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Introduction

I do not know what I may appear to the world; but to myself, I seem to
have been only like a child playing on the seashore, and diverting myself
in now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before me.

—ISAAC NEWTON

THIS BOOK EXPLORES PATHS on the mathematical seashore. Paths are
the accumulated footprints of those who came before. There are
many paths to choose from—some leading to minor curiosities and

others leading to important mathematical goals. In this book, I intend to
point out a few paths that I believe are both curious and important—paths
with mainstream destinations.

I intend to show mathematics as a human endeavor, not a cold unap-
proachable monolithic perfection. The search for a useful, convincing, and
reliable understanding of number and space .has had many successes, but
also a few false starts and wrong turns. Botticelli's famous painting The
Birth of Venus shows Venus born of the foam of the sea, not as an infant but
as a beautiful woman, divine in every detail. Mathematics, on the other
hand, did not achieve such instant perfection at birth. Her growth has
been long and tortuous, and perfection may be out of reach.

Part I of this book deals with the concept of number. We begin with
the curious method of the ancient Egyptians for representing fractions.
Fractions were a difficult concept for the ancients, and still are for today's
schoolchildren. Unguided, the mathematical pioneers discovered over
centuries what today's schoolchildren, guided by their teachers, learn in
weeks. The Egyptian method seems clumsy to us, yet we will see that it
provides some advantages in dividing five pies among seven people.

Part II is devoted to geometry. We will visit a fantastic universe called
Tubeland. The efforts of Tubelanders to understand their world is a re-
flection of the efforts of our scientists to understand ours. Question: What
geometric device was unknown in 1800, a promising innovation in 1900,
and a universal commonplace in mathematics, science, business, and ev-
eryday life in 2000? Answer: Graphs.
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Part III is concerned with algebra, the language of mathematics. Solv-
ing equations was a passionate undertaking for five Italian mathemati-
cians of the sixteenth century. For them, algebraic knowledge was booty
of great value, the object of quarrels, conspiracies, insults, and fiery boasts.
Later, we discover what a catalog of wallpaper ornaments has to do with
algebra.

Part IV introduces the smoother pebble discovered by Newton and
Leibniz: the calculus. The basic concepts are introduced by means of a six-
minute automobile ride. Later, we witness the competition for the fastest
roller coaster.

I hope that the reader gains from this book new meaning and new plea-
sure in mathematics.

2 Introduction



Parti

Bridging the Gap

Science is the attempt to make the chaotic diversity of our
sense-experiments correspond to a logically uniform system of thought.

—ALBERT EINSTEIN (1879-1955)
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Ancient Fractions

The Eye ofHorus burning with fire before my eyes.

—THE BOOK OF THE DEAD, 1240 BCE
(translated by E.A. Wallis Budge)

P
OSITIVE WHOLE NUMBERS—the natural numbers —fill the fundamen-
tal human need for counting, but, additionally, a civilized society
requires fractional numbers for the orderly division of land and

goods—artificial numbers that fill in the gaps between the natural numbers.
Getting fractions right is the first slippery step in the mathematical ed-

ucation of many schoolchildren, a place where many fall. So it was also
in the history of mathematics. The ancient Egyptians took a wrong turn.
Only after thousands of years did others find the right path. This detour
is now all but forgotten, and there is no danger that we will repeat this
mistake. Since fractions were not easy for the Egyptians, we can be more
understanding of the difficulties that our schoolchildren experience. Fur-
thermore, Egyptian fractions are a source of curious problems, interesting
in their own right.

The ancient Babylonians must be given high marks for their treatment
of fractions. Babylonian fractions were quite similar to today's decimal
fractions; however, the Babylonian system was based on the number 60
instead of 10. We still use Babylonian fractions when we use minutes and
seconds to measure time and angles.

The German mathematician Leopold Kronecker (1823-91) said, "God
created the whole numbers. All the rest is the work of man." There is es-
sentially one way to understand the natural numbers. However, there are
several different ways to define fractional numbers—also known as ratio-
nal numbers. The fractions in current use—a numerator and denominator
separated by a bar, for example, 5/7—we call common fractions. This nota-
tion originated in India in the twelfth century and soon spread to Europe,

1
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but the underlying concept—ratios of commensurable magnitudes—is from
the ancient Greeks. However, common fractions are not the only way to
conceive of fractions. In this chapter, we will see that the ancient Egyp-
tians and Babylonians had different methods. In Chapter 2, we will see
yet another method of defining fractional numbers.

The Egyptian Unit Fractions

The Rhind Papyrus, a scroll that measures 18 feet by 13 inches, is the most
important source of information concerning ancient Egyptian mathemat-
ics. It was found in Thebes and purchased by Scottish Egyptologist Henry
Rhind in 1858; it has been held by the British Museum since 1863. The
scroll was written by the scribe Ahmes (16807-1620? BCE), who states that
he copied the material from older sources —1850 BCE or earlier.

The scroll—consisting of two tables and 87 problems—is a textbook of
ancient Egyptian mathematics. Some of the problems deal with areas and
volumes; however, a considerable part of the scroll is concerned with the
ancient Egyptian arithmetic of fractions. Despite obvious shortcomings,
these curious methods persisted for thousands of years. In fact, we will
see that Leonardo of Pisa (11757-1230?)1 made an important contribution
to the theory of Egyptian unit fractions.

The ancient Egyptians devised a concept of fractions that seems strange
— even bizarre—to us today. A fraction with numerator equal to 1 (e.g.,
Vs, V7) is called a unit fraction. The Egyptians denoted unit fractions by
placing the eye-shaped symbol O ("the eye of Horus") above a natural
number to indicate its reciprocal. We approximate this notation by using,
for example, 7 to represent 1/7.

The Egyptians had a special notation for 2/3, but all other fractions were
represented as sums of distinct unit fractions. For example, for 5/7 they
could have written

We confirm this by the following computation:

Similar computations show that the fraction 5/7 can also be represented
as

or

6 Bridging the Gap



It did not occur to the Egyptians to use two numbers, a numerator and
denominator, to represent a fraction. When we write 5/7, and when we
calculate as in equation (1.2) above, we are departing from the ancient
Egyptian mode of thought.

Why did the Egyptians avoid repetitions of unit fractions? Why did
they feel, for example, that 7 + 7 + 7 + 7 + 7 is unacceptable? One can
only speculate, but perhaps they felt that it is not permissible to express
a fraction as a sum of five unit fractions when three (as in equations (1.1)
and (1.3)) are all that are needed.

The fact—show in equations (1.1), (1.3), and (1.4)—that 5/7 has more
than one representation as a sum of unit fractions indicates a serious flaw
in the Egyptian system for fractions. How is it possible that such an awk-
ward system remained in use for thousands of years? There are several
possible answers:

1. The system was adequate for simple needs.
2. The system was sanctioned by tradition.
3. The scribes who used the system had no wish to diminish their rep-

utations for wizardry by simplifying the system.
4. It really does take thousands of years to get the bright idea that one

can use two natural numbers—numerator and denominator—to specify a
fraction.

Aside from the merit of the above speculations, there are certain real
advantages in using Egyptian unit fractions for problems involving the
division of goods. A fair method of division divides the whole into a
number of pieces and specifies the pieces in each share. If we assume that
the goods in question are fungible,2 then the most important requirement
for a method of fair division is that the total size of each share be identi-
cal regardless of the number and shape of the pieces forming each share.
However, there are other considerations. For example, it adds to the ap-
pearance of fairness if the shares are identical—not only in aggregate size,
but also in the number and shape of the pieces. Furthermore, the number
of pieces should not be excessive. As shown by the following example,
unit fractions can lead to a division of goods with certain advantages.

Example 1.1. Divide 5 pies among 7 people, Ada, Ben, Cal, Dot, Eli, Fay,
and Gil, (a) using ordinary arithmetic, (b) using Egyptian unit fractions.

(a) Two methods using ordinary arithmetic.

Method 1:

1. Ada gets 5/7 of the first pie.
2. Ben gets 2/7 of the first pie and 3/7 of the second pie.
3. Cal gets 4/7 of the second pie and 1/7 of the third pie.
4. Dot gets 5/7 of the third pie.
5. Eli gets 1/7 of the third pie and 4/7 of the fourth pie.

Ancient FractionsAncient Fractions 7



6. Fay gets 3/7 of the fourth pie and 2/7 of the fifth pie.
7. Gil gets 5/7 of the fifth pie.

Objection 1: Disagreements can arise because the shares contain dif-
ferent sized pieces.

Method 2: Divide each of the five pies into seven equal pieces. A share
consist of five of these pieces.

Objection 2: Too many pieces in each share.

(b) A method using Egyptian unit fractions. In this method each share
consists of just three pieces, and all the shares have the same appear-
ance. Since, according to equation (1.1), 5/7 = l/2 + 1/7 + 1/14, we
proceed as follows:

1. Give everyone half of a pie. This leaves a pie and a half to be dis-
tributed.

2. Cut the remaining whole pie in sevenths. Give each of the seven
people one of these pieces. There remains half a pie.

3. Cut the half pie in seven equal pieces. Give each person one of these
pieces.

The Egyptian method avoids the worst features of each of the two mod-
ern methods. It beats Method 1 on the grounds of Objection 1 and Method
2 on the grounds of Objection 2.

Egyptian arithmetic

Like schoolchildren of today, the Egyptians needed basic arithmetic as a
background for computing with fractions. The Rhind Papyrus gives ex-
amples illustrating a complex collection of arithmetic techniques. We will
consider some of the methods of multiplication and division—especially
as they relate to fractions.3

Multiplication

The ancient Egyptians did not use our familiar methods of multiplica-
tion and division. The basic method of multiplication, which proceeds
by successive doubling, is illustrated in Table 1.1 (a). Successive doubling
involves exactly the same arithmetic as Russian peasant multiplication (see
Table l.l(b)). Both methods convert one of the factors to the binary sys-
tem, the arithmetic basis for the modern digital computer. In multiplying
13 x 14, the factor 13 is converted to binary (13 = 8 + 4 + 1 = 11012)—in
Table 1.1 (a) by starring certain items and in Table 1.1 (b) by striking out
certain items. The Russian peasant method is an improvement because it
gives a mechanical process—an algorithm—for the binary conversion.

8 Bridging the Gap



Table 1.1. Ancient and modern multiplication: 13 x 14 = 182.

*1 14
2 28

*4 56
*8 112

13 182
(a)

13 14
6 OQ

TXJ

3 56
1 112

182
(b)

*1 14
*2 28

*10 140

13 182
(c)

14
x 13

42
14

182
(d)

1 14
*3 42

*10 140

13 182
(e)

(a) Egyptian method (doubling only).

1. The top row consists of 1 and the second factor (14).
2. Each successive row is obtained by doubling the preceding row.
3. Place a star beside the numbers in the left column that sum to 13.
4. The product 13 x 14 is the sum of the numbers in the right column in

the starred rows.

(b) Russian peasant multiplication. This method of multiplication is essentially the
same as (a):
1. The two numbers to be multiplied are entered as the top items in the two columns.
2. If the item in the first column is a 1, then we are finished. Otherwise, repeat the

following two steps until a 1 appears in the first column: A. Append a number to
the bottom of the first column equal to half of the number above it —ignoring any
fractional amount. B. Append a number to the second column equal to double
the number above it.

3. For each even number in the first column, strike out the adjacent number in the
right column.

4. The product is equal to the sum of the numbers remaining in the second column.
The striking out of elements of the second row that are adjacent to even numbers
in the first column is equivalent to finding the representation of 13 in the binary
system,4 that is, 13i0 = 11012-

(c) Egyptian method (shortcut). In the Egyptian method, as shown in (a), the
succeeding rows are obtained by doubling the preceding row. However, the method
works equally if we multiply the elements of any of the preceding rows by any conve-
nient natural number. To speed up the process the Egyptians sometimes appended
a row obtained by multiplying the first row by 5 or 10. In this example, the third row
is obtained by multiplying elements of the first row by 10.

(d) Modern multiplication algorithm.

(e) Modern multiplication in the Egyptian format. According to our place-value
decimal system, the first factor 13 is an abbreviation for 10+3. In the Egyptian
format, we use 3 and 10 as multipliers to transform the first row into the second and
third rows respectively. We obtain the product 182 as the sum of 42 and 140 both
in the modern method (d) and the Egyptian method (e). (In the modern method,
we write 140 instead of 14, but this 14 is shifted one place to the left —equivalent to
multiplying 14 by 10.)

Ancient Fractions 9



10 Bridging the Gap

The Egyptians did not always proceed by doubling if there was an ob-
vious shortcut. For example, in Table 1.1 (c), they achieve 13 x 14 = 182
by multiplying the first row of the table by 1, 2, and 10. In this method of
multiplication, we may multiply a row by any convenient number. This
procedure, carried out suitably, results in exactly the same arithmetic op-
erations as the familiar multiplication algorithm, shown in Table l.l(d). In
fact, Table 1.1 (e) shows such a variant of the Egyptian method applied to
13 x 14. The multipliers, 3 and 10, come from the meaning of the decimal
number 13:

The doubling table from the Rhind Papyrus

The Rhind Papyrus contains the curious Table 1.2 expressing fractions of
the form 2/n as sums of distinct unit fractions. This table was an impor-
tant Egyptian tool for computing with fractions; it lost its usefulness when
new computational methods displaced unit fractions. (Centuries later, ta-
bles of logarithms suffered a similar fate. They were useful for arithmetic
calculations—multiplication and exponentiation—until electronic calcu-
lators came into use in the 1970s.)

The left column of Table 1.2 does not contain fractions with even de-
nominator (2/2m) because the Egyptians readily computed 2/2m — m.

Table 1.2 was useful for adding Egyptian fractions. Since an Egyp-
tian fraction is a sum of unit fractions with no duplication, the addition of
two of these fractions might produce an illegal duplication of some unit
fraction that could be resolved using Table 1.2. Example 1.2 shows how
Table 1.2 could be used for arithmetic calculations.

Example 1.2. Use Table 1.2 to find the sum of the three fractions 5 + 15,
10 + 30, and 5 + 25 (a) using standard modern arithmetic and (b) using
Egyptian methods.

(a) Modern method. The problem is to add the following three frac-
tions:

Using the common denominator 75, we find
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(b) Egyptian method. We must find a sum of

Rearranging these terms, we have

Table 1.2. Doubling unit fractions (from the Rhind Papyrus).

Fractions of the form 2/n expressed as sums of distinct unit fractions

2/3

2/5

2/7

2/9

2/11

2/13

2/15

2/17

2/19

2/21

2/23

2/25

2/27

2/29

2/31

2/33

2/35

2/37

2/39

2/41

2/43

2/45

2/47

2/49

2/51

= 2 + 6

= 3 + 15

= 4 + 28

= 6 + 18

= 6 + 66

= 8 + 52 + 104

= 10 + 30

= 12 + 51 + 68

= l2 + 76 + U4

= 14 + 42

= 12 + 276

= 15 + 75

= 18 + 52

= 24 + 58 + 174 + 232

= 20 + 124 + 155

= 22 + 66

= 30 + 42

= 24 + TTT+296

= 26 + 78

= 24 + 246 + 328

= 42 + 86 + 129 + 301

= 30 + 90

= 30 + I4T + 470

= 28 + 196

= 34 + 102

2/53

2/55

2/57

2/59

2/61

2/63

2/65

2/67

2/69

2/71

2/73

2/75

2/77

2/79

2/81

2/83

2/85

2/87

2/89

2/91

2/93

2/95

2/97

2/99

2/101

= 30 + 318 + 795

= 30 + 330

= 38+114

= 36 + 236 + 531

= 40+244 + 488 + 610

= 42+126

= 39+195

= 40 + 335 + 536

= 46 + 138

= 40 + 568 + 710

= 60 + 219 + 292 + 365

= 50 + 150

= 44+308

= 60 + 237 + 316 + 790

= 54 + 162

= 60 + 332 + 415 + 498

= 5T+255

= 58 + 174

= 60 + 356 + 534 + 890

= 70+130

= 62 + 186

= 60 + 380 + 570

= 56 + 679 + 776

= 66+198

= 101 + 202 + 303 + 606
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From Table 1.2, we see that 5 + 5 (= 2/5) can be replaced by 3 + 15. Rear-
ranging again, we obtain

According to the table, 15 + 15 (= 2/is) can be replaced by 10 + 30. Rear-
ranging again, we have

Although neither 10 + 10 (= 2/10) nor 30 + 30 (= 2/30) appear in the ta-
ble, the ancient scribes easily recognized that these are equal to 5 and 15,
respectively, obtaining the final result

In modern notation, this is equal to

This agrees with the our calculation in (a).
Table 1.2 follows certain regular patterns.5 For example, the denomi-

nators divisible by 3 follow the pattern

The Egyptians do not tell us what patterns they used. Their use of patterns
is based on the evidence of calculations as in Table 1.2.

Division

To divide a natural number m by a natural number n, the ancient Egyp-
tians multiplied m by V« using the doubling algorithm of Table l.l(a). The
doubling process makes it necessary to use Table 1.2 to resolve doubled
unit fractions into standard Egyptian fractions.

For example, Table 1.3(a) shows how this algorithm is applied to com-
pute 5 divided by 7. We have already seen 5 + 7 expressed as a sum of
unit fractions in equation (1.1), but in Table 1.3, we see how the Egyptians
could have derived this relationship using their multiplication algorithm.

Table 1.3(b) shows a method of calculating 28 + 13 by successive dou-
bling—possibly as proposed by an apprentice scribe. This example is in-
cluded not as a recommended method of computation but as an illustra-
tion of the method of successive doubling and the use of Table 1.2. A mas-
ter scribe would probably first convert the improper fraction to a proper
one (28 + 13 = 2 2/13) and then use the relation 2-13 = 8 + 52 + 104 from
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Table 1.3. Calculation of (a) 5 + 7 and (b) 28 -=-13 by the method of successive
doubling. Items in square brackets are obtained from Table 1.2.

(a)

(b)

Derivation of 28+ 13 = 2 + 2 -13 -2+ [8 + 52 + 104]

1 13 _
2 _ _ 2-13 = [8 + 52 + 104]

*4 2-8jf 2-5^+2-104 = 4 + 26 + 52
*8 2 - 4 + 2 - 2 6 + 2 - 5 2 = 2 + T3+_26 __

*16 2 - 2 + 2-13 + 2 - 2 6 = 1+[8 + 52 + 104]+13
28 (4+ 26+ 52)+ (2+13 + 26)+ (1 + 8+13+ 52 + 104)

= 1 + 2 + 4 + 8 + 2 -13+2-26 + 2 - 5 2 + 104
= 1 + 2 + 4 + 8+[8+ 52 +104]+13 + 26 + 104
= l+(2+_4 + 8 + 8)+_13 + 26 + 52 + 2- l64
= 1 + 1 + 13_+ 26 + 2 • 52
= 2+13+_26 + 26 _
= 2 + 2-13 = 2 + [8 + 52 + T04]

Table 1.2. Since the apprentice applied the method of successive doubling
without errors, he arrived at the same result after a much more complex
calculation.

We have seen that a fraction can have more than one representation as
a sum of unit fractions. For example,

But do we know that there is always at least one such representation? The
next section answers the following fundamental question.

Question 1.1. Can every proper fraction be expressed as a sum of distinct
unit fractions?

The greedy algorithm

The answer to Question 1.1 is Yes. This was first shown by Leonardo of
Pisa (Fibonacci) in 1202 in his work Liber Abaci. He showed that every
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proper fraction can be expressed as a sum of distinct unit fractions by a
method now called the greedy algorithm. The following example illustrates
the algorithm and shows why it is called greedy.

Example 1.3. Express the fraction 7/2i3 as a sum of unit fractions.

Solution. Start by finding the largest unit fraction not exceeding 7/213. (Since
we are greedy, we look for the largest.) Because 213/7 = 30.4... , it follows
that 7/2i3 is between 1/31 and 1/30, and the unit fraction that we seek is V31.
Now subtract Vsi from 2/213, obtaining

Greedy again, we seek the largest unit fraction not exceeding 4/6,603. Be-
cause 6,603/4 = 1,650.75, it follows that the unit fraction that we seek is
1/1651. We have

_4 1_ _ 4x1,651-6,603 _ 6,604-6,603 _ 1
6,603 ~ 1,651 ~ 6,603 x 1,651 ~ 10,901,553 ~ 10,901,553

(1.6)
We have found the following representation of 7/2i3:

We have shown that the greedy method succeeds in this particular
case. How can we show that it always succeeds? It is daunting that the
method generates such big denominators so quickly. Nevertheless, we see
in this example the numerators become smaller: 7 —> 4 —>• 1. These nu-
merators are shown in boldface (7 and 4 in equation (1.5); 4 and 1 in equa-
tion (1.6)). This crucial clue enables us to show that the greedy method
always works. The numerators are natural numbers; if they become suc-
cessively smaller, they must eventually reach 1, the smallest natural num-
ber. Attention to a few algebraic details will repay the reader with the
exhilaration of understanding the elegant proof of the following proposi-
tion.

Proposition 1.1. Let r = P/q be a proper fraction (i.e., p/q < I). Then either
(a) r is already a unit fraction, or (b) one iteration of the greedy algorithm yields
a fraction with a numerator that is a natural number less than p.

Proof. Suppose that r is not a unit fraction. Then r must be between two
successive unit fractions. That is, there must be a natural number t (greater
than 1) such that r is between i/f and V(f-i). This fact is expressed alge-
braically as follows:
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Note that the second inequality in this chain implies pt — p<q; adding
p to, and subtracting c\ from, both sides of this inequality, we obtain

Now recall what we must prove. We must show that p/q — V f is equal
to a fraction with a denominator that is a natural number less than p. Us-
ing the common denominator c\i and the first inequality of (1.7), we obtain

But now we are finished because inequality (1.8) tells us what we want to
know, that the (positive) numerator pt — q is less than the numerator p.

D

Now we can answer Question 1.1 affirmatively. Starting with an arbi-
trary proper fraction, successive applications of the greedy algorithm must
eventually yield a unit fraction. The original fraction is equal to the sum
of the unit fractions obtained by finitely many applications of the greedy
algorithm.

A given proper fraction has a unique greedy representation as a sum of
distinct unit fractions. The representations in Table 1.2 are not all greedy.
In fact, the greedy representation of 2/(2n-i),n — 2,3,... consists of the
sum of just two unit fractions, as shown by the following formula:

In Table 1.2, only the representations of 2/3, 2/5, 2/7, 2/n, and 2/23 can be
obtained using this formula; all the others are not greedy.

In general, an iterative algorithm is called greedy if it seeks to maximize
the partial outcome of each step. Some greedy algorithms succeed (e.g.,
Proposition 1.1), but others fail. In chess (and in life) it is unwise to capture
a pawn while losing sight of other goals.

The Babylonians and the Sexagesimal System

Another method of representing fractions is due to the ancient Babylo-
nians. Their system of representing numbers is similar to our decimal
system; however, they used 60 instead of 10 as a base for their number
system—a sexagesimal system instead of a decimal system. We represent
sexagesimal numbers in the manner of the following example:
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We use commas to separate the digits and a semicolon (instead of a deci-
mal point) to separate the integer part from the fractional part. This form is
convenient for us, but by using it we are giving the Babylonians a bit too
much credit because they did not have a zero.

We have inherited the Babylonian sexagesimal system for measuring
time—60 seconds in a minute and 60 minutes in an hour. In measuring
angles, seconds and minutes are also used for sexagesimal fractions of a
degree. The sexagesimal system was used by the ancient Greeks, and it
was used in Europe as late as the sixteenth century when the decimal sys-
tem was introduced.

Sexagesimal fractions

In the decimal system, 1/3 is equal to the awkward infinite decimal frac-
tion 0.333... . The sexagesimal system scores an advantage here because
!/3 is represented by the simpler terminating fraction 0;20. The prime fac-
torization of 60, the base of the sexagesimal system, is 22 • 3 • 5. Any natural
number that is not divisible by any prime numbers other than 2, 3, and 5
is called a regular sexagesimal number. They are the only natural num-
bers with reciprocals that can be represented as terminating sexagesimal
fractions. For example, the number 54 is a regular sexagesimal number
because it has the prime factorization 54 = 2 • 33, and its reciprocal, 1/54,
has the terminating sexagesimal representation 0; 1,6,40. We confirm this
representation by the following calculation:

On the other hand, the sexagesimal system has the disadvantage of
having a much larger multiplication table than the decimal system. For
the decimal system, it suffices to memorize 45 products in the multiplica-
tion table up to 9 x 9; however, to do sexagesimal arithmetic we need to
know all 1,770 entries of the multiplication table up to 59 x 59. However,
if one masters the sexagesimal multiplication table, more rapid arithmetic
computations are possible than with the decimal system.

Babylonian cuneiform tablets contain many tables of numerical calcu-
lations. There are tables that imply a knowledge of the Pythagorean The-
orem long before Pythagoras. To facilitate calculations with fractions, the
Babylonians used a table (e.g., Table 1) of reciprocals of ordinary sexages-
imal numbers. An important use of Table 1 is to replace division by a
natural number n to multiplication by i/n. Multiplication was achieved
by a process equivalent to the algorithm now known as Russian peasant
multiplication.
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Table 1.4. The information in this table is found in a number of Babylonian
cuneiform tablets. For convenience, this table uses modern notation.

Reciprocals of regular sexagesimal integers from 1

1/2 =
1/3 =
1/4 =
1/5 =
1/6 =
1/8 =
1/9 =
1/10 =
1/12 =
1/15 =

0;30
0;20
0;15
0;12
0;10
0;7,30
0;6,40
0;6
0;5
0;4

1/16 =
1/18 =
1/20 =
1/24 =
1/25 =
1/27 =
1/30 =
1/32 =
1/36 =
1/40 =

0;3,45
0;3,20
0;3
0;2,30
0;2,24
0;2, 13, 20
0;2
0; 1,52, 30
0;1,40
0;1,30

1/45
1/48
1/50
1/54
1/60 =
1/64 =
1/72 =
1/75 =
1/80 =
1/81 =

1/1,
1/1,
1/1,
1/1,
1/1,
1/1,

=
=
=
=

0; =
4; =
12; =
15; =
20; =
21; =

to 81

0;1,20
0;1,15
0;1,12
0;1, 6,4.0 •
0;1
0;0,56,15
0;0,50
0;0,48
0;0,45
0;0,44,26,40

The Athenian Greek mathematicians of the fifth century BCE—the Per-
iclean "golden age" —did not inherit the Babylonian interest in numerical
calculation and did not use the sexagesimal system. They persisted in
using the awkward Egyptian unit fractions. Later, however, the Alexan-
drian Greek astronomers, particularly Claudius Ptolemy (857-165? CE),
used sexagesimal numbers.

Leonardo of Pisa (Fibonacci), who first proved the greedy algorithm
(Proposition 1.1) for Egyptian unit fractions, was also acquainted with dec-
imal and sexagesimal numbers. He used sexagesimal numbers to give a
solution, accurate to the equivalent of nine decimal places, of a certain cu-
bic equation.

Egyptian unit fractions have long ago ceased to be a tool for serious
computation. Today they are merely a source of curious problems.

On the other hand, we are the direct beneficiaries of the Babylonian
place-value sexagesimal system, although we happen to use base 10 in-
stead of 60. The system merely needed fine-tuning—the proper usage of
zero.

The ancient Greek mathematicians were more interested in theory than
computation. However, they introduced the idea of mathematicalproof—
the measuring stick by which all mathematics is now validated. In the
next chapter, we will see that Greek ideas of ratio and proportion brought
about a deeper new understanding of the number system.
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Socrates: What do you say of him, Meno? Were not all these answers
given out of his own head?
Meno: Yes, they were all his own.
Socrates: And yet, as we were just now saying, he did not know?
Meno: True.
Socrates: But still he had in him those notions of his—had he not?
Meno: Yes.
Socrates: Then he who does not know may still have true notions of
that which he does not know?
Meno: He has.

—PLATO (4277-347? BCE), Meno (translated by Benjamin Jowett)

THE ANCIENT GREEKS EMBARKED HUMANITY on the Scientific VOV-
age of discovery that continues to the present day. The greatest of
the Greek mathematical gifts to us from antiquity was the notion

of proof. In this chapter, we look at certain fundamental accomplishments
of rigorous Greek mathematical thought—two alternate developments of
the theory of ratio and proportion, subtle methods of filling in the gaps
between the whole numbers. Thereby the Greeks carried forward the de-
velopment of the number system.

The Greeks looked beyond the practical needs of society for counting
and measuring. Their findings come to us largely through the Elements
of Euclid (fl. 295? BCE). We are fortunate to have such a record of an-
cient Greek mathematics; however, the beginnings of Greek mathematics
are more shadowy. Thales of Miletus (6257-546? BCE) and Pythagoras of
Samos (580?-500? BCE) were the first Greek mathematicians. Miletus was
a Greek coastal city of Asia Minor (now Turkey), and Samos is a Greek
island—both are on the Aegean Sea. Both men are said to have brought
back knowledge from travels to Mesopotamia and Egypt. Regrettably, this
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knowledge does not seem to have included the superior Babylonian sexa-
gesimal system and its place-value system of representing numbers. How-
ever, they more than made up for this lack by originating geometry as a
deductive science — a uniquely Greek contribution to mathematics with no
counterpart in Mesopotamia or Egypt.

Thales is said to have been the first to conceive of geometry as a chain
of logical deduction—from axioms to theorems. He is said to have given
proofs of several theorems, but we are told this only by commentators who
came hundreds of years later.

Neither Thales nor Pythagoras left us a written account of their dis-
coveries. However, Pythagoras left a cadre of disciples who carried his
teachings forward. In fact, Pythagoras founded a secret society at Croton
on the southeast coast of Italy—then called Magna Graecia.

The Pythagoreans were at the same time cultists and scientists. On the
one hand, they were a secret brotherhood that found mystical significance
in numbers. On the other hand, they discovered mathematical truths and
promulgated the concept of mathematical proof. They studied especially the
properties of the whole numbers—even and odd, divisibility, prime num-
bers, and so on. The Greeks called this branch of mathematics arithmetic,
and we now call it number theory.

"All is number" was the motto of the Pythagoreans. Nevertheless, the
Greek mathematicians who followed found much more to say about ge-
ometry than number. The reluctance to integrate geometric and numerical
magnitudes was an impediment to the progress of Greek mathematics. In
this chapter, we will see that the concepts of ratio and proportion carried
them to the brink of reconciling these concepts.

The later Greek mathematicians were philosopher-scientists seeking
the truth and imparting it to others. Their greatest contributions to math-
ematics were in geometry. They made a sharp distinction between geom-
etry and arithmetic. We will look especially at the distinction that they
made between arithmetic magnitudes (numbers) and geometric magni-
tudes (lengths, areas, and volumes). This distinction is illustrated in the
following quotation from Posterior Analytics1 by Aristotle (384-322 BCE):

The axioms which are premises of demonstration may be iden-
tical in two or more sciences: but in the case of two differ-
ent genera such as arithmetic and geometry you cannot ap-
ply arithmetical demonstration to the properties of magnitudes
unless the magnitudes in question are numbers.

The distinction between geometric and arithmetic magnitudes seems
artificial today because the modern real number system does not distinguish
between geometric and arithmetic magnitudes. Nevertheless, we preserve
a vestige of this obsolete dichotomy in mathematical terms that we have
inherited from the Greeks, such as geometric and arithmetic progressions.
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Today, the real number system underlies our mathematics education—al-
beit only implicitly, since real numbers are studied explicitly only in a few
advanced college-level courses. Unlike the ancient Greeks, when we ap-
proach a problem in geometry, we use numbers freely without separating
geometric and arithmetic magnitudes. In other words, our geometry is
completely arithmetized.

The German philosopher Hegel (1770-1831) declared that history pro-
gresses in cycles of thesis, antithesis, and synthesis—from innocence, to con-
flict, and finally to resolution. We can see this in the history of the concept
of number. In the preceding chapter, we have seen the practical, unsophis-
ticated number concepts of the Egyptians and Babylonians (thesis). In this
chapter, we will see how the Greeks introduced new concepts (antithesis),
and foreshadowed the modern concept of real number (synthesis).

The Heresy

It is said that the Pythagoreans punished those who divulged their se-
crets. This may be a calumny promulgated by outsiders suspicious of this
secret brotherhood. Truth or legend, it is said that Hippasus of Metapon-
tum (400? BCE) was drowned at sea by the Pythagoreans for divulging the
proof that the side and diagonal of a square are incommensurable. Later,
we discuss this result in detail. This proof is an important mathematical
milestone for three reasons:

1. It is a proof of unexcelled logical beauty—a model of mathematical
elegance.

2. It defines a major concern of ancient Greek mathematics. It is con-
troversial whether the Greeks, themselves, perceived the existence of in-
commensurables as a crisis in the foundations of mathematics. However,
in retrospect, we can say that, even if the Greeks did not see it, there was a
turning point; and it is of interest how the Greeks found a resolution.

3. It is one of the very earliest instances of a mathematical'.proof. The
Greeks were the first to understand that mathematical truth could be es-
tablished, not by authority, but by a self-contained convincing argument
— that anyone with the patience to follow a logical discourse can see the
truth. This point of view is illustrated in the above epigraph from Plato's
dialog Meno in which Socrates has just proved a theorem of geometry to
an uneducated slave boy.

In fact, the special case of the Pythagorean theorem that Socrates pre-
sented is relevant to our discussion. The large square in Figure 2.1 consists
of eight congruent isosceles right triangles. The area of the square bounded
by the four diagonal lines is twice the area of the small shaded square be-
cause the diagonal square consists of four triangles and the shaded square
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consists of two triangles. The side of the diagonal square is the diagonal
of the shaded square.

Thus, if a and c denote the side and diagonal, respectively, of the shaded
square, we have

The numerical values of a and c depend
on the unit of measurement—for example,
feet, millimeters, or angstroms. One might
think that both the side and diagonal of the
square could be integer multiples of some suf-
ficiently small unit. The alleged crime of Hip-
pasus consisted in revealing the "logical scan-
dal"— however small the unit of measurement, a
and c cannot both be integers. c. 0 .,d Figure 2.1.
Proposition 2.1. The lengths of the side and diagonal of a square cannot both be
integers.

Proof. Suppose that a and c are integers satisfying equation (2.1). We begin
by canceling any common factor. Suppose that k is the greatest common
factor between a and c. Then there are integers A and C such that a = kA
and c = kC. Hence, from equation (2.1), we have 2k2A2 — k2C2, which
implies

where A and C have no common factor. Equation (2.2) implies that C is
even. The square of an even number must be divisible by 4; therefore, the
right side of equation (2.2) is divisible by 4.

Since C is even and there is no common factor between C and A, A
must be odd. The square of an odd number is odd. It follows that the left
side of equation (2.2) is divisible by 2 but not by 4.

We are finished. It is not possible that the right side of equation (2.2) is
divisible by 4 and the left side is not. Our assumption that equation (2.1)
holds must be false. D

In modern terms, Proposition 2.1 is equivalent to the assertion that \/2
is an irrational number.

In geometry, two line segments J and J are called commensurable—that
is, they have a "common measure"—if there exists a unit segment U. such
that both X and J can be covered by an integral number of nonoverlap-
ping copies of U. In Figure 2.2, the intervals T and J are covered by,
respectively, four and five nonoverlapping copies of the unit interval U.
In this case, the ratio of J to J is 4 : 5. We can interpret this ratio as the
fraction 4/5.

Proposition 2.1 asserts that the side and diagonal of a square are in-
commensurable. That is, the ratio of the side to the diagonal is not equal
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Figure 2.2. The intervals X and J are commensurable with respect to the unit
interval U. In fact, four nonoverlapping copies of U cover J, and five of them cover
J, that is, J= 4U and J= 5U. Hence, the ratio of the lengths of these two
intervals is 4 : 5.

to a ratio of two natural numbers. Therefore, numerical magnitudes are
not sufficient for describing ratios of geometric magnitudes. A theory of
geometric ratios is needed.

What could be the motive for the alleged murder of Hippasus? It is
said that he committed a grave sacrilege by denying the deeply held belief
of the Pythagoreans that "number is all." Indeed, Proposition 2.1 seems to
say that numbers—more specifically, the natural numbers—are not even
powerful enough to resolve a simple geometric matter concerning the di-
agonal of a square. However, as we will see in discussion of Example 2.2
on page 29, the natural numbers are sufficient to explain this seeming
paradox—through a process called anthyphairesis—aGreek word meaning
back-and-forth subtraction. It is not surprising that the Pythagoreans failed
to understand this mitigation of Hippasus' crime. Indeed, anthyphairesis
is a subtle and beautiful concept that continues to unfold in the present
time—especially in the theory of continued fractions.2

Magnitudes, Ratio, and Proportion

The ancient Greeks may or may not have perceived that the existence of
incommensurable magnitudes created a crisis in the foundations of their
mathematics. At any rate, they resolved this "logical scandal" by making
a distinction between geometric and arithmetic magnitudes and by de-
veloping a theory of ratio and proportion. In ordinary usage, ratio and
proportion are sometimes used interchangeably, but here we will make a
more careful distinction. Specifically, an equality of ratios is called a pro-
portion. The Greek concepts of ratio and proportion are close to what we
now call real numbers.

Ratio and proportion are concerned with magnitudes. To understand
the Greek point of view, we must suppress our modern conviction that
all magnitudes are numbers. For the Greeks, there were several incom-
patible classes of magnitudes. The Greeks did not have a concept of zero,
negative, or infinite magnitudes.

Book V of Euclid's Elements,5 attributed to the Greek mathematician
Eudoxus (4007-347? BCE), contains the following passage concerning mag-
nitude and ratio.
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Definition 3. A ratio is a sort of relation in respect of size be-
tween two magnitudes of the same kind.

Definition 4. Magnitudes are said to have a ratio to one an-
other which can, when multiplied, exceed one another.

The above definitions set the stage, but they do not enable us to un-
derstand completely what is meant by ratio—beyond the idea that a ratio
is something that depends on two magnitudes. These definitions show
the properties of magnitudes that the Greeks wished to emphasize in their
theory of ratio and proportion.

Definition 3 speaks of "magnitudes of the same kind." Arithmetic mag-
nitudes are numbers—more specifically, natural numbers; geometric mag-
nitudes can be lengths, areas, or volumes. These four kinds of magnitudes
do not exhaust all possibilities; for example, Archimedes makes use of a
geometric magnitude called moment. Two magnitudes are "of the same
kind" if both are numbers, both are lengths, both are areas, or both are
volumes, and so on.

Magnitudes are ordered: Given two magnitudes of the same kind, ei-
ther they are equal or one is larger than the other. Furthermore, certain
arithmetic operations of magnitudes are implied by the ancient Greek us-
age. This arithmetic is evident for numerical magnitudes, but requires
some explanation for geometric magnitudes:

1. The addition of two like magnitudes. The sum of two geometric
magnitudes is the magnitude of a geometric figure consisting of the
two underlying figures side by side.

2. The multiplication of a magnitude by a natural number. Defini-
tion 4 implies that each multiple of a magnitude—double, triple, or
any integral multiple—is also a magnitude of the same kind. In other
words, if A is a geometric magnitude and n is a natural number, it
makes sense to speak of the magnitude nA, the n-fold multiple of
A. For example, 2A is the magnitude of a figure consisting of two
copies of a figure of magnitude A.

3. The subtraction of the smaller from the larger of two like magni-
tudes. If the geometric magnitude A is larger than B, then A — B is
the magnitude of a geometric object of magnitude A from which an
object of magnitude B has been removed.

We can now restate Definition 4 in a form that is known as the Axiom
of Archimedes.

Axiom 2.1 (Axiom of Archimedes). If A is a magnitude of the same kind as B,
and A exceeds B (A > B), then a sufficiently large multiple of B exceeds A; that
is, there exists a natural number n such that the n-fold multiple of B exceeds A
(nB > A).
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The ratio of two magnitudes, A and B, is written A : B. In modern
terms, A : B is like the quotient A IB. There are two possible methods for
giving meaning to ratios in the ancient context:

1. The method of Eudoxus. Define what it means for one ratio to be
equal to or greater than another ratio.4 As we will see in the next
section, this can be done even if we have not defined what a ratio
A : B actually is. Ratios can be left undefined just as lines and points
in geometry are undefined.

2. Anthyphairesis. Define a ratio A : B in terms of the natural numbers
even when A and B are not numerical magnitudes. Further below,
we will see how this can be done.

There is no inconsistency between method 1 and method 2. Book V of
Euclid's Elements develops method 1. The role of method 2 can be ascer-
tained only in part by a literal reading of Euclid. However, some scholars
are confident, based on indirect evidence, that the Greeks used method 2
much more than the literal written record might indicate.5

We now look at methods 1 and 2 in more detail.

Method 1 — proportion according to Eudoxus

This section discusses Eudoxus's theory of proportion, presented in Book
V of Euclid's Elements. Eudoxus's theory of proportion deals with both
numerical and geometric magnitudes. A proportion is a relation of equal-
ity between two ratios. The traditional notation for a proportion between
two ratios is A : B :: 71: S, but this formula has the same meaning as
A : B = 11: S. Magnitudes A and S are called the extremes, and B and
7£ are called the means of the proportion A : B :: 'R,: S. Eudoxus's theory
deals with magnitudes in general, but to make the following discussion
less abstract, magnitudes are interpreted as line segments.

Definition 2.1 (Eudoxus). Let I, J, /C, and C be line segments. We say
that the ratios T : J and /C : £ are equal if for every pair of natural num-
bers m and n, exactly one of the following three possibilities is true:

Definition 2.1 is stated in Book V of Euclid's Elements as follows:

Definition 5. Magnitudes are said to be in the same ratio, the
first to the second and the third to the fourth, when, if any
equimultiples whatever are taken of the first and third, and any
equimultiples whatever of the second and fourth, the former
equimultiples alike exceed, are alike equal to, or alike fall short
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of, the latter equimultiples respectively taken in corresponding
order.

Definition 6. Let magnitudes which have the same ratio be
called proportional.

To understand the meaning of Definition 2.1, let us adopt a modern
point of view for the moment. Suppose that X and J are the diagonal and
side, respectively, of a particular square, and that K, and C are the diagonal
and side of a different square, as shown in Figure 2.3. From our modern
point of view, we know that the ratios X : J and /C : C are both equal to
\/2, and, hence, the proportion T : J :: fC : C is true. Furthermore, we can
verify that v/2 is between 1.41 and 1.42 because

we have 1001 < 142 J and 100/C < 141£. In
other words, putting m = 100 and n — 142,
possibility 1 holds in Definition 2.1. On the
other hand, since

Figure 2.3.
we have 100J > 141J and 100/C > 141£. In
other words, putting m = 100 and n = 141,
possibility 3 holds in Definition 2.1. (For this example, there is no choice
of m and n such that possibility 2 holds because, as we have seen from
Proposition 2.1, v/2 is an irrational number.)

Eudoxus's definition of proportion is essentially the same as the mod-
ern definition of real numbers from Richard Dedekind (1831-1916).6 Both
Eudoxus and Dedekind deal with the following sort of question: How can
we explain the real number v/2 to a stubborn skeptic who insists that he knows
only the natural numbers? We cannot answer this question by completing
the statement, "\/2 is a number such that " Such an answer is circu-
lar because the only numbers that our skeptic is willing to accept are the
natural numbers. The answer of Eudoxus and Dedekind, implicit in Defini-
tion 2.1, is that each pair of natural numbers m, n satisfies either 2n2 < m2

or 2n2 > m2, and this dichotomy of pairs of natural numbers is the real
number v/2. The real numbers in general can be defined in this man-
ner — as dichotomies of the set of all pairs of natural numbers. The benefit
of defining real numbers in this seemingly bizarre way is that it establishes
that real numbers actually exist, provided that we accept the existence of
the natural numbers.

From the relation
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Method 2 — Attributed to Theaetetus

The mathematical writings of Theaetetus (4157-369? BCE) have not sur-
vived, but scholars believe that Books X and XIII of Euclid's Elements are
a description of Theaetetus's work. It is unfortunate that, at best, we have
only a second-hand account that no doubt reflects the interest and un-
derstanding of Euclid.7 Scholars agree that Theaetetus made fundamen-
tal contributions to the theory of proportion and incommensurables. Van
der Waerden (1975, p. 176) argues that certain propositions concerning ra-
tios in Book X cannot easily be derived from Eudoxus's theory, and that,
therefore, Theaetetus must have used a different definition of ratio using
a method called anthyphairesis; we will call it back-and-forth subtraction, or
simply BAFS.

Starting from Axiom 2.1, the Axiom of Archimedes, we see that, given
a greater magnitude A and smaller magnitude B, there must be largest
multiple of B that does not exceed A. We state this more precisely in the
following proposition, which is currently known as the division algorithm?

Proposition 2.2 (division algorithm). Suppose that A is a magnitude of the
same kind as B, and that A exceeds B (A > B). Then there is a largest multiple
of B that does not exceed A. That is, there exists a natural number q, called the
quotient, such that qB < A < (q + l}B. If qB ^ A, then the magnitude
7t = A — qB is called the remainder, and B exceeds TZ(B > TZ).

Anthyphairesis (BAFS) consists of repeated application of the division
algorithm (Proposition 2.2). Suppose that two magnitudes of the same
kind are given, a larger magnitude A and a smaller magnitude B. From
Proposition 2.2 we see that there exists a natural number i such that

If iB — A, stop. Otherwise, put K = A — iB and find ; such that

If j f i = B, stop. Otherwise, put S — B — j'R, and find k such that

and so on. This calculation may stop after finitely many steps, or it may
continue indefinitely.

