with several pure mental states,
is “what the mind is thinking” at that period in time.

Eventually, these two nearly equi-probable mental states will have to
diverge, and the system will gravitate toward one and away from the other.
This bifurcation begins to take place around time step 4. Figure 2.12 shows a
line graph of the mental states changing activation as a function of time. In
this rendition, we can pretend that each time step corresponds to a tenth of a
second. Thus, much like the progressive activation of a population code, as
discussed in chapter 1, recognition of an object is a gradual process that
occurs over the course of several hundred milliseconds. Importantly, there is
no punctate instant in time along this trajectory at which one can point and
say, “That is when recognition occurred; and one millisecond before then, it
had not.”

Although figure 2.12 shows the mental state of “I see a cat” achieving 1.0
probability at 900 milliseconds, this should be regarded as an artifact of the
decontextualized toy simulation. To make the simulation easy to analyze,
I presented a single stimulus input just once and then allowed the system to
settle into a stable “interpretation” state without any actual motor output
being activated. Under realistic circumstances, changing perceptual input and
continuous motor output would generally prevent the system from ever
achieving 1.0 activation for any mental state. If one mental state has achieved
around, let’s say, 0.8 probability, then that should provide the organism with



Conceptual Tools for Tracking Continuous Mental Trajectories 47

enough confidence to execute a particular unique motor action associated
with that mental state (a little bit like the collapsing of the quantum wave that
determines Schrédinger’s cat to be either dead or alive). Then the system is
able to gravitate toward other attractor basins as new input arrives and new
behavioral goals emerge.

In simplifying the simulation, a number of artificialities have been
imposed on the stimulus array, the representations, and especially on the
timeline itself. In real life, there is no objective starting point for the timeline,
as idealized in figure 2.12. In real life, we are very rarely in situations where we
have nothing at all on our minds, and then suddenly a stimulus impinges on
our minds, instigating a new trajectory through mental space. It is not even
the case that a stimulus instigates a new trajectory. There is only one trajec-
tory, and it is constantly getting diverted, sometimes smoothly and sometimes
abruptly, by incoming stimuli and by expectations based on previous stimuli.

Not only would it be wrong to think of a trajectory belonging to or being
instigated by a stimulus, but as Gibson suggested, the very concept of a stimu-
lus may be misleading. In our everyday normal lives, we do not get exposed to
stimuli one at a time, each demanding its own individual response. Instead, we
continuously interact with a flowing train of multimodal perceptual arrays
containing objects, agents, and events. Indeed, one might argue that the only
reason to carve up the environment into stimuli at all is in the attempt to
quantize the flowing stream into time steps, so that we cognitive scientists can
record the sequence of perceptual arrays that most recently preceded a given
behavior. These idealized time steps, or freeze-frames, along the extent of the
flowing stream of perceptual input might best be called environmental
instances rather than stimuli. And at all times, we must remind ourselves that
these idealized environmental instances belong to and are contextualized by a
temporally contiguous stream of environmental stimulation.

Therefore, just as unrealistic as the start of the timeline in figure 2.12 is,
so is the end of that timeline. In the simulation that produced the curves in
figure 2.12, the system received no new input while it was settling and pro-
duced no output whatsoever. It simply gravitated to a stable corner (attractor
basin) in its state space. In real life, new input is constantly arriving, and we are
often producing continuous motor output. Thus, by the time your brain state
has approached a location in state space that is predominantly consistent with
only one pure mental state, such as “I see a cat,” changes in the environment
and your own behavior will alter the brain state such that it travels back into
unlabeled regions in state space, preparing for another near-settling event
where it gets just close enough to a pure mental state to elicit an associated
behavior and then veers off yet again. This is at the very core of the continuity
of mind thesis: It means that the vast majority of the mind’s time is spent
in between identifiable mental states rather than in them.

Importantly, replacing the concept of stimulus-and-response, or
perception-and-action for that matter, with the concept of a continuous
trajectory in mental state space highlights the fatal flaw that behaviorism and
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cognitivism shared—despite their apparent opposition. Although the cogni-
tive revolution criticized behaviorism for ignoring the intermediate processes
between stimulus and response, they nonetheless embraced stimulus and
response as the start and finish of a temporally bounded linear process.
Therein lies the error, because most responses immediately become stimuli
(i.e., we are perceiving our own actions while we are executing them). The
process is not temporally bounded. It has no start and no finish. Even prepa-
ration of a response can often influence the internal processing of the incom-
ing stimulus stream (see Duhamel, Colby, & Goldberg, 1992; Hommel et al.,
2001). Thus, as the continuous dynamic closed loop of sensory input and
motor output makes infeasible a true discrimination of stimulus from
response, so does the embedded continuous dynamic closed loop of percep-
tual processing and action preparation make infeasible a true discrimination
of perception from action (see Jordan, 1999).

Contemporary Ecological and
Dynamical Systems Psychology

The largely happy marriage of ecological psychology and dynamical systems
theory has had considerable success at producing elegant mathematical
accounts and successful predictions of experimental data in rhythmic and
coordinated motor movements and in motor learning (e.g., Beek & Van
Wieringen, 1994; Kelso, 1995; Newell, Liu, & Mayer-Kress, 2002; Pressing,
1999). However, comparatively little of this framework has been applied to
the favorite topics of cognitive psychologists, for example, categorization,
language, attention, and so on (but see Beer, 2000; Elman et al., 1996; Port &
van Gelder, 1995; Spivey & Dale, 2004; Thelen & Smith, 1994; Tuller, Case,
Ding, & Kelso, 1994). The goal of this book is to encourage the field and rally
the troops, as it were, to move our science in this direction. By absorbing eco-
logical psychology’s emphasis on continuous and ecologically valid experi-
mental tasks, as well as dynamical systems theory’s emphasis on continuous
trajectories in state space, the kinds of studies described throughout this book
will benefit from more parsimonious theoretical accounts than cognitive
psychology’s symbolic, stage-based, information-processing approach could
ever have offered.

Ecological psychology has a long history of arguing for the continuous
flow of visual information having a continuous determination of motor out-
put (Gibson, 1966, 1979; Turvey, 1977; see also Warren, 1998). This perspec-
tive stands in stark contrast to the information-processing framework, which
assumes that external stimuli arrive at the senses in static snapshots, which
then get processed through multiple internal stages, with each stage having
to wait until the previous stage is complete before it can begin its processing.
Throughout this book, you will find a multitude of experimental demon-
strations of perceptual, cognitive, and motor processes that are simply not
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accommodated by the linear stage-like account encouraged by the digital
computer metaphor of the mind. The majority of such examples that I have
amassed are especially relevant to three of the most prominent topics in
cognitive psychology: categorization (chapter 6), psycholinguistics (chapter 7),
and visual cognition (chapters 8 and 11). However, I should give credit where
credit is due. It is still the case that the area where much of the initial ground-
work has already been laid for dynamical systems approaches to the mind is in
studies of motor movement (chapter 9).

Significant advances in the development of a dynamical systems frame-
work for motor action have been made by researchers such as Kelso (1995),
Kugler and Turvey (1987), and Schoner (2002), to name just a few. Much of
the work has focused on coordinated rhythmic actions, where instead of
attractors in state space, behavior is described via coordination dynamics
equations and manifolds in phase space. (Phase space usually involves dimen-
sions that refer to patterns of change in state space, such as relative phase
between two oscillators or the juxtaposition of previous and current loca-
tions, rather than to raw locations in state space.) For example, Kelso (1984)
demonstrated that when human subjects rhythmically move their hands in
antiphase (one hand flexing one set of muscles while the other flexes an oppo-
site set, and then both reversing) and the speed (frequency of cycles, with a
fixed amplitude) is gradually increased, they tend to involuntarily transition
to in-phase cycles (with the hands flexing corresponding sets of muscles at the
same time). The phase space defining this phenomenon contains attractor
basins, toward which the system will gravitate, as well as repellors, away from
which the system will gravitate. As cycle frequency increases, and the hands are
moving back and forth faster and faster, the relative strengths of the antiphase
and in-phase attractor basins gradually change. At some point, the antiphase
attractor basin actually becomes an unstable region in the phase space, a
repellor instead of an attractor, and the system then moves toward the nearest
stable attractor basin: the in-phase attractor. A coordination dynamics treat-
ment of changes in the phase space manifold that defines these attractor
basins and repellors (Haken, Kelso, & Bunz, 1985; Kelso, 1995) provides an
account of a wide range of data from perturbed and coordinated movements
of fingers (Kelso, 1981), hands (Kelso, 1984), arms and legs (Kelso & Jeka,
1992), hands with speech (Kelso, Tuller, & Harris, 1983), hands with external
sounds (Kelso, Del-Colle, & Schoéner, 1990), and even, as demonstrated by
Schmidt, Carello, and Turvey (1990), across multiple people! For more details,
see chapter 9.

Thus, according to this general framework, and despite the limited scope
of the visualizations throughout this chapter, the genuine trajectory that
instantiates mind is more than just the visited regions of neural state space as
defined by the networks of the brain. The causal relationship between a
sensory receptor and a cortical neuron is arguably not qualitatively different
from the causal relationship between a cortical neuron and a muscle, or even
between an external object and a sensory receptor. After all, causal law is
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causal law. This is what Turvey and Shaw (1999) mean when they refer to the
“animal-environment mutuality and reciprocity.” The animal and its environ-
ment form a system. Change in one produces change in the other, and the
loop of circular causality continues over time. The animal subsystem and the
environment subsystem are sufficiently coupled that it would be impossible
for one to be following laws that the other does not also follow. Thus, one
might perhaps include all of those parameters (neural activation patterns,
muscular-skeletal kinematics, and even external objects) as dimensions in the
state space that defines mind (see chapter 11). In this view, the relevant defini-
tion of mind becomes a trajectory through the full animal-environment state
space, not just the brain’s state space. And when two animals (such as myself
and my friend Steve) are in sufficient spatial proximity to each other that an
external object (even something as mundane as a ball) is in the immediate
environment of both animals, then those two minds are sharing a few dimen-
sions of their respective state spaces. They become a system, describable by a
single unified (and recurrent) trajectory—as the ball gets tossed back and
forth for hours on end.



3

Some Experimental Tools for Tracking

Continuous Mental Trajectories

If behavior does not consist of responses, what does it consist of?
—J. J. Gibson

The Purple Perils

In the late 1960s, James J. Gibson ran a seminar on Thursday afternoons in
which heady, pregnant questions like the one in the epigraph were regularly
discussed. The sometimes lengthy handouts for these meetings were dittoed
on a mimeograph, hence earning the nickname “the purple perils” Some of
the purple perils found their way into an edited volume (Reed & Jones, 1982),
and others can be easily found on the Internet. In the case of this particular
excerpt, Gibson was trying to get the students and faculty involved in the sem-
inar to think hard about the fact that if natural environmental stimulation
does not arrive at the organism’s sensors in discrete packets of stimuli, then
motor output is unlikely to depart the organism’s effectors in discrete packets
of responses. But what then do we call this continuous motor output that is so
often dynamically coupled in time (at short and/or long time scales) with the
sensory input?

Despite Gibson’s eloquent warnings, and despite cognitive psychology’s
overarching opposition to behaviorism’s stimulus-response mantra, cognitive
psychologists have, for decades now, blithely gone about their business design-
ing experiments that present discrete stimuli and collect discrete responses.
Indeed, it is quite ironic that, during the cognitive revolution, while cognitive
psychology was rejecting behaviorism’s theoretical emphasis on stimulus and
response, the methodological emphasis on stimulus and response remained
status quo. Gibson’s ecological psychology (1979; see also Brunswick, 1955)
would suggest that this methodology of stimuli and responses, not the theory,
is actually the more detrimental habit.

51
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Cognitive psychology has found it all too easy to survive on the tacit
assumption that these isolated “responses,” from one experimental trial to the
next unrelated experimental trial, are somehow unaltered indicators of inter-
nal mental states. The field’s allegiance to an internal symbolic computation
stage, composed of discrete internal states, arises not from experimental tech-
niques that unmistakably tap some unaltered rendition of the cognitive stage’s
internal representation, and certainly not from any neurophysiological evidence,
but predominantly from off-line measures of overt metacognitive responses in
artificially constrained tasks. In contrast, what I will argue throughout this book
is that mental activity does not consist of a series of discrete internal states.
Instead, the mind continuously traverses its state space, traveling from one
attractor basin to another, and spending a considerable amount of time in tran-
sit in between those basins. An attractor basin to which the mind gets particu-
larly close will occasionally be responsible for an observable outcome-based
response (e.g., pressing one button instead of another, reaching for one object
instead of another). However, all of the attractors to which the mind gets even
slightly near will have graded subtle influences on the manner in which the
continuous action is carried out on the way toward its outcome (e.g., pressing
that button somewhat late and with less force, reaching in a curved motion
slightly toward other objects before settling on the correct object and grasping
it). Measuring the dynamic properties of those continuous actions will reveal
far more about how the mind works than simply tabulating the final out-
comes of those actions.

Moreover, the kinds of questionnaires and other outcome-based metacog-
nitive tasks that populate much of cognitive psychology rely far too much on the
subjects’ intuitions about hypothetical situations. With so much time to develop
explicit strategies for the task and subvocalized linguistic labels for the various
response alternatives, is it any wonder that people’s response patterns make
them look as though their minds are succinctly transitioning from one discrete
state to another? Asking someone to give a verbal protocol on what they think
they would think in some hypothetical categorization or reasoning task is about
as useful as asking them what they think their reaction time would be in some
hypothetical visual search task. Quite some time ago, social psychologists docu-
mented the degree to which people’s self-reports of cognitive phenomena and
objective measures of those same cognitive phenomena can be wildly discrepant
(e.g., Nisbett & Wilson, 1977). Much of social psychology then seemed to decide
that “what people think they think” (whether accurate or not) was what that
subfield cared about anyway—so the discrepancy was not a problem. I can only
hope that cognitive psychology does not also continue down that path.

On the Continuity of Your Measure

Consider what happens when a human subject is presented a stimulus in a
typical cognitive psychology experiment and asked to provide some form of
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verbal or button-press report on how she perceived it or what she concluded
from it. She may take several hundred milliseconds, or even several seconds,
before producing an answer. What goes on in her mind during those hundreds
and hundreds of milliseconds of deliberation? That is the kind of question
that can help tease apart many competing theories in the cognitive sciences.
However, in that typical cognitive psychology experiment, with solely an off-
line outcome-based measure, you will never know the answer to that question.

In this chapter, I briefly discuss some of the limitations of traditional
psychophysical and cognitive psychology methods, focusing particularly on
their emphasis on discrete categories of metacognitive responses to individual
decontextualized stimuli. Additionally, criticisms are levied against the stan-
dard format of experimentation in problem-solving research, concepts and
categories research, and even neuroimaging, for not addressing the temporal
dynamics of the continuous uptake of real-time stimulus input. (For example,
even visual displays that are presented all at once usually get perused piece-
meal by a series of eye fixations.) The fundamental weakness of some of the
major experimental techniques in cognitive psychology and cognitive neuro-
science is that they ignore much of the time course of processing and the grad-
ual accumulation of partial information, focusing instead on the outcome of
a cognitive process rather than the dynamic properties of that process.

At the core of this issue is the concept of time scales. Every state transition
(except perhaps some at the subatomic level) has a time scale at which the full
transition can be seen as gradual (see figure 3.1C). At larger time scales, this
transition will appear instantaneous (figures 3.1A and B), and at smaller time
scales, it won’t really look like a transition between two states (figure 3.1D).
Analyzing your chosen phenomenon at the right time scale, where the system
can be observed as spending a substantial portion of its time in those inter-
mediate values between states, is crucial for understanding the forces or mecha-
nisms that bring about the system’s change of state. Figure 3.1 uses the logistic
function—a symmetric sigmoid curve prevalent throughout nature in physics,
chemistry, and biology—as a mathematical metaphor aimed at elucidating the
importance of finding the proper scale at which one’s x-axis can reveal the
gradedness of the state transition in question. The logistic function imple-
ments qualitative-looking behavior from a purely quantitative process. The
curve from this continuous nonlinear equation can be easily misconstrued as
evidence for a genuinely discrete step-function process, if observed at too coarse
a time scale (figures 3.1A and B). Only at the proper time scale can the smooth
continuity of the state transition be brought into stark relief (figure 3.1C).
I submit that the time scale of hundreds of milliseconds is a special scale at
which the process of cognition, as revealed by perception-action cycles,
becomes most transparent. Therefore, experimental measures that function
at this time scale may enjoy a privileged status in the goal of understanding
cognition.

Measures that ignore temporal dynamics at this time scale run the risk of
falsely depicting cognition as consisting solely of discrete symbolic states—when
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Figure 3.1. The sigmoid function, y = 1/(1 + e™¥), at four different scales. If x was
time, and each integer increment of x equaled 10 milliseconds, then panel A would
correspond to a = 10 seconds time scale, panel B would correspond to a = 1 second
time scale, panel C would correspond to a = 100 milliseconds time scale, and panel D
would correspond to a £ 10 milliseconds time scale.

in fact those symbolic states may actually be better understood as graded fuzzy
attractor basins, which the system flirts with long enough to produce some
identifiable motor output, while it pursues a continuous trajectory through its
state space. If your measure only provides the outcome of a deliberative cog-
nitive process, such as a forced choice between predesigned alternatives, then
of course it cannot help but make cognition look as though it is made of those
succinct categories. Card-sorting tasks, in categorization or problem-solving
research, are particularly disappointing in that they allow participants to
spend several minutes exploring combinations of judgments, undoing them,
and then constructing new decisions—and none of the intermediate partial
card arrangements that were temporarily considered ever become part of the
data set! Even if your measure is a rating between 1 and 7, it will still crucially
fail to show whether there was a single confident selection of a number or a
gradual nonlinear process partly considering multiple numbers and then settling
on one number. And then there are measures that include ongoing processing as
well as final outcomes, but they average or sum the activity over a substantial
time course, thus eliminating any chance of identifying the temporal dynamics
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of the process. For example, the behemoth of cognitive neuroscience, func-
tional magnetic resonance imaging (fMRI), frequently integrates over an
entire second or more to produce one image of brain activity for one trial.!
This poses interesting methodological challenges for fMRI researchers who
wish to conduct an in-depth examination of the cognitive processing of tem-
porally dynamic input, such as a sentence (e.g., Fiebach, Vos, & Friederici,
2004) or visual motion (e.g., Heeger et al., 1999). Another popular experi-
mental measure that integrates over too large a period of time, and thus loses
any temporal resolution for discovering interesting nonlinear state transitions
in cognition on the way toward the participant’s final overt response, is whole-
sentence reading times. As a participant reads a sentence over the course of a
second or two or three, an incredible dance of lexical, semantic, syntactic, and
contextual factors is undulating from word to word to word. And whole-
sentence reading time tasks ignore all of that, thus failing to provide any indi-
cation of when during those few seconds the dance may have involved a par-
ticularly impressive pirouette or perhaps instead been briefly tripped up by its
own feet.

My comments here are not intended to discourage researchers from ever
using these methodologies. I often use many of them myself, as pilot studies
and as additional experiments to accompany more online measures. Rather
than summarily proscribing the use of all off-line measures, or measures that
integrate over entire seconds or more, I instead recommend a conscientious
combination of temporally dynamic measures of ongoing processing along
with simple nondynamic measures. The existing literature of results based on
off-line outcome-based measures is by no means to be discarded or ignored.
Quite the opposite—the challenge of a dynamical systems approach is to
account for the discrete-seeming findings from those methodologies as well as
the continuous findings that are typically revealed by temporally dynamic
methodologies.

The following sections briefly review a variety of experimental methods
that—unlike accuracy measures, off-line rating tasks, and so on—pay atten-
tion to one or another aspect of the temporal dynamics of perceptual/cognitive
processing. To varying degrees and for varying purposes, they provide a
window into the continuous-time processes of the mind/brain (for an excel-
lent in-depth review of many of these methods, see Kutas & Federmeier,
1998). I have distributed the methods into three rough divisions, mostly just
to make the list more manageable. At one extreme, there are outcome-based
measures with time-delimited tasks (from traditional experimental psy-
chology), such as reaction times and speeded responses. At the other extreme,
there are continuous measures with continuous tasks (from dynamical sys-
tems approaches to perception, cognition, and action), such as bimanual
coordination and postural sway. In between these extremes, one can find a
number of semi-continuous measures with time-delimited tasks. This middle
ground set of methodologies serves a number of purposes that should inter-
est cognitive psychologists: (1) many of these measures can be easily applied
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to established experimental tasks, (2) these measures often involve less metacog-
nitive control over the particular output being recorded (therefore, less room
for strategic effects), and (3) many of these measures can easily be applied to
normal everyday kinds of tasks, for improved ecological validity.

Outcome-Based Measures With Delimited Tasks

Let’s start with traditional experimental psychology. Since Donders’s (1868/
1969) subtractive method and, more recently, Sternberg’s (1969) additive fac-
tor method, button-press reaction times have been widely perceived as an
effective measurement for determining the identity, sequence, and duration of
intermediate cognitive subprocesses that occur on the way toward producing
an overt motor output as a response to an individual stimulus. This goal of pick-
ing apart the intervening processes between an early sensory event and a motor
output event is generally in line with the goal of this book. Unfortunately, the
overarching assumption with these subtractive and additive methods has been
that the subprocesses to be identified are independent sequential stages, like the
mechanisms of a clock or the components of a computer. As the cognitive sci-
ences are gradually learning, the brain’s subcomponents are richly interdepen-
dent on one another and anything but sequential in their bidirectional cascades
of information flow. Likewise, the mind itself is perhaps best described as an
emergent property of a complex nonlinear brain, attached to two-dimensional
sensory surfaces and three-dimensional effectors, and embedded in a complex
dynamic environment—with bidirectional cascades of information flow
between these larger subcomponents as well. Therefore, using reaction-time
tasks to isolate individuated serial cognitive stages of processing—which
aren’t there—is unlikely to prove fruitful (see Van Orden & Holden, 2002).
Nonetheless, button-press reaction times can still be a generally useful meas-
ure of the overall time course of processing, for the purposes of exploring cer-
tain questions regarding the timing of information integration in language
processing (chapter 7), in visual search (chapter 8), in the role of motor repre-
sentations in cognition (chapter 9), and for studying long-distance correla-
tions in overall task performance (Van Orden, Holden, & Turvey, 2003), to
name just a few. In many tasks, reaction times can be conceived of as the time
taken by the system to settle enough into a particular attractor basin to exe-
cute its associated motor output. Without recording reaction times in these
tasks, one would merely have a tabulation of the proportion of trials on which
one or another button was pressed, and no evidence whatsoever for whether
one or another of the button-pressing decisions involved a slow and difficult
settling process or a quick and easy one. Reaction times provide a respectable
amount of evidence regarding the temporal dynamics of perceptual/cognitive
processing. We just need to be careful about interpreting them in ways that
involve implausible assumptions about feedforward box-and-arrow cognitive
architectures.
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An important advance in the use of reaction times is in analyzing their
distributions, not just the means across conditions. Mounting evidence indi-
cates that simply comparing mean reaction times violates the assumptions of
our tools of statistical inference and can miss important subtleties in perform-
ance. It is extremely rare for the distribution of reaction times in a perceptual/
cognitive task to actually have a normal, Gaussian distribution. Yet a normal
distribution is what #-tests and analyses of variance, cognitive psychology’s
favorite statistics, assume the data exhibit for the statistical inference to be
valid. A growing body of literature is finding that analyzing reaction-time dis-
tributions and their moments (skewness, kurtosis, etc.) can be considerably
more informative for teasing apart specific competing models of cognition
(e.g., Ratcliff, 1979, 2002; Van Zandt, 2000, 2002). However, it looks as though
the debate between continuous versus discrete processing may not be resolv-
able via distributional analyses of reaction times (e.g., Meyer et al., 1988;
Miller, 1982; Ratcliff, 1988).

Reaction times are also recently being analyzed not in terms of their indica-
tions regarding the cognitive processes involved in a single stimulus-recognition
event, but instead in terms of their indications of overall task performance over
the course of an entire experiment (Gilden, 2001; Van Orden, Holden, &
Turvey, 2003; Ward, 2002). Long-range correlated structure in a time series of
reaction times can provide hints about the fractal nature of interactions
between the subsystems that comprise cognition and can point toward changes
in the attractor landscape over the course of hours in a task. However, because
this type of analysis treats the overall experiment (not discrete individual trials)
as the focus of interest, it fits slightly better in the “continuous measures with
continuous tasks” section, where it will be discussed in more detail.

One particularly special improvement on the basic reaction-time
methodology is the speed—accuracy trade-off (SAT) method (e.g., Dosher,
1976; McElree & Griffith, 1995, 1998; Reed, 1973), because it provides evi-
dence for what is going on before a response decision has reached a fully con-
fident stable state. Whereas reaction times are merely able to demonstrate
that the culmination of a response decision took a longer or shorter period
of time, the SAT method can plot evidence for the internal salience or activa-
tion of that response option at 50 milliseconds after stimulus presentation, or
100 milliseconds, or 150, and so on. As a rule of thumb, whenever you transi-
tion from comparing values on a bar graph (such as reaction times) to plot-
ting points on a smooth-looking curve (such as d-prime over time), you can
bet you're making important improvements in your ability to analyze the
temporal dynamics of the system in question.

In the SAT method, signal detection theory (Green & Swets, 1966) is used
to compute a measure of d-prime (sensitivity to a stimulus property, inde-
pendent of the participant’s response bias for saying yes or no in the detection
task). The detection task can be anything from searching for a visual target
amid distractors, to reporting on whether a test probe item was present in a
memorized list, to determining the grammaticality of a sentence as a function
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of its final word. In some blocks of trials, the participant is given only a cou-
ple hundred milliseconds to produce the response, and their d-prime for
those trials is generally near 0 (at chance performance). Late responses are
followed by a truly nasty buzzing sound that is intended to prevent the par-
ticipant from being late with their response on subsequent trials—and it is
surprisingly effective. In other blocks of trials, they are given several hundred
milliseconds to produce their response, and although they often feel like they
are still guessing, their d-primes are usually in the 1-2 range, reliably above
chance. Other blocks of trials have even later response deadlines, and par-
ticipants are able to make reasonably deliberated confident responses that
asymptote around a d-prime of 3—4. Figure 3.2 depicts some representative
hypothetical data from an SAT task, where the different response deadlines are
300 milliseconds after stimulus presentation and 500, 700, 900, 1,200, 1,300,
and 3,000 milliseconds after stimulus presentation. Real results regularly look
approximately like those in figure 3.2, demonstrating a gradual accumulation
of perceptual/cognitive evidence, as it were, for the correct yes/no response.
(Note the general similarity between figure 3.2 and figure 1.6.) In terms of the
conceptual framework laid out in the previous chapter, this task is roughly
equivalent to interrupting the dynamical system’s continuous trajectory
through the state space and forcing it to elicit the response associated with the
closest attractor. Noise in this closest attractor estimate produces imperfect
d-prime values, and plotting them at each time slice can be construed as meas-
uring the relative Euclidean proximity between the state of the interrupted
system and the correct attractor versus the incorrect attractor.

One pragmatic drawback of the SAT methodology is that it requires many
hundreds of trials from each participant. Participants often have to visit the
lab for multiple sessions for the experimenter to collect enough data. And of
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Figure 3.2. Sensitivity to a stimulus property rising over time in a
hypothetical speed—accuracy trade-off task.
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course, as with most of these outcome-based measures with delimited tasks,
SAT involves a somewhat ecologically invalid interruption of real-time cogni-
tive processing to elicit a forced-choice metacognitive judgment.? Nonetheless,
SAT provides a unique and important record of gradually rising d-prime (sen-
sitivity) functions over time that appear to be sampling a continuous dynamic
process.

Perhaps ironically, the SAT method is often used not just to document the
time course of processing within a given process but also to explore possible
discrete stage-based distinctions between two or more putatively independent
continuous processes, such as the accrual of syntactic evidence and the accrual
of semantic evidence. However, as we will see with event-related potentials
(ERPs), one has to be careful with extrapolating SAT curves to their zero-
crossing (e.g., finding that the curve in figure 3.2 would hit zero d-prime at
about 250 milliseconds poststimulus) and treating that point in time as a dis-
crete instance at which some cognitive processing module “becomes opera-
tive” The fact that very different interpretations for syntax and semantics
result from using this way of thinking with SAT and with ERP methodologies
suggests that something is wrong with that way of thinking. For example,
results with the SAT methodology suggest that syntactic information becomes
operative a couple hundred milliseconds before semantic information (McElree
& Griffith, 1995, 1998), whereas with very similar kinds of stimuli in an ERP
methodology, results suggest that semantic information is processed a couple
hundred milliseconds before syntactic information (Hagoort, 2003; Osterhout
& Holcomb, 1992). It is not clear that there is a way to adjudicate between
these two claims. Perhaps they are, in a sense, both wrong because they assume
there are separate modules for syntax and semantics and are asking which one
“turns on” first. If there are not separate independent modules for these sub-
tly different (and arguably partially overlapping) formats of information (see
chapters 5 and 7), then asking which one turns on first is clearly an ill-formed
question.

An intriguing new method that is slightly similar to SAT, because it
involves interrupting ongoing task processing at specified points in time, is
transcranial magnetic stimulation (TMS). However, the interruption doesn’t
merely request a premature button-press, it directly interferes with the brain!
TMS emits a 100-microsecond pulse of a magnetic field (of about 1-2 Tesla)
directly over the scalp near the cortical region of interest. This single pulse of
TMS induces high-frequency synchronized neural activity in that localized
region of cortical surface for a few milliseconds, followed by a substantial
refractory period across that entire population of neurons, effectively disrupt-
ing any task-related patterns of neural activity in that area for perhaps a
hundred milliseconds or so in total.? This temporary disruption of organized
neural processing in localized regions of cortex has been referred to as a virtual
lesion (Walsh & Rushworth, 1999). There are two basic ways to use these tem-
porary virtual lesions for understanding cognition. One can explore the inter-
active role that a cortical area plays in performing some perceptual/cognitive
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task by disrupting activation in that area when the task is being performed, and
one can also explore the precise timing of that area’s participation in the task by
delivering the TMS at different latencies after stimulus presentation (see Walsh &
Pascual-Leone, 2003, for an excellent review). For example, Schluter and colleagues
(1998) found that a visual choice reaction time task was most disrupted when a
single TMS pulse was applied to premotor cortex around 100 milliseconds
after the stimulus or to primary motor cortex around 300 milliseconds after
the stimulus. It is almost as if TMS allows you to chase down the wave of informa-
tion as it travels from cortical region to cortical region and thus track the sequence
of perceptual/cognitive events.

Speaking of events, let us now move on to ERPs. ERPs provide a continu-
ous record of brain activity during exposure to stimuli that often do not
require any metacognitive deliberate judgment or response. In this way, they
are somewhat less outcome-based than the other methodologies discussed so
far. Unfortunately, rather than fully embracing the temporal continuity of this
measure of neural activity (sometimes sampled at greater than 1,000 Hz),
most of the literature has taken to testing for specific discrete wave peaks at
particular time slices, as though those peaks were the responses they are meas-
uring. For example, a conspicuously positive wave component around 300
milliseconds poststimulus (dubbed the P300) appears to be indicative of an
unexpected or low-probability event (Donchin et al., 1988). A conspicuously
negative wave component around 400 milliseconds poststimulus (N400)
appears to be the result of detecting a semantic anomaly (Kutas & Hillyard,
1980). And a conspicuously positive wave component around 600 milli-
seconds poststimulus (you guessed it, the P600) is correlated with syntactic
anomaly, or ungrammaticality (Hagoort, 2003; Osterhout & Holcomb, 1992).
Positive and negative components* in the 100 and 200 range are typically attrib-
uted to early sensory processing (Mangun & Hillyard, 1988). As researchers
continue to pick apart smaller and smaller wavelike pieces of this continuous
pattern of neural activity, they have localized some of these waves to the left or
right hemispheres or the frontal, parietal, or occipital lobes (e.g., Baas,
Kenemans, & Mangun, 2002; Swick, Kutas, & Neville, 1994), they have pointed
to P300s somehow occurring earlier or later than 300 milliseconds (e.g., Kim,
Kim, & Kwon, 2001), and they have expanded the list of wave components to
include separate listings for the N20, P30, P45, N60, N140, P150, P180, P250,
N250, P350, P450, and more (e.g., DeFrance et al., 1997; Josiassen et al., 1990).
As the fractionation of this continuous wave pattern escalates, proliferating a
potentially infinite number of putatively separate components, it should
eventually become clear that these wave peaks are not discrete emissions of
perceptual and cognitive modules that become operative at their specific
points in time, as some ERP practitioners seem to advocate. Instead, a con-
spicuous wave component might be better understood as signifying a period
of time when populations of neurons in coarsely defined (but not necessarily
modular) regions of the brain are ramping up their activity in the service of
integrating and resolving conflicting signals from multiple information sources,
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for example, a mismatch between perceptual anticipations and afferent
sensory input (see Eimer, 1998; Kutas & Hillyard, 1984; Picton et al., 2000;
Rugg & Coles, 1995). In fact, when event-related electroencephalography
(EEG) wave forms are studied via time-series analysis, based on symbolic
dynamics, the results provide independent statistical motivation not only for
some of the usual ERP components but also for additional patterns that are
not detected by the traditional ERP analysis technique (see beim Graben et al.,
2000).5

Magnetoencephalography (MEG) has a great deal in common with ERPs.
In fact, the two methods can be combined to cross-validate their respective
data sets (Hopf et al., 2002). Because the magnetic field emitted by neural
activity is interfered with much less by electrolytes in the cerebrospinal fluid,
MEG provides a substantial improvement, over ERPs, in spatial resolution.
Nonetheless, MEG’s spatial resolution still doesn’t hold a candle to that of
fMRI. However, for the purposes of combining both spatial resolution (for
cortical localization of function) and temporal resolution (for attribution of
these functions to different aspects of dynamic stimulation), MEG may very
well be the sharpest tool in the shed (Hari & Antervo, 1982; Noguchi et al.,
2004; Rogers, 1994). Both MEG and ERPs share a practical methodological
drawback with the SAT method: These experiments will often require
hundreds of trials per condition per participant, which leads to long experi-
mental sessions and only relatively simple experimental designs. It doesn’t
help that an MEG facility is about as expensive as an fMRI facility, costing mil-
lions of dollars. In contrast, an ERP lab can get up and running for a mere
$100,000 or so. Pocket change. But what this all boils down to is that by plac-
ing a premium on fine temporal resolution, one appears forced to sacrifice
spatial resolution, because the electrical or magnetic signal leaking out of
someone’s head is so noisy.