The result of this process is as follows:

• A finite or infinite sequence of like magnitudes, A, B, 7£, S, — The
first two magnitudes, A and B, are the given magnitudes, and 7£,
S, ..., are the remainders in successive applications of the division
algorithm (Proposition 2.2).



Greek Gifts 27

• A finite or infinite sequence of natural numbers, i, j, k,..., called
partial quotients.9

The sequence i, j, k,... expresses the relative size—the ratio—of the
magnitudes A and B. We write A : B = (i,j, k,...}. A ratio A' : B' is equal
to A : B if the BAFS of A' and B' generates the same sequence of natural
numbers (i,j,k,...)as the BAFS of A and B. (The Greeks would say that
A' : B' is proportional to A : B and they would write A' : B' :: A : B.) The
fact that (i,j,k,...} is the ratio A : B arithmetizes the concept of ratio by
relating an arbitrary ratio A : B to a sequence of natural numbers — even
if the magnitudes A and B are geometric, not arithmetic, magnitudes. By
this construction, we see that ratio is not a strange new beast; rather, it is a
construction involving the familiar natural numbers.

The next section examines BAFS applied to numerical magnitudes.

Numerical magnitudes: the Euclidean Algorithm

The application of BAFS to a pair of natural numbers is called the Euclidean
Algorithm. We begin with an example.

Example 2.1. Calculate the BAFS of the numerical magnitudes 871 and
403.

Solution.

Notice that it follows from equation (2.5) that 13 is a divisor of 65. Now
since both terms on the right side of (2.4) are divisible by 13, it follows that
403, the left side of (2.4), is divisible by 13. Similarly, since both terms on
the right side of (2.3) are divisible by 13, it follows that 871, the left side of
(2.3), is divisible by 13. Thus we see that 13 is a common divisor of the given
numbers, 871 and 403.

Furthermore, we can see as follows that 13 is the greatest common divisor
(GCD) of 871 and 403. Equation (2.3) shows that every common divisor d
of 871 and 403 must also be a divisor of 65. Moreover, (2.4) shows, since d
is a divisor of 403 and 65, d must also be a divisor of 13. It follows that any
common divisor of 871 and 403 must also be a divisor of 13. Since we have
already seen that 13 itself is a common divisor of 871 and 403, it follows
that 13 is the greatest common divisor of 871 and 403.

Similarly, BAFS provides a method of finding the GCD of any two nat-
ural numbers. Two natural numbers are said to be relatively prime if their
GCD is equal to 1. The Euclidean Algorithm (BAFS of natural numbers)
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is introduced in Book VII of Euclid's Elements explicitly for the purpose of
finding GCDs.10

Of course, one could find the GCD of 871 and 403 by finding the fac-
torizations of both numbers: 871 = 13 x 67 and 403 = 13 x 31. This fac-
torization technique is feasible for small numbers, but it is very difficult
to factor extremely large numbers. However, BAFS (the Euclidean Algo-
rithm) provides an easy method for computing GCDs even of very large
numbers.

The BAFS of a pair of natural numbers always stops after finitely many
steps. This is because the remainders (e. g., 65, 13 in the above example)
become smaller at each step; a decreasing sequence of natural numbers
can contain only finitely many elements. On the other hand, a BAFS of
geometric magnitudes can be an infinite process —as we will see in the
next section.

We can redo the calculations (2.3), (2.4), and (2.5) using fractions in a
modern way not available to the Greeks, as follows:

Putting these three equations together, we have

The right side of (2.6) is called a continued fraction. More specifically,
since all the numerators are equal to 1, it is an example of a simple contin-
ued fraction.

Geometric magnitudes

In Book X of Euclid's Elements, BAFS is defined for geometric magnitudes
for the purpose of distinguishing between commensurable and incom-
mensurable magnitudes.11 There is no direct statement in Euclid's Ele-
ments that the ancient Greeks also used BAFS to defineethe concept of ratio;
however, some scholars12 believe that there is ample indirect evidence to
support their claim that Greek mathematicians of the fourth century BCE,
Theaetetus and others, used BAFS to define ratio.

To simplify the discussion of geometric magnitudes, we consider only
linear magnitudes. By linear magnitude we mean the total length of a figure
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consisting entirely of line segments. The Greek theory of ratio and propor-
tion for this kind of magnitude is essentially equivalent to the modern
theory of real numbers.13 Admitting other types of magnitudes does not
carry us further.

We begin with an example that returns to the question of incommen-
surability of the diagonal and side of a square (Proposition 2.1).

Example 2.2. Find the ratio of the diagonal and side of a square.

The ratio is defined by the sequence of partial quotients generated by
the BAFS procedure.

We will see two solutions, one ancient and one modern. The first so-
lution is from Fowler (1987), where it is described as an interpretation of
material from the commentary of Proclus (411-485 CE) on Plato's Republic.
This solution uses methods that were available to Greek mathematicians
of the fourth century BCE.

Ancient Solution. Figure 2.4 is con-
structed starting from the diagonally
placed shaded square AEFG. The side
of the larger square ABCD is equal
to the side plus the diagonal of the
smaller square so that BF is equal to
EF. From Figure 2.4 it is clear that the
diagonal AC of the large square is equal
to the diagonal plus twice the side of
the small square so that CG=AD. The
first step in the BAFS of AC and AD is

Figure 2.4.

The first partial quotient is equal to 1.
For the second step of the BAFS, we must apply the division algorithm

to AD and AG. Now we use the fact that the side of the large square is equal
to the diagonal plus the side of the small square:

Since we are only interested in the next partial quotient, the size of
the square is not important. For an arbitrary square—for example, the
large square ABCD—the division algorithm of the side plus the diagonal
(AD + AC) with respect to the side the square (AD) yields a result that is in-
dependent of the size of the square. More precisely, applying the division
algorithm to AD + AC and AC, we obtain

Hence, the second partial quotient is 2.
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For the third step of the BAFS, we perform the division algorithm for
AD with respect to AG. But this is exactly the same calculation that we
made above in step 2. Therefore, the third partial quotient is 2. Continuing
in the same fashion, all of the succeeding partial quotients are also equal
to 2. Thus the sequence of partial quotients for the ratio of the diagonal to
the side of square is (1,2,2,2,...}.

An alternate method of proof is to relate the steps of the BAFS to ever
smaller squares, shown in Figure 2.5.

Modern Solution. We want to compute BAFS of \/2 with respect to 1.
We begin with a numerical experiment, shown in Table 2.1, using the dec-
imal approximation v/2 « 1.414214. The resulting arithmetic calculations
are not difficult for us, but they would have been impossible for the ancient
Greeks. Although this experiment may put us on the right track, it fails to
be a self-contained rigorous demonstration because we have not derived
this approximation of \/2, and, after all, it is only an approximation.

This calculation suggests that the partial quotients for the BAFS of \/2
with respect to 1 are (1,2,2,2,...}. We can prove this rigorously with the
following algebraic calculation—the same calculation as above but using
exact values instead of approximations. We make repeated use of the fol-
lowing identity:

Figure 2.5.
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Table 2.1. Numerical approximation of
BAFS of A/2 with respect to 1.

1.414214 - 1 x 1.000000 = 0.414214
1.000000 - 2 x 0.414214 = 0.171572
0.414214 - 2 x 0.171572 = 0.071070
0.171572 - 2 x 0.071070 = 0.029432
0.071070 - 2 x 0.029432 = 0.012206
0.029432 - 2 x 0.012206 = 0.005020
0.012206 - 2 x 0.005020 = 0.002166

In this chapter, we have seen how questions of incommensurability
led ancient Greek mathematicians to develop ideas of magnitude, ratio,
and proportion. We have seen two Greek definitions of ratio—important
extensions of the number system.

The rational numbers don't have visible gaps; between any two there
are infinitely many more. Yet, there is a gap where \/2 should be, and this

Here is the exact computation of the BAFS of \/2 and 1:

This calculation confirms the correctness of the partial quotients sug-
gested by our numerical experiment. It also implies that the continued
fraction expansion of \/2 is as follows:14
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was puzzling to the Greeks. The Greek theories of ratio and proportion
found a way to bridge this gap, making an important advance toward the
modern real number system. But in roughly two thousand years between
then and now, much remained to be done.

Of course, negative numbers and the decimal system needed to be in-
vented, together with long division and other algorithms. More funda-
mentally, the Greeks failed to see that it is not necessary to have an assort-
ment of different magnitude concepts—one for lengths, another for areas,
and so on. Today, the needs of science are served by a single concept of
magnitude: the real numbers.

The next chapter discusses musical applications of the theory of ratio
and proportion. We will see how today's science and musical practice has
extended and refined the ancient Greek belief that certain ratios define
pleasing musical intervals.



The Music of the Ratios

There is geometry in the humming of the strings; there is music in the
spacing of the spheres.

—PYTHAGORAS, 5827-500? BCE

IN
 THE SIXTH CENTURY BCE, PYTHAGORAS and his followers believed
that numbers are the language in which the meaning of the universe
is written. Numbers are also fundamental in today's world in which

digital computers—containing streams of Os and Is—entertain us, per-
form our accounting needs, and compute the interaction of galaxies. Al-
though the Pythagoreans lacked the digital computer, their belief in the
universal importance of number was confirmed by devices familiar to
them—musical instruments. In fact, Aristotle tells us that the Pythago-
reans "supposed the elements of numbers to be the elements of all things,
and the whole heaven to be a musical scale and a number."1

In the hands of the Pythagoreans, a simple musical instrument be-
came a scientific instrument. We infer this from their teachings, although
we have no ancient log books detailing their actual experiments. Unfor-
tunately, after this promising beginning, experimental science came to a
standstill in ancient Greece. This was due in part to the influence of philoso-
phers like Plato, who were more impressed by the unsupported specu-
lations of the Pythagoreans than by their empirical observations. Plato
taught that the universe is perfect; and, therefore, empirical investigation
is unnecessary because to discover the nature of the universe it is suffi-
cient to examine, through philosophical discourse, the general concept of
perfection. Circles, spheres, and ratios of small whole numbers were con-
sidered obvious instances of perfection, and therefore, it was argued, the
motion of the heavenly bodies—the sun, moon, planets, and stars—must
be based on these concepts. Two thousand years later, in the late Re-
naissance, empirical science—the basis of all modern science —was finally

33
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rediscovered by Galileo and others. Galileo not only revised the Pythag-
oreans' theories of the heavens; he also had a surprising familial connec-
tion with their musical ideas. More specifically his father, Vincenzo Galilei
(15207-91), was a noted lutenist and composer who joined the controversy
concerning the merits of Pythagorean tuning of his instrument. In his dia-
log, Fronimo (1584), Vincenzo favored equal-tempered tuning, which we will
discuss later.

We can duplicate the Pythagoreans' observations using any pair of
stringed instruments—a pair of violins or guitars will do. We wish to bow
or pluck two strings of different lengths simultaneously, but we require
that the two strings are made of exactly the same material and are under
precisely the same tension. Figure 3.1 shows a hypothetical instrument
that would be especially suitable for the Pythagorean experiments.

Although no one knows how ancient Greek music actually sounded,
we do know that the Pythagoreans made a connection between music and
mathematics. The Pythagoreans discovered that harmonious musical in-
tervals are generated by pairs of string lengths with simple numerical ra-
tios. These intervals are called Pythagorean to distinguish them from the
slightly different equal-tempered intervals in current musical use. In partic-
ular, halving the string length raises the pitch by exactly one octave, and
if the ratio of the string lengths is 2 : 3, then the corresponding pitches
form an interval called a Pythagorean or perfect fifth — so named because
the interval do-sol between the first and fifth notes of the diatonic2 scale is
an instance of this interval. Other important Pythagorean intervals corre-
spond to the ratios 3 : 4 (the fourth), 8 : 9 (the major second}, and 9:16 (the
minor seventh).

The role of numerical ratios in music might seem mildly interesting
to us, but to the Pythagoreans it was astonishing—even staggering—and
emboldened them to speculate that the same numerical ratios controlled
the motion of the heavenly bodies. Their musical experiments led the Py-
thagoreans to believe that the small whole numbers were the key to under-
standing the universe and that music emanated from the heavenly bodies.
Only Pythagoras himself, because of his higher level of spirituality, was
presumed to have actually heard the music of the spheres.

Figure 3.1. A musical instrument for the Pythagorean experiments. A single string
AC is stretched across the bridge B, which can be moved to adjust the ratio x : y.
Tension on the string can be adjusted using the tuning peg at D. The two parts of
the string with lengths x and y are plucked simultaneously.
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While the Pythagoreans overestimated the importance of their discov-
eries, they raised questions that have been answered only recently. The
Pythagorean experiments initiated the science of acoustics—more specifi-
cally psychoacoustics, the study of the perception of sound. If a tree falls in
the forest and no one hears it, the sound is strictly in the domain of acous-
tics. But if someone does hear it, it enters the purview of psychoacoustics.
It is beyond the scope of this book to discuss these topics exhaustively. We
confine our attention to matters that relate to the musical observations of
the Pythagoreans. In particular, to discuss consonance and dissonance, it
is sufficient to consider only sounds that consist of one or more sustained
tones — sounds that do not change over time. We do not consider transient
sounds or noise.

Were the Pythagoreans right? Is it true that certain sounds are intrin-
sically more musical than others? Or are our musical preferences purely a
product of our culture? We hope to answer these questions.

The Pythagorean ideas of harmony lead us to the physics of sound and
the anatomy of the ear. We will see a mathematical foundation for the
familiar music of today and the forgotten music of the Pythagoreans.

Acoustics

Acoustics is the physics of sound. Physically, sound is a rapidly varying
pressure wave propagated through air, water, or other media. The rate of
vibration of audible sound is between 20 and 20,000 cycles per second. In
air at 68°F, sound waves travel at a speed of 770 miles per hour.

An ear or a microphone detects the changing pressure at a particular
point in space. The ear transmits this information to the brain. The electri-
cal output from a microphone can be used to activate a loudspeaker, but it
might also generate a graph of pressure versus time.

The simplest musical sound is called a simple tone or a sine tone. The
pressure-time graph generated by a simple tone is a sine wave, as shown
in Figure 3.2. The horizontal coordinate is time, and the vertical coordinate
is pressure, which varies about an equilibrium steady-state value.

Figure 3.2. The pressure-time graph of a simple tone is a sine wave.
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The rotating circle

A sine wave is more than just any wiggly curve. It is generated by certain
precise mathematical relationships. We can make a model of a sine curve
by cutting a cylindrical roll of paper by a diagonal plane. By unrolling the
paper flat, we obtain a sine curve. The vibration of a mass suspended by
an ideal spring3 is described by a sine curve. Figure 3.3 shows an inter-
pretation of a sine curve using a rotating circle. This construction shows
that a sine wave is specified by three quantities — amplitude, period, and
phase:

1. The amplitude is the maximum vertical deviation from the steady
state—half the vertical distance between a trough and a peak. The larger
the amplitude, the louder the sound.

The mean pressure of the loudest sound that the ear can tolerate is
about 2,000,000 times greater than the mean pressure of a barely percep-
tible sound. This enormous range makes pressure an unsuitable unit of
measurement of loudness. The standard unit of loudness is the decibel
(dB).4 Increasing loudness by 1 decibel is approximately equal to a 26%
increase in mean pressure. An increase of 10 decibels is equivalent to mul-
tiplying mean pressure by 10 exactly. Logarithmic units, like the decibel,
are useful when the quantity measured encompasses many orders of mag-
nitude. Decibels are a better measure of perceived loudness than pressure.

Figure 3.3. A rotating circle generates a sine curve. The circle with center at O
rotates counterclockwise at constant angular velocity (V. The sine curve is a graph
of the time dependence of the vertical height of a point fixed to the rotating
circle —a point that is initially at PQ. The position of this point at times ti and t2
are PI and ?2, respectively. The dashed lines show how these points on the circle
determine points on the sine curve.

The amplitude is equal to the maximum height of the sine curve —the radius of
the circle. The period is the distance between successive peaks of the sine curve —the
time for one revolution of the circle. The frequency (in Hz) is the angular velocity
of the moving point measured in revolutions per second. The phase is the angle a
between OPo and the horizontal radius OQ.
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2. The period is the horizontal distance (time) between two adjacent
peaks (or troughs).

The reciprocal of the period is the frequency—the number of peaks (or
troughs) in unit time. Hence, the frequency of a sine curve contains the
same information as the period. Frequency is measured in cycles per sec-
ond—also called hertz —after Heinrich Rudolf Hertz (1857-94), the Ger-
man physicist who was the first to transmit and receive radio waves. The
higher the frequency, the higher the pitch.

There is an analogy between mean pressure (loudness) and frequency.
In both cases the ear perceives percent change rather than absolute change.
Musical intervals are defined by frequency ratios. For example, an upward
semitone is about a 6% increase in frequency. In music, logarithmic units
of frequency are more suitable than hertz. All of the standard musical
intervals—fourths, fifths, octaves, and so on—are logarithmic units of fre-
quency.

3. The phase of a sine wave, as shown in Figure 3.3, defines the starting
position of the sine wave. If two sine waves have the same amplitude and
frequency, it is always possible to bring the one into coincidence with the
other by means of a horizonal shift—a phase shift. The amount of this
shift is called the phase difference.

The Pythagoreans did not have the technology to discover that the
pitch of a sound corresponds to the frequency of a vibration. Nevertheless,
the Pythagorean ratios apply to frequency as well as the length of a string.
For example, doubling the length of a string halves the frequency of vi-
bration. However, the sounds heard from a vibrating string are not simple
tones, but rather a mixture of simultaneous simple tones. This happens be-
cause a string has not just one but a sequence of modes of vibration. Some-
times the higher modes are used for musical effect—for example, when a
violinist places a finger lightly on a node of the vibrating part of a string.
The first three modes of vibration of a string are shown in Figure 3.4.

In the first mode (a) —also called the fundamental mode—the string en-
tire alternately bows upward and downward. The second mode (b) is one
octave above the fundamental; the third mode (c) is an octave plus a per-
fect fifth above the fundamental; the fourth mode is two octaves above
the fundamental; the fifth mode is two octaves plus a Pythagorean major
third above the fundamental; and so on. The fundamental together with

Figure 3.4. The first three modes of vibration of a stretched string. The stationary
points labeled N are called nodes.
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the higher modes of vibration are called partials. The partials higher than
the fundamental are called overtones. The mixture of amplitudes of the
various partials gives a quality called timbre to the tone. It is the timbre
that tells us that we are hearing a violin and not a guitar.

Integer multiples, two or greater, of a given frequency are called har-
monics of that frequency. The string, woodwind, and brass instruments
have harmonic partials. However, the drum, the xylophone, the bells, and
most other percussion instruments have nonharmonic partials that are not
integer multiples of a fundamental frequency. We will see in the discus-
sion on psychoacoustics that the consonance of the Pythagorean intervals
stems from the fact that the higher partial frequencies of a vibrating string
are all harmonics of the fundamental.

Woodwind instruments also have harmonic partials. The partials of
those woodwind instruments that are effectively pipes open at both ends,
for example, the flute and the recorder, tend to include both even and odd
harmonics. Despite appearances, the oboe and the saxophone are also ef-
fectively open pipes. However, some woodwinds that function as pipes
closed at one end (e.g., the clarinet) suppress the even harmonics. This ac-
counts for the unique timbre of the clarinet. For woodwind instruments,
the fingerings from the lowest note up to its first overtone form a cycle
that is, with small modifications, repeated for higher notes. For all wood-
winds, a variety of tones are formed by opening and closing holes in the
side of the tube—to change the effective length of the pipe and to sup-
press fundamental tones in favor of the higher partials. For the flute, the
first overtone is an octave above the fundamental, and the cycle consists
of 12 fingerings for the 12 semitones. The fingerings for the second octave
are identical or similar to those of the first octave; the flutist can play either
the fundamental tone or the first overtone, the octave, by adjusting the air
pressure and the tension of the lips. For the clarinet, on the other hand,
the first strong overtone is an octave plus a fifth above the fundamental,
and, therefore, there is a cycle of 19 different fingerings corresponding to
the 19 distinct semitones between the lowest note and its first overtone.
Thus, the clarinetist needs to learn a longer cycle of fingerings than the
flutist. On the other hand, for the clarinet, two cycles includes more than
three octaves, whereas to achieve the third octave the flutist needs to learn
additional special fingerings.

The drum is an example of a musical instrument that has nonharmonic
partials. A drum produces sound by means of a vibrating membrane. The
fundamental tone for a drum corresponds to a back-and-forth vibration of
the entire drum surface. For a circular drum, the lowest pitched partial
above the fundamental corresponds to a vibration in which a diameter is
a nodal line that bounds two semicircular regions that vibrate in opposite
phase. The frequency of this partial is 1.594 times the frequency of the
fundamental. For example, if the fundamental is C, then this lowest partial
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is slightly higher than G-sharp above C, a minor sixth. The corresponding
lowest overtone for the vibrating string is exactly an octave. The partials
of a drum are far more complex. The frequency factors for a few of the
partials of a circular drum are listed below in increasing order:

1.000, 1.594, 2.136, 2.296, 2.653, 2.918, 3.156, 3.501, 3.600, 3.652, 4.060, • • •

Each number in this list corresponds to a different pattern of nodal lines
on the circular drum. (For the vibrating string, the corresponding numbers
are 1,2,3,....)

In 1956, mathematician Mark Kac asked, "Can you hear the shape of a
drum?" This is a clever way of asking if the sequence of partials of a drum
implies exactly one shape for the drum's membrane. In particular, do the
frequency factors listed above somehow imply that they are generated by
a circular drum? The answer to Kac's question is negative, because in 1991
mathematicians Carolyn S. Gordon and David L. Webb showed that there
exists a pair of differently shaped drums that generate the same sequence
of partials.

In addition to the drum, most percussion instruments produce non-
harmonic partials: the xylophone, the bells, and the cymbal. Of course,
nonharmonic does not mean dissonant or unpleasant.

Waveforms and spectra

Periodic waveforms

A sine wave (Figure 3.3) is an example of a periodic waveform. It is called
periodic because it is repetitive over time. It is sufficient to depict the
graph over a time interval equal to one period. Shifting the initial period
horizontally, we can obtain as much of the curve as needed.

Using electronic devices, we can generate and hear a great variety of
periodic waveforms. For example, an electronic organ can simulate a vari-
ety of different musical instruments. With a soldering iron and parts read-
ily available from an electronics store, a hobbyist can generate waveforms
in his or her garage. The simplest project of this sort is the construction of
a multivibrator, a device that produces a square wave, the waveform shown
in Figure 3.5. A computer requires millions of transistors, but a multivi-
brator just two. Plans are available in books, magazines, and websites for
electronics hobbyists. Electronic waveforms can be viewed with an oscillo-
scope, a device that uses a cathode ray tube—now used as the picture tube
in television sets. The oscilloscope was invented by Karl Ferdinand Braun
(1850-1918) in 1897,50 years before the advent of television.

It is very remarkable that a square wave—in fact, an arbitrary periodic
waveform—can be approximated as close as needed by a series of sine
waves.5 The series consists of a sine wave with the same period as the
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Figure 3.5. A square wave.

square wave together with harmonics of this fundamental frequency with
suitably chosen amplitudes and phase angles. The square wave is approx-
imated by sums of these wave forms.6 For an acoustical square wave, the
approximating sine waves are partials.

1. Frequency. For a square wave, the frequencies of the partials are
odd multiples only of the fundamental. Recall that the clarinet also
has principally odd harmonic partials. There are websites where the
sound of a square wave can be heard. The sound of a square wave is
vaguely like a clarinet, but far from pleasant—the ugly cousin of the
clarinet. On the other hand, a square wave generator can do some-
thing that a clarinet cannot do — trouble-shoot a radio or TV.

2. Amplitude. For the square wave, the amplitudes of the odd harmon-
ics of order 1, 3, 5,... are proportional to the reciprocals

respectively. This sequence of reciprocals drops off much more slowly
than the corresponding sequence for a musical instrument. This is
why we say that the square wave is "rich" in harmonics.

3. Phase. For the square wave, the phase angle of each partial is 0°.
(See Figure 3.6(a).) Altering the phases of the partials generates a
different waveform. For example, Figure 3.6(b) shows the waveform
generated by the sum of these 6 partials if the phase angles are set to
90° instead of 0°. To the ear, the waveforms of Figures 3.6(a) and (b)
sound exactly the same because they have the same partial frequen-
cies with the same amplitudes. The waveforms, the solid curves, in
Figures 3.6(a) and (b) are different, yet we cannot hear the difference.
This is an instance of Ohm's law of hearing, after the German physi-
cist Georg Simon Ohm (1789-1854),7 which states that the ear gener-
ally cannot detect alterations of phase in the pure components of a
complex sound. On the other hand, changes in the frequencies and
amplitudes of the pure components of a complex sound are readily
perceived by the ear.
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Figure 3.6. Approximating a square wave by adding six of its partials. In (a), the
six partials are indicated by the dotted curves. The solid curve, the sum of the six
partials, resembles the square wave. The phase for each of these partials is 0°. In
(b), the dotted curves are the same partials as in (a) but with phase angles changed
from 0° to 90°; and the solid curve is the sum of these partials. In accordance with
Ohm's law of hearing, the ear cannot perceive any difference between the sounds
generated by the waveforms (a) and (b).
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In Figure 3.6(a), the dotted sine waves represent the first six partials
of a square wave, and the solid curve represents the sum of these six sine
waves. From these graphs, it is plausible that this sum approximates the
square wave.

The foregoing illustrates a general fact. A periodic waveform subject
to very general regularity conditions can always be approximated as close
as desired by a series of sine waves that are harmonics of the fundamen-
tal frequency with suitably chosen amplitudes and phases. Furthermore,
there is only one such approximating series. This series approximating
waveforms by sine waves is called a Fourier series. The remarkable idea
that arbitrary periodic waveforms can be approximated in this way is due
to the French mathematician Joseph Fourier (1768-1818), friend and scien-
tific advisor to Napoleon Bonaparte.8

Almost periodic waveforms

Is the sum of two periodic waveforms periodic? No, not if the two wave-
forms have incommensurable periods — as in Figure 3.7, where the ratio of
the periods is 1 : n. This figure does not exhibit any obvious periodicity,
but, of course, this does not prove that the waveform is not periodic. The
waveform shown here can be generated by two simple tones played si-
multaneously. We need to include this sort of waveform in our discussion
of consonance and dissonance.

The class of periodic waveforms is too confining. We need a wider class
of waveforms, the almost periodic waveforms. For our purposes, the class
of almost periodic waveforms consists of those that can be approximated
to arbitrary precision by sums of sine waves—with possibly incommen-
surable periods. Unlike a periodic waveform, we cannot construct all of
an almost periodic waveform by endlessly repeating part of its graph. The
theory of almost periodic functions was created by the Danish mathemati-
cian Harald Bohr (1887-1951), brother of the physicist Niels Bohr. It is said
that he always started his mathematics lectures by writing at the upper left

Figure 3.7. A nonperiodic waveform, a sum of two sine waves with periods in the
ratio 1 :TT.
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corner of the blackboard and finished at the lower right corner exactly 50
minutes later.

Almost periodic waveforms are represented by a unique series of sine
waves much the same as periodic waveforms. In general, almost periodic
waveforms have nonharmonic partials. That is, the frequencies need not
be integer multiples of a fundamental frequency. The waveforms gener-
ated by percussion instruments (e.g., drum, xylophone, bells, chimes) are
almost periodic but not periodic. Bohr's theory of almost periodic func-
tions is the proper mathematical foundation for the acoustics of musical
tones.

Spectra

The fact that the sounds represented by the waveforms in Figure 3.6(a)
and (b) cannot be distinguished by ear demonstrates that waveforms are
not very useful in the study of hearing. We need a method of presenting
information about a tone that identifies frequencies and amplitudes and
ignores phase. The spectrum of a tone shows precisely this information.
Figure 3.8 compares the spectrum of C4 (middle C—262 Hz) as rendered

Figure 3.8. Spectrum of a fundamental tone of 262 Hz (middle C) rendered by
(a) a square wave generator and (b) a B-flat clarinet —showing partials up to 3000
Hz. The scale of amplitude is linear (not decibels). No amplitude scale is shown
because only relative amplitude is important.
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by (a) a square wave generator and (b) a B-flat clarinet. The musical term
for spectrum is timbre. The ear can detect the distinctive timbre of the
clarinet or the flute.

A sound spectrum breaks down a complex tone into the frequency
components, together with the corresponding amplitudes. A device that
achieves this decomposition is called a frequency analyzer. The Helmholtz
resonator, named after the German scientist Hermann von Helmholtz (1821-
94),9 is the oldest and simplest frequency analyzer. Helmholtz found that
a spherical vessel with suitable dimensions resonates at a particular fre-
quency with very little contamination from nearby frequencies. In shape, a
Helmholtz resonator resembles the spherical Florence flask used in chem-
ical laboratories. A short tube connected to the resonator can be fitted
snugly into the ear using soft wax. Each resonator enables one to hear
whether a particular frequency is a partial of a complex tone. A separate
resonator is required to monitor each frequency of interest.

The Helmholtz resonator is primitive by the standard of current tech-
nology. Now frequency analyzers convert sound to an electric vibration
that is decomposed into its sinusoidal components using electronic filters.

Psychoacoustics

How do we hear pitch? Helmholtz opened the door to the modern chap-
ter of psychoacoustics by declaring that the ear is a frequency analyzer. In
doing so, he opposed many of his contemporaries —including his mentor,
the physiologist Johannes Miiller—who held to the philosophical princi-
ple of vitalism, which says that living processes can never be completely
understood through the application of ordinary physics, chemistry, and
mathematics. Although Helmholtz did not discover the precise mecha-
nism of the ear's frequency analyzer, his assertion was much more than
speculation:

• It is clear that the ear does perform frequency discrimination. In-
deed, a musician with perfect pitch can identify middle C. (Yet, no
one seems able to identify all the partials of a complex tone.)

• It seems reasonable that the ear makes sense of complex sounds by
reducing them to simpler components.

In 1961, the Hungarian-born American researcher Georg von Bekesy
(1899-1972) won the Nobel prize in medicine for showing how the ear
functions as a frequency analyzer. The inner ear contains a snail-shaped
spiral structure the size of the tip of a little finger, the cochlea. The cochlea
contains a coiled structure about 1.3 inches long called the basilar membrane.
Because of its varying width and stiffness, different frequencies cause dif-
ferent parts of the basilar membrane to bulge. The bulging of the basilar
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membrane activates nerves contained in the organ of Corti, sending infor-
mation to the hearing center of the brain. The foregoing explanation is
called the place theory of pitch perception because it explains how different
simple tones are associated with different sites on the basilar membrane.
Despite some difficulties, the place theory is considered the primary ex-
planation of pitch perception.

Although the ear is a wonderfully sophisticated instrument, it shares
a certain limitation with all frequency analyzers—a limit of resolution. If
the frequencies of two simultaneous simple tones are sufficiently far apart,
they are heard as separate tones, but they are perceived in a more complex
way, to be discussed later, if they are close enough to be in the same critical
bandwidth.

The critical bandwidth underlies the perception of consonance and dis-
sonance. The interplay of consonance and dissonance is one source of mu-
sic's endless fascination.

Consonance versus dissonance

We hear tinkling, pounding, buzzing, whirring, roaring, and, most im-
portant of all, the sound of speech. However, our concern here is mainly
sound as it is perceived by musicians and their listeners. More particularly,
we consider how we hear two simultaneous sustained musical tones.

Our ears recognize that the pair of tones C-G has the same character
as D-A; we say both are fifths. The Pythagoreans discovered that the fifth,
the octave, and other harmonious intervals, are determined by ratios of
string lengths, for example, 3 : 2 and 2 : 1. In modern terms, each interval
derives its identity from the ratio of the frequencies of the two tones that
generate it. It is the ratio of the frequencies that somehow tells us that we
are hearing a fifth, an octave, or some other interval.

By listening to simultaneous tones on stiinged instruments, the Py-
thagoreans found certain musical intervals harmonious and others disso-
nant. In this section, we will see that if they had studied drums instead of
stringed instruments, they might not have discovered consonance based
on simple ratios.

The foundational theory of consonance and dissonance was developed
by Helmholtz. The next section considers results of Plomp and Levelt
(1965) that confirm and amplify Helmholtz's work. One might start with
the simplest instance of a harmonious interval—the octave —and argue
that any explanation of consonance must confirm that an octave is always
a consonant interval. It turns out that this plausible idea is a bad start. The
partials of the tones of musical instruments confuse the matter. It turns out
that the octave is especially consonant if all the partials are harmonics of
the fundamental—a condition that fails for the drum and other percussion
instruments.
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Critical bandwidth

Instead of considering particular intervals, such as the octave, it is better to
start by examining the question of consonance-dissonance for simple tones
with no higher partials. Simple tones can be generated by an electronic
audio oscillator. There are three principal ways in which we hear two
simultaneous simple tones:

1. If the pitches of the two tones are far apart, then we hear two tones
sounded simultaneously, and the addition of the second tone increases our
sense of loudness. Two tones are heard if the frequencies of the two tones
are farther apart than the critical bandwidth—the smallest frequency differ-
ence at which two tones are judged completely consonant. (See Figure 3.9.)

2. If the pitches of the two tones are sufficiently close together, we hear
the two tones fused into an intermediate pitch that varies in loudness in
a periodic fashion. This phenomenon is known as beats. The frequency

Figure 3.9. (a) The critical bandwidth (C.B.) is the smallest frequency difference
such that two simultaneous simple tones are heard as consonant separate tones. If
two simple tones are closer but not identical, they are heard as beats, roughness, or
two more or less dissonant tones. The critical bandwidth depends on frequency.
Using logarithmic horizontal and vertical scales, this graph shows, for each given
frequency, the widths of several frequency intervals with the given frequency as
midpoint: (1) the critical bandwidth; (2) the width of the interval of maximum
dissonance, 25% of the critical bandwidth. (3) The width of the intervals of the
fifth, major third, and major second. Note that these standard musical intervals are
perceived more dissonant at lower frequencies.

(b) The perception of dissonance varies as the frequency difference between
two simultaneous simple tones is varied from 0 up to the critical bandwidth. This
graph shows the perception of consonance-dissonance on a scale from 0 to 1. For
example, at about 25% of the critical band width, the sound is perceived as
maximally dissonant.

Based on Plomp and Levelt (1965, Figures 8, 9, and 10). With permission,
Acoustical Society of America, Copyright 1965.
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of the beats is equal to the difference in the frequencies of the two tones.
The addition of the second tone does not increase our sense of loudness.
Beats occur because the two tones alternately reinforce and cancel each
other—that is, they are alternately in and out of phase. Figure 3.10 shows
the pressure-time graph of an instance of beats.

3. Two tones can be too close together to be heard as separate tones
and too far apart to be heard as beats. This type of sound is considered
most dissonant and is generally called rough.

Plomp and Levelt asked subjects10 to evaluate the consonance and dis-
sonance of pairs of simple tones sounded simultaneously. As the fre-
quency gap between the tones gradually widened, subjects initially heard
a single tone with beats and reported a gradual increase in dissonance.
Dissonance reached a peak as beats gave way to roughness. As the gap
was widened further, the sensation of roughness diminished and two sep-
arate tones were gradually heard; consonance gradually increased to the
maximum value. Further increases in the frequency gap continued to be
evaluated as consonant. Remarkably, the subjects did not find the tradi-
tional musical intervals any more consonant than other nearby intervals.
For example, subjects did not consider a true octave more consonant than
an "out-of-tune" octave.

These results seem to contradict the findings of the Pythagoreans. How-
ever, the Pythagoreans made their observations using stringed instruments,
and, as shown above, a plucked string does not generate a simple tone
because it has harmonic partials. In fact, Plomp and Levelt confirmed the
Pythagorean observations by administering further tests using tones with
harmonic partials. On hearing such tones, subjects reported that, for ex-
ample, Pythagorean fourths, fifths, and octaves were more consonant than

Figure 3.10. Beats. Graphs (a) and (b) show pressure versus time for a pair of
simple tones with frequencies 310 Hz and 290 Hz, respectively, over a time period
of 0.2 sec. (It is barely perceptible to visual inspection that (a) has more peaks and
troughs than (b).) When the simple tones are sounded simultaneously, the pressures
are alternately in and out of phase, producing beats (c), which pulsate at a rate
equal the frequency difference of the two tones, in this case 20 Hz.
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out-of-tune versions of these intervals. It is surprising that changing the
test tones from simple to complex should make such a radical difference.
This striking change occurs because a single tone with many partials is
equivalent to an entire chorus of simple tones. When two complex tones
are sounded together, a dissonance may result from the interaction of any
pair of partials when both are within a single critical bandwidth.

Even a single tone with harmonic partials can be dissonant. Very high
harmonics can be sufficiently close in frequency to create dissonance. For
example, for a tone of 100 Hz, the fundamental and first harmonic (200
Hz) is an octave, but the interval between 16th and 17th harmonics (1700-
1800 Hz) is close to a minor second, a dissonant interval. A single tone
created by an electronic square wave generator sounds unpleasant because
the high harmonics have high amplitude—a characteristic that makes the
multivibrator a useful electronic test instrument.

Figure 3.11 shows that middle C, played as a single tone on a clarinet,
has dissonant components. This figure is an elaboration of Figure 3.8(b),
with the critical bandwidth associated with each partial shown as a gray
extension of the spectral lines.

Harmonic partials of two simultaneous tones at an interval larger than
the critical bandwidth can create dissonance. For example, a major sev-
enth is dissonant if the lower tone has a harmonic partial one octave above
the fundamental because this partial is too close to the fundamental of the
higher tone. An octave is consonant if both tones have only harmonic par-
tials because all of the partials of the upper tone coincide with partials of
the lower tone.

The dependence of the critical bandwidth on the mean frequency of
the two tones is shown in Figure 3.9(a). As the frequency of the two tones
increases, the critical bandwidth, measured in hertz, increases. Neverthe-

Figure 3.11. Spectrum of a fundamental tone of 262 Hz (middle C) rendered by a
B-flat clarinet. (See also Figure 3.8(b).) The gray extension of the spectral lines
indicates the critical bandwidth associated with each partial frequency. The critical
bandwidths of the higher partials overlap. This shows that the timbre of the clarinet
has dissonant elements. The partials that contribute to this dissonance have
relatively low amplitudes. Most musical instruments exhibit similar low-level
dissonance.
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less, critical bandwidth measured in semitones decreases as frequency in-
creases. This is why, in Figure 3.9(a), certain standard musical intervals
become more dissonant at lower frequencies. Despite this fact, musicians
sometimes mistakenly think that the consonance or dissonance of an in-
terval is determined purely by the number of semitones it contains—that
thirds are consonant and seconds dissonant in every octave, high or low.
On the contrary, most composers demonstrate at least an intuitive under-
standing that this is not true. Their compositions tend to avoid close inter-
vals in the bass because their instinct, based on musical experience, tells
them that such intervals tend to be dissonant.

Intervals, Scales, and Tuning

In the Western musical tradition, the octave is the musical North Star
because for the dominant Western musical instruments, the strings, the
winds, and the singing voice, the octave is the most consonant of inter-
vals. By contrast, in the Indonesian musical tradition, which is dominated
by the nonharmonic timbre of percussion instruments, the octave is less
important. In this section, we examine intervals, scales, and tuning in
Western music.

For Western tuning systems, the octave is fixed, and unchanging. A
scale is a method of interpolating pitches within the octave.

The perfect fifth is next to the octave in importance. The Pythagorean
and equal-tempered tuning systems are based on the fact that the interval
of 12 perfect fifths is almost the same as seven octaves. We will see that this
is the reason why the chromatic scale has 12 tones.

Pythagorean tuning

The Pythagoreans did not have keyboard instruments, and Pythagorean
tuning has been superseded by equal-tempered tuning. Nevertheless, the
piano keyboard helps us to understand Pythagorean tuning. We can tune
a piano in the Pythagorean manner by using the sequence of fifthssshown in
Figure 3.12. This sequence of fifths includes all 12 tones of the chromatic
scale spread apart in different octaves. Starting with these 12 notes and
proceeding by octaves, we can reach every note on the piano. We could
begin by tuning the A in the middle of the keyboard (A4) to a standard
pitch—for example, 440 Hz. Then we proceed by tuning the sequence in
perfect fifths—upward E, B, F-sharp ..., and downward D, G, C— All
other notes on the piano are then tuned in octaves.

The flaw in this tuning system is that it makes the interval from G-
sharp to E-flat so unpleasantly out of tune that it has earned the nickname
the wolf. Nominally, this interval is a fifth, but Pythagorean tuning makes it



Figure 3.12. The piano keyboard. The sequence of fifths starts at
Ebl and proceeds up to G(J7. By setting these intervals as perfect
fifths and tuning all other notes by octaves, we can achieve a Pythag-
orean tuning of the entire piano. This tuning was used in medieval
polyphony until the thirteenth century. (See Schulter (1998).) Any
seven contiguous notes in the sequence of fifths, define the tones in
a major diatonic scale. For example, the tones F-C-G-D-A-E-B can

be rearranged to the C-major diatonic scale C-D-E-F-G-A-B. Only
six such scales are musically usable, corresponding to the major keys
of Bb, F, C, G, D, and A. The problem with the remaining keys is
that they permit the badly out-of-tune wolf interval Eb-Gjj. Any
five contiguous notes in the sequence of fifths defines the notes of a
pentatonic (five-note) scale, used in Scottish and Chinese music.

50
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about a quarter of a semitone11 flat. The frequency ratio of this discrepancy
is known as the Pythagorean comma.

If the piano keyboard had just a few more keys, we could proceed a
fifth above G}j7 to D{j8. Traditionally Dft is the same as Eb. If we proceed
downward seven octaves, we reach Ebl. But Ebl has already been tuned
by proceeding downward six fifths from A4. We might hope the these
two ways of tuning Ebl would be the same, but they are not. In fact, the
ratio between these two tunings of Ebl is equal to the Pythagorean comma.
We can determine the value of the Pythagorean comma by the following
computation. We proceed upward 12 fifths from Ebl to D|j8. Then we
return down seven octaves from D|J8 to a tone that is close to Ebl. In fact,
it exceeds Ebl by the Pythagorean comma. We can see this discrepancy
by the following computation. The frequency ratio between the initial and
final tones is

Close, but not perfect! If we had returned to the same tuning of Ebl,
this number would be 1 exactly. For comparison, the frequency ratio for
an equal-tempered semitone is 1.05946.... Thus, the Pythagorean comma
is about one-quarter of a semitone.

We specified (1) a starting pitch of Ebl and (2) 12 consecutive upward
fifths and then seven consecutive downward octaves. However, these two
requirements are too restrictive. In fact, we can start with any pitch what-
ever, and we can mix upward fifths with downward octaves in any con-
venient manner so that we do not exceed the keyboard of the piano. In
every case, the final pitch is above the initial pitch, and the frequency ratio
between the two is equal to the Pythagorean comma.

Approximating m octaves with n fifths

Is there some way to modify this method, climbing by fifths and descend-
ing by octaves, so that we return to exactly the same pitch? No, it is not
possible. If we climb n fifths and descend m octaves, the corresponding
ratio is

For this ratio to be equal to 1, we must have 3" = 2k, where k denotes
n — m. But this is impossible because the left side of this equality would
be odd and the right side even.

We cannot climb by perfect fifths, descend by octaves, and return to
exactly the same pitch. But is it possible to return closer than the Pythago-
rean comma? Suppose we ignore the difficulty and persist mixing upward



52 Bridging the Gap

perfect fifths and downward octaves. Will we ever get closer to our start-
ing pitch than the error of the Pythagorean comma? Curiously, the answer
is affirmative. For example, 53 upward fifths combined with 31 downward
octaves brings us to our original pitch with an error equal to about 1/7 of
the Pythagorean comma. This can be seen by comparing the following
calculation with the Pythagorean comma as given in formula (3.1):

Ignoring the issues of practicality and musicality, the above fact could
lead to a scale that divides the octave into 53 tones instead of 12. Was the
number 53 merely a good guess? Or the result of an exhaustive search?
The answer is no to both questions because 53 was the result of a system-
atic computation. In fact, as we will see, this number was found by an
application of back-and-forth subtraction (BAFS), introduced in the preced-
ing chapter.12

Instead of requiring (3/2)n = 2m, where n and m are the lengths of the
upward chain of fifths and the downward chain of octaves, we ask that
(3/2)" is approximately equal to 2m. Taking logarithms, we want n log3/2 to
be close to m log 2. Equivalently, we want

The preceding chapter discussed the ancient method of BAFS, which
is equivalent to the modern method of simple continued fractions. BAFS en-
ables us to approximate an arbitrary ratio by a ratio of natural numbers.
Putting log 3/2 « 0.176091 and log 2 w 0.301030, the following is the cal-
culation of the BAFS of log 2 : log3/2.13

0.301030 - 1 x 0.176091 = 0.124939
0.176091 -1 x 0.124939 = 0.051152
0.124939 - 2 x 0.051152 = 0.022635
0.051152 - 2 x 0.022635 = 0.005882
0.022635 - 3 x 0.005882 = 0.004989
0.005882 - 1 x 0.004989 = 0.000893
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The bold numbers 1, 1, 2, 2, 3, 1,... are the partial quotients of this
BAFS (or continued fraction). We write

The right side of this equation is an abbreviation for the infinite simple
continued fraction

The theory of continued fractions14 asserts that by truncating this infi-
nite continued fraction we obtain approximations of the left side of equa-
tion (3.2) by rational numbers (quotients of integers) that are in a certain
sense the best possible. Specifically, we have the following approximations:

The fractions 2/i/ 5/3, 12/7, 41/24, and 53/si are successively closer ap-
proximations of

log 2
log 3/2
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Table 3.1. n fifths approximates m octaves. Comma denotes the
frequency ratio between n fifths and m octaves. The Pythagorean
comma 1.013643 is the second item in the third row. The fractions
n/m are the convergents of the infinite continued fraction (3.3).

Fraction
n/m

Vl
5/3

12/7

41/24
53/31

Comma Comma per fifth
1.5"/2W 1.5/2m/"

1.52/2 =
1.55/23 =

1.512/27 =
1.541/224 =
L553/23l =

1.125000
0.949219
1.013643
0.988603
1.002090

1.060660
0.982778
1.001130
0.999720
1.000039

Percent error

+6.0660%
-1.7222%
+0.1130%
-0.0280%
+0.0039%

Furthermore, these fractions have a remarkable musical interpretation.
For each fraction «/«/ the interval of n fifths is close to m octaves. Table 3
shows the level of approximation for each fraction.

Equal-tempered tuning

The dissonance of the interval Eb-GJj, the wolf interval, was an unwanted
artifact of the Pythagorean system of tuning. The wolf's presence would
make only six major and minor keys usable—those keys that do not in-
clude either of the pairs Eb, Ab or DjJ, Gjj. This limitation on musical ex-
pression was not a problem until the end of the thirteenth century when
musical taste became more complex.

Rather than continue to avoid the wolf, musicians developed schemes
for tempering (i.e., adjusting) the Pythagorean scale. These tuning methods
greatly enriched musical expression by permitting the free use of all keys.
Accordingly, Bach composed a monumental cycle of 48 compositions, The
Well-Tempered Clavier, Books I & II. Each Book contains 24 compositions: a
prelude and fugue in each of the 12 major and 12 minor keys. However,
Bach probably did not have access to equal-tempered tuning, the tuning sys-
tem in universal use today.

It is said that Beethoven composed on pianos that were tuned by a
system called just tuning, which gave each different key a different char-
acter. For example, when a piece was transposed from C major to D major,
then, nominally at least, each note was raised a whole tone. However,
the transposed piece acquired a different sound because the just-tuned
D major scale had slightly different intervals than the C major scale. It
has been suggested that to hear Beethoven's piano music as he intended
it, we should hear it played on a piano with just tuning.
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Equal-tempered tuning, also called equal temperament, is the only tem-
pering of Pythagorean tuning in which transposition to a different key
is achieved by raising (or lowering) each note exactly the same interval.
Equal temperament is based on the fact, discussed above, that an interval
of 12 fifths is quite close to seven octaves. If all fifths are slightly flattened
by the same amount, then 12 consecutive fifths becomes exactly the same
as seven octaves. Table 3 shows that each fifth needs to be reduced by
0.1130 %. The entire piano can be tuned by the pattern of Figure 3.12 using
slightly flattened fifths. Equal temperament is equivalent to defining the
semitone so that the frequency of the upper tone is always equal to the fre-
quency of the lower tone multiplied by the factor 21/12 (1.059463...). For
example, if A is 440 Hz, then the equal-tempered frequency of AJJ is equal
to 440 x 1.05946 = 466.16 Hz.

Table 3.2 compares the tuning of the chromatic scale from C4 to C5
according to the Pythagorean and equal-tempered methods. This version
of the Pythagorean chromatic scale was used (possibly among others) in
medieval polyphony. (See Schulter (1998).) Pythagorean tuning is based
on the principle that all intervals can be obtained as a succession of fifths
and octaves. For example, we can make a journey over the piano keyboard
that starts at middle C and ends one semitone higher at Cjj. First follow
an ascending sequence of seven perfect fifths: C G D A E B FjJ Q; then
descend four octaves to the CjJ immediately above our initial C. To achieve
an equivalent to this journey without exceeding the piano keyboard, one
may mix the seven ascending fifths with the four descending octaves in
any convenient order.

Table 3.2. Comparison of Pythagorean and equal-tempered tuning with A4 set at
440 Hz. A cent is one-hundredth of a semitone.

Note

C4
C«4
D4
Eb4
E4
F4
Ftf4
G4
Gtf4
A4
Bb4
B4
C5

Pythagorean temperament

Hz
260.74
278.44
293.33
309.03
330.00
347.65
371.25
391.11
417.66
440.00
463.54
495.00
521.48

Frequency ratio
from C4

Vi
2187/2048

9/8
32/27

81/64

4/3
729/512

V2
6561/4096

27/16
16/9

243/128

Vl

from prev.

2187/2048
256/243
256/243

2187/2048
256/243

2187/2048

256/243
2187/2048
256/243

256/243
2187/2048

256/243

Cents from
C4

0.00
113.69
203.91
294.13
407.82
498.04
611.73
701.96
815.64
905.87
996.09

1109.78
1200.00

prev.

0.00
113.69
90.22
90.22

113.69
90.22

113.69
90.23

113.68
90.23
90.22

113.69
90.22

Equal temp.

Hz
261.63
277.18
293.66
311.13
329.63
349.23
369.99
390.00
415.30
440.00
466.16
493.88
523.25

Cents from
C4

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

prev.

100
100
100
100
100
100
100
100
100
100
100
100
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The fifths mentioned above are perfect fifths; that is, the frequency of
the higher tone must be equal to the frequency of the lower tone multiplied
by 3/2. An octave upward is obtained by doubling the frequency. Hence,
each step of our keyboard journey corresponds to multiplication or divi-
sion by 3/2 or 2, respectively. It follows that the frequency ratio of every
Pythagorean interval is a ratio between a power of two and a power of
three, as shown in the third and fourth columns of Table 3.2 — confirming
the Pythagorean requirement that all intervals be associated with ratios of
whole numbers.

The equal-tempered chromatic scale divides the octave into 12 equal
semitones—equal in the sense that every semitone has the same frequency
ratio, 21/12 = 1.059463.... The equal-tempered semitone is divided into
100 equal parts called cents. The Pythagorean chromatic scale contained
two different kinds of semitones: an interval of 90.22 cents, called a diatonic
semitone, and a slightly larger interval of 113.69 cents, in medieval times
known as an apotome.

In equal-tempered tuning, a fifth is tuned so that the frequency of
the upper note is equal to the frequency of the lower note multiplied by
27/i2 _ i 4983 ; the corresponding number for Pythagorean tuning is ex-
actly 1.5. Octaves are the same in equal-tempered and Pythagorean tuning
because 212/12 - 21 = 2.

With equal-tempered tuning, the sequence of fifths in Figure 3.12 be-
comes the circle of fifths because proceeding upward 12 equal-tempered
fifths we span seven octaves exactly—not just approximately as in Pythag-
orean tuning.

To achieve equal-tempered tuning, a piano tuner starts with a perfect
fifth and reduces this interval until beats (see page 46) at a certain rate are
heard.15

The concept of equal-tempered tuning was known to the ancient Chi-
nese. About 50 BCE, King-Fang, a Chinese scholar of the Han dynasty,
found that it might be desirable to divide the octave into a scale of 53 equal
intervals.16 No doubt he found this number by exhaustive search. How-
ever, his recommendations are confirmed above by the fact that 53/si is a
convergent of the continued fraction (3.3). The microtonal scales dividing
the octave into 53 equal intervals give truer fifths than the 12-tone equal-
tempered chromatic scale.17 In fact, the right column of Table 3 shows the
precise improvement in the percentage error in the rendition of fifths.

We have traced the ideas of consonance and dissonance from the Py-
thagoreans to modern times. Musical intervals and their associated nu-
merical ratios have lost their mystical significance, but they have acquired
remarkable connections to diverse sciences.

I think that we have, in large measure, answered the questions posed
on page 35. The preference for certain musical intervals is not entirely
cultural. Dissonance and consonance—the foundation of melodic and har-
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monk tension and resolution—are based on the anatomy of the ear and
the physics of sound. In various cultures, traditional musical structures
have accommodated to these limitations through a process of natural se-
lection—the survival of the musical. Musical innovators cannot expect
to please audiences with music based on a purely mathematical system of
composition that ignores the anatomical and acoustical basis of dissonance
and consonance.

In the next two chapters, we look at geometric matters. Chapter 4 deals
with curvature through the experiences of the inhabitants of a fantastic
world called Tubeland.
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Part II

The Shape of Things

Though there never were a circle or triangle in nature, the truths
demonstrated by Euclid would for ever retain their certainty and
evidence.

—DAVID HUME 1711-76,
An Enquiry Concerning
Human Understanding
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Tubeland

I call our world Flatland, not because we call it so, but to make its
nature clearer to you, my happy readers, who are privileged to live in
Space.
Imagine a vast sheet of paper on which straight Lines, Triangles,
Squares, Pentagons, Hexagons, and other figures, instead of remaining
fixed in their places, move freely about, on or in the surface, but without
the power of rising above or sinking below it, very much like
shadows—only hard and with luminous edges—and you will then have
a pretty correct notion of my country and countrymen. Alas, a few
years ago, I should have said "my universe": but now my mind has
been opened to higher views of things.

—EDWIN ABBOTT ABBOTT, Flatland (1884)

IS
 THE SURFACE OF THE EARTH curved or flat? Despite the superficial
appearance of flatness, learned people as far back as Pythagoras in
the sixth century BCE have agreed that the surface of the earth is not

flat but spherical. In fact, the Alexandrian mathematician and astronomer
Eratosthenes of Cyrene (2767-195? BCE), gave a close approximation of the
circumference of the earth using measurements of the shadows of objects
of known height at different latitudes. It is a myth—probably initiated by
Washington Irving in his History of Christopher Columbus (1828)—that in
the time of Columbus there was a widely held belief in a flat earth.

Today, we can look down on the earth from miles above, and we can
see that its surface is not flat but spherical. In the fantasy Flatland (Ab-
bott (1884)), the narrator, A. Square, and the other characters (triangles,
squares, etc.) cannot observe their world in a similar fashion because
they cannot leave the surface in which they live. There is a sequel to Ab-
bott's fantasy1 in which Flatlanders adopt the theory that they live on a
sphere—not on a plane. We will see that there is a way for them to settle
this question, even if they are unable to circumnavigate their sphere.

61
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A difference between us and the Flatlanders is that we can observe, to
a limited fashion, how the surface of the earth is embedded in space. Ge-
ometers would say the Flatlanders can only observe the intrinsic geometry
of their surface, but, on the other hand, we are able to observe the extrinsic
geometry of the earth's surface. We can leave the earth's surface, but we
can never leave the universe. Consequently, we can only learn the intrinsic
geometry of the universe.

For thousands of years it was supposed that Euclidean geometry pro-
vided the only possible geometry for the universe. In the first decades
of the twentieth century, Euclid's long reign came to an end with the ad-
vent of Albert Einstein's theory of relativity. Einstein devised a geometry
of four dimensions —one temporal and three spatial dimensions—that ex-
plained puzzling questions of physics.

The quest to understand the geometry of our universe continues today.
In April and May 2000, scientists claimed that observations of cosmic mi-
crowave background radiation from two research balloons, BOOMERANG2

and MAXIMA, support the conclusion that the universe is flat.
The geometry of the cosmos—the cosmological questions of curvature

and flatness—would become much simpler if we only lived in a universe
of lower dimensionality. This chapter is an inquiry into curvature and flat-
ness in at most two dimensions. Curves and surfaces in lower dimensions
set the stage for higher dimensional cosmological questions, but also they
have, in their own right, a rich complexity. We begin with one-dimensional
objects — straight lines and curves.

Curvature of Smooth Curves

We discuss only curves that are smooth. In Part IV we will examine more
critically the concept of smoothness, but for now we can imagine a length
of wire in the shape of the curve. For these smooth curves, we assume that
it makes sense to speak of the arc length between two points on the curve.

The inner world of the curve-bound inchworm

The following story has no basis in natural history, but it might clarify the
concept of inner or intrinsic geometry. Imagine that an inchworm lives on
a curve and in accordance with the following rules:

1. He is unable to leave his curve.
2. He can move along his curve and measure distances.
3. He is blind and has no sense of up or down or movement. Measuring

distances is his only perception of the world.

What the inchworm perceives is the inner or intrinsic geometry of his
curve. The boring triviality of his one-dimensional world is evident. He
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can go backward and forward and measure how far he has gone, but he is
unable to perceive, for example, the shape of his curve. There is little else
to say about this poor creature.

However, we will see that a similar inchworm that lives on a 2-dimen-
sional surface can obtain much more complex information about his world.

To find interesting information about a curve, we must examine how
it is embedded in two or three dimensions—that is, we must look at the
extrinsic geometry of the curve. We begin with the two-dimensional case.

Curves embedded in two dimensions

The circle is the standard of comparison for the curvature of smooth curves
in a fixed plane. There is a precise quantitative definition of curvature of a
curve. The curvature of a circle of radius R is defined as 1 /R. The curvature
of an arbitrary smooth curve at a particular point P is the curvature of
the circle—called the osculating circle—that fits the curve best at point P.
Examples of osculating circles are shown in Figure 4.1.

A curve-bound inchworm has no means of detecting the curvature of
his curve. In fact, the curvature of a curve is an extrinsic property of the
curve.

In Figure 4.1(b), the osculating circles C and T> are on opposite sides of
the curve, corresponding to opposite senses of concavity of the curve—con-
cave up and concave down. For plane curves, the curvature is usually
given a plus or minus sign, arbitrarily, to distinguish the two possible
senses of concavity—usually concave-up curvature is given a positive sign.
For example, in Figure 4.1 (b), we could give the curvature a plus sign at S
and a negative sign at U.

Figure 4.1. Osculating circles.
(a) The osculating circle touches the solid curve at point P on the solid curve.

The center 0 of this circle is called the center of curvature; the radius R is called the
radius of curvature; and 1/R is called the curvature at point P.

(b) Osculating circles C and T> touch the solid curve at points S and U, respec-
tively. At point T, the osculating circle degenerates to the line C, and the curvature
isO.
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For a straight line there is no best-fitting circle. Larger circles fit better
than smaller ones. The curvature of a straight line is 0. However, it is
possible for a curve to have 0 curvature at a single point without being a
straight line. In fact, in Figure 4.1(b) the curvature at T is equal to 0. The
osculating circle at T degenerates to the straight line C. If the point S slides
down (or if the point U slides up) and approaches point T, the center of the
osculating circle tends —one could say it explodes—to infinity.

In two dimensions, the (signed) curvature of a curve completely deter-
mines its shape. If we specify a certain curvature at each point on a piece
of thread, then there is only one way to shape the thread into a plane curve
with the specified curvature at each point.

Curves embedded in three dimensions

The helix

In two dimensions, circles are a sufficient paradigm for the local behavior
of curves, but this is not the case for curves embedded in three-dimensional
space. The simplest example that shows the essential features of curves
in three dimensions is the thread of a cylindrical screw, shown in Fig-
ure 4.2(a) — also the familiar shape of a cylindrical steel spring. The math-
ematical name for this curve is helix. (The famous double helix of molec-
ular biology is an example with much additional structure.) Archimedes
(2877-212 BCE) invented a water pump using a helical screw.

Osculating circles are defined for smooth curves in three dimensions.
The curvature at a point on a curve is defined as the (nonnegative) curva-
ture of the osculating circle. The plane of the osculating circle is tangent
to the curve. However, in three dimensions, the curvature of the oscu-

Figure 4.2. Cylindrical right-handed screw, (a) The curve formed by the thread of
a cylindrical screw is a helix, (b) When rotated clockwise, the right-handed screw
advances to the left.

Right-hand rule. Grasp the screw in the right hand with the fingers pointing in
the direction of rotation. Then the screw advances in the direction pointed by the
thumb.
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lating circle is not sufficient to describe the local behavior of a curve. A
second quantity called torsion is defined at each point of the curve. The
torsion is a measure of the local tendency of the curve to leave its tangent
plane. By convention, the torsion of a helix is positive or negative depend-
ing on whether it represents the thread of a right- or left-handed screw.
The tendrils of grape and hops vines have positive and negative torsion,
respectively.

The pitch of a screw is the distance that the screw advances with a
turn of one revolution. Suppose that a right-handed cylindrical screw has
radius a and pitch p. Putting b = p/(2n}, the curvature K and the torsion
T are given by the following formulas:

-b2

From these formulas, we see that if the pitch is fixed, torsion can be made
as small as desired for the radius a sufficiently large. Furthermore, tor-
sion becomes as large as desired if both the radius a and the pitch p are
sufficiently small.

Curvature of Smooth Surfaces

Surfaces like the plane, the sphere, and the torus are smooth. A surface is
smooth if the following two conditions are met:

1. Every point P on the surface has a tangent plane.
2. Slight changes in P correspond to only slight changes in the tangent

plane.

The next section defines curvature of a surface using the curvature of
curves contained on the surface. One might think that curvature of a sur-
face, like curvature of a curve, is an extrinsic concept, but, surprisingly, it
can be shown that it is intrinsic.

In analogy to the curve-bound inchworms (pages 62-63), we can imag-
ine surface-bound inchworms who live on a surface and measure dis-
tances there. We will suppose that surface-bound inchworms always mea-
sure the shortest path contained entirely on their surface. (These shortest
paths are called geodesies.) The surface-bound inchworms are also able to
measure the angle between two geodesies. In short, the surface-bound
inchworms have access to the intrinsic geometry of their surface. The
curve-bound inchworms have a much less interesting existence than their
surface-bound cousins because it turns out that the latter are able to mea-
sure the curvature of their surface—an ability that seems all the more sur-
prising because the curvature of surfaces is defined below in a way that
seems to be extrinsic and hence outside of the purview of inchworms. (Re-
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call that curve-bound inchworms are not able to measure the curvature of
the curve on which they live.)

The denizens of Flatland-Sphereland in the fantasies of Abbott and
Burger are constrained to make observations only of the intrinsic geometry
of their world. They are, in fact, a species of surface-bound inchworms. We
will see more details in the discussion of Tubeland below.

The curvature of surfaces was first defined by Carl Friedrich Gauss
(1777-1855) and is generally known as Gaussian curvature. Gauss's defi-
nition, which we will see in the next section, makes use of the manner in
which a surface is embedded in three-dimensional space; in other words,
it uses extrinsic properties of a surface. Gauss discovered that his curva-
ture only seems to be an extrinsic property. Although the definition of cur-
vature is extrinsic, nevertheless the Gaussian curvature of a surface is an
intrinsic property of the surface. This is why surface-bound inchworms
can determine the curvature of their surface without ever leaving it. Al-
though Gauss was generally sparing in his use of superlatives, he extolled
this discovery, calling it the theorema egregium, the extraordinary theorem.

Gaussian curvature — Extrinsic definition

The definition of Gaussian curvature is illustrated in Figure 4.3 for two
types of surfaces. Figures 4.3(a) and (b) show, respectively, a convex-
concave4 surface and a saddle surface. Since the construction is the same
for both surfaces, the two figures contain the same labels. Point P is cho-
sen arbitrarily on the surface. The directed line segment n is normal (per-
pendicular) to the surface. Each plane containing n intersects the surface
in a curve. At P, one of these curves JC achieves maximum curvature K,
and another curve £ achieves the minimum curvature A. These curva-
tures, K and A, are called the principal curvatures at point P. If the principal
curvatures are unequal, then it can be shown that the angle of intersection

Figure 4.3. Curvature of surfaces. In both (a) and (b), n is normal to the surface
at P. Curves tC and C are formed by the intersection of planes through n with the
largest and smallest possible curvatures at P. The product of these two curvatures is
the Gaussian curvature at P.
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of the curves /C and C is 90°, as shown in Figure 4.3. For the saddle point
in Figure 4.3(b), one of the principal curvatures is given a positive and
the other a negative algebraic sign. Whatever the sign choice, the curva-
tures of K and A have opposite signs. The Gaussian curvature at P is defined
as the product K\ of the two principal curvatures. The curvature is positive
at a convex-concave point (Figure 4.3(a)) and negative at a saddle point
(Figure 4.3(b)).

The mathematical terms for
convex-concave and saddle points
are, respectively, elliptic and hyper-
bolic points. Points where exactly
one or both of the principal curva-
tures are 0 are called, respectively,
parabolic or planar points. The lat-
eral surface of a circular cylinder
consists of parabolic points, and
a plane consists of planar points.
However, a planar point can be
found on a surface that is not a Figure 4 4 Monkey sadd|e The point p

plane. In fact, point P in Figure 4.4 js the on|y anomalous point. Every other
is a planar point. point on this surface is an ordinary

The surface shown in Figure 4.4 saddle point,
is a monkey saddle—so named be-
cause a monkey needs a place, not only for his two legs, but also for his
tail. At point P, the monkey saddle point, the principal curvatures are both
0, and, therefore, the Gaussian curvature is also 0. Every other point of the
surface is an ordinary saddle point with negative Gaussian curvature.

On a plane, the Gaussian curvature is 0 everywhere. If the plane is
rolled up into a scroll, the curvature remains 0. On a sphere, the curvature
has a positive constant value equal to l/R2 where R is the radius of the
sphere. The sphere is the only surface with constant positive curvature.
Physically, this means that the sphere, unlike the plane, cannot be "bent"
without stretching. This is why a spherical shell is more rigid than a rect-
angular box. A surface that has constant negative curvature is less familiar.
A surface of this sort, known as a pseudosphere, is shown in Figure 4.5.

Every point of the pseudosphere is a saddle point. The principal curva-
tures K and A are achieved by (1) vertical circular cross-sections, and (2) the
intersection with the surface of planes through the horizontal axis. It is
plausible that the Gaussian curvature of the pseudosphere in Figure 4.5(a)
is constant because as the magnitude of K increases (i.e., as the vertical
circular cross-section becomes a smaller circle), the corresponding mag-
nitude of A decreases (i.e., radius of the osculating circle of the radial
cross-section increases). The pseudosphere (Figure 4.5(a)) is swept out by
rotating a curve called a tractrix about its horizontal axis. In Figure 4.5(b),
the curve is rotated about the base of the enclosing rectangle.
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Figure 4.5. The pseudosphere is generated by rotating a tractrix. The pseudosphere
(a) is swept out by rotating the tractrix (b) about the horizontal axis. The tractrix
can be continued indefinitely to the right. The tractrix is the curve described by
dragging a weight initially at the point (0,1)> the upper left corner of the enclosing
rectangle, along a horizontal surface by means of a rope 1 unit in length. The end of
the rope is initially at (0,0). The rope is pulled to the right along the bottom of the
enclosing rectangle. The curve does not depend on the magnitude of the frictional
resistance —the surface could equally well be ice or concrete.

The intrinsic nature of Gaussian curvature plays a central role in the
following sequel to Flatland (Abbott (1884)) and Sphereland (Burger (1965)).
The Flatlanders fall short of actually proving the theorema egregium, but
they make some observations that confirm Gauss's result.

Tubeland—A fantasy

Certain further observations by the Flatlanders have shown that their uni-
verse is neither a plane nor a sphere. In fact, Flatlanders now claim to live
on a two-dimensional surface like an automobile inner tube—known to
mathematicians as a torus or anchor ring, shown in Figure 4.6. The follow-
ing is an account of that discovery.

Abbott wrote Flatland partly as a satire — directed, for example, at the
Victorian treatment of women. We limit ourselves to the discussion of
the geometry of Tubeland (also known as Flatland or Sphereland). Let us
review the basic geometric facts of life in Tubeland-Sphereland-Flatland:

• Tubelanders are two-dimensional beings. Since they cannot leave
their two-dimensional world to examine it from a three-dimensional

Figure 4.6. A torus: the world of Tubeland.
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vantage point, there is no direct way for them to perceive that their
universe is a torus. They must study their universe as we do ours:
by devising and testing hypotheses based on scientific investigation.

• In Tubeland, a line segment is defined as the shortest path connecting
its two endpoints lying entirely on the surface of the torus. Tubelanders
persist in this terminology although mathematicians would prefer
the term geodesic because, in general, these paths are not straight lines
in the usual three-dimensional sense.

• Tubelanders can to draw and measure "line segments" and angles.

The Sphereland hypothesis was based mainly on two experiments:

Experiment 1. Circumnavigation: Two Flatland Columbuses made ex-
tended journeys in opposite directions and, after various adventures, met
in a distant region.

Experiment 2. Triangles: It was discovered that the sum of the inte-
rior angles of a certain triangle was greater than 180°—a discrepancy that
could not be explained by experimental error.

Of these two, the triangles experiment is the most interesting, but first
we give a critique of the circumnavigation experiment.

Experiment 1 shows that Flatland is not a plane. However, circumnav-
igation is consistent with the geometry of a torus. In fact, examining the
figure at the beginning of this section, it is easy to see that a torus per-
mits two different types of circuits: a large circuit in a horizontal plane
or a smaller circuit in a vertical plane. Furthermore, circumnavigation is
consistent with other hypotheses concerning the geometry of Flatland.

The triangle surveys

Flatlanders rediscovered Euclidean geometry
and long considered it the definitive account of
the geometry of their world. The starting point
for Experiment 2, the triangles experiment, is a
theorem from Euclidean plane geometry.

Theorem 4.1. The sum of the three internal angles
of a triangle is equal to a straight angle.5 For ex- lgure ' '
ample, in Figure 4.7, a + 0 + 7 = 180°.

After the successful circumnavigation, Flatland scientists were certain
that their world was not flat, not a Euclidean plane. Furthermore, they
were now certain that some of the theorems of Euclidean geometry must
be false. A leading scientist, Azimuth Aphelion, believed that Flatland
might be a very large sphere and recommended testing Theorem 4.1. He
claimed that although this theorem had been repeatedly verified, within
experimental error, by draftsmen and surveyors, perhaps a discrepancy
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would show up for very large triangles. The angles of triangle S (Fig-
ure 4.8) were carefully measured, and the sum was found to exceed 180°,
contrary to Theorem 4.1.

This discovery created a great stir in Flatland scientific circles. A con-
sensus emerged that this experiment showed that Flatland could not pos-
sibly be flat, and most believed that Aphelion's Sphereland hypothesis
was adequately established.

Of course, there were some doubters. The chief of them was Peridot
Perigee, who organized an expedition to check the Sphereland hypothe-
sis by measuring a second triangle T in a different part of Flatland. To
the astonishment of the scientific world, Perigee found that the sum of the
angles of T was significantly less than 180°. Perigee noted that her discov-
ery was inconsistent with the Sphereland hypothesis because on a sphere
this sum must be greater than 180°.

Epilogue

Perigee was on the point of announcing her Tubeland theory, when it
seemed that a great disaster overtook Flatland-Sphereland-Tubeland. The
Mechanic deflated the tube and threw it on a disorderly pile of other de-
flated tubes.

This event was certainly an indignity, but was only a seeming disaster
for Tubeland. In fact, life in Tubeland continued with very little change
because the geometry of Tubeland was changed only in subtle ways. Dis-
tances were slightly reduced, and geodesies were altered only minutely.

The geometry of a surface that deals only with the measurement of
geodesic lengths on the surface is called the inner or intrinsic geometry of
the surface. The inner geometry of a two-dimensional surface contains
no information concerning the manner in which the surface is embedded
in three-dimensional space. Bending a surface, without stretching or corn-

Figure 4.8. Flatlanders measured the sum of the interior angles of the two
triangles. For <5 the sum exceeded 180°, and for T it was less than 180°.
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pressing it, has no effect on its inner geometry. For example, the inner ge-
ometry of a plane does not detect the difference between a ordinary plane
and one that has been rolled up into a scroll.

The triangle survey projects were an attempt to understand the inner
geometry of Tubeland.

When we see the Mechanic deflate the tube and throw it on a pile, we
see a large change in the way in which the tube is embedded in 3-dimen-
sional space, but we see little change in the inner geometry of the tube.

For the Tubelanders, the manner of embedding their tube in 3-dimen-
sional space has no meaning. Similarly, we can never hope to learn more
than the inner geometry of our universe.

Triangular excess

The triangle surveys of the Flatlanders merit further comment. What can
be discovered in general by this type of measurement? Consider first a
triangle survey on a sphere.

A triangle bounded by great circles on
a sphere, for example, T in Figure 4.9, is
called a spherical triangle. The sum a + /3 + 7
of the interior angles of a spherical triangle
is always greater than 180°. (Recall that 180°
is equal to n radians.) The difference mea-
sured in radians, that is,

is called the spherical excess.
Let the radius of the sphere be R. Then

the surface area of the spherical triangle T
is equal to the spherical excess multiplied
by R2; that is, the area is equal to

Figure 4.9. Spherical triangle.

The above is known as Girard's formula, after French mathematician Al-
bert Girard (1595-1632).

For a triangle drawn on a surface that is not a sphere (e.g., «S or T
in Figure 4.8), formula (4.1) is meaningful. However, if the surface is
not a sphere, it is no longer appropriate to call formula (4.1) the spheri-
cal excess — triangular excess might be a better term—and the connection of
formula (4.1) with surface area disappears. In Figure 4.8, the triangular ex-
cesses of S and T are positive and negative, respectively. Triangular excess
is an intrinsic property because the angle between geodesies is intrinsic.
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Figure 4.10. The region O is
convex-concave, and region X
consists of saddle points.

Triangular excess has a remarkable
property that we illustrate using the torus
of Figure 4.10. In this figure, the dashed cir-
cle represents the contact of a plane tangent
with the top of the torus. There is a simi-
lar circle, not shown, where the torus might
rest on a flat floor. These two circles divide
the torus into two regions, the outside O
and the inside X. For an automobile inner
tube, the outside is the part of the tube that

makes contact with the tire tread. Any triangular region that lies entirely
on the outside O has positive triangular excess, and any triangular region
that lies entirely on the inside X has negative triangular excess. The subre-
gions O and T have geometric properties that can be seen with the eye and
felt with the hand. The region O is convex-convex, and Z has everywhere
the shape of a saddle (see Figures 4.11 (a) and (b)). The regions O and
Z consist, respectively, of elliptic and hyperbolic points. On the boundary
circles that separate O and 1, the surface is -planar.

The classification of points on a smooth surface into hyperbolic, elliptic,
and planar does not cover all possibilities, but these are the ordinary cases.
Points that do not fit in these categories are called singularities.

The numerical value of the triangular excess—more than merely the
algebraic sign—has a geometric meaning. Triangular excess turns out to
be equal to the total Gaussian curvature of the triangular region. Dividing
this quantity by the area of the triangular region is the average Gaussian
curvature. Since triangular excess can be measured by Flatlanders, it must
be an intrinsic property of surfaces, and, therefore, average Gaussian cur-
vature must also be intrinsic. This is a confirmation of Gauss's theorema
egregium, the theorem that asserts that Gaussian curvature is an intrinsic
property of surfaces.

When a surface-bound inchworm crawls on a surface, hyperbolic points
look like mountain passes and elliptic points look like peaks or pits. He

Figure 4.11. (a) A convex-concave surface, (b) A saddle surface.
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is able to distinguish between hyperbolic and elliptic even if he is extremely
near-sighted. In other words, this distinction depends only on local mea-
surement of the surface.

The foregoing sections have discussed curvature and flatness as local
properties. The next section discusses Euclidean geometry which gives
flatness a global meaning. Later we will see that non-Euclidean geometry
gives curvature a global meaning.

Euclidean Geometry

The practical needs of construction and the
division of land led the ancient Egyptians
and Babylonians to consider certain geo-
metric problems. For example, the Egyp-
tians knew how to find the volume of
a truncated pyramid with a square base,
shown in Figure 4.12.6 On the other hand, F'gure 4-12- Truncated
the Egyptians used an incorrect method for Pyram'd-
finding the area of a quadrilateral.7 Clearly,
the Egyptians lacked a rigorous method of deriving and testing their geo-
metric assertions.

However, in the sixth century BCE the Greeks made a crucial advance
in the history of science. They discovered that geometric facts can be de-
duced from a small number of self-evident assumptions called axioms.8

This systematic method of proof is called the axiomatic method, an intellec-
tual tool of continuing importance in mathematics and the sciences. In The
Elements, Euclid (fl. 300 BCE) compiled geometry as a formal axiomatic sys-
tem. The Elements contains the work not just of Euclid alone, but of many
ancient Greek mathematicians. This book is still the primary source world-
wide for school geometry—the all-time longest lasting academic textbook.

We become convinced of geometric facts in many different ways—by
looking at a figure, by making measurements, or by accepting the author-
ity of a teacher or a book. Euclidean geometry seeks not so much to con-
vince us as to show us how geometric facts can be derived logically from
a small number of assumptions called axioms. This method of proof, the
axiomatic method, is systematic, consistent, shared, and reliable. In geom-
etry and elsewhere, we may obtain brilliant ideas through a flash of insight
or a flight of fancy. The axiomatic method enables us to give validity to our
ideas—to put foundations under our "castles in the air."

A geometric proof often becomes more interesting if we focus on the
logic of the proof—especially if we feel that we "know" the truth of the
assertion to be proved. For example, Book I of The Elements contains the
following:
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Proposition 15. If two straight lines cut one another, they make the
vertical angles equal to one another.

In Figure 4.13, the proposition asserts, for
example, that angle a. is equal to angle p. If
we expect to find an exciting new fact here, we
might be disappointed because our geometric
intuition already tells us that this assertion is
true. On the other hand, to show that this re-

Figure 4.13. Vertical suit follows from the axioms and previously
angles, proved results takes a degree of cleverness.

Proof. We note that a + 7 = 7 + fi because each
of these two sums is equal to a straight angle (180°). Since equals sub-
tracted from equals are equal, it follows that OL = j6. D

The axiomatic method is a refinement of the methods that we use in ordi-
nary discourse when we argue by giving reasons. However, the axiomatic
method is more rigorous because (1) it uses terms of greater clarity, (2) it
requires logical rules of inference, (3) and it insists that every assertion
be connected to a chain of inferences leading back to a small number of
assumptions.

It has been said, facetiously, that geometry is the science of drawing
correct conclusions from incorrectly drawn diagrams. Indeed, the chalk-
board drawings presented in a classroom are not the true objects of geo-
metric study. Euclidean geometry requires that diagrams be used merely
to assist in the visualization of abstract geometric ideas. A diagram may
elicit an insight of mathematical truth, but we are never allowed to jump
to a conclusion merely by looking at a diagram. All inferences must follow
logically from the axioms and from previously proved results.9

To avoid circularity, geometry—indeed, every axiomatic system—must
have fundamental terms that are undefined. In Euclidean geometry, these
undefined terms include points, lines, and planes.10 They are presumed ob-
jects of ordinary experience. For example, a line may be a mark drawn in
the sand, but for the purposes of cosmology a line is the path followed by a
light ray.

In order to check the validity of our reasoning, it may help to ignore
the meanings of the basic terms. This point of view was put forward by
German mathematician David Hilbert (1862-1943), leader of the formalist
movement in the theory of axiomatic systems. Hilbert once remarked,
"One must be able to say at all times—instead of points, straight lines,
and planes—tables, chairs, and beer mugs."

No experiment can confirm the logical correctness of Euclidean geom-
etry. In fact, no one doubts the logical correctness of Euclidean geome-
try. To say that Euclidean geometry is logically correct means that valid
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application of the laws of inference implies certain conclusions—the theo-
rems—from certain assumptions—the axioms.

The parallels axiom

There is only one controversial geometric axiom. There is no controversy
over the following axiom.

Axiom 4.1 (incidence axiom). Two distinct points determine exactly one line.

In fact, the only axiom that is controversial is the parallels axiom, an
axiom of plane, two-dimensional, Euclidean geometry.

Axiom 4.2 (parallels axiom). Given any straight line C and a point P not
on it, there exists one and only one straight line, coplanar with C, that passes
through the point P and never intersects the line C, no matter how far the lines
are extended^1

Axiom 4.2 has a speculative quality not found in the other axioms
of Euclidean geometry. The phrase "no matter how far the lines are ex-
tended" jumps to a conclusion because we cannot observe the entire infi-
nite extent of a straight line. In fact, Axiom 4.2 has long been considered
out of place in the canon of Euclidean axioms. For more than a thousand
years, from Ptolemy (second century CE) to Adrien Marie Legendre (1752-
1833), mathematicians tried, without success, to prove this axiom from the
other axioms of Euclidean geometry. Their efforts were in vain because it
is now known that no such proof exists. Gerolamo Saccheri (1667-1733),
Jesuit priest and professor at the University of Pavia, attempted a very
elaborate indirect proof. He assumed the falsity of the Axiom 4.2 and de-
rived a large body of results. He believed, erroneously, that he had proved
the parallels axiom. In 1733, he published his work under the title Euclides
ab Omni Naevo Vindicatus (Euclid Freed of All Blemish). He failed to real-
ize that his results were theorems in a new non-Euclidean geometry. Like
Columbus, he failed to understand the identity of the vast new land he
discovered.

Non-Euclidean Geometry

In the first half the nineteenth century, the time was ripe for the develop-
ment of non-Euclidean geometry. Two mathematicians, the Russian Nico-
lai Lobachevsky (1792-1856) and the Hungarian Janos Bolyai (1802-60),
independently pursued programs very similar to that of Saccheri, but with
a different rationale. They were not trying to give an indirect proof of the
parallels axiom. Rather, they examined a modification of Euclidean plane
geometry: They replaced the parallels axiom with the axiom that given
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a line and point not on the line, there exist, not just one, but many lines
containing the given point and not meeting the given line. Lobachevsky's
results were published in 1829-30 and Bolyai's in 1832-33. On hearing
of this work, Carl Friedrich Gauss, then a towering figure in the world
of mathematics, initiated an unpleasant quarrel over priority by claiming
that he made unpublished investigations of this sort as early as 1813.

Theorem 4.1 on page 69 is important here because the parallels axiom
is used in its derivation. If one suspects — as did the Tubelanders—that the
parallels axiom fails in the real world, one might test the triangle theorem
experimentally, for example, by drawing triangles on paper and measur-
ing the angles with care. This experiment has two difficulties: (1) In the
cosmological sense, lines must be light rays, not lines drawn on paper.
(2) A proper test probably needs to be done with a much larger triangle.

Gauss believed that the universe might be governed by non-Euclidean
geometry—might not be "flat" —and he conducted an experiment to test
this hypothesis. He measured the angles of a triangle formed by three
mountain peaks. Gauss's triangle was formed by light rays, the stan-
dard cosmological straight lines. His experiment did not support the non-
Euclidean hypothesis—he did not show a discrepancy with the Euclidean
triangle theorem. He found that the sum of angles was 180° within exper-
imental error. Some cosmologists—nonbelievers in a flat universe—may
feel that Gauss's experiment was on the right track but that his triangle
was much too small.

Non-Euclidean geometry is more than merely the denial of Euclidean
geometry. There are two species of non-Euclidean geometry—more specif-
ically, non-Euclidean versions of plane Euclidean geometry. They are based
on two different substitutes for the parallels axiom (Axiom 4.2).

Axiom 4.3 (elliptic substitute for the parallels axiom). Given a line C and
point P not on C, every line, coplanar with the line C and containing the point P,
meets C in exactly one point.

Axiom 4.4 (hyperbolic substitute for the parallels axiom). Given a line C
and point P not on C, there exists more than one line, coplanar with the line C,
containing the point P, that does not meet C.

Because these are axioms of plane non-Euclidean geometry, these ax-
ioms do not need to assert that the lines under discussion are coplanar.

Axioms 4.3 and 4.4 lead to two different kinds of non-Euclidean geom-
etry — elliptic and hyperbolic, respectively.

Bernhard Riemann (1826-66) pioneered elliptic geometry. Earlier, Sac-
cheri, Lobachevsky, Bolyai, Gauss, and others created a body of theorems
of hyperbolic geometry. Even though they proved many theorems of non-
Euclidean geometry without any contradictory conclusions, how can we
be sure that there will never be contradictions? The answer is that Eu-
clidean geometry itself is able to demonstrate the validity of these non-
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Euclidean geometries. To achieve this demonstration, we must organize
a geometric masquerade in which Euclidean constructions mimic a non-
Euclidean world.

Models of non-Euclidean geometries

We will see that non-Euclidean geometries can be realized within Euclidean
geometry. This will give us a much greater confidence in non-Euclidean
geometry because we will see that it cannot contain contradictions unless
ordinary Euclidean geometry also has contradictions. Euclidean geome-
try has been around a long time, and most people believe that it does not
contain contradictions.

To carry out this program, we must do the following:
1. Redefine the points and lines of non-Euclidean geometry as certain

objects of Euclidean geometry. The newly defined "points" and "lines"
need not be points and lines in the old sense, but they must be legitimate
constructions of Euclidean geometry—not tables, chairs, or beer mugs.

2. Redefine, as necessary, basic concepts of Euclidean geometry, for
example, "congruence." (Recall that in Euclidean geometry two figures
are congruent if a rigid motion can bring the one into coincidence with the
other.)

3. Show that the newly defined "points" and "lines" satisfy either Ax-
iom 4.3 (elliptic) or Axiom 4.4 (hyperbolic). Additionally, excluding the
parallels axiom, it must be shown that all the other axioms of Euclidean
geometry are true.

A model of elliptic geometry

Our universe for elliptic geometry is the surface of a fixed sphere, as shown
in Figure 4.14. We define "points" as pairs of antipodal points on the
sphere (e.g., P and P') . "Lines" are great circles on the sphere, for ex-
ample, the great circle C.

Two figures are "congruent" if the one figure can be brought in coinci-
dence with the other by rotating the sphere about an axis through the cen-
ter 0 of the sphere, or by a sequence of several such rotations. By figure,
we mean a collection of "points" (pairs of antipodal points) and "lines"
(great circles).

Axiom 4.4, the elliptic substitute for the parallels axiom, holds for this
spherical model because every pair of great circles must intersect. There
are no "parallel lines."

As seen in Figure 4.9, in elliptic geometry the sum of the angles of a
triangle is always greater than 180°.

It is possible to verify the other axioms of Euclidean geometry—exclud-
ing the parallels axiom. This can be done, but it is a rather exacting task.
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Figure 4.14. Spherical model for elliptic geometry.

We will verify just one axiom, the incidence axiom (Axiom 4.1): Two dis-
tinct points determine exactly one line. Suppose we have two distinct "points,"
two distinct pairs of antipodal points (P,P') and (Q,Q')- Since the pairs are
distinct, the two points P and Q cannot be antipodal points and they can-
not be identical. Therefore, there is exactly one great circle C connecting
P and Q—the unique "line" connecting the two given "points." The great
circle C also contains the points P' and Q', the antipodal points of P and Q,
respectively. (Note that we have avoided the difficulty that there is more
than one great circle—in fact, there are infinitely many—connecting a pair
of antipodal points.)

A model of hyperbolic geometry

We will discuss a model of hyperbolic geometry that was introduced by
the French mathematician Jules Henri Poincare (1854-1912). In Poincare's
model, the "points" are ordinary Euclidean points in the interior of a fixed
circle C. We exclude points on the circle or exterior to it. As shown in
Figure 4.15, hyperbolic "lines" are arcs of circles that are orthogonal to the
circle C, that is, that meet C at an angle of 90°.

Axiom 4.4, the hyperbolic substitute for the parallels axiom, is illus-
trated in Figure 4.15(b). Given the hyperbolic line H and a point P that
does not lie on H, there exists more that just one hyperbolic line containing
P that does not meet T~L. The figure shows two such lines, but there are in-
finitely many.

The incidence axiom (Axiom 4.1) holds in Poincare's model because in
Euclidean plane geometry it can be shown that given two points P and Q
and a circle C there exists one and only one circle orthogonal to C contain-
ing the points P and Q.

Points in Poincare's model are essentially Euclidean points. In this
sense, this hyperbolic model is more straightforward than the elliptic model
in which a non-Euclidean point is a pair of antipodal points on a sphere.
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Figure 4.15. Poincare's model of hyperbolic geometry. Hyperbolic lines are circular
arcs orthogonal to the bounding circle C. (b) illustrates Axiom 4.4, the hyperbolic
substitute for the parallels axiom.

However, the concept of congruence in Poincare's model is not so simple.
In preparation, we discuss inversion in a circle.

Figure 4.16. Inversion in a circle.

Inversion in a circle. In Figure 4.16,
the point Q is the inverse of point P
with respect to the circle C. Point P
must be distinct from O, the center of
circle C. Point Q is located on the exten-
sion of the radius through P such that
the product of the two distances from
the origin 0 to the points P and Q, re-
spectively, is equal to the square of the
radius of the circle C. In other words,
we have

The relationship between P and Q is reciprocal. That is, P is also the
inverse of Q with respect to C.

Inversion is a particular method of associating points in the plane with
well-defined image points. In mathematics, such an association is called
a mapping or a transformation. Under inversion, the image T of a figure T
consists of the aggregate of the images under inversion of all the points of
T (ignoring 0, if that point happens to belong to T}. We say that inversion
with respect to the circle C maps T into J. Inversion with respect to a circle
C has a number of remarkable properties.
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Proposition 4.1 (properties of inversions). Let C be the circumference of a
circle with center at 0 (as in Figure 4.16).

1. Inversion with respect to the circle C maps each point of the circumference
ofC into itself and maps the interior of the circle C onto its exterior.

2. The inverse with respect to C of a line or circle is a line or a circle. More
specifically:

(a) The inverse with respect to the circle C of a circle T> not intersecting 0
is a circle £ not intersecting 0. The interior of the circle T> is mapped
onto the exterior or interior of the circle 8 depending on whether 0 is
in the interior or exterior ofD.

(b) The inverse of a circle intersecting 0 is a line not intersecting 0.
(c) The inverse of a line not intersecting 0 is a circle intersecting 0.
(d) Inversion with respect to C maps each line intersecting 0 into itself.

3. Inversion preserves angles between straight or curved lines. For example,
the inverse with respect to C of two orthogonal circles not intersecting 0
consists of two orthogonal circles not intersecting 0.