As it turns out, there is a solution to the problem of all that confounded
noise in the electrical (ERP) or magnetic (MEG) fields that manage to pass
through the dura and the skull and finally get recorded by a headful of scalp
electrodes. Just get the skull and dura out of the way! One slightly grisly
method, known as optical imaging (of intrinsic neural signals or of voltage-
sensitive dyes), does exactly that—literally (see Grinvald, 1984, 1992).6 With
nonhuman animals, one can remove a portion of skull, peel back the dura,
point a camera system at the exposed cortical surface, and thereby get a con-
tinuous record of what populations of cells are active during the presentation
of various auditory or visual stimuli to the immobilized animal (e.g., Jancke
et al., 2004; Nelken et al., 2004; Sengpiel et al., 1998). However, it is common
for this continuous signal to get averaged over a substantial window of time to
get robust topographical images of regions of activation. Depolarizing neu-
rons will reflect more light by about 0.5% of the total illumination, compared
to inactive neurons. So your camera better be fairly sensitive.

A related methodology, similarly unimpeded by skull and dura, is single-
cell electrophysiology. Direct electrical recording from neurons has been
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around a bit longer than optical imaging and allows measurement from areas
further beneath the surface of the brain. It involves inserting an electrode into
aneuron (or at least sidling it up next to one) and recording the action poten-
tials it emits. Like optical imaging, this is not for the faint of heart. In fact, it’s
not really intended for healthy humans at all—which tends to put a damper
on using it to study language or complex cognition (but see Engel et al., 2005;
Ojemann et al., 1988, for recordings of neurons in brain surgery patients). The
vast majority of neural recording studies have been conducted in the service
of examining the early stages of visual perception in nonhuman primates (for
reviews, see Palmeri & Gauthier, 2004; Parker & Newsome, 1998), and a fair
bit of the findings have been corroborated with neuroimaging in humans
(e.g., Engel et al., 1994; Heeger et al., 1999). Even better, multicell recording
allows the researcher to compute an estimate of a neural population code
and its dynamics (e.g., Georgopoulos, 1995; Rolls & Tovee, 1995; Zemel,
Dayan, & Pouget 1998). One can even mathematically interpret the popula-
tion code’s activation pattern in terms of probability density functions of
different continuous-valued sensory properties (Barber, Clark, & Anderson,
2003), a little bit like the highly idealized probabilistic mental states depicted
in chapter 2.

The tradition in visual neuroscience for some time was to present indi-
vidual stimuli, from trial to trial, to an anesthetized monkey and record from
cells in appropriate areas (Gilbert, 1983; Lennie, 1980). Averaged firing rates
could then be plotted as a function of some stimulus dimension to determine
the selectivity of that cell for that stimulus dimension. For example, figure 3.3
shows a hypothetical example of a cell that is highly selective for a narrow range
of this stimulus dimension (circles) and another cell that is not particularly
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Figure 3.3. Hypothetical firing rates of two neurons, averaged over a
second, showing one cell to be selective for a delimited range of the
stimulus dimension and the other unselective. In this case, the stimu-
lus dimension could be anything from the orientation of a visually
presented bar to the frequency of an auditorily presented tone.
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selective with this stimulus dimension (squares). Although there are dynamic
analyses that compare the initial burst phase of a neural spike pattern to the
overall average firing rate (e.g., Kim & McCormick, 1998), there is still a ten-
dency for visual neuroscientists to average over a sizable window of time,
thus rendering their measure somewhat less continuous and somewhat more
outcome-based, as in figure 3.3.

Not until the 1990s did recording from awake behaving animals become
at all common (e.g., Gallant, Connor, & Van Essen, 1998; Motter, 1993; but see
Lynch et al., 1977). (See chapter 5 for a discussion of the theoretical conse-
quences of this methodological transition.) Gallant et al’s (1998) work even
breaks out of the trial-by-trial delimited-task mindset and actually fits more
with the continuous measure with a continuous task approach described in
the next section. In their experiment, the monkey was allowed to view natural
scenes and move his eyes around naturally. By tracking the eye movements
and recording from cells in visual cortex at the same time, they found that
free-viewing conditions caused these visual cells to behave quite differently
than during controlled viewing conditions—further bolstering the growing
distinction between the antiquated concept of classical feedforward receptive
fields and what appear to be nonclassical receptive fields that receive input
from lateral connections and/or feedback projections (e.g., Allman, Miezen, &
McGuinness, 1985; Rao & Ballard, 1997; Spillman & Werner, 1996). Given
findings like this, one cannot help but analogously wonder whether less con-
strained ongoing continuous behavior in the cognitive psychologist’s lab
might cause mental processes to behave quite differently than they do during
traditional trial-by-trial outcome-based time-delimited tasks.

Continuous Measures With Continuous Tasks

Much of the argumentation here has been to advocate continuous measures of
the perceptual/cognitive consequences of an individual stimulus presentation.
However, a major weakness of most experimental methods in the cognitive
and neural sciences—including many of those discussed throughout this
book (especially the categorization experiments in chapter 6)—is the ten-
dency to present the participant with an artificially extracted time slice of
what would normally be a temporally extended dynamic stimulus array. To
properly address the temporal continuity of perception, action, and cogni-
tion, more cognitive experimentation in the future will need to not only use
more continuous response measures but also use continuous (and ecologi-
cally valid) dynamic sensory stimulation. There are two possible solutions to
this concern: (1) use tasks that do not simply involve an isolated stimulus fol-
lowed by a discrete response, for example, rhythmic tasks or motor measures
during extended periods of task performance; or (2) dynamical analyses of the
processes occurring over the long-term course of an entire experiment, for
example, spectral analyses of long-distance correlations across many trials.
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This leads us to discovering another time scale at which—with the appropri-
ate analysis techniques—we can observe dynamic properties in overall task
performance.

As hinted at earlier when discussing reaction times, even just examining a
cognitive psychologist’s data in terms of the time series over an hour or so of
data collection—rather than trial by trial—can treat the pattern of button-
press latencies as a somewhat continuous measure and can treat the overall
cognitive performance as a somewhat continuous task (Van Orden et al.,
2003). At this larger time scale, one is no longer investigating the cognitive
architecture of a particular mental faculty, such as word recognition or object
recognition, but is instead exploring what kind of system cognition is in gen-
eral. Is it a discrete stage-based system with component-dominant dynamics,
like a Turing machine? Or is it a more continuous distributed system with
interaction-dominant dynamics, like a biological organism?

When a time series of response latencies, for any of a variety of experimen-
tal tasks, is subjected to Fourier analysis, the amount of energy in the various
frequencies (the power spectrum in log/log coordinates) scales downward
linearly with a slope corresponding roughly to 1/freq (1/f) (e.g., Gilden, 2001;
Van Orden et al., 2003; Ward, 2002). Thus, amid the seemingly random fluc-
tuations in response time from trial to trial—once the effects of experimental
manipulations are extracted from the data—there actually remains a reliable
pattern of long-distance correlations (those robust low frequencies in the
power spectra) that are not easily accounted for by modular systems of multi-
ple independent autoregression-based estimators or component-dominant
dynamics (see Van Orden, Holden, & Turvey, 2005; Wagenmakers, Farrell, &
Ratcliff, 2005). This 1/f noise, or pink noise (because it’s subtly more corre-
lated than white noise), is also observed in an endless cornucopia of complex
dynamical natural processes in physics (Bak, 1996; Mandelbrot, 1999), chem-
istry (Sasai, Ohmine, & Ramaswamy, 1992), biology (Hausdorff & Peng, 1996;
Musha, 1985), vision (Billock, de Guzman, & Kelso, 2001), music, and lan-
guage (Voss & Clarke, 1975). 1/f noise is seen as a signature data pattern for
complex dynamic systems that self-organize in fractal time. If cognition is
such a system, then we’d better start analyzing it as such.

Another way to analyze the self-organizing dynamics of perception and
action is through rhythmic patterns of coordinated motor behavior (see
Kelso, 1995). The majority of this book will focus on attractors in state space,
as it is often the most appropriate format of description for nonrepetitive cog-
nitive processes, but the majority of the psychological literature so far on
dynamical systems actually focuses on attractors in phase space for coordina-
tion dynamics. Although the two are sometimes treated almost synony-
mously, a point in state space usually describes a system in terms of values of
instantaneous state parameters (such as neuronal firing rates or the positions
of the limbs), whereas a point in phase space often describes a system in terms
of periodic change in those state parameters (such as frequency or relative
phase of limb displacements). Both formats of description are crucial aspects
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of the application of dynamical systems theory to the mind, and the successes
of one should instill optimism for successes of the other.

Rhythmic motor behavior is precisely where continuous measures with
continuous tasks excel at revealing limit cycles (repeated loops) in state space
as systematic patterns in the mind, sometimes plotted as static locations in
phase space. As mentioned briefly in the previous chapter, one such limit cycle
is the coordinated rhythmic movement between two limbs. Give this a try: Put
your hands on a table, palms down, and then fold your fingers and thumb
under, extending only your index fingers. Now, your rhythmic coordination
mission, should you choose to accept it, is to move both index fingers leftward
in unison and then rightward in unison, and back again, repeated at about
1 Hz (one cycle per second). Gradually ramp up the frequency of this oscilla-
tory behavior, until you're flicking your fingers left and right about as fast as
you can. Did you manage to maintain the leftward-in-unison and rightward-
in-unison phase relationship between those two fingers? In most experiments,
as people increase the rate of finger oscillation, they involuntarily slip into an
inward-in-unison and outward-in-unison phase relationship. You probably
did that, too. Essentially, as the oscillation frequency increases, there appears
to be a powerful attractor in phase space that pulls your fingers’ movements
toward a phase pattern that flexes and extends pairs of corresponding hand
muscles at the same time. Myriad extensions of this experimental design, with
different limbs (and even across two people), have provided powerful insight
into understanding perception and action in terms of self-organizing attrac-
tor manifolds in phase space (e.g., Kelso & Jeka, 1992; Schmidt, Carello, &
Turvey, 1990). See chapter 9 for a more in-depth discussion of rhythmic coor-
dination tasks.

Repetitive tapping tasks (e.g., Fitts, 1954) provide another continuous
measure with a continuous task that can provide information regarding the
overall constraints of the motor system. However, isochronous finger-tapping
tasks (e.g., Franek et al., 1987), where the participant must tap a finger in syn-
chrony with some external sensory input, can provide information regarding
the dynamic coupling of sensory and motor processes and thus more readily
point to a dynamical analysis of cognition. As a participant is exposed to a
rhythmic stimulation pattern of auditory tones or visual flashes, he or she can
get accustomed to the frequency of the stimulation and tap nearly synchro-
nously with the sensory input. Some form of cognitive oscillatory process that
predicts each next tone or flash (see Pressing, 1999) may be involved in this
behavior because each tap often anticipates the actual external stimulus. If
each tap was actually a response to the perceived tone or flash, then it would
unavoidably follow that tone or flash by at least a few hundred milliseconds—
as that is about how long sensory transduction and motor execution would
take. However, it is commonly observed in these kinds of tasks that partici-
pants’ taps actually precede the sensory input by a few dozen milliseconds or
more (e.g., Miiller et al., 1999). Further examination of the types of stimula-
tion that best entrain this kind of cyclic motor output can uncover a richer
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understanding of the relationships between perceptual subsystems and action
subsystems. For example, complex metrically structured rhythms can induce
finger tapping that is synchronized at varying metrical levels (Large, Fink, &
Kelso, 2002; Toiviainen & Snyder, 2003). Moreover, rhythmic auditory events
appear to be better than rhythmic visual events at inducing isochronous
finger tapping (Repp, 2003a; Repp & Penel, 2004).

Although finger-tapping tasks typically just record the timing of the
cyclic taps and not the dynamics of the finger movement toward or away from
contact, there are other measures that do record the truly continuous move-
ment of the body. Postural sway, as measured by the force applied to different
regions of a metal plate on which the participant is standing, can be recorded
continuously over time and thus provides a measure of rhythmic movements
in state space and in phase space (Riley, Balasubramaniam, & Turvey, 1999).
During a variety of tasks, postural sway can be measured without interrupting
task performance, without requiring any metacognitive report regarding task
performance, and without any strategic influences on the measure being
recorded (Stoffregen et al., 2000). Intriguingly, it turns out that postural sway—
though seemingly irrelevant to linguistic and visual tasks—actually provides an
informative window to the dynamical perception-action processes of visual
perception (Warren, Kay, & Yilmaz, 1996) and of language use (Shockley,
Santana, & Fowler, 2003). For example, Shockley and colleagues showed that
when two conversants coordinate over a puzzle task, their postural sway coordi-
nates as well. When the same two persons converse with other people, their
respective postural sways do not get entrained with one another. See chapter 9
for a more in-depth discussion of postural sway tasks.

Another continuous implicit measure of perceptual/cognitive processing,
which doesn’t necessarily require any motor output, is EEG. In contrast to
ERPs, EEG does not assume any special start or stop time with regard to the
sensory input.” Therefore, it is ideal for continuous rhythmic tasks, such as
repetitive visual tasks or repetitive linguistic tasks, or even just listening to
music (Fitzgibbon et al., 2004). Different perceptual/cognitive tasks can show
their effects at different frequency ranges in the EEG signal: alpha (10 Hz),
beta (20 Hz), and gamma (40 Hz) bands. Although continuous EEG involves
laboratory constraints similar to ERPs, which can somewhat reduce the eco-
logical validity of the perceptual circumstances, the collection of an unbroken
signal of neural activity during the ongoing performance of a cyclic task is an
extremely precious source of information for the dynamical perspective on
cognition (e.g., Babiloni et al., 2003; Wallenstein, Nash, & Kelso, 1995).

Semi-Continuous Measures With Delimited Tasks

Many of our everyday perceptual/cognitive activities are not particularly
rhythmic or repetitive. Although the cognitive and motor dynamics involved
in writing a check and putting it in an envelope, or getting in your car and
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starting the engine, can be well described by a relatively continuous trajectory
through a (cognitive and/or motor) state space, that trajectory is not especially
cyclic and thus does not easily lend itself to a description in phase space (but
see Jirsa & Kelso, 2005). Because reaction time and ERP wave components may
focus a little too much on artificially discretized outcome measures, and rhyth-
mic coordination tasks and continuous EEG waves may focus a little too much
on repetitive tasks, this final section tries to carve out a middle ground of
methodologies that involve delimited nonrepetitive tasks and nearly continu-
ous implicit measures of cognitive processing during those tasks.

For example, a continuous record of arm movement during a reaching
task, such as with an Optotrak 3D motion capture system, can be incredibly
informative about the cognitive processes involved in that task. By video-
recording reflective markers along the joints of the arm and hand, patients
with damage to the ventral portion of the visual system (who suffer from
visual form agnosia and thus cannot identify objects) can be observed to execute
reaching movements and preparatory handshapes for grasping those objects
that exhibit perfectly normal temporal dynamics (Milner & Goodale, 1995).
This suggests that the intact dorsal portion of their visual system is silently
recognizing the object and sending appropriate motor commands to the arm
and hand in real time—despite the fact that the patient cannot verbally identify
the object. As further evidence for this dissociation, when nonbrain-damaged
participants reach for a target object and it shifts location, the arm can smoothly
adjust its trajectory midflight, even when the participant cannot see her arm
and even when she claims not to have consciously perceived the target object
shifting its location (Goodale, Pélisson, & Prablanc, 1986). Results like these
point to a relatively automatic perception-action loop, in the dorsal visual
stream, that doesn’t necessarily require visuomotor feedback or even conscious
awareness. The real-time interplay between these dorsal and ventral visual
streams, as well as between reaching and grasping commands, in the service of
acting on one’s environment (or even just imagining objects and actions in
one’s environment), is a busy topic of study (e.g., Jacob & Jeannerod, 2003;
Jeannerod, 1996; Servos & Goodale, 1995).

In addition to recording overt limb movements in real time with a 3D
motion capture system, one can also record subtle muscle activity that may
not even result in limb movement at all. Electromyography (EMG) follows the
same principle as EEG, in that it simply records changes in the electric field
that reaches the surface electrodes—except that these surface electrodes are
placed on the skin of the arms, hands, or face.® As muscles under the skin con-
tract, tiny electrical discharges are detectable even when it’s a minor contrac-
tion that is not strong enough to physically move that limb, finger, or facial
feature. Thus, EMG can provide an implicit measure of muscle groups that are
partially active, but not so much that overt movement is executed (Fridlund &
Cacioppo, 1986). This would be consistent with the trajectory in mental state
space getting close to a particular attractor basin, but not close enough to
actually elicit its corresponding motor movement. For example, EMG activity
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of particular regions of the face can provide evidence of subtle, partial activation
of emotional states that remain undetectable by visual observation of those
regions of the face or by participants’ introspective reports (Cacioppo et al.,
1988). Continuous EMG records of the hand muscles can also be informative
about partial activation of multiple action commands in a response competi-
tion task. Coles and colleagues (1985) measured EMG activity of participants’
two response hands as they gripped choice-response handles and found that
potentially confusing stimuli elicited partial muscle activity in the incorrect
response hand even on trials where the correct overt response was the one that
got executed. See chapter 9 for more in-depth discussion of these and related
experiments.

Two additional implicit measures of cognitive processing that have also
been quite popular and informative are heart rate and galvanic skin response
(GSR; changes in electrical conductivity of the skin due to sweat gland acti-
vity). Their latency to react is not immediate, but it is usually less than a second.
For example, one can actually detect heart rate briefly slowing, or delaying a
pulmonary contraction, during the inhibition of a motor response (Jennings,
1992). Moreover, as evidence for the implicit nature of these measures,
prosopagnosic patients, who are specifically unable to recognize faces, actually
show a normal increase in skin conductance when viewing familiar faces,
despite the fact that they claim not to recognize them (Tranel & Damasio,
1988). Measures of heart rate and of GSR have been combined with measures
of pupil dilation (Kahneman et al., 1969), and all three generally increase con-
comitantly with the intensity of cognitive effort involved in a task. Pupil
diameter begins to expand in response to increases in cognitive load (or com-
plexity of a task) a few hundred milliseconds after the critical change in sensory
input, and this dilation peaks a little more than a second after the sensory change
(Beatty, 1982). Pupillary dilation has proven to be informative for studying
cognitive load in auditory processing (Bradshaw, 1968), visual processing
(Pratt, 1970; Verney, Granholm, & Dionisio, 2001), memory (Karatekin, 2004),
word recognition (Ben-Nun, 1986), and sentence processing (Just & Carpenter,
1993; Schluroff, 1982, 1986). All three of those measures, however, reveal only
general activity of the sympathetic and parasympathetic autonomic systems.
For example, heart rate, GSR, and pupillary dilation will generally increase
about equally for emotions of happiness, anger, fear, and so on. For an experi-
menter to get a handle on what the participant is thinking about, not just how
intensely she’s thinking about it, a more selective measure is needed.

Eye Tracking and Mouse Tracking

The outcome-based measures reviewed earlier in this chapter are certainly
useful and have provided a considerable database of evidence that continues
to constrain theorization in cognitive science. Although they overlook the
interim temporal dynamics, they nonetheless provide a crucial measure of
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where the dynamics ended up. And sophisticated analyses of the distributions
(and other large-scale dynamic patterns) in such data also provide valuable
evidence for adjudicating between specific theories of task performance, as
well as between general frameworks of cognitive processing. Moreover, analy-
ses of the phase space manifolds resulting from rhythmic dynamic motor pat-
terns have provided a strong mathematical foundation for the burgeoning
field of dynamical cognitive science. However, because the focus of this book
is primarily on state space dynamics rather than phase space dynamics, experi-
mental methods that provide glimpses into state space trajectories exhibited
by the mind during perceptual/cognitive tasks are of utmost importance. A
great deal of the experimental evidence marshaled throughout this book
comes from tracking people’s eye movements and their computer mouse
movements to provide some form of semi-continuous visualization of their
mental trajectory, so I grant these measures their own section here.

Eye movements have a long history of being used as an unusually inform-
ative measure of perceptual-cognitive processing in a wide range of tasks (see
Richardson & Spivey, 2004).° The methodology of eye tracking has advanced
considerably over the years, from the days of attaching devices to the eyeball
itself (Delabarre, 1898; Huey, 1898; see also Yarbus, 1967), to reflection-based
static photographic techniques (Diefendorf & Dodge, 1908; Tinker, 1928), to
motion-picture recordings (Buswell, 1935), to electronic laser-reflection sys-
tems (Rayner, 1978), and most recently to computerized headband-mounted
infrared optical methods (e.g., Ballard, Hayhoe, & Pelz, 1995; Land & Lee,
1994; Tanenhaus et al., 1995). In contemporary cognitive psychology, eye
tracking has produced important experimental findings in reading, visual
search, and scene perception (see Rayner, 1998, for an excellent review). Eye
movement methods have also been at the cutting edge of research in visual
memory (e.g., Ballard et al., 1995; Richardson & Spivey, 2000), change blind-
ness (Hollingworth & Henderson, 2002; O’Regan et al., 2000), visual imagery
(e.g., Brandt & Stark, 1997; de’Sperati, 2003; Laeng & Teodorescu, 2002; Spivey
& Geng, 2001), spoken language production (e.g., Griffin & Bock, 2000), spo-
ken language comprehension (Tanenhaus et al., 1995), speech perception
(McMurray et al., 2003), categorization (Nederhouser & Spivey, 2004; Rehder &
Hoffman, 2005), problem solving (Hegarty, 1992; Knoblich, Ollinger, & Spivey,
2005; Rozenblit, Spivey, & Wojslawowicz, 2002), chess (Reingold & Charness,
2005), driving (Crundall, 2005), and even video games (Underwood, 2005).

Many of the disadvantages of outcome-based measures, such as reaction
time, are avoided when using eye movement data as a measure of cognitive
processing. Saccadic eye movements (sudden jumps from fixating one object
to fixating another) naturally occur three to four times per second, so eye
movement data provide a semi-continuous record of regions of the display
that are briefly considered relevant for carrying out whatever experimental
task is at hand. Critically, this record provides data during the course of cog-
nitive processing, not merely after processing is complete, as with reaction
times and off-line judgment tasks. Saccades take about 200 milliseconds to
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program once the target has been selected (Matin, Shao, & Boff, 1993;
Saslow, 1967), so they are a nearly immediate measure of cognitive process-
ing, compared to many of those discussed in the chapter.

Perhaps most important, eye movements exhibit a unique sensitivity to
partially active representations that may not be detected by other experimen-
tal methods. Only a small amount of spatial attention is required to trigger a
saccade (Kowler et al., 1995). Essentially, if one thinks of it in terms of thresh-
olds for executing motor movement, eye movements have an exceptionally
low threshold for being triggered, compared to other motor movements.
Because they are extremely fast, quickly corrected, and metabolically cheap,
there is little cost if the eyes fixate a region of a display that turns out to be
irrelevant for the eventually chosen action. A mere 300 milliseconds have been
wasted, and reorienting the eyes to a more relevant location requires very
little energy. Therefore, briefly partially active representations—that might
never elicit reaching, speaking, or even internal monologue activity, because
they fade before reaching those thresholds—can nonetheless occasionally
trigger an eye movement that betrays this otherwise undetectable momentary
consideration of that region of the visual display as being potentially relevant
for interpretation and/or action. Consider, for example, a task with two alter-
native responses, and the stimulus in question is slightly ambiguous with
respect to the two possible responses. In the state space of the participant’s
mind, these response alternatives can function as attractor basins, and her
mental processing of that slightly ambiguous stimulus is equivalent to a tra-
jectory in that state space that temporarily flirts with both attractors, until
finally settling into one of them, to select a response. Figure 3.4 depicts an ide-
alized rendition of this state space and that mental trajectory. The rather
lenient—nay, downright promiscuous—thresholds for saccadic eye move-
ments (dashed circles) are crossed as early as halfway through the trajectory’s
traversal. Thus, the eyes would fixate both response alternatives in this case
before settling on the chosen one. In contrast, the more conservative thresh-
old for overt response selection, such as pressing a button (solid circles), is
crossed much later in time.

This early and quite sensitive semi-continuous measure of cognitive pro-
cessing can also frequently be used in ways that do not interrupt task process-
ing with requests for metacognitive reports or other overt responses that may
alter what would otherwise be normal uninterrupted processing of the task.
Thus, in addition to providing evidence for partially active representations
throughout the course of an experimental trial, and not just after it, eye track-
ing also allows for a certain degree of ecological validity in task performance,
as the responses it collects are ones that are naturally happening anyway.
Figure 3.5 shows a hypothetical—but typical—scan path (based on a study
reported by Eberhard et al., 1995) from an individual trial in which the par-
ticipant was instructed to “put the king of hearts that’s below the jack of dia-
monds above the queen of spades.” The eye position starts at the central cross
and jumps to the king of clubs soon after hearing “king.” After hearing “of



Figure 3.4. Anidealized vector field with two attractor basins divided
by a ridge, or saddle point (gray arrows show direction and velocity of
attraction). The mental trajectory (black arrow) crosses the threshold
for executing a saccade (dashed circles) well before it crosses the
threshold for an overt button-press response (solid circles).
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Figure 3.5. Example scan path (starting at the central cross) while
hearing, “Put the king of hearts that’s below the jack of diamonds
above the queen of spades.”
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hearts,” the eyes saccade down to the distractor king of hearts and flit around
there until “that’s below the jack of diamonds,” causes them to fixate the tar-
get king of hearts. After a quick check of that jack of diamonds, and once
“queen of spades” is heard, the eyes finally move up to the upper left corner of
the display to beginning planning the manual action.

These scan paths can be analyzed in a multitude of ways, most of which
require the visual display to be segmented into different regions of theoretical
interest—although fixation patterns on a blank screen can actually be informa-
tive under the right circumstances (Altmann & Kamide, 2004; Spivey & Geng,
2001). Importantly, without some form of linking hypothesis between fixa-
tions of certain regions and particular cognitive processes (e.g., Tanenhaus
et al., 2000), the full accumulated scan path from any given trial will often be
difficult to interpret (see Viviani, 1990). With specific predictions for a pre-
ponderance of attention in certain areas under certain stimulus conditions,
one can produce interpretable results from examining the mean durations of
fixations in various display regions or comparing the sum total of all fixation
durations in different regions (total gaze duration). Total gaze duration can
then be converted into percentage of total time spent fixating different display
regions.!® When this proportion of time spent fixating each possible object is
calculated for each time slice and plotted as a function of time, one can see
something equivalent to an object salience map changing dynamically. Figure 3.6
shows hypothetical data from a collection of trials like those in figure 3.5. Note
how during the first 500 milliseconds on the graph—immediately following
the onset of “king”—all three kings (circles, squares, and triangles) tend to get
fixated for a while. Keep in mind that in studies like these, participants won’t
begin reaching toward one of those incorrect kings, their eyes will just investi-
gate them briefly. As the distinguishing information is gradually delivered,
only the target king of hearts (circles) continues to be fixated. Then, the jack
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Figure 3.6. Hypothetical data showing the proportion of trials in which various cards
were being fixated at each (33 ms) time slice during a sentence like, “Put the king of hearts
that’s below the jack of diamonds above the queen of hearts.” See text for description.
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of diamonds is briefly fixated in some trials (diamonds). Eventually, as the last
prepositional phrase is being heard, the queen starts getting fixated (+’s), and
the target king begins losing some of its salience at that point in time. Finally,
the empty square above the queen (x’s) begins to attract attention.

There are, of course, methodological concerns related to using eye track-
ing. It should be acknowledged that visual attention is not always coincident
with eye position. Ever since Posner, Snyder, and Davidson (1980) demon-
strated that participants’ covert visual attention can be effectively dissociated
from the point of ocular fixation (when explicitly instructed to not move their
eyes), there have been cognitive psychologists who question whether eye move-
ments are really indicative of cognitive processes at all (Anderson, Bothell, &
Douglass, 2004). That said, it would be a rather unusual claim to propose that
movement of the eyes is purely random and not causally related to cognitive
neural processes. Even under extreme cases of unpredictable visual search cir-
cumstances where variation in absolute eye position appears to exhibit noise
consistent with a random walk process, saccade amplitudes exhibit long-range
temporal correlations, 1/fnoise (Aks, Zelinksy, & Sprott, 2002). In fact, a great
deal of behavioral and neuroscience research has shown a very close coupling
between movement of visual attention and movement of the eyes. Not only do
the eyes generally follow where attention leads, with a typical latency of about
50 milliseconds (see Henderson, 1993, and Hoffman, 1998, for reviews), but
many of the same regions of frontal and parietal cortex that are involved in
planning and executing eye movements are also implicated in covert visual
attention (see Corbetta, 1998, and Corbetta & Shulman, 1999, for reviews).

Another concern with eye movement data is the averaging that goes into
making graphs like that in figure 3.6. It is all too easy to produce smooth
curves from averaging many discrete but slightly asynchronous saccadic tran-
sitions. In fact that’s precisely how these eye position curves become smooth.
The logic behind it is that dynamically changing activation levels of internal
mental representations are constantly in flux, and occasionally one of them
exceeds some relatively low threshold for executing a discrete saccadic eye
movement. By measuring many eye movement patterns under the same con-
ditions, one can extract the graded patterns of activation that produced those
saccades. This linking hypothesis between the smooth averaged curves and the
gradually accruing activations of mental representations admittedly requires
something of a leap of faith. However, the alternative explanation—that the
mind is discretely jumping to one unitary interpretation and executing its cor-
responding eye movement, then discretely jumping to a different unitary
interpretation and executing its eye movement—can be somewhat difficult to
defend. In most of these eye tracking experiments, one occasionally observes
an oscillatory eye movement pattern where participants initially fixate object A
(for example, some candy when instructed to “pick up the candy”), then fix-
ate object B (such as a candle, because the first few phonemes are about the
same in candy and candle), and then fixate object A again, finally making an
overt response that corresponds with object A, such as grasping the candy or
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pressing a button that has its label. In a formal logical system that follows rules
to flip from one discrete mental state to another, it is not at all clear why such
a system would not have executed its overt response during the first instance
of fixating object A.

A methodological solution to the averaging concern would be to use a
motor output that is not saccadic, not quite so ballistic. Recall Goodale et al’s
(1986) evidence for smooth continuous adjustment of arm movement trajec-
tories during a reaching task. Might an individual reaching movement, for
example, toward the candy, be slightly curved toward the candle? Spivey,
Grosjean, and Knoblich (2005) designed a computerized version of these dis-
plays, with candle/candy, tower/towel, and so on (where a spoken instruction,
such as “click the candle,” is temporarily ambiguous for the first couple hundred
milliseconds of the target word), and with candy/nickel, ladle/dolphin, and
so on (where the target word is not temporarily ambiguous with respect to
the visible alternatives). Participants mouse-clicked a start button, then the
display showed up, and then the prerecorded spoken instruction was deliv-
ered. By recording the trajectory of the computer mouse’s cursor, sampled at
60 Hz, we have a nearly continuous measure of where in space the spoken
instruction has “pushed” the participant’s motor output and the degree to
which the two images on the computer screen have “pulled” that movement
toward themselves.!!

Figure 3.7 shows an actual individual mouse movement trajectory when
the participant was instructed to “click the ladle,” with a display containing a
ladle and a dolphin. In this control condition, the trajectory is relatively
straight, moving directly to the ladle with a reasonably constant velocity. It is
as though there was only ever one significant attractor basin available to pull
the state of this system. In contrast, when the two objects have similar sound-
ing names, competition between the objects/attractors is quite evident in the
trajectory. Figure 3.8 plots an actual—and quite typical—individual mouse
movement trajectory when the participant was instructed to “click the beetle,”
with a display containing a beetle and a beaker. Note how the mouse trajectory
moves upward, equidistant from the beetle and beaker, slows down briefly
(circles overlaying one another), and then finally curves over to the beetle.
Although it is not common, there is occasionally a trial in which the mouse
trajectory exhibits some overt vacillation between the competing objects, not
unlike the oscillatory eye movement pattern already mentioned. Figure 3.9
shows the mouse cursor moving somewhat toward the correct object (carrot),
then somewhat toward the competitor object (carriage), then turning again to
finally settle on the correct object. This suggests perhaps some stochasticity in
the continuous motor command and/or significant real-time fluctuation in
the shape of the attractor manifold.