Congruence in Poincare's model. The simplest instance of congruence
in Poincare's model is realized by inversion with respect to a hyperbolic
line. Recall hyperbolic lines are circular arcs orthogonal to the bounding
circle C. This kind of inversion is like reflection across a line in the Eu-
clidean plane. In general, a hyperbolic congruence is the composition of finitely
many inversions across one or more hyperbolic lines.

Figure 4.17(a) shows a hyperbolic congruence of the simplest type—in-
version with respect to a single hyperbolic line H,. The figures PQR and
P'Q'R' are hyperbolic triangles because all of the sides (e.g., PQ) are hyper-
bolic line segments, that is, arcs of circles orthogonal to C. Although they
are clearly not congruent triangles in the Euclidean sense, these hyperbolic
triangles are congruent because P'Q'R' is the inverse of PQR with respect
to the hyperbolic line Ji.

The sum of the angles of a hyperbolic triangle is always less than 180°.
Notice that corresponding angles of the two congruent triangles are equal.

In Figure 4.17(a), the hyperbolic line (circular arc) Ti. divides the inte-
rior of C into two parts. Inversion with respect to H interchanges these
two parts.

Figure 4.17(b) shows hyperbolic congruence in a more general sense.
The three circles C\, Ci, and £3 are hyperbolically congruent, but, because
they are not all the same size, they are not congruent in the Euclidean
sense. In fact, Ci is the inverse of C\ with respect to the hyperbolic line Ji\,
and £3 is the inverse of Ci with respect to 7^2- The circles C\ and £3 are
congruent because a composition of two inversions maps the one onto the
other. (To establish congruence, we do not need to address the question
whether one inversion would be sufficient.)

On the right edge of Figure 4.17(b), between the smallest circle C<$ and
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Figure 4.17. Congruent figures in Poincare's model of hyperbolic geometry, (a)
Triangles PQR and P'Q'R' are congruent in the hyperbolic sense. The congruence
is achieved by inversion with respect to the hyperbolic line Ti.. (b) The three circles
C\, 62, and £3 are congruent in the hyperbolic sense. In particular, C\ and €2 are
transformed, respectively, into C^ and £3 by inversions with respect to the hyperbolic
lines HI and Ti.2, respectively.

the bounding circle C, there is a gap, so small that is it barely visible. Fig-
ure 4.18 shows a magnification of this gap. In this gap, it is theoretically
possible to inscribe a fourth circle £4 congruent to C\, and so on.

Hyperbolic distances become larger and
larger relative to Euclidean distances the closer
we approach the bounding circle C. The
bounding circle C is infinitely far (in the hyper-
bolic sense) from any point in the interior of C.
Like Euclidean lines, hyperbolic lines, such as
Til and 7^2 in Figure 4.17(b), have infinite ex-
tent.

Figure 4.18. Blowup of
detail of Figure 4.17(b),
showing gap between £3
and C.

This chapter gave an introduction to cur-
vature of curves and surfaces and to non-
Euclidean geometry. We have also seen the
meaning of intrinsic and extrinsic geometry.
We can draw two important conclusions about
the geometry of our universe:

1. Only the intrinsic geometry of the universe is meaningful.
2. The geometry of Euclid does not hold a privileged place.

In the next chapter, we will see an aspect of geometry that is basic to
science, yet of very recent origin: the usage of graphs.
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One picture is worth ten thousand words.

—FREDERICK R.BARNARD, Printers Ink, 10 March 1927

I N
 this chapter, we look at a mathematical innovation that promotes
visual-spatial thinking — a geometric innovation that is used primar-
ily for purposes that are not geometric and not even mathematical—an

innovation that is so much a part of modern life that it is difficult to think
that there was a time when it did not exist. I refer to the commonplace
graphs that we see in every newspaper—for example, graphs showing
the price of stocks and bonds day by day or hour by hour. A graph ex-
presses the relationship between two variables with an effectiveness that
is impossible to achieve with words alone. Graphs give instant insight
into complex matters. Surprisingly, graphs were seldom seen before the
twentieth century.

Figures 5.1 and 5.2 are examples of a common type of graph with hori-
zontal and vertical calibrated axes. A point on the curve indicates a corre-
spondence between the values of the numerical variables x and y.1

This chapter also examines coordinate geometry, which extends classi-
cal geometry through application of the graph concept. We see this only
in hindsight because, historically, coordinate geometry preceded the use of
graphs.

A well-conceived graph demonstrates "One picture is worth ten thou-
sand words."2 The obvious meaning of this saying is that a picture makes
clear what words cannot. However, a computer scientist might contend,
on the contrary, that words communicate more efficiently than pictures
— that pictures are a wasteful use of computer resources because to en-
code a picture electronically can actually require more bytes than do 10,000
words. To make these matters more specific, five letters per word is a
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reasonable estimate for an average English sentence—six characters in-
cluding spaces to separate words. Furthermore, the usual computer cod-
ing uses one byte of storage for each letter. A good quality image of Botti-
celli's The Birth of Venus can be encoded with 217,000 bytes. Dividing by 6
(the number of bytes in an average word), we find that The Birth of Venus
is equivalent to about 36,000 words. For comparison, Mark Twain's Huck-
leberry Finn uses 570,000 bytes —about 95,000 words. By this reckoning, if
one is collecting classic paintings and novels on a computer, Huckleberry
Finn fills about 2.6 times as much disk space as The Birth of Venus. But two
or three pictures could not possibly tell a complex story like Huckleberry
Finn—certainly more than 100 pictures would be needed.

The electronic costliness of pictures compared with text underlies the
fact that early computer displays were text only. Only when electronic stor-
age devices became cheaper and more efficient was it feasible to display
information on a computer like the Apple Macintosh using a graphical user
interface—In computer jargon, a GUI.

Of course, the above analysis is simplistic. We do not measure the
nourishment of food by the number of bites, and if we judged paintings
and novels by the number of computer bytes, then art and literary crit-
ics would have nothing to do. Even though pictures are a more costly
use of computer resources, we cannot ignore the fact that pictures and
words convey qualitatively different information. In fact, medical science
has shown that pictures and words are processed by different parts of the
brain.3

Visual-spatial thinking dominates mathematical thinking at the high-
est level. Recent medical research (Witelson, Kigar, and Harvey (1999))
reports that the preserved brain of Albert Einstein shows unusual devel-
opment in the parietal lobes—known to be the site of visual-spatial cogni-
tion.4 This is consistent with the following statement of Einstein concern-
ing his creative process:

The words or the language, as they are written or spoken, do
not seem to play any role in my mechanism of thought. The
psychical entities which seem to serve as elements in thought
are certain signs and more or less clear images which can be
"voluntarily" reproduced and combined.

Einstein obtained his ideas from a visual source in his mind, but he
needed to communicate these ideas in words—with great difficulty, so he
tells us. Difficult to explain and difficult to understand. One used to hear,
"There are only n people in the world who understand Einstein's theo-
ries," where n is some number less than 20. Or, to put it more irreverently,
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There's a wonderful family named Stein,
There's Ep, there's Gert, and there's Ein.

Ep's statues are junk,
Gert's poems are bunk,

And nobody understands Ein.5

Since visual thought lies behind his mathematical discoveries, perhaps
Einstein could have made his ideas less difficult if he had used more pic-
tures—if the mathematical journals would have let him. Although math-
ematical journals value a high level of creativity, published articles con-
tain much step-by-step verification of correctness—with few clues of the
author's discovery process. Journals discourage the use of pictures and
generally force authors into an unattractive succinct style for two reasons:

1. To enforce the traditional impersonal style. A scientific article should
be judged on its scientific merit. The personality of the author must
not intrude.

2. To reduce the expense of typesetting.

But reason 1 should not force the exclusion of pictures that aid under-
standing. Moreover, reason 2 is less valid today than formerly because
now authors can typeset their own work with powerful computer pro-
grams that include a rich set of tools for typesetting diagrams and mathe-
matical formulas. For example, this book was typeset by the author using
MEX and MetaPost.

Einstein's reflection on his source of inspiration is a glimpse of a little-
known truth—that it takes more than logical thinking to solve mathemati-
cal problems.6 Music is more than notes written on a staff, and mathemat-
ics is more than formal proofs and algebra. This is true for the discovery
of the theory of relativity, but it is also true for the solution of problems
in elementary mathematics. Mathematical excellence requires hard work
and careful study; nevertheless, the elusive spark of insight often comes
from a free-floating visual-spatial intuition.

Graphs

Graphs are a surprisingly recent invention. Graphs did not exist in antiq-
uity. Although the ancient Greek mathematicians used complex diagrams
abundantly, they did not use graphs—at least, not explicitly. Neverthe-
less, a graph is implicit, for example, in the method attributed to Archytas
(4287-347? BCE),7 illustrated in Figure 5.1, for finding the geometric mean
of two quantities.

Archytas's solution can be expressed very naturally using a graph. By
definition, the geometric mean of two positive numbers is equal to the
square root of their product. In Figure 5.1, y is the geometric mean of x
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and 1 — x, that is, y = \fx(\ — x). The result of Archytas is equivalent to
the assertion that the graph in Figure 5.1 is a semicircle.8

The graph in Figure 5.1 would
not have made sense to Archytas
and his contemporaries, and not
even to mathematicians that came
two thousand years later. Fig-
ure 5.1 uses concepts that came to-
gether only at the end of the sev-
enteenth century.

We can compare the innova-
tion of graphs with other human
inventions—for example, with
the prehistoric invention of basket
making. There were three essential
elements in this discovery.

1. There was a need. Baskets were useful, for example, for gathering
and preparing food.

2. Materials for making baskets were available.
3. There were clever people who developed the technique for making

baskets.

Figure 5.1. The semicircle with radius I/2

and center at (1/2,0) is the graph of the
geometric mean of x and 1 — x.

The need for graphs

Graphs would have benefited Galileo,
but they were not available to him. He
made empirical measurements of balls
rolling down a ramp. Part of his great
genius was that he saw the need for
this experiment. He had no reason to
expect a simple underlying principle.
Yet he was able to find the principle,
even with primitive intellectual tools.
Graphs appeared about a century later.
Consequently, Galileo did not illustrate
his result by means of a graph such as
Figure 5.2.

Figure 5.2. Graph showing the
downward motion of a falling object.

The need for graphs depended on the state of science and mathematics
together with the attitudes and endeavors of scientists and mathemati-
cians.

• Empirical scientists need graphs. Their measurements can appear as
dots on a graph. By somehow connecting the dots, the researcher
can obtain a global view of the phenomenon being studied and can
be led to general underlying principles.
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• Mathematicians need graphs. For example, an equation takes on a con-
crete meaning when we see its graph, and consequences of the equa-
tion become more apparent.

"Materials" for graphs

Graphs need conceptual rather than physical materials:

1. A well-tended menagerie of mathematical curves.
2. A well-developed number system.
3. Algebraic calculation.
4. An interest in empirical measurement.

Curves

The study of curves began in antiquity. In the ancient Greek mind, math-
ematical diagrams (lines, circles, etc.) depicted only a small number of
objects with abstract mathematical definitions. The idea of an arbitrary re-
lationship between two variables or an arbitrary curve did not gain math-
ematical legitimacy until the middle of the nineteenth century.

For the ancient Greeks, there were only a small number of mathemat-
ical curves. The ancient Greeks studied not only lines and circles but also
ellipses, parabolas, and hyperbolas, curves that we will consider further
on pages 101-107. Although these curves received the greatest attention,
the Greeks also considered a few other curves, for example, the Spiral of
Archimedes (Figure 5.3(a)).

Figure 5.3. Mechanically generated curves.
(a) The spiral of Archimedes is generated by a point on a disk rotating with

uniform angular velocity. Relative to the moving disk, the tracing point moves with
uniform linear velocity along a line from the center of the disk to a fixed point on the
circumference of the disk. The groove on a phonograph record is approximately an
Archimedean spiral.

(b) The point P traces the cycloid AB as the circle rolls without slipping from
point A to point B. A point on the surface of a rolling automobile tire traces a cycloid.
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Mathematicians of the seventeenth century added a number of curves
to the list—especially mechanically generated curves like the cycloid (Fig-
ure 5.3(b)), the path traced by a point on the circumference of a rolling
circle. The name cycloid was coined by Galileo in 1599. Galileo attempted
to find the area of the cycloid, even resorting to weighing models cut in
the shape of a cycloid, but failed to discover the fact that this area is ex-
actly three times the area of the rolling circle. Before the seventeenth cen-
tury, legitimate mathematical curves had either geometric or mechanical
definitions. Curves generated by algebraic equations were slow to be in-
cluded in the canon—even Newton rejected them. Seventeenth-century
mathematicians treated curves as mathematical playthings with curious
properties, but they were slow to see curves as valuable tools for under-
standing matters beyond the curves themselves.

The number system

Graphs need a well-developed number system that serves as model for points
on a line. A suitable number system enables the definition of coordinates
of points in a plane. Coordinates are pairs of numbers that specify points
in the plane. The modern concept of real numbers is ideally suited to this
identification between pairs of numbers and points in the plane. Lack-
ing the modern concept of real numbers, a clear idea of decimal fractions
would suffice, a notion that goes back to antiquity. Although decimal frac-
tions and algebra were available in Galileo's time, he did not make use
of them; he recorded his observations of balls rolling down a ramp using
only whole numbers.

Graphs also require an understanding of negative numbers. Mathemati-
cal pioneers of the seventeenth century, such as Descartes and Fermat, still
lacked an understanding of negative numbers.

Algebraic calculations

In the distant past, there was not agreement among mathematicians con-
cerning what sort of calculations should be given mathematical legitimacy.
The ancient Greeks gave legitimacy to geometric calculations and to the
arithmetic of the rational numbers. In the ninth century, the Arab math-
ematician al-Khwarizmi (7807-850?) wrote about algebra, but he justified
his calculations geometrically; algebraic calculations were not yet consid-
ered legitimate mathematics.

Descartes developed an algebraic notation that is fully recognizable
to today's algebra student. Descartes understood that algebra provides
a way of studying geometrically or mechanically defined mathematical
curves, but he missed the idea that algebra provides a means of defining
a vast universe of new curves and much more — a powerful new tool for
understanding the world.
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In Europe in the seventeenth century, algebraic calculations were still
controversial; this issue was the basis, at least in part, of the quarrel be-
tween mathematician John Wallis (1616-1703), who supported algebra,
and philosopher Thomas Hobbes (1588-1679), who opposed it. By the be-
ginning of the eighteenth century, all mathematicians considered algebraic
calculations legitimate.

Empirical measurement

Mathematics often uses graphs to depict an equation, but in every news-
paper graphs are used in a more commonplace manner—to display em-
pirical information.

Platonic idealism elevated geometry and denigrated empiricism. For
the Greeks, an important obstacle to empirical science was the attitude,
expressed by Plato, that philosophy and mathematics had little or no need
of the lowly craft of empirical observation. It is undoubtedly true that the
advances in empirical science in the twentieth century have been accom-
panied by a blossoming in the use of graphical representations.

Cartography is an ancient science that joined empirical measurement
with geometry. The ancient Greeks had both geometric drawings and car-
tography. In fact, both of these precursors of graphs came together in
the person of Claudius Ptolemy (1007-170? CE). Ptolemy was both an
astronomer-mathematician and a geographer. He was the author of Al-
magest, 13 books detailing his geocentric theory of the solar system, and
Geography, eight books containing a collection of cartographic data and
maps. Ptolemy's astronomy was invalidated by Copernicus, but we still
use his cartographic concepts of latitude and longitude. It seems that the
ancients believed that curves in maps had nothing whatever to do with
the curves of mathematics.

One may ask, what prevented Ptolemy, who furthered the science of
cartography, from discovering graphs? Since many graphs, like Figure 5.2,
express the growth of something over time, the ancients were hampered
because they lacked an accurate means of measuring time. Mechanical
clocks were not invented until the late Middle Ages. Galileo measured
short intervals of time by observing the amount of water flowing out of a
tank. On page 177, we will see that he also used his sense of rhythm to
determine the equality of short time intervals.

Mathematical diagrams and maps both resemble the object under dis-
cussion. A circular drawing approximates the Platonic ideal circle, and
a map of Egypt approximates the shape of the land that it portrays. The
graph concept requires a further leap of abstraction because a graph is not
a visual likeness.

88
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Clever people invented graphs

The representation of data using graphs was invented in the Middle Ages
by Nicole Oresme (13207-82), Bishop of Lisieux in Normandy, but the idea
remained unexploited for several centuries, probably because in the mid-
dle ages no one could foresee the immense potential of this discovery.

The first scientist to make extensive use graphs was the German math-
ematician Johann Heinrich Lambert (1728-77). (See Figure 5.4.) The Scot-
tish political economist William Playfair9 (1759-1823) was the first to pub-
lish statistical graphs in 1785. An example of his work is shown in Fig-
ure 5.5. Florence Nightingale (1820-1910) is renowned as a reformer of
hospitals and nursing, but it is not as well known that she was a pioneer
in the graphical presentation of medical statistics. She used a fan-shaped
graph that she called a "coxcomb" (Figure 5.6) to document the casualties
of the Crimean war (1853-56).

According to the Oxford English Dictionary (OED), the term graph of a
function was first used by mathematician George Chrystal (1851-1910) in
1886. Chrystal's usage of the word graph is the familiar one that we use in
this chapter. The verb to graph first appeared in 1898.

According to the OED, the term graph was used even earlier by math-

Figure 5.4. From Lambert (1779). Solar warming throughout the year at different
latitudes.
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Figure 5.5. William Playfair's graph of the British national debt in Playfair (1801).
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Figure 5.6. Florence Nightingale's "coxcomb" graph showing the casualties of the
Crimean war month by month. The outer, inner, and middle areas represent,
respectively, mortality due to disease, wounds, and other causes. Nightingale (1858).
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ematician James J. Sylvester (1814-97) in 1878, but not in the sense used
in this chapter. In this OED citation, Sylvester uses graph for a chemical
diagram that is now called a structural formula. Sylvester's usage presaged
the more recent mathematical meaning of the word (Konig (1950)). In this
sense, a graph consists of a (usually finite) collection P of points together
with a collection of line segments connecting pairs of points in the set P.

Also in the late nineteenth century, the practice originated of drawing
graphs using paper ruled with squares—used much earlier in the arts and
crafts. Indeed, such paper is now called graph paper. For today's students,
graphing problems are a standard homework assignment, but such figures
were seldom seen in print before 1900. The absence of graphs holds not
only for mathematics but also science generally and even for the financial
pages of newspapers. The New York Times started printing graphs in its
financial section only in the early 1930s.10 Figure 5.7 shows the increase
through the years 1879-1957 of the incidence of graphs in the renowned

Figure 5.7. Incidence of graphs in the science journal Nature. The table shows a
count of pages with at least one graph starting with Volume 20 in 1879.
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British journal of science Nature. The incidence of graphs increased from
almost none in 1879 to near the current level in 1957.

Why have scientists and mathematicians been so slow to see the benefit
of graphs? There are several possible reasons:

1. Printing costs are lower for text than for diagrams.
2. The abstract mathematical concept of function —a correspondence

between an independent and a dependent variable—made its rigorous
debut in the latter half of the nineteenth century. The concept of function
gives mathematical legitimacy to graphs.

3. In the twentieth century, science and technology have produced a
flood of data that did not exist in earlier times. The volume of data grew
because technology made it possible, and technology grew in part because
analysis of the data led to further advances. It became urgent to find the
most efficient methods of understanding data and drawing conclusions
from it. Highly sophisticated methods of statistical analysis grew out of
this need, but also the simpler and older ideas of graphical presentation
helped scientists and others to make sense of the proliferation of data.

Coordinate Geometry

But I shall not stop to explain this in more detail, because I should
deprive you of the pleasure of mastering it yourself, as well as the
advantage of training your mind by working over it, which is in my
opinion the principal benefit to be derived from this science.

—RENE DESCARTES, La Geometric, 1637

Coordinate geometry introduced the famil-
iar orthogonal coordinate system previously
seen, for example, in Figure 5.2. Figure 5.8
shows a point with coordinates ( x , y ) where x
and y are the distances of the point from the
coordinate axes.11 The use of coordinates is so
universal now, it is difficult for us to appreciate
the depth of this innovation. It is a technique Figure 5 8
unknown to the ancient Greek mathematicians. Coordinate axes

Coordinate geometry, also known as ana-
lytic geometry, was developed simultaneously and independently by Rene
Descartes (1596-1650) and Pierre de Fermat (1601-65).12 They observed
that geometric objects (lines, circles, etc.) can be described by algebraic
equations and that geometric theorems can be proved algebraically—a bril-
liant new technique that eluded the ancient Greek geometers.

Nevertheless, both Descartes and Fermat would find much to learn to-
day in an elementary class in analytic geometry. Their first lack would
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be the concept of graph. They believed that curves defined by geomet-
ric or mechanical means could be studied by algebraic means, but they
did not use algebra as a means of generating new curves, and they did
not consider curves as a tool for understanding algebra or science. For
example, a graph like Figure 5.2 would depict an unfamiliar new idea.
Furthermore, they would be greatly hampered by their unfamiliarity with
negative numbers. In their first few class sessions, Descartes and Fermat
would see for the first time the formulas for the distance between two
points and for the angle between two lines. They would be unfamiliar
with the rectangular coordinate system shown in Figure 5.8. They would
even be unfamiliar with the identification of points in the plane with pairs
(j,y) of numbers, a concept lying at the very foundation of analytic ge-
ometry. Considering all this, how can Descartes and Fermat be the discov-
erers of analytic geometry? The answer is that they solved a number of
geometric problems by algebraic means. They used coordinates of points,
but only implicitly.

Synthetic versus analytic

Although coordinate geometry is more descriptive, the term analytic geom-
etry is more usual. In contrast, the geometry introduced by the ancient
Greeks is called synthetic. All of the proofs in Euclid's Elements are syn-
thetic. Initially, coordinate geometry was handicapped by the lack of an
ancient tradition.

Etymology

The mathematical meanings of synthetic and analytic are not the same as
the general meanings:

synthesis — assembling constituent parts into a whole,
analysis — separating a whole into constituent parts.

The mathematical meaning of the word analysis changed during the
twentieth century. The 1933 edition of the Oxford English Dictionary has
the following entry:

Analysis . . . Math.
Ancient Analysis, The proving of a proposition by resolving it

into simpler propositions already proved.
Modern Analysis, The resolving of problems by reducing them

to equations.

These definitions reflect the usage by mathematicians when this edi-
tion of the OED was compiled from 1879 to 1928. The term, ancient analysis,
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now obsolete, applied to the methods of Euclidean geometry, for example,
in Euclid's Elements — methods that are now called synthetic. Today modern
analysis refers primarily to the book of that name by Whittaker and Wat-
son, first published in 1902; the content of that book is now called classical
analysis —a topic that used to be considered much more central to mathe-
matics than it is now. Prior to 1800, analysis was another word for algebra,
but today the term mathematical analysis denotes calculus together with its
advanced ramifications — today, analysis and algebra are considered two
separate mathematical disciplines.

Synthetic and analytic proofs

We will contrast the synthetic and analytic proofs for a certain remarkable
theorem—but first, two definitions:

Definition 5.1. Median. The line segment connecting the vertex of a trian-
gle with the midpoint of the opposite side is called a median of the triangle.

For example, in Figure 5.9 the points P, Q,
and R are the midpoints of the three sides of
the triangle ABC. The line segment AP is one of
the three medians.

Definition 5.2. Concurrent. Three or more
lines are concurrent if they intersect in a single
point.

Figure 5.9.
In Figure 5.9, the medians are concurrent in

point M, but this concurrency requires proof.
We shall see first a synthetic and then an analytic proof of the following
theorem:

Theorem 5.1. The medians of a triangle are concurrent. The point of concur-
rency divides each median in the ratio 2:1. More specifically, for each median, the
distance from the point of concurrency to the corresponding vertex is twice the
distance from the point of concurrency to the corresponding midpoint.

For example, in Figure 5.9, the length AM is equal to 2MP.
A synthetic proof is based on the Euclidean axioms and previously

proved results. In particular, this proof makes use of the following two
propositions:

Proposition 5.1. A line segment bounded by midpoints of two sides of a triangle
is parallel to the remaining side and half its length.

For example, in Figure 5.10, if points Q and P are midpoints of AC and
BC, respectively, then the segment QP is parallel to side AB and we have
AB = 2QP.
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Proposition 5.2. The diagonals of a parallelogram bisect each other.

Synthetic proof of Theorem 5.1. Referring to Figure 5.11 and using Propo-
sition 5.1, the dashed line segment QP connecting the midpoints of the
triangle is parallel to the side AB and half its length. Suppose that the me-
dians AP and BQ intersect at point M and let S and T be the midpoints of
AM and BM, respectively.

Applying Proposition 5.1 again, we see that
the dashed line segment ST is also parallel to
the side AB and half its length. We see that
QPTS is a parallelogram because sides QP and
ST are parallel and have the same length. By
Proposition 5.2, the lengths SM and MP are
equal. Furthermore, AS = SM because S is the

Figure 5.10. midpoint of AM. In summary, we have

Figure 5.11.

AS = SM = MP

It follows, as claimed, that M divides the me-
dian AP in the ratio 2:1.

Similarly, M divides the median BQ in the
ratio 2:1. Furthermore, the third median CR
(shown in Figure 5.9) intersects the other two in
point M and is divided by M in the ratio 2:1. D

This proof is beautifully conceived, but the discovery process is hid-
den. One is tempted to say, "I could never have discovered this proof."

Now we turn to an analytic proof—a proof using coordinate geometry
that the ancient Greeks would never have found. I think that it is again
a beautiful proof, but shorter than the synthetic proof. Furthermore, the
discovery process is more transparent. The analytic method involves a
straightforward algebraic computation. It is more possible that one might
say, "I could have done that."

The analytic proof makes use of the following proposition:

Proposition 5.3. // three parallel lines intersect two transversals, then they di-
vide the transversals proportionally.

For example, in Figure 5.12, T>\, Vi_>
and 7^3 are parallel lines intersected by the
transversals T\ and TI- Proposition 5.3 as-
serts that the following proportion holds:

Figure 5.12.
Analytic proof of'Theorem 5.1 —first method.
Referring to Figure 5.13, in triangle ABC, let

96
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P be the midpoint of BC, and let M be the point that divides the median
AP in the ratio 2:1, that is, AM = 2MP. Further, let M' and M" (not shown
in Figure 5.13) denote the points that divide the other two medians in the
ratio 2:1. We do not know a priori that M, M', and M" are different names
for the same point; it is our task to show that all three are identical. Sup-
pose that the ^-coordinates of A, B, and C are, respectively, x\, X2, and #3.
Now we compute the ^-coordinates of P and M, which we denote £4 and
x$, respectively. Since P is midpoint of BC, using Proposition 5.3, we have
TU = UV, which implies

Similarly, using the fact that AM = §AP, we have RS = §RV; or, in other
words,

Substituting equation (5.1) into equation (5.2), we have

Similarly, if we were to compute the j-component of the points M' and
M", we would find the same value 5 (xi + *2 + *s) • This is true because of
the symmetry of the formula \(x\ + X2 + #3). Therefore, the three points,
M, M', and M", have the same ^-coordinate.

A similar computation shows the i/-components of M, M', and M" are
all equal to 5 (y\ +1/2 +1/3). Since the three points M, M', and M" have the
same coordinates, they must be identical. D

The above analytic proof shows clearly that the concept of symmetry is
central — symmetry not of the figure but of an algebraic formula. The proof

Figure 5.13.
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is undoubtedly logically correct. However, it could be faulted, because it
conceals one aspect of the discovery process: Where did the number 2/3
come from? We can remedy this with further use of the analytic method.
The following proof discovers the number 2/3 in a natural way instead of
pulling it out of a hat. In the preceding proof, the coordinate system had
no special relationship with the triangle. However, the cleverness of the
following proof consists in choosing the coordinate system in a special
way.

Andy tic proof of Theorem 5.1— second method. In Figure 5.14, points P and
Q are midpoints of sides BC and AC, respectively. Departing from the pre-
ceding proof, the point M is defined to be the intersection of the medians
AP and BQ. (This is a departure from the preceding proof in which M was
defined as the point that divides the median AP in the ratio 2:1.)

We choose the coordinate system so that vertex A is the origin and
the y-axis is in the direction of the median A P. As before, we denote the
^-coordinates of the points A, B, C, P, and M, as x\,X2, x$, £4, and xs, re-
spectively. In addition, X(, denotes the x-coordinate of Q. Note that we
have

Since P is the midpoint of BC, from Proposition 5.3, we have AT = RA,
and it follows that X2 = — x\. Again, since Q is the midpoint of AC, we
have RS = SA, and it follows that X(, = \x^. Therefore, AT is equal 2SA,
and it follows, again from Proposition 5.3, that MB is equal 2QM.

We have shown that the intersection of the median AP with the median
BQ divides BQ in the ratio 2:1. But the choice of these particular medians

Figure 5.14.
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was arbitrary. It follows that the intersection of two medians divides each
in the ratio 2:1, and it follows that all three medians are concurrent. D

Straight lines

Straight lines are an abstraction of various objects of experience — the shape
of a taut string, the folded edge of a flat piece of paper, or dust motes
in a ray of sunlight. The uses of straight lines by the carpenter, the sur-
veyor, and the draftsman were important reasons for the development of
Euclidean geometry in antiquity. However, there is an even more impor-
tant presence of straight lines in ordinary life, familiar to us (but not to the
ancient Greeks): motion of constant velocity.

In particular, the graph of a motion
of constant velocity, illustrated in Fig-
ure 5.15, is an example of a straight line
that is just as natural as the examples
listed above. In the figure, the initial
distance is SQ, and the initial time is to.
The motion has constant velocity if the
distance traveled is proportional to the
elapsed time — that is, if the ratio of the
distance s — SQ to the time t — to is a con-
stant, which we will call v. The require-
ment that v is constant gives us the equa-
tion of the straight line £:

Figure 5.15. Motion of a particle
with constant velocity. The
distance s — SQ traveled in time
t — to is a constant v independent
of the choice of the points PQ
and P.

This equation expresses a relationship
between the variables s and t. The initial position SQ, the initial time to,
and the velocity v are constants. The velocity can be positive or negative
depending on whether s increases or decreases over time. If s decreases
as time increases, then the velocity v is negative. The magnitude of the
velocity v, ignoring its positive or negative sign, is called the speed of the
motion.

Figure 5.15 specifies that the variable t is time and s is distance. How-
ever, there are many other ways to interpret s and t. For example, s and
t could both represent distances. This is the most straightforward inter-
pretation because in the paper and ink drawing s and t represent actual
physical distances. If s and t are distances, then v is called the slope of the
line. (However, it is customary to use the letter m to represent slope.)

On a highway, if s represents vertical climb corresponding to horizon-
tal distance t, then v is called the grade and is usually expressed in percent.
For example, a 10% grade signifies 1 foot elevation gain for every 10 feet
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of horizontal progress. In general, whatever the variables s and t signify, v
is the rate of s with respect to t. In Figure 5.15, this rate is constant. In later
chapters, we will see how calculus deals with rates that are not constant.

The trains and the whiffle bird

The following example makes use of the above linear representation of
constant velocity (see Figure 5.15) and shows the benefit of representing a
problem graphically.

Question 5.1. Two trains, the Super Chief (SC) and the Twentieth Century
Limited (TCL), are 50 miles apart and are moving toward each other on the
same track at velocities of 20 and 30 miles per hour, respectively. A whiffle
bird starting at the front of the Super Chief flies back and forth between the
trains at a rate of 200 miles per hour until the trains collide. What is the
total distance the bird has flown?

There is an easy way and a hard way to solve this question. The hard
way is to compute the time to complete each flight — there are infinitely
many of them—and then to sum this infinite series, a lengthy but feasible
calculation.

The easy way is to observe that the trains are approaching each other
with a combined velocity of 20 + 30 — 50 miles per hour. Therefore, they
will traverse the 50 miles separating them and collide in exactly one hour,
in which time the whiffle bird, at 200 miles per hour, travels 200 miles.

This question relates to a story concerning the legendary calculating
powers of a certain mathematician. A distinguished physicist observed
that physicists generally solve the question the easy way and mathemati-
cians solve it the hard way. He posed the above problem to this mathe-
matician who immediately responded, "200 miles."

"This is strange," said the poser, "because mathematicians generally
sum the infinite series."

"What do you mean, strange?" replied the mathematician. "That's
how I did it!"

One is more likely to find the easy solution on seeing the graphical
representation of the problem shown in Figure 5.16, which shows the po-
sitions of the two trains and the bird at each moment of time. The two
straight lines and the zigzag line represent the motions of the two trains
and the bird, respectively.

The following mathematical argument shows that the remarkable whif-
fle bird possesses extraordinary powers.

Proposition 5.4. The whiffle bird makes infinitely many flights.

Proof. Suppose that there exists a final flight. We will show that this as-
sumption leads to a contradiction. On its last flight the bird must leave
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Figure 5.16. The collision of the Super Chief, the Twentieth Century Limited, and
the whiffle bird.

one train and head toward the other. Specifically, suppose that on its last
flight the bird leaves the SC and heads toward the TCL. The bird's velocity
is greater than the velocity of the SC, and, therefore, the bird must meet
the TCL before the SC does. In other words, the bird meets the TCL before
the collision. It follows that the bird reverses its direction and makes still
another flight contrary to the assumption that the current flight is the last.
This concludes the proof by contradiction. D

Conic sections

Clocks and plates—our world abounds with circular objects. But in a pho-
tograph or a drawing, a circle is generally represented as an ellipse, the
perspective representation of a circle. In fact, the eye sees a circle as an el-
lipse. We acknowledge the skill of a still-life painter when he draws a fruit
bowl as an almost perfect ellipse. The ellipse is a precisely defined curve,
not simply an elongated circle. The ellipse belongs to a family of curves
called the conic sections, or, more briefly, the conies. We will also examine
the other members of this family—the parabola and the hyperbola.

Coordinate geometry is the most powerful tool for establishing the
properties of the conies. A large part of a standard course in analytic ge-
ometry is devoted to these curves. We will see how the conies can be rep-
resented using coordinate geometry, but first we show what these curves
have to do with cones using the same methods used by Apollonius of
Perga (2607-185? BCE) and the other ancient Greek geometers who first
investigated the conies. The conic sections are so named because these
curves can be obtained as the intersection of a plane and a circular cone.

In the following discussion, our usage of the word cone differs from the
ordinary meaning:
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In the following discussion, a cone consists of two parts, called nappes,
as shown in Figure 5.17. In other contexts, a cone often has just one
nappe.
The two circular disks, the top and bottom shown Figure 5.17, are
not part of the cone. In the present discussion, the cone consists of
the lateral surface only.
The cone considered here has infinite extent. Figure 5.17 shows just
part of the entire cone. The cone continues indefinitely upward and
downward.

Referring to Figure 5.17, a circular cone is
defined with reference to a circle C with center
0 and a second point P, the vertex of the cone.
The point P lies on the line, called the axis of the
cone, through 0 perpendicular to the plane of
the circle C. The cone is the set of points swept
out by the totality of lines intersecting the cir-
cle13 C and containing the vertex P. Such a line
is called an element of the cone. For example,
line £ is an element of the cone in Figure 5.17
because £ contains the vertex P and intersects
the circle C at point Q. All elements of a cone
intersect the plane of the circle C at the same
angle.

Different types of conic sections are ob-
tained by intersecting the cone with planes

having different orientations. Specifically, if the plane passes through the
vertex P we obtain the three degenerate cases: (a) the vertex P only, (b)
a single line element, or (c) two line elements —depending, respectively,
on whether the plane is (a) less steep, (b) exactly as steep, or (c) more
steep than the elements of the cone. In the following sections, we will see
that if the intersecting plane does not contain the vertex P, then the three
conditions of steepness mentioned above characterize, respectively, (a) the
ellipse, (b) the parabola, and (c) the hyperbola.

Figure 5.17. A cone of two
nappes.

The ellipse

An ellipse is obtained, as in Figure 5.18, by intersecting a cone with a plane
P less steep than the elements of the cone. (All the elements of the cone
are equally steep.) The plane does not contain the vertex of the cone, and
since the plane is less steep than the elements of the cone, it intersects only
one nappe of the cone. A circle is a special case of an ellipse generated
when the plane P is perpendicular to the axis of the cone.

The ellipse has twice played a crucial role in the history of science:
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1. The German astronomer Johannes Kepler (1571-1630) found by em-
pirical observation that the orbits of the planets are ellipses. Isaac Newton
(1642-1727) sought an explanation for Kepler's discovery. In doing so, he
found the law of universal gravitation, which says that there is a force of at-
traction between any two masses directly proportional to the product of
their masses and inversely proportional to the square of the distance be-
tween them. More specifically, there is a universal constant G such that
masses mi and mi separated by the distance R are subject to a force of
attraction equal to

2. Later, astronomers discovered that the planets, especially the planet
Mercury, depart slightly from the predicted elliptical orbits. This minute
difference could not be explained using Newton's law of gravitation. Seek-
ing to explain this discrepancy, in 1916 Albert Einstein conceived of the
general theory of relativity.

Figure 5.18. The ellipse £ is the intersection of a cone with a plane Q less steep
than the elements of the cone. The figure (a) is rotated by 45° in (b) showing the
plane Q "on edge." The dashed lines in (b) indicate the portion of the cone cut off
by the plane.
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The parabola

A parabola is obtained, as in Figure 5.19, by intersecting a cone with a
plane P parallel to an element of the cone. The plane does not contain the
vertex of the cone and intersects only one nappe of the cone.

Ignoring the effect of air resistance, the trajectory of a thrown ball is a
parabola.

The hyperbola

A hyperbola is obtained, as in Figure 5.20, by intersecting a cone with a
plane P. The plane does not contain the vertex of the cone, and since the
plane is steeper than the elements of the cone, it intersects both nappes of
the cone, creating two disconnected branches of the hyperbola. At points
far from the vertex, the hyperbola approaches closer and closer to two
intersecting straight lines called asymptotes.

Some comets have hyperbolic or parabolic orbits. These comets do not
remain a part of the solar system. They approach from and return to deep
space, making one pass around the sun.

The conic sections can be easily demonstrated with an ordinary electric
lamp. A circular lampshade creates a cone of light. The shadow of the
lampshade on a wall is elliptic, parabolic, or hyperbolic, depending on the
orientation of the wall relative to the lamp.

Figure 5.19. The parabola P is the intersection of a cone with a plane Q parallel
to an element of the cone. The figure (a) is rotated by 90° in (b) showing the plane
Q "on edge." The dashed lines in (a) and (b) indicate portions of the cone cut off
by the plane.
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Figure 5.20. The hyperbola Ji consists of two branches formed by the intersection
of the two nappes of the cone with a plane Q steeper than the elements of the
cone. The figure (a) is rotated by 90° in (b) showing the plane Q "on edge." The
dashed lines in (a) and (b) indicate portions of the cone cut off by the plane.

The conies are beautiful curves. I think that their appeal comes from
the right mix of order and complexity. The suspension bridge is a beau-
tiful structure partly because the main cable is in the shape of a graceful
parabola. It is interesting that during the construction process, the cable
is in the shape of another curve, the catenary — the shape of a suspended
chain. It is only when the roadbed is attached that the horizontal uniform
loading changes the shape of the cable to a parabola.
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Figure 5.21. Conic sections and their equations.

Coordinate representation of the conies

A very important technique of coordinate geometry is to associate curves
with their equations. More specifically, a planar curve is associated with
an equation involving two variables. We saw this in Figure 5.15, where the
straight line, representing a motion of constant velocity, is associated with
equation (5.4). More precisely, the relation between the line in Figure 5.15
and equation (5.4) is as follows:
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A point with particular coordinates ( t , s ) in the S-T plane lies
on the line in Figure 5.15 if and only if the numbers s and t
satisfy equation (5.4). A point lies on the curve if and only if the
coordinates of the point satisfy the equation.

Figure 5.22 is a second example showing
the relationship between a curve and its equa-
tion. The equation of this circle is

This means that the points with coordinates
(x,y) that satisfy the equation x2 + y2 = 1 are
precisely the points that belong to this circle.
For example, the point (0.8,0.6) belongs to the
circle because

Figure 5.22. The equation
of this circle is x2 + y2 = 1.

Equation (5.5) expresses the fact that the
distance to the origin from any point on the cir-
cle is equal to 1. In fact, it follows from the Pythagorean theorem that the
distance from the point (J,y) to the origin is equal to \/x2 + y2.

Figure 5.2, showing the descent of a falling object, is an example of a
parabola.

All of the conies are represented by equations. Here we ended our dis-
cussion by exhibiting three conies and their equations in Figure 5.21. How-
ever, the conies have much more structure—enough to fill out a course
lasting several weeks. The easiest way to derive the structure of the conies
is by using coordinate representations like Figure 5.21.

The visual sense is a wellspring of inspiration — in mathematics and in
everyday life. The use of graphs in science and business, as well as math-
ematics, grew and flowered in the twentieth century to become universal.

Geometry has been guided by the visual sense since antiquity. But
geometry gained certitude by the application of the axiomatic method. In
the late Renaissance, coordinate geometry was created, supplementing the
axiomatic method with algebraic reasoning. In the next chapters, we con-
tinue the story of algebra.
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Part III

The Great Art

In this book, learned reader, you have the rules of algebra.

Written in five years, may it last as many thousands.

—GIROLAMO CARD AND, Ars Magna (1545)
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Algebra Rules

Mephistopheles:
Dear friend, all theory is grey,
And green the golden tree of life.

—JOHANN WOLFGANG VON GOETHE (1749-1832), Faust

THE ELOQUENT SEDUCTION of the above epigraph is difficult to re-
sist. But remember that these are words of an agent of darkness — an
adviser with questionable motives.

Mephistopheles certainly includes algebra when he speaks of theory.
However, it is not he who moves many of our schoolchildren to say, "I
hate algebra." We will not discuss the many and complex sources of the
fear and hatred of algebra and mathematics in general; instead, we do
hope to show that algebra is a useful and powerful human accomplish-
ment. Algebra, far from being fearsome, is a comfortable place where we
can confidently bring our most puzzling quantitative problems —a safe
harbor for the mind.

It is certain that knowledge of elementary algebra is a first requirement
for an increasingly long list of occupations—including many satisfying,
challenging, and highly rewarding professions. In the fall of 2000, the
lack of school preparation in algebra was considered so serious that the
California legislature passed and the governor signed a law mandating
the successful study of algebra as a requirement for graduation from high
school.

What is algebra?

There is more than one kind of algebra. In Figure 6.1, we see the various
branches of the algebra family tree. Here and in the rest of this chapter, al-
gebra means classical algebra, the familiar school subject. Classical algebra is
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distinguished from abstract algebra, an advanced mathematical topic con-
cerned with certain axiomatically defined structures in which operations
such as addition and multiplication are generalized or redefined. Abstract
algebra is less than 200 years old.

Classical algebra is further divided
into rhetorical and symbolic algebra.
Symbolic algebra is the familiar school
subiect~a generalization of arithmetic
using letters to stand for unknown
or indefinite numbers in mathemati-
cal formulas and equations, together

with certain methods of manipulation
Figure 6.1. The algebra family tree. called ̂  mks of algebm. Symbolic al-

gebra in its present form is only about
400 years old —owing largely to the work of Francois Viete (1540-1603).

Classical algebra existed for thousands of years without the benefit of
mathematical formulas. Rhetorical algebra is the statement and solution of
complex problems of arithmetic without the use of mathematical formulas. In
rhetorical algebra, problems are stated and solved in "prose." Examples
of rhetorical algebra dating from about 1650 BCE are found in the ancient
Egyptian Rhind Papyrus. The familiar "word problems" of school mathe-
matics are stated rhetorically.

There are two gray areas in the above definition of rhetorical algebra:
1. It is arbitrary how complex an arithmetic problem must be to be

called rhetorical algebra instead of just arithmetic.
2. With increased use of abbreviations and manipulative rules, rhetor-

ical algebra gradually merges into symbolic algebra.

Algebra Anxiety

"When I use a word," Humpty Dumpty said in rather a scornful tone,
"it means just what I choose it to mean—neither more nor less."
"The question is," said Alice, "whether you can make words mean so
many different things."
"The question is," said Humpty Dumpty, "which is to be
master—that's all."

—LEWIS CARROLL (1832-98), Through the Looking Glass

In the seventeenth century, there was a degree of suspicion and distrust of
algebra—not because algebra was considered difficult but because some
scholars felt that it lacked the rigor of geometry. For example, the philoso-
pher Thomas Hobbes (1588-1679), who had more than a dabbling inter-
est in mathematics, had an ongoing quarrel with the mathematician John
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Wallis (1616-1703) over the merit of his recently published Algebra (1685).
Hobbes referred to algebra as hen scratchings and a "scab of symbols."

Hobbes complained that the symbols of algebra either have no fixed
meaning or are merely awkward abbreviations. Furthermore, Hobbes be-
lieved that, at best, algebraic symbols are a detour, needlessly forcing us
to translate the mathematics back into ordinary English. Since Hobbes's
accusations echo the feelings of many beginning students of algebra, it is
worthwhile to discuss these criticisms.

It seems that Hobbes felt that algebra is a mathematical swindle—a
shell game. The operator of a shell game shuffles three walnut shells by
sliding them over a table. He challenges the victim to bet which shell
contains the pea. The operator is generally quite skillful, and the victim
generally loses his money. For Hobbes, it seems that the shells were the
letters x, y, and z and the pea was mathematical truth. He feared the crafty
algebraist would attempt to deceive by subtly switching meanings.

Hobbes was aware that algebra involves both abstraction and abbre-
viation, but he missed a crucial point. Once a problem is expressed al-
gebraically, it can be transformed using the rules of algebra. These rules
are based on ordinary logic. Once one has acquired some algebraic skill,
the solution of a problem often reduces to a mechanical application of the
rules of algebra. The solution is made easier by the fact that one need not
translate the problem back to first principles or ordinary English until the
end of a demonstration. Algebra has proved to be a reliable and successful
labor-saving device for the mind.

Hobbes pioneered the idea that reasoning is a kind of verbal compu-
tation, but he does not seem to have considered the idea that reasoning
might resemble algebraic computation. Today, it is easy to see the follow-
ing pragmatic rebuttal to Hobbes's arguments: Algebra is the foundation
for today's complex and successful technology.

Even Newton, the supreme mathematical genius of his time, had reser-
vations about the legitimacy of algebra. How else can we explain the fact
that his great work Principia (1687) is cast in geometric form when alge-
braic language would have been clearer and more natural? Did he omit
mention of his greatest achievement, the calculus, because he considered
it too algebraic? Several possible reasons have been suggested for New-
ton's reliance on geometry:

1. Newton felt that the matters that he discussed were truly geometric
in nature.

2. Algebra was a controversial new science and geometry was an ac-
cepted ancient tradition. It seems that Newton was a follower of that tradi-
tion. Perhaps Newton felt that if he made his ideas geometric they would
gain not only greater acceptance and understanding but also greater va-
lidity.

3. Perhaps Newton felt that algebra was a suitable tool for discovering
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new ideas but not rigorous enough for presenting them—that an algebraic
argument was merely heuristic and not logically rigorous.

Giants of mathematics—not schoolchildren only—have experienced
algebra anxiety. There is an anecdote that relates to the discomfort many
schoolchildren feel with elementary algebra:

Student: Sir, I'm not comfortable with the passage at the bot-
tom of page 6.

Professor: Don't worry. When you have seen these words suf-
ficiently often you will feel completely comfortable.

We may feel that the professor ought to give a specific explanation of
matters that the student does not understand. Yet, algebra, for example,
is sufficiently complex that the novice must learn to tolerate some gaps in
understanding. When a professor studies a new research article, he also
is the beginner, and he must initially tolerate some ambiguity and lack of
understanding.

One unfamiliar with computers who embarks upon reading a com-
puter manual has a similar experience. A page sometimes gives the im-
pression that the reader is expected to know everything in the manual
except what is on that one page. Good exposition helps, but only to a point
with information that is strongly interconnected.

The beginning algebra student sometimes complains that an algebraic
formula is not real. He or she needs to be assured that algebraic formulas
are real. For the student, algebraic formulas attain reality gradually — like
a foreign language—through accumulated successes.

Algebra enables us to solve problems using global patterns that do not
have to be "understood" each time they are applied. Mathematics pro-
vides us with high-level principles that save us from the need to under-
stand low-level details. George Polya (1887-1985)—distinguished Hun-
garian-born American mathematician and celebrated writer on mathemat-
ical education—expressed this idea when he said, "Mathematics is being
lazy. Mathematics is letting the principles do the work for you so that you
do not have to do the work for yourself" (quoted in Walter and O'Brien
(1986)).

Mathematicians use every possible labor-saving device to rachet up
their understanding and to free themselves from details. For example,
pencil and paper permits us to carry out computations that would over-
whelm the unaided mind, and hand-held calculators do arithmetic with
incredible speed and accuracy. Furthermore, larger digital computers exe-
cute calculations in seconds that would take eons with paper and pencil.

To use algebra effectively, we do not have to understand the first princi-
ples of what we are doing at every moment, but we need to know enough
so that we are in control. We need to do better than the Wizard of Oz as



Algebra Rules 115

he leaves helplessly in a hot air balloon: "I can't come back, folks! I don't
know how it works! Goodbye!"1

There is a theory of teaching that suggests that the student should learn
algebra the same way that it developed historically—following in days
or weeks the route that humanity discovered through hundreds or thou-
sands of years. It may reduce the anxiety of the beginning algebra student
to know that for thousands of years there was rhetorical algebra without
algebraic formulas.

Arithmetic by Other Means

Girolamo Cardano (1501-76) referred to the rules of algebra more than 400
years ago. However, the rules of algebra are principally the rules of arith-
metic. Paraphrasing Baron von Clausewitz,2 algebra is merely the contin-
uation of arithmetic by other means.

In our early education in arithmetic, rules seem less important than
the acquisition of computational skills — for example, by memorizing the
multiplication tables. At this stage, the formula

is seen as a computational exercise—verified by computing the right side

and the left side

However, from the algebraic point of view equation (6.1) is an instance
of the distributive law of multiplication with respect to addition:

For any numbers a, b, and c, we have a(b + c) = ab + ac.

The distributive law is one of about a dozen rules that could be listed
explicitly. We have no need for an explicit statement here of all of these
rules if we just keep in mind that the symbols a, b, c, and so on, represent
numbers and, therefore, can be manipulated as such.

In our first study of arithmetic, numbers are like our circle of family
and friends: We know everyone's name, and we know the relationship
of each person to everyone else. Later, when we study algebra, we are
the general of a great anonymous army of numbers. To the great benefit
of the strategy and tactics of algebra, numbers follow rules with greater
obedience than do real soldiers.

The general issues orders: "Every soldier will be issued a helmet liner."
In algebra, we also make general statements: "For every number x, x + x =
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2x." "There exists a number y such that 3y + 10 = 19." In mathematical
logic, the phrases "for every" and "there exists" are called quantifiers. They
occur with such frequency in mathematics that there are standard abbre-
viations: V and 3, respectively—however, we will not make further use of
these symbols.

Symbolic algebra

In the above paragraphs, we are using symbolic algebra
 when we use the letter x to represent an unknown num-

 ber- Symbolic algebra also uses special symbols and
conventions to represent arithmetic operations. For ex-
ample, ab is the product of the numbers a and b. There
is an important convention for interpreting algebraic
(and arithmetic) formulas known as the order of prece-

 dmce ̂  requires that multiplications must be done
first, then divisions, additions, and subtractions, in that

igure . . order. The mnemonic for this convention is "My Dear
Aunt Sally" (Figure 6.2). This rule is arbitrary but used universally. Com-
puter languages and electronic calculators generally implement this order
of precedence.3

For example, in the expression 5x3 + 4 + 2 — 1, first multiply (5 x
3 = 15), then divide (4 + 2 = 2), then add (15 + 2 = 17), and finally
subtract (17 — 1 = 16). The order of precedence can be overridden using
parentheses. The expressions in inmost parentheses are always computed
first. For example:

Symbolic algebra is largely concerned with equations. An equation, like
x + x = 2x, that is true for all numbers x is called an identity. To emphasize
that an equation is an identity, sometimes the symbol = is used instead of
the usual equal sign (e.g., x + x = 2x). On the other hand, 3x + 10 = 19 is
not an identity because it is true only for one particular value of x.

Strategy and tactics. A first course in algebra is devoted largely to the
problem of solving an equation—finding the values of the unknown for
which the equation is true. A solution is accomplished if we can find a
chain of equations with the following properties:

• The first equation of the chain is the given equation.
• Each further equation is equivalent to the one that precedes it.
• The last equation of the chain consists of x on the left side of the

equal sign and a particular number, the solution, on the right side
(e.g., x = 3). A solution of an equation is also called a root of the
equation.
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Two simple methods of transforming an equation into an equivalent
one are as follows:

1. Add (or subtract) the same quantity to both sides of the equation.
2. Multiply (or divide) both sides of the equation by the same nonzero

quantity.

Starting with the equation 3x + 10 = 19:

1. Subtract 10 from both sides, obtaining 3x = 9.
2. Divide both sides by 3, obtaining the solution x = 3.

The strategy consisted of two steps:

1. Add (or subtract) a quantity to both sides so that the left side is a
multiple of x, and the right side does not involve x.

2. Multiply (or divide) both sides by a quantity so that the transformed
equation asserts that x is equal to a particular number—not depend-
ing on x.

This simple strategy works for Examples 6.1-6.3, but some problems
are more difficult. The examples below are a few word problems and their
solutions in rhetorical and symbolic algebra. For the simplest problems,
the rhetorical solution seems sufficient and the symbolic solution unneces-
sary. For more difficult problems, the rhetorical solution tends to require a
different clever idea for each problem, whereas the symbolic solution uses
standard methods.

Our first problem—more than 3600 years old — is from the ancient Egyp-
tian Rhind Papyrus (see Chapter 1).

Example 6.1 (Rhind Papyrus, Problem 24). A quantity plus one-seventh
of it becomes 19. What is the quantity?

Solution (rhetorical, modern version). We eliminate the reference to the frac-
tion one-seventh by restating the premise of the problem as follows: Seven
times a quantity plus the quantity itself is equal to 19 x 7. In other words, 8
times the quantity is equal to 19 x 7 — 133. Thus, we see that this quantity
must be 133 divided by 8, that is 16 5/8.

The above problem is an easy exercise for beginning algebra students;
however, it was not such an easy problem for the Egyptians because they
used the awkward system of unit fractions described in Chapter 1.

Solution (rhetorical, Egyptian style). First guess: Maybe the unknown quan-
tity is 7. (This number is chosen because the calculation is easy.) But this
fails because 11/7 of 7 is 8, not 19.

Next step: The correct answer must be 19/8 times 7. (In Egyptian nota-
tion, 19/8 must be written 2 + 1/4 + 1/8.) Multiplying by 7, the Egyptians
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obtain:

Adding the right sides of these equalities yields:

Finally, we give a symbolic demonstration:
Solution (symbolic). Let x be the required quantity. The problem states

The left side of this equation is equal to jX. Multiplying both sides of the
equation by 7/8, we obtain

Example 6.2. In 3 years Ada will be twice as old as she was 7 years ago.
How old is she now?

Solution (rhetorical). Her age doubles from the time 7 years ago to 3 years
from now—a period of 7 + 3 = 10 years. This implies that she was 10
years old 3 years ago and she will be 20 in 3 years. Therefore her current
age is 17.

Solution (symbolic). Since many symbolic solutions follow this pattern, we
supply all the relevant details.

When we approach such a problem, in general, we do not know how
many solutions there are, or if there are any solutions at all. We begin
by expressing the conditions of the problem by means of an algebraic
equation.

Let x be Ada's current age. The conditions of the problem are met if
there exists a number x such that

We say that such a number is a solution, or that it satisfies, the equation.
Thus, we have transformed the original problem concerning Ada's age to
the algebraic problem of finding a solution of an equation.

Our plan is to use rules of algebra to find a sequence of equivalent
equations terminating with an equation of the form x = some number.

The rules of algebra are of two types:



Algebra Rules 119

1. Methods of simplifying or expanding an algebraic expression. For
example, the distributive law of multiplication can be applied to the
right side of equation (6.2) to obtain the 2(x - 7) = 2x - 14.
A second method (among others of this type) is called collecting like
terms. For example, by collecting like terms, the expression

is identical to 17.
2. Methods of transforming an equation into an equivalent equation with

exactly the same solutions. For example, the rules of algebra permit
us to add or subtract the same quantity from both sides of the equa-
tion, or to multiply both sides by the same nonzero quantity. Adding
14 — x to both sides of equation (6.2) gives

x + 3 + U-x = 2x-U + U-x (6.3)

Collecting like terms on both sides of this equation, we obtain the
equivalent equation 17 = x.

The final step is to check that 17 satisfies the conditions set down for Ada's
age. (It is necessary to check, e.g., the unspoken requirement that Ada's
age is a nonnegative integer that is not implausibly large.)

Example 6.3. The hare was so bored racing the tortoise that he decided to
take a nap 1 mile from the finish line. When he awoke, the tortoise, still
plodding at 0.2 mile per hour, had only 52.8 feet (0.01 mile) to go. The hare
started running full speed at 35 miles per hour and just barely won the
race. How far from the finish were they and what time was it when the
hare passed the tortoise?

Solution (rhetorical). The distance between the tortoise and the hare is
initially 1.00 - 0.01 = 0.99 mile and decreases at 35.0 - 0.2 = 34.8 miles
per hour. Therefore the tortoise and the hare meet when the elapsed time
is 0.99 -f- 34.8, approximately 0.02845 hour (1.707 minutes). In that time the
hare has traveled 0.02845 x 35.0 = 0.9957 mile. Since the initial distance of
the hare from the finish line was 1.0 mile, he has not yet reached that point.
In fact, the hare overtakes the tortoise at approximately 1.0000 — 0.9957 =
0.0043 mile, that is, 22.7 feet before crossing the finish line.

Solution (symbolic). Let t be the time in hours since the hare awoke and
started running. The distances, in miles, of the hare and the tortoise from
the finish line are 1 — 35f and 0.01 — 0.2*. At the moment that the hare
overtakes the tortoise these distances are equal; that is, 1 — 35* = 0.01 —
0.2*. Adding 35* - 0.01 to both sides of this equation yields 0.99 = 34.8*.
Now dividing both sides by 34.8, we obtain * = 0.99 -=- 34.8 « 0.02845,
where * is the moment at which the hare overtakes the hare. The distance
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in miles from the finish line at this moment is approximately 1 — 35 x
0.02845 = 0.00425. Since this number is positive, the hare overtakes the
tortoise before crossing the finish line. Hence, the hare wins the race.

Equations are an important tool for solving problems like the three
above. With a new tool there are two natural courses of action:

1. Use the tool to dig deeper.
2. Sharpen and improve the tool.

The following sections survey some of the achievements from pursuing
these two strategies.

Algebra and Geometry

The algebra of the ancient Egyptians and Baby-
lonians consisted of recipes for certain calcula-
tions—without proofs. The Greeks were the first
to give algebraic proofs—in Book II of Euclid's El-
ements. However, Euclid's proofs are entirely geo-
metric, and we need to reinterpret these theorems to

Figure 6.3. Division ., . ., , .,, , u r ,& _ see that they a concerned with algebra. For example,
Proposition 1, illustrated in Figure 6.3, asserts that if
a rectangle K is divided by a line segment parallel to one

of its sides into two rectangles S and T, then the area ofK is equal to the sum of
the areas of S and 7'.4

Euclid's proposition may seem entirely geometric, but, in fact, it is an
instance of rhetorical algebra. The true nature of the proposition becomes
evident if we translate it into an algebraic formula. If a, b, and c are the
lengths of the sides of the rectangles, as shown in Figure 6.3, the proposi-
tion asserts a(b + c) — ab + ac, which is the distributive law of multiplication
with respect to addition. Euclid's proposition is an instance of rhetorical al-
gebra.

As we will see in the next section, geometric arguments can enhance
an algebraic argument. However, before the advent of symbolic algebra
at the end of the sixteenth century, such geometric arguments were con-
sidered indispensable. This dependence of algebra on geometry might be
explained by the great prestige and authority enjoyed by Euclidean geom-
etry, but this fails to explain why geometric algebra faded when symbolic
algebra appeared. The more compelling reason is that symbolic algebra
provided more natural and convincing algebraic arguments.

An algebraic argument can be supported either by a geometric figure
or an algebraic formula. Where one used to say, "Behold, the figure," now
one says, "Behold, the formula."

120

of the rectangle
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Al-jabr

The word algebra comes from Hisab al-jabr w'al-muqabala, the title of a
work by the Baghdad mathematician Abu Jafar Muhammad ibn Musa
al-Khwarizmi (7807-850?). (The word algorithm comes from the name al-
Khwarizmi.) In that work, al-Khwarizmi showed, for example, a solution
of the quadratic5 equation

al-Khwarizmi's algebra is rhetorical. The terms x2 and 10* he calls "a
square" and "10 roots," respectively. He writes:

A square and 10 roots are equal to 39 units. The question there-
fore in this type of equation is about as follows: what is the
square which combined with ten of its roots will give a sum
total of 39? The manner of solving this type of equation is to
take one-half of the roots just mentioned. Now the roots in the
problem before us are 10. Therefore take 5, which multiplied
by itself gives 25, an amount which you add to 39 giving 64.
Having taken then the square root of this which is 8, subtract
from it half the roots, 5 leaving 3. The number three therefore
represents one root of this square, which itself, of course is 9.
Nine therefore gives the square. (Grant (1974, p. Ill))

In modern terms, this solution involves adding 25 to each side of the
equation to "complete the square."

(Since al-Khwarizmi did not know negative numbers, he missed the
root* = -13.)

Al-Khwarizmi felt that it was necessary to sup-
plement the foregoing solution with a geometric
version. His explanation is ambiguous. The follow-
ing is a modern interpretation (see Parshall (1995)):

In Figure 6.4, the darkly shaded square has side
x and area j2, and each of the x x 5 lightly shaded
rectangles have area 5x. Thus, the total area of the
shaded L-shaped region is x2 + 10*, the left side of Figure 6.4. Solving a
equation (6.4). Appending the unshaded square of quadratic equation,
area 5 x 5 = 25, we obtain the entire large square in Figure 6.4. Since
equation (6.4) requires that the L-shaped region have area 39, it follows
that the entire square has area 39+25 = 64. Since v7^ = 8, the side of
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the large square must be 8. On the other hand, the side is equal to x + 5.
Hence x + 5 = 8, and x must be equal to 3.

The following word problem leads to quadratic equation:

Example 6.4 (The valentine exchange). Ada teaches a third grade class in
which every child gives a valentine card to every other child. Ada used
exactly 380 valentine cards for this project. How many children were in
the class?

Suppose that there are n children in the class. Each child gives a card
to each of the n — 1 other children. Since there are n children, the total
number of cards sent is n(n — 1). To find n, we must solve the equation
n (n - l ) =380.

Solution (Trial and error). We compute n(n — 1) for various choices of n.
We find 20 x 19 = 380, which shows that there must be 20 children in the
class.

Al-Khwarizmi's method gives a second method of solving this equa-
tion. However, there is no benefit in using his geometric explanation. This
method, completing the square, can be used to solve any quadratic equa-
tion.

Solution (Completing the square). To solve the equation n(n — l) = 380, we
add 1/4 to both sides. This makes the right side a perfect square:

Taking square roots of both sides, we obtain

and adding 1/2 to both sides

We have reduced the problem to finding the square root of 3801/4. In fact,
for any quadratic equation, the method of completing the square reduces
the problem to the computation of a square root. The next section dis-
cusses methods for calculating square roots, but here we use a calculator
to find ^380.25 = 19.5, so that our solution is n = 19.5 + 0.5 = 20.6

The next section discusses two methods of computing square roots.
One method used to be a standard topic of instruction in U.S. schools, and
the other stems from the ancient Babylonians.

Square root algorithms

The following type of problem is a concern that undoubtedly dates from
the beginnings of agriculture—the division of land.
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Problem 6.1. Find the dimensions of a square field with area equal to
14,000 square feet.

Our modern solution notes that the length of the side in feet is the
square root of 14,000. If we have a calculator or a set of mathematical
tables, we quickly find \/14,000 = 118.32.... Otherwise, we could use
the numerical algorithm resembling long division, shown in Figure 6.5(a),
that used to be a standard part of eighth grade mathematics.

The "standard" square root algorithm

The square root algorithm has been dropped from the curriculum of most
schools. Not every student enjoyed the careful attention to detail required
by this computation. Nevertheless, my experience in school would have
been diminished if this topic had been dropped before my time. I found
it fascinating that this magical sequence of calculations could produce the
square root of a number and that I could verify its correctness with ordi-
nary multiplication. This was my first exposure to an algorithm of such
power.

Some educators argue that algorithms for square roots, and for even
long division, are no longer needed because such calculations are easily
done today on hand-held calculators. Nevertheless, the concept of algo-
rithm is the foundation of modern computer technology. I believe that
school education should include the experience of carrying out detailed
computations with pencil and paper or —even better—with a computer
spreadsheet.7

The geometric motivation for the square root algorithm is illustrated
in Figure 6.5(b). Very roughly, the idea is as follows: Start with a square
whose side is an approximation of the desired square root, for example, the
square with the dark shading in Figure 6.5(b). Find a better approximating
square by appending an L-shaped region — shown with lighter shading in
Figure 6.5(b). Repeat until a sufficient approximation of the desired square
root is obtained. More precisely, the following is a line-by-line explanation
of the algorithm carried out in Figure 6.5(a):

A. We wish to compute the square root of 14,000. The first step is to
group the digits of this number by twos, as shown.

B. Find the largest one-digit number whose square does not exceed the
leftmost group of A. Write this number on the top line as the first digit of
the square root, and write its square (I2 = 1) as the leftmost entry on line
B. Enter a 1, the first digit of the square root, on the top line. In this step
we obtain 100 as the first approximation of -\/14,000. This corresponds to
the darkly shaded square in Figure 6.5(b). This square represents an area
of 10,000 square feet; we are looking for a square of area 14,000 square feet.

C. Subtract row B from the first two groups of row A, obtaining 40.
In Figure 6.5(b), this number represents the fact that the area of the dark
shaded square is 4,000 square feet too small.
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D. In this row, we find that a square of side 110 gives the second ap-
proximation. In Figure 6.5(b), this approximation is obtained by augment-
ing the dark shaded square with the lighter shaded L-shaped region con-
sisting of a small square and two rectangles. These geometric steps corre-
spond in Figure 6.5(a) to the following algorithmic steps:

(a) Double the portion of the square root already found, that is,
double 1, obtaining 2. (Doubling is necessary to account for
two rectangles of the L-shaped region.)

(b) Form a two-digit number by appending a digit d on the right
side of 2, the number found above in (a), obtaining the num-
ber 20 + d. The digit d is found by trial so that d x (20 + d)
is as large as possible, but not exceeding 40, the remainder
found in C.

(c) Enter 1 (the digit d) on the top line as the second digit of the
square root.

(d) The entry 21 on line D represents the fact that the area of
the lightly shaded L-shaped region in Figure 6.5(b) is 2100
square feet.

E. Subtract (40 — 21 = 19) and bring down a pair of zeros.
F. As in D, double the portion of the root already found: 2 x 11 — 22.

Form a three-digit number by appending a digit d on the right side of 22.
The digit d is found by trial to be 8 by the requirement that d x (220 + d) is
as large as possible but not exceeding 1900. Enter the product: 8 x 228 =
1824.

Figure 6.5. An algorithm for computing square roots and its geometric
interpretation.
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G. As in E, subtract (1900 —1824 = 76) and bring down a pair of zeros.
The remaining steps (H through K) follow the pattern established in D
through G.

The Babylonian square root algorithm

The ancient Babylonians had a method of approximating the square root
of a number n. Start with a rough guess r for the square root. If this guess is
correct, then r = ". If r is too small or too large then " is, respectively, too
large or too small. Hence, the average of r and " is a better approximation
for the square root than either of these two numbers. This leads to the
approximation:

For example, the approximate the square root of n = 14,000, we might
use the guess r = 100, since 1002 = 10,000. We would obtain

The square root of 14,000 is 118.3215957..., which gives the Babylonian
approximation an error of 1.4%, good enough for most everyday early
Sumerian uses.

It might have occurred to some clever Babylonian that he or she could
get an even better approximation by starting with the above approxima-
tion as the initial guess, that is, by putting r = 120, obtaining an approxi-
mation with an error of only 0.01% — a stunning improvement:

The next step is an infinite sequence of successive approximations for the
square root. (The Babylonians did not carry matters this far.) We use the
result of each approximation as the guess for the next iteration. That is,
starting with TQ as an initial guess for the square root of n, we build the
following sequence of approximations:
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For n = 14,000 and TQ = 100, we have computed r\ and r?_ above.
Continuing one more step, we find:

Since the true value of \/14,000 is 118.32159566..., r± has an error of only
0.0000005%, far beyond what is needed for building most ziggurats.

Figure 6.6 illustrates the use of the Babylonian square root algorithm to
compute \/14,000. We start with two graphs, the curve

and the diagonal straight line V (s — r). For any point (r,s] on C, s repre-
sents the succeeding Babylonian approximation of v/14/000 starting from
r as an initial guess.

The point Z is the intersection of the curves C and T>. Let R be the
(horizontal) r-coordinate of Z. We see that if we started with R as an initial
guess for ^14,000, the succeeding Babylonian approximation would also
be R; in other words, R is precisely the square root of 14,000.

Of course, we cannot expect to be so lucky as to choose R as our initial
guess. (In Figure 6.6, the initial guess YQ happens to be equal to 40.) Our
iteration follows the arrows in the figure:

1. We proceed upward from the first guess TQ on the (horizontal) r-axis
to the point A on C.

2. The (vertical) s-coordinate of A, r\, is the second approximation. To
obtain the third approximation, we must locate a point with (horizontal)

Figure 6.6. The Babylonian square root algorithm.
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r-coordinate equal to r\. This is done by proceeding horizontally to point
BonD.

3. To find the third approximation, TI, proceed vertically from B to C
on C. The (vertical) s-coordinate of C is equal to TI.

4. As in step 2, we proceed horizontally to D on D. The (horizonal)
r-coordinate of D is YI-

5. As in step 3, proceed vertically to E whose (vertical) r-coordinate
gives us the fourth approximation. And so on.

We see that the path ABCDE winds ever closer to the point Z. The Baby-
lonian algorithm converges very rapidly to the square root. In fact, it can
be shown that at each iteration the number of correct digits of the approx-
imation tends to double. The Babylonian algorithm is clearly a more pow-
erful square root algorithm than the standard one.

The Babylonian square root algorithm is illustrative of the modern it-
erative methods of numerical analysis. Kreith and Chakerian (1999) show
how this and other iterative algorithms are particularly suitable for inclu-
sion in today's school curriculum.

We have seen some of the early beginnings of algebra. Next, we look in
more detail at the problem of solving equations—leading to rambunctious
quarrels between certain Italian mathematicians of the sixteenth century.



—JEAN LE ROND D'ALEMBERT (1717-83)

SAY "ALGEBRA" and one thinks "equations." Indeed, equations are a
central concern of classical algebra. An equation poses a mathemat-
ical "whodunit." The culprit x—the unknown x—left clues in the

form of an equation, and the mathematical detective must determine its
identity, the root (or roots) of the equation. As we will see, for certain Ital-
ian mathematicians of the sixteenth century, equations led to high intrigue,
but probably no actual crimes.

— What in the world is x = yl How can I make any sense of that
gibberish?

— This is it.
— Yes, go on. This is what?
— Without a context, neither the English pronouns, 'this' and 'it/ nor

the mathematical pronouns, x and y, make sense.

The terms square root, cube root, and so on, refer to roots of certain par-
ticular equations. For example, the square and cube roots of 2 (\/2 and \/2)
denote the positive roots of the equations x2- = 2 and r3 = 2, respectively.

To find a root of the equation

means to find a numerical value for x that makes the equation an identity.
That seems clear enough, but it is not. Indeed, there are three different
ways to understand what it means to find a value for x:

1. Find a rational number x that solves the equation exactly.
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The Root of the Problem

S

Algebra is generous she often gives more than is asked of her
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2. Use rational numbers to approximate x to any desired degree.
3. Express x in terms of rational operations (addition, subtraction, mul-

tiplication, and division) and radicals (square roots, cube roots, and
so on).

1. Find a rational solution. This is not an appropriate requirement be-
cause many equations involving a single unknown x do not have ratio-
nal solutions even though rational numbers can approximate a solution
as closely as desired. However, there is a type of problem involving two
or more unknowns, in which one looks only for rational solutions. For
example, the equation 5x — 3y = 1 has a solution x = 2, y — 3. Such
problems are called Diophantine equations after Diophantus of Alexandria
(fl. 250? CE), who solved a great many problems of this type. We will not
pursue this sort of problem in this chapter.

2. Use rational numbers to approximate a solution. A solution in this sense
satisfies the needs of current technology. Graphical methods, discussed
below, and iterative methods like the Babylonian square root algorithm
(page 125) lead to this kind of solution.

3. Express the solution in terms of rational operations and radicals. For ex-
ample, we will see later x — — \/I + \/2 is a root of equation (7.1). From
rational approximations we might never learn that a solution could be ex-
pressed using cube roots. On the other hand, if we need the solution for
some practical purpose, we still must to find decimal approximations for
the cube roots.

From our modern perspective, item 2 seems the natural way to find
the solution of an equation. However, for mathematicians of the Italian
Renaissance, item 3 seemed the only sensible way to understand the solu-
tion of an equation—mere approximations probably would have been un-
acceptable. In this chapter, we consider the solution of equations mainly
in the sense of item 3. Nevertheless, the next section deals with graphical
solutions.

This chapter continues the discussion of equations that began in the
preceding chapter, for example, linear equations in Examples 6.1-6.3 and
a quadratic equation in Example 6.4. In this chapter, we will also look at
cubic equations.

We begin with some graphical solutions.

Graphical Solutions

The following three examples illustrate the graphical solution of equa-
tions:

see Example 6.1. (7.2)
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(7.3)

(7.4)

To solve one of these equations means to find a numerical value for x
that makes the equation an identity. We prepare for the graphical solution
by introducing the equations that also involve a variable y (see Figures 7.1
(a)-(c), respectively):

7.5)

(7.6)

(7.7)

A solution of equation (7.2), (7.3), or (7.4), is a value of x such that the
corresponding value for y is 0 in equations (7.5), (7.6), or (7.7). Graphs of
these equations are shown in Figure 7.1. The problem of solving the three
equations (7.2), (7.3), and (7.4), that is, finding their roots, is the same as
the problem of finding the points A, B, C, D, E, and F where the graphs in
Figure 7.1 cross the horizontal axes.

Roots of equations found by the graphical method are only approxi-
mate. Greater accuracy depends on the precision of our draftsmanship.
One way to improve accuracy is to draw the graph only in the neighbor-
hood of the crossing of the horizontal axis. Figure 7.1 (a-i) is a normal scale
graph for equation (7.5); the region enclosed in the small rectangle about
the crossing point A in this figure is shown magnified in Figure 7.1(a-ii).
With this magnification we can see that A, the root of equation (7.5), is be-
tween x = 16.62 and x = 16.63. From the solution of Example 6.1, we
know the exact root of this equation is x = 16.625.

Similarly, Figures 7.1(b-ii) and (c-ii) show magnifications of the larger
scale graphs shown in Figures 7.1(b-i) and (c-i). We see that C, one of the
two roots of equation (7.6), is approximately x = 3.05; and F, one of the
three roots of equation (7.4), is approximately x = 8.8. Using nongraphical
methods that will be discussed later, the roots of these two equations can
be found to any desired accuracy. In fact, x = 3.06226 and x — 8.78885
are approximations accurate to five decimal places of the roots C and F,
respectively.

Figure 7.1 (a-i), the graph of equation (7.5), is a straight line. The magni-
fied graphs Figures 7.1(b-ii) and (c-ii) appear almost straight. The greater
the magnification, the straighter they will appear.

Quadratic Equations

In this section, we consider quadratic equations in more detail. We begin
with an example: the golden section, a proportion that can be found in the
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Figure 7.1. Solving equations graphically.



132 The Great Art

Figure 7.1. (continued) Solving equations graphically.

construction of the Parthenon. The golden section was also used by the
twentieth-century architect LeCorbusier.

Example 7.1 (the golden section). The ancient Greeks believed that a rect-
angle is most beautiful if the ratio of the larger side to the smaller equals
the ratio of the sum of the sides to the larger. If the length of the longer
side is x times the length of the smaller, find the value of x that achieves
the golden section.

Solution (completing the square). Referring to Figure 7.2, we must have the
proportion x : 1 :: x + 1 : x, or, in other words,

Multiplying both sides of this equation by x, we obtain the quadratic equa-
tion

(7.8)

The key step of this solution is an algebraic technique called completing
the square, which transforms equation (7.8) so that the left side is a perfect
square and the right side is a constant independent of x. To achieve this,
we add 1/4 — x to both sides of this equation, obtaining

Taking square roots of both sides of this equation, we obtain x - l/2 =
±i/2-s/5, which is equivalent to
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Since x represents the longer side of the rectangle, we must choose the plus
sign:

Using one of the square root algorithms (or an electronic calculator),
we find y/5 « 2.236068, yielding

x w 1.618034 (7.10)

Which is the true answer to this problem, equa-
tion (7.9) or equation (7.10)? The answer de-
pends on our point of view. For the builders of
the Parthenon, for me when I drew Figure 7.2,
and for anyone interested in measuring or build-
ing, equation (7.10) is the useful answer. On the
other hand, equation (7.9) displays what mathe- Figure 7.2. The golden
maticians would call the number theoretic proper- section.
ties of the golden section. It shows that the golden
section has a rational1 part u = 1/2 and an irrational part \/5/2. It can be
shown that the square root of any rational number is irrational provided
that it is not a perfect square.

This idea can be used to construct a second solution of Example 7.1,
that is, a second method for solving equation (7.8). This method is impor-
tant because it is very similar to the method for solving cubic equations
that will be discussed further below. The idea of the method is to guess
the form of the solution and then to show that, indeed, there exists a solu-
tion of that form. What would be an acceptable guess?

Of course, it would not be an acceptable solution to guess that for-
mula (7.9) is a root of equation (7.8) and then to give a calculation that
shows that this guess is correct. This procedure is unsatisfactory because
this "guess" is not plausible.

However, it is plausible to guess that a solution of equation (7.8) can
be achieved by a formula that involves nothing worse than a square root.
Perhaps one might guess that the solution is of the form a + by/5 where
a and b are rational numbers. This is better, but it still seems unlikely to
guess that \/5 is involved.

It is more plausible to guess that the solution is of the form a + b^/D
where a and b and D are rational numbers and D is not a perfect square.
If D is fixed and a + fr\/D = 0, then a and b must both be equal to zero.
Generalizing this idea, let us look for the solution of equation (7.8) in a
universe of numbers of the form u + v, numbers that can be expressed as
a sum of a "good" part u and a "bad" part v. We assume that, like the
numbers of the form a + b^/D, if the number u + v is equal to zero then
both u and v must also be equal to zero. It follows that zero is the only
number that is simultaneously good and bad.
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The multiplication of good and bad num-
Table 7.1. Good/bad table bers satisfies Table 7.1. The motivation, for ex-
of multiplication. ample, for assuming that the product of two

bad numbers is good is that the product of two
 ra rational mional multiples or \/D is a rational number.
This idea leads to the following alternate solu-
tion for Example 7.1.

Solution (good and bad parts). Assume that there is a solution of equation (7.8)
of the form u + v where u is good and v is bad. In equation (7.8), we replace
x by u + v:

We rearrange this equation by putting all the good terms on the left side
and the bad ones on the right. (The only bad terms are the ones with an
odd power of v as a factor.)

good bad

Since only 0 is both good and bad, we expect to solve equation (7.11)
so that both sides are equal to zero. If we can do so, then we are finished
because now x = u + v becomes a solution of equation (7.8). Note that
the validity of this conclusion does not depend on Table 7.1 or any other
of our assumptions concerning good and bad numbers. Setting the right
(bad) side equal to zero, we have v(l — 2u) = 0. This implies that either v
is zero or u = l/2. Let us try the latter alternative. If u = 1/2, then, setting
the left (good) side of equation (7.11) equal to zero, we have

Solving for v, we have v — ±i/2\/5- As before, we find the solutions

(The second alternative, v = 0, does not produce any further solutions.)

The quadratic formula. Either of the above two methods for solving Ex-
ample 7.1 can be used to solve the general quadratic equation:

(7.13)

(Note that a, b, and c are constants.) The quadratic formula gives two
solutions:

/r,- ,^
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1. If b2 — 4ac is positive, then equation (7.13) has two distinct real so-
lutions.

2. If b2 — 4ac is zero, then these two solutions coalesce into one: x =
~b/2a.

3. If b2 — 40c is negative, then equation (7.13) has solutions involving
the square root of a negative number. This was a very puzzling idea in the
sixteenth century when such roots were dubbed imaginary. In particular,
the number \f^-\ is called the imaginary unit and is denoted i. A number
of the form a + ib, where a and b are ordinary real numbers, is called a com-
plex number. The complex numbers are completely legitimate and useful
in both pure and applied mathematics.

Secrecy, Jealousy, Rivalry, Pugnacity, and Guile

Not the fifth circle of hell or an evil legal firm—rather, five Italian mathe-
maticians of the sixteenth century are the protagonists of our story. Their
names are Scipione del Ferro (1465-1526), Antonio Maria Fior (born 1506),
Niccolo Fontana (Tartaglia) (15007-57), Ludovico Ferrari (1522-65), and
Girolamo Cardano (1501-76). Their lives are summarized in the timelines
of Figure 7.3.

We will see that, for these five, solving equations was a passionate un-
dertaking. Researchers today may also be passionate about their work, but
academic conventions regarding publication and priority have tempered
the overt expression of strong negative feelings.

Scipione del Ferro became a lecturer in arithmetic and geometry at the
University of Bologna in 1496. It is not known exactly how or when del
Ferro became interested in cubic equations. He discovered a remarkable
new method for solving these equations, and then he did what no re-
searcher today would do — he tried to keep his results secret. There is no
way to know if del Ferro made his discoveries independently or if there
are others who should share the credit. There are no surviving writings
from him, although it is said that he wrote of his discoveries in a note-
book that on his death passed to his son-in-law, Hannibal Nave, who was
also a mathematician. Del Ferro, shortly before his death, communicated
his method for solving cubic equations to his student, Fior. A mediocre
mathematician Fior tried to use this information to elevate his reputation.
Hoping to gain fame from his knowledge of del Ferro's secret, Fior chal-
lenged another mathematician, Tartaglia, to a public competition in 1535.
However, when the competition took place on 13 February, it appeared
that Tartaglia also knew how to solve cubic equations. In fact, Tartaglia
had the greater skill and won a clear victory.

Niccolo Fontana (Tartaglia), still a child in 1512, was nearly killed by
a French soldier during the sack of Brescia. He received a saber cut to his
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jaw and palate, causing a speech impediment that occasioned his nick-
name Tartaglia, "the stammerer." Tartaglia taught himself mathematics
and earned a living teaching the subject in Venice and Verona. He ac-
quired a reputation as a talented mathematician, and Fior considered him
a worthy opponent. Tartaglia achieved further recognition because of his
victory in the public contest with Fior. That Tartaglia was able solve cubic
equations came to the notice of Girolamo Cardano, a mathematician who
had attempted to solve these equations without success.

Thus, methods for solving cubic equations were discovered by del Ferro

136 The Great Art
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and rediscovered by Tartaglia. Nevertheless, this technique is often called
Cardan's method after Girolamo Cardano. We will see how the credit for
this discovery unfairly passed to Cardano.

Girolamo Cardano, illegitimate child of Fazio Cardano and Chiara Mi-
cheria, was born in Pa via in 1501. His mother had fled to that city from
Milan to avoid an outbreak of the plague. Cardano learned mathematics
from his father. He studied medicine at Pavia and Padua and received
a doctorate in 1525. Cardano's life was hindered by two faults: he was
quarrelsome—this made it difficult for him to obtain and hold academic
positions—and he was a compulsive gambler.

In 1536, Cardano employed as a servant a 14-year-old orphan named
Ludovico Ferrari. Cardano discovered that this boy was exceptionally in-
telligent and decided to teach him mathematics. Ferrari became a brilliant
mathematician and a defender of Cardano against his enemies. In 1540,
Cardano resigned his academic post at the Piatti Foundation in Milan so
that his place could be taken by the 18-year-old Ferrari, who now became
a public lecturer on geometry.

In 1539, Cardano wheedled from Tartaglia his secret method for solv-
ing cubic equations. Cardano swore an oath that he would not divulge the
method before Tartaglia did so.

Four years later, Cardano and Ferrari traveled to Bologna and saw the
notebook of del Ferro that was now in the possession of his son-in-law
Hannibal Nave. Cardano now felt that he was released from his oath to
Tartaglia because the method of solving cubic equations was discovered
by del Ferro, not Tartaglia. Cardano reasoned that his oath did not prevent
him from publishing del Ferro's method, even if it was largely identical to
Tartaglia's.

In 1545, Cardano published his masterpiece, Ars Magna ("the great
art"), which contains, among other things, the method of del Ferro-Tartaglia
for solving cubic equations. Although Cardano gave credit to del Ferro
and Tartaglia, posterity gave the credit to Cardano, perhaps because he
was the first to publish. Ars Magna also contains Ferrari's solution of quar-
tic equations—equations of the fourth degree like x4 — x + 1 = 0.

Tartaglia formed an intense hatred of Cardano because Tartaglia felt
that Cardano broke his oath of secrecy. Ferrari quickly backed his master
in this quarrel and began an exchange of bitter insults with Tartaglia. Fer-
rari challenged Tartaglia to a public mathematical contest, but Tartaglia
was reluctant to risk his reputation against the relatively unknown Fer-
rari. He would have preferred a match against Cardano, who had become
a famous mathematician from the publication of Ars Magna.

A problem-solving contest between Ferrari and Tartaglia finally took
place on 10 August 1548. The match was won by Ferrari, who enjoyed an
immediate rise to fame. Of various employment offers, he chose a position
as a tax assessor.
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We must give credit to these five mathematicians of the Italian Renais-
sance for bringing algebra to a new higher level even though we may
smile at their braggadocio. No doubt each of them was motivated by
higher motives than just the desire for acclaim: a love of learning and a
genuine gift for mathematics. One might think that science would benefit
if conflicts among researchers could be reduced or eliminated. On the con-
trary, science benefits from healthy competition. Fortunately, today, there
is an important academic convention that harnesses the power of this ri-
valry —open publication with anonymous peer review.

In today's academic world, certain rules of openness govern the recog-
nition of intellectual achievement—rules that did not exist in sixteenth-
century Italy. Today, academic researchers gain recognition for their dis-
coveries by making a public announcement—ideally, publication in a ref-
ereed journal. When an author sends an article to an editor of a refereed
academic journal, the editor then forwards the article to an expert referee,
who provides an opinion on the merit of the article. The referee must be a
researcher in the same field as the author, a peer reviewer. The identity of
the referee is known only to the editor—not to the author or the public.

The five Italian mathematicians wrangled over ideas that had no com-
mercial application: the solution of cubic equations—that is, equations of
the third degree, like r3 — 6x2 +11 x — 6 = 0. For an idea with commercial
application, patent laws are now available. However, even today, it is diffi-
cult to gain proper recognition for a commercial mathematical innovation
because mathematical algorithms are not patentable.

These five mathematicians of the Italian Renaissance treated the method
of solving cubic equations as a gem of great value. Despite their efforts to
steal the gem and hide it from sight, it is now on view for all to see. We
will now see some of this gem's mathematical facets.

Solving a cubic equation

We illustrate the general methods for solving cubic equations with one
example:

*3+6* + 2 = 0 (7.15)

Instead of the method given by Cardano in Ars Magna, we will use a
method developed later.

The solution requires some remarkable insights that came only after
much experimentation and many false starts. We will use a generalization
of the good/bad method described above for solving quadratic equations.
However, we need three categories of numbers instead of two. Let's call
them "good," "bad," and "ugly." As before, rational operations applied to
the coefficients of the equation give us the good numbers. Bad and ugly
numbers involve cube roots. The numbers v/2 and V v^ are prototypes for
bad and ugly, respectively, because they illustrate the following properties:
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1. The product of a bad number multiplied by an ugly one is good.

2. The cube of a bad or ugly number is good.

We assume that the good, bad, and ugly quantities satisfy the multipli-
cation table in Table 7.2.

After a hundred false starts, the
hundred-and-first is the following bril-
liant guess: Maybe the solution can be ex- Table 7-2- Good- bad- and us'y
pressed as the sum of a bad quantity v and multiplication table.
an ugly one w. Let us see where this
leads.

Making the substitution x = v + w,
we use the identity

Equation (7.15) becomes

It follows from Table 7.2 that the terms u3 and v3 are good. Including also
the constant 2, the good terms are

The remaining terms are

We can group the good, bad, and ugly terms of equation (7.15) as follows:

Because we expect an incompatibility between good, bad, and ugly, we
seek to make each of these three parts separately equal to zero. We see that
both the bad and ugly parts are zero if we choose v and w such that

(7.17)

good bad ugly
good good bad ugly
bad bad ugly good
ugly ugly good bad
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Additionally, to make the good part equal to zero, we must have

(7.18)

Consider now that v and w are fixed solutions of equations (7.17) and
(7.18). We now write an equation that is quadratic with respect to a new
variable z and has roots v3 and w3:

(7.19)

We use equations (7.17) and (7.18) to simplify equation (7.19):

(7.20)

The roots of equation (7.20) are z = — 4 and z = 2. (This can be seen, e.g.,
by applying the quadratic formula, equation (7.14).)

On the other hand, the roots of equation (7.20) are v3 and w3, and v + w
is a root of the original cubic equation (7.15). In other words,

is one of the roots of the cubic equation (7.15). We can confirm this fact by
substituting x = 0.32748 in the left side of equation (7.15).

Comments on the above solution:
1. Additionally, it can be shown that there are two complex2 solutions

of equation (7.15).
2. The technique that was applied above to the specific equation (7.15)

can also be applied to any cubic equation of the form

(7.21)

Furthermore, any cubic equation can be reduced to this form by means of
a suitable transformation.

3. There is an additional complication in the solution of equation (7.21)
if the quadratic equation that takes the place of equation (7.20) has com-
plex roots. In this case, it can be shown that the cubic equation (7.21) has
three real roots. It is curious that an excursion into the complex numbers
is needed in order to obtain real solutions.

4. Cube roots arise in the solution of cubic equations. In general, the
solution also involves square roots that arise from the solution of a quad-
ratic equation like equation (7.20).

5. The above method is diabolically clever, and it is elegant in that it
shows that a solution can be found using square and cube roots. However,
if one needs a numerical solution of a cubic equation, there are easier it-
erative methods, like the Babylonian square root algorithm illustrated in
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Figure 6.6. Also note that the above method does not achieve a numeri-
cal solution. After finding x — — v^4 + \f2, we still must find numerical
approximations for the cube roots.