The mouse trajectory in figure 3.8 (beetle versus beaker), moving toward
the midpoint between two attractor basins, slowing on the saddle point
briefly, then finally sliding down one of the basins, is quite reminiscent of the
idealized attractor manifold and mental trajectory in figure 3.4.!2 One could
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Figure 3.7. Mouse movement trajectory (in pixels) for “Click the
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Figure 3.8. Mouse movement trajectory (in pixels) for “Click the
beetle,” with a beaker as the cohort competitor. (Note the similar-
ity with the mental trajectory in figure 3.4.)
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Figure 3.9. Mouse-movement trajectory (in pixels) for “Click the
carrot,” with a carriage as the cohort competitor.

interpret this similarity, between a mental trajectory in a high-dimensional
state space and a movement trajectory in a two-dimensional space, as an illus-
trative metaphor for understanding how dynamic competition between two
partially active action-goals takes place. However, if someone were compelled
by the situated cognition framework in the larger cognitive sciences (e.g.,
Greeno, 1989; Gupta, 1992; Hutchins, 1995; Kirsh, 1995; Schwarz, 1998), they
might be tempted to describe this correspondence between mental trajecto-
ries and motor trajectories not metaphorically at all but indeed quite con-
cretely. In principle, one can conceive of the experimental task constraints as
forcing the participant to emit her continuously changing high-dimensional
internal state onto a physical workspace that has only two dimensions. In such
a circumstance, the mouse movement trajectory would be posing, quite liter-
ally, as an external two-dimensional projection of the person’s internal high-
dimensional cognitive dynamics. That is, the real-time cognitive process of
spoken word recognition imposes a continuous influence on the shape of the
visuospatial salience map in the parietal cortex that determines where atten-
tion is directed (e.g., Desimone & Duncan, 1995; Itti & Koch, 2001), which in
turn imposes a continuous influence on the dynamic field of neuronal popu-
lation codes for motor preparation in primary motor cortex (e.g., Bastian,
Schoner, & Riehle, 2003; Erlhagen & Schoner, 2002; Georgopoulos, 1995),
which in turn directs motor output in a fashion that reveals the continuous
evolution of the movement command (e.g., Paninski et al., 2004).

There are two reasons why this computer mouse trajectory methodology
provides a richer signal than eye movements of the continuous process of
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real-time spoken language comprehension influencing motor output. First, it
samples this process about 60 times per second (depending on the software),
instead of 3—4 times per second (as with saccades). Second, with some minor
and subtle exceptions (Doyle & Walker, 2001; Gaveau et al., 2003; Theeuwes,
Olivers, & Chizk, 2005), saccadic eye movements are ballistic and straight,
unable to adjust or curve in midflight. In contrast, skeletal motor movements
with the hands and arms are often able to curve substantially in midflight
(Goodale et al., 1986; Tipper, Howard, & Jackson, 1997), and can thereby
expose graded spatial attraction effects that might not be detected with other
methods. And it certainly doesn’t hurt that recording computer mouse trajec-
tories requires equipment that is far less expensive than eye tracking.
Nonetheless, eye movements usually precede arm movements, and thus pro-
vide a more immediate index of cognitive processes than arm movements.
Therefore, computer mouse trajectories are best seen not as a replacement for
any other method but instead as an important complementary data source for
revealing the continuous flow of mental activity to motor activity (e.g., Coles
et al., 1985; see also McClelland, 1979). (For some further discussion of the
measurement of computer mouse movements, see chapter 9.)

Though This Be Dynamic, Yet There Is Method in It

The previous chapter focused on a conceptual framework for understanding
the continuity of mind, that is, the spatiotemporal continuousness with which
a mental state traverses its neural state space. Dovetailing with this purpose,
the current chapter has focused on a variety of experimental measures for
empirically examining the continuity of mind. The next chapter will focus on
explicit mathematically implemented and temporally dynamic models of the
continuity of mind. In all of these cases, the role of real-time perceptual-
motor representations looms large in cognitive processing.

It could be argued that the reason motor output is as illuminating of cog-
nition as it is—be it a hesitant button-press, a curved mouse movement, a vac-
illatory eye movement pattern, or rhythmic fingers dancing on the edge of
chaos—is precisely because so much of cognition is carried out by perceptual-
motor simulations (e.g., Hesslow, 2002; Jeannerod, 2003; Pecher, Zeelenberg,
& Barsalou, 2003; Solomon & Barsalou, 2004). Much (if not all) of cognition
is fundamentally composed of combinations of dynamic perceptual-motor
simulations or complex preparedness for situated action (see Barsalou, 2003).
There is no internal encapsulated “mind in an ivory tower” that independently
conducts these simulations. It is the senses themselves, the motor systems
themselves, and an emergent cognition self-organizing amid the two, that
carry out these simulations. And this is why measuring the output of those
motor systems in a number of different time-dependent manners provides
rich evidence for the activity of these simulations. According to the frame-
work of dynamic embodied cognition, motor output is not merely an emitted
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signal from the process of cognition, it is part of cognition. We aren’t using the
experimentally recorded behavior to make an inference about a cognitive
process, that behavior is part of the cognitive process.

Indulge me while I recount a little anecdote that epitomizes, for me, the
intimate role that the body plays in cognition. One day, I had spent much of
the morning and afternoon mulling over in my head different versions of a
few sentences for a manuscript I was working on. I was somewhat frustrated
with trying to find the right wording. Later, while sitting in the audience for a
visiting speaker’s lecture, the phrasing for those sentences suddenly fell into
place. I quickly grabbed a pen and the back of an envelope, and scribbled them
down just legibly enough that as long as I transcribed them onto my computer
within 24 hours, I could probably decipher the chicken scratchings. Then, a
brief, inexplicable, unidentifiable motoric urge came over me. For about half
a second, I felt a dire need to carry out some unspecified motor movement
that would safely preserve these precious sentences that I had finally, after sev-
eral hours, found a way to arrange that was likable. Then the feeling was gone.
I folded the envelope, tucked it in my pocket, and then continued to ignore the
visiting speaker’s words while my mind uncontrollably wandered to try to
explore what that weird urge had been. By running some kind of mental
inventory of my body, asking what limbs had wanted to move, I gradually
localized it to my left arm. I am right-handed, so this seemed slightly odd.
Then I felt the remnants of the motoric urge continue to localize themselves
further, down my arm to my left hand. I wiggled those fingers, and two of
them seemed to want to wiggle more than the others. My thumb and middle
finger seemed somehow potentiated for action. But why? Then it hit me: My
thumb and middle finger had wanted to press the Command and S keys on
my keyboard to save those prized sentences! My left thumb and middle finger
had participated in my powerful desire to preserve those much-pondered
phrasings. That, for me, is the embodiment of cognition.

Nevertheless, as the debate rages between continuous distributed embod-
ied cognition (e.g., Barsalou, 1999; Coles et al., 1985; McClelland & Rogers,
2003; Port & van Gelder, 1995) and discrete symbolic amodal cognition (e.g.,
Anderson & Lebiere, 1998; Dietrich & Markman, 2003; Fodor & Pylyshyn,
1995; Miller, 1988), one could imagine that a pacifist with good intentions and
an annoying penchant for physics analogies might suggest that the mind is
like light. Depending on how you measure it, it can come out looking like it’s
made of particles (symbols) or of waves (distributed patterns). Thus, to claim
that the mind’s true fundamental medium of processing is solely symbolic
particles or solely continuous waves may be wrong-minded.

But we should be wary of walking on the paving of those good intentions,
out of concern for where that road leads. I have a suspicion that this analogy
doesn’t quite hold up. First, it is not entirely clear that every physicist is satis-
fied by and accepting of the conventional account of the dual nature of light.
Second, and more important, it can be argued that the experimental method-
ologies that have been producing evidence for particlelike symbolic mental
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representations are seriously flawed. Borrowed from the psychophysics of 100
years ago, off-line measures of forced-choice responses have dominated cog-
nitive psychology since its inception in the 1960s. Participants are presented
with a static temporally bounded stimulus and instructed to select among a
set of possible discrete nonoverlapping responses to it. Experiments like these
couldn’t detect a continuous representation (in time and/or in feature space)
if it was staring them in the face! Or even if it bit them somewhere! We should
not be surprised at all that when an experimental participant is forced to
choose a single temporally discrete mutually exclusive response alternative,
they tend to produce output that looks indicative of a single temporally dis-
crete mutually exclusive mental state. (For concrete examples, see the sections
on categorical perception in chapter 6.) What cognitive psychology needs
are experimental designs and measures that at least give the organism in ques-
tion a chance to exhibit evidence for continuous graded blends of multiple
mental states. If there is indeed a continuous uninterrupted flow of patterns of
activation (or state space trajectories) from perception to cognition to action
(Cacioppo et al., 1988; Coles et al., 1985; Eriksen & Schultz, 1979; McClelland,
1979; see also Balota & Abrams, 1995; Gold & Shadlen, 2000), then continu-
ous measures of motor output can actually provide an impressively accurate
index of real-time perceptual and cognitive processing.

As we come to the end of this tour through several continuous and semi-
continuous measures of motor output, that focus on dynamic properties of
action rather than merely the outcome of an action, we can at last revisit
Gibson’s question that began this chapter. What does behavior consist of? It
cannot consist of “responses,” because a response is but a small, late-in-the-
game aspect of the many properties of motor output that one can examine,
and its emphasis on the final result of an action misses out on a great deal of
information that can often disentangle competing theories of cognition. In
naturalistic behavior (especially rhythmic actions like walking or playing a
musical instrument), motor output does not always have identifiable start
times and stop times. Therefore, pointing to the part of that behavior that is
“the response” is impossible. What behavior actually consists of, and therefore
what experimental psychologists should probably be measuring, is continu-
ous action—not responses. As any scientist (or vinyl audiophile) will tell you,
if you want to understand what is going on in a continuous process, the highest-
fidelity signal will come from a continuous measure of that process.
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Some Simulation Tools for Tracking

Continuous Mental Trajectories

We know, from the pre-Socratic period of Greek philosophy, the
expression panta rhei: all states of things are incorporated in a
stream of motion and change. Nothing stays the same, and when
we want to study certain process phenomena, we are compelled
to regard them as stages of change, as parts of a dynamic process.
—Jan Eberg

Nothing /s, everything is becoming.
—Heraclitus

How Can Blind Men Build a Sculpture of the Mind?

Dynamical systems accounts of mind are often perceived as foreign objects in
the body of psychology. They are poorly understood, and if their descriptions
aren’t annoyingly vague, then their math is daunting. Perhaps most problem-
atic is the simple fact that for some scientists, it simply conflicts with intro-
spection to claim that the mind does not think one discrete “thing” and then
think another discrete “thing.”

The purpose of this chapter is to gently walk the reader through some of
the mathematics of a few simple demonstrations of dynamical systems to
prove that it’s really not that daunting after all. I promise. As for any private
intuition that one’s mind “stands still during each thought,” it will be up to the
rest of the book (especially chapters 6-8) to convince such a reader to trust
experimental data over his or her subjective self-reflections.

But before getting to those data, let’s examine the theory. To properly cash
out the claim that the mind is a continuous dynamical system, rather than a
digital computer, we will need to design idealized model simulations of the
theory and its explicit implementation. Persuasive prose and trendy buzz-
words are simply not enough.

As it turns out, it is dangerously easy to string together a handful of
axiomatic claims about how some aspect of mind works and call this collection
of stipulations a theory—only to later discover that they are self-contradictory
when functionally integrated. Rather than permitting oneself to wax philo-
sophical about a laundry list of cognitive assertions that may turn out to be

80
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inconsistent with one another if actually put into operation, a number of
researchers have argued strongly for the development of mathematical and/or
computational implementations of theories about cognition (e.g., Broadbent,
1987; Hintzman, 1991; Seidenberg, 1993; Smolensky, 1988a; see also Newell,
Shaw, & Simon, 1958). Hintzman (1991) has pointed to a perfect example of
the kinds of pitfalls that one can encounter when theorizing without simulat-
ing. His example comes from research by sociobiologists making claims about
gender differences in sexual promiscuity. Based on survey results from equal
sized populations of men and women on how frequently they have hetero-
sexual, two-person one-night stands, the researchers concluded (by statisti-
cally generalizing their sample results to the entire population) that men have
more one-night stands than do women. That is what the questionnaires
revealed. At first glance, this kind of result doesn’t really surprise us. It corre-
sponds well with our intuitions and cultural prejudices concerning men and
women. And acquiring some scientific corroboration of those intuitions is
perhaps self-edifying. There’s just one problem. In the context of men and
women having heterosexual, two-person dates, it is mathematically impossible
for the average number of one-night stands conducted by men to be any dif-
ferent from the average number of one-night stands conducted by women! It
simply cannot happen. Every time a man is having a one-night stand, as
defined by the questionnaire, so is a woman. (The distributions could be
skewed in one or the other of the groups, but the arithmetic means have to be
the same.) Thus, our intuitive theory of dating makes a prediction that is com-
pletely illogical and mathematically invalid. Had the researchers conducting
this survey bothered to construct even the simplest mathematical account of
their theory, they would have realized that the prediction they thought their
theory made was fundamentally ill-formed.

Implementing one’s theory is like building a machine that embodies the
axioms of the theory, rather than merely listing those axioms and claiming
that they work together. The machine has to work for the theory to be con-
sidered sound. Indeed, it is a common experience for a simulation program-
mer to start out thinking that the theory she is trying to implement provides
all the components that will be necessary to build a working system, only to
find, after some initial pilot simulations, that the theory leaves out one or
more parameters or processes that are absolutely essential to allowing the rest
of the components to work together. Verbal descriptions of theories tend to be
like that. They look good on paper, but they often do not stand up to the
demands of actual implementation.

A somewhat cutesy but nonetheless illustrative example that I use with
my students, comes from the Steven Spielberg film Close Encounters of the
Third Kind (1977). In this film, Richard Dreyfuss’s character (as well as several
other people throughout the country) is apparently psychically receiving from
extraterrestrials images of some mountain. He and the other receivers inde-
pendently become obsessed with depicting this mountain. They paint it and
sketch it compulsively. Then, at one point, Dreyfuss’s character is inspired
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with the idea of sculpting, rather than painting, his channeled vision of the
mountain in 3D (starting out with mashed potatoes and ending up using
garbage, potting soil, plants, etc.). What he thereby discovers is that there is a
plateau (actually a UFO landing pad) on the backside of the mountain, which
the other receivers had failed to ascertain. This discovery of a new idea, result-
ing from building a richer, more detailed model of one’s obsession, has much
in common with what happens when one builds a simulated implementation
of a theory. While attempting to implement a simulation of a theory, one often
discovers novel system properties and novel system behaviors that the theory
actually entailed all along and that can then be empirically tested for in the
laboratory.

Each of the experimental measures discussed in chapter 3 is like a micro-
scope providing a particular two-dimensional perspective, or sketch, of the
full three-dimensional structure of perception and cognition. These two-
dimensional peeks into the actual system of interest provide useful pictures of
its function, but they lack the full volumetric feeling provided by a simulation.
The two-dimensional images provided by a few experimental measures can
occasionally neglect to reveal a striking anomaly hidden in the back of the
data structure, such as a plateau or even a UFO landing pad. With an approx-
imated simulation, one can get the full volumetric feeling of observing the
entire system in action and sometimes deduce those anomalies. But of course,
we must always remind ourselves that it is still just an approximated hypothe-
tical model of the actual system of interest.

Not unlike the allegory about the blind men and the elephant (where they
each touch a different part of the elephant and generalize attributes of that
part to the whole animal), trusting only one of those experimental measures
can give one a peculiar and probably skewed impression of the mind. The full
solution, which the original elephant allegory fails to provide, is that perhaps
the blind men should collaborate in sculpting a full 3D model of the elephant.
Further empirical exploration of the actual animal could then test the gen-
eralizations they had to make in simulating the elephant, and a duly revised
sculpture would then offer new and better generalizations to test. This cyclic
process of “fit data,” “predict new data,” “empirically test predictions,” “refit
data,” and so on, is precisely what the juxtaposition of chapters 3 and 4 is all
about (and what will be seen in much of chapters 6-10): the marriage of
experimentation and simulation.

Qualitative Transitions

In taking us away from simulations of mind that are based on logical rules
and discrete symbols (e.g., Anderson, 1983; Marcus, 2001; Pylyshyn, 1984),
and moving us toward simulations of mind that are more continuous and
dynamical, let us first explore how continuous systems can behave in ways
that could easily be mistaken as discretely symbolic and formally logical
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(Dietrich & Markman, 2003). One of the key phenomena in dynamical sys-
tems that allows them to approximate symbol-like processes is qualitative
transitions, such as bifurcations and phase transitions. Qualitative transitions
are seen in sigmoid curves (often called s-curves) all over nature. Sigmoid
curves like the one in figure 4.1 simultaneously exhibit the apparent sudden-
ness of a qualitative transition from one stable state to another, as well as the
actual smoothness of that transition itself. The transition is not instantaneous;
it has a nontrivial time course to it. In this time course one can find clues as to
how analog, continuous processes can often appear digital and discrete.
During the range of values along the horizontal axis where the hypothetical
quantity of some generic substance is no longer in state A but also neither
in state B, the state must be described as a form of graded titration of states A
and B.

The logistic function, figure 4.2, is an elegant symmetric model of a
generic s-curve-shaped process.! The logistic function is used in physics for
subatomic particle identification and event classification, in chemistry for sat-
uration processes, in biology for species population dynamics; the list goes on.
In statistics, to convert a log-likelihood ratio of two alternatives into a prob-
ability, one uses the logistic equation. In neuroscience, the logistic function is
used to approximate the average firing rate of a neuron (e.g., Britten et al.,
1992) as well as the probability of a neuron carrying out a single action poten-
tial (e.g., Burnod & Korn, 1989). The logistic function is also used in connec-
tionist simulations of a neuronlike unit summing its linear inputs and then
squashing that value to a range between 0 and 1 (see Rumelhart & McClelland,
1986a). And sigmoidal curves are routinely observed in “microgenetic” studies
of children in the process of transitioning from one developmental stage to
the next (see Siegler & Crowley, 1991).

“state B”

qualitative
transition

quantity

“state A”

time

Figure 4.1. A qualitative transition from one steady state to
another.
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Figure 4.2. The logistic function as a mathematical model
of a state transition.

Sigmoidlike curves in empirical data, and logistic functions fitting those
curves, are ubiquitous throughout science. And yet traditional cognitive psy-
chology has preferred to overidealize the qualitative transitions demonstrated
by sigmoid curves like this into discrete, logical, set-theoretic step functions
that categorically delineate one cognitive representation from another. In a
step function, like that in figure 4.3, the transition between category A and
category B is instantaneous. That is, the boundary between these two cate-
gories is treated as discrete, and no gray area is acknowledged to exist between

them (as in figure 4.1).
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Figure 4.3. The kind of state transition required by discrete

models of the mind.
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A Playground for Dynamics: The Logistic Map

The purpose of the following demonstration is twofold. First, it is intended to
walk the reader through the logistic map in a fashion that will perhaps make
clear why this simple little (yet deceptively powerful) iterated equation still
garners so much excitement and interest in the mathematical field of dynam-
ical systems. Second, in my own experience with reading about the logistic
map, it was rare that it was presented in a manner that made the math and the
graphs easy to understand. I hope that I have achieved a more easily under-
stood presentation in the following few pages, thereby perhaps convincing
some cognitive psychologists that the mathematics and data visualizations of
dynamical systems theory are not as opaque as they may have thought.

The derivative of the logistic function in figure 4.2 is solved as y * (1 — y).
Thus, the derivative is at its highest, 0.25, when x = 0 (and the curve’s slope is at
its steepest). The derivative approaches a steady 0 when x < —5 or x > 5 (where
the curve is quite flat). In the back-propagation learning algorithm for connec-
tionist networks (Rumelhart, Hinton, & Williams, 1982), which depends on the
logistic function for computing the activation of output units and hidden units,
this derivative, y * (1 — ), is used to scale the degree to which a unit’s error term
(desired output minus actual output, multiplied by the presynaptic unit’s activa-
tion) is allowed to change its incoming synaptic weights. Thus, a connectionist
unit that is near 0 or near 1.0 in its activation will actually be allowed to make
only very minor changes to its incoming synaptic weights, as the y * (1 — y) scal-
ing factor for weight changes will be near 0. Moreover, when the network’s learn-
ing rate (7 typically around 0.1) is included in this weight-change scaling factor,
m # y#* (1 — ), the actual weight changes implemented become minuscule.?

The interesting thing about this scaled derivative of the logistic function,
M * y#* (1 — y), is that it is exactly equivalent to the logistic map (equa-
tion 4.1), an iterative equation first developed in the mid-nineteenth century
by Belgian mathematician Pierre Verhulst for modeling population dynamics.
This unassuming, simple equation has a long history of revealing insight into
the multifarious time-dependent behavior that can result from a system
whose output becomes its next input, that is, a recurrent system. The logistic
map is now treated as the quintessential example of a complex dynamical sys-
tem whose temporal dynamics can transition from being characterized by sta-
ble states to being characterized by metastable states and eventually to chaotic
behavior (e.g., Davies, 1999; Killeen, 1989). The logistic map is an iterated
simulation of a continuous dynamical system in which the value of y at time ¢
is inserted back into the equation to produce the value of y at time ¢ + 1,
which is then inserted into the equation again to produce the next value of y,
and so on.

Vs =M*y % (1= y) (4.1)

As long as the growth factor, m) is between 0 and 4, y will have a minimum of
0 and a maximum of 1. The logistic map shows how a species population will
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Figure 4.4. Six runs of the logistic map: values of y over time, when n = 0.9.

increase at a rate proportional to its current population, but continued expan-
sion will be limited by the environment’s food resources, thus eventually
balancing the species into a relatively stable population number. For example,
when m = 0.9, the value of y will gradually approach 0 no matter what its
initial value is (figure 4.4). When m =2.9, the value of y will gradually
approach about 0.65—again, no matter what its initial value is (figure 4.5).
When m = 3.4, the value of y, no matter where it starts between 0 and 1, will
eventually oscillate between 0.84215 and 0.45196 indefinitely (figure 4.6).
Thus, somewhere between m=2.9 and m=3.4, this dynamical system’s
single attractor has bifurcated into two attractors. As m increases further, those
attractors bifurcate again and again. For example, when m = 3.55 (figure 4.7),
no matter what its initial conditions, the system eventually settles into a
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Figure 4.5. Four runs of the logistic map: values of y over time, when m = 2.9.
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Figure 4.6. Four runs of the logistic map: values of y over time, when n = 3.4.

metastable pattern with eight distinct and perfectly repeated attractors:
0.8874,0.3548, 0.8127, 0.5405, 0.8817, 0.3703, 0.8278, and 0.5060.

One particularly illustrative way to visualize this period doubling behav-
ior, where attractors split themselves into two, is by graphing a scatter plot of
multiple y values for every value of m (Feigenbaum, 1978). In the bifurcation
plot in figure 4.8, each value of m, at 0.01 increments, has plotted (as tiny dots)
the last 40 values of y from a 2,000-iteration run (i.e., the 1,961st through
the 2,000th time steps of y). The upper panel is the full bifurcation plot for
0 <m <4, and the lower panel is a zoom-in for 2.9 < m < 3.75. Notice in the
upper panel of figure 4.8 that with values of m that are << 3, those 40 y values
all land right on top of each other. When 3 < m < 3.448, 20 of the y values
land on top of each other in one spot and the other 20 land on top of each
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Figure 4.7. Two runs of the logistic map: values of y over time, when m = 3.55.
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other in another spot. When m = 3.449, those two points each split, or bifur-
cate, into two more—making four distinct attractors (distinguishable at the
fourth decimal place of y). With slightly higher values of m, those four attrac-
tors then bifurcate into 8, and so on, until around 32 attractors, where the dis-
tinctness becomes difficult to discern (figure 4.8, lower panel). When n > 3.57,
the clustering of 40 y values is generally much less apparent. What this
amounts to is that in both panels of figure 4.8, the punctate y values at a par-
ticular value of m (forming clear black lines amid a white background) are
highly specific point attractors, and the somewhat loosely clustered y values
(looking a bit like curving dark contours within the black mass) indicate more
graded and fuzzy attractor basins.

A particularly interesting phenomenon happens at this transition region
between order and chaos, about 3.6 < m < 3.86, as the system exhibits quasi-
periodicity (or a type of pattern called intermittency, which is equivalent to
the 1/f noise discussed in chapter 3, see Manneville, 1980), where very subtle
variations in the control parameter, 1, can make the difference between
strictly periodic behavior and fully chaotic behavior. This intermittency
behavior is the hallmark of a system at the edge between stable predictable
order and genuinely unpredictable (though still deterministic) chaos. For
example, note the gaps amid the chaos (those vertical white bands amid the
black mass in both panels of figure 4.8). When 3.829 < m < 3.857 (figure 4.8,
upper panel), the system is not chaotic at all. In fact, it is quite ordered with
three attractors: around 0.15, 0.50, and 0.96. (Similar periodic regions emerge
from the chaos around n = 3.63 and m} = 3.74; figure 4.8, lower panel.) As 1
increases barely beyond 3.857, each of those three attractors bifurcates,
making the system period six. Then those bifurcate, and the system quickly
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becomes chaotic again. In fact, when 3.86 < m < 4, the trajectory of y over
time becomes so chaotic and unpredictable that despite the equation being
completely deterministic, it can legitimately be used as a random number
generator (Ulam & Von Neumann, 1947).

Finally, another hallmark property of self-organizing recurrent systems,
like the logistic map, is fractal structure. Note the self-similar (i.e., fractal)
nature of how the shape of each tiny bifurcation resembles the shape of the
larger ones. At different spatial scales, across multiple orders of magnitude,
the logistic map exhibits the same general layout of curvilinear bifurcations
leading to similar curvilinear bifurcations as a function of the parameter .
Fractal structure like this can be seen all over nature by looking at multiple
spatial scales of coastlines, mountain ranges, trees, even the human vascular
system.

A Proving Ground for Dynamics: Attractors,
Networks, and Attractor Networks

If a simple equation like the logistic map can produce behavior as complex as
that just described, imagine what can result from dynamical equations with a
few more parameters or artificial neural network models that often involve
several parameters. Imagine the complexity of behavior that might result
from a human brain with billions of neurons and trillions of synapses.

Many of those involved in the dynamical approach to perception, action,
and cognition see the goals of the field as fundamentally continuous with the
goals of the physical sciences (see Turvey & Carello, 1995; van Gelder, 1999;
Ward, 2002): to develop compact universal descriptions of the behavior of
systems—usually in the form of dynamical equations. This approach typically
entails discovering principled single-valued functions that refer to collective
variables, and fitting those functions to a broad but cohesive set of related
behaviors (Thelen, 1995; Turvey & Carello, 1995). For example, in furthering
Gibson’s (1979) mission to define psychology’s domain of interest as the cou-
pled subsystems of organism and environment (rather than just the brain),
Turvey and colleagues (e.g., Barac-Cikoja & Turvey, 1991, 1993; Fitzpatrick,
Carello, & Turvey, 1994; Pagano & Turvey, 1993) have reported a number of
rich descriptions of haptic (specifically, dynamic touch) perception in which
the perceived size or length of unseen objects is accounted for by equations
based solely on parameters derived from the dimensions of the objects and
limbs themselves—no explicit reference to internal muscular, sensory, or
cognitive parameters is required. The same general approach of discovering
collective variables that can serve as single-valued functions of behavior is also
evident in the work of Kelso and colleagues on interlimb rhythmic coordina-
tion (e.g., Haken, Kelso, & Bunz, 1985; Kelso, 1995; Kelso, Scholz, & Shoner,
1986). These two bodies of work are discussed in some detail in chapter 9, on
the dynamics of motor movement.
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Dynamical systems equations that define attractors in particular locations
of a state space or of a phase space are probably best treated as complementary
to dynamical neural network simulations, rather than adversarial to them (see
Bechtel & Abrahamsen, 2002; Horgan & Tienson, 1996; Smith & Samuelson,
2003). However, dynamical equations are occasionally offered as the only appro-
priate level of description for perception, action, and cognition, accompanied
by the suggestion that descriptions at the level of neurons or neural assemblies
is unlikely to prove fruitful. This kind of claim is often made on the grounds that
what’s good enough for physics should be good enough for psychology. To take
a simple example, consider Newton’s law of universal gravitation for the force of
attraction between two bodies: F = G(m;m,/ r?). Combined with an accelera-
tion function, this simple equation can describe the highly complex motions of
a congregation of multiple objects orbiting one another. Arguably, this kind of
equation-based account for complex phenomena has been good enough for
physics for hundreds of years. So, what makes psychology think it needs some-
thing better than what physics has subsisted on for so long?

The problem is that as of yet, physics has come up with no coherent
agreed-on understanding of what gravity is made up of and what causes it to
work the way it does. Physicists are stuck with the equations at that particular
descriptive level. Contrary to popular belief, they are not actually content with
that good enough state of affairs. Indeed, a genuine understanding of what
gravity really is could in principle resolve some of the glaring conflicts
between Newtonian gravity and Einstein’s special relativity. The fundamental
problem is that the rich description, and even relatively accurate prediction,
provided by the equations still does not explain how gravity exerts its attrac-
tion.® With only a descriptive account—such that gravity is understood merely
as a constant that is required to make the equation work, with no clear linking
hypothesis between the behavior (motion) and the substrate (gravity)—the
opportunities to find connections to potentially related phenomena, resolve
theoretical and empirical conflicts, and thus build a more broadly applicable
theory, are severely limited.

To finally bring this poor belabored physics analogy to its conclusion and
put it out of your misery, in the case of the cognitive and neural sciences, we
actually do know something about the substrate that contributes to human
behavior. Physics may not have found its graviton yet, but psychology has
found its brain. Primate neurophysiology, human neuroanatomy, and cogni-
tive neuroscience provide a wealth of knowledge for constraining theoretical
accounts of “how minds happen.” Therefore, there is no justification for
avoiding the link between mind and brain. (Note that I did not say “the
explaining away of mind by brain,” as body and environment are also crucial;
see chapter 11.) Computational neuroscience in general (e.g., Dayan &
Abbott, 2005; O’Reilly & Munakata, 2000; Trappenberg, 2002), and attractor
networks in particular (e.g., Amit, 1989) offer a way to bridge the gap between
the abstract concepts of attractor spaces and the concrete physical material of
brains that are inside bodies that are inside environments.
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One very popular artificial neural network that functions as a dynamical
system is the simple recurrent network (e.g., Christiansen & Chater, 1999;
Cleeremans, Servan-Schreiber, & McClelland, 1989; Elman, 1990, 1991;
Rodriguez, Wiles, & Elman, 1999). This network architecture has much in
common with traditional three-layer feedforward back-propagation connec-
tionist networks (for reviews, see Bechtel & Abrahamson, 2002; Rogers &
McClelland, 2004; Rumelhart & McClelland, 1986a). The labeled input nodes
get their activations set by the experimenter, each unlabeled hidden node in
the middle layer calculates its activation as a weighted sum of the input nodes
(and then squashed by the logistic function), and the labeled output nodes
calculate their activations as a weighted sum of the hidden node activations
(also then squashed by the logistic function). Distributed patterns of activa-
tion in the hidden layer function a bit like the neuronal population codes dis-
cussed in chapter 1, except the nodes are not connected to each other. The
simple recurrent network, however, has two very important alterations on
that scheme. See figure 4.9. First, instead of the output layer’s target activation
being an arbitrary pattern to be associated with the input pattern, in a simple
recurrent network, the output activation pattern is usually treated as a predic-
tion of the next input pattern. This allows the network to use the “supervised”
back-propagation learning algorithm without really needing an explicit “teach-
ing signal.” That is, instead of having a hypothetical teacher provide the net-
work with an example of the desired output activation pattern with which to
compute an error term by comparing the teaching signal with its actual out-
put, the network need simply “listen” to the next input and compare that to its
prediction. By using prediction-based learning, the system can internalize the
structure of a time-dependent signal by eavesdropping on it, without requiring
any explicit negative evidence from the signal source at all (see Spivey-
Knowlton & Saffran, 1995). The second alteration that a simple recurrent net-
work (SRN) involves is the adding of a context layer of units that is connected
to the hidden layer, which copies the hidden layer activations and loops them
back into the hidden layer as reentrant feedback on the next time step. This
allows the network to base its predictions on a weighted combination of the
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Figure 4.9. The basic architecture of the simple recurrent
network (Elman, 1990).
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past few time steps. (In contrast to the usual tactic of dimensionality reduc-
tion in most feedforward connectionist networks, SRNs usually have more
hidden nodes than input nodes, as they must encode multiple time steps’
worth of information.)

By examining the regions visited in the hidden layer’s state space (with
hierarchical cluster analysis, Elman, 1990, or with principal component analy-
sis, Elman, 1991), one can observe how the network’s internalization of a
sequence of inputs, such as a sentence, consists of a trajectory moving from
one attractor basin to another to another, and so on. Strictly speaking, how-
ever, it is not so much a continuous trajectory as a series of “teleportations” in
state space, each triggered by an input pattern (and modulated by the context
layer’s influence on the hidden layer). The hidden layer does not spend any
time in the intermediate regions between the locations that it visits in state
space; it just blinks out from one location and reappears in another (in the
form of a newly calculated activation pattern). Each input pattern triggers one
projection into state space, and the system stays there until the next input
pattern projects the system into a new location in its state space (but see
Pearlmutter, 1995, and Tabor, Juliano, & Tanenhaus, 1997, for iterations of
processing that take place in between input-induced projections into state
space). Thus the SRN’s temporal dynamics are somewhat coarse and staccato
when compared to the ideal of a continuous trajectory through state space
and time. Nonetheless, because an SRN is focused on temporal patterns, it
displays a useful kind of dynamics as long as input continues to be fed into it.

The amalgam of information in the context layer, accumulated over
several time steps, has been referred to as a kind of gestalt (St. John, 1992).
However, if you look at the math of the context nodes combining with the
hidden nodes’ feedforward input, and then being copied back onto the con-
text layer, it’s not actually more than the sum of its parts at all. In fact, it is
exactly the sum of its parts. The place where true gestalten become relevant is
when a not-so-simple recurrent network (such as a Hopfield net) is allowed to
settle toward an attractor over the course of several time steps, irrespective of
external input, as in the case of fully recurrent networks. When the state of the
system is allowed to gravitate in its dynamic field, as it were, toward an inter-
nalization of the input that does not actually match a veridical version of the
sensory input (as in the case of pattern completion, see chapter 1), then
the system’s encoding of the sensory input can genuinely be referred to as
constructing a gestalt (see Kohler, 1922/1938).