After the solution of cubic and quartic equations, it would seem that
the fifth and higher degree equations might be next to fall. This never
happened, and it never will happen because in 1824 the Norwegian math-
ematician Niels Henrik Abel (1802-29) proved that it is impossible to solve
the fifth degree equation in the same sense that del Ferro and Tartaglia
solved the cubic and Ferrari solved the quartic. This impossibility was in-
dependently rediscovered in 1829 by Evariste Galois (1811-32). Galois's
methods have a significance that goes far beyond this particular result,
methods that belong to a field of mathematics now known as Galois theory.

The Italian mathematicians of the sixteenth century did not solve equa-
tions in order to meet the needs of their technology. Today's technology
needs the solution of all kind of equations, which are generally solved by
numerical methods instead of the techniques of Cardano and the others.

An important motive for these sixteenth-century Italian mathemati-
cians was to show who possessed the greatest mathematical power. How-
ever, we should not write off their efforts as mere self-aggrandizement. In
fact, their solution of equations using radicals (square and cube roots, etc.)
two centuries later led Galois and others to discover the theory of groups,
a fundamental concept today in atomic physics and elsewhere in science
and technology. In the next chapter, we will see that group theory also
leads to an understanding of the ornamentation of the Alhambra.
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Symmetry Without Fear

Tyger Tyger, burning bright,
In the forests of the night;
What immortal hand or eye,
Could frame thy fearful symmetry?

—WILLIAM BLAKE (1757-1827), Songs of Experience

S
YMMETRY IS ORGANIZED REPETITION, seen both in the tiger's stripes
and in Blake's poetry; also, in the tile work of the Alhambra,1 the
fugues of Bach, the biology of the starfish, the growth of crystals,

the shape of galaxies, and the theory of subatomic particles. The bilateral
symmetry of the human body is only the first page of the intricate book of
symmetry.

In art, literature, and music, symmetry is a framework for artistic ex-
pression—the backstage scaffoldings, ropes, and pulleys. Artistic symme-
try is often more effective if the principle of repetition is not immediately
evident.

On the other hand, mathematics wants to see the bare bones, the es-
sence, of symmetry. We will see that symmetry has a connection with
algebra—more specifically, abstract algebra. We will see that symmetries
are geometric transformations with precise mathematical definitions, and
that symmetries are endowed with algebraic operations that resemble nu-
merical multiplication.

Symmetric ornaments of the two-dimensional plane exhibit the con-
nection between art and mathematics.2 The creation of beautiful symmet-
ric plane ornaments requires artistic skill combined with at least an im-
plicit understanding of certain mathematical relationships. In this chapter,
we are concerned with plane ornaments that are repetitive in the sense that
they can be brought into coincidence with themselves by suitable motions.

142
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Symmetric plane ornaments are divided into three categories: borders (e.g.,
Figure 8.1), wallpaper designs (e.g., Figure 8.2), and rosettes (e.g., Figure 8.4).
A border is a decorative horizontal band often found on the upper part of a
wall. The term wallpaper design refers to designs found not only on paper
wall coverings but also on fabrics and ceramic tile work.

More complex designs arise (1) by increasing the dimension from two
to three or (2) by introducing color as an added element of symmetry.
Crystallography is the study of three-dimensional patterns. In this chap-
ter, we examine two-dimensional monochromatic ornaments only; they
are sufficient to illustrate the richness of the connection with algebra.

In the real world, border and wallpaper designs are finite. However,
for the purpose of mathematical analysis, we adopt the fiction that these
designs have infinite extent.

In this chapter, we make a careful distinction between design and pat-
tern. A design is a particular graphic representation, but a pattern is a
scheme that underlies many designs. Although there are infinitely many
different border and wallpaper designs, there are only seven border pat-
terns and 17 wallpaper patterns.

Each pattern is governed by a mathematical structure called a group.
Each different symmetry pattern has a different group. The next section
illustrates the connection between plane ornaments and algebra by dis-
cussing in detail a particular group. It is hoped that this example has
enough structure to be interesting and yet is simple enough to show the
basic concepts.

Figure 8.1. Border ornaments, from a Persian manuscript.3
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Figure 8.2. Wallpaper designs, based on wall paneling from the Alhambra.4
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Figure 8.3. The eight symmetric images of a reversible square frame.

Symmetries of a Square

A square is a rosette of austere simplicity. The symmetries of a square
illustrate the connection between symmetry and algebra. Until now, we
have been using the word symmetry loosely, but, for this discussion, we
will use a more precise definition. A symmetry of the square is a motion that
brings the square into coincidence with itself.

The vacuous motion that moves nothing, called the identity, counts as
one of the symmetries. How many more there are depends on what mo-
tions are allowed. If we are only allowed to rotate the square by sliding it
in its initial plane, then there are four symmetric images of the plane—rota-
tions by a multiple of 90°—but if we are allowed to turn over the square,
then there are four more, making a total of eight.

Figure 8.3 shows the symmetries of a square that can be rotated or re-
flected; we call it a reversible square frame (RSF). Think of an RSF as an
empty square picture frame that looks exactly the same from both sides.
The symmetries (including the identity) of an RSF are eight in number;
they correspond with the eight different ways of placing a slide in a pro-
jector. These are eight motions—rotations possibly combined with reflec-
tion—that bring the RSF back into coincidence with itself. Application
of the eight symmetries to an RSF results in eight indistinguishable blank
squares. In order to distinguish the symmetries, Figure 8.3 shows the letter
Q inside the square.

The RSF is not the only plane figure that exhibits the symmetries shown
in Figure 8.3. For example, the rosette in Figure 8.4 is obtained by super-
imposing the eight images in Figure 8.3 of the letter £.In fact, substituting
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the letter Q with another figure produces other rosettes with the eight sym-
metries of Figure 8.3.

As shown in Figure 8.3, we use the symbols
A-D and A'-D' to denote the eight positions
of the RSF. (Note that here, and elsewhere in
this chapter, the prime symbol' does not have
an independent meaning. Any connection be-
tween A and A7 is heuristic and informal. The
symbol A' has two typographical parts, but it
is indivisible mathematically.) Let S denote the

Figure 8.4. A rosette set of the eight transformations, denoted a-d
obtained by superimposing and fl/_^ that move position A (the initial po-
the eight £s in Figure 8.3. sition of the RSF) into positions positions A-D, A'-D', re-

spectively. In particular, symmetry b rotates
position A a quarter turn (90°) counterclockwise into position B. More-
over, symmetry b rotates any of the eight positions in the same manner:

b : A -* B, B -> C, C -> D, D -> A, A' -> D', B' -» A', C' -> B', D' ->• C'

The position that results from applying symmetry b to position C is de-
noted bC, so that we have bC = D.

The symmetry a is the identity transformation because it leaves the
square unmoved, for example, aC = C. The other symmetries all have
more than one geometric description; for example, b can be considered
either a 90° counterclockwise rotation or a 270° clockwise rotation, and
a' is either a reflection through a horizontal line or a reflection through a
vertical line followed by a 180° rotation.

We define multiplication of symmetries as follows: The application of
symmetry b to the result of applying c to D is denoted fe(cD), or, with-
out ambiguity, we omit the parentheses and write bcD. Carrying out this
computation, we have bcD — foA = B. We say that the product be applied
to D gives B. Since c is a 180° rotation and b is a 90° counterclockwise ro-
tation, be is a 270° counterclockwise rotation—the same as a 90° clockwise
rotation. Therefore, be is the same symmetry as d. Multiplication of any
two symmetries in S is defined similarly. Table 8.1 is the multiplication
table for all eight symmetries in S.

The group, also called the symmetry group, of the RSF is the set of these
eight symmetries together with the multiplication defined in Table 8.1. More gen-
erally, a group is set of elements—not necessarily symmetries—together
with a definition of multiplication of pairs of elements satisfying the three
axioms listed on page 148.

We will discuss the many ways in which the multiplication in Table 8.1
resembles ordinary multiplication, but it fails to do so in one respect. For
ordinary multiplication, the order of the factors does not affect the prod-
uct; for example, 3 x 4 = 4x3 . This is an instance of the commutative law
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Figure 8.5. Symmetries are noncommutative: a'b ̂  ba'. The top and bottom rows
illustrate, respectively, that a'b — b' and ba' = d'.

Table 8.1. Multiplication table for the symmetries «5 of a reversible square frame.
The bold entries indicate instances of noncommutativity, for example,
a'b = b', ba' = d'.

Pure Reflection
rotation & rotation

a b c d a' b' c' d'
a [ ~ 1 b c d~T? b7 c 7 h 7 "

Pure b b c d a d' a' f c'
rotation c c d a b c' h' a' b'

d d a b c f c' d' a'
a' "a7 f c7 c F ~ ~ a b c d~~

Reflection b' b' c' h' a' d a b e
& rotation c' c' d' a' f c d a b

h' | h' a' b' c' I b c d a

of multiplication: for any numbers x and y, we have xy = yx. There are
12 instances in Table 8.1 in which the commutative law fails. Figure 8.5
shows one instance of this: a'b = b' and ba' = d'.

The symmetries a', b', c', d' have the following geometric meanings:
a': A reflection across a horizontal line.
b: A 90° rotation counterclockwise.
b': A reflection across a horizontal line followed by a 90° rotation counter-

clockwise.
d': A reflection across a horizontal line followed by a 90° rotation clock-

wise.
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If X is any of the positions A-D and A'-D', a'bX means the same as
a'(bX). In other words, in the product a'b the symmetry b must be ap-
plied first. Thus, the product a'b denotes a rotation 90° counterclockwise
followed by a reflection across a horizontal line. On the other hand, the
product ba1 denotes reflection across a horizontal line followed by a rota-
tion 90° counterclockwise.

The Group Axioms

Unlike the ordinary multiplication of numbers, the multiplication of sym-
metries of a square is noncommutative—as shown in the preceding sec-
tion. Nevertheless, the multiplication of symmetries shares several prop-
erties with ordinary multiplication. These properties are called axioms.
Any set Q of elements with an operation of multiplication that satisfies
the following three axioms is called a group—a name coined in 1830 by
Evariste Galois (1811-1832).5 For example, S, defined in the preceding
section, is a group.

Axiom 1. The associative law of multiplication. A product of three fac-
tors gives the same result whether we start by multiplying the first two factors
or the last two. In other words, for any three elements x, y, and z of Q, we have
(xy}z = x(yz). This familiar property of the multiplication of numbers is
true for the multiplication of symmetries in S because, for any position W,
(xy}z\N and x(yz) Wboth have the same meaning: "first transform W with
symmetry z, then y, and, finally, x."

Axiom 2. The identity. There exists an element e of S, called the identity,
such that, for any element x of Q, we have ex = xe = x. For example, the
number 1 has this property: for any number x, we have 1 • x = x • 1 = x.
Similarly, the identity symmetry a has the property that for any symmetry
x in S, we have ax = xa = x.

Axiom 3. The inverse. For any element x of Q, there exists exactly one
element x~~l ofQ, called the inverse of x, such that x~lx = xx~l = e where e is
the identity for Q. For example, for any nonzero number x, there is exactly
one number y, called the reciprocal of x, such that xy = 1. Similarly, for
any symmetry x, there exists exactly one symmetry y such that xy is equal
to the identity, that is, such that xy = a. For example, since b is a 90°
counterclockwise rotation, the left inverse of b is d because d is 90° clockwise
rotation: bd = db = a. The rotation d negates the rotation b.

Since the multiplication of symmetries is noncommutative, it is con-
ceivable (but we will see that it is impossible) that there might be a pair of
symmetries, x and y, such that y is a right, but not a left, inverse of x. In
other words, we might have xy = a and yx ^ a. However, Axiom 3 asserts
that this cannot happen—that every element x of Q commutes with its in-
verse (x~lx — xx~1}. This can be confirmed for S by examining Table 8.1.
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This table confirms the fact, noted above, that the symmetries b and d are
inverse to each other (b"1 = d) because the table shows bd = db = a.
(Recall that 0 is the identity symmetry.) The six other symmetries of S are
their own inverses6 because:

Axioms 2 and 3 are slightly stronger than necessary. It can be shown
that if merely a right identity e exists, then e is also a left identity. In other
words, if xe = x for all xinQ, then it is also true that ex is equal to x for all
x in Q. Similarly, if merely a right inverse of x exists, that is, if there exists
y in Q such that xy = e, then y is also a left inverse of x: yx — e. Hence, we
write y = x~l, and it is not necessary to use separate notations for left and
right inverses.

An examination of Table 8.1 shows that S is a group. However, this
table is a redundant description of S. In fact, there is a simpler way of de-
scribing the symmetries of a square that comes closer to the way in which
one rotates and/or reverses a transparency in a projector to achieve the
images in Figure 8.3. One reflection and one 90° rotation suffice to gener-
ate all the needed transformations. More specifically, repeated application
of the two symmetries b (the 90° counterclockwise rotation) and a' (the
horizontal reflection) generates all of the symmetries of the group <S, apart
from the identity. For this reason, these two elements of <5, b and a', are
called generators of S. For example, the symmetry c' is the same as two
counterclockwise 90° rotations (b2) followed by a horizontal reflection (0').
This is expressed by the formula c' = a'b2. (Note that, in this formula,
the rightmost symmetry, b, is applied first.) The following is a complete
list showing representations of the nonidentical symmetries in terms of a'
and b:

The symmetries b and a' are not the only generators of S. A clockwise
90° rotation (d) and vertical reflection are also generators. As remarked ear-
lier, d is a clockwise 90° rotation. Examination of Figure 8.3 shows that c'
is a vertical reflection. Thus, d and c' are an alternate choice for generators
of the group S.

All the rotations and reflections of group S leave a certain point fixed:
the center of the square. We have seen that the square itself and Figure 8.4
are transformed into themselves by all the symmetries of S. Figures with
this invariance property are called rosettes because many have decorative
uses. There are other groups of rotations and reflections that leave one
point fixed—for example, the group of rotations by a multiple of 120°.
Each such group has an associated family of rosettes.

The following are a few examples of groups:
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1. The set of all integers (positive, negative, and zero) is a group under
addition. This means that the group multiplication is understood to
be ordinary addition. For this group, the identity is the number 0,
and the inverse of a number a is —a.

2. The set of nonzero real numbers under ordinary multiplication: The
identity is 1, and the inverse of a is l/a. The number 0 must be ex-
cluded because it fails to have an inverse. There are many subsets of
the real numbers that are also groups under ordinary multiplication:

(a) The positive rational numbers
(b) Positive numbers of the form a + b\/2 where a and b are rational

3. The numbers 0, 1, ..., 9 where the product of two numbers is de-
fined to be the remainder on dividing the ordinary sum by 10. For
example, the group product of 7 times 8 is equal to 5 because the
remainder on dividing 7 + 8 = 15 by 10 is equal to 5.

4. The numbers 1, 2, ..., 10 where the product of two numbers is de-
fined to be the remainder on dividing the ordinary product by 11.
The proof that this is a group makes use of the fact that 11 is a prime.
The number 1 is the identity. The group product of 7 times 8 is equal
to 1 because the remainder on dividing 7 x 8 = 56 by 11 is 1. This
calculation also shows that 7 and 8 are inverse to each other in this
group.

Isometries of the Plane

Rotations and reflections are examples of isometries of the plane. An isom-
etry is a transformation of the plane onto itself that leaves all distances
unchanged. The set of isometries of the plane satisfies Axioms 1-3 and,
therefore, constitutes a group. An isometry can be visualized by repo-
sitioning a piece of paper on a flat desk. Instead of a piece of paper, a
transparency (of the sort used in an overhead projector) is a more apt il-
lustration because the image on the transparency is still visible when the
sheet is turned upside down. Of course, we ignore the fact that the sheet
is finite whereas the concept of a plane is infinite.

In addition to rotation and reflection, there is a third type of isometry:
translation. The three isometries are visualized by the following move-
ments of the transparency sheet:

• Rotation. Move the sheet so that one point remains fixed. For exam-
ple, spin the sheet with one point fastened to the desk with a pin.
A rotation is specified by giving the fixed point and a clockwise or
counterclockwise angle.

• Reflection. Turn the sheet upside down in such a way that all points
on a certain line, the "mirror," keep their original positions.
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• Translation. Slide the sheet so that the final position of each line is
parallel to its original position. A translation is specified by two dis-
tances: horizontal movement right or left and vertical movement up
or down.

In addition to these three fundamental symmetries, there is a fourth,
glide reflection that is important in border and wallpaper symmetry groups.
Glide reflection is a composite of reflection and translation. This symmetry
is illustrated in Figure 8.6. In this figure, the dart a is moved to the position
of dart b by subjecting the entire design to the following two transforma-
tions:

1. Advance the entire design horizontally 0.2 inch.
2. Then reflect the design across the horizontal line shown in Figure 8.6.

This motion is an example of a glide reflection. In general, a glide reflec-
tion is a reflection followed by a translation in the direction of the line of
reflection.

The full isometry group X consists of all rotations, reflections, and trans-
lations of the two-dimensional plane. The group <5, discussed above, is a
subgroup of I. This means that (1) the group S is a subset of X, and (2) the
group multiplication in S is inherited from X.

Each of the patterns for two-dimensional ornaments—rosettes, bor-
ders, and wallpaper designs—generates a distinct subgroup of I.

Patterns for Plane Ornaments

Patterns for rosettes are simple. The rosette group for the reversible square
frame (discussed above) is generated by a quarter turn and a reflection
through the center of rotation. In general, a rosette group (or pattern) is
generated by a l/n turn (where n is a natural number), with or without a
reflection through the center of rotation. Thus, for each natural number n,
there are two different rosette groups.

Catalog of border and wallpaper patterns

Figures 8.7 and 8.8 catalog the seven border patterns and the 17 wallpaper
patterns, respectively. For each pattern, that is, for each symmetry group,

Figure 8.6. A border design.
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Figure 8.7. The seven border patterns.

*• Translation • Reflection » Glide reflection w Half turn
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Figure 8.8. The 17 symmetries of the plane, (a)-(q) The shaded regions are the
basic repeated units. Each wallpaper pattern is generated by repeated application of
the translations, reflections, glide reflections, and rotations indicated by the
following symbols:

Rotations:

»• Translation A Half turn

— Reflection ^ 120° turn
=*> Glide reflection g Quarter turn
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Figure 8.8. Continued.



Symmetry Without Fear 155

Figure 8.8. Continued.
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Figure 8.8. Continued.
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Figure 8.8. Continued.

the characteristic symmetries are listed and shown in the figures by special
symbols for translations, reflections, glide reflections, and rotations. In
each case, these symmetries generate a different symmetry group.

Although there is a limited number of these patterns, there is an un-
limited number of designs based on them. The finite number of patterns
does not limit artistic expression.

Each symmetric design in Figures 8.7 and 8.8 is generated by rotations,
reflections, and translations of a fundamental figure. For the border pat-
terns (Figure 8.7) the fundamental figure is the dart >*, and for the wallpa-
per patterns (Figure 8.8) it is the letter F. The requirement for a fundamen-
tal figure like >^ or F is that it should be asymmetric in order not to intro-
duce spurious symmetries. In Figure 8.8, one instance of the fundamental
figure is shown within a shaded region; the pattern symmetries transform
each shaded region into copies of itself that cover the entire plane without
overlap.
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The naming of these patterns (e.g., pmll) follows the standard termi-
nology of crystallography.7

Wallpaper watching

The identification of border and wallpaper patterns provides an interest-
ing diversion, especially for bird watchers and wildflower fanciers during
the off season. Such patterns are found on walls and elsewhere—for exam-
ple, carpets, curtains, and clothing. Caution: Gazing excessively at a car-
pet may be considered merely odd, but prolonged examination of clothing
can be badly misinterpreted, especially when the clothing is worn by an-
other person.

The novice wallpaper watcher may find that it is difficult to identify
the pattern of a border or wallpaper design using only Figures 8.7 and
8.8. This is true because designs can have the same symmetry group and
still appear quite different—just as a chihuahua and a Saint Bernard are
widely different instances of Canisfamiliaris. Bird watchers, botanists, and
others have a special device for solving this problem. Wildflower identi-
fication, for example, often proceeds by answering a prescribed series of
yes-no questions: "Does the stem have a triangular cross-section?" Each
succeeding question depends on the preceding answer—yes or no. An en-
tire hierarchical tree of such questions is called a taxonomic key. Such keys
are often used for identification of plants and animals. A taxonomic key
can be short or more than 1000 pages.8 Tables 8.2 and 8.3 are taxonomic
keys for the identification of border and wallpaper patterns. The reader
may want to use these keys to identify the patterns of Figures 8.1 and 8.2.9

Table 8.2. Key to the seven border patterns. Based on Washburn and Crowe
(1988, Table 4.1, p. 83), with permission from University of Washington Press.

Start: Is there a vertical mirror line?
Yes: Is there a horizontal mirror line?

Yes: Figure 8.7(g) pmm2
No: Is there a half turn?

Yes: Figure 8.7(f) pma2
No: Figure 8.7(b) pmll

No: Is there a horizontal mirror line or a glide reflection?
Yes: Is there a horizontal mirror line?

Yes: Figure 8.7(c) plml
No: Figure 8.7(d) plal

No: Is there a half-turn?
Yes: Figure 8.7(e) pill
No: Figure 8.7(a) pill
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Table 8.3. Key to the 17 wallpaper symmetries —from Reid (1999). Based on
Washburn and Crowe (1988, Table 5.1, p. 128), with permission from University of
Washington Press.

Start: Does the pattern reflect in at least one direction?
Yes: Does the pattern rotate?

Yes: What is the smallest rotation?
180°: Are there reflections in two directions?

Yes: Are all the centers of rotation on mirror lines?
Yes: Figure 8.8(f) pmm
No: Figure 8.8(i) cmm

No: Figure 8.8(g) pmg
120°: Are all the centers of rotation on mirror lines?

Yes: Figure 8.8(0) p3ml
No: Figure 8.8(n) p31m

90°: Are there mirror lines at 45°?
Yes: Figure 8.8(k) p4m
No: Figure 8.8(1) p4g

60°: Figure 8.8(q) p6m
No: Is there a glide reflection which doesn't lie on a mirror line?

Yes: Figure 8.8(e) cm
No: Figure 8.8(c) pm

No: Does the pattern rotate?
Yes: What is the smallest rotation?

180°: Is there a glide reflection?
Yes: Figure 8.8(h) pgg
No: Figure 8.8(b) p2

120°: Figure 8.8(m) p3
90°: Figure 8.8(j) p4
60°: Figure 8.8(p) p6

No: Is there a glide reflection?
Yes: Figure 8.8(d) pg
No: Figure 8.8(a) pi

Since its discovery by Galois in 1830, the concept of group has been
central to the study of mathematics beyond the elementary level. Galois
used groups to study the roots of algebraic equations. In this chapter, we
introduced the symmetry groups of two-dimensional ornaments. This is
only the beginning. In modern mathematics, groups are everywhere.

We have seen in this chapter that the study of abstract algebra goes far
beyond the treatment of arithmetic problems characteristic of elementary
algebra. In the next chapter, we will extend the realm of abstract algebra
in a way that might seem bizarre. We will see that algebra can examine
itself and, indeed, all of mathematics.



The Magic Mirror

The looking-glass answered,

— thou, o queen, art the fairest of all.

Then she was satisfied, for she knew that the looking-glass spoke the
truth.

—THE BROTHERS GRIMM, Snow White and the Seven Dwarfs

Undecidability

A MAGIC MIRROR that answers every question truthfully would be a
/\ scientist's dream. Commonis is only a fairy

JL JL tale and no such truth-machine can exist. In fact, if there were such
a mirror, we could confound it with the following question:

— Is the following a true statement? I am lying.

A little reflection shows that neither Yes nor No can be a truthful answer.
If the mirror says Yes, then it should have said No; and if it says No, then it
should have said Yes. The best that the mirror can do is to say:

— That's a smart-aleck question. Ask me a real question.

The above is a version of the liar's paradox—first stated by the Cretan
Epimenides in the seventh century BCE. Epimenides said, "All Cretans are
liars." Did he lie or tell the truth?

One might think that the search for a truth machine died out with
the practice of witchcraft and alchemy. Such was not the case. Early in
the twentieth century, the search for a truth machine was a serious, re-
spectable, and plausible concern of mathematical logic. This quest was
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supported by a movement called formalism—led by David Hilbert (1862-
1943), a very distinguished and influential German mathematician of the
University of Gottingen. Of course, the formalists were too sophisticated
to expect to literally find a magic mirror. They narrowed their concern
to mathematical questions that can be answered Yes or No. The formalists
thought that it might be possible to determine the truth of a mathematical
assertion in two steps:

1. Translate the assertion into the formal language of symbolic logic.
Sometimes this might be tedious, but no one denies that it can always
be done.

2. Find an algorithm (a prescribed step-by-step calculation) called a de-
cision procedure to determine the truth or falsity of any such formally
stated assertion. To carry out the procedure one would merely fol-
low certain prescribed rules without considering the meaning of the
assertion. This second step is the where the difficulty lies. No one
has overcome this difficulty for the very good reason that there is a
mathematical proof that this task is impossible.

The existence of a decision procedure was conjectured in 1928 in a book
by Hilbert and Ackermann.1 And it was disproved three years later in
1931 by Kurt Godel (1906-78), who formulated and proved the undecid-
ability theorem?- Godel showed that any axiomatic system that is strong
enough to include ordinary arithmetic is either inconsistent or undecidable.

Inconsistent means that it is possible to derive contradictions. It can be
shown that if it is possible to derive any contradiction whatever, then it
is possible to derive the particular contradiction 0 = 1. No one seriously
contends that ordinary arithmetic is inconsistent. Common sense suggests
that ordinary arithmetic is consistent, but no one has proved that it is.

Undecidable means that the system permits meaningful arithmetic state-
ments that can be neither proved nor disproved using only the axioms of
the system.

Godel proved his undecidability theorem by translating the smart-aleck
liar's paradox above into an arithmetic proposition that denies its own
truth. The details of Godel's construction are quite complex, and we will
not attempt to understand them. No doubt the formalists knew the liar's
paradox, but they might not have seen its significance because it did not
seem to be a mathematical question. Godel's tour de force showed that, on
the contrary, it is possible to transform the liar's paradox into an undecid-
able arithmetic proposition.

If a proposition is undecidable, it does not follow that its truth or falsity
is inconclusive. One might think that if a proposition is undecidable then
we cannot say whether it is true or false, but the following story shows
that this is not always so.
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The Tragic Case of the Decent Numbers

Ada and Ben have made a mathematical discovery, but, un-
fortunately they died in a fire that also consumed most of their
unpublished manuscript. An examination of the ashes reveals
only fragmentary information. We see that they define a class
of the natural numbers that they call the decent numbers, but
the details of that definition are illegible—except for the claim
that the definition involves only ordinary logic and arithmetic.
We can make out the following proposition.

Proposition 9.1. All natural numbers are decent.

The fragment also claims that the remainder of the manu-
script —completely lost in the fire — consists of a proof that Prop-
osition 9.1 is undecidable.

Let us assume that Ada and Ben correctly proved that Proposition 9.1
is undecidable. Does that mean that it is inconclusive whether Proposi-
tion 9.1 is true or false? No, Proposition 9.1 is certainly true. Indeed, if it
were false then there must exist an indecent number, and we could prove
that Proposition 9.1 is false merely by exhibiting this number—contrary
to our assumption that Ada and Ben found a correct proof that Proposi-
tion 9.1 is undecidable. Proposition 9.1 is true, but it cannot be derived
from the usual axioms of arithmetic using ordinary logic.

Godel's discovery had a major effect upon mathematics and philoso-
phy. It hastened the end of the optimism of the Enlightenment that began
in the seventeenth century—the belief that rational thought has no limits
and that the science of Newton and others would proceed without bound.3

Godel discovered a blemish in the axiomatic method, but this in no way di-
minishes its previous accomplishments dating back to the ancient Greeks.
However, expectations of future successes rose too high. Godel's theorem
is like a minor stock market correction. We don't mind because we have
invested for the long term.

The Magic Writing

Why did Hilbert and the formalists suspect that a decision method might
exist? They were encouraged by a history of success going back hundreds
of years. Mathematicians discovered a remarkable new way of writing
mathematical assertions. To the novice, algebra may seem as unintelligible
as is Chinese to one ignorant of that language. In fact, there are several
mutually unintelligible Chinese languages that share a common written
language. Algebra is similar to Chinese in this respect because algebra is
an international written language.
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Certain algebraic formulas (e.g., equations) are equivalent to sentences
in ordinary language. The most remarkable feature of the language of al-
gebra is that there is a body of rules that enables us to mechanically trans-
form one algebraic assertion into another so that if the first assertion is
true then the derived assertion is also true. Starting with the equation
x — 2 = 3, we apply the rule that we may add the same number to both
sides of an equation. Adding 2 to both sides, we obtain x = 5. In other
words, if x is a number such that x — 2 = 3, then x must be equal to 5.

Although this basic pattern remains valid, the art of solving equations
goes far beyond this trivial example. The scope of this method is enlarged
by increasing the number of rules and the complexity of the initial asser-
tions. The method is further extended applying algebraic methods to other
areas of mathematics such as set theory and symbolic logic.

In elementary algebra, these abstract methods are applied to arithmetic
assertions. The basic variables (x, y, etc.) represent (generally unspecified)
numbers; formulas are formed using these variables together with arith-
metic operations (+, —, x -=-), relations (=, <, >), and grouping sym-
bols (e.g., parentheses and brackets). Symbolic logic augments arithmetic
formulas by including further abbreviations that make it possible to state
more complex assertions. In particular, symbolic logic includes abbrevi-
ations for and (A), or (V), not (~),/or every (V), there exists (3), such that
(:), implies (=>), and if and only if (•&•). Furthermore, symbolic logic per-
mits variables (A, B, etc.) that represent (generally unspecified) assertions
called propositions.

Example 9.1. (a) The expression

is read as

A and B are not both true if and only if either A is false or B is false.

(b) The expression

is read as

For every number x there exists a number y such that y is greater than x.

Symbolic logic is a tool of metamathematics, the study of the method-
ology of proof in mathematics. A proof, First and always, must be a con-
vincing argument. Although the manner in which mathematicians present
proofs is quite varied, metamathematics assumes that all mathematical
proofs can be expressed in symbolic logic. From this point of view, a proof,
relative to a system of axioms, is a sequence of assertions, conforming to
the rules of inference, that starts from the axioms, or a previously proven
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result, and terminates in a desired conclusion. In contrast, real proofs,
as they are actually presented by mathematicians, use ordinary language,
which is much less terse than symbolic logic; and real proofs use far fewer
steps than symbolic logic would require.

It might seem that we have succeeded merely in creating an arcane
code for writing mathematical assertions. Indeed, mathematicians are
sometimes accused of creating a private language in order to exclude the
uninitiated. But this accusation overlooks the central point. As mentioned
above, algebra and symbolic logic give us a way of proceeding mechan-
ically from assertion to assertion. In algebra, we use the rules of algebra,
alluded to by Cardano in the epigraph to Part III, and in symbolic logic we
use the rules of inference.

Coldly applying abstract rules of inference might seem to replace a
meaningful problem with a mindless algebraic formalism, a meaningless
game. On the contrary, the power of algebra is that it examines the ab-
stract essence of a problem, ignoring confusing unessential details. In the
sixteenth century, Cardano recognized the power of algebra and rightly
called it Ars Magna, the Great Art.

The next three chapters are a brief introduction to the calculus, the mathe-
matics of the indiscrete.



Part IV

A Smoother Pebble

If I have made any valuable discoveries, it has been owing more to
patient attention than to any other talent.

—ISAAC NEWTON
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On the Shoulders of Giants

If I have seen further it is by standing on the shoulders of giants.

—ISAAC NEWTON, Letter to Robert Hooke

CALCULUS is Latin for pebble. The original meaning is preserved in
medical terminology: a kidney stone is called a renal calculus. In
antiquity, calculi were used for voting—black or white indicating

condemnation or acquittal. However, the ancient use of pebbles for reck-
oning is the source of our common usage: a calculus is a method of compu-
tation. Specifically, the calculus refers to a method of computation devel-
oped in the seventeenth century. Truly, "method of computation" under-
states the nature and importance of the calculus, which opened up a new
view of the world and led to Newton's astonishing discoveries in physics.
Today, it is hard to find any corner of modern science or technology that
does not rest on the foundation of the calculus.

Isaac Newton (1642-1727) discovered the calculus during the years
1665-66, apocalyptic years for London encompassing first the Great Plague
and then the Great Fire. While Cambridge University was closed on ac-
count of the plague, Newton—only 23 years old — returned home to Wools-
thorpe, where he continued his studies independently. Newton did not
publish his discovery of the calculus until much later. In 1675, the calculus
was independently rediscovered by the German mathematician/philos-
opher Gottfried Wilhelm Leibniz (1646-1716), who published his results
in 1684. A bitter dispute over priority ensued between Newton, Leibniz,
and their supporters. The discovery of the calculus is generally credited
equally to Newton and Leibniz. In this chapter, we will see that parts of
the calculus were discovered even before Newton and Leibniz.

The two central problems of the calculus are the problem of areas and
the problem of tangents. In calculus and its applications these problems
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are generalized beyond areas and tangents; therefore, we have the tech-
nical names integration and differentiation, respectively. Roughly speaking,
integration is a method of evaluating a quantity exactly by approximat-
ing it with sums of an ever larger number of ever smaller terms; and
differentiation is the computation of the rate of change of one variable
with respect to another. Integration includes the problem, for example, of
finding the length of a curve, and differentiation includes the problem of
finding the velocity of a particle. Although problems of integration and
differentiation were considered before Newton and Leibniz, their genius
consisted in greatly expanding the scope of these two ideas and, most of
all, in finding the connection between them. In this chapter, we see how
these problems were treated before Newton and Leibniz—integration by
Archimedes (2877-212 BCE) and differentiation by Pierre de Fermat.

Integration Before Newton and Leibniz

Archimedes' method for estimating pi

Although popularly everyone called a Circle is deemed a Circle, yet
among the better educated Classes it is known that no Circle is really a
Circle, but only a Polygon with a very large number of very small sides.

—EDWIN A. ABBOTT, Flatland (1884)

Ancient Greek mathematicians made discoveries that foreshadowed the
calculus, despite their lack of adequate mathematical notation. In par-
ticular, we will see how Archimedes found estimates of the number n.
Archimedes used a technique of Eudoxus called the method of exhaustion;
he approximated the circumference of a circle to any desired degree by
inscribing polygons with a sufficiently large number of sides.

The ancient Greek geometers encountered a discontinuity at their first
discussion of the circumference and area of a circle —as do high school
geometry students of today. This is because the concepts of circumference
and area of a circle are difficult to relate to lengths and areas of figures built
from straight line segments—the only kind of figures previously consid-
ered. The length of a straight line segment is merely the distance between
the two endpoints of the segment. The perimeter of a polygon is simply
the sum of the lengths of its sides, but we need some additional concepts
to apply this idea to the circumference of a circle.

Archimedes found an elegant method for computing the arc length of a
circle and other curves. Using his method, Archimedes was able to prove
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that TT, the ratio of the circumference to the diameter of a circle, is between
310/7i and 31/7. For simplicity, we will use his method to find a rougher
approximation. However, his method can find approximations of n with
any desired accuracy.

Pi, the ratio of the circumference to the diameter of a circle, evokes pop-
ular fascination. Perhaps n recalls our school days, or perhaps we try to
see a hidden meaning in this infinite, nonrepeating decimal number. Pi
has been the subject of errors and excesses. For example, in 1897 the Indi-
ana House of Representatives voted unanimously to legislate an incorrect
value of 7T.1 Fortunately, the other house, the Indiana senate, tabled the
matter and failed to enact it into law.

The British mathematician William Shanks (1812-82) spent many years
computing by hand the value of n to 707 decimal places. In 1944, it was
discovered that he had made an error at place 528, and everything from
there on was incorrect. Today, a modest desktop computer can compute
correctly the value of n to 707 decimal places in less than 10 seconds. The
effort continues; n has now been computed to billions of decimal places.
Other than demonstrating the raw power of modern computers, is any-
thing useful accomplished by such computations? Computing the deci-
mal digits of TT investigates the question, Is n a normal number? A number
is said to be normal if the distribution of its digits meets certain statistical
tests of randomness.2 The evidence to date supports the claim that n is a
normal number, but no examination of even billions of decimal digits can
provide a proof.

In school, I was taught to use the approximation 22/7 for n; my grand-
father used 355/113—an approximation with an error of only 0.005 inches
per mile. Clearly, the approximation that my grandfather used is adequate
even now for the most exacting practical uses.

y = 3.1428... 0.04% error

n = 3.14159265... true value
355
—- = 3.14159292... 0.000008% error
J- -LO

Instead of billions of decimal places, we will compute a much rougher
approximation for n.

Question 10.1. Show that the circumference C of a circle of diameter D is
between 3D and 3.5D. In other words, show that n is between 3 and 3.5.

Before we attempt to answer this question, we should back up a bit.
Since our definition of n mentions the circumference of a circle, one might
ask the following:
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Question 10.2. What is meant by the circumference of a circle?

This question might seem an affectation of extreme skepticism, but let
us humor the questioner. The way to give meaning to the word circumfer-
ence is to describe in practical terms how we might measure the circum-
ference of a circular object. The obvious answer is to use a flexible tape
measure: wind it around the object, and take a reading. It's a sensible
idea, but how do we proceed? Standard geometry doesn't have a useful
abstract counterpart of the flexible measuring tape, but Archimedes had a
bright idea that suffices.

Circular reasoning

Before we can discuss the circumference of a circle, we need to clarify the
concept of arc length in general. In practical terms, we measure the arc
length of a curve —in particular, the circumference of a circle—with a tape
measure. At this time, we will not define the arc length of a circle or other
curves. When we ask for the arc length of a circle of diameter 1, we are
asking for a number that gives good agreement with the measured cir-
cumference using tape measures of arbitrary precision. We will arrive at
such a number by thinking about the problem rather than making mea-
surements with an actual tape measure. We begin by discussing arc length
of curves of a special sort—convex curves.

The interior of a circle is called a circular disk. A circular disk is a special
case of a convex set. A set is called convex if, for every two points P and Q
in the set, the line segment PQ lies entirely within the set. Figures 10.1 (a)
and (b) are convex but Figures 10.1 (c) and (d) are not convex. A curve that
bounds a convex set, for example, a circle, is called a convex curve. The
boundary curves in Figures 10.1 (a) and (b) are convex curves. If we cut a
convex figure (e.g., a circle or Figure 10.1(a) or (b)) from a piece of plywood
and stretch a rubber band around the edge, the rubber band will assume
the shape of the convex boundary curve without any gaps. The same is
true if we cinch a tape measure tightly around the curve.

In Figure 10.2, the convex curve >V is entirely inside the curve B. Think
of W as the convex cross section of a waist and B as a loose-fitting belt. It
is clear that the arc length of B is greater than the arc length of W because

Figure 10.1. (a) and (b) are convex; (c) and (d) are not convex.
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the slack in the belt can be cinched to fit the waist, thereby reducing the
perimeter of the belt. We might even say, "It's a cinch" that the loose belt
B will cover the convex waist W.3 We express this observation in the
following axiom from Archimedes:4

Axiom 10.1. If one convex curve contains another, then, unless the curves are
identical, the inner curve has shorter arc length than the outer.

Note that Axiom 10.1 is more subtle than its
counterpart—not needed in this discussion—in
which we replace "shorter arc length" with "smaller
area":

Axiom 10.2. If one convex curve contains another, then,
unless the curves are identical, the inner curve has
smaller area than the outer. _. - „ nFigure 10.2.

Completing the estimate of pi

We answer Question 10.1 with the help of Figure 10.3(a), a circle together
with inscribed and circumscribed regular hexagons, and the blowup in
Figure 10.3(b). By Axiom 10.1, the arc length of the circumference of the
circle is between the perimeters of the inscribed and circumscribed hexa-
gons. The inscribed and circumscribed hexagons have perimeters 12CD
and 12AB, respectively. If we compute these quantities, we will find lower
and upper bounds for the circumference of the circle.

The segment OA is the radius of the circle; we denote it r. Note that
the angle BOA is 30°. We can proceed by using the fact that a 30°-60° right
triangle has sides, for example, OA, AB, and OB, in the ratio 2 : 1 : \/3.5

From this ratio and OB = OD = r, we find

Figure 10.3.
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Thus, noting D = 2r, the circumference of the circle in Figure 10.3(a) is
between

We are finished; we have answered Question 10.1.

Differentiation Before Newton and Leibniz

A course in coordinate geometry (see page 93) is often a prerequisite for dif-
ferential calculus. Since Descartes and Fermat discovered coordinate ge-
ometry, they had the necessary background to also discover differential
calculus. In fact, they both did so.

Descartes and Fermat found different ways to use the methods of co-
ordinate geometry to determine the direction of an arbitrary curve at an
arbitrary point. In this sense, they were early pioneers in the study of dif-
ferential calculus. They wrote about their discoveries in a manner that is
hard for us to follow. This is true for two reasons: (1) They wrote without
the benefit of today's standard terminology. (2) They were more concerned
with breaking new ground than with presenting the simplest possible ex-
ample for the reader. However, we are concerned with their methods rather
than the particular form of their presentation. In the next two sections, we
apply these methods to a certain problem. Although this specific prob-
lem was not considered by Descartes or Fermat, I believe that it shows
quite simply the discriminant method of Descartes and the difference quo-
tient method of Fermat. Discriminant and difference quotient are modern
terms not used by Descartes or Fermat. We will use modern mathemati-
cal ideas as long as they simplify and do not obscure the central ideas of
Descartes and Fermat.

The discriminant method was a clever initial solution to a difficult
problem but was soon superseded by the simpler and more general dif-
ference quotient method. Broadly put, the problem is the following:

Problem 10.1. In Figure 10.4(a), find the direction of the curve C at an
arbitrary point P.

Before attacking this problem, we must clarify several matters:
1. This is a problem of coordinate geometry. In order to proceed, we

introduce the coordinate system shown in Figure 10.4(b). Descartes and
Fermat used pairs of numbers to represent points in the plane, but the
rectangular coordinate system with calibrated axes, as in Figure 10.4(b), is
a modern concept that did not occur to them.

2. With respect to this coordinate system, we define the curve C by the
equation y = x — 0.25*2. It can be shown that C is a parabola, a conic
section. Descartes and Fermat might have preferred to start by defining
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Figure 10.4. The curve C is a parabola. In the coordinate system shown in (b), C
has the equation y = x — 0.25x2.

C synthetically as shown in Figure 5.21(b) on page 104,6 but this would
complicate our discussion without adding anything essential.

3. The direction of the curve C can be specified by means of either
the normal A/", that is, the perpendicular, or the tangent T at the point P.
Descartes used the normal and Fermat used the tangent.

Descartes's discriminant method

And I dare say that this is not only the most useful and most general
problem in geometry that I know, but even that I have ever desired to
know.

—RENE DESCARTES, La Geometrie

In the above quotation, Descartes refers to his discovery of a method
of obtaining a normal, that is, a perpendicular, to a curve C at a specified
point P. We will not discuss the details of Descartes's construction, but his
general idea is to define a certain family of circles intersecting the curve C
at the specified point P and at a second point Q. As the point Q approaches
the point P, the corresponding circle approaches a tangent circle. A line
from the center of this tangent circle to the point of tangency P is normal
to the curve C at point P.

Descartes's use of a family of circles
is a needless complication. It is simpler
to use the family of lines that intersect
P. As in Figure 10.5, a line C contain-
ing the point P generally intersects the
curve C in a second point Q.

We use this simpler technique to
solve Problem 10.1. In general, we
do not feel constrained to use coordi-
nate geometry precisely as Descartes
understood it more than 360 years ago,

Figure 10.5.
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but we retain Descartes's central idea: the use of the discriminant. We di-
gress briefly to discuss this concept.

The discriminant provides a method to determine whether an algebraic
equation has multiple roots. The discriminant is an algebraic expression
that can be computed without solving the equation. The discriminant is
zero if and only if the equation has multiple roots. Higher degree equa-
tions have discriminants, but here we will only consider the quadratic
equation.7 A quadratic equation generally has two distinct roots; for ex-
ample, x2 — 3x + 2 = 0 has roots x = 1 and x — 2. But in exceptional cases
there may be only one root: for example, x2 — 2x + 1 has the root x — 1
and no other. This one root is called a double root.

The general quadratic equation

(10.1)

is solved by the quadratic formula

In the quadratic formula, the plus-or-minus sign (±) indicates that, in gen-
eral, there are two solutions. However, if b2 — 40c = 0 the two solutions of
equation (10.1) coalesce into one: x = — b/ (20). The quantity D = b2 — 4ac
is called the discriminant of the quadratic equation (10.1).

Referring to Figure 10.5, we will use the discriminant method to find
a tangent line at a certain point P. In particular, we will find the slope
of the tangent to C at the origin relative to the coordinate system in Fig-
ure 10.4(b); that is, we assume that P is the point with coordinates (0,0).
The discriminant method then proceeds as follows:

1. Find an equation to determine the point P of intersection with the
curve C of an arbitrary line £ through point P. This equation hap-
pens to be quadratic. One of its roots determines point P, and the
second root determines point Q. Here are the details of this construc-
tion:

(a) Find the equation of an arbitrary line through point P: y = mx
where m is the slope of the line.8 Only the vertical line through
P fails to represented by a suitable choice of the slope m.

(b) Find the points of intersection of this line (y — mx) and the
parabola (y = x — 0.25.x2). We can find the ^-coordinates of
the intersection points by solving for x in the equation that is
obtained by eliminating y between the equation of the parabola
C and the equation of the line C, that is, between the equations
y — x — 0.25*2 and y = mx. The result is the equation mx =
x — 0.25x2, which is equivalent to

(10.2)
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2. Find the line £ such that the discriminant of this equation is equal
to 0. In that case, points P and Q coincide, and the line £ coincides
with the tangent T to the curve C at point P. Here are the details:

(a) First we must calculate the discriminant. This is done by ob-
serving that equation (10.2) is the same as the general quadratic
(10.1) with a = 0.25, b — m — 1, and c = 0. Thus, the discrimi-
nant is equal to

(b) Setting D = 0, we see that a double root occurs if m = 1. Alter-
natively, we see that equation (10.2) has roots

It is easy to see that these roots are equal if m = 1.
(c) As the point Q approaches the origin P, the secant9 line C ap-

proaches the tangent at point P. Moreover, the slope m of the
secant line C (y = mx), approaches the slope of the tangent line
T. This happens when m = 1 because then both roots are equal
to 0. Thus tangency at (0,0) occurs when the slope m is equal
tol.

To apply Descartes's method for other curves, we need to test whether
other types of equations have multiple roots. There are discriminants for
equations of higher degree, but they quickly become complicated. For
example, the discriminant for the general cubic equation

is given by the formula

Descartes found a clever method, and he was justifiably proud of him-
self for finding it. However, his method leads very quickly to extraor-
dinary complications. Fermat, on the other hand, found a much better
solution to this problem. In fact, Fermat's method is the standard method
found today in every calculus textbook.
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Rearranging terms:

Eliminating x using x = X + h:

Using the identity

Fermat's difference quotient method

We use modern terminology to de-
scribe Fermat's method; doing so
does not obscure Fermat's central
idea of difference quotient. We use
Fermat's method to find the slope
of the curve C in Figure 10.6 at the
point P. We use (X, Y) to denote the
coordinates of P with respect to the

Figure 10.6. The slope of the secant coordinate system shown in Fig-
line £ tends to the slope of the tangent ure lQ.4(b). This problem is more
line T as h tends to 0. general than one used to illustrate

Descartes's method in the preced-
ing section because here we find the tangent at an arbitrary point (X, Y)
instead of the particular point (0,0).

To determine the slope of the tangent line through point P, Fermat's
method begins, just as Descartes's did, by considering a secant £ that
intersects the curve C in the point P. The secant intersects the parabola
a second time at point Q with coordinates that we denote (x,y). Here
Fermat's method departs from Descartes's by naming the coordinates of
this point. Let h be the difference in the j-coordinates of points P and Q,
(i.e., h = x — X), and, similarly, for the difference in the y-coordinates put
k — y — Y. The slope of the secant C, the rise divided by the run, is equal
to k/h. Notice that this fraction is meaningless if h is equal to 0. The key
step of Fermat's method is to compute the difference quotient k/h (h 7^ 0)
as follows:
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Canceling h from numerator and denominator:

(10.3)

As h tends to zero, formula (10.3), the slope of the secant £, tends to
the slope of the tangent T at the point P:

1 - 0.5X (10.4)

Note that this result is consistent with the result obtained using Descartes's
method because, when X is equal to 0, formula (10.4) is equal to 1; in other
words, the slope of the tangent to C at the point (0,0) is equal to 1.

The preceding paragraph began, "As h tends to zero." Why is this cir-
cumlocution necessary? It seems simpler to say, "When h is equal to zero,
formula (10.3) is equal to 1 - 0.5X." The difficulty is that formula (10.3) is
equal to the difference quotient of a secant line C only ifh is different from
0 because, as remarked above, the difference quotient k/h is meaningful
for arbitrarily small values of h but not for h equal to zero. If P and Q are
distinct, then PQ determines a line, but a unique line is not determined if
P and Q are identical.

In the seventeenth and eighteenth centuries, it was sometimes said that
the slope of the tangent is precisely equal to a difference quotient k/h where
h and k are "infinitesimally small." Newton and Leibniz and the other pi-
oneers of calculus used infinitesimals quite freely, but they were called to
task by Bishop Berkeley, who called infinitesimals "the ghosts of departed
quantities." Berkeley's criticism did not get an adequate rebuttal until al-
most two centuries later—in the late nineteenth century—with the work
of Dedekind, Kronecker, Weierstrass, and others.

Descartes and Fermat considered these findings an extension of geom-
etry. Indeed, they did make exciting discoveries in geometry, but they
failed to realize that their discoveries had importance far beyond geome-
try. Fermat was aware of Galileo's investigations concerning falling bod-
ies and even attempted to rebut them. He failed to realize, not only that
Galileo's assertions were correct, but even that they could be confirmed
by using Fermat's own method, described above, for finding tangents to
curves.

Galileo's Lute

Falling bodies

The ancient Greek philosopher Zeno of Elea (495?-430? BCE) asserted that
the concept of motion leads to paradoxes. Aristotle also speculated on
the nature of motion; however, the first scientific investigation of motion
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was undertaken by Galileo Galilei (1564-1642). As a young mathematics
teacher at the University of Pisa during 1589-92, he is said to have per-
formed a demonstration in which he dropped simultaneously two objects
of different weight from a height of 117 feet atop the Leaning Tower of Pisa
in order to show that the two objects fall at the same rate—contrary to the
accepted dogma from Aristotle that the heavier one must fall faster. The
authenticity of this story is controversial, but it is certain that some years
later Galileo researched this question by rolling a ball down an inclined
plane.10

The inclined plane has the advantage that it slows the descent, making
it easier to measure subintervals of distance and time. Using the technol-
ogy of the early seventeenth century, it was possible to measure distances
but more difficult to measure small intervals of time. Sometimes Galileo
used the volume of water flowing out of a tank to measure time, but, as
we will see, he also used his musical sense of rhythm for this purpose.

Understandably, Galileo found instantaneous velocity a difficult con-
cept because he lacked the knowledge of calculus needed to deal with this
matter rigorously. Galileo initially rejected continuously varying velocity
but later made it an important part of his theory of motion. It is not diffi-
cult to define instantaneous velocity for a motion of constant velocity. For
one-dimensional motion, constant velocity is the distance traveled divided
by time elapsed.11 However, it is surprisingly difficult to define instanta-
neous velocity in general. The following paradox shows this difficulty.

Paradox 10.1. The velocity of a particle has no meaning for the following
reasons:

• The velocity of the particle can only be determined by its position at
various instants of time.

• The position of the particle at a given instant is insufficient to deter-
mine its velocity at that instant.

• The position of the particle at any other time has no bearing on the
velocity of the particle at the given instant.

Velocity is a more subtle concept than one might expect. We rely on
a speedometer to tell us that at a particular moment an accelerating au-
tomobile is traveling at 50 miles per hour, but what does this mean? The
true explanation requires a consideration of the motion in arbitrarily small
time intervals. The truth is that velocity requires the differential calculus for
its very definition. Galileo had no knowledge of calculus. Fermat, 35 years
younger than Galileo, discovered enough of the calculus to set this matter
right, but he was unable or unwilling to make the leap from pure geom-
etry to a question of motion. Instead of providing this key link, Fermat,
who generally admired Galileo's work, mistakenly claimed that Galileo's
results on falling bodies contained a contradiction.
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For falling bodies, Galileo made certain assertions concerning the de-
pendence on time of the distance fallen and the velocity. In fact, Galileo
unknowingly solved a calculus problem. Let us now examine in more de-
tail one of Galileo's beautiful experiments with an inclined plane.

The inclined plane

Galileo's father was a noted musician, a lutenist. In the following exper-
iment, Galileo borrowed two concepts from the musical world: the frets
of the lute and the rhythmic beat. Galileo's inclined plane, his "lute," is
shown in Figure 10.7. He "tuned" the lute by adjusting the placement of
catgut "frets" at points A-F along this inclined plane so that a ball released
at 0 would make a noise as it rolled over each fret. Galileo adjusted the
positions of the frets A-F until he heard a regular beat—in other words,
until the time of passage from the start 0 to the first fret A was same as
the time of passage between any other pair of adjacent frets. Perhaps he
danced a jig to keep time with the ball.

The result of this experiment was astonishing, undoubtedly a high
point of Galileo's scientific life. The result had an elegant regularity be-
yond anyone's expectation. A regular beat was heard when, apart from
experimental error, the distances between adjacent frets was the sequence
of odd multiples of the distance OA between the first two frets: 1, 3, 5,...

For this experiment it is convenient to use special units of time and
distance. The unit of distance is the distance OA between the starting point
and the first fret, and the unit of time is the time for the ball to roll between
any adjacent pair of frets.

Galileo observed that the distances of the frets A-F from the starting
point 0 were proportional to the squares of the integers:

As a result of this and other experiments, Galileo asserted a remarkable
generalization: When a body falls from rest, the distance descended is propor-
tional to the square of the time of descent. Using algebraic notation unknown
to Galileo, if s is the distance descended and t is the time of descent, then
s = ct2 where c is a constant of proportionality.

A few years after this experiment, Galileo came to the correct conclu-
sion that the instantaneous velocity of a falling body initially at rest was
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Figure 10.7. Galileo's lute: the inclined plane experiment. The ball starts from rest
at the upper left point 0. The ball hits the frets A-F at equal time intervals if the
spacing between the frets is proportional to the odd integers: 1, 3, 5, 7, 9, 11, ...

proportional to the time elapsed. It is important to observe that Galileo
did not make additional experiments devoted specifically to determining
the velocity of a falling body. Galileo's instinct was correct. As we will see,
the differential calculus shows precisely how the dependence of distance
on time implies the dependence of velocity on time.

Galileo followed a tortuous path to obtain this result concerning the
velocity of a falling body. It is possible that Galileo overlooked certain
clues in the experiment of Figure 10.7 that could have made it easier for
him to reach his conclusion regarding the velocity. Consider the following
line of reasoning:

1. Instantaneous velocity is difficult, but mean velocity is much easier.
To find mean velocity, divide the distance traveled by the time elapsed.
For example, referring to Figure 10.7, to find the mean velocity of the ball
as it rolls from the start 0 to the second fret B, divide the distance traveled,
1 + 3 = 4, by the elapsed time, 2 beats. Dividing, we obtain velocity equal
to 4/2 = 2. (This calculation is also shown in the first row of Table 10.)

2. The mean velocity above over the time interval between the starting
moment and the moment the ball hits fret B could be a first guess for the
instantaneous velocity at the midpoint of this time interval—the moment
of the first beat. (Galileo had no way to know that this first guess happens
to be the precise value of the instantaneous velocity. In fact, when motion
is governed by a quadratic expression like s = ct2, as it is in the present
case, the mean velocity over a time interval can be shown to be exactly
equal to the instantaneous velocity at the midpoint of the time interval.)

3. Compute mean velocity over each time interval two beats in length:
OB, AC, BD, CE, and DF. Table 10 shows this computation. The fact that the
right column of this table is an arithmetic progression (2, 4, 6, 8, 10) sup-
ports Galileo's assertion that the velocity of a falling body is proportional
to the time elapsed.

How Fermat could have helped Galileo

First things first! Fermat would have to begin by imparting some of his
knowledge of algebra and coordinate geometry to Galileo. I feel sure that
Galileo would have seen very quickly the importance of this knowledge.
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Table 10.1. Computation of mean velocities for the inclined plane ex-
periment in Figure 10.7. Mean velocity is computed for passage over
pairs of adjacent fret intervals. This computation shows that the mean
velocities 2, 4, 6, 8, 10 increase in an arithmetic progression. These
mean velocities are reasonable estimates for the instantaneous velocities
at the middle frets shown in the table. (In fact, it can be shown that
these mean velocities are exactly the instantaneous velocities as the ball
crosses the frets A-E.) Since the frets A-F occur at equal time intervals,
the above computation supports Galileo's assertion that the velocity of
a falling body is proportional to the time elapsed since the rest position.

Start Middle End

Interval

0-B
A-C
B-D
C-E
D-F

Time

0
1
2
3
4

Dist.

0
1
4
9
16

Time

1
2
3
4
5

Fret

A
B
C
D
E

Time

2
3
4
5
6

Dist.

4
9
16
25
36

Mean velocity

4-0/2

9-1/2

16-4/2

25-9/2

36-16/2

= 2

= 4
= 6
= 8
= 10

If Galileo and Fermat had had some further discussions, science and
mathematics might have enjoyed a significant boost. Together, they might
have seen that Galileo's experiments with falling bodies had an impor-
tant connection with Fermat's method for determining tangents to curves.
They might have seen that the mean velocities used by Galileo are formally
the same as Fermat's difference quotients. They might have realized that
a curve can represent a relationship between distance and time. For ex-
ample, they might have been able to represent Galileo's result concerning
falling bodies by means of a graph like Figure 10.8(a).

In fact, Galileo, Fermat, and their contemporaries did not conceive of
such a graph. How is that possible when today a graph like Figure 10.8(a)
seems so ordinary—even trite? It may help us to appreciate that this con-
cept was an important abstraction if we realize that, in the jargon of Ein-
stein's theory of relativity, the graphs in Figure 10.8 represent the motion
of the falling body as a world line in space-time coordinates.

The calculation of instantaneous velocity is essentially the same as Fer-
mat's difference quotient method (page 176) for determining tangents.
Suppose we wish to determine the velocity at time T, that is, at the point
P in Figure 10.8(b). We find the average velocity over an arbitrary time
interval from T to t. Referring to Figure 10.8(b), the mean velocity is the
same as the difference quotient:
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Figure 10.8. Graph of distance versus time for a falling body. The curve is a
parabola.

(10.5)

From (10.5), we see that as h, the length of the time interval, tends to
0, the mean velocity tends to 32 T, the instantaneous velocity at time T.
This formula for instantaneous velocity confirms Galileo's assertion that
the instantaneous velocity is proportional to the elapsed time T. Galileo
reached this conclusion without any knowledge of calculus. In this sense,
he solved a calculus problem unknowingly.

If the graph in Figure 10.8(b) were a straight line, then the mean ve-
locity would be the same as the instantaneous velocity. This graph is a
parabola, not a straight line, but the graph is smooth enough that in a 10-
fold magnification of a neighborhood of point P, as shown in Figure 10.9,
the curve appears straight. Under this magnification, the eye cannot dis-
tinguish between the curve and the tangent to the curve. This appearance
of straightness under magnification is made precise by Fermat's difference
quotient method.
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Figure 10.9. A neighborhood of point P on the graph in Figure 10.8(b) appears
straight under a 10-fold magnification.

These early mathematical pioneers glimpsed the fundamental concepts
of the calculus. They had difficulty in seeing the importance of their dis-
coveries beyond the realm of geometry, and, more important, they failed
to see the connection between the processes of integration and differentia-
tion. We will explore this connection in the next chapter.



Six-Minute Calculus

God ever geometrizes.

—PLATO

God ever arithmetizes.
—CARL JACOBI (1804-51)

P
ARAPHRASING PLATO —nay, contradicting him — Jacobi could be ex-
pressing the new central role of the real number system in mathe-
matics that came about at the beginning of the eighteenth century.

Euclidean geometry gave way to mathematical analysis — the calculus and
its higher ramifications—as the principal mathematical tool for under-
standing the world. Plato's view of a perfect universe gave way to the
modern view—a universe of endless detail and complexity that is under-
stood only in various special contexts and only partially. The calculus was
born in the latter half of the seventeenth century and became a confident
young adult by the beginning of the eighteenth. Calculus could thrive
when mathematicians finally grasped the real number system. Their use
of the number system was pragmatic—the rigorous foundations came late
in the nineteenth century. Newton preferred geometry; nevertheless, his
work led to mathematics in which the arithmetic of the real numbers held,
and continues to hold, the dominant position. Newton showed us a uni-
verse that runs numerically instead of geometrically.

The real numbers work well for us because we live in a world in which
most physical processes seem to occur smoothly. Time and distance ap-
pear to be infinitely divisible. Calculus models the smooth physical pro-
cesses that we see around us—from the steam rising from a teacup to
the motion of the planets. I wonder what sort of mathematics we would
have if quantum effects were of sufficient magnitude to be observed in
ordinary life.

184
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In the eighteenth century, calculus was known as the infinitesimal calcu-
lus because it was—and still is—concerned with infinitely divisible quan-
tities. Calculus draws conclusions by examining smaller and smaller quan-
tities—for example, decreasing errors of approximation. Magically, some-
times calculus is able to leap from the approximate to the exact.

In the early history of calculus, infinitesimally small quantities were
used uncritically. Using this incorrect notion—the only true infinitesi-
mal is zero—Newton and Leibniz nevertheless found much correct sci-
ence. The complete understanding of the foundations of calculus was not
achieved until the late nineteenth century. In fact, during the 200 years
after its discovery by Newton and Leibniz, calculus flourished despite un-
resolved issues concerning its foundations.1

The usual introductory course in calculus teaches a complex compu-
tational skill requiring a long apprenticeship. Although we cannot ignore
this skill, here we are more concerned with the meaning of calculus. In
scientific applications of calculus, a broad understanding of the meaning
of calculus is often more important than computational skill. Acquiring
computational skill in calculus is like learning a computer language. It is
much more difficult to become a competent C programmer than to learn
in general what computer languages are. Learning calculus skills is a sub-
stantial undertaking requiring at least a year of daily study and practice,
but learning what calculus is can be accomplished much more easily. In
fact, I hope to tell that story in the remaining pages of this book.

In the preceding chapter, we considered examples of integration by
Archimedes and differentiation by Descartes and Fermat. Newton and
Leibniz, who came later, are considered the discoverers of the calculus,
largely because they saw that integration and differentiation are inverse
operations. The details of this connection will be elaborated when we ex-
plore the fundamental theorem of calculus.

In this chapter, we consider differentiation and integration in the con-
text of a six-minute automobile trip. First, we look at some preliminary
matters: functions, limits, and continuity.

Preliminaries

In the last chapter, we saw that Descartes and Fermat foreshadowed the
calculus in the context of analytic geometry by developing methods for
finding normals and tangents to curves. They failed to see that these re-
sults had importance far beyond geometry. One important obstacle was
the lack of a general concept of dependence of one variable on another—
dependence of distance on time, volume on pressure, or any other depen-
dence. Without question, Newton and Leibniz understood this concept.
Newton called such a dependence a fluent, and today it is called a function.
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Functions

A mathematical function expresses in a precise and general manner how
the values of one variable determine the values of another variable. For ex-
ample, the length of the side of a square determines the area of the square.
If we use x and y to denote the length of the side and the area, respectively,
then the variables x and y are connected by the formula y = x2. In general,
there may or may not be a specific meaning, distance, time, and so on, for
the numerical variables x and y. We say that the variable y depends on x
or that y is a function of x.

We wish to avoid awkward expressions like "Height at time T + h" and
"Velocity at time T." Since we will continue this sort of discussion, these
expressions will only get worse unless we do something about it. This
clumsiness is improved by a new notation. We put H(t) and V (t) for the
height and velocity at time t . Instead of "Height at time T + h," we write

The mathematical meaning of the word function is similar to its ordi-
nary meaning in the sentence, "The level of excellence is a function of the
degree of preparation." (Practice makes perfect.) When the value of a vari-
able x is determined by the value of another variable t, then we say that
x is a function of t; x and t are called dependent and independent variables,
respectively. A function of t can be denoted L ( t ) , V ( t ) , f ( t ) , and so forth.
A function is a mathematical vending machine; for example, the squar-
ing function (Figure 11.1) is a machine that accepts a number and gives in
return the square of the number.

The input number (or expression) is called the argument of the func-
tion. The notation /(•) represents a function without reference to a partic-
ular argument. The set of possible numerical arguments, that is, the set of
numbers x such that f ( x ) is defined, is called the domain of the function
/. The function defined by the equation f(x] = x2 has a natural domain
consisting of all real numbers. This could be made explicit with the defini-
tion "/(*) — x2 f°r all real numbers x." We can define a function g(-) that
is the same as /(•) but with a different domain, for example, the formula
"g(x) = x2 for real numbers x greater than 2," the squaring function with
a domain consisting of numbers greater than 2 only. The functions f(x]
and g(x) are considered different functions. The set of all image points of
a function is called its range. For example, the range of the function / is

Figure 11.1. The squaring machine.
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Graph of a function

We have seen in Chapter 5 that the concept of graph
became ubiquitous in science and mathematics in
the twentieth century, but that it was almost un-
known until the beginning of the nineteenth cen-
tury. Why was such an important concept so slow
in coming? The answer is that a graph repre-
sents a function geometrically. Before there could
be graphs, there had to be functions. The func-
tion concept was known at the beginning of the
eighteenth century, and at the end of that century
functions entered popular culture in the form of
the graphs that are so common today. Figure 11.2
is a graph of the function /(j) — x2.

Figure 11.2. Graph of
the function f(x) = x2.

the set of nonnegative real numbers, and the range of g is the set of real
numbers greater than 4.

A function is sometimes called a mapping. The function defined by the
formula y — x2 maps, for example, the number 2 into the number 22, that
is, into the number 4. This function maps each number into its square.
The formula x i—> x2 (read "x maps to x squared") is a way of defining the
same function without mentioning a second variable y. One can introduce
a name for this function/mapping; we could call it/ and write / : x H-> x2.
Alternatively, the formula f ( x ) = x2 defines the same function. Using this
definition, one can verify the following formulas:

Suppose /(•) and g(-) are defined by the equations f ( t ) = t2 — 1 and
g ( t ) = l/t with a domain of definition consisting of all nonzero values of
t. One can verify the following

Today's notation for functions, for example, f ( x ) , was originated by
the Swiss mathematician, Leonhard Euler (1707-83).2



188 A Smoother Pebble

Limits

Limits express in a precise mathematical way the meaning of statements
like

y tends to b as x tends to a.

Here we assume that y is a function of x and that a and b are constants.
The above might seem an unnecessary circumlocution. Why not say

instead,

y is equal to b when x is equal to a?

There are two reasons why this simpler statement might not be correct:
1. The variable y might not be defined when x is equal to a. We will

encounter this difficulty when we define the derivative of a function
further below.

2. The variable y might tend to b as x tends to a, but the value of y at
x — a might be different from b.

To make these ideas concrete, we consider an example:

2x tends to 4 as x tends to 2. (11.1)

Is this the same as saying

2 x 2 is equal to 4? (11.2)

In fact, these two assertions are not the same, but the distinction is subtle.
Putting the function g(x) equal to 2x for all x, alternative forms for

(11.1) and (11.2), respectively, are

(11.3)

and

(11.4)

The definition of (11.1) and (11.3) is as follows:

Definition 11.1 (limit). Let the functiong(x) be defined in a neighborhood
of x = a, where a is fixed. We say:

1. g(x) tends to L as x tends to a; or
2. the limit of g(x) as x tends to a is equal to L; or
3. Jim*-* g(x) = L;3

provided that g(x) gets as close to L as desired whenever x is sufficiently
close to a.
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How is it possible to use Definition 11.1 to prove, for example, that
formula (11.1) is correct? The proof consists in standing ready to rebut any
challenge. For example, suppose someone asks,

"How close to 2 does x have to be in order that the distance
from 2x to 4 is less than 0.01?"

The answer is,

"It is sufficient that the distance between 2 and x be less than
0.05,"

but this alone is not sufficient to establish (11.1). For every positive number
e, however small, we must be able to answer the above question with 0.01
replaced by e. In our answer above, we only need to replace 0.05 with e/2.

The challenge and rebuttal implied by Definition 11.1 can be expressed
in a more precise mathematical way. Two remarks prepare the way for this
version of Definition 11.1. (1) There is a long-established tradition that, in
this definition, one uses Greek letters for certain numerical variables: ep-
silon (e) for the challenge and delta (6) for the rebuttal. (2) This definition
uses a rigorous method of stating that the values of two numerical vari-
ables are close together. For example, the formula \p — q\ < 0.01 says that
the gap between p and q is less than 0.01 without asserting which of the
variables p or q is the larger.

A formal definition follows:

Definition 11.2. We say lim*-^ g(x) = L if, for any e > 0, however small,
there exists 5 > 0, sufficiently small, such that \g(x) — L\ < e (i.e., g(x) is as
close as desired to L) whenever x — a\ < 5 (i.e., x is sufficiently close to a).

Continuity

Smoothness is an idea that underlies the calculus. Continuity is a weak
form of smoothness. In the next section, we will see a stronger form of
smoothness—differentiability. The graph of a continuous function can be
drawn without lifting the pencil from the paper. However, we will see
that the definition of continuity proceeds in a different direction.

In the preceding section, we defined g(x) = 2x for all x. Let us define a
closely related function h(x). In fact, we define h(x) to be the same as g(x)
except at x = 2. Here is a formal definition ofh(x):

The function h(x), a trivial modification of g(x), is not one of the lead-
ing citizens of the world of functions. It has no purpose other than to
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illustrate the concept of continuity —or perhaps I should say discontinuity,
since h(x] is discontinuous at x = 2. But I am getting ahead of the story.
We must begin by defining what we mean by a continuous function.

Definition 11.3. Suppose that a function / ( x) is defined in a neighborhood
of a. This function is said to be continuous at a if lim*-^ f ( x ) exists and is
equal to/ (a).

The function h(x) fails to be continuous at x = 2. This is true because
limjt_»fl h(x) is different from /z(0). Although this limit exists— in fact, it
is equal to 4— its value is different from /z(0), which is equal to 0. The
function h(x) has the simplest kind of discontinuity at x = 2, a removable
discontinuity, so named because redefining the function at a single point
makes it continuous. Figure 11.3 shows graphs of two different kinds of
nonremovable discontinuities at x — 0: the jump discontinuity and the
infinite discontinuity.

As stated at the beginning of this section, the graph of continuous func-
tion can be drawn without lifting the pencil from the paper. However, this
property is not contained in Definition 11.3. This fact is contained in the
following theorem, together with information concerning the minimum
and maximum values of a continuous function. This theorem is stated
here and illustrated in Figure 11.4, but the proof is beyond the scope of
this book.

Figure 11.3. Two types of discontinuous functions.
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Figure 11.4.

Theorem 11.1. Let f ( x ) be continuous on an interval a < x <b.
(a) Minimum-maximum. Then there exists numbers xm and XM (a <

xm,XM < b) such that f(xm})< f ( x ) and /(XM) > f ( x } f f o r a^ xxbetween a
and b, that is, for all x in the interval a < x <b.

(b) Intermediate value. Put m = f(xm) and M = /(XM)/ and let I
(the intermediate value) be any number between m and M, that is, any number
satisfying m < I < M. Then there exists at least one number %i (a < Xj < b}
such that f(xj} = I .

The next section introduces the two most fundamental concepts of the
calculus, the derivative and the integral and discusses the connection be-
tween them, the fundamental theorem of calculus.

The Damaged Dashboard

Because it took great genius to create the calculus, one might think that
it must deal with very abstruse matters, but this is not the case. We can
illustrate the two central questions of calculus by discussing three devices
found on every automobile dashboard: the clock, the speedometer, and the
odometer.

A principal topic of calculus deals with the rate of change of one vari-
able with respect to another—rates that Newton called fluxions. For ex-
ample, the velocity of an automobile is the rate of change of distance with
respect to time.

Question 11.1 (the damaged dashboard). If one of these three instruments
breaks and the other two function accurately, can we estimate what the
broken instrument should read?

No matter which instrument has failed, the answer is a qualified yes.
The qualifications are as follows:

1. If one of the instruments is broken, we must make a careful log of read-
ings on the remaining two instruments.

2. The accuracy of the result depends on
(a) the accuracy and frequency of the readings
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(b) the smoothness of the ride—expect poor results in erratic stop-
and-go traffic

The cases of the broken speedometer and the broken odometer are of
special interest. We will explore these two problems in detail. The prob-
lem of the broken clock is not discussed here because it is not used in the
ensuing discussion of calculus. The problems of the broken speedometer
and the broken odometer exemplify the differential calculus and the integral
calculus, respectively.

The damaged dashboard question is easy if the velocity is constant because
then the incremental distance (x) is equal to the rate (r) times the time (t).
If two of the three variables x, r, and t are known, it is easy to compute
the third from the relationship x = rt. Question 11.1 is of greater interest
if the rate r is not constant. We emphasize this possibility by saying that
the speedometer gives the instantaneous velocity, possibly different at each
moment of time.

These two problems are illustrated by data involving a six-minute (0.1
hour) automobile journey. This trip is illustrated by the two graphs in
Figure 11.5. These graphs entail the assumption that for each of the real
numbers between 0 and 0.1, there is a corresponding moment of time, and
there are real numbers giving the distance and velocity at this time. This
an abstraction rather than a reality—a mathematical model that can be
helpful in understanding an actual occurrence.

Distance and velocity as functions of time during the six-minute auto
journey (f(x) and F(x), respectively, in Figure 11.5) are examples of con-
tinuous functions. An auto is unable to jump from point A to point B with-
out passing through all of the intermediate locations. This commonsense
observation accords with the continuity of the function f ( t ) and Theo-
rem ll.l(b).

Table 11 shows a log of readings of the speedometer, and the odome-
ter taken at intervals of 0.01 hour (36 seconds). We will use parts of this

Figure 11.5. Graphs of distance and velocity for a six-minute journey. The
horizontal axis measures time in hours: 0.01 hour = 36 seconds.
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Table 11.1. Instrument log from the
six-minute journey.

Clock Odometer Speedometer
Hours Miles Miles/hour

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0.0
0.2
0.4
0.8
1.3
1.8
2.1
2.4
2.6
2.6
2.6

15
21
30
42
51
45
33
21
9
3
0

log as a basis for approximate solutions of the broken speedometer and
odometer problems.

The broken speedometer

The broken speedometer leads us to the derivative. Later, we will make a
connection between the broken odometer and the integral. The derivative
and the integral are the two central concepts of calculus.

The problem of the broken speedometer consists in using a log of data
from the odometer to estimate the missing speedometer readings. This
problem is illustrated in Table 11. In column 3, we find the mean velocity4

in each time interval by dividing the distance traveled by the duration of
the time interval. These mean velocities serve as estimates for the missing
speedometer readings. For example, in column 3 the bold entry, 30, is the
mean velocity in the time interval (0.06,0.07), obtained by dividing the
distance 2.4 - 2.1 = 0.3 by the duration 0.01. This mean velocity 30 is
used as an estimate for the instantaneous velocity at time 0.06. (This is
an arbitrary choice. The mean velocity could equally well be an estimate
for the instantaneous velocity at 0.07 or any instant in the time interval
(0.06,0.07).) The mean velocity 30 serves as an estimate for the missing
speedometer reading, 33, in column 4.

Figure 11.6 shows the geometric meaning of the method in Table 11 for
estimating the missing speedometer readings. In particular, Figure 11.6
illustrates that, in the bold row of Table 11, the estimate (30) for the missing
speedometer reading is equivalent to using the slope of the line PQ as an
estimate of the slope of the curve at point P (time = 0.06).
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The accuracy of the estimates in the problem of the broken speedome-
ter would be improved if odometer readings included more significant
figures —for example, hundredths or thousandths of a mile instead of just
tenths. Further improvements would result by using smaller time inter-
vals. In fact, we achieve any desired degree of accuracy by using suffi-
ciently small time intervals. Pursuing this idea we are led to the deriva-
tive.

The derivative

Calculus is the proper mathematical tool for understanding smooth and
deterministic growth and motion. Rough and erratic motion, for example,
the fluctuation of the stock market, is less natural and more difficult. Brow-

Figure 11.6. Geometric interpretation of the broken speedometer problem.

Table 11.2. The problem of the broken speedometer. The
readings in the shaded column are unavailable. In column 3,
the odometer readings are used to compute mean velocities,
which estimate the missing speedometer readings of
column 4.

1. Hours 2. Odo- 3. Mean

0-00 0.0 (0.2-0.0)70.01 = 20

°-01 °-2

0.02 0.4
0.03 0.8 (1.3 - 0.8)70.01 = 50
0.04 1.3 (1.8 - 1.3)70.01 = 50
0-05 1.8 (2.1 - 1.8)70.01 = 40
0.06 2.1 (2.4 - 2.1)70.01 = 30
°-07 2-4 (2-6 - 2.4)70.01 = 20

°-08 2>6 (2-6 ~ 2-6)/0-01 = °
0.09 2.6 (2.6 - 2.6)70.02 = 0

meter Velocity

(0.4 --0.2)/0.01 =20
(0.8--0.4)/0.01 =40

0.10 2.6
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nian motion, the movement of tiny particles suspended in a fluid or gas
subject to the constant bombardment of molecules, is a scientifically im-
portant example of erratic motion. On the other hand, the motion in a
vacuum of a mass particle under the influence of gravity is an example of
motion that is amenable to analysis using calculus.

The derivative generalizes the slope of the tangent to a curve and the
instantaneous velocity of a moving particle. But keep in mind that some
curves fail to have tangents everywhere, and a motion can be too erratic
to have an instantaneous velocity. For example, instantaneous velocity is
meaningless for Brownian motion. On the other hand, the motion of an
automobile has an instantaneous velocity at every moment.

Figure 11.7 illustrates the concept of derivative of a function. The curve
in this figure is the graph of s = F ( t ] , which expresses the dependence of
the odometer readings on time during the previously discussed six-minute
auto ride. The following makes no use of the specific nature of the function
F ( t ) except for the smoothness of the graph.

In Figure 11.7, the points P and Q rep-
resent the position of the auto at two in-
stants of time, T and T + Af, respectively.
It is traditional to use the Greek capital
delta, as in At or Ax, to represent a change
or increment in the variable t or x.

Let us suppose that P in the figure is
fixed and Q can move along the curve.
In other words, the instant of time T is
fixed, but duration Af of the time interval
can change. If Q is distinct from P, a se-
cant line S is determined by PQ. As Q ap-
proaches P, that is, as the duration At of
the time interval tends to 0, the secant S
approaches the tangent 1'. This is true because the graph of F(t] is smooth;
it would fail if the graph had sharp corners or jump discontinuities. More-
over, the ratio of rise to run, the slope of the secant line, approaches the
slope of T, the tangent at P. We call the slope of the tangent T the deriva-
tive at point P.

Our use of the word slope needs clarification. The slope of the lines S
and T is not slope in the usual geometric sense. The first complication is
that run and rise are measured using the two different scales on the hor-
izontal and vertical axes. Furthermore, the interpretation of s as distance
and t as time means that here slope can be construed as velocity, distance
per unit time. The slope of S is the mean velocity over a time interval of
duration At, and the slope of T is the instantaneous velocity at time T.

Figure 11.7. Graph of the
function s = F(t) showing
construction of the derivative at
t = T.
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For the increment in s occasioned by the increment Af of t, put As.
More specifically, As is equal toF(T+A£) — F(T). The mean velocity rep-
resented by the slope of S is

(1L5)

As Af tends to 0, the mean velocity (11.5) tends to the instantaneous veloc-
ity at t — T, which we denote VQ. In other words, the difference between VQ
and the mean velocity (11.5) becomes as small as desired if the magnitude
of AHs sufficiently small. This relationship is also written

(11-6)

The fact that the difference quotient (11.5) tends to a limit as At tends
to zero is a special property that might not hold for some functions. How-
ever, since F(t) is the distance function for a physical motion, the limit of
the difference quotient must exist. In fact, Newton's laws of motion imply
that the distance function F(f) has a continuous derivative. For some other
function, the limit of the corresponding difference quotient might not exist
as t tends to T. If the limit (11.6) exists, then we say that the derivative ofF
exists at T, that the function F is differentiatelet T.

Here T represents an arbitrary instant of time between t — 0.00 and
t = 0.10. However, the instantaneous velocity, the derivative F ' ( t ] , exists
for all t. In other words, like F ( t ] , F'(t] is a function defined for all t be-
tween 0.00 and 0.10. The instantaneous velocity is also called the derivative
of the variable s with respect to the variable t, denoted F ' ( t ) or ds/dt.

It is important to realize that, although ds/dt is the limit of the fraction
As/Af, it is not itself a fraction in the ordinary sense because we have
not given an independent meaning to ds and dt. However, Leibniz, who
first used this notation in 1675, believed (incorrectly) that ds and dt were
infinitesimally small quantities that he called ddifferentials.5

The derivative is meaningful apart from any physical meaning attached
to the variables s and t. In fact, these variables and the derivative may be
understood abstractly, without any physical meaning whatever. In this ab-
stract setting, formula (11.5) is called a difference quotient instead of mean
velocity or slope.

For an arbitrary function, the derivative may exist at some points and
not at others. However, for the function s = F(t), the derivative exists at
every moment from t = 0.00 to t = 0.10. In other words, the function
F'(t), the velocity, is defined for t in the interval (0.00,0.10). Of course, the
velocity is the function v = f ( t ) shown in Figure 11.5(b). Therefore, we
must have f ( t ) = F'(f) for all t between 0 and 0.1.

The distance function F(f) is an antiderivative of velocity function f ( t ) .
The only other antiderivatives of f ( t ))are of the form F( f ) + C, where C is
an arbitrary constant.
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The readings of the speedometer and odometer are connected by the
derivative-antiderivative relationship. The problem of the broken speed-
ometer consists in using the odometer readings to approximate the deriva-
tive of the distance function.

Computation of derivatives

The relation between a function and its derivative generalizes the relation
between the readings of the odometer and speedometer. A derivative is
a rate of change of a dependent variable with respect to an independent
variable. This definition does not explain why a course in differential cal-
culus requires hundreds of hours of study. It appears that in this brief
introduction we have omitted a great deal.

In particular, we have omitted any discussion of the computation of
derivatives of functions that are defined by formulas. For example, the
derivative of the function f ( x ) — x2 is equal to 2x. This can be seen as
follows:

Recall that the derivative is the limit of the difference quotient, which
for the function x2 is equal to

Algebraic simplification shows that formula (11.7) is equal to 2x + Ax; we
see that the limit of this expression as Ax tends to 0 is equal to 2x. Thus,
we have demonstrated the differentiation formula:

Formula (11.8) is only the beginning. The standard course in differen-
tial calculus teaches powerful principles and techniques for finding deriva-
tives of an amazing variety of functions. The following is a brief collection
of rules for finding derivatives.

Recall that tn has a meaning not only if n is an integer but even if n is
an arbitrary real number—provided that t is positive. For example,

Thus, all of the items in Table 11.3 are special cases of the following for-
mula in which n is an arbitrary real number.

Table 11.4 gives rules for computing derivatives. Instead of proving
these rules, we give two examples confirming the consistency of Figures
11.3 and 11.4.
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Table 11.3. Table of derivatives. Item 8 is a consequence of the
function of a function rule, below, together with items 3 and 7.
Item 8 will be used on page 217.

1.
2.
3.
4.
5.
6.
7.
8.

9.

Constant
First power
Square
Cube
3/2 power
nth power
Reciprocal
Square root

Function

c
t
t2

t3

t3/2=t^/i
tn

1/t

v't
Va2 + x2

Derivative

0
1
2t
3t2

§ V't
nt""1 n ̂  0, t > 0
-1/t2 t ̂  0

l/(2y/t) t > 0

x/vV+x2

Starting from the derivatives in Table 11.3, it is possible use the rules in
Table 11.4 to compute derivatives of a large number of functions.

Example 11.1. From Table 11.3.3, we see that the derivative of t2 with re-
spect to t is equal to 2t. Show that this result can be obtained from Ta-
ble 11.3.2 and Table 11.4.3.

Solution. Use Table 11.4.3 with/(f) = g(t) = t. From Table 11.3.1, the
derivative of t is equal to 1. Thus, we have

Example 11.2. From Table 11.3.6, we see that the derivative of £4 with re-
spect to t is equal to 4f3. Show that this result can be obtained by using
Table 11.3.3 and Table 11.4.4.

Table 11.4. Rules for derivatives. The functions f (•) and g(-) are arbitrary
differentiable functions; c is a constant.

1. Constant multiple &<*(*) = ^'OO
2. Sum of two functions £ (f (t) + g(t)) = f (t) + g'(t)
3. Product of two functions ^(f(t)g(t)) = f'(t)g(t) + f(t)g'(t)
4. Function of a function £f (g(t)) = £f (g(t)) g'(t)
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Solution. Use Table 11.4.4 with / ( f ) = g ( t ) = t2. Note that we have f4 =
/ (g(t)}. According to Table 11.4.4, we have

Distance, velocity, and acceleration

As noted on page 179, Galileo discovered that the distance s traveled in
time t by a falling body is proportional to the square of the time elapsed
since rest. In other words, there exists a constant c such that s — ct2.
Velocity is the derivative of distance with respect to time, and acceleration
is the derivative of velocity with respect to time. Thus, from Galileo's
formula, we find that the velocity v is equal to 2ct, and the acceleration a
is a constant 2c. Galileo might have thought it mysterious that distance is
proportional to the square of the time, but here we see that the underlying
reason is simple. A falling mass particle is subject to constant downward
acceleration of gravitation.

According to Newton's law of universal gravitation, gravitational accel-
eration is not constant. Nevertheless, the conclusions of this section are
correct on the surface of the earth, where Galileo made his experiments,
and where the variation in gravitational acceleration is negligible. On the
earth's surface, the constant gravitational acceleration is generally denoted
g and is approximately equal to 32 feet (980 centimeters) per second per
second.

Galileo made a further observation—that the velocity of a falling body
is proportional to the square root of distance traveled from rest. This fact
can be found by eliminating t from the two equations s = \gt2 and v = gt.
This basic fact also can be derived as a consequence of the law of conser-
vation of energy. It can be shown—not only for linear motion, but also for
arbitrary curvilinear motion—that v, the magnitude6 of the velocity of a
falling mass particle, is proportional to the square root of the vertical dis-
tance y below the rest position: v = \/2gy. This equation describes the
motion (ignoring the effect of friction) of a bead sliding on a curved wire
or a roller coaster on an involuted track.

The broken odometer

The broken odometer leads to the integral. As remarked above, the deriva-
tive and the integral are the two central ideas of calculus.

The problem of the broken odometer consists in using a log of data
from the speedometer to estimate the missing odometer readings. This
problem is illustrated in Table 11. The first two columns are the log of
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Table 11.5. The problem of the broken odometer. The readings in the shaded
column (column 6) are unavailable. In column 3, the speedometer readings are
used to compute average velocities, which are used to compute the estimated
incremental distances in column 4. Total distances in column 5 estimate the
missing odometer readings of column 6.

1. Hours 2. Speedo-
meter

3. Average
Velocity

4. Incr.
Miles

5. Total
Miles

0.00 15 0.000
0.01 21 (15 + 21)/2 = 18.0 0.180 0.180
0.02 30 (21 + 30)72 = 25.5 0.255 0.435
0.03 42 (30+42)72=36.0 0.360 0.795
0.04 51 (42 + 51)72=46.5 0.465 1.260
0.05 45 (51 + 45)72=48.0 0.480 1.740
0.06 33 (45 + 33)72=39.0 0.390 2.130
0.07 21 (33 + 21)72=27.0 0.270 2.400
0.08 9 (21 + 9)72 = 15.0 0.150 2.550
0.09 3 (9 + 3)/2= 6.0 0.060 2.610
0.10 0 (3 + 0)/2= 1.5 0.015 2.625

the clock and speedometer readings. The missing odometer readings are
shown shaded in the last column. In Table 11, we estimate the missing
odometer readings as follows:

Column 3: In each time interval, compute the arithmetic mean of the start-
ing and ending velocities. We use the term average velocity for this
value. Note that we have previously used mean velocity in a differ-
ent sense. For example, see Table 10.

Column 4: Use these average velocities to estimate the incremental dis-
tance traveled during each time interval.

Column 5: Find the cumulative totals to estimate the missing odometer
readings.

Notice that the estimated odometer readings in column 5 are in good
agreement with the actual odometer readings in the last column. These es-
timates could be improved even more by including more frequent speed-
ometer readings in the log.

Figure 11.8 illustrates the above procedure for estimating the missing
odometer readings. This figure consists of Figure 11.5(b) with 10 vertical
rectangles inserted. For example, the shaded rectangle corresponds to the
bold row of Figure 11.8. The base of the shaded rectangle is the time inter-
val (0.02,0.03), and the height of this rectangle is 36.0, the average velocity
in the time interval. The area of a rectangle is its width multiplied by its
height, 0.01 x 36.0 = 0.36. But this is not area in the ordinary sense. For
one thing, the horizontal scale is different from the vertical scale. More
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The definite integral

The definite integral is a concept that enables us to define in Figure 11.5(b)
the area bounded by the curve v = f ( i ) and the horizontal and vertical
coordinate axes. In the preceding section, this area was approximated by
rectangles, as shown in Figure 11.8. Refining this method of approxima-
tion tends, in the limit, to the precise value of this area. However, the
definite integral is a concept of great generality that goes far beyond areas.

The weight of a string of beads is equal to the sum of the weights of the
individual beads. A generalization of this problem is to find the weight of
a nonhomogeneous wire with a nonconstant linear density (e.g., grams per
centimeter). To find the total weight of the wire from a given density func-
tion, we must generalize the sum of the weights of the string of beads. Fan-
cifully—for the moment leaving mathematical rigor behind—we might
think that the wire is composed of infinitely many infinitesimally small
beads. The total weight of the wire is an example of a mathematical con-
cept known as the definite integral.

A similar example is the problem of finding the total distance traveled
by a particle that moves with a velocity that is not constant. The problem L
to find the total distance given the velocity as a function of time. Indeed,
the problem of the broken odometer requires such a computation. The
solution of this problem in the preceding section may be satisfactory for
any practical need, but the integral is more than merely an approximation

important, we are multiplying horizontal units of time by vertical units of
velocity, that is, distance per unit time. Therefore, the product must have
units of distance, and, in fact, this product, 0.36 miles, is an estimate for
the distance traveled in the time interval (0.02,0.03).

In Table 11, the estimate 0.795
(bold in column 5) for the miss-
ing odometer reading at time 0.03
is equal in Figure 11.8 to the sum
of the areas of the first three rectan-
gles, the gray rectangle and the two
rectangles to its left.