Although the temporal dynamics of an SRN’s input processing is com-
prised of rather large jumps in state space, its changes in weight space during
learning are certainly sufficiently small to allow for the mapping of a relatively
continuous trajectory through the energy landscape of the weight space. This
allows one to depict the gradient descent of the network’s synaptic connectivity
from a state exhibiting poor predictions to a state exhibiting good predictions.
Thus, although they may not be ideal for simulating the temporal dynamics of
pattern completion kinds of phenomena during real-time processing, SRNs
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are perfect for simulating the continuous perceptual and cognitive changes
that take place over the time scale of learning (Elman et al., 1996).

When I teach my undergraduates to program an SRN from scratch in
MATLAB, I am fond of telling them, “There’s nothing simple about a simple
recurrent network.” It is probably the most difficult assignment in the course.
But in truth, compared to fully recurrent networks, SRNs are rather simple.
Fully recurrent networks introduce a host of complex details concerning the
(synchronous or asynchronous) activation update schedule (see Amit, 1989),
how far to propagate error with the learning algorithm (see Beer, 1995;
Pearlmutter, 1989, 1995), whether to use averaged firing rates as activation
values or to use spiking neurons (see Maass, Natschldger, & Markram, 2002),
and how to interpret the psychological relevance of their activation patterns
over time (Zemel & Mozer, 2001). However, the most relevant property exhi-
bited by fully recurrent networks, for the purposes here, is that they spread
their activation throughout the network over the course of multiple time steps
even after the designated input pattern has ceased being presented. Thus they
are perfect for simulating and examining the temporal dynamics of a pattern
completion process during real-time processing.

A Hopfield network (Hopfield, 1982) is a fully and symmetrically inter-
connected set of neuronlike units with no designation of input or output
layers (see figure 4.10). An external source of input sets the initial activation
values for all the units, and then the synaptic weights pass the activation all
around (via a random activation update schedule using a binary linear activa-
tion threshold) until the network settles into a stable state. Hinton et al. (1993)
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have used a Hopfield network as part of their neural network simulations of
different forms of dyslexia. Similarly, McRae, de Sa, and Seidenberg (1997; see
also McRae et al., 1999) used a Hopfield network to simulate semantic prim-
ing effects in psycholinguistic experiments. An important feature that fully
recurrent networks exhibit—and one that is not shared by SRNs—is the fact
that one can measure reaction times from the system by simply recording how
many time steps it takes to reach a specified level of stability. Calculating such
reaction times from feedforward networks is possible, but less straight-
forward, typically involving additional parameters for determining cascaded
activation flow (see Cohen, Dunbar, & McClelland, 1990). How long the
network takes to settle into its various attractor basins for a range of different
initial input vectors will often correspond well with how long a human subject
takes to respond to a range of different laboratory stimuli (e.g., Hinton et al.,
1993; Masson, 1991; McRae et al., 1997; see also Usher & McClelland, 2001).

Closely related to the Hopfield net is the Boltzmann machine. The
Boltzmann machine was named after the physicist who developed the entropy
equations that describe the diffusion of heat through a metal plate from a
single heat transference contact point. (Interestingly, variants of these same
entropy equations have been used in information theory for several decades
now; Shannon & Weaver, 1949.) As with a Hopfield net, a Boltzmann machine
is fully interconnected; however, some nodes can be designated as input, out-
put, or hidden. Moreover, the activation threshold is stochastic rather than
linear, such that the summed input to a node is converted into the probability
that the node will be in a 0 activation state or a 1.0 activation state. Kawamoto
(1993; see also Cottrell, 1989) used a Boltzmann machine to simulate the non-
linear state space trajectories that a written word recognition network follows
in the process of settling on a unique interpretation of an ambiguous word
like rose, as a verb or a noun, or like bug, as referring to an insect or a spy
device (see chapter 7).

A number of other types of attractorlike networks have been developed to
study perceptual/cognitive phenomena like pattern completion (Grossberg,
1980), categorical perception (Anderson et al., 1977), visual masking (Turvey,
1973), memory (Little & Shaw, 1975), to name just a few. The many different
attractor network types have their individual strengths for certain applica-
tions and weaknesses for others (see Amit, 1989). Many of the attractor
networks mentioned so far rely on distributed representations, such that the
mental representations of interest are instantiated by diffuse patterns of acti-
vation across multiple nodes in the network, for example, the feature nodes
that comprise a concept (McRae et al., 1997).

There is another type of attractorlike network that usually has more
limited connectivity than Hopfield nets or Boltzmann machines, and it is often
referred to as a localist attractor network. A localist attractor network, as I will
broadly and inclusively treat it, can include multiple levels of representation
(e.g., lexical, phonemic, and subphonemic, or scenes, objects, and object
parts), but the different levels will typically be treated by somewhat separate
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vectors of network nodes. Within the lexical vector, for example, individual
nodes will be devoted to individual words, whereas within the subphonemic
vector, individual nodes will be devoted to individual phonetic features. Thus,
the “representations of interest” within the subphonemic layer of the network
will still correspond to individual nodes. This makes the behavior of localist
attractor networks considerably easier to interpret and track over time than
that of distributed attractor networks; moreover, they are much less likely to
exhibit spurious or inappropriate attractors (Zemel & Mozer, 2001). I will
loosely include a number of spreading-activation networks in this category of
localist attractor networks. For example, spreading-activation types of models,
such as interactive-activation (Grainger & Jacobs, 1998, 1999; McClelland &
Rumelhart, 1981; McClelland & Elman, 1986; Rumelhart & McClelland, 1982;
see also Dell, 1986, for a similar kind of network), use nodes whose content is
easily identified, thus allowing the network’s state to be easily described at any
moment in time. Notably, such networks spend a great deal of their time in
intermediate, multifariously interpretable, regions of their state space, on the
way toward some uniquely identifiable state in which only a perfectly consis-
tent set of nodes is active—much like what was argued for how the mind
works in chapters 1 and 2. One drawback of most localist attractor network
simulations of perception and cognition is that the setting of synaptic weights
and other parameters is often carried out “by hand” rather than by using a
principled arrangement of weights or a learning algorithm (but see Zemel &
Mozer, 2001). This makes them less useful for simulating dynamics over
developmental time. However, the focus of this book is on temporal dynamics
of real-time processing, at the scale of seconds and milliseconds, so this weak-
ness of localist attractor networks is somewhat less relevant to the present
purposes.

A Demonstration Arena for Probabilistic Dynamic
Competition: Normalized Recurrence

Compared to distributed attractor networks, localist attractor networks are
one step further abstracted from the real neurophysiology, because they
overidealize mental representations as instantiated by individual nodes. This
makes them a somewhat shorter bridge between psychology and neuroscience—
thus requiring longer leaps of inference between the two. But in some ways,
simpler is better when it comes to modeling the mind because as one’s model
gets too large and unwieldy, it risks becoming as opaque as the subject
it is intended to reveal. Indeed, some network modelers have resorted to run-
ning experiments on their elaborate, convoluted networks in the same man-
ner that psychologists run experiments on humans, as their sole method of
figuring out how the model works! In any case, building the theory bridge
between mind and brain clearly requires multiple partially overlapping frame-
works (e.g., computational neuroscience, localist attractor networks, parallel
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distributed processing networks, and dynamical systems; see Spencer & Thelen,
2003) that can maintain connections to one another and stand as a contigu-
ous fabric of mutually consistent simulations that will allow future genera-
tions to safely walk between psychology and neuroscience without having to
take too many risky speculative leaps.

In the following pages, I describe a localist attractor network architecture
(normalized recurrence) that—because of its extreme simplicity—I do not call
amodel per se. This competition algorithm exhibits a kind of temporal dynam-
ics, resulting from continuous and recurrent information integration, that
resembles the temporal dynamics observed in categorization experiments
(chapter 6), language comprehension experiments (chapter 7), and visual search
experiments (chapter 8), but it does not make any explicit architectural or rep-
resentational claims about the mind. It simulates process, not content. Its only
assumptions are the following: (1) that disparate information sources in percep-
tion and cognition are continuously integrated (rather than temporarily encap-
sulated from one another by stages or modules), and thus must share a common
format of representation (perhaps neural population codes—for which the
localist nodes are a kind of shorthand); and (2) that reentrant neural projections
facilitate a recurrence in information flow that allows partially integrated infor-
mation to bias the initial processing of incoming afferent sensory input.

The equations for this competition algorithm are simple enough, and
there are few enough parameters, that it serves as a useful introduction to
implemented dynamical simulations of perceptual/cognitive processes that
readers can write themselves in MATLAB, for example, in just a few lines of
code. MATLAB code for several example simulations reported throughout
this book is included in the appendix.

Normalized recurrence can be treated as a localist attractor network that
allows disparate formats of information to be combined in the form of prob-
abilities with which their various biases would support a set of enumerated
outputs (McRae, Spivey-Knowlton, & Tanenhaus, 1998; Spivey et al., 2002a;
Spivey & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, & Hanna, 2000).
Those outputs can be a set of perceptual interpretations, cognitive decisions,
or motor actions. One can think of them as attractors that have been plucked
out of their high-dimensional state space and converted into the dimensions
of a lower dimensional “attractor space” (not unlike figure 2.5 in chapter 2).
The pattern of probabilistic activations across the output layer of the norma-
lized recurrence network can be treated as a location in that attractor space.
See figure 4.11. This unfairly treats all the attractors as equidistant from one
another (which is unlikely to be true about the brain); however, this drawback
is often outweighed by the expository benefits of normalized recurrence.
Think of it as if one has taken a distributed system’s current coordinates in
state space and computed the proximity to all relevant point attractors (or
neural population codes) in the state space. Normalize these proximity values,
so that they sum to 1.0, and you have the profile of a probabilistic mental
state—as described in chapter 2.
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Figure 4.11. Basic architecture of the normalized
recurrence localist attractor network.

Normalized recurrence is intended at a level abstraction significantly
removed from the real dynamics of actual neurons and synapses. Although it is
helpful to depict it in the connectionist style of circles for units and connecting
lines for synapses, it is not even as neurophysiologically plausible as the typical
connectionist network. It does not employ distributed representations, and it
does not have any learning algorithm at all. The system’s focus on real-time
dynamics is consistent with this book’s emphasis on perceptual/cognitive pro-
cessing time scales rather than developmental time scales (e.g., Elman et al.,
1996; Thelen & Smith, 1994). The synaptic weights, if they need to be varied,
must be set by hand, as is done in interactive activation types of networks (e.g.,
Burton, 1994; Dell, 1986; Grainger & Jacobs, 1999; McClelland & Rumelhart,
1981; Page, 2000; Rumelhart & McClelland, 1982; van Heuven et al., 2001; see
also McClelland & Elman, 1986). Perhaps what most glaringly deviates from
neurophysiological plausibility in normalized recurrence, as will be seen, is the
use of multiplicative feedback from the output layer to the individual input
layers. Although multiplicative synapses have been reported in the electro-
physiology literature (see Bugmann, 1992), they do not appear to be the norm.

Probabilism in Normalized Recurrence

The most important aspect of this generic simulation system is its probabilism.
Probabilistic representations, such as those used in the fuzzy logical model of
perception (Massaro, 1989), allow the enhancement of activation of behav-
iorally relevant information to be complementary and commensurate with
the suppression of activation of behaviorally irrelevant information (see also
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Rumelhart, 1970). In fact, even if enhancement and suppression were some-
how two independent mechanisms in perception/cognition (e.g., Gernsbacher,
1990; Posner & Cohen, 1984), an assessment of the probabilities of the possible
behavioral outputs (as well as any associated internal representations) at any
one point in time would necessarily have enhancement and suppression result
in a zero-sum game. It is exactly this assessment of probabilities that provides
the starting point for motivating the design of normalized recurrence.

One of the primary reasons to use probabilistic activation values is that
they eschew any notion of processing resources, something that has been criti-
cized as a fast and loose wild card for cognitive psychologists for decades (see
Allport, 1989; Morrison, 1984; Navon, 1984; Palmer, 1995). There are several
problems with the notion of processing resources or processing capacity. The
notion was first invoked to account for the results of dual-task paradigms,
where simultaneous performance on two easy tasks (i.e., tasks that require few
processing resources) is not compromised, but simultaneous performance on
two hard tasks (i.e., tasks that require many processing resources) is compro-
mised. Clearly, the definition of a hard task and the definition of a task whose
performance is compromised in a dual-task paradigm becomes a circular argu-
ment very quickly. (Besides, these kinds of results are accommodated by a prob-
abilistic activation scheme, e.g., see the visual search simulations in chapter 8.)

This perspective owes much to the traditional bottleneck theories of
information processing (Broadbent, 1958; Treisman, 1964), where it was
assumed that early perceptual processes superficially encoded the entire stim-
ulus input. At a later (more cognitive) stage, attention with its limited process-
ing capacity filtered the inputs to allow complex information processing to be
performed on only a (manageable) restricted set of the input. Since then, this
perspective has received increased critical scrutiny (e.g., Allport, 1989).

One of the biggest problems introduced by the notion of processing
resources is the assumption that when the system as a whole is not being
severely taxed, there are extra, unused resources waiting to be deployed. This
implies that there is a storehouse in the brain from which these processing
resources are doled out, and where the system’s capacity, or “metabolic budget,”
is constantly tabulated. To my knowledge, no such storehouse, or accounting
executive, has ever been convincingly localized in the brain.

Further support for probabilism and against unbounded or raw activa-
tion values is seen in recent neurophysiological data and modeling suggesting
that normalized activations are in fact an appropriate format for representing
the firing rates of neurons in the primary visual cortex of the macaque mon-
key (Carandini & Heeger, 1994). Basically, when a neuron is receiving a fixed
amount of afferent excitatory input, its firing rate is high if few of its neigh-
boring neurons are also active, and its firing rate is low if many of its neigh-
boring neurons are also active. Whether this is due to intracortical inhibition
(Carandini, Heeger, & Movshon, 1997) or to synaptic depression from the
thalamus (Carandini, Heeger, & Senn, 2002), it winds up being equivalent to
a linear summation procedure followed by a normalization procedure.
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Thus, theoretical and experimental observations are consistent with a
perspective in which the notion of limited processing capacity, at all levels of
analysis in the perceptual/cognitive system, is best explained (or perhaps
explained away) by normalized activations. Note, however, that just because
these activations are normalized does not mean that the mind is computing
the probability of a given stimulus belonging to a particular category. That
would require a great deal more adherence to Bayesian probability theory
than mere normalization to a sum of 1.0. The sense in which normalized
recurrence treats these activations of the output layer as probabilities is in the
claim that they represent “the probability that the mind will trigger a motor
action that is associated with a particular stimulus category.” That is directly
stipulated in how the normalized activations of the output layer are mapped
onto proportions of the available responses in human data.

Localist Representations in Normalized Recurrence

Once raw amounts of stimulus salience have been replaced by probabilistic
values of stimulus salience, there still remains the problem of how to instanti-
ate these probabilities. It seems unavoidable that the way the brain instantiates
any complex concept, word, or object is in the form of distributed patterns of
activation (e.g., Hinton, McClelland, & Rumelhart, 1986) or sparse “popula-
tion codes” (e.g., Georgopoulos, 1995; Olshausen & Field, 2004; Pouget et al.,
2000; Young & Yamane, 1992; see also chapters 1 and 2). However, this does
not mean that the only way to simulate such mental entities is in terms of
many interconnected nodes encoding microfeatures (Hinton, 1981). For
example, there is little or no difference, in principle, between 9 out of the 10
microfeatures for a concept being digitally activated and having a single local-
ist node for that concept set at 0.9 activation (see Hopfield, 1984). In fact,
some findings in the psycholinguistics of word recognition are consistent with
the idea that lexical representations may indeed be reasonably treated as “func-
tionally unitized” or localist in format (e.g., Bowers, 2002; Stone & Van Orden,
1989). These different levels of description should be seen as complementary;,
not mutually exclusive (Smolensky, 1988a).

One place where localist representations have proven quite useful is in
Dell’s (1986) spreading activation model of sentence production. In this
model, phonological features, syllables, words, and syntactic categories are all
given idealized representations as individual nodes. With explicitly repre-
sented nodes for each of these levels of description, Dell’s model exhibits
the same patterns of speech errors that are seen in human data, including
anticipation and perseveration of phonemes, phoneme clusters, syllables, and
morphemes (Dell & Reich, 1981).

One of the practical benefits of modeling with localist representations is
that the state of the system at any one point in time is typically quite transparent,
as opposed to the patterns of activation in a fully distributed representation,
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which can often be quite difficult to interpret (Hinton et al., 1986). For exam-
ple, if a system with localist representation is at a bifurcation point between
two mutually exclusive states, this will generally be quite apparent, in that the
nodes representing those two states will have high and nearly equal activa-
tions. In a system with distributed representations, it is difficult enough to
identify diffuse patterns of activations with their attractor basins, but identi-
fying the state of the system (at time ) when it is at a bifurcation point between
attractors is even more daunting.

Additionally, when the model’s architecture forces these localist pro-
babilistic perceptual representations to correspond to particular response cate-
gories, it provides a powerful task-specific constraint on processing. Response
categories that are not allowed by the task or are not availed by the organism
cannot have their associated perceptual representations instantiated by this
system. This architectural constraint enforces a rather strict (perhaps too strict)
form of embodiment and situatedness of cognition (e.g., Ballard, Hayhoe,
Pook, & Rao, 1997; Glenberg, 1997; Greeno, 1998; Harnad, 1993). That is,
the model cannot conceive of things on which it cannot potentially act.
Nonetheless, with enough perceptual inputs brought to bear on a given set of
possible response categories, some quite complex emergent properties can
become apparent in this mapping of perception to action. Thus, in this frame-
work, cognition may be viewed not as a separate set of static symbols and rules
that this model dares to ignore but as the complex dynamic processing that
emerges between perception and action, grounded in (and parasitic on) the
representational formats of both (see Barsalou, 1999; Jones & Smith, 1993).

Integration in Normalized Recurrence

At this point, having committed to probabilistic and localist representations,
perhaps it would help to offer some concrete examples of this notion of prob-
abilistic salience values of localist representations. Take, for example, the vari-
ous factors that might go into choosing a beer at a restaurant. For simplicity,
let’s examine only the beer’s flavor and affordability (we will ignore beer foam
decay rates for now, but see Dale et al., 1999; Leike, 2002). In terms of flavor,
one might have normalized salience values like that in figure 4.12a. In terms of
affordability, one might have normalized salience values like that in figure
4.12b. Note that these two feature vectors (which can act as input layers for a
normalized recurrence simulation) are somewhat at odds with one another.
The flavor vector is biased toward Franziskaner and Guinness, and against
Sam Adams and Pabst Blue Ribbon. In contrast, the affordability vector
(based on prices in the United States) is biased toward Pabst Blue Ribbon and
Sam Adams and against Guinness and Franziskaner. If money were of no con-
cern, then the flavor vector could be used as the sole determinant of the beer
selection. However, if money were the sole concern, then the affordability
vector would be used to determine beer selection. But usually both money and
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Figure 4.12. Values for feature vectors in a toy simulation.

enjoyment are of significant concern. So how does one integrate these
competing biases?

Once an activation regime (probabilistic) and a representational medium
(localist) have been chosen, it still remains to be determined exactly how the
different sources of information are to be integrated. Because they are
designed as vectors of equal size, one obvious solution would be to combine
them in a pointwise fashion. Because they are a little bit like actual probabili-
ties, one might consider multiplying them (i.e., a dot-product) and renormal-
izing them in a fashion similar to Bayes’s theorem (see Massaro, 1989).
However, if the eventual goal is to simulate temporal dynamics, by applying
the operation iteratively with some form of recurrence, it takes only a few
exploratory pilot simulations to demonstrate that this general approach set-
tles onto a single alternative extremely quickly—usually within two or three
iterations. Such a narrow range of attractor settling times would certainly not
provide sufficient temporal resolution for approximating real-time data, such
as reaction times. Perhaps a better solution would be to simply sum the two
vectors.

Vector sum methods have been employed for a wide range of psychologi-
cal phenomena. For example, Kinchla (1974) used Gaussian (i.e., normally
distributed) noise with a vector sum to simulate accuracy data in visual
search, and N. Anderson (1964; see also Anderson, 1996) summed differen-
tially weighted vectors to simulate performance in a sequential number aver-
aging task. In Kinchla’s model, which was derived from signal detection theory
(Green & Swets, 1966), the weights that were applied to the vector always
summed to 1.0 (making it a weighted average). This allowed the model’s
outputs, for example “target present” versus “target absent” in Kinchla’s case,
to be a probabilistic pair of values that could be fed into a Gaussian random
decision rule.

Although the inputs to this kind of one-step integration method can be
made to change over time, the integration method itself does not provide any-
thing in the way of temporal dynamics. A vector sum model, in which mutu-
ally exclusive representations compete with one another over time, can provide
exactly the kind of temporal dynamics necessary for reaction time data, but it
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needs some additional components to get those dynamics. There are many
ways for representations to compete with one another. They could each grad-
ually accumulate their evidence and independently race against one another
toward their respective criteria, as in Ratcliff’s (1981, 1985) diffusion model, a
random walk process that integrates principles from signal detection theory,
usually with the goal of simulating reaction times. Or activation can be con-
tinuously fed forward through a series of hierarchical processing levels that
allows the system to combine and accumulate information for simulating
accuracy (and d-prime) at different points in time, as in McClelland’s (1979)
cascade model. Similarly, with an architecture like that in figure 4.11, the acti-
vations of the representations can be computed in a feedforward fashion as
localist nodes that then, within a processing level, produce autofacilitation
and exert mutual inhibition until one node reaches some criterion level of
supremacy, with the number of competition cycles mapping onto reaction
time (Spivey-Knowlton, 1994).

These kinds of algorithms, however, assume that the feature (input) vec-
tors do not change over time during competition; only the integration vector
changes. By contrast, in the interactive-activation model (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982), a bank of inputs (i.e.,
letters) activates a bank of higher-level representations (i.e., words), which
then feedback to further activate the input bank. This cyclic recurrence in
information transfer allows converging biases from both levels of representa-
tion to eventually settle on a coherent encoding of the input. Importantly, in
the case of the normalized recurrence arrangement, simple additive feedback
from the output layer to the input layers would not be sufficient to eventually
propel the network into a unique attractor basin (with all the nodes in each
vector near 0 activation, except for one of them near 1.0 activation). A multi-
plicative feedback rule (in which the amount of activation added to an input
node is the product of the corresponding integration node’s activation and
the amount of activation most recently passed to it by that input node) allows
the averaged biases that have resulted at the integration vector to “reward” the
corresponding input nodes commensurately with how responsible they were
for producing those averaged biases in the first place. After sending this feed-
back to all the input nodes, the next thing to do is renormalize the feature vec-
tors, so that they sum to 1.0 again, as the next competition cycle (time step)
begins. This regime of operations within a cycle—normalize input (feature)
layer, compute weighted average at output (integration) layer, send feedback
to input later—typically yields settling times in the range of dozens of itera-
tions; a temporal resolution that should be sufficient for approximating
reaction times.

Combining the model characteristics discussed thus far yields a generic
computational architecture that exhibits probabilistic activations of localist
representations and employs a vector sum (on the feedforward step) for inte-
gration, with multiplicative recurrence (on the feedback step) for temporal
dynamics. In normalized recurrence, representations compete with one another
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over time. This provides simulations of reaction times, eye movement
patterns, as well as accuracy data at specified temporal intervals.

The Algorithm

Normalized recurrence (McRae et al., 1998; Spivey-Knowlton, 1996; Spivey
et al., 2002a; Spivey & Tanenhaus, 1998; Tanenhaus et al., 2000) is a computa-
tional architecture that bears similarities with McClelland and Rumelhart’s
(1981) interactive-activation architecture, except that there are multiple input
vectors, which I call constraint vectors, and the recurrence is restricted to feed-
back from the integration vector to the individual constraint vectors. That is,
the cinput constraints, shown as feature vectors (F,) do not have direct cross-
talk with one another (see figure 4.11), but the feedback from the integration
vector (I) produces an indirect cross-talk between constraints.

Rather than squeezing it all into one long, ugly equation, it is perhaps
more easily grasped as a series of small steps to be carried out within one iter-
ation. Normalized recurrence allows representations to (implicitly) compete
with one another by dividing each individual feature-vector activation by the
sum of that vector (equation 4.2). This forces the elements within that vector
to share the limited resources of the probability space.

F(norm) = F_/XF, (4.2)

The integration vector (I) is simply recomputed at each cycle as the weighted
sum of the constraint vectors (equation 4.3). The weights (w) can be set to
each equal 1.0 (Spivey-Knowlton, 1996), they can be set to each equal 1/c
(Spivey & Tanenhaus, 1998), or they can be independently estimated by
curve-fitting off-line norming data (with Xw_= 1.0), and then those same
weights can be used to simulate real-time data (McRae et al., 1998).

[ =Zw_F (norm) (4.3)

This weighted sum is then normalized in the integration vector (equation 4.4,
a simpler version of the softmax activation function; see Bridle, 1990), as was
done in the constraint vectors, to result in approximated probabilities of each
possible response category. Of course, if the weights sum to 1, equation 4.4 is
actually unnecessary because multiplying constraint vectors that sum to 1 by
weights that sum to 1 would automatically result in an integration vector that
sums to 1. However, in some circumstances, you might want the weights of
the input vectors to each equal 1.0 (Spivey-Knowlton, 1996), in which case the
normalization exacted by equation 4.4 is crucial.

I(norm) = I/ZI (4.4)
The feedback from the integration vector back to each constraint vector is

equal to the activation of each integration vector element multiplied by the
weighted input it received up that particular pathway, added to the current
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activation of the corresponding element in a constraint vector (equation 4.5).
Opver the course of many iterations, this feedback process allows the emerging
interpretation resulting from the (weighted) average of the c feature vectors to
gradually coerce each individual feature vector (even those that are biased
quite differently from the average) to warp its activation pattern into a form
that supports the developing consensus. Thus, as the integration vector is
approaching a moderately confident singular interpretation of the input,
noise or ambiguity in one feature vector can be resolved, or pattern com-
pleted, by certainties in the other feature vectors.

F.= F(norm) + Iw F (4.5)

The cycle (of equations 4.2—-4.5) then repeats. Without needing to impose a
logistic function (e.g., the equation in figure 4.2) on the output activations,
normalized recurrence naturally approximates a sigmoidal function over
time, with converging biases among the various constraints leading the inte-
gration vector to settle toward a single highest probability representation. For
example, given the beer preference vectors in figure 4.12, conducting a
normalized recurrence simulation of the beer choice decision-making process
is trivial. If the weights assigned to flavor and affordability are equal (i.e., 0.5
for each), then the integration layer exceeds 0.95 activation for Franziskaner,
naturally, on the 24th iteration. (See code in the appendix.) However, as the
vector weights trade off, for different financial or gustatory refinement cir-
cumstances, such that affordability becomes more valued than flavor, one can
observe the model settle in favor of Guinness or Sam Adams. In fact, if afford-
ability is given a weight of 0.75 and flavor thus given a weight of 0.25, as might
be the case for a starving undergraduate, the model will actually settle in favor
of Pabst Blue Ribbon, believe it or not. Figure 4.13 shows the integration- and
feature-vector activation plots over time for this unfortunate circumstance.
Not unlike the discussion of Schrodinger’s cat in chapter 1, at any one time
slice in the integration vector’s activation pattern here, the idealized freeze-
frame of the system can be described as being in multiple partial states at
once: partly wanting Pabst, partly wanting Sam Adams and Guinness, and
wistfully wishing it could afford Franziskaner. Note how the integration vec-
tor shows both Pabst and Sam Adams rising in tandem for the first several
iterations. Note also how the flavor vector’s activation of Sam Adams takes the
lead for a period of time, peaking at the 19th iteration, only to have its hopes
dashed as the emerging consensus for Pabst coerces even the flavor vector to
coincide with the choice. That is, the network eventually convinces itself that
it prefers the taste of Pabst—because that is all it can afford. Figure 4.14, in the
form of a two-dimensional window on the integration vector, plotting the
Pabst node activation by the Sam Adams node activation time step after time
step, shows the nonlinear trajectory through representational state space that
the model traverses as it decides on Pabst. This perspective on the activations
reveals the simulation’s mental state starting out almost equidistant from the
Pabst attractor (bottom right corner) and the Sam Adams (top left corner),
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Figure 4.13. Activation curves from normalized recurrence settling
on a beer choice.

but then eventually turning and quickly gravitating into the Pabst attractor.
It is as if the poor undergraduate could almost taste the Sam Adams as his
hand reached for the Pabst Blue Ribbon.

Of course, this competition algorithm on its own will happily cycle indefi-
nitely, well after one integration node reaches asymptote at 1.0 activation and
all the others have dropped to 0 activation. Therefore, some kind of criterion
must be set for when the model is to stop competition and treat the normal-
ized activation pattern exhibited by the output layer as the distributed inter-
pretation of the input, and as the probability density function corresponding
to the response categories available for execution. This criterion can be a fixed
activation value of 0.95, or perhaps 0.75 for low-threshold motor outputs
such as eye movements (Spivey-Knowlton, 1996), or it can be a dynamic cri-
terion that starts at 1.0 and is gradually reduced by some small amount each
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time step (McRae et al., 1998; Spivey & Tanenhaus, 1998). Alternatively, the
model can be interrupted at various time intervals and tested on its accuracy
(Spivey et al., 2002a). Finally, the dynamic criterion can be made stochastic so
that there is some variation from trial to trial in how long competition is
allowed to take place, and selection of an interpretation can be a random
choice, weighted by the activation values (see the simulation of eye move-
ments during spoken word recognition in chapter 7). This criterion setting
issue can sometimes be thorny (see Proctor, 1986, and Ratcliff, 1987), but with
normalized recurrence, the basic pattern of results is rarely substantially
different as long as the criterion is between about 0.5 and 0.95.

The key strength of normalized recurrence is its transparency. At any
point in time, the model can be stopped, and its activation patterns are as
easily interpreted as the idealized bar graphs of probabilistic mental states in
chapter 2. Another strength of the normalized recurrence competition algo-
rithm is its generalizability. In fact, it has already provided quantitative
accounts of human data from a range of perceptual/cognitive phenomena. It
has been used to simulate semantic and discourse context effects in reading
times of syntactically ambiguous sentences (McRae et al., 1998; Spivey &
Tanenhaus, 1998), reaction times in visual search (Spivey-Knowlton, 1996),
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Figure 4.14. A trajectory in part of the localist attractor
network’s state space, simply plotted as the simultaneous
activation of the Pabst node and the Sam Adams node
over 30 time steps. This nonlinear trajectory, starting from
almost equally preferring Pabst Blue Ribbon and Sam
Adams, eventually settles solidly and unambiguously on
Pabst Blue Ribbon.
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and d-prime sensitivity values for speeded grammaticality judgments in a
speed—accuracy trade-off task (Spivey et al., 2002a). The broad applicability of
this algorithm suggests that it may be appealing to some fundamental charac-
teristics of how the mind continuously integrates information (at a relatively
abstract level of description, of course), in terms of encoding system internal
representations as probabilities, and the interactive exchange of these proba-
bilities between subsystems via recurrent feedback.

Exploratory Simulations

In a series of simulations designed purely to explore the temporal dynamics of
normalized recurrence, four random feature vectors combined their support for
six competing response categories. Initial input activations were randomly set
between 0 and 1 for each input node, and vectors were simply summed at the
integration layer (i.e., all weights equaled 1.0). The model was allowed to cycle
all the way to the end of its pattern completion process (i.e., there was no crite-
rion set), and the activations of all six integration nodes were recorded over
time. In the vast majority of such simulations, the initially most active integra-
tion node takes up the entire probability space relatively quickly. See figure 4.15.

However, pattern completion with normalized recurrence is not always
that easy. Occasionally, two response categories will end up in a time-consuming
tug of war over the probability space. Figure 4.16 shows a run of the model in
which the initially most active integration node (starting at 0.24679) did end
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Figure 4.15. Activation curves from normalized recurrence showing an
easy pattern completion.
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Figure 4.16. Activation curves from normalizes recurrence showing a
difficult settling process.

up owning the entire probability space, but the initially second most active
integration node (starting at 0.24004) postponed that result by putting up a
prolonged competition until the eventual bifurcation point much later. In
dynamical systems theory, which describes systems in terms of how they
change, this tug of war between the two mutually exclusive representations
happens when the system is in a region nearly perfectly equidistant between
two point attractors. This region is a kind of plateau in the state space, called
a saddle point, where the system has little energy and can, for a while, move
only very slowly toward one or the other attractor. However, once it reaches
the edge between the saddle point and one of the attractor basins (almost like
a cliff in the state space), the system very quickly gravitates toward that near-
est point attractor—much like pattern-completing a population code.

In addition to quantitative simulations helping one avoid mathematically
impossible theoretical predictions, as noted early on in this chapter, simula-
tions can also allow one to observe mathematically possible results that intui-
tions about the theory might tell us are impossible. For example, given the
relatively simple equations involved in the normalized recurrence competi-
tion algorithm (equations 4.2-5), an intuitive assumption might be that
whichever response category (integration node) starts out with the highest
activation will eventually be the winning response category. In fact, most of
the time, that is the case. But our intuitions are not always correct.

Once in a great while, these exploratory simulations came up with a result
in which the initially most active integration node gave way to the initially
second most active integration node, which then took over the probability
space. Figure 4.17 shows just such a result. One of the integration nodes
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Figure 4.17. Activation curves from normalized recurrence showing a
usurpation event.

started with an activation of 0.19469, whereas another integration node
started with an activation of 0.19462. However, by the 10th iteration, those
activation curves crossed one another, and the initially second most active
integration node eventually won the competition. This is what has been called
a gang effect (e.g., Zemel & Mozer, 2001), in which the arrangement and vary-
ing strengths of the different attractors in the state space elicit a nonlinear
trajectory that causes the system to settle not into the attractor with the short-
est Euclidean distance from the starting point, but instead to settle into a
different attractor. It is as if the other attractors gang up against the initially
closest attractor, causing it to lose the competition.

On examination, it is clear that what allows normalized recurrence to
exhibit this nonmonotonic behavior is actually quite simple. Occasionally, an
integration node will have all but one of its supporting input nodes highly
active, with the remaining input node very close to zero probability. The ini-
tial average of these inputs may still be higher than the averaged input to any
other integration node. However, to own the entire probability space (at the
end of competition), all of an integration node’s supporters must be at 1.0
themselves. And because the feedback in normalized recurrence is multiplica-
tive, a supporting input that is very close to zero probability will almost never
be coerced into reaching 1.0.

These exploratory simulations clearly demonstrate that one’s intuitions
about a theory can often be faulty, and a computational implementation can
occasionally reveal unknown capabilities in the theory. With quantitative
implementations of our theories, particularly ones that are at least generally
consistent with the basic principles of neuroscience, the science of the mind
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can prevent intuitive interpretations of theories from leading us astray and can
point us toward some fundamental principles of perception, action, and cogni-
tion (see Seidenberg, 1993). Moreover, with the help of research in neuro-
science and cognitive neuroscience, implemented simulations provide a way to
imagine “peeking inside” and catching a glimpse of the graded, fuzzy, partially
overlapping representations that underlie our more easily observable (and
sometimes misleading) discrete motor outputs, and discrete theoretical claims.

From One Section to Another

In the previous section, the beautiful curves in figures 4.13—4.17 are evocative
in their illustration of the smooth, continuous, and nonlinear interplay that
takes place between probabilistic representations that are competing against
one another as the system settles into an attractor. However, realistic natural
cognition involves the system getting out of attractor basins as well. Not only
is environmental stimulation usually continuously streaming into our sensory
subsystems, but a neural population code itself will fatigue (or adapt), causing
its attractor status to convert into a repellor status (recall the Necker cube
discussion in chapter 1). Thus, as soon as one attractor basin is being confi-
dently approached, changes in the sensory input (as well as changes in the sys-
tem’s internal parameters) are propelling the system to new and different
regions of state space in the direction of another attractor basin. This contin-
uous trajectory that constitutes mental activity compels cognitive scientists to
explore experimental measures that are sensitive to this continuous process
(see chapter 3), as well as theoretical frameworks that are consistent with its
consequences (see chapter 5).

To address transitions from one attractor toward another, presenting
sequences of individuated nonoverlapping stimuli to the input layer of an
attractor network over time is a step in the right direction, but it is perhaps not
enough. Even qualitative transitions over time in sensory streams are usually
fundamentally continuous despite their apparent suddenness. Sensory input
flows; it does not come in packages (e.g., Gibson, 1950). For example, when we
listen to our native language being spoken, we feel as though the words are
clearly separated by gaps of silence, when in fact they typically are not. In
contrast, when listening to a language we barely know, we find it quite hard to
segment one word from another. Similarly, artificial mini-languages, such as
that designed by Saffran, Newport, and Aslin (1996), can be constructed to
have no pauses between words. When one first listens to this speech stream, it
sounds like a seamless flow of one syllable after another. However, the tempo-
ral statistics of the syllables reliably converge on a few triplets of syllables
behaving like words in the mini-language, and people’s guesses about these
words (after a mere 20 minutes of exposure) are significantly above chance.
Moreover, after many months of hearing these speech streams and knowing
the words extremely well, the experimenters and their colleagues developed a
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compelling (albeit, illusory) phenomenological impression that there were
pauses between the artificial words. Obviously, in such circumstances, it is not
the speech stream that has changed; it is the listener. The speech stream is still
a continuous flow of evenly timed syllable after syllable after syllable. Perhaps
our attractor simulations of perception, cognition, and action should main-
tain this relative continuity of sensory input flow (e.g., as opposed to present-
ing one word/object at a time) and allow the nonlinear attractor dynamics
intrinsic to the system to impose the apparent segmentation that leads to
things like constituent structure.

Even in this case, however, the subcomponents (e.g., syllables) of the
elements of interest (e.g., words) are still being presented to the system as
individuated nonoverlapping stimuli. The finer time scale provides a better
approximation of continuity, but it merely pushes the problem further down.
What if one’s interest was syllables and phonotactics? One interesting solution
is to blend, somewhat, the patterns corresponding to temporally adjacent
inputs. For example, McClelland and Elman’s (1986) TRACE model of speech
perception used patterns of afferent input that corresponded to the mixture of
phonemic features that happens when the transition from one phoneme to
another exhibits coarticulation. Coarticulation occurs when the shape and
positioning of the tongue and mouth during production of one phoneme
must change dramatically to produce a subsequent very different phoneme.
The result is that the articulation of the subsequent phoneme is slightly
skewed in the direction of the previous phoneme. An attractor network whose
inputs are blended in a manner similar to this—or perhaps even just inter-
leaving each time step of temporally discrete input with a time step of blended
input—might more readily exhibit the spatiotemporal continuity inherent to
sensory input, cognitive processing, and motor output.

That said, there are still those who would take issue with this assumed
ubiquity of the spatiotemporal continuity of cognitive processing (e.g.,
Anderson, 1983; Dietrich & Markman, 2003; Marcus, 2001). In principle, it is
conceivable that a part of the mind is blind to the details of the continuous
metric state space devoted to perception and action, and all it actually receives
is a series of symbolic outputs corresponding to instantaneous boundary
crossings of the trajectory leaving one section of state space and entering
another. If cognition thus treats the continuous (and often recurrent) flowing
trajectory of perception and action more as a series of discretely labeled and
nonmetric teleportations from one section to another, then cognitive psy-
chology would indeed require a completely different format of experimental
inquiry and theoretical analysis from the rest of perception and action.

Symbolic Dynamics?

It may sound like just another oxymoron—among the likes of “military intel-
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ligence,” “compassionate conservatives,” and “business ethics”—but “symbolic
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dynamics” is a legitimate field of inquiry in the mathematics of dynamical sys-
tems theory. In fact, symbolic dynamics have even been employed to study
what happens as the logistic map (figure 4.8) transitions from an ordered
regime to a chaotic regime (Bonanno & Menconi, 2002). In symbolic dynam-
ics (see, Bollt et al., 2000; Crutchfield, 1994; Devaney, 2003; Robinson, 1998), a
discretely delineated and internally contiguous region of state or phase space
can be assigned a symbol that is categorically different from the symbol
assigned to a neighboring (and abutting) delineated region of state or phase
space (see also Casey, 1996; Cleeremans et al., 1989). As the continuous trajec-
tory of the system’s state moves into one region, the corresponding symbol is
emitted, and when the trajectory then leaves that region and enters a different
one, a new symbol is emitted. Figure 4.18 shows a vector landscape with two
attractors (as in figure 1.1), and it has had symbolic thresholds (dashed lines)
added to delineate each discrete region from its neighboring discrete regions.
It is as if fences have been put up throughout the state space, and fence sitting
is not allowed. As the system continuously changes state, moving through this
vector landscape and eventually settling into one of the attractors, a new sym-
bol is emitted each time the trajectory crosses a threshold. Thus, the thick
solid line representing a continuous trajectory from location m to location
n would produce the symbol sequence, BQY. The other possible symbol
sequences allowed by this landscape (assuming one starts in A or B) are BQX,
BRY, BPX, AQY, AQX, ARY, and APX. The attractor dynamics of this continu-
ous vector field do not allow trajectories that would produce any other

Figure 4.18. A simplified vector field that has been partitioned
into discretely labeled regions.
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sequences of symbols. Crucially, the system receiving the symbols emitted
from this process has no direct information at all about the continuous
dynamics of the original system’s trajectory inside any delineated regions,
much like classical claims regarding categorical perception (see chapter 6).

Interestingly, although the receiving system does not have access to the
continuous dynamics within the original system, it is nonetheless capable of
reconstructing an approximation of those continuous dynamics if it has a
continuous state space of its own to work with (Takens, 1981). For example, if
you take the famous Lorenz attractor as the original system (i.e., a sort of
semi-recurring figure-eight pattern bent at the middle in a 3D space) and
sample from it a single value corresponding to the trajectory’s projection onto
a randomly chosen vector in that space, you get a time series of numbers that
waver around one narrow range of values and then quickly transition to
wavering around another narrow range of values. A recurrent network with
one input node, three hidden nodes, and one output node, using a prediction-
based learning algorithm, can learn to mimic this one-dimensional time
series. More important, when you plot a 3D graph of the hidden node activa-
tions over time, the network’s trajectory looks just like the Lorenz attractor
(Andrews, 2003). It can even work if symbolic thresholds are imposed on that
one-dimensional time series and fed into the network as localist binary input
vectors. Score one for symbolic communication, perhaps. But in the end, all
this is not actually that surprising when one recognizes the simple fact that
symbolic states are really nothing more than a special case within the space
of possible continuous dynamic structures. A continuous metric state space
logically subsumes the set of symbols that exist inside it.

The notion of regions of state space with symbolic meanings assigned to
them may sound a bit similar to the way the notion of attractor basin has been
treated so far. Although the discretely delineated regions of symbolic dyna-
mics can share some commonalities with attractor basins, one critical differ-
ence is that in symbolic dynamics, a genuinely categorical threshold has been
imposed (by someone or something) that determines when the system instan-
taneously enters or leaves a region. Exact placement of these thresholds, even
with statistically sophisticated methods, can become a difficult process with
dire consequences for imprecision (Bollt et al., 2000). With complex trajecto-
ries through the state space, ungrammatical or incoherent symbol strings can
sometimes be emitted, thus producing a dramatic misrepresentation of the
system’s dynamics. This frailty of symbolic dynamics can be loosely likened to
an electoral college system that carves up its voting body into subgroups, dis-
cretizing each subgroup’s majority vote and then calculating a majority pref-
erence among the subgroups. Such a process can produce a peculiar error in
democracy, where the subgroup majority preference calculation favors one
symbolic result and the truer “one element one vote” calculation favors another.

In contrast, with attractor basins—even very steep and deep ones—
the transition from “outside” to “inside” (or vice versa) is always genuinely
continuous in its actual mathematical form. Thus, to the extent that attractor
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basins are similar to symbols, they might perhaps be loosely thought of as
fuzzy symbols. In fact, because normalized recurrence uses probabilistic local-
ist representations, it could be described as exhibiting a kind of fuzzy symbolic
dynamics. Note, however, that I am not suggesting that some fuzzy logic-based
module in the mind receives these emitted fuzzy symbols and tracks their
competition to select among potential interpretations or motor actions. The
purpose of converting the true continuous dynamics of a high-dimensional
state space into a fuzzy symbolic dynamics of a low-dimensional state space is
solely for the purpose of allowing the scientist/observer to more easily
describe, understand, and communicate the behavior of the system. The
neural system itself, which is of course being very abstractly simulated by a
localist attractor network, need not include any discrete symbolics at all in its
dynamical processes.

Chapters 6 to 9, in particular, will illustrate a number of experimental
demonstrations of perceptual/cognitive phenomena in categorization, lan-
guage, vision, and action that appear to still be using the continuous param-
eters of the system’s trajectory through its state space, rather than relying
solely on symbols extracted from those dynamics. Besides, if there were a
higher cognition part of the brain that truly performed symbolic dynamics on
its continuous input, it would only have to convert those symbols right back
into continuous state space trajectory coordinates over time for the motor sys-
tem, which we know works that way (see chapter 9). Rather than the dis-
cretization of a continuous metric state space taking place in between
perception and motor planning (the “categorical bottleneck,” as it were), I
submit instead that—to the extent that it takes place at all—it takes place after
motor planning: during action itself. Our eyes fixate only one object at a time
(and stay almost still for a few hundred milliseconds). Each hand typically
grasps only one object at a time (although grasping and lifting is often per-
formed in a remarkably fluid continuous motion). Our speech apparatus usu-
ally produces only one sound at a time (even then, sequential phonemes often
exhibit coarticulation, where features of one phoneme are partially present
during production of the other). The upshot of all this is that when you look
at the dynamical perception-action loop, there does not appear to be any
objective evidence for discrete symbolic internal representations anywhere
(and even the apparent observations of discrete motor actions are not really
perfect examples of discrete logical categories).

If there is a fundamental truth to symbolic mental representations being
emitted from the continuous dynamical state space of perceptual areas of the
brain and then being received and processed by cognitive areas of the brain
that function in a logical rule-based manner and then being converted back
into a continuous dynamic state space format for motor areas of the brain,
then I will eat my hat. But if there is a more reasonable sounding account of
how genuinely discrete logical symbols can exist inside a neural system that
so regularly reveals itself as representing information via population codes
(see Barber, Clark, & Anderson, 2003; Georgopoulos et al., 1982; Zemel,
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Dayan, & Pouget, 1998), then it seems likely that it will come from the field of
symbolic dynamics. To avoid the risk of concluding that distributed and con-
tinuously dynamic representations cannot possibly implement human cogni-
tion (in the same way that some apocryphal scientists concluded that bumble
bees cannot possibly fly), the interdependence between algorithmic and
implementational accounts of the mind should encourage researchers who
advance symbolic accounts of mind (e.g., Dietrich & Markman, 2003; Marcus,
2001; Pinker & Ullman, 2002) to develop realistic neurophysiological accounts
of how discrete symbols emerge from neural-like processes. Until then, impos-
ing symbolic partitions onto continuous cognitive dynamics might be best
likened to telling a geologist that her research should take into account
national boundaries.

The Limitations of Existence Proofs

This chapter began with a call to arms based on the importance of developing
explicit implemented models of one’s theories. I have tried to make it clear
that with simulations like these, scientists of the mind can extrapolate their
data points to an imagined full account of the phenomena they study (like the
blind men collaborating to sculpt a model elephant, rather than simply pro-
fessing their individual impressions). Of course, there are many strategic ways
to model existing data, and the true test of a model is its ability to naturally
accommodate new data. This imagined full account then makes clear unam-
biguous predictions (which is more than can usually be said for unimple-
mented verbal descriptions of theories) that can be tested experimentally, thus
providing further constraining information for revision of the model.

However, this prediction issue for quantitative models is often seen as
walking a thin line. In certain circumstances, a verbal theory can make those
empirical predictions by itself, without ever having to be mathematically or
computationally implemented. Moreover, if the simulation comes up with a
prediction that you didn’t initially expect or predict from your theory, that
may suggest that you have a poor understanding of how your model works.
Thus, there is a catch-22: If the model offers no unexpected predictions, then
it can get accused of providing nothing more than the theory already does, but
if it offers surprising predictions, then it can get accused of being a black box
with no informativeness about the process in question. What is missed by that
attitude is the fact that theorists often have poor understandings of exactly
how their own theories work (as clearly established by the sociobiologists
early in this chapter)! A mathematical or computational implementation of
a theory will often come up with what seems like a novel prediction from the
theory, not so much because the model is poorly understood but because
the theory was poorly understood in the first place.

Thus, it is still arguable that the first and most important result of
witnessing a theory being implemented in a simulation or in an equation is
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the simple demonstration that this version of the model is internally consis-
tent enough to at least function without breaking down or contradicting itself.
When the functioning model successfully fits some existing empirical data,
the model thus stands as an existence proof that this kind of theory can
account for this particular sample of data and therefore is a viable (though
certainly not the only possible) explanation of the given phenomena. However,
when there are parameters in the model that can be freely set to whatever
values are necessary, fitting existing data is often all too easy (see Roberts &
Pashler, 2000)—perhaps not as easy as an aspiring taxi driver writing his own
name, as Roberts and Pashler (2000) analogized, but still very easy. If a model
cannot fit its target data, or if the taxi driver is unable to write his own name,
then neither of them should be allowed on the road.

As it turns out, several criteria have been noted as important for model
evaluation and selection. In their treatment of a collection of articles on writ-
ten word recognition models, Jacobs and Grainger (1994) list the following:
(1) descriptive adequacy (i.e., how well does the model fit the data it was
designed to fit?), (2) generality (i.e., how broad is the dataset the model was
designed to fit?), (3) simplicity (i.e., how many free parameters are involved in
the model?), (4) falsifiability (i.e., are there hypothetical patterns of data that
the model cannot fit?), (5) explanatory adequacy (i.e., does the model naturally
account for new data, or does it require additional ad hoc assumptions/
mechanisms?), and (6) neurobiological plausibility (i.e., is the model consis-
tent with what is known about how neural systems work?). (See also Cutting’s
2000 discussion of model flexibility as measured by cross-validation.)

Pitt, Myung, and Zhang (2002; see also Pitt & Myung, 2002) offer a
method based on minimum description length (Rissanen, 1978) for combin-
ing such factors into a quantitative algorithm for producing ratings of com-
peting psychological models. The upshot is that generalizability (a sort of
combination of Jacobs and Grainger’s 1994 “generality,” and “explanatory
adequacy,” along with a “simplicity” component) is perhaps the most impor-
tant ability for a successful model to exhibit. That is, a model that fits lots of
existing data and, without significant adjustment, also fits new data, is a good
model. This should not be surprising. But what is perhaps surprising is that it
is the simpler models that tend to do better at generalizing to new data. Highly
complex models frequently run the risk of overfitting the existing data, thus
making it quite difficult for them to generalize to new data.

It has been argued that in psychology, descriptive adequacy—rather than
generalizability—too often winds up being the only criterion used to advocate
a particular model (Pitt, Myung, & Zhang, 2000; Roberts & Pashler, 2000).
And the parameter setting conducted to achieve that descriptive adequacy is
often not principled enough. Mapping the entire space of possible results
from the full range of parameter values is important to know whether the
model predicts a sufficiently narrow range of results. A model that can predict
anything, even nonsensical data, doesn’t really help anybody’s theory (see
Cutting et al., 1992). Of course, it is often the case that some combinations of
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parameter values are patently inconsistent with the theory being promoted by
the model. In fact, with a model that is sufficiently generic to allow itself to
instantiate versions of the competing theories, via the relevant parameter
values, one can make controlled comparisons of theoretical accounts. For
example, if one theory claims that all information sources are immediately
combined to produce an interpretation of some stimulus array (all source
weights > 0), and a competing theory claims that certain information sources
initially do not contribute to the interpretation (certain source weights equal
0 for an initial period of time), this can be implemented as two versions of the
model simply by setting those parameters appropriately and comparing their
respective results to existing and future empirical data. May the best model
win. Exactly this kind of procedure has in fact been carried out with normal-
ized recurrence (see McRae et al., 1998). For psychological modeling to do
more than precisely explicate a theory and provide existence proofs but to
actually adjudicate among competing theories, opposing theorists may need
to eventually agree on relatively generic modeling frameworks, such as sym-
bolic dynamics, and convert their theories into parameter value ranges that
correspond to their respective theories (see Dale & Spivey, 2005).



Constructive Feedback for Modularity

The limits of modularity are also likely to be the limits of what we
are going to be able to understand about the mind, given
anything like the theoretical apparatus currently available.
—Jerry Fodor

When the independent displacement of particles in a distribution
brings about reciprocal influences, the relations within such a
distribution are no longer summative. In this case, one
displacement can and will determine other displacements—and
we now have a “physical system.” With increasing mutual
dependence among the parts, we reach systems where no
displacement or change of state is without its influence
throughout the entire system.

—Wolfgang Kohler (translated by Willis Ellis)

On Paradigm Shifts and State Transitions

As early as the 1920s, Wolfgang Kohler had noticed that the continuous
dynamical mathematics that were just starting to be explored in physics and
chemistry might actually be relevant to understanding how the brain works.
Dynamical systems theory was a nascent theoretical apparatus that was
suddenly solving problems that had been vexing those scientists for decades.
This theoretical apparatus, however, was largely ignored in psychology during
the behaviorist years, and it continued to be suppressed throughout the cog-
nitive revolution. Perhaps it is only now, in the twenty-first century, that
dynamical systems theories designed specifically for handling nonmodular
phenomena with long-range interactions—a theoretical apparatus that Kéhler
(1922/1938) tried to promulgate and Fodor (1983) lamented wasn’t available—
can finally get a fair chance to prove their value for studying the mind.

In that cognitive revolution of the 1960s, it is curious what changed and
what didn’t change in how we study the mind. As behaviorism was giving way,
the field was once again allowing itself to refer to internal mental events, but
the two-step feedforward reflex arc common to behaviorism remained, just
with a new name: “stimulus — response” was merely replaced with “stimulus —
interpretation.” In 1967, Ulric Neisser’s book, Cognitive Psychology, marshaled
contemporary experimental evidence from a wide range of psychologists
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showing that internal mental constructs could indeed be measured in the lab-
oratory and described in a theoretically rigorous fashion. This book changed
psychology by legitimating and popularizing the information-processing
approach to cognition. It was the swift metatheoretical kick to the head that
the field needed to finally relinquish its obsession with behaviorism (another
movement that made its own seminal contributions before outliving its use-
fulness) and the prohibition of the postulation of mental constructs. Many
important advances in our understanding of the mind resulted from this
information-processing movement. However, almost 40 years later, psychology
and the cognitive sciences may be in need of another metatheoretical kick to
the head.! This time, though, it looks as though that kick may not be quite so
swift. The cognitive sciences may require more than one book to galvanize
such a paradigm shift. The book in your hands stands on the shoulders of
similar works produced by dynamically minded perceptual-cognitive theorists
such as Thelen and Smith (1994), Kelso (1995), Port and van Gelder (1995),
Elman et al. (1996), A. Clark (1997), J. Prinz (2002), and Ward (2002). In the
way that Neisser’s Cognitive Psychology helped identify the commonalities and
channel the efforts of experimental psychologists, psycholinguists, philoso-
phers of mind, linguists, and artificial intelligence researchers, The Continuity
of Mind, along with these related books, aims to identify the commonalities
and channel the efforts of dynamical systems theorists, connectionists, eco-
logical psychologists, cognitive neuroscientists, and computational neuro-
scientists. The experimental findings and line of argumentation that permeate
this book are intended to increase the probability further still that a gradual
state transition can occur in the cognitive sciences, such that old-fashioned,
no-longer-workable metaphors for describing mental activity in terms of
rules and symbols get properly backgrounded in favor of more fluid and
dynamic concepts of intermediating mental activity that is distributed both
in time and in representational space. However, to do this, there are some
roadblocks that we need to get out of the way first. Modularity is one of those
roadblocks.

A Philosopher’s Evidence

In arguing for modularity, it has been popular among philosophers of mind to
note that one’s knowledge that a visual illusion is illusory is not sufficient to
eliminate the illusory percept (Fodor, 1983). For example, I can honestly tell
you that the two horizontal lines in the Miiller-Lyer illusion (figure 5.1) are of
equal length. Yet that knowledge is not enough to make the illusion go away.
The line with outward-fanning wings still appears longer than the line with
inward-fanning wings. Regardless of the perceptual mechanism for this illu-
sion, the fact that it seems impervious to higher level knowledge is often taken
as empirical evidence for the absence of top-down influences on perceptual
modules. Note, however, that you wouldn’t really want top-down influences to
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Figure 5.1. In the Miiller-Lyer illusion the hori-
zontal bar with outward-fanning lines appears
longer than the one with inward-fanning lines.
But the top-down knowledge that it is an illu-
sion does not eliminate the perceptual effect.

be so strong that they completely overturn a perceptual representation
(illusory or veridical), because then you would risk perceiving only what you
want to perceive and not what’s really out there. Instead, the top-down influ-
ences that are suggested by the ubiquitous feedback projections seen in the
neuroanatomy should, at best, be capable of subtly modifying perceptual
representations—not summarily rewriting them.

It could very well be that the Miiller-Lyer illusion is indeed quantitatively
milder after one is informed that the two lines are actually the same length. It
may just be difficult to introspectively discern (or test without response bias)
the reduction in illusion magnitude that takes place. Other visual illusions
may lend themselves more readily to quantitative measures of their magni-
tude without response bias. Figure 5.2 shows the tilt aftereffect, first dis-
covered by Gibson (1933). In this illusion, you start out by looking at one of
the tilted gratings in the upper row for a full minute. Let your eyes roam around
the middle of the grating, rather than holding your gaze fixed and motionless,
so that you avoid forming a brightness-contrast afterimage. When the minute
is up, move your eyes to one of the vertical gratings in the lower row. It will
appear not quite vertical, but instead tilted slightly counterclockwise. One can
measure the magnitude of this illusion by having the observer rotate the grat-
ing until it is perceived as perfectly vertical. Observers typically set the grating
a couple degrees clockwise, indicating that their visual illusion involved the
vertical grating appearing tilted about two degrees counterclockwise.

What’s crucial for the argument here is that this visual illusion has been
demonstrated to be subtly but reliably modulated by top-down influences.
Rather than fixating directly on a grating, if you instead keep your gaze inside
the center circle of the upper row for a full minute and then move your eyes to
the lower circle, you will get mild tilt aftereffects (of equal magnitude) for
both the left and right vertical gratings in your peripheral vision. But what if
you direct your visuospatial attention during that minute of adaptation
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Figure 5.2. Visuospatial attention can modulate the strength of the tilt
aftereffect (see text for details).

toward only one of the upper gratings—say, the left-hand grating—while
keeping your eyes inside the upper circle? It may feel awkward to have your
attention on the upper left-hand grating while maintaining eye fixation on the
upper circle, and you may notice your attention wandering a bit during that
minute. If you keep pushing your attention, but not your eyes, toward that
left-hand grating, when you finally move your eyes down to the lower circle,
you may notice that the left-hand grating (on that lower row) appears slightly
more tilted counter-clockwise than the right-hand grating. The experimental
data showed that the illusion was about 25% greater on the attended side than on
the unattended side (Spivey & Spirn, 2000; see also Chaudhuri, 1990; Durgin,
2002; and Shulman, 1992, for similar attentional influences on different illusions).

Although it is not the same thing as higher level knowledge, this volun-
tary manipulation of endogenous spatial attention is clearly something that
initiates within association cortex, as it is instigated by an experimenter
instruction and mediated by a decision to comply. Therefore, the visual corti-
cal area in which the tilt aftereffect illusion takes place—most likely, primary
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visual cortex (Bednar & Miikkulainen, 2000; Blakemore & Campbell, 1969)—
is clearly being subtly influenced by feedback signals from association cortex
(e.g., Brefczynski & DeYoe, 1999; Dragoi, Sharma, & Sur, 2000; Lamme &
Roelfsema, 2000). Although the synaptic projections that send feedback sig-
nals to the perceptual systems are not capable of completely overriding the
local pattern of information in visual cortex, they are clearly capable of subtly
modulating it. Thus, contrary to the philosopher’s introspections, even visual
illusions are not impervious to top-down influences.

Modularity Versus Distribularity

Of course, it will take more than an illusion to vanquish this wily foe that
people refer to as modularity. There are at least two definitions of the term
module—one used by cognitive scientists and one used by neuroscientists.
The use of the same technical term for importantly different concepts is often
at the root of scientific debates and confusions, and the modularity debate in
the cognitive and neural sciences is no exception. Cognitive scientists tend to
rely on Fodor’s (1983) definition of modularity, which depends heavily on the
computer metaphor of the mind. Fodor claimed that sensory input systems
were linear feedforward encapsulated information processors whose internal
workings were already becoming well understood via standard reductive sci-
entific means. Interestingly, he suggested that high-level cognitive processes
were probably interactive, nonmodular, and as such were unlikely to ever be
understood by science as he knows it.  am actually inclined to agree with him
on that point, but with the following proviso: Given the evidence for inter-
action among perceptual systems, which I will recount in this chapter, I would
add that the perceptual systems themselves will also never be understood by
science as Fodor knows it. The new theoretical apparatus that can allow sci-
ence to get a handle on richly interactive autocatalytic processes—and which
has been successfully employed in chemistry and biology but has barely had a
chance to scratch the surface so far in psychology (see Turvey, 2004)—is com-
plex dynamical systems theory. This most definitely is not science as Fodor
knows it. Complex dynamical systems theory acknowledges the fact that many
systems of interest are open systems and therefore cannot be fully analyzed via
encapsulated reductionism, because some of the parameters that drive an
open system’s behavior are not internal to the system. We could be talking at
the level of a phonological module embedded within the language system (e.g.,
Elman & McClelland, 1988; Magnuson et al., 2003; Pitt & McQueen, 1998), a
vision module embedded within a brain (see Churchland, Ramachandran, &
Sejnowski, 1994; Zeki, 1993), a brain embedded within a body (Barsalou, 1999;
Varela, Thompson, & Rosch, 1992), or an organism embedded within an envi-
ronment (Gibson, 1979; Shaw & Turvey, 1999). In each case, the accumulating
data suggest that the system of interest is not encapsulated from its larger
embedding system and is therefore not a Fodorian module.
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In contrast to Fodor’s definition, when real neuroscientists use the word
module, they start with portions of neural tissue that have anatomical separa-
tions from nearby portions of tissue or have morphological differences from
one another in cell shapes. If these different anatomical areas also appear to
have different selectivities to properties of environmental stimulation, then
they may apply the label module. However, it is generally the case that any pair
of neural modules that are connected by a synaptic projection share their
signal transmissions bidirectionally (see Felleman & Van Essen, 1991). This
neuroanatomical fact is quite problematic for Fodor’s original version of
modularity. Information encapsulation goes out the window when module A
is sending feedforward signals to module B, and at the same time module B is
sending feedback signals right back to module A. For example, the vast major-
ity of neural projections connecting the lateral geniculate nucleus (LGN) and
primary visual cortex are feedback synapses (Churchland & Sejnowski, 1992;
see also Webb et al., 2002). Thus, despite most perception textbooks describ-
ing early vision as involving LGN sending visual signals to the primary visual
cortex, it appears that the bulk of what that bundle of neural fibers is doing is
allowing primary visual cortex to tell LGN what to do!

It is, of course, true that not every cortical region is directly connected to
every other cortical region. This is part of why full equipotentiality (the
extreme opposite of modularity) is also not an accurate description of the
brain. However, most cortical regions have at least indirect connections with
just about any other cortical region through one or two relays (Palm, 1982).
This makes the relationships among neural subsystems in cortex a bit like a
small-world network (Kleinberg, 2000; Watts & Strogatz, 1998), with no more
than a couple degrees of separation between any two perceptual/cognitive
processes (Sporns et al., 2004). Importantly, this kind of soft modularity—in
which separate anatomical regions are roughly specialized for one or another
perceptual/cognitive function but share some of their processes continuously—
does not need to be innately specified but can instead emerge as a result of
learning (Elman et al., 1996; Karmiloff-Smith, 1992). For example, visual
motion perception is substantially influenced by color information early in a
child’s development (Dobkins & Anderson, 2002), but over the years the two
information sources become somewhat more independent of one another
(Zeki, 1993; but see Treue & Martinez-Trujillo, 1999). Moreover, the topo-
graphical layout of the somatosensory homunculus can get significantly reor-
ganized after amputation of a hand (Farne et al., 2002; see also Merzenich et
al., 1984). And neural network simulations readily demonstrate how separate
modules with only subtle and abstract computational differences can, over the
course of learning, become specialized for nonoverlapping cognitive aspects of
the sensory input (Jacobs, Jordan, & Barto, 1991).

Somewhere in between cognitive scientists and real neuroscientists, cog-
nitive neuroscientists who use case studies of patients with brain damage, as
well as neuroimaging techniques, appear to be developing some form of third,
hybrid version of the term module that is not quite naive enough to assume
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true information encapsulation, but nonetheless places great emphasis on
functional specificity, such that a cortical module is often treated as though it
has one and only one perceptual/cognitive job. A common method for puta-
tively revealing such independent processes is double dissociation. In a double
dissociation design, brain damage in one region causes impaired performance
on task A but normal performance on task B, whereas brain damage in a dif-
ferent region causes normal performance on task A and impaired perform-
ance on task B. Such a result is routinely interpreted as evidence for the two
different brain regions being independently devoted to the two different tasks.
It is, however, problematic to interpret this kind of result as evidence for inde-
pendent processes, because neural networks and other complex dynamical
systems can readily produce double dissociations even when their physical
architecture is essentially monolithic and unsegmented (Chater & Ganis, 1991;
Plaut, 1995; Van Orden, Jansen op de Haar, & Bosman, 1997). Similarly, reports
of category-specific deficits (such as being unable to name fruits and vegeta-
bles), which are often used as evidence in favor of stage-based modular accounts
of cognition (Hillis & Caramazza, 1991), do not result only from localized
damage to some module putatively devoted to that skill. They can also arise
from widespread neural degeneration (such as that caused by Alzheimer’s
disease), and in neural network simulations, focal lesions and broadly dis-
tributed mild damage can each elicit category-specific deficits in the network’s
performance (Devlin et al., 1998). Essentially, each cortical area’s “separate
job” is likely to be partially overlapping with some other jobs, because the
cascaded bidirectional connections between different regions indicate that
they unavoidably share each other’s responsibilities to some extent. These
modules must know at least a little bit about how each of their neighbors carry
out their tasks.

In fact, when one module is damaged or altered somehow, other modules
that don’t normally perform much of that module’s job are often able to take
up the slack in a matter of weeks or months. For example, when a monkey’s
visual motion perception areas (MT and MST) are permanently ablated, the
monkey is unable to perform visual motion perception tasks, but much of this
deficit lasts only a few weeks or so (e.g., Newsome & Paré, 1988; Pasternak &
Merigan, 1994; Rudolph & Pasternak, 1999). With training, other visual areas
can quickly learn to perform many of the motion perception abilities previ-
ously performed by MT and MST. Moreover, in the ferret, when visual nerve
fibers from the thalamus are redirected to auditory cortex (instead of visual
cortex) during early development (Pallas & Sur, 1993), auditory cortex neu-
rons develop visual receptive fields that are quite similar to what is normally
seen in the visual cortex, exhibiting selectivity for different spatial frequencies
(von Melchner, Pallas, & Sur, 2000) and for different orientations (Sharma,
Angelucci, & Sur, 2000). In fact, a cortical map can even develop a patterned
structure that was never present in that species in the first place. For example,
a frog has a separate visual tectum for each of its eyes, but when a third eye is
surgically implanted in its forehead during early development, one of the tecti



Constructive Feedback for Modularity 125

will learn to accommodate the incoming synapses from that supernumerary
eye. With that extra optic nerve being directed toward one of those tecti, the
frog will develop systematic ocular dominance columns (stripe-shaped
regions devoted to one or the other eye) on that tectum, as the two eyes learn
to share space on that one topographic map (Constantine-Paton & Law, 1978;
Law & Constantine-Paton, 1981). Frogs don’t have ocular dominance columns,
but the brain of the laboratory-designed three-eyed frog learns how to make
them anyway. What these three quick examples show is that cortical areas do
not necessarily need to innately know the structure of the sensory input that
they are going to have to deal with as they develop. The structure is in the
statistics of the environmental stimulation, and over the course of learning,
that structure operates on and molds the connectivity of the cortical area
receiving it—not the other way around.

The playful term distribularity, informally coined by Barbara Finlay (see
discussion of this kind of concept in Kingsbury & Finlay, 2001), refers to a
sort of middle ground between fully distributed processing that is equipoten-
tial throughout the brain (e.g., Lashley, 1950) and fully modular processing
that involves one encapsulated module per mental faculty (e.g., Fodor, 1983).
According to distribularity, there is anatomical modularity in the sense that
real neuroscientists use. However, the real-time processing of each of these
neural modules (as well as their development) is not independent of the
others. Their population codes and their analog computations are shared
substantially between one another (see Haxby et al., 2001).

This chapter will not be debunking the version of modularity defined by
real neuroscientists. That version is more or less inarguable, given concrete
anatomical and neurophysiological evidence. The version of modularity that
this chapter will be debunking is Fodor’s (1983) information-encapsulation
version that still manages to permeate and implicitly motivate theory develop-
ment in much of present-day cognitive science. By replacing Fodorian modu-
larity with a notion of distribularity, where anatomically distinct and partially
specialized neural subsystems continuously exchange a substantial portion
of their activity patterns, we will keep our theories closer to the neurophysio-
logical and behavioral facts on the ground.

Fuzzy Borders in State Space

This partial specialization of neural subsystems endorsed by a distribularity
framework may initially seem like a difficult property to instill in a mathemat-
ical description where neuronal activations across the entire brain are envi-
sioned to form a single very high-dimensional state space. The way one can
imagine a graded (nondiscrete) independence between functionally special-
ized brain regions in this framework is to consider how one cortical area
might be described by a particular hyperplane in the global state space, and
another cortical area would have a different hyperplane. If the two brain areas
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Figure 5.3. A sine wave and an uncorrelated cosine wave (A and B) shown together in
time (C).

are richly interactive, then the activations in their respective hyperplanes will be
significantly correlated (or anticorrelated). If, however, the two brain areas in
question are independent of one another, then their respective activation pat-
terns will not be especially correlated with one another. Nonetheless, the global
state space (i.e., the full set of conjoined hyperplanes, correlated and uncorre-
lated) will still be a valid and informative monolithic format of description of
the system’s states over time. In terms of this global state space description, the
correlational patterns in activity would result in regions of the global state space
that the trajectory tends not to visit and fuzzy borders that it tends not to cross.

For a highly simplified example, consider two different one-dimensional
systems and their conjoint description. One subprocessor produces a sine
wave over time, and the other subprocessor produces a cosine wave over time.
They can reasonably be described in terms of two separate state spaces since
they are completely uncorrelated (figures 5.3A and B), but they can also be
described in terms of one conjoined state space (figure 5.3C). The circular spi-
ral over time, in figure 5.3C, shows how the values of x and of y spend equal
time in their ranges of relative values. Thus the conjoined state space descrip-
tion, although not required (because x and y are uncorrelated), is nonetheless
an informative depiction of the data. Now, if x and y happen to be positively
correlated (figure 5.4) or negatively correlated (figure 5.5), we observe a
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Figure 5.4. A sine wave and a positively correlated cosine wave (A and B) shown
together in time (C).
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Figure 5.5. A sine wave and a negatively correlated cosine wave (A and B) shown
together in time (C).

decidedly elliptical rather than circular spiral over time. That is, only a restricted
range of relative values of x and y are ever visited. In such cases, not only is
it informative to analyze the conjoined state space, indeed it is crucial—
as analyzing either subspace by itself will prevent one from detecting the
relationship.

In fact, it is very much this kind of logic that led Haxby and colleagues
(2001; see also Hanson, Matsuka, & Haxby, 2004) to perform correlational
analyses on fMRI activity across a variety of brain regions during face recog-
nition. They found that even when they excluded data from the fusiform face
area, a region hypothesized to be the face recognition module (Epstein &
Kanwisher, 1998), the pattern of low-level activity across the remaining
regions within the ventral temporal cortex carried enough information to dis-
criminate between various faces and five different categories of man-made
objects. They concluded that face and object recognition involves partly over-
lapping representations that are distributed across multiple cortical regions in
ventral temporal cortex—not independent representations that are localized
solely to individual regions. Thus, the relevant state space for describing the
temporal dynamics of something like face recognition includes not just
dimensions derived from the fusiform face area, but also dimensions from a
variety of other brain areas. That is, the face recognition state space, within
which a trajectory would define the process of recognizing a face, is a much
more global state space than a localized one.

The “Outer Space” of the Mind

Some readers may be finding this “continuous trajectory through a global
state space” story somewhat objectionable. But in fact, it is actually mathemat-
ically uncontestable that mental content can be described in terms of a loca-
tion in a high-dimensional state space, as described in chapter 4. This is not
hypothesis; it is fact. Whether or not you like this form of description, it is
mathematically true that if you treat the averaged activation of each neuron in
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the brain as a dimension in state space, then any given freeze-frame of the
brain’s state will be a location in that global state space. Crucially, if the sliding
temporal window for computing that average activation is more than just a
few milliseconds wide, then a sequence of multiple such freeze-frames will
look like a remarkably smooth trajectory through that state space.

One might counter that the neurons studied by most neuroscientists
appear to send their signals in the form of one-millisecond action potentials,
rather than graded potentials. Thus, the fundamental quanta of the mind are
temporally and informationally discrete. However, the brain’s neurons are
not all in lockstep to the ticking of a single clock.? The transition from one
millisecond to another is not characterized by a transition from one set of
neurons being in midspike to another set of neurons being in midspike. In
fact, even an individual action potential, lasting about 1 millisecond, does not
instantaneously jump to +25 millivolts and hold steady there for the full 1,000
microseconds, and then jump back to —60 millivolts. An action potential is
a gradual fluctuation of electrochemical differential, starting from about
—60 millivolts at resting level, through a 100-microsecond rising phase up to
about —45 millivolts, peaking at +25 millivolts about halfway through, and
then going through a repolarization phase for several hundred microseconds,
and eventually into a hyperpolarization phase where it’s around —70 millivolts
for a whole other millisecond. Thus, if you were to take a frozen microsecond
of the brain’s neuronal activity, that microsecond would show most neurons
at resting level, some neurons in hyperpolarization phase, fewer neurons in
depolarization phase, fewer still in rising phase, and (depending on how you
define peak) the fewest neurons would be at their ever-so-briefly visited peak
of electrical potential. With this wildly staggered array of nonaligned time
frames, holding a stable bit-vector pattern of activation to function as a discrete
conceptual symbol would be impossible.

This is why, in addition to examining very short bursts of spikes for their
individual timing (Bohte, 2004; Softky, 1996) and relative latency (Maass,
1997), many neuroscientists average over larger chunks of a few dozen milli-
seconds when calculating the activation of a neuron in terms of its average
firing rate (Shadlen & Newsome, 1994; see Fairhall et al., 2001, for some dis-
cussion of rate coding, burst coding, and individual spike coding). A sliding
window for averaging this firing rate would thus describe transitions from one
briefly semi-stable population code to another in a manner that unavoidably
involved instantiating patterns of activity that were partial blends in between
the previous population code and the upcoming population code—and prob-
ably exhibiting some similarity with other nonvisited population codes as
well. In terms of a state space that encompassed these population codes in the
form of attractor basins, the result would be a trajectory that visits one attrac-
tor basin and, on its way to another, vaguely flirts with several others in the
“outer space” of the mind.

When you listen to someone talking to you, you may feel as though you
fully understand one word and then suddenly fully understand the next word,
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and so on, like a sequence of discrete linguistic symbols. And when your eyes
scan around a complex scene, you may feel as though you fully recognize one
object and then suddenly fully recognize the next object, and so on, like a
sequence of logical entries on an inventory list. However, in both cases, the
psychological and neurophysiological evidence recounted throughout this
book clearly demonstrate that your mind is doing most of its work in between
those seemingly discrete recognition events. When someone is talking to you,
your mind is partly understanding each incoming word as a mélange of
potential words, and by the time it settles on a unique word that it thinks it has
heard, the next word is already coming in, launching the mind into another
blended dynamic comprehension process. The same is true for when your
eyes are scanning a complex scene. The key question is whether this descrip-
tion opens up new conceptualizations of human data and experimental
methodologies that are not readily available with discrete symbolic descriptive
formats. It is particularly the goal of chapters 6-9 to convince you that the
answer to that question is an emphatic yes.

The format of a high-dimensional state space is sufficiently flexible that it
can even be used to describe an idealized version of a discretely symbolic cog-
nition. For example, the mathematics of symbolic dynamics (see chapters 4
and 10) is designed to take a continuous trajectory in a metric state space, or
phase space, record when that trajectory enters specified volumetric regions,
and emit (to another system) symbol labels that belong to those regions.
Alternatively, a discrete symbolic cognition would involve the trajectory,
essentially teleporting from corner to corner in the state space—much as
a digital computer does in its flip-flopping of CPU states.® Either of these
symbolic frameworks would allow separate neural subsystems to share only
limited (and discretely computable) information with one another, as Fodor’s
modularity hypothesis predicted. Thus, they would exhibit component-
dominant dynamics, such that the various subsystems’ internal processing
dynamics provide the key information about how the overall system works. A
lexical system would wait until it received enough input and performed
enough internal computations to reach a stable state before it passed the result
of its computations on to a semantic system. The same would hold for
phonology and the lexicon, syntax and semantics, syntax and discourse, and
even for language and vision in general.

However, if these various subsystems involved in different aspects of per-
ception, cognition, and action were all to cascade continuous updates of their
respective patterns of activation to one another, they would be sufficiently
nonmodular to no longer exhibit component-dominant dynamics and would
instead exhibit interaction-dominant dynamics. That is, as the temporal gran-
ularity of the information transmission between subsystems gets finer (see
Miller, 1982), the behavior of such a system will unavoidably conform less and
less to the modularity hypothesis.* Cascaded integration of multiple informa-
tion sources tends to produce multifarious patterns of activation that are unsta-
ble and do not straightforwardly map onto unique coherent motor outputs.
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What is needed, then, is a process by which the initially multifarious pattern
can settle into a unitary stable pattern at least long enough to produce motor
output. As suggested in chapter 4, competition between population codes
may be this very process (e.g., Keysers & Perett, 2002). Crucially, as argued in
chapter 3, to report compelling evidence for this neural competition process,
one needs experimental methods that can provide a glimpse of the partial
activation of the competing alternatives before one of them wins (see Enns &
Di Lollo, 2002). Cascading interactive systems such as this, composed of
richly intermeshed subsystems, are better understood by analyzing how the
components interact and produce emergent patterns between them (e.g., Van
Orden, Moreno, & Holden, 2003), than by dividing and conquering the indi-
vidual components themselves. The next few pages will review a wide variety
of cross-modal interactions in perception and cognition, showing that the mind
exhibits interaction-dominant dynamics rather than component-dominant
dynamics, thus ruling out Fodor’s (1983) version of the modularity hypothesis.

Transcortical Interactions

There are quite a few examples of perceptual systems interacting in ways that
Fodorian modularity assumed would be impossible. In the brief treatment in
this section, I start with some examples of visual features interacting with one
another, which caused problems for traditional views of visual perception
being composed of separate channels for independent feature extraction.
I then move on to a wide array of perceptual interactions across vision, touch,
audition, and speech. Although minuscule in comparison to the actual body
of literature, this section should provide sufficient sampling of the data to
make the case that Fodorian modularity is severely evidentially challenged.
For extensive reviews of cross-modal interactions, see Marks (1978), Welch
and Warren (1986), Stein and Meredith (1993), Calvert (2001), and Spence
and Driver (2004).

Despite early claims of encapsulated modules within visual cortex being
devoted to nonoverlapping visual features, such as luminance, color, orienta-
tion, motion, and depth (Cavanagh, 1988; Lennie, 1980; Livingstone & Hubel,
1988), interactions between visual subsystems have been cropping up in the
literature with increasing regularity. For example, a simultaneous version of
the tilt aftereffect, called the tilt illusion (figure 5.6), is stronger when the
surrounding tilted inducing annulus is of similar color and luminance to
that of the vertical test grating in the middle (Clifford et al., 2003; see also
McCollough, 1965, for related phenomena). Because the tilt illusion is believed
to take place in primary visual cortex, this suggests that the separate channels
for color, luminance, and orientation aren’t that separate after all. In fact,
recent evidence shows that there are cells in primary visual cortex that
are selective for specific combinations of color, luminance, and orientation
(Johnson, Hawken, & Shapley, 2001).
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/ , Figure 5.6. With simultaneous tilt contrast (or the
/ tilt illusion), the central vertical grating looks tilted a

couple degrees in the direction opposite that of the
surrounding grating.

Similar findings are seen with color, surface segmentation, and motion
perception. When visually segmenting a group of dots of one color from a
background of dots of another color, the distribution of motion directions
among the dots substantially affects performance (Moller & Hurlbert, 1997),
indicating that color and motion processing are more interactive than once
thought (see also Ruppertsberg, Wuerger, & Bertamini, 2003). Moreover,
binocular disparity and surface transparency combine to produce depth
information that reliably influences whether local motion signals are pooled
into a single coherent movement direction (Trueswell & Hayhoe, 1993). Such
immediate interactions between color, depth, and motion would not take
place if these different visual features were processed by encapsulated modules
that completed their jobs on their own and then shunted the finished results
to a later cognitive stage.

Indeed, the neurophysiology suggests that intrinsic lateral connections
within primary visual cortex may be responsible for simultaneous contextual
influences of the kind just described (Stettler et al., 2002). These intrinsic lat-
eral connections within primary visual cortex are denser than the feedback
projections going into primary visual cortex and are more limited to regions
of similar orientation specificities. Hence, the lateral connections are likely to
be responsible for the cross-featural interactions, as well as for contour inte-
gration effects (Field, Hayes, & Hess, 1993), whereas the feedback projections
are likely to be responsible for attentional modulation of those lateral processes
(e.g., Gandhi, Heeger, & Boynton 1999; Ito & Gilbert, 1999; Lamme &
Roelfsema, 2000; Motter, 1993).

Although these interactions among features within vision compromise
traditional modular accounts of visual perception, perhaps what is more
fundamental to debunking the modularity mindset in general is evidence for
interactions across entirely different perceptual modalities. For example,
although visual cortex is not active during most tactile tasks (Sadato et al.,
1996), it is active during tactile discrimination of orientation (Sathian et al.,
1997). Disrupting visual cortical processing via transcranial magnetic stimu-
lation interferes with tactile discrimination of orientation (Zangaladze et al.,
1999). Thus, visual imagery appears to be more than just associated with
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tactile processing, it plays a functional role in how tactile input is used to dis-
criminate orientations. In fact, blind Braille readers exhibit activation of
visual cortex during a variety of tactile tasks (Buchel et al., 1998; Sadato et al.,
1996). Indeed, the many topographical maps in visual cortex are well suited
for the spatial resolution necessary for Braille reading.

As it happens, Braille reading is not the only language-related task that
involves cross-modal interactions. The visual input received during skilled
silent lip reading elicits conspicuous activation of auditory cortex (Calvert
et al., 1997). That is, even though no significant auditory input is being
received, the lip reader’s brain nonetheless sort of “hears” what is being said.
And, of course, the McGurk effect is perhaps the most famous example of
interaction between visual and linguistic processes. When you see a televised
face repeatedly saying “ga-ga,” but the audio stream from the speakers actu-
ally delivers “ba-ba” in synchrony with the movements of the mouth, you
have a compelling percept of hearing “da-da” (McGurk & MacDonald, 1976).
Basically, the acoustic-phonetic properties of the speech stream support a
“ba-ba” percept, but the visual input, with the lips not touching during the
consonant, rule out that percept. The next best match for those acoustic-
phonetic properties is “da-da,” which would not require the visual evidence
of a bilabial stop, so “da-da” is the percept. If you close your eyes, the speech
stream begins to sound like “ba-ba,” but when you reopen your eyes, it
returns to sounding like “da-da.” Some of the extensions on that work are
discussed in chapter 6.

Just as visual input can modulate an auditory percept, so can auditory
input modulate a visual percept. For example, when a single flash of light is
accompanied by two beeps, it is often perceived as two flashes of light (Shams,
Kamitani, & Shimojo, 2000). When a leftward-moving circle and a rightward-
moving circle are animated on a computer screen, the type of sound emitted
when they pass through each other will influence how this event is perceived
(Sekuler, Sekuler, & Lau, 1997). If the observer hears a whoosh sound just as
the circles pass through each other, they will appear to travel past one another
on slightly different depth planes. However, if the observer hears a boing, with
exactly the same visual input, the two circles will appear to bounce off of each
other and reverse their respective directions.

Visual and auditory inputs do not only affect the way each other is per-
ceived, they also can affect the location from which the other event is perceived
to originate. The basic trick of ventriloquism relies on people’s tendency to
attribute the location of visual motion as the source of a simultaneous audi-
tory signal. This is why professional ventriloquists turn their head toward the
dummy and hold themselves still while it talks. This way, the dummy’s face is
the only thing moving while the audience hears its voice. The ventriloquism
effect has been studied quite extensively in perceptual psychology (e.g.,
Bertelson & Radeau, 1981; Howard & Templeton, 1966; Vroomen, Bertelson, &
de Gelder, 2001), where it is generally found that the illusion reduces in mag-
nitude with greater temporal asynchrony and greater spatial separation—and
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also with greater mismatch between visual and acoustic features (see Fisher &
Pylyshyn, 1994).

One way to conceptualize how visual, auditory, and tactile signals are spa-
tially integrated is in terms of a two-dimensional supramodal map of atten-
tional salience. A universal map of external space, perhaps in parietal cortex,
would explain how visual, auditory, and tactile cues succeed in orienting spa-
tial attention for each other (Driver & Spence, 1998; Eimer, Van Velzen, &
Driver, 2002). For example, when a brief tactile input is applied to the hand, a
visual stimulus presented in the same general area a few hundred milliseconds
thereafter is responded to faster than the same visual stimulus in a different
(noncued) location. As long as the task allows the eyes to move around natu-
rally, this cross-modal cuing of spatial attention seems to work in all pairwise
combinations across vision, audition, and touch.? In fact, these cross-modal
attentional influences even exhibit a kind of rebound effect, known as inhibi-
tion of return (Posner & Cohen, 1984). Several hundred milliseconds after
spatial attention has been applied to a location, the salience of (or sensitivity
to) that location goes below baseline for at least a few hundred milliseconds.
Thus, if an auditory cue is presented in one location, and 100 milliseconds
later a tactile stimulus is presented in the same location, participants will be
faster to respond to that tactile stimulus. But if the delay between the two
stimuli is 800 milliseconds instead of 100, participants will be conspicuously
slower than baseline to respond to the tactile stimulus (Spence et al., 2000).
Figure 5.7 is a schematic visual depiction of what a salience map might look
like during the dynamic transition from increased attention at a cued location
to conspicuously decreased attention (inhibition of return) soon thereafter.
This illustration also includes a mild inhibitory surround (the small troughs
on the spatial left and right of the salience peak) that circumscribes the
attended region (see Cutzu & Tsotsos, 2003; Mounts, 2000).

Importantly, the merging of these different sensory inputs is not carried
out solely by a feedforward integration process. The supramodal salience map
appears to send feedback signals returning to the unimodal maps. For exam-
ple, when an auditory cue involuntarily pulls visual attention to a particular
location in space, this modulation of visual processing is detectable as
increased activity in extrastriate visual cortex (McDonald & Ward, 2000; see
also Eimer & Schroger, 1998; Hillyard et al., 1984). With the help of figure 5.8,
one can think of it this way: Visual salience maps in visual cortical areas (e.g.,
Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002) combine with auditory
salience maps in auditory areas and the inferior colliculus (e.g., King, 1999) to
make supramodal salience maps in the posterior parietal cortex (Behrmann,
Geng, & Shomstein, 2004) and the superior colliculus (King et al., 1988;
Meredith, 2002; see also Knudsen & Knudsen, 1989), some of which then
send polysensory feedback to the unimodal sensory systems (as shown by
the bidirectional arrows in figure 5.8). A similar kind of arrangement can be
envisioned for integrating (and feeding back) visual and tactile inputs as
well (Macaluso, Frith, & Driver, 2000; Spence, McDonald, & Driver, 2004).
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Figure 5.7. Part of a salience map over time, depicting the temporal dynamics of
attentional facilitation at a cued location, flanked by some lateral inhibition, and
followed by inhibition of return. Only one spatial dimension is depicted so that
time and salience can also be graphed.

In figure 5.8, the salience maps are depicted as two-dimensional topographi-
cally arranged layers of neurons, where the height dimension indicates the
increased sensitivity exhibited by a local group of neurons when their input is
partially attended (or salient). The supramodal salience map continuously

Supramodal Salience Map

Visual Salience Map Auditory Salience Map

Figure 5.8. A supramodal salience map receiving input from
and sending feedback to unimodal salience maps.
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updates its pattern as a combination of the salience maps that feed into it.
Thus, although this visual salience map has a conspicuously large peak on the
far right portion of its surface, the auditory salience map has no such peak in
that location, so the supramodal salience map does not exhibit a particularly
competitive salience peak in that location. Note, however, that the feedback is
likely to eventually induce some nonzero activation in that location in the
auditory salience map. This may explain how the ventriloquism effect is so
compelling. But in the freeze-frame of figure 5.8, the somewhat modest peak
in the far left portion of the surface in both unimodal maps is what becomes
the highest salience peak when combined at the supramodal map. This high-
est peak would likely be the target of the first saccade and would also strongly
influence a continuous reaching movement. Thus, feedforward integration,
coupled with recurrent feedback, allows different perceptual domains to
influence one another in a manner that resolutely violates the modularity
hypothesis.

Natural Interactive Tasks Reveal
Natural Interactive Processing

There is a reason why the modularity hypothesis reigned supreme for as long
as it did. There is a history—in both vision research and language research,
actually—of perceptual-cognitive processing appearing quite modular when
it is measured in highly restricted laboratory tasks that allow precise, real-time
measures. Then, when improved methods allow those same real-time mea-
sures to be collected during more natural goal-oriented tasks, all of sudden
perceptual-cognitive processing begins to appear more interactive. For exam-
ple, in vision research, single-cell recordings with immobilized and anes-
thetized animals tended to produce evidence consistent with modular linear
systems accounts of hierarchical receptive field structures (e.g., Livingstone &
Hubel, 1988; Movshon, Thompson, & Tolhurst, 1978). However, when awake
behaving monkeys are trained to perform goal-oriented perceptual-motor
tasks while electrodes are busy recording from neurons in visual cortex, we see
that visual neurons are influenced by a number of factors outside the scope of
the classical receptive field (e.g., Gallant, Connor, & Van Essen, 1998; Motter,
1993). (See chapters 3 and 8 for more details.)

Similarly, in language research, when undergraduate experimental partici-
pants had to read isolated sentences on a computer screen in the dark while
their head was held motionless so that a table-mounted eye tracker could
record their eye movements, the millisecond timing of this measure tended to
produce evidence for syntax being modular and independent of semantics
and other contextual factors (e.g., Ferreira & Clifton, 1986; Rayner, Carlson, &
Frazier, 1983; see chapter 7 for more details). In contrast, experiments with
awake behaving undergraduates involved in rich contexts and goal-oriented
tasks produced evidence consistent with the idea that syntax, semantics, and
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pragmatics interact fluidly (e.g., Bransford & Johnson, 1972; Clark & Carlson,
1982). Unfortunately, most of the psycholinguistic experiments from the
1970s and 1980s that exhibited this level of ecological validity did not involve
online measures of performance with any substantial temporal resolution.
Natural contexts and real-time measures seemed to be mutually exclusive
properties for the experimental methods available to psycholinguistics at
that time.

Interestingly, in the cases of both vision and language, head-mounted eye
tracking has figured prominently in the mission to find ways to combine nat-
uralistic task performance with real-time measures of perception and cogni-
tion (Ballard, Hayhoe, & Pelz, 1995; Gallant et al., 1998; Land & Lee, 1994;
Tanenhaus et al., 1995). For example, by recording participants’ eye move-
ments while they carried out spoken instructions to move real objects around
on a table, Tanenhaus and colleagues (1995) were able to do more than show
that language was interactive or that vision was interactive. They showed that
at a very fine time scale, vision and language interact with each other. Even
partway through hearing a single word, the visual context can modulate the
activations of potential lexical representations in real time (see chapter 7).
Perhaps not surprisingly, demonstrating that visual context could “tell lan-
guage what to do” didn’t go over very well with parts of the psycholinguistic
community. There was considerable resistance from those who had grown to
think of their area of study as separate from visual perception—indeed, sepa-
rate from the rest of cognition. However, when we presented these findings to
vision researchers instead, they found them interesting, if perhaps a bit trivial.
“Of course, vision would be important enough to boss language around!
Those psycholinguists really should pay more attention to visual processes.”

Ironically, this set of attitudes from the two fields reversed symmetrically
when we later produced evidence for linguistic context modulating real-time
visual processes. When the target identity for a visual conjunction search task
is presented verbally over headphones (e.g., “Is there a red vertical?”), such
that one hears one visual feature before hearing the next while viewing the
display, the search is conducted more efficiently than if the target identity
speech file is presented entirely before the display is presented (Reali et al., in
press; Spivey et al., 2001). When we presented these findings to the psycho-
linguistic community, they found them interesting, if perhaps a bit trivial.
“Of course, language would be important enough to boss vision around!
Those vision researchers really should pay more attention to linguistic
processes.” And this time, the vision community resists. No one likes to be
told that their favorite perceptual-cognitive faculty can be “told what to do”
by some other perceptual-cognitive faculty.

The lesson is this: As real-time measures are developed that allow natural
complex interactive behavior on the part of the experimental participant,
natural complex interactive behavior is what will be observed among the
perceptual-cognitive subsystems involved. When this general methodology is
applied to syntax and semantics or to color and motion, the subsystems
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involved exhibit richly interactive functioning. When this general methodology
is applied to language and vision together, the subsystems involved exhibit
richly interactive functioning. Finally, when this general methodology is
applied to the brain and its environment, once again the subsystems involved
exhibit richly interactive functioning.

A New Theoretical Apparatus

The traditional theoretical apparatus of component-dominant dynamics
cannot provide a good description of how the brain fluidly interacts with
the world. Instead, interaction-dominant dynamics provide a more useful
account, as demonstrated well by the relative timing between eye movements
and cognitive processes. As indicated in chapter 1 (and illustrated numerous
times in chapter 6, 7, 8, and 12), the brain does not achieve a stable percept,
then make an eye movement, then achieve another stable percept, then make
another eye movement, and so on. The eyes often move during the process of
attempting to achieve a stable percept. This means that before perception can
finish settling into a stable state, oculomotor output changes the perceptual
input by placing new and different visual information on the foveas. Think of
it this way: An initial eye fixation causes certain dynamical perceptual
processes to be set in motion, which then (before they become stable) cause a
new eye movement, which then allows different environmental properties to
cause different dynamics in the perceptual process, which then cause yet
another eye movement, and so on (see Findlay & Gilchrist, 2003; Gold &
Shadlen, 2000; van der Heijden, 1996b; see also Spivey, Richardson, & Fitneva,
2004). Thus, visual perception is simultaneously the result of the environment’s
sensory input (caused by physical surfaces reflecting light onto the retinas) and
of its own oculomotor output (caused by intermediate products of perception’s
analog computations). Because eye movements operate at a slightly faster time
scale than does perceptual recognition, the perception—action cycle in this case
becomes an autocatalytic causal loop—for which distinguishing the chicken
from the egg becomes moot. Such a loop is called impredicative (Poincare,
1906; see also Russell, 1906) because it is composed of elements that can only
be defined with reference to the larger system of which they are members (see
Rosen, 2000). With impredicative systems, there can be no context-independent
definition of each element, followed by a linear, feedforward, component-wise
integration of those elements to build the larger system. Interactive self-
organizing systems—such as avalanches and earthquakes (Bak, 1996), the
Belousov-Zhabotinski reaction in chemistry (see Prigogine & Stengers, 1984),
artificial neural networks that both evolve and learn (Beer, 1996), the human
brain (Chialvo, 2004), and cognitive performance in general (Turvey, 2004;
Van Orden, Holden, & Turvey, 2003)—are impredicative systems. Such sys-
tems are impossible to describe via modular component-dominant dynamics
in particular and via simple reductionism in general.
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As the quote at the beginning of this chapter indicates, in The Modularity
of Mind (1983), Fodor warned us of the problems posed by fully interactive
systems. Compared to modular systems, they are extremely difficult to ana-
lyze. In fact, Fodor all but said that perceptual systems had better be modular
or we have no chance of ever understanding them. Perhaps, then, it is no won-
der that some scientists still dig their heels in today in their attempt to main-
tain a modular characterization of perception. But Fodor also went further.
He suggested that central systems, such as reasoning and problem solving,
were not modular because they require such complex integration of informa-
tion from varied sources. Thus, it becomes supremely ironic that as the
modularity of perceptual input systems has gradually been dismissed over the
past 20 years, the place where modularity enthusiasts have gone is to higher
level cognition (such as lie detection modules, theory of mind modules, and
mathematics modules)—precisely the place where Fodor claimed modules
could not be found.

But when it comes down to it, the facts on the ground are the facts on
the ground. We can lament the fact that perception and cognition are not
modular—and therefore require far more complex measures, analyses, and
models than previously used—but we cannot ignore it. What so many feared
all along appears to be true: A new theoretical apparatus for studying the mind
is indeed required after all. And a continuous nonlinear trajectory through a
high-dimensional state space just might be that theoretical apparatus.

No Things in the Mind

Having armed yourself now with some appreciation for the methodological
tools (chapter 3) and computational techniques (chapter 4) that reveal con-
tinuous mental dynamics, and now recounting some of the ways in which
these dynamics interact between functional subsystems of the mind (this
chapter), you should be prepared to withstand the upcoming onslaught of
distributed dynamic cognitive phenomena in categorization (chapter 6),
language (chapter 7), vision (chapter 8), action (chapter 9), and even reason-
ing (chapter 10). You will find throughout this book that I tend to mix my
metaphors between dynamical systems and information processing termi-
nologies. I will use terms like mental trajectory and even dynamical representa-
tions. For some die-hard dynamicists, this will undoubtedly be highly
objectionable. Perhaps for some die-hard classical theorists, it will sound
mealy mouthed. But for the growing numbers of disillusioned cognitive
psychologists, these mixed metaphors will provide a much-needed bridge
for making the trek from their training in the information processing frame-
work toward a framework that is more amenable to the continuity of mind. In
this new framework, there are no independent static objects in the mind;
every mental entity is promiscuous in its content and continuous in its
dynamics.
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When we look at the vast array of perceptual-cognitive abilities that the
human brain brandishes, it is often tempting to conclude that each ability has its
own individual processor, a box for every job. However, much of the evidence
described in this chapter and throughout this book points to a very different
characterization. If our perceptual-cognitive abilities are not independent func-
tions that only share their information with one another when their process-
ing jobs are completed, but instead are interactive processes that distribute
their duties across one another continuously, then it seems unlikely that these
abilities are individually selected for in our evolutionary history (see Bechtel,
2003). If there are no such boxes in the head, then the evolution of mental
faculties is likely to be a far more complex and interactive process than simply
mapping each environmental pressure onto its own personalized evolved
mental function. For example, Cosmides and Tooby’s (1994) Swiss army knife
metaphor for the collection of discrete cognitive abilities that evolution has
bequeathed to us does not jive well at all with the kinds of richly interactive
processing described in this chapter. Rather than a linearly combined collec-
tion of independent mechanisms, as implied by the Swiss army knife metaphor,
perhaps Kingsbury and Finlay’s (2001) woven plaid metaphor is more appro-
priate. In a woven plaid, there are identifiable patches that superficially look
segmented from one another, a bit like a quilt. However, quite unlike a quilt,
the substructure (and the construction) of a plaid’s patches reveal complex
and rich interdependencies among regions—as recounted throughout this
chapter. Thus the field of evolutionary psychology would be wise to pay a visit
to its theory pawn shop and trade in Cosmides and Tooby’s Swiss army knife
for Kingsbury and Finlay’s woven plaid.

Just as there are no truly individuated tools in the mind, there are also
no truly individuated units of mental activity in the mind either. When the
information-processing theorist zooms in on one of those patches in the
woven plaid, to look for the computational units that it processes, he will
be disappointed. Although introspection about our own cognitive experience
may tempt us to conclude that we think in sequences of individual symbolic
units, mountains of evidence in the next five chapters strongly suggest other-
wise. When real-time measures are applied to naturalistic tasks, not only do
we observe more interaction between domains than previously suspected
(this chapter), we also observe more gradedness in the temporal dynamics of
the representations than previously suspected (chapters 6-10).

The key metatheoretical shift being proposed in this book is simple: Mental
content does not consist of objects but of events. Individual representations
are not temporally static things in the mind that can be found, grasped, and
inspected, like a homunculus fondling a glass figurine on his bookshelf.
Representations are processes in and of themselves, sparsely distributed patterns
of neural activation that change nonlinearly over the course of several hun-
dred milliseconds, and then blend right into the next one. Likewise, individual
cognitive faculties (language, vision, memory, reasoning, etc.) are also not
spatially and temporally separated things in the mind, but are processes that
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emerge from the time-dependent interaction of multiple neural subsystems.
Importantly, I contend that this seemingly innocent shift in descriptive for-
mat—from objects to events, from things to processes—has radical conse-
quences for just about every conventional theory in the cognitive
sciences. If the process of spoken word recognition takes visual context into
account immediately, then is it really fair to refer to it as “spoken word recog-
nition?” The process in question is clearly doing more than just recognizing
spoken words. Or when visual search takes into account concurrent linguistic
input immediately, is it really fair to summarily label this process “visual
search?”

This is not the first time that someone has argued that it is misleading to
apply a linguistic label to a putative mental process (e.g., word recognition,
working memory, visual imagery) and draw discrete demarcations in space
and time for its separation from other mental processes. However, it was
perhaps easy, during the cognitive revolution, to dismiss such claims on the
grounds that the discrete modular engineering approach allows for theoreti-
cally explicit and mathematically rigorous accounts of the mind. Simply
saying that we shouldn’t oversimplify a richly interconnected dynamic biolog-
ical system like the brain by describing it in terms of computationally tractable
encapsulated subsystems leaves open the question of how we do describe
it then! In the past decade or so, the mathematics of dynamical systems, along
with a focus on real-time experimental measures, have produced a number
of successful inroads toward providing precisely this theoretically explicit
and mathematically rigorous description of how the dynamic mind works.
Therefore, I think the cognitive and neural sciences actually are finally at a
point where one can responsibly claim again that inventing linguistic labels
for discrete mental processes dangerously oversimplifies what’s really going
on. This time we can work conscientiously, rigorously, and successfully toward
an account of mind that leans significantly less on such computational ideal-
izations while nonetheless maintaining scientific respectability.
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Temporal Dynamics in Categorization

Is it always permissible to speak of the extension of a concept, of a
class? And if not, how do we recognize the exceptional cases?
Can we always infer from the extension of one concept’s
coinciding with that of a second, that every object which falls
under the first concept also falls under the second? These are the
questions raised by Mr. Russell’'s communication.

—Gottlob Frege

| think categorization is a sin.
—Dave Mustaine

Categorize Not, Lest Ye Be Categorized

Categorization, or categorization-like processing, is one of the most impor-
tant functions in all of mental activity (see Harnad, 1987). If you search a
psychological literature database for the combined set of articles on either the
subject of categorization or the subject of categories, you will find more arti-
cles than if you search for the subjects of word recognition, object recognition,
or visual attention. The mental skill of knowing what featural differences
between things in the world can be more or less ignored and what featural
differences warrant treating two things differently is crucial to interacting
with the world successfully and safely. But the different ways the mind might
implement this skill of categorization have been the topic of intense debate for
many decades.

This chapter starts out with a textbook example (literally) of how one of
these ways can break down rather spectacularly. Formal logical frameworks
for categorization have a history rooted in set theory, where categories have
discrete, crisply defined boundaries between one another, with no fuzzy
graded overlap between them. Although the majority of this chapter will point
to the gray areas that lie in between putative categories and that are particu-
larly visible when one examines the continuous real-time process of percep-
tion and cognition, it is nonetheless useful to begin with a famous criticism of
formal logic that essentially beats it at its own game. This classic bug in the
software of formal logic is known as Russell’s paradox.

As a foundation of logic and mathematics, set theory is a key component
of how one might begin to formalize a treatment of categorization. For example,
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the set of apples contains all apples as true unmitigated members, and it
excludes all nonapples (e.g., Asian pears, oranges, hammers, toenail clippings,
etc.) as complete nonmembers. See figure 6.1A. Crucially, there is no gray area
between true/membership and false/nonmembership (not even for Asian
pears, whose shape and texture are remarkably similar to apples; they are
treated as equally lacking in applehood as toenail clippings). The set of apples
can be represented as a subset of the set of fruits, as well as a superset of the
set of red delicious apples. As such, set theory provides a robust format of
hierarchical knowledge representation. One of the strengths of traditional set
theory—as well as what led to its downfall—is its ability to represent internal
recursion. Sets can refer to and contain themselves. Figure 6.1B shows the set
of all sets, which contains a great many sets, including the set of apples, as well
as the set of all sets, because being a set qualifies it to be a member of itself.
Being a member of itself makes it a somewhat odd kind of set, and this is per-
haps slightly mind-bending for the uninitiated, but it’s nothing compared to
what comes next. As noted by Bertrand Russell (1903), included in this set of
all sets (which happens to be a member of itself), is an easily constructed sub-
set called the set of all sets that are not members of themselves (figure 6.1C).
This set notably does not include the set of all sets (notice the absence of the
tiny Venn diagram in the lower right region, when comparing set C to set B).
However, the set of all sets that are not members of themselves does include
the set of apples. As a “set of apples” is not the same as an “apple,” the set of
apples does not include itself as a member of itself. Thus, it qualifies for
membership in set C. But what happens when you ask whether the set of all
sets that are not members of themselves includes itself as a member?
Basically the world comes crashing in on set theory at that point. If the set
of all sets that are not members of themselves includes itself as a member,

A. Set of apples B. Set of all sets
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Figure 6.1. Russell’s paradox: Set C must and must
not contain itself.
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it thereby disqualifies itself from being a member, by its very own definition.
But if it excludes itself from being a member of itself, then it thus qualifies
as a set that is not a member of itself, and should, by its definition, be included
as a member. Thus, the framework of traditional set theory allows a self-
contradiction, making itself internally inconsistent. It’s like they say: Unable
to assign a binary membership value if you do, unable to assign a binary
membership value if you don’t.

As it turns out, Russell’s paradox is not an across-the-board damning of
all possible set theories. It damns only a subset of all set theories. There are
ways to revive many combinations of set theoretical axioms as long as one
removes a powerful functionality from the theory: One must prohibit sets
from making reference to themselves. Russell’s type theory as well as the
Zermelo-Frinkel set theory do exactly this. Nonetheless, Russell’s famous cri-
tique of basic set theory was enough to make Gottlob Frege (1903/1964,
whose quote begins this chapter) gradually distance himself from his previous
works on logic and mathematics. This paradox is also frequently used as a
motivating example in many introductory descriptions of fuzzy set theory
and fuzzy logic.

Fuzzy set theory can maintain the functionality of self-reference and
internal recursion because it adds the functionality of allowing graded,
instead of binary, truth values (Zadeh, 1965). Fuzzy set theory assigns degrees
of membership, typically on a scale from 0 to 1. A red delicious apple might
get a 0.95 membership to the set of apples, a Granny Smith might get a 0.9, a
mostly eaten golden delicious apple core might get a 0.7, and an Asian pear
(also called a nashi) might get a 0.25 because it resembles an apple’s appear-
ance and texture. Fuzzy set theory does not catastrophically break down when
a paradox occurs, precisely because it allows these gray areas between true/
membership and false/nonmembership. When a particular set membership
appears to be equally true and false, one can simply assign it a value of 0.5 true
and 0.5 false. The set of all sets that are not members of themselves can simply
include itself with 0.5 membership. Granted, this is a rather uninformative
state to be in, but at least the system is not forcing itself to violate any of its
own axioms. Maybe being unable to assign a binary truth value doesn’t damn
a theory after all (Fine, 1975; Hyde, 1997; Williamson, 1994; but see Fodor &
Lepore, 1996). In fact, fuzzy logic (along with other multiple-valued logics)
has been enjoying a great deal of popularity in electrical engineering applica-
tions. Fuzzy control systems can be found in circuits for everything from
toasters to vacuum cleaners to elevators to trains—even in the antilock
braking system of many cars!

That said, fuzzy, graded treatments of categories in the mind have been
slow to gain appreciation in certain areas of cognitive science (e.g., Dietrich &
Markman, 2003; Fodor, 1998; Haack, 1979; Jones, 1982; Osherson & Smith,
1981, 1982; but see Epstein, 1982; Lakoff, 1987; Love, Medin, & Gureckis,
2004; Massaro, 1989; Rogers & McClelland, 2004; Rosch, 1973). Despite
Russell’s proven crippling of (the sometimes called naive version of) set theory
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a century ago, basic set theoretic symbol-minded treatments of concepts and
categorization still run rampant in cognitive psychology (but see Sloman,
1998). It is almost as though the profound intuitiveness of traditional set
theoretical frameworks is justification enough to ignore Russell’s proof.

But there is another logical paradox that is more regularly brought up
in philosophical and psychological discussions of the battle between crisp
atomic concepts and fuzzy vague concepts: the Sorites paradox. This paradox
comes in many forms, but one of the more colorful versions (and one that hits
close to home for a lot of men!) is the question of when a man’s head can be
said to be bald. If a full head of hair is in the neighborhood of 100,000 hairs,
then is a man with only 99,999 hairs bald? Clearly not. But what if you keep
plucking hair after hair from this poor man’s head, and asking whether he is
bald each time? Is he bald at 70,000 hairs? No. 50,000 hairs? Perhaps not.
When you pluck the 90,000th hair, and he has only 10,000 hairs remaining, is
he finally bald? If so, does that mean he was not bald when he had 10,001
hairs? At what individual instance of single-hair plucking did he abruptly
become bald?! The point of the Sorites paradox is to demonstrate that the line
at which a false proposition like “the man is bald” discretely becomes true is
impossible to draw. At every pair of adjacent values, for example, 10,367 and
10,368 hairs, it seems woefully arbitrary to say the distinction between “bald”
and “not bald” lies there and nowhere else. (This clearly harkens back to
the concerns about threshold setting in symbolic dynamics discussed in
chapter 4; see Bollt et al., 2001). Once again, a solution that has been proposed
for this paradox is to introduce degrees of truth, or fuzzy set theory (Machina,
1976).

Part of the reason that concepts like baldness must be vague and fuzzy is
probably because they are actually collective variables rather than the atomic
concepts that the linguistic labels imply. The property of being bald is perhaps
an unevenly weighted combination of hair thinness in different regions of the
scalp. A man with a short-cropped Mohawk haircut may actually have less
total hair volume than a man with midstage male pattern baldness. But it is
the latter man who will get called bald, isn’t it? Moreover, the use of the label
bald for a man might also vary depending on different contextual circum-
stances, such as how attractive his facial structure is, how much you like his
personality, and how old he is. For example, the hair thinness threshold for
being bald could very well be slightly higher for men in their 70s than for men
in their 30s. (At age 75, a man with half a head of hair is doing pretty well.) If
so, this would mean that the concept of being bald somehow includes mea-
sures of age, and perhaps attractiveness, as well as other variables. This dis-
tributed collection of variables that converge to produce the label bald is
clearly not at all the nondecomposable atomic concept of the type that so
many philosophers have argued must exist. I will argue in this chapter that
perhaps no concept can be truly atomic (i.e., nondecomposable into con-
stituent subcomponents). After all, not even atoms are atomic. Philosophers
just thought they were at one time.
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And Yet, We Cannot Help But Categorize

When we introspect and when we communicate, we tend to naturally, auto-
matically, and implicitly impose categories on the things around us, even
events that are actually quite continuous. Sometimes our categorizations are
transparently mere heuristics, used for ease in communicating, such as refer-
ring to Baby Boomers, Generation X, Generation Y, and Generation D, when
we know full well that these labels are not empirically based on nonoverlapping
distributions of birthdates and mutually exclusive affiliations with separate
periods of popular culture. But other times, the parceling of continua into
individual chunks that we carry out is genuinely opaque to self-reflection. For
example, when you look at a real rainbow, you are exposing your retinas to an
approximately evenly distributed continuum of wavelengths. Yet you perceive
it as composed of separated bands of different colors with slightly different
widths. This humanly visible range of wavelengths (from about 400 to 700
nanometers) is a tiny portion of the spectrum of radiation wavelengths in the
universe, from gamma rays (around 0.001 nanometer) to AM radio (around a
trillion nanometers) and beyond. But even this tiny range seems to be carved
up into several distinct groupings within our perceptual experience. This little
example of our carving up of rainbows, despite their actual continuity, is
emblematic of how biological (as well as cultural) evolution has instilled the
tendency to pigeonhole related experiences in such a way that differences within
a group are downplayed and differences between groups are exaggerated. It also
stands as a helpful reminder of how profoundly subjective perception is!

Decades ago, it was suspected that people who grew up with languages that
grouped the color spectrum into different linguistic categories—for example,
using one word for both green and blue, or for blue and black, or in some lan-
guages, one word for all three—also perceived colors in those different cate-
gories (Whorf, 1956). These cultures do of course communicate via a different
set of color names, but psychophysical color perception experiments tend to
show that regardless of language or culture, color is more or less perceived in
basically the same way by humans worldwide (Berlin & Kay, 1969; Heider,
1972; but see also Roberson, Davies, & Davidoff, 2000; Kay & Kempton,
1984)—excluding, of course, those people with fewer (or more) than the typi-
cal three retinal color receptors, such as dichromats (and tetrachromats). Thus,
when a native monolingual Tamahumara speaker (who uses the same color
word for blue and for green) looks at a rainbow, she sees pretty close to the
same chromatic array that a native monolingual English speaker sees. The
wavelength continuum is perceptually segregated into more or less the same set
of almost discretely separated bands of color. (It seems noteworthy, does it not,
that those boundaries between the color bands appear somewhat fuzzy and
graded?)

This color categorization is due largely to low-level opponent-process
color perception mechanisms in the retina and lateral geniculate nucleus
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(Boynton, 1960; Lennie, 1984). It is not due to some contemplative culturally
and linguistically determined thought process that converts perceptual con-
tinua into cognitive and linguistic categories. However, there are other aspects
of our perceptual experience that are perhaps somewhere in between these
extremes of purely biologically determined and purely socially determined
(see Gumperz & Levinson, 1996). For example, Japanese and English use
different sets of grammatical groupings for referring to objects and to sub-
stances, and the way children learn to categorize and differentiate simple
objects and substances appears to differ in the two cultures (Imai & Genter,
1997). (See also Boroditsky, 2001, for effects of Mandarin and English spatial
metaphors for time.)

Whether due to innate biological mechanisms or to cultural/linguistic
influences (or, more typically, a combination of the two), the ability to cate-
gorize perceptual experiences, instead of treating each individual stimulus
array as independent of every other stimulus array, is a fundamental cognitive
ability of the utmost importance for defining and understanding the human
mind (see Harnad, 1987). Categorization is among the most studied mental
faculties, and thus is at the core, of cognitive psychology.

What I will demonstrate to the reader in this chapter is that categorization
is not a Kantian mental faculty that performs computations on discrete sym-
bolic variables (Dietrich & Markman, 2003; Marcus, 2001) with logical rules
(e.g., Nosofsky & Palmeri, 1998). Rather, this crucial cognitive skill is a natural
result of a dynamical system that has developed graded attractor basins in state
space (e.g., Anderson et al., 1977; see also Damper & Harnad, 2000). Before a
novel stimulus array can stake claim to its own attractor, thus having its own
personal representational identity, it will first have a chance to settle into one or
more of the existing attractors, thus being treated as a member of that attrac-
tor’s category.? In this framework, settling into or toward an existing attractor
basin is tantamount to being categorized, just probabilistically so.

Temporal Dynamics

In the following two sections, the discussion will focus on two informal
demonstrations of categorization in continuous time and in continuous fea-
ture space. As a dynamical systems account would naturally predict, cate-
gorization tasks often show quite different results from speeded responses
than from nonspeeded responses (e.g., Lamberts, 1995, 1998, 2000; Lin &
Murphy, 1997; Nosofsky & Alfonso-Reese, 1999; see also Brownell & Caramazza,
1978; Medin & Smith, 1981). Essentially, a speeded response forces an unset-
tled trajectory to select among multiple nearby attractors in an unsystematic
fashion (e.g., perhaps stochastically). The results can allow one to infer partial
activation of multiple competing interpretations of the stimulus array.
Unfortunately, as noted by Lamberts (2000), it is still somewhat new and
unusual for categorization studies to give consideration to temporal dynamics.
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The bulk of the literature over the past few decades has focused almost exclu-
sively on the outcome of categorization rather than the process. This tradition
ignores the fact that by examining the continuous time course of an online
categorization event, one can tease apart various theoretical accounts that
would never have been rigorously tested by outcome-based off-line experi-
mental measures.

For example, one theoretical account of the process of categorization,
which is generally consistent with Lamberts’s (2000) information accumula-
tion theory, can be idealistically demonstrated by a normalized recurrence
simulation. Figure 6.2 shows the diagram of a very simple normalized recur-
rence architecture used to approximate the changing patterns of activation
during the categorization of different animals into the classes of fish, mam-
mal, bird, and reptile. As the normalized recurrence competition algorithm
works (see chapter 4 for details), these five feature vectors (framed circles)
each normalize so that they sum to 1.0 and then are combined at the integra-
tion layer (framed ovals), erasing any previous activation values at that layer.
In this simulation, there are no differential weights for the five feature vectors;
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Figure 6.2. Schematic diagram of a normalized recur-
rence simulation of the temporal dynamics of categoriza-
tion. The repeated node labels in some of the feature
vectors (circles) are necessary because each integration
node (ovals) must have its own unique feature node. This
allows the feature vectors to function as probability distri-
butions in their support for the appropriate taxonomic
class. For example, after the initial feature vector normal-
ization step, a “live” birth mode vector would pass 1.0 acti-
vation to the mammal node and 0 activation to the other
taxonomic class nodes, whereas an “eggs” birth mode vec-
tor would send 0.333 activation to the fish, bird, and reptile
nodes, and 0 activation to the mammal node.
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they simply sum together at the integration vector. The integration layer then
divides each node’s activation by the vector’s sum activation (always 5.0 in this
case, thus making the integration vector simply an average of the five feature
vectors). Then cumulative feedback is sent by adding to each feature node the
product of itself and its corresponding integration node. The next time step
begins with the feature nodes normalizing themselves (dividing each node by
the vector’s sum), and the integration and feedback take place again. These
four calculations are computed within each time step, and the network con-
tinues until a criterion node activation (often 0.95) is reached by an integration
node. The cyclic recurrent flow of activation between the integration vector
and the feature vectors allows strong and selective biases within certain feature
vectors to coerce weak and uncertain biases in others, until the system gradu-
ally settles into a stable state (see appendix for the relevant MATLAB code).

For this simple animal categorization simulation, feature vectors were
entered for nine example animals. For the toucan, the nodes for wings, sky,
warm, air, and eggs were set at 1.0 activation. For the goldfish, the nodes for
fins, water, cold, water, and eggs were set at 1.0 activation. For the lizard, the
nodes for legs, land, cold, air, and eggs were set at 1.0 activation. For the cat,
the nodes for legs, land, warm, air, and live were set at 1.0 activation. For the
turtle, the nodes for legs, water, cold, air, and eggs were set at 1.0 activation.
For the penguin, the nodes for wings, water&land, warm, air, and eggs were set
at 1.0 activation. For the seal, fins, water&land, warm, air, and live were set at
1.0 activation. For the whale, the nodes for fins, water, warm, air, and live were
set at 1.0 activation. For the platypus, the nodes for legs, water&land, warm,
air, and eggs were set at 1.0 activation. This localist attractor network easily
categorizes animals that are typical exemplars of their taxonomic class, such as
toucan, goldfish, and cat (see figures 6.3 and 6.4). However, with animals that
are unusual members of their class, the network undergoes a long, drawn-out
competition—not unlike the long reaction times described by Rosch,
Simpson, and Miller (1976) and Smith (1978)—due to the animal’s partial
match with multiple taxonomic classes.’

Figure 6.3 presents two-dimensional perspectives on the representational
state space of the taxonomic class vector for all nine simulations. In each case,
30 circles plot the activation of one relevant node by the activation of another
relevant node time step after time step. When these circles are far apart, it
shows that the state space trajectory was moving quickly at the time, and when
the circles are close to one another, it shows that the state space trajectory was
moving slowly. Figure 6.4 plots the activations for all four nodes in the taxo-
nomic class vector (along the y-axis) over time (along the x-axis). Note how
the simulations for seal, whale, penguin, turtle, and platypus exhibit late rises
to asymptote for the correct classification, and even then those asymptotes are
substantially below 1.0. In the end, the model concludes that a whale is 0.6
a mammal and 0.4 a fish. And in fact, during its first few time steps of pro-
cessing, the model briefly conceives of a whale as slightly more a fish than a
mammal. A similar crossing of curves is seen with turtle.
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Figure 6.3. Trajectories through representational state space, seen through a variety
of two-dimensional windows on the four-dimensional taxonomic class vector (axes
vary across panels). Note how all simulations start somewhere in between the two
relevant attractors (at top left and bottom right corners) and move in the direction of
one of them.

Keep in mind that this simulation is really just an existence proof of one
way a graded temporal dynamics could be realized in a dynamical system.
Even if these predictions were to fit human data perfectly, that still wouldn’t
prove that the way that normalized recurrence produces these curves is the
same way human brains produce their curves. But could these curves really be
anything at all like what a human mind does when it categorizes animals any-
way? During the early moments of settling on a categorization for an animal,
do people simultaneously partially consider multiple categories? Do those
partially active representations compete over time for a cognitive trajectory to
settle into eliciting a unique motor output?

Comparing speeded instinctive responses to slow contemplative responses
(e.g., Lin & Murphy, 1997) is a good start for measuring this kind of time
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Figure 6.4. Activation of all four nodes of the taxonomic class vector over time,
for all nine simulations.

course question, but a (semi-)continuous many-samples measure of which
responses are accruing activation and approaching threshold (such as many of
those methods discussed in chapter 3) is substantially more revealing. For
example, because eye movements occur about three to four times per second
and are largely unaffected by deliberative strategies, they can provide a stream
of multiple honest proto-responses over the course of the couple seconds it
takes to produce a single overt verbal or manual response.

Nederhouser and Spivey (2004) recorded the eye movements of 17 par-
ticipants while they categorized small plastic toy animals (about 2 inches X
3 inches) into either of two bins. Participants were first shown a set of animals
(half from one taxonomic class, half from another), and then were presented
each animal one at a time. Nederhouser and Spivey found that animals that
are atypical members of their taxonomic classes, like turtle, penguin, seal, and
whale, took longer to categorize than more typical animals (see Glass &
Meany, 1978; Rips, Shoben, & Smith, 1973), and they also elicited quite a bit of
vacillation in eye movements between the two category bins. Crucially, when
one looks again at the records of eye position over time, one can plot fixation
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Figure 6.5. Eye fixation curves for the categorization experiment. Animals that
are atypical examples of their taxonomic class elicited considerable vacillation in
eye movements during the early moments of categorization.

curves based on the proportion of fixations at each time slice (figure 6.5) that
resemble somewhat the activation curves from the network simulations
(figure 6.4). The curves in figure 6.5 show, for each 33-millisecond time slice,
the proportion of trials in which the subjects were fixating the correct cate-
gory bin or the incorrect category bin, following their first saccade away from
the toy animal that was placed in front of them. (Similar kinds of findings, but
with continuous mouse movements, are reported by Dale, Kehoe, & Spivey, in
press.) Note how in the case of penguin, seal, and whale, some subjects con-
tinued to fixate the incorrect bin for the full two seconds shown; in some
cases, they even placed the whale in the bin of fish!

The present eye movement data (figure 6.5) do not include the platypus
in figure 6.4. Do you have any idea how hard it is to find a small plastic toy
platypus?! Anyway, a wide range of additional interesting animals, such as the
eel, the ostrich, the bat (perhaps even adding more taxonomic classes), can be
the focus of future, more richly fleshed out simulations and experiments. Of
course, if some of our participants had trouble correctly classifying the whale,
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one can probably expect the underappreciated and misunderstood platypus
to elicit even more noisy and confused responses from many participants.

This comparison of pilot simulation and pilot data provides a glimpse
into the beginning stages of how a research project can pursue a recurrent
interplay between model prediction and experimentation in studying the tem-
poral dynamics of real-time categorization. The demonstration is intended to
illustrate how one can begin to visualize the fuzzy graded representations that
change over time during categorization, both in a localist attractor network
and in a semi-continuous record of cognitive processing. And perhaps some
of the more static, formal approaches to concepts and categorization might
have trouble accommodating such evidence that during a categorization event,
the mind spends so much of its time in graded, rather than discrete, mental
states.

Categorical Perception: Vision

One common objection to the claim that mental representations are fuzzy and
multifarious—at any point in time—is that under certain experimental cir-
cumstances, one can demonstrate that perceivers appear to uniformly catego-
rize certain perceptual inputs and lose access to the continuous information
that originally constituted the stimulus array (especially with speech; see
Liberman et al., 1957). Clearly, addressing this categorical perception phe-
nomenon is thus of paramount importance in advancing and defending the
continuity of mind thesis.

In a categorical identification task, a stimulus feature is “stretched out”
into a continuum. For example, one could present human participants with
many color patches over and over from a green to blue portion of the color
spectrum, say, 540 to 480 nanometers in 5-nanometer increments, and ask
them to identify each patch as either green or blue. In principle, one might
perhaps expect participants to respond to this continuum in a continuous
fashion. That is, a green that is near the blue region, say 520 nanometers,
might get identified as green only 60% of the time and as blue the other 40%,
and vice versa for 500 nanometers. Figure 6.6 shows a pretend version of this
hypothetical continuous perception. However, what is actually found with
such continua, in most circumstances, is that all stimuli in one portion of
the continuum are identified with nearly 100% consistency as belonging to
one category and all stimuli in the remaining portion of the continuum are
identified with nearly 100% consistency as belonging to the other category.
Figure 6.7 shows a schematic version of the kind of data that are typically
observed in such experiments.

Following work in the speech domain (Liberman et al., 1957), Bornstein
and Korda (1984, 1985; see also Pilling et al., 2003; Roberson & Davidoff,
2000) gave participants a discrimination task instead of the identification
task. True categorical perception requires that the graded distinctions between



Temporal Dynamics in Categorization 153
100 \ /—\
90

% N s
70 \\
60

—&— "Green"

50 — "Blue"
40

" d N

20

N ~

0 / - \

540 535 530 525 520 515 510 505 500 495 490 485 480
Wavelength (nm)

% ldentification

Figure 6.6. Hypothetical continuous perception of a continuous modulation in
wavelength.

a pair of within-category stimuli from the continuum are lost to the process-
ing system and unable to affect responses. Consistent with this, Bornstein and
Korda showed that a pair of hues that just barely straddled across the category
boundary between green and blue were more easily discriminated than a pair
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Figure 6.8. A two-dimensional continuum of height
(along the vertical axis) and width (along the horizontal
axis) for cups and bowls.

of hues (with the same distance from one another in nanometers) from within
either category. However, they also found that reaction times were longer for
same judgments of nonmatching hues within the same hue category than for
same judgments of identical hues. Thus, something about the difference
between two slightly different but same category hues is obviously still affect-
ing processing, at least enough to influence the time course of discrimination.

In this next illustration of human data and model simulation, I briefly
describe some experiments on the categorical perception of cups and bowls.
These experiments have much in common with work by Labov (1973), Oden
(1981), and Newell and Biilthoff (2002). The primary feature that distin-
guishes a cup from a bowl is aspect ratio: width divided by height. All other
features being equal, a cup is typically taller than it is wide, and a bowl is
typically wider than it is tall. Figure 6.8 shows a two-dimensional continuum
between a typical cup (upper left) and a typical bowl (lower right). This
matrix was constructed by starting with the stimulus in the lower left corner
and increasing its height by increments of 10% (upward in the matrix) and
increasing its width by increments of 10% (rightward in the matrix). Thus,
the stimuli along each diagonal going from lower left to upper right all have
the same aspect ratio—they differ only in size.

In the first of this pair of experiments, 20 participants were shown each of
these stimuli one at a time on an otherwise blank computer screen and asked
to identify each one as either a cup or a bowl. Averaging across stimuli with the
same aspect ratio, figure 6.9 shows the percentage of people’s bowl judgments
(filled circles) along this cup/bowl continuum. Just as in other categorical per-
ception phenomena (e.g., Beale & Keil, 1995; Cutting & Rosner, 1974; Eimas &



Temporal Dynamics in Categorization 155

—®— "bowl" Judgments
—— Reaction Time

I
(v.o]
L

o
=)

0.4 7

% "bowl" judgments
T
ra
Reaction Time (seconds)

o
o
1

0.0 - . T 0
0 5 10 15 20
Increments in Aspect Ratio

Figure 6.9. The identification function (solid circles) for the
categorical response task with the cup-bowl continuum looks
similar to the idealized categorical step function in figure 6.7.
However, note that the reaction times (open triangles) show
some sensitivity to particularly ambiguous shapes.

Corbit, 1973; Livingston, Andrews, & Harnad, 1998; Newell & Biilthoff, 2002;
Sailor & Shoben, 1996) people’s judgments reveal a striking nonlinearity in
their responses to a continuous linear manipulation of the stimulus. Near the
middle of the cup/bowl continuum (an aspect ratio of approximately 1.2),
subjects almost discretely switched from consistent cup judgments to consis-
tent bowl judgments.

Interestingly, people’s reaction times (open triangles) near this boundary
point were longer than those near the extremes of the continuum (see also
Pisoni & Tash, 1974, for similar slowed reaction times with speech stimuli).
These slowed reaction times are naturally predicted by a dynamical systems
account in which the mental representations associated with the two sanc-
tioned response categories, cup and bowl, compete against each other over the
course of several hundred milliseconds. These two competing attractors (or
neural population codes), with stimulus-triggered trajectories that start out
either equidistant from the two attractors or closer to one than the other,
might look something like the vector landscape in figure 6.10. Longer trajec-
tories to cross the verbal response threshold correspond to longer reaction
times.

To get quantitative and somewhat more explicit with this dynamical sys-
tems account, an idealized simulation with normalized recurrence was con-
ducted to show how probabilistic representations of cup and bowl can go
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through a pattern completion process over time to settle on a unitary response
category. Figure 6.11A shows the architecture of this network. As described in
chapter 4, normalized recurrence is a competition algorithm implemented as
alocalist attractor network that merges probabilistic representations of differ-
ent perceptual inputs into an integrated representation that corresponds to
some response category. The probabilities of the different response categories
at this integration layer then send feedback to the perceptual inputs, biasing
them slightly toward supporting the most active (or most probable) response
category. This feedforward integration and feedback biasing cycle repeats
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Figure 6.11. A:a normalized recurrence simulation of a categorical response
task; B: a normalized recurrence simulation of a rating task.
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until one response category reaches a threshold (at which point it triggers its
associated behavior, such as pressing the cup button).

Because this model necessarily converts its inputs into probabilities of
individual perceptual representations (so that they can use a common cur-
rency for integration), it operates at a level of description above the actual
population codes of the brain. A single localist node with a probabilistic acti-
vation of 0.8 is analogous to 800 of the 1,000 neurons in a distributed popula-
tion code being active (see Zemel & Mozer, 2001). Thus, we can think of the
population code as “functionally unitized” (Stone & Van Orden, 1989)—such
that despite being composed of hundreds of interconnected subunits, it
behaves roughly like a coherent whole.

By entering input values corresponding to the matrix indices (and inverse
matrix indices)? of the various stimuli in figure 6.8, the network in figure 6.11A
forces the Cup and Bowl response categories to compete against each other over
time—just as two mutually exclusive population codes would compete against
one another for the privilege of executing their associated actions. The weight
for each feature vector was 1.0. With a gradually decreasing threshold (a
dynamic criterion that starts at 1.0 and is reduced by 0.01 after each time step),
the model will eventually stop cycling, with one response category substantially
higher in probability than the other. Using the probabilistic activation value of
the response category node for Bowl as an indicator of the percentage of bowl
judgments, the figure 6.11A version of this model mimics the human data
rather well (compare figure 6.9 with figure 6.12). Additionally, the number of
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Figure 6.12. Simulation results of the categorical response task
from normalized recurrence. The localist attractor network from
figure 6.11A mimics the human data in figure 6.9.
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competition cycles that the model takes to reach this nearly settled state also
mimics the human data. What this simulation demonstrates is that a percep-
tual processing system that is exposed to graded information yet is forced to
pigeonhole the input into one of two binary response categories, can do so via
a competitive pattern completion process without immediately dismissing the
graded information in the original signal.

When examining the experimental task on which this simulation is based,
the following question naturally arises: Does the fact that this task requires
a discretized response (i.e., a forced choice between either cup or bowl) dis-
courage the participant from acting on gradations in the stimulus?® What if,
in a different version of the experiment, the same stimuli from the cup/bowl
continuum were presented, but the task was to rate how bowl-like the stimu-
lus was, on a scale from 1 to 10 (see Massaro & Cohen, 1983, for a similar task
with speech stimuli)? The perceptual input is the same, but the rules for the
behavioral output have changed.

This arrangement is easily implemented in normalized recurrence by
changing the number of integration nodes to accommodate the number of
possible responses in the rating task. With 10 integration nodes, one for each
numerical response, the network then has its feature vectors offer their evi-
dence in the form of probabilistic support for any of those 10 response
options, hence, 10 nodes in each feature vector as well. Essentially, the con-
straints on the possible responses in turn impose constraints on the possible
perceptions. This next simulation used the normalized recurrence architec-
ture in figure 6.11B, in which the possible response categories are the numbers
1 through 10, indicating how bowl-like the stimulus is. The activation input to
this version of the network was a Gaussian distribution centered on the input
node corresponding to the stimulus’s row (for width) and column (for short-
ness) in the matrix.® When the activation of any one response category
reached the dynamic criterion, competition stopped. At that point, the activa-
tion function across all 10 response categories of the integration layer consti-
tuted a probability distribution. A bowl-like rating was then randomly
sampled from this probability distribution, such that the most active node was
usually what response category got executed, but occasionally a less active
response category would get selected for discrete output. This stochastic sim-
ulation was run 20 times for each stimulus, and the results were averaged into
the curves seen in figure 6.13. These simulation results stand as the theory’s
quantitative prediction of what would happen if the cup/bowl categorical-
response task (whose human data are shown in figure 6.9) were converted into
a cup/bowl rating task.

So logically, the next phase of this recurrent interplay between modeling
and experimentation would be to empirically test this quantitative prediction.
When 20 human participants are given a range between 1 and 10 to respond
with, would they produce responses similar to those produced in the simula-
tion? Or would they behave categorically, shying away from using inter-
mediate values, and tending instead to pigeonhole the stimuli as 1s and 2s
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recurrence. The localist attractor network from figure 6.11B pro-
duces a predicted pattern for human data.

(obvious cups), and 9s and 10s (obvious bowls)? Figure 6.14 shows exactly the
straight diagonal line (filled circles) that one would predict if the gradations in
the stimuli were in fact preserved and still accessible during perception. Thus,
at least in this little example of cups and bowls, it looks as though it is not the
case that gradations in the stimuli are truly inaccessible to the perceiver.
Perhaps it is more accurate to say that it is the behavioral task, rather than the
perceiver, to which gradations in the stimuli can sometimes be inaccessible.

Categorical Perception: Speech

Probably the most well-known example of categorical perception comes from
research on how people process speech (Aslin, Jusczyk, & Pisoni, 1998;
Liberman et al., 1961; see also Kluender, Diehl, & Killeen, 1987; Kuhl & Miller,
1975, for similar research with quail and chinchilla). This work is perhaps
most famous for popularizing the notion that “speech is special” (Liberman,
1982). Continua between pairs of phonemes can be constructed with speech
synthesis equipment, such that realistic-sounding intermediate increments in
between the two phonemes can be presented to human participants. For
example, there is one phonetic feature that plays a large role in distinguishing
the sound bah from the sound pah. This particular phonetic feature, called
voice onset time (VOT), is the time between the opening of the lips (releasing
air from the mouth) and the vibration of the vocal chords. If the VOT is
around 10 milliseconds, the sound will be perceived as bah. If the VOT is
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Figure 6.14. The identification function (solid circles)
for the rating task with the cup—bowl continuum looks
similar to the idealized continuous perception function
in figure 6.6. Both ratings and reaction times (open trian-
gles) adhere moderately closely to the normalized recur-
rence simulation in figure 6.13.

increased to around 50 milliseconds, the sound will be perceived as pah. That
extra 40 milliseconds is enough to completely change your perception. In the
context of the discussions of probabilistic representations, attractors in state
space, and neural population codes, the obvious question now is the follow-
ing: What happens when the VOT is 20 milliseconds? Or 30? Or 40?

Liberman et al. (1961) demonstrated that when listeners are presented a
series of sounds along a continuum of VOT (with bah at one extreme and pah
at the other), everything under about 30 milliseconds VOT is consistently
reported as sounding like bah, and everything above about 30 milliseconds VOT
is consistently reported as sounding like pah. Only around 30 milliseconds VOT
are the identifications near 50/50 bah/pah. Figure 6.15 shows a schematic rendi-
tion of this kind of data in the percentage of pah judgments (filled circles, map-
ping to the left-hand y-axis). If the graded information of VOT were being used
in this task, one might expect to see a straight diagonal line in this graph going
directly from the bottom left corner to the top right corner.

Additionally, and perhaps more important, listeners are unable to dis-
criminate between stimuli within a category, such as a bah with 10 milli-
seconds VOT and a bah with 20 milliseconds VOT. However, when the stimuli
span the category boundary, such as a sound with 25 milliseconds VOT and
one with 35 milliseconds VOT, discrimination is well above chance perform-
ance. Thus, the graded information within a category appears to be absent
from the internal perceptual representation (Liberman et al., 1961; see also
Dorman, 1974; Molfese, 1987; Simos et al., 1998; Steinschneider et al., 1995).
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Figure 6.15. An idealized pattern of data from a categorical
speech perception task.

Nonetheless, there are a couple of hints suggesting that the graded infor-
mation in the stimulus is not completely discarded. Pisoni and Tash (1974)
showed that when listeners are attempting to identify a sound that is on or
near the boundary between these categories (somewhere between 20 and
40 milliseconds VOT), they take a longer time to make the identification, even
though they rather systematically make the same identification almost every
time. See the reaction times (open triangles, mapping to the right-hand
y-axis) in figure 6.15. It is as though the two possible categories are partially
represented simultaneously, like two mutually exclusive population codes that
are each trying to achieve pattern completion and must compete against each
other to do so. If they are nearly equal in their activation (or confidence), they
will compete for a while before one reaches a probability high enough to
trigger its associated response, thus delaying the identification. Converted into
the language of attractor basins, this idea is the same as that depicted by the
vector landscape in figure 6.10. Simply replace the aspect ratios with VOTs,
and the cup and bowl labels with bah and pah labels.

Another hint that graded information is actually still available in categor-
ical speech perception comes from work by Massaro (1987, 1999), on extend-
ing what is often called the McGurk effect (McGurk & MacDonald, 1976; see
also Munhall & Vatikiotis-Bateson, 1998, and chapter 5). In addition to being
exquisitely sensitive to a wide variety and timing of acoustic contexts (Holt,
2005; Mann & Repp, 1980), speech perception is also sensitive to visual con-
texts. In the McGurk effect, the visual perception of a speaker’s dynamic
mouth shape has a powerful and immediate influence on the listener’s speech
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perception of the phoneme being spoken. In Massaro’s experimental frame-
work, he presents to listeners a bah/dah continuum, where the place of artic-
ulation (what parts of the mouth constrict airflow during the sound) is varied
in steps by digitally altering the speech waveform. That by itself tends to pro-
duce the standard categorical perception effect, as though the gradations in
the stimuli are completely discarded by the perceiver. But Massaro couples this
auditory bah/dah continuum with a computerized face, whose lips can be
adjusted in steps along a visual bah/dah continuum (basically, by increasing
the aperture between the lips). When these graded visual and auditory infor-
mation sources are combined for perceiving the syllable, results are consistent
with an algorithm in which the probabilistic biases in each information source
are preserved, not discretized, and a weighted combination of those graded
biases determines categorization. Massaro calls his algorithm the fuzzy logical
model of perception.

Consistent with more temporally dynamic approaches to categorization
(e.g., Anderson et al., 1977; Cree, McRae, & McNorgan, 1999; Dailey et al.,
2002; Lamberts, 2000; McRae et al., 1997; Tuller et al., 1994), one might expect
even categorical speech perception to not only be underlyingly comprised of
graded patterns of activation (or fuzzy truth values) but also exhibit these
gradations when the categorization process is measured in a fashion more
continuous-in-time than simple outcome-based measures that record which
identification the participant eventually reports at the end of the experimental
trial. McMurray and Spivey (1999) tested exactly that by recording partici-
pants’ eye movements while they performed the standard categorical iden-
tification task, with sounds from a bah/pah VOT continuum, by mouse clicking
/ba/ and /pa/ icons on a computer screen. Thus, in addition to the record of
which icon participants ultimately clicked, there was also a record of when
the eyes moved away from the central fixation dot and toward one or another
of the response icons while making the categorization. With stimuli near the
categorical boundary, the eye movement record clearly showed participants
conspicuously vacillating their attention between the /ba/ and /pa/ icons.
Figure 6.16 shows two schematic depictions of the eye fixations over time dur-
ing the speech categorization process for a clear pah stimulus (panel A) and
for a stimulus that was near the category boundary but was nonetheless iden-
tified (by mouse clicks) as a /pa/ 95% of the time (panel B). The eye position
records depicted here came only from trials in which the /pa/ icon was indeed
clicked at the end of the trial. Despite the identification outcome being iden-
tical in this subset of trials (all categorized as /pa/), the pattern of eye move-
ments reveals substantially more time spent fixating the /ba/ icon (dashed area
in panel B) when the speech stimulus was near the VOT category boundary;
thus indicating a clear effect of perceptual gradations in the speech input.

In fact, these temporary phonemic ambiguities, as tested with VOT con-
tinua and eye movement records, exhibit their effects not just in phoneme
identification tasks but also in spoken word recognition tasks (McMurray,
Tanenhaus, & Aslin, 2002; McMurray et al., 2003). For example, within-category
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Figure 6.16. Schematic, smoothed, data patterns of eyes fixating on the /ba/
and /pa/ icons over the course of two seconds. Hashmarked region in panel B
indicates the amount of increased fixations of /ba/ (compared to panel A)
with a borderline speech token.

variation of VOT does not affect the final outcome of recognizing bear versus
pear, however it does affect the eye movement records of participants looking
at and mouse clicking the corresponding images on the computer screen
(McMurray et al., 2002). More effects at the level of spoken word recognition
will be discussed in further detail in chapter 7.

A particularly compelling way to visualize these eye movement data for
the phoneme identification task is to convert them into identification func-
tions (like that in figure 6.15) for early, intermediate, and late periods of time
during the identification process. Figure 6.17 shows a schematic example,
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Figure 6.17. Versions of the identification function, based on time
spent fixating the /pa/ or /ba/ icon, during early, intermediate, and late,
periods of time after stimulus presentation but before the mouse click
response.
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based on McMurray and Spivey’s (1999) results, of the proportion of time the
eyes spent fixating the /pa/ icon (normalized by the total amount of time
spent on either /pa/ or /ba/ icons). The later period of the identification
process (1,201-1,500 ms) reveals an eye movement identification function
that looks just like the typical discrete categorical identification function
produced by button-press responses (e.g., figure 6.15). However, the earlier
periods of the identification process (i.e., 0-300 ms, 301-600 ms, and even
601-900 ms), produce eye movement identification functions that look sig-
nificantly more probabilistic and graded. Thus, if the identification function
is to be interpreted as a kind of signature of the internal pattern of activation
favoring the perception of bah or pah, this signature looks decidedly more
continuous than discrete during those early moments in time.

As in the previous explorations of categorization in this chapter, the nat-
ural next step is to simulate these graded temporal dynamics in categorical
speech perception with a localist attractor network to better visualize the
continuous change taking place in the patterns of activation corresponding
to mutually exclusive categorylike representations. Figure 6.18 illustrates the
architecture of a normalized recurrence simulation that integrates a speech
vector (that pits bah-like sounds against pah-like sounds) and a visual vector
(that compares fixation probabilities to a /ba/ icon, a /pa/ icon, and the central
fixation dot). The speech vector is given a pattern of input corresponding to a
speech sound somewhere along the VOT continuum. For example, a rather
unambiguous pah sound might get a starting activation of [0.1 0 0.9] for those
three nodes, whereas a borderline bah sound might get [0.6 0 0.4]. The visual
vector always starts at [0.33 0.33 0.33], treating each visual object as equally
worthy of attracting an eye movement. These two vectors simply sum

Integration Vector
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Figure 6.18. A normalized recurrence network for simulating eye
movements to visual icons in a categorical speech perception task.



Temporal Dynamics in Categorization 165

(unweighted) at the integration layer, which then normalizes itself and sends
feedback to the feature vectors.

In this simulation, one can sample the proportion of fixations from the
visual vector and thus watch the simulated eye movement patterns move away
from fixating the central dot and toward one or the other response icon.
Figure 6.19 shows the activation curves over time for the /pa/ visual node
and the /ba/ visual node. Panel A plots these curves for a rather clear pah
speech input [0.2 0 0.8], and panel B plots these curves for a pah speech input
that is near the category boundary [0.4 0 0.6]. These activation curves from
the visual vector mimic the proportion of fixations at each time slice in the
results of McMurray and colleagues (1999, 2003); compare figure 6.19 with
figure 6.16.

When this simulation is run for all 11 speech tokens along the VOT con-
tinuum, it is possible to calculate the proportion of time the model spends
fixating the /pa/ icon versus the /ba/ icon, and thus plot a categorical identifica-
tion function. Crucially, this can be done for early periods of time during the
network’s settling process, as well as for intermediate and late periods of time—
just as was done in figure 6.17. The resulting graph is shown in figure 6.20. Note
the similarity between figures 6.17 and 6.20. In both cases, the identification
function starts out rather unbiased and gradually approaches the classic step
function profile by continuously increasing one half of the curve and decreasing
the other half of the curve over time.

This gradual expansion of the identification function over time to eventually
achieve the famous step function profile suggests that over the course of several
hundred milliseconds while hearing and identifying a speech sound, the relevant
phoneme representations are actually rather continuous and analog, not partic-
ularly categorical and binary. Recall the discussion of the Necker cube, object
recognition, and the temporal dynamics of neural population codes in chapter 1.
It was argued there that if it takes several hundred milliseconds to fully activate a
population code to achieve a maximally confident object recognition event, but
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Figure 6.19. Simulation results, based on probabilistic activations of
the visual nodes, approximating the human data pattern in figure 6.16.
Hashmarked region in panel B indicates the amount of increased visual
attention on /ba/ (compared to panel A) with a borderline speech token.
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Figure 6.20. Simulation results of the identification function from
normalized recurrence during early, intermediate, and late periods of
time after stimulus presentation (compare to figure 6.17).

eye movements to other objects occur every few hundred milliseconds, then
maximally confident or categorical recognition events must be rather rare.
Instead, recognition probably operates with nondiscrete, partially active “good-
enough representations” (see Ferreira, Bailey, & Ferraro, 2002). The same logic
applies here with respect to these findings for categorical speech perception. If it
takes upward of 800 milliseconds for a clear unambiguous pah speech sound to
be completely and confidently identified as that phoneme and no other, and
until then multiple phoneme representations are simultaneously partially
active, this raises serious questions for how people manage to recognize natural
flowing speech, where each new phoneme is uttered less than 100 milliseconds
after the previous one. At this fast rate of sensory input and that slow speed of
identification, spoken word recognition and spoken sentence comprehension
must be operating (like object recognition during eye movements) with only
partially active moderately confident patterns of neural population code
activity—not logical categorical symbolic representations.

Action, Not Cognition, Categorizes Perception

The goal of this chapter has been to pinpoint one aspect of categorization
phenomena, their temporal dynamics, and demonstrate how this aspect
suggests that, as implied by Russell’s paradox and the Sorites paradox, pure
logical categories simply do not exist in the mind. This is not to say that cate-
gorization doesn’t happen. On the contrary, categorization is a ubiquitous
cognitive process whereby broadly multifarious, diffuse, and continuous per-
ceptual information is whittled, funneled, shaped, and coerced over hundreds
of milliseconds into a pattern that is just close enough to discrete that it can
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facilitate the execution of a relatively unitary motor action, such as grasping
a particular object or producing a particular spoken word. Crucially, during
the time course of that process, new perceptual input is already nudging the
system toward other regions of state space, so that even that moment of being
just close enough to a discrete internal representation is quite short-lived
indeed.

In a dynamical framework such as this, there is no need to postulate some
internal cognitive bottleneck that transmogrifies the distributed patterns of
neural activation that constitute representation in perceptual areas of the brain
into a handful of crisply defined formal symbols that live in some heretofore
unidentified area of the brain. After all, those crisply defined symbols would
only have to be “untransmogrified” right back into the distributed patterns of
neural activation that constitute representations in motor areas of the brain!

Even if a computational representationalist (e.g., Dietrich & Markman,
2003) was to concede that truly static representations may not exist, and
instead recruit representations whose phasic properties are stable (such as a
limit cycle, where the system’s state repeatedly orbits a point repellor) to serve
as the symbols to be operated on by the system’s rules and algorithms, prob-
lems for interpretation of data like those presented in this chapter still remain.
Because the gradations of the system’s specific location in state space are
clearly “leaking out” in eye movement patterns and reaction times, the sym-
bolization that computationalism claims is taking place for cognition appears
to play a rather epiphenomenal role in the flow of information from sensory
input to motor output. It is as if the perfect discretization of graded represen-
tations into formal logical category memberships is being done only for some
inescapably subjective cognition/consciousness module that is actually not
needed to explain natural online behavior. Although the individual partici-
pants may find themselves unable to produce a verbal protocol that can do
justice to the gradual process of getting from an ambiguous segment of speech
input to a discrete action of clicking one icon or the other, this should be
seen as a limitation of language and memory rather than a limitation of the
original internal representations.

The place where unitary crisply-delimited categories exist, if anywhere, is
at the level of our intersubjective agreement on what individual words to use
when we refer to these fuzzy groups of things, such as apples, mammals, and
bowls. A dozen people might grasp an apple with a dozen subtly different reach-
ing trajectories and hand shapes, but we, as observers of these varied motor out-
puts, will generally refer to each of them as “an apple-grasping event.” Likewise,
when an experimental participant is presented with two slightly different-
sounding (but within-category) speech sounds, she might produce a variety
of different intermediate motor behaviors (such as eye movements) before
finally selecting her interpretations, but those final overt reports will be gen-
erally agreed on by observers as belonging to the same categorical response
alternative. (Unfortunately, cognitive psychologists will too often blithely
record only these final outcomes of the categorical identification process and
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thus mistakenly conclude that subtle continuous differences in phonetic fea-
ture variables do not affect perception at all.)

These unitary labels that observers wind up agreeing on are best treated
as descriptive conveniences that indeed attempt to function as discrete logical
sets, for the purpose of scientific communication, but do so only as long as the
overt actions and speech acts of the linguistic community continue to corre-
late perfectly with them. The fact is, exceptions abound. It is quite rare for any
theoretical construct, and its corresponding label, to have perfect agreement
in its use in the scientific community of the cognitive sciences. More impor-
tant, these descriptive conveniences are only observable as actions, not as
internal mental entities. The hints at fuzzy internal representations and multi-
farious activations of population codes, shown in this chapter and throughout
this book, indicate that those internal mental entities that one infers from
observing motor output (or electrophysiological measures) in the laboratory
are far from discrete logical unitary cognitive objects. On the contrary, they
are better described as graded attractor basins in a continuous metric state
space, for which linguistic labels may be loosely applied but for which precise
boundaries may not be drawn.

A dynamical and ecological approach to cognition treats categories not as
static things in the head that are accessed when queried, but instead as
dynamic flexible patterns, or complex structures in state space that can be
used not just for these somewhat artificial laboratory classification tasks but
also for on-the-fly conceptualizations and real-time applications of knowl-
edge in the service of realistic goal-oriented action (e.g., Barsalou 1991;
Markman & Ross, 2003). A very basic fundamental implication that this con-
tinuous perspective has for our intellectual lives is that nothing in the mind is
logically true or logically false. Likewise, nothing in the mind is discretely
included or discretely excluded from any potential set. When dealing with
fuzzy truth values and with probabilities, there are no pure 1s and no pure 0s.”
By the time some internal representation has reached a probabilistic threshold
for triggering one of its associated actions, other perceptual inputs (even just
witnessing the action oneself is carrying out) have changed the state space
manifold enough that the system will never settle into a perfectly stable state.
That is to say, the continuity of mind is not merely a brief curiosity that can
be observed with sophisticated real-time measurements, it is the modus
operandi of thought. This suggests that one cannot fully trust what people
(including oneself) say they think, or in some cases even how they act. Both
of those behaviors unfairly discretize what a person is really thinking. Action
and communication—particularly communication (this book included!)—
necessarily overidealize and exaggerate the discreteness of people’s internal
representations, typically settling on the closest response category to what
was originally intended. The continuity of mind provides an explanation for
why it is often the case that the response category that truly accurately repre-
sents the thoughts one wishes to act on or convey—for example, a choice of
wording—simply does not exist.
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Temporal Dynamics in

Language Comprehension

Language is a virus.
—William Burroughs

With Humankind Its Only Reservoir?

The casual observation that humans use linguistic communication more
complexly and more ubiquitously than any other animal species has, for many
centuries, motivated the speculation that there might be something uniquely
innate about the human brain that is specifically programmed for developing
and acquiring language. This is the large time scale arena of language evolu-
tion. The debate over this hypothesis has been especially heated in the past
half-century (e.g., Bates & Dick, 2002; Chomsky, 1957; Christiansen & Kirby,
2003; MacWhinney, 1999; Marcus, 2001; Pinker, 1994, 1999; Seidenberg, 1997;
Wexler & Culicover, 1980). Teaching language to nonhuman primates is quite
slow, effortful, and culminates in somewhat less than impressive results
(Seidenberg & Pettito, 1987; but see Savage-Rumbaugh, 1987), so it seems
reasonably clear enough that there must be something innately different about
humans, compared to other animals, that allows them to learn language so
easily. However, for some time now, a number of researchers have suggested
that what might have evolved to be innate in humans, and gets coopted for
their language learning, is actually something rather low-level and generic
(not at all solely devoted to language in particular), such as an exceptional sta-
tistical sensitivity to hierarchical structure in any time-dependent signal (e.g.,
Christiansen & Dale, 2004; Elman et al., 1996; Seidenberg, 1997; Tallal et al.,
1993; see also Lashley, 1951). And just to prove that progress is occasionally
made in the cognitive sciences, recent theoretical proposals from some usual
proponents of pure linguistic nativism have at last begun to capitulate on this
point (Hauser, Chomsky, & Fitch, 2002; Marcus, Vouloumanos, & Sag, 2003).

169
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In this domain-general framework of language innateness, where the hypoth-
esized genetic predisposition is for finding structure in time (Elman, 1990),
rather than for finding specific linguistic triggers in one’s speech input
(Wexler & Culicover, 1980), the onus of how to evolve a human communica-
tion system over centuries and millennia is shifted significantly toward the
social and cultural environment, not solely on the shoulders of the genes.
Regardless of the degree to which its evolution was biological (passed
down by reproduction of genes) or cultural (passed down by societal trans-
mission of memes; see Bonner, 1980; Dawkins, 1976), language truly does
seem to act like a virus whose favorite host is humanity—as suggested by
William Burroughs in the epigraph that starts this chapter. Many thousands of
years ago, it propagated itself from generation to generation, spreading across
the globe and infecting practically every living human being. In fact, the evo-
lution of language, over a time scale of thousands of generations, has been
modeled with some of the same kinds of algorithms as those used to model
the spreading of actual viruses (Nowak, Plotkin, & Jansen, 2000). These
dynamic simulations of the evolution of language can guide our understand-
ing of what computational constraints led to the human species developing
complex syntax-rich language and other animal species not doing so (Nowak,
Komarova, & Niyogi, 2002; see also Batali, 1998; Cangelosi & Parisi, 1998,
2002; Christiansen & Dale, 2003; Christiansen & Kirby, 2003; Oliphant, 1999).

Finer and Finer Time Scales

The evolution of language in the human species is but one time scale for
examining the temporal dynamics of language. Let’s zoom in on these dynam-
ics by a couple orders of magnitude, to the time scale of decades and centuries.
Now we're in the arena of research on language change. Here, one finds that
subtle alterations in a language that take place over dozens of years have in fact
been referred to in the scientific literature as “grammatical viruses” (Slobin,
1997). For example, it is not only sappy soft-rock songwriters trying to
squeeze out a thyme who come up with ungrammatical sentences like “I'll
never say goodbye to you and I.” (The correct form would be “you and me.”)
Regular everyday speakers of English make this kind of pronoun case error all
the time. Perhaps in 100 years it won’t even be considered grammatically
incorrect anymore. Similarly, people say “I could care less,” when they’re
actually trying to imply that they already care very little. The original form
“I couldn’t care less,” clearly stating that one cares the least amount physically
possible, seems to be falling victim to a grammatical virus that blithely omits
the negation of the modal verb could.!

Though the synchronic account of a language limits itself to describing
the grammar-and-lexicon as though it were a static entity at some particular
time slice, the diachronic account of a language tracks the changes that take
place in that grammar-and-lexicon over the course of decades and centuries.
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For example, Tabor (1995) calculated the frequencies of the construction “be
going to,” as in “Daniel is going to the West Coast,” in eight English texts rang-
ing from the years 1590 to 1970, and found a continuous nonlinear transition
from this construction being used solely to describe motion in space toward
instead being used predominantly to mark the future tense, as in “Daniel is
going to move to the West Coast.”? The key observation from these data, and
in Tabor’s connectionist simulation of their trajectory in state space, is the
following: As a language diachronically changes its grammar-and-lexicon over
many decades, any given synchronic account of that grammar-and-lexicon, at
any given time slice, will necessarily have a number of constructions that are
in flux and must therefore be described in a statistical or analog fashion, rather
than in terms of a set of formal all-or-none rules (Tabor, 1995; see also
Cooper, 1999; Hare & Elman, 1995).

Indeed, one of the reasons that the Chomskian position was so resistant
to the standard gradual natural selection account of language evolution (e.g.,
Pinker & Bloom, 1990) is that it essentially requires—much like continuous
diachronic language change—that there be periods of time in which the syn-
chronic account of a language will involve graded probabilistic contingencies
(not logical rules) governing the relationships between syntactic categories.
Nowhere in any of the many different Chomskian accounts of syntactic com-
petence is there a significant role for graded or probabilistic contingencies.

Let us continue this time scale telescoping. Zooming in a few more orders
of magnitude, to the time scale of dozens of days and weeks, you will again see
a similar continuity in the temporal dynamics of language. Now we're in the
arena of research on language acquisition. Dynamic approaches to under-
standing how an individual human child learns her native language have
recently been making substantial progress (Christiansen & Chater, 2001; Elman
et al., 1996; MacWhinney, 1999; Thelen & Smith, 1994; see also Culicover &
Nowak, 2003). Although there are impressive nonlinearities in children’s devel-
opment of language (e.g., the “vocabulary spurt” [e.g., Goldfield & Reznick,
1990; Nazzi & Bertoncini, 2003]; and the overgeneralization of the “-ed” past
tense onto irregular verbs [e.g., Marcus et al., 1992; Rumelhart & McClelland,
1986b; Pinker & Prince, 1988; Plunkett & Marchman, 1996; see also Joanisse &
Seidenberg, 1999, and Ramscar, 2002]), these nonlinearities are very rarely
step functions where language abilities appear to suddenly incorporate a
previously unused but now consistently executed rule (but see “fast mapping,”
Dollaghan, 1985; Markson & Bloom, 1997; Wilkinson, Dube, & Mcllvane,
1996; see also Brown, Hulme, & Dalloz, 1996, for a neural network—inspired
account of such one-trial learning). Rather, the majority of a child’s develop-
ment of his or her overall linguistic ability appears to be largely characterized
by sigmoidal curves (like the logistic function, sometimes steep, sometimes
shallow) of continuous improvement in vocabulary and grammar (Elman
et al., 1996). Much of this continuity in learning dynamics is captured well by
connectionist simulations of language acquisition, and given proper in-depth
treatment in other sources (e.g., Christiansen, Allen, & Seidenberg, 1998;
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Cleeremans, Servan-Schrieber, & McClelland, 1989; Elman, 1990; Hanson &
Negishi, 2002; Rohde & Plaut, 1999; see also Tabor, 2002).

Finally, zoom in one more time on these temporal dynamics, but this time
by about six orders of magnitude, to the time scale of seconds. Now we’re in the
arena of real-time language processing. This chapter will walk you through a
series of experimental demonstrations of how real-time language comprehen-
sion takes place not just “incrementally;” as the field of sentence processing is
fond of saying, but in a genuinely continuous fashion, without breaks, without
stops and starts. As phonemes, words, and sentences flow into a listener’s ears,
this stream of input is continuously processed into an evolving estimate of the
communicative message and of plans for motor action. The leitmotif running
throughout this book, of continuous cognitive dynamics at the time scale of
hundreds of milliseconds, is perhaps most clearly illustrated by these findings
in online language processing.

Some Some Back Back Ground Ground

In his prescient 1973 article in the journal Nature, William Marslen-Wilson
reported evidence supporting an equal footing for grammar (syntax) and
meaning (semantics), standing in sharp contrast to the “syntax as sovereign”
view that was popular in linguistics at the time. In his experiment, he had
participants listen to a spoken passage and repeat everything they heard as
quickly and continuously as possible. This is called close speech-shadowing,
where he had people shadowing approximately 250 milliseconds behind the
speech input, about a single syllable of lag (see also Chistovich, 1960). This
paradigm was among the first online measures of language processing. Up
until then, the more popular measures were of memory for sentences, queried
well after presentation (e.g., Anderson & Bower, 1971, 1972; Barclay, 1973).
Interestingly, 20 years before Marslen-Wilson’s research, my mother tells
me she and her brother used to play this speech-shadowing game as children,
to see who could echo the radio the longest before screwing up. But actually,
screwing up is the interesting part. What Marslen-Wilson found was that
when people make mistakes in the speech-shadowing task, their speech errors
are still grammatical and semantically appropriate with what they’ve been
saying so far.’> These extremely fast syntactically and semantically accurate
“mistakes” suggest that syntax and semantics are being simultaneously and
continuously processed in the streaming incoming speech, and moreover that
a significant component of language comprehension may involve some degree
of prediction of what words and constructions are coming next. These predic-
tions may be incorrect about the exact words that come next, but they will
nonetheless conform to the syntactic and semantic constraints on what words
are acceptable to come next. In fact, this phenomenon has much in common
with what a simple recurrent network (SRN) does: Its output is a prediction of
the next input (Elman, 1990, 1991). In a way, speech-shadowing turns people
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into SRNs for the duration of the task. Of course, in this case, they are
syllable-by-syllable SRNs that manage to encode not only phonotactics but
also syntax and semantics—not exactly a trivial modeling project.

This perspective on language comprehension as a continuous interactive
process (e.g., Marslen-Wilson, 1973, 1975; Rumelhart, 1977) has gone through
its share of trials and tribulations since the 1970s. A continuous interactive
account of real-time language comprehension posed some profound chal-
lenges for the existing theoretical attempts to map a sentence’s surface struc-
ture onto its putative deep structure (e.g., Miller & McKean, 1964; Valian &
Wales, 1976). If processing were this continuous in language, that is, as fine-
grained as syllable by syllable, then dozens of temporary ambiguities in syn-
tactic structure would be arising with the uptake of each new word in the
speech stream! Moreover, if processing were this interactive in language, that
is, syntax and semantics interweaving their constraints simultaneously, then
the purely structural (devoid of semantics) accounts of linguistic competence
that were popular at the time would have some serious explaining to do. The
response to the challenge posed by Marslen-Wilson’s (1973, 1975) findings
was twofold: (1) attack the apparent continuousness of processing in language
comprehension, and (2) attack the syntactic/semantic interactivity implied by
the results. Little did anyone realize it, but these two responses were actually
on a collision course with one another.

A number of experiments, especially using a slightly unnatural phoneme-
monitoring task, produced evidence suggesting that more comprehension
processes were in operation at the end of a sentential clause than elsewhere in
the clause. These kinds of findings were treated as evidence for a clausal pro-
cessing theory in which comprehension was not smoothly continuous at all,
but instead words were collected over time and stored in a kind of memory
buffer, without their meaning or structure being computed just yet. Only when
a clause was complete did genuine comprehension processes begin to work on
those stored words (e.g., Bever & Hurtig, 1975; Dunlap & Hurtig, 1981;
Townsend & Bever, 1978; but see Tyler & Marslen-Wilson, 1977; Whaley, 1979).
This attack on the continuous aspect of Marslen-Wilson’s framework led to
the clausal processing theory being perceived as a useful way to continue the
mission handed to psycholinguists by the field of linguistics to find the relation-
ship between surface structure and deep structure, to discover the algorithms
by which observable linguistic performance arises from the true underlying,
albeit invisible, linguistic competence.

Continuous but not Interactive?

Then came along the attack on the interactive aspect of Marslen-Wilson’s
framework. Following up on Kimball’s (1973) “seven principles of surface struc-
ture parsing in natural language,” Lyn Frazier and Janet Fodor (1978) proposed
a set of syntactic structuring heuristics for real-time sentence processing that
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were intended to account for how certain types of sentences are routinely
misparsed and thus misunderstood. Frazier and colleagues argued that a syn-
tactic parsing module in the mind automatically attaches each new incoming
word to the developing syntactic tree structure in such a way that minimizes
the number of branching nodes in the structure. With sentences like that in
7.1 (taken from Bever, 1970), which contain temporary syntactic ambiguities,
the particular tree-structuring format that Frazier employed posited fewer
branching nodes if the verb raced was integrated as part of the sentence’s verb
phrase rather than as a relative clause inside the noun phrase. Thus, the pars-
ing heuristic that was postulated, “minimal attachment,” claimed that a
reader/listener will build the syntactic structure consistent with the horse
doing the racing (rather than being raced by someone), and this would essen-
tially lead the language comprehension system “down the garden path” to a
parse that will not work with the second verb in the sentence. The result—
powerfully apparent when one first encounters this sentence—is that by
the end of the sentence, the verb fell has nowhere to attach, no way to be
grammatically integrated into the sentence.?

(7.1) The horse raced past the barn fell.

The sentence in 7.1 is indeed perfectly grammatical, as long as you take “raced
past the barn” as a relative clause describing which horse is being referred to.
Another way to write it would be, “The horse that was raced past the barn fell.”
The “that was” part is optional in Englis