1. The use of the arithmetic
mean to compute the average ve-
locities in column 3 of Table 11 is an ... .... „ _ . . .

, .. , . _., .. , Figure 11.8. Geometric interpretation of
arbitrary choice. Other methods are ,., , , , , . -,-,7 the broken odometer problem. The area
possible for finding an intermediate of the snaded rectangle is equa, to the

velocity in each time interval. bdd item in co!umn 4 of Tab|e n
2. The estimates in column 5

can be interpreted as estimates for the area under the speedometer curve
in Figure 11.5(b).
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method. In this section estimates of increasing precision lead to a new
concept—the definite integral, a cornerstone of the calculus.

The discussion in the preceding section of the problem of the broken
odometer gives a method of approximating the distance function F(t) given
a velocity function f ( t ) . The definite integral gives a precise construction
of the distance function F(t) from the velocity function f ( t ) because inte-
gration is the ultimate refinement of the approximation methods used for
the problem of the broken odometer.

This section offers two for the price of one—two important mathemat-
ical ideas: first, the concept of the definite integral, and, second, the fact
that the integral is the inverse of the derivative—the fundamental theorem
of calculus.

We need to set aside our concern over practical difficulties relating to
the precision of actual clocks, speedometers, and odometers. In practice
we can only examine the speedometer a limited number of times during
the six-minute automobile journey. Nevertheless, as a thought-experiment
we consider the possibility of an unlimited number of observations in or-
der to define the definite integral. A definition that requires dealing with
an unlimited number of data points might seem too complicated to be of
practical use. Fortunately, as we will see, the fundamental theorem of calculus
provides a remarkable shortcut for computing definite integrals.

To define the definite inte-
gral, the problem is this: Given
a continuous velocity function
v — f ( t ) , f o r an arbitrary mo-
ment T (0 < T < 0.1) find
the distance F(T) traveled be-
tween time 0 and time T. The
approximation method illus-
trated in Figure 11.8 is on the

Figure 11.9. Graph of the function v = f i t )  c. . .„ , . •, . T-,., . . r , , , - . . , refinement, illustrated in Fig-
showmg construction of the definite integral ., _ °
from 0 to T. Ure 1L9-

Definition of the definite integral

We will formulate a procedure that gives the exact area of the shaded re-
gion bounded by the curve v = f ( t ) , the coordinate axes, and the vertical
line through point P. This "area" is the distance F(T) that the automobile
travels in the time interval 0 < t < T. (As noted in connection with Fig-
ure 11.8, there is ambiguity of our use of the word area. The ambiguity
arises because of the contrast between the geometric appearance and the
underlying meaning of Figures 11.8 and 11.9.)

right track, but needs some
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This area is found as a limit of approximations, which are obtained by
subdividing the interval 0 < t < T. Figure 11.9 shows one such approxi-
mation in which the interval 0 < t < T is subdivided into n subintervals
by means of the division points to = 0, t\,...,tn. Note that the subdivi-
sion points need not subdivide the interval 0 < t < T into subintervals
of equal length. Although Figure 11.9 shows a subdivision into 12 subin-
tervals, it is intended that n is an arbitrary positive integer. Furthermore,
the zth subinterval is (£;_!/ £;), where i is an arbitrary positive integer not
greater than n.

Each of the n subintervals is the base of a tall thin rectangle. The sum
of the areas of these rectangles is an approximation to the total area of the
shaded region. The zth rectangle is shown in dark shading. (For each of the
tall narrow approximating rectangles, we multiply the height, which has
units of velocity, by the width, which has units of time. Velocity multiplied
by time gives distance. Thus, the "area" in question is measured in units
of distance. We will continue to use the word area in this way.)

For each i (0 < i < n), the vertical height V{ of the zth approximating
rectangle is the height of an arbitrarily chosen point on the curve above
the zth subinterval (t;_i, f / ) . That is, the height of the rectangle with dark
shading is V{ = /(s;), where s/ is an arbitrary number in the zth subinterval
(ti-i < si < ti).

Put Afy = tj - tj_i (0 < ; < n), the width of the ;th interval. With this
notation, the sum Sn of the areas of all of the approximating rectangles is

Using the sigma notation, the above can be written

(11.9)

For a given subdivision of the interval 0 < t < T, the smallest of the
lengths of the subintervals is called the mesh of the subdivision.

If the sum Sn (11.9) of the areas tends to a value I as the mesh of the
subdivision tends to 0 and n tends to oo; that is, if Sn gets as close as desired
to / provided that the mesh of the subdivision is sufficiently small, then we
say that I is the definite integral of f ( t ) for t between 0 and T, and, using a
notation from Leibniz, we write

(11.10)

It can be shown that if f ( t ] is continuous, then the integral I exists. In
other words, if f ( t ) is continuous, the sum (11.9), regardless of the choice
of the points s/, tends to a limit as the mesh of the subdivision tends to 0.
Later, we will have occasion to make a special choice of the points sz.
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This achieves our first goal, the definition of the definite integral. We con-
tinue now toward our second goal, to show the sense in which differentiation
and integration are inverse operations. First, a few remarks concerning the
definite integral:

1. The symbol / is from Leibniz. It is an elongated S, the first letter of
the Latin word for sum, summa. Recalling that L is the Greek cognate of
the Latin letter S, Leibniz's notation creates a similarity between formulas
(11.9) and (11.10) that reminds us of the definition of the definite integral.
The symbols f ( t ) and dt in formula (11.10) are suggestive of the height
and width of the tall narrow approximating rectangles.7

2. There are functions f ( t ) so erratic that the definite integral (11.10)
does not exist; that is, the sum S (11.9) does not tend to a limit as the mesh
of the subdivision tends to 0. However, it can be shown that the definite
integral always exists if f ( t ] is a continuous function. If we assume that
the velocity function f ( t ) i s continuous over the interval 0 < t < 0.1 — a
reasonable assumption for a velocity—then the definite integral (11.10)
exists.

T"
3. In the expression J0 f ( t } d t , 0 and T are called, respectively, the

lower and upper limits of integration.
4. If the function g(t) is defined for t in the interval a < t < b, then

the definite integral f
g(t] is continuous.

The fundamental theorem of calculus

Until now we have not made use of the fact that f ( t ) is the velocity func-
tion for the distance function F(t)—in other words, /(£) is the derivative
F ' ( t ) . Now we return to step 11 above.

Since s, is chosen arbitrarily in the zth subinterval, we are free to make
a special choice. In particular, in each subinterval we choose Sj so that
/(sf) is the mean velocity for the z'th time interval (t\-_i < s/ < t\-).8 The
distance traveled in the z'th time interval is equal to the mean velocity in
that interval multiplied by the length of that time interval. In other words,
we have

Now use this relation in the sum (11.9) to obtain

The expression on the right is called a telescoping sum because all but two



Six-Minute Calculus 205

terms cancel. This can be seen more clearly if we write out the sum as
follows:

The terms F(ti) cancel. In fact, all the terms of this sum cancel except

Thus, for every subdivision, the numbers s; can be chosen so that the sum
(11.9) is equal to F(T) - F(0). Trivially, it is also true that the sum (11.9)
tends to this same value as the mesh of the subdivision tends to 0. Thus,
since F(0) = 0, we have shown

This form of the fundamental theorem of calculus is sometimes called
ihe first fundamental theorem of calculus.9

It is usually stated more generally.

Theorem 11.2 (First fundamental theorem of calculus). Let g(t] and G(t]
be functions defined on the interval I : a < t < b. Moreover, suppose that g(t)
and G(t] are continuous in I and that G ( t ) i s differentiate in the interior of I;
and suppose G'(t) = g ( t ) . Then we have

On account of the relation G'(t) = g(t},we say
• g(t)is the derivative of G(t), or
• G (t) is an antiderivative (or indefinite integral) of g(t).

We say "an antiderivative" because the antiderivative is not unique.
The only other antiderivatives are obtained by adding an arbitrary con-
stant, that is, G(t) + C is an antiderivative of g(t) for any constant C.

Thus, the problem of finding the definite integral of a function becomes
the problem of finding antiderivatives. For example, from the formula

that is, since t2 is an antiderivative of 2t, we obtain the definite integral

A standard course in calculus devotes many weeks to the develop-
ment of techniques for finding antiderivatives in special cases. It is much
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more difficult to find antiderivatives than to find derivatives. Functions
like \/l + £4 that can be defined using +, —, x, -r, together with roots
and powers, are called elementary functions. Derivatives of elementary
functions are always elementary; however, there are many elementary
functions whose antiderivatives are not elementary. For example, the an-
tiderivative of the function A/1 + f4 is not elementary.

Roller Coasters

Roller coasters frighten and entertain by sending us down curved tracks of
various shapes. The design of safe and entertaining roller coasters requires
very sophisticated engineering. In this section, we apply calculus to study
some highly simplified roller coasters.

The balls that fell down Galileo's inclined plane experienced such a
ride, but the roller coaster is more exciting. The roller coaster pulls us
slowly to rest at a great height. This is followed by a few seconds of free
fall down a steep track. It is these few seconds of the ride that we will
study.

Since roller-coaster tracks are generally curved, the first step is to de-
termine the length of a curve — a curve in two dimensions because, for
simplicity, we study only a track that is contained in a vertical plane.

The length of a curve

The preceding chapter discussed how Archi-
medes approached n by approximating the cir-
cumference of a circle. This was a step in the
direction of the integral calculus. The rest of
the story is that integral calculus can give us
the length of an arbitrary smooth curve.

_. _ ._ _ , , Problem 11.1. Find the length of the curve OPFigure 11.10. Graph of & ,
v = i in Figure 11.10,-10, the graph of y = j^x^/x be-

tween x = 0 and x = Vs.

Solution. We should find a result that is slightly longer than the length of
the dashed straight line segment OP, which can be computed using the
Pythagorean theorem. Applied to the right triangle OPR, this theorem
asserts:

Using the numerical values for the lengths of these line segments, we have:
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As shown in Figure 11.10, point Q corresponds to a certain value of the
variable x. The arc length of the curve from 0 to Q is a certain function of
x, which we denote s(x).

We begin with a consideration of the derivative of s (x), the limit of the
difference quotient

For the numerator, s(x + Ax) — s(x), put As. As usual, we put

The relation between Ax, Ay, and As is
given, as shown in Figure 11.11 by the Pythag-[
orean theorem:

Dividing by Ax, we obtain the difference quo-
tient:

d As are governed by the
Pythagorean theorem:

Finally, passing to the limit, we have (using the
standard abbreviation y' in place of rfy/rfx).

(ii.ii)
The value of s(x) is the value of the integral

This formula is quite general. We have not made use of any particulars
of the curve. Now we use the fact that the curve is the graph of y = ^Xy/x
between x = 0 and x — 1. First we use the table of derivatives, Table 11.3.5,
to find dy /dx:

Now we compute ds/dx:

Finally, the total length of the curve, from 0 to P is equal to the integral
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To evaluate this integral, we must find an antiderivative of | A/4 + 
fact, we have

Thus, by the fundamental theorem of calculus, the integral (11.13) is equal
to

Recalling that the length of the straight line segment OP is 1.05409, we
see that the length of the curve OP exceeds this figure by about 0.6%. Look-
ing at Figure 11.10, this relationship seems plausible, thereby, increasing
our confidence in the above calculation.

The above example seems complicated enough, but it is the simplest
nontrivial example that I could find to illustrate the computation of the
length of a curve. The computation of arc length tends to involve awkward
calculations. Tables of antiderivatives are useful, but numerical methods
are available in any case. The arc length of an ellipse, a simple and familiar
curve, leads to antiderivatives that cannot be solved without introducing
a new class of functions—the elliptic functions. Nevertheless, the definite
integral gives a way of discussing arc length and many other geometric
and physical concepts.

Time of descent

Descent on a straight track

Galileo's experiment with the inclined plane—equivalent to the descent of
a roller coaster on a straight track—leads to a problem that has a solution
involving a definite integral.

In the following problem, and in several problems to follow dealing
with descent of mass particles down ramps, I use a unit of distance equal
to 2g, where g is the acceleration of gravity at the earth's surface. This unit
is about 64 feet, close to the length of a surveyor's chain, which is exactly
66 feet. I will call this unit (64 feet) a short chain.

Problem 11.2. As shown in Figure 10.7, find the time for a mass particle
starting from rest to slide without friction down the inclined plane from 0
to P, a distance a downward and b forward. Show that the time of descent
is the same as if the speed over the entire descent were constantly equal to
one-half the final speed at point P.

Solution (first method). Figure 11.12 shows the usual X,Y coordinate sys-
tem, except that downward y distances are considered positive. The diag-
onal length c of the inclined plane is given by the Pythagorean theorem:
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c = \fa2 + b2. When the particle reaches depth y its speed is v = ^/2gy,
where g is the acceleration of gravity. (See page 199.) The speed v at depth
y in short chains (64 foot units) is given by the simpler formula

v — ̂ /y short chains/sec (11.14)

If s represents distance along the inclined
plane OP, then the relation between y and s is
given by y — |s and the speed v is equal is
given by

The time T of descent is the integral with re-
spect to distance s of the reciprocal of the speed:

Figure 11.12. The inclined
(11.16) plane, c - Va2 + b2.

Use the expression (11.15), we find

(11.17)

From the table of derivatives, Table 11.3.8, and the fundamental theorem
of calculus (Theorem 11.2), the definite integral (11.17) is equal to

(11.18)

This answer has a commonsense interpretation. The starting speed of
the mass particle is 0, and the speed reaches ^/a when the particle reaches
the depth a at the end of the ramp. One might guess that the time of
descent would be roughly the same if the speed had a constant value,
throughout the entire descent, equal to the arithmetic mean of the start-
ing and ending velocities: j ^fa.

In fact, the distance traveled, c, divided by the elapsed time, T, gives
the mean speed over the time interval 0 to T, which we will call VQ. Using
(11.18), we find

But >/« is equal to the speed v\ at point P, the bottom of the inclined plane.
Thus, the mean speed VQ is exactly half of the maximum speed, the speed at
point P. This phenomenon was alluded to in the legend of Table 10 on
page 181. This observation is the basis of a second solution:
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Solution (second method). We start from the fact that for a particle—whether
falling freely or sliding on an inclined plane—the relation between dis-
tance s and time t is given by s = ct2, where c is a suitably chosen con-
stant. Since the velocity is the derivative of distance with respect to time,
the velocity v\ at time T, at the end of the descent, is equal to 2cT. On the
other hand, the mean velocity VQ is equal to

Problem 11.3. In Figure 11.10, find the time of descent of a mass particle
that slides down the dashed line segment from P to 0.

Solution. The maximum speed, attained at 0, is the square root of the
height of the ramp: v/Vs, and the mean speed is half that number. To find
the time of descent T, we divide length of the ramp by the mean speed,
obtaining

 « 3.65147 seconds

Descent on a curved track

Galileo could have tried replacing the inclined plane with a curved ramp.
Figure 11.10 suggests a contest. In the preceding section, we showed

that a mass particle, call it particle A, slides down the dashed straight ramp
PO in 2.94391 seconds. Suppose that we slide particle B down the solid
curved ramp PO. Which particle will win the race? The answer is not im-
mediately clear. Particle B has an initial advantage because the solid ramp
is steeper near point P. On the other hand, particle A has the advantage of
a shorter path.

Problem 11.4. In Figure 11.10, find the time of descent of a mass particle
that slides down the solid curve from P to 0.

Solution. We measure length in short chains (64 foot units) as in Problem
11.2. The time T of descent is equal to

where s is arc length and v is the speed of the particle. It is more convenient
to use the horizontal distance x as the variable of integration:

(11.19)
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The speed v is the square root of the depth of the point Q. Since the descent
starts from rest at point P (x — 1), we have

Equation (11.12) established that ds/dx is equal to \ A/4 + x. Substituting
these expressions for v and ds/dx in equation (11.19), we find:

The evaluation of this integral could be a problem in a standard cal-
culus course, or it could be achieved using a computer program such as
Mathematica or Maple, but it is beyond the scope of this book. Readers
who are calculus students may wish to verify that the integral (11.20) is
approximately equal to 3.73970 seconds.

Recall that the time of descent for the straight track was 3.65147. The
straight ramp wins the race by 0.08822 seconds — a margin of about 2%. Is
the straight ramp unbeatable? In the next chapter we will see that this is
not the case, that a curved track in the shape of a cycloid achieves the least
possible time of descent.
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Roller-Coaster Science

All is for the best in this best of all possible worlds.

—VOLTAIRE, Candide, 1759

THE OPTIMISM OF DOCTOR PANGLOSS is the butt of Voltaire's biting
satire. Actually, Doctor Pangloss is a stand-in for Gottfried Leibniz,
who enjoyed more esteem as co-discoverer of the calculus than for

his philosophy of optimism. In physics, however, principles of optimality
stand on firmer ground. In fact, there are several variational principles that
state that of all conceivable happenings, nature chooses the one of least
"effort." The oldest of these principles is known as Fermat's principle of least
time, which states that a ray of light selects, from all possible paths between
two points, the path of least time. Fermat's principle explains the reflec-
tion and refraction of light. In 1746, Pierre-Louis Moreau de Maupertuis
(1698-1759) formulated a similar minimum principle for mechanics, the
principle of least action, that characterizes the motion or equilibrium config-
uration of a mechanical system, for example, a pendulum, a gyroscope, or
a suspension bridge. This principle says that, of all the conceivable con-
figurations of a mechanical system, the one that actually occurs minimizes
a certain quantity. A similar variational principle, Hamilton's principle, oc-
curs in both classical and quantum mechanics. The search for all-inclusive
variational principles is a chapter in the physicists' quest for a theory of
everything.

The search for extrema—the best, worst, most, or least—is also of in-
terest for more mundane problems. The calculus is often the best tool for
solving such problems.

In this chapter, we examine how calculus is used to solve the simplest
extremum problems. Then we will examine tools, inequalities, that can
be used to solve extremum problems without calculus. Finally, we will

212
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use inequalities to give a recent proof of the oldest variational problem,
the problem of designing the fastest roller coaster, also called the brachis-
tochrone problem.

The Simplest Extremum Problems

The simplest type of extremum problem asks for the maximum or mini-
mum of a function. Such a problem can be reduced to finding the highest
or lowest point on a graph. Theorem 11.1 established that a function f ( x ) ,
continuous on an interval a < x < b, has both a maximum and a mini-
mum value in that interval. It often happens that f ( x ) is a differentiable
function, as in the following problems.

The rectangle of maximum area with fixed perimeter

Problem 12.1. Find a value of x between 0 and 1 such that x — x2 is as
large as possible.

Problem 12.2. Show that of all rectangles of fixed perimeter p, the square
has the largest area.

Problem 12.1 is clearly a problem of the type under consideration, al-
beit a practice exercise without much intrinsic interest. Problem 12.2 seems
more interesting because of its geometric content. In fact, it is a simple
instance of the class of isoperimetric problems—problems that ask for a geo-
metric figure of fixed perimeter that maximizes area subject to various ad-
ditional conditions. According to ancient legend, Queen Dido of Carthage
solved an isoperimetric problem to demarcate her kingdom using the skin
of a bull, but that is another story. We will see that Problem 12.1 is equiva-
lent to a special case of Problem 12.2.

To see this equivalence, formulate
Problem 12.2 as follows: To avoid awk-
ward fractions, define q, the quarter
perimeter of the rectangle, by the for-
mula q = p/4. If the length of a side
of the rectangle is x, then the adjacent
side has length 2q — x, and the area is

A(x] = x(2q - x} = 2qx - x2 (12.1) Figure 12.1. Problem 12.2: Find the
rectangle of maximum area with

for all x between 0 and 2q. Thus, prob- fixed perimeter,
lem 12.1 is equivalent to the special
case of Problem 12.2 with q = 1/2, that
is, p = 2.
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Figure 12.1 is a graph of the area y as a function of x; that is, y = 2qx —
x2. For x equal to 0 or 2q the rectangle degenerates to a line segment and
the area is 0. We seek the point R where the area is maximum. We will
prove shortly that the maximum value, q2, is achieved atx = q.

The following theorem is the basis of a useful method for solving Prob-
lem 12.2 and similar extremum problems.

Theorem 12.1. Let f ( x ) be continuous in an interval a < x < b and di/feren-
tiable in its interior a < x < b. Suppose XQ is a point such that /(XQ) is either
a maximum or minimum. Then either XQ is a boundary point of the interval (i.e.,
XQ = a or XQ = b) or the derivative /'(XQ) is equal to 0.

Proof. We consider the case of a maximum. (The following argument, with
minor changes, also applies to a minimum.)

Theorem 11.1 asserts that a maximum of / ( x ) must occur at some point
XQ in the interval a < x < b. Suppose that XQ is an interior point of the
interval, that is, that XQ is different from a or b.

Recall that the derivative /'(XQ) is equal to the limit as Ax tends to 0 of
the difference quotient:1

The crucial point is that the difference quotient approaches the same value
from the right (Ax positive) as from the left (Ax negative). Since a maxi-
mum is achieved at x = XQ, it follows that / ( X Q + Ax) cannot be greater
than /(XQ) . In other words, the numerator of the difference quotient (12.2),
/(XQ + Ax) — /(XQ), cannot be greater than 0. The difference quotient (12.2)
is nonpositive (< 0) or nonnegative (> 0) depending on whether Ax is pos-
itive or negative. Therefore, /'(XQ), the limit of the difference quotient
(12.2), must be at the same time nonpositive and nonnegative. In other
words, /'(XQ) must be equal to 0. D

We continue with the solution of Problem 12.2—a model for the solu-
tion of many other similar extremum problems.

Solution (Problem 12.2). As shown above, Problem 12.2 is equivalent to
finding the value of x in the interval 0 < x < 2q that maximizes the area
function A(x) = 2qx — x2.

According to Theorem 12.1, the maximum is achieved either at one of
the boundary points (x = 0 or x = 2q) or at an interior point XQ (0 <
XQ < 2q) such that A'(XQ) = 0. Since the area A(x) is equal to 0 for x — 0
or x = 2q, neither of these values of x achieves the maximum. It follows
that the maximum must be achieved at a point XQ (0 < x < 2q) satisfying
A'(XQ)=O.

In general, there might be more than one point satisfying A'(XQ) — 0.
In that case, we would need to check all such points and find the one that

912.2)
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achieves the largest area. However, in the present case we will see that
there is only one point XQ (0 < XQ < 2q) such that A'(XQ) — 0.

Now we find the slope of the tangent at a point S corresponding to an
arbitrary choice of x between 0 and 2q (see Figure 12.1). The slope is equal
to the derivative:2

At the maximum point R in Figure 12.1, this slope must be 0. We find this
point by solving the equation 2q — 2x = 0, obtaining XQ = q. For this value
of x, the length of the second side of the rectangle is 2q — XQ = 2q — q = q.
Thus, for maximum area, all four sides of the rectangle have length q; that
is, the rectangle is a square.

The solution of Problem 12.1 is obtained by putting 2q — 1. That is, the
maximum occurs at x = !/2.

Let us review two points in this proof that arise repeatedly in extremum
problems:

1. How do we know that the problem has a solution —that there exists a rect-
angle with maximum area? The area (12.1) is a continuous function of x. The
existence of a maximum area for x between 0 and 2q then follows from the
intermediate value property of continuous functions—Theorem ll.l(b).

2. How do we know that the value of x for which the derivative of (12.1) is
0 is actually a maximum for the area function? According to Theorem 12.1,
either the maximum of the area function A(x) occurs for x equal to one of
the endpoints of the interval 0 < x < 2q, that is, at x = 0, or at x = 2q, or
at an interior point of the interval, that is, a point x such that 0 < x < 2q,
where the derivative A'(x) is 0. We find that there is just one such interior
point, x = q. To find the maximum of A (x}, it is sufficient to examine
three values: A(0), A(q),and A(2q). Computing these three values, we
find A(0) = 0, A(q) = q2, and A(2q) = 0. The largest of these three,
A(q) = q2,is the required maximum. Therefore, the maximum area q2 is
achieved when x — q.

The lifeguard's calculation

In the next two sections we consider two problems that ask for a path of
least time. The first of these problems is illustrated in Figure 12.2. This fig-
ure is a modification of Figure 11.12 because we will soon see a connection
between Problem 11.2 discussed there and Problem 12.3 below.

Problem 12.3 (the lifeguard's calculation). A lifeguard is located at point
P along the edge of the rectangular pool indicated by the shaded region in
Figure 12.2. A drowning victim at 0 requires his attention. The lifeguard
runs along the lower edge of the pool to point Q and then swims straight
for the victim along the line segment QO. The lifeguard can run twice as
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fast as he can swim. To reach the victim as soon as possible, how should
he choose Q, his entry point into the pool?

Solution. We will see that he should use the following procedure: If the
angle OPR is 60° or more, he should dive into the water where he stands
and swim directly toward 0. On the other hand, if the angle OPR is less
than 60° he should run to the point Q' such that the angle OQ'R is equal to
60° and then swim toward 0.

The optimal angle 60° depends on the fact that the lifeguards runs ex-
actly twice as fast as he swims. Another ratio for the speeds would entail
a different optimal angle. However, the problem as stated relates nicely to
the next problem.

Let x and b be the lengths of RQ and RP, respectively, and let v be the
lifeguard's swimming speed. The time to run from P to Q is

Figure 12.3. Graph of
y = 2VX2 + a2 - x.
The minimum of y is
achieved for x — c at
the point M.

Figure 12.2. The lifeguard's calculation.

and the time to swim from Q to 0 is

Since v and b are constants, to minimize the
sum of these two time intervals, it is sufficient to
find the minimum of

(12.3)

The graph of equation (12.3) is shown in Fig-
ure 12.3. The minimum of y is achieved where
x = c at point M. The graph indicates—and it can
be shown rigorously — that y is a decreasing func-
tion of x when x < c and increasing when x > c.

To find this minimum, that is, to compute the
value of c, we first compute the derivative y'



The fraction on the left is the ratio two lengths in Figure 12.2, RQ : OQ.
This ratio depends only on the angle a; in fact, it is equal to cos a. The
condition cos a = 1/2 implies that the angle a is equal to 60°. The lifeguard
does not need to measure any distances — only the angle OL.

A. faster track

Galileo, in some of his experiments, rolled a ball down an inclined plane
and then allowed the ball to continue to roll on a horizontal plane, for ex-
ample, the path OQP in Figure 12.4(b). We idealize the situation in two
ways. (1) We replace the ball with a mass particle that slides without fric-
tion. This avoids any consideration of the rotation of the ball. (2) The ball
experiences a bump on encountering the change of direction at Q. How-
ever, we assume that no energy is lost at this point—that the direction, but
not the magnitude, of the velocity changes instantaneously at point Q. In
practice, this assumption can be achieved only approximately.

Perhaps a straight track with a horizontal extension is a promising
third entry in the roller-coaster race, discussed on page 210, where it was
shown that, in Figure 11.10, the straight track achieves a faster descent
than a certain curved track. Later in this chapter, we will see that a curved
track in the shape of a cycloid achieves the least possible time of descent.

Problem 12.4 (inclined plane with a horizontal extension). In Figure 12.4,
starting from rest at point O, can the point Q be chosen so that a particle
descends on path OQP in less time than on a straight ramp connecting 0
and P? If so, what is the optimal location of the point Q?

"A straight line is the shortest distance between two points," but this
does not help to answer the above question, which asks for the shortest
time, not distance.

From Problem 11.2, the mean speed of the particle sliding down the
inclined plane OQ is exactly half of the speed on the remaining path QP.
Therefore, Problem 12.4 is essentially the same as the lifeguard problem,
Problem 12.3. According to the solution of the lifeguard problem, if the
angle OPR is at least 60°, as in Figure 12.4(a), then, for the fastest descent,
the inclined plane should coincide with the line segment OP. Otherwise,
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(= dy/dx))using item 9 in the table of derivatives, Table 11.3 on page 198:

Setting y' equal to 0, we obtain the condition
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Figure 12.4. Descent from 0 to P on an inclined plane without or with a horizontal
extension, (a) If angle OPR is 60° or steeper, a horizontal extension provides no
benefit; descent, on the inclined plane OP is faster, (b) If angle OPR is less than
60°, descent on OQP, a 60° inclined plane with a horizontal extension, is faster.

as in Figure 12.4(b), place the inclined plane OQ so that the angle OQR is
equal to 60°.

We illustrate the above construction
with a numerical example, the race dis-
cussed on page 210. Figure 12.5 shows
the straight dashed path OP as in Fig-
ure 11.10 —a descent from the origin 0 to
the point P with coordinates (1,V3). Using
short chains (64 foot units) as the measure of

Figure 12.5. Comparing times distance, it was found on page 210 that the
of descent: OP and OQP. tmie °f descent on the path OP was 3.65148

seconds. We now compute the time of de-
scent along the path OQP, where Q is chosen so that the angle OQR is 60°.
The length of RQ is equal to £ cot 60° « 0.19245, and the length of OQ is
twice that amount: 0.38490. The length of QP is 1 - 0.19245 = 0.80755.
The constant speed v\ on QP is vT/3 = 0.57735, and the mean speed vi
on OQ is \ vT/3 = 0.28868. The total time is given by

This shows that the inclined plane with the horizontal extension, OQP,
wins the race by 3.65147 — 2.73205 « 0.9 seconds—a huge margin, about
34%. The inclined plane with the horizontal extension has the advantage
that the particle enjoys the maximum speed along most of its track. On
the other hand, the mean speed along the straight ramp is only half of
the maximum speed. However, we will see that the particle can make the
descent along a certain curved track (see Figure 12.12) in even less time.
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Figure 12.6. The three-towns problem. Design a system of roads that joins the
three towns, A, B, and C, such that the total length of the roads is as small as
possible.

A road-building project for three towns

Problem 12.5 (the three towns). Three towns, A, B, and C, shown in Figure
12.6, are located in a flat region. It has been decided to connect the towns
by roads. To minimize cost, design the project so that the total length of
the roads is as small as possible.

This is a problem that Fermat gave to Evangelista Torricelli (1608-47),
a student of Galileo. Torricelli gave several enormously clever geometric
solutions of this problem.3 We will see that a special case of this problem
is equivalent to the lifeguard and inclined plane problems, Problems 12.3
and 12.4.

The general solution is described below. There are two cases, (a) and
(b), to consider:
(a) If one of the angles of the triangle is at least 120°, then the optimal

system of roads consists of the two sides of the triangle that form an
obtuse angle, as shown in Figure 12.6(a).

(b) Otherwise, as shown in Figure 12.6(b), connect each of the three ver-
tices, A, B, and C, to a point P such that the angles APB, BPC, and CPA
are each equal to 120°.

We will prove the following special
case of the problem of the three towns,
Problem 12.5:

Problem 12.6. Suppose that the points
A, B, and C are the vertices of an isosce-
les triangle with apex at C, as shown in
Figure 12.7. Find a point P on the al-
titude OC of the triangle such that the
sum of the lengths AP, BP, and CP is as
small as possible.

Figure 12.7. Special case of the
problem of the three towns.
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In Figure 12.7, the isosceles triangle ABC is shown "on its side" with
the apex C to the right instead of on the top in order to emphasize the
similarity between the path CPA and the path PQO in Figures 12.2 and
12.4.

Problem 12.6 can be restated without reference to vertex B as follows:

Problem 12.7. Find a point P on the line OC such that twice the length AP
plus the length CP is as small as possible.

Stated in this form, we see that the problem is essentially the same as
Problems 12.3 and 12.4. Thus we have proved that the solutions (a) and (b),
described above, apply to this special case of the three-towns problem.
That is, if the angle ACB is at least 120°, then the point P should coincide
with point C; otherwise the point P should be chosen so that the angle a is
equal to 60°.

The next section discusses different methods for solving extremum
problems, applied, in particular, to Problem 12.2.

Inequalities

Was it really necessary to use calculus to solve Problem 12.2 on page 213?
No, we will see here a solution using quite different methods — the method
of inequalities.

Inequalities are used abundantly in mathematical analysis to make es-
timates. An inequality is an algebraic expression involving <,>,<, or >.
The study of inequalities that are best possible in some sense is an important
topic in the general theory of inequalities. We will see that it is possible to
solve an extremum problem by finding instances of a general inequality in
which ">" can be replaced by "=."

The following solution of Problem 12.2 is elementary because it does not
use calculus, but difficult because it requires us to guess the solution and
then use an algebraic trick to prove that our guess is correct. In mathemat-
ics, elementary does not always mean easy. By comparison, the preceding
solution of Problem 12.2 is routine and straightforward, requiring only the
basic concepts of calculus.
Solution (Problem 122, second method). This solution is based on the fact
that the square of a real number cannot be negative.

By examining Figure 12.1, it is reasonable to guess that the maximum
of A(x) — 2qx — x2 is achieved at x = q and that the maximum value is
q2. The proof begins by subtracting A(x) from the supposed maximum
value q2:

(12 A)

We must show (1) that the expression (12.4) is nonnegative and (2) that it is
zero only if x — q. Both of these assertions follow from the fact that (12.4)
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is equal to a perfect square, as follows:4

The square of a real number cannot be negative. This obvious fact is
the basis for a number of conclusions that are not so immediately obvious.
The next two sections are concerned with consequences of this fact: the
inequality of the arithmetic and geometric means and Cauchy's inequality?

The inequality of the arithmetic and geometric means

Most everyone is familiar with the idea of a mean or average of two or
more quantities. The arithmetic mean is most familiar—add the quanti-
ties and divide by their number. It is traditional that examination scores,
for example, are averaged in this way. However, there are other concepts
of mean or average. For example, the geometric mean—if there are n
nonnegative quantities, the geometric mean is defied as the nth root of
their product. That is, the geometric mean of the nonnegative quantities
x\,X2, • • •,xn is defined to be ^/x\X2 • • -xn.

The geometric mean is a more suitable average than the arithmetic for
data that tends to grow or decline geometrically, such as stock market
prices. Benford's law tends to hold for data of this type:

Benford's law. Before the advent of the computer, slide rules
and tables of logarithms were used heavily for a variety of cal-
culations. In 1938, Frank Benford, a physicist at General Elec-
tric, observed that the first few pages of tables of logarithms
were more soiled than the rest. Why did people more often
look up the logarithms of numbers with 1 as the leading digit?
Benford found an explanation. The entries in most tables of nu-
merical data exhibit a greater incidence than expected—about
30% — of numbers with 1 as the most significant digit. The ob-
served rate of 30% becomes less mysterious when we notice
that numbers with leading digit equal to 1 account for about
30% of the length of a slide rule. (See Figure 12.8.) This phe-
nomenon, although it is known as Benford's law, was first dis-
covered in 1881 by the American astronomer Simon Newcomb.
Benford's law is used to detect falsified data because cheaters
generally use 1 as an initial digit at a rate lower than 30%. Most
infinite geometric progressions obey Benford's law.

Figure 12.8. A slide rule is a logarithmic scale. Numbers with leading digit equal to
1 account for 30% of the length of a slide rule because Iogio2 = 0.30103.
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Theorem 12.2 (inequality of arithmetic and geometric means). Let the
numbers xir i = 1,..., n, be nonnegative. Then the arithmetic mean, (x\ + X2 +
• • • + xn)/n, is not less that the geometric mean, ^Jx\x^ • • -xn. Moreover, the
two means are equal only if x\ — x^ = • • • ~ xn.

Proof. Although this theorem is true for all natural numbers n, we prove it
here only for n = 2 and n = 4.

n = 2 : We wish to show (x\ -+- #2) /2 > -^/x\X2, or, equivalently,

This follows from the following algebraic calculation:

The last term is nonnegative; moreover, it is zero only if x\ = *i-

n = 4 : We wish to show

This is a double application of the preceding case (n =2). In fact, we can
write:

Equality holds throughout only if x\ = X2 = x^ — x$. D

The following is an easy corollary of Theorem 12.2.

Corollary 12.2.1. A positive real number x plus its reciprocal 1/xis at least 2.
Equality holds only ifx — 1.

Proof. For any x > 0, Theorem 12.2 implies

Multiply both sides of the equation by 2 to obtain the claimed assertion.
Equality holds only if x = 1 /x, that is, only if x — I. D
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Cauchy's inequality

The following inequality is named after the French mathematician Augus-
tin-Louis Cauchy (1789-1857).

Theorem 12.3 (Cauchy's inequality—special case6). Let a, b, c and d be
arbitrary real numbers. Then we have

(12.5)

Equality holds only if the proportion a : b — c : d is true. In other words, equality
holds only if ad = cb.

Proof. It is sufficient to show that the right side minus the left side of (12.5)
is a perfect square—as shown by the following algebraic calculation:

Cauchy's inequality and the inequality of the arithmetic and geometric
means are sharp inequalities. This means that the quantities involved can
be chosen so that the inequality sign, > or <, can be replaced by equality.
Theorems 12.2 and 12.3 state explicitly conditions under which equality
holds. In this sense, these inequalities, in fact, sharp inequalities in general,
are the best possible.

These two inequalities will be used in the next section in the proof of
an extremal problem with an interesting history.

The Brachistochrone

To this point, we have considered only extremal problems that can be
solved by adjusting the value of a single variable. For example, Prob-
lem 12.2, to find the rectangle of fixed perimeter having the largest area, is
such a problem. It might seem that in this problem two variables must be
determined; however, specifying the width determines the length because
the perimeter is fixed. A problem of this sort is said to have one degree of
freedom. On the other hand, to find a box with fixed surface area having
the greatest volume is a problem with two degrees of freedom.

There is a deeper class of extremal problems having infinite degrees
of freedom. For example, to find a closed curve with fixed perimeter that
encloses the largest possible area is a problem with infinite degrees of free-
dom. It not an easy matter to prove that the extremal curve is a circle.

Extremal problems with infinite degrees of freedom are called varia-
tional problems. The technique for solving such problems is called the calcu-
lus of variations. The principles mentioned on the first page of this chapter,
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for example, Fermat's principle of least time and the principle of least action,
are variation principles.

Problem 12.4, the problem of the quickest descent down an inclined
plane with a horizontal extension, is a problem with one degree of free-
dom. However, this problem has a natural extension to a variational prob-
lem known as the brachistochrone problem.

Problem 12.8 (the brachistochrone). Suppose, as shown in Figure 12.9,
that a particle, starting from rest at point 0, descends under gravity with-
out friction on a curved track connected to a lower point P. Find a curve
connecting 0 and P such that the time of descent is minimum.

Henceforth, we will assume that all the competing tracks are contained
in a fixed vertical plane that contains the points 0 and P. In fact, it can be
shown that this restriction does not change the minimum time of descent.

The curve that solves the brachistochrone problem is the cycloid, shown
in Figure 12.9. In that figure, the particle starts its descent at point 0 and
terminates at point P. The cycloid is the plane curve traced by point R
on the circumference of a circle as it rolls upside down without slipping
on a straight line, the x-axis. The diameter of the generating circle can be
chosen so that the tracing point R, which is initially at 0, eventually passes
through point P. The cycloid was mentioned previously as an example of
a mechanically generated curve.7

The last brick of the proof of Problem 12.8 will be put in place on
page 238. In the meantime, we will find many preliminary results that are
interesting in themselves. This "last brick" is the following proposition.
It can be proved now, even before we have established that the brachis-
tochrone is a cycloid. Informally speaking, this proposition says that if

Figure 12.9. The cycloid C is the brachistochrone relative to points 0 and P. Point
R is the tracing point on the rolling circle. Point Q is the lowest point on the
cycloid, corresponding to a half rotation of the circle. For convenience in later
calculations, the y-axis points downward. The point S is an arbitrary point on the
cycloid, and the dashed curve T> is an arbitrary alternate curve connecting the initial
point 0 to point S.
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a curve is a brachistochrone, then certain subarcs of the curve inherit the
brachistochrone property.

Proposition 12.1. Suppose that the curve C in Figure 12.9 is the brachistochrone
relative to points 0 and P; and suppose that S is an arbitrary point on C. Then
the arc OS of the curve C is the brachistochrone relative to the points 0 and S.

Proof. We use the method of proof by contradiction. Suppose there were a
path T> of faster descent from 0 to S. The idea of the proof is to show that
this assumption leads to a contradiction. In fact, we show that, by joining
the curve T> with the arc SP, we obtain a curve £ that gives a more rapid
descent from 0 to P than C—contradicting the fact that C is the brachis-
tochrone relative to 0 and P.

The time to travel the arc SP depends only on the speed of the particle
when it reaches S. Moreover, equation (11.14) on page 209 shows that the
speed of the particle depends only on its depth. Thus, the particle's speed
when it arrives at point S is the same whether it travels on T> or on the arc
OS of the cycloid C. Thus, our assumption concerning the path T> leads
to the contradiction that path £ achieves a faster descent from 0 to P than
pathC. D

An experimental demonstration of the brachistochrone can be achieved
by sliding a bead down a wire in the shape of a cycloid. Simultaneously,
slide another bead down a straight wire connecting the same end points.
The bead on the cycloid wins the race —at least, it should win. A cer-
tain distinguished professor—I forget his name—was noted for perform-
ing this experiment for his classes. A colleague once asked him, "I tried
your demonstration, but when I did it, the bead on the straight wire won
the race —contrary to the predicted outcome. How do you avoid this em-
barrassment?" Without hesitation he replied, "I grease the cycloid."

If the demonstration fails, it is not because of a flaw in the theory. It
is because friction tends to spoil the experiment. The theory requires that
there is no friction whatever. The demonstration succeeds if friction is
sufficiently small.

Galileo was the first to formulate the brachistochrone problem. Galileo
was aware as early as 1638 that the straight line did not achieve the mini-
mum time of descent for his inclined plane experiments. He gave an erro-
neous demonstration that an arc of a circle is the brachistochrone.

The Contest

In 1696, the Swiss mathematician Johann Bernoulli (1667-1748) published
the brachistochrone problem in the form of a challenge to the entire math-
ematical community:
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The Brachistochrone Challenge

I, Johann Bernoulli, greet the most clever mathematicians in the
world. Nothing is more attractive to intelligent people than
an honest, challenging problem whose possible solution will
bestow fame and remain as a lasting monument. Following
the example set by Pascal, Fermat, and so on, I hope to earn the
gratitude of the entire scientific community by placing before
the finest mathematicians of our time a problem which will test
their methods and the strength of their intellect. If someone
communicates to me the solution of the proposed problem, I
shall then publicly declare him worthy of praise.

Today, Bernoulli's challenge seems a display of quaint bravado. I sus-
pect that today's scientists have the same motivations, although they tend
to mute their public displays of feeling.

Several distinguished mathematicians responded to Bernoulli's chal-
lenge and submitted solutions to the brachistochrone problem. Newton
submitted his solution anonymously. Bernoulli guessed Newton's iden-
tity, saying, "I recognize the lion by his paw." Other mathematicians who
submitted solutions were Johann's older brother Jakob Bernoulli (1654-
1705), Gottfried Leibniz, and the French mathematician Guillaume Francois
Antoine de 1'Hopital (1661-1704).

The brachistochrone problem has application to the sport of skiing be-
cause skis have a very low coefficient of friction on snow.8 In a downhill
race, a skier may find that a detour that approximates a cycloid is faster
than a shorter alternate straight-line route.

The solutions elicited by Johann Bernoulli's challenge, and Bernoulli's
own solution, showed great cleverness. Johann Bernoulli arrived at a so-
lution by translating the brachistochrone into the problem of the path of a
ray of light passing through a suitable nonhomogeneous medium. Today,
the brachistochrone problem is often used as an introduction to the general
tools of the calculus of variations. Such a treatment is beyond the scope of
this book. Moreover, the standard treatment of the brachistochrone prob-
lem using the calculus of variations generally suffers from a subtle flaw,
the assumption that there exists a solution. The solutions by Bernoulli and
the others also suffer from this defect. For simpler extremal problems, this
difficulty was discussed on page 215.

In the following pages, I would like to present my own solution (Ben-
son (1969)) to the brachistochrone problem. This solution has two advan-
tages: (1) It uses nothing more advanced than basic calculus, and (2) it
answers the existence problem mentioned above.

First, we need to examine a geometrical construction of a tangent line
to a cycloid.
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The geometry of the cycloid

In this section we will find the slope
of a tangent to a cycloid curve. In
Figure 12.10, point R with coordinates
(x, y) is the point on the rolling circle of
diameter M that traces the cycloid C.

Problem 12.9. Show that the slope of
the tangent to the cycloid C in Fig-
ure 12.10 at an arbitrary point R is
equal to

• Figure 12.10. Construction of a
tangent line T to the cycloid C.

Solution. Point P is the point of contact between the x-axis and the cycloid
C, and PQ is a diameter of the circle (PQ = M).

Point P is the instantaneous center of rotation of the rolling circle. Con-
sequently the line PR is normal (i.e., perpendicular) to the cycloid at R.
Angle PRQ is a right angle because it is inscribed in a semicircle. Since the
line T through points RQ is perpendicular to the normal line RP, T is a
tangent line to the cycloid with point of tangency at R.

Draw the line RS perpendicular to PQ. The slope of the tangent T is
equal to the quotient SQ / RS. We will solve the problem by expressing this
fraction as a function of y and M. It is easy to express SQ in this way; in
fact, we have SQ = M — y.

It is slightly more complicated to express RS as a function of y and M.
There is a standard theorem of plane geometry that asserts

(12.6)

This fact can be derived from the fact that triangle SRP is similar to triangle
SQR. From equation (12.6), we obtain

Finally, we obtain the slope mot T in the required form:

The positive sign applies for the point R as shown in Figure 12.10. The
negative sign applies, for example, at point P in Figure 12.9.
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The cycloid curve in Figure 12.9 can be considered the graph of a func-
tion y = f(x)—let us call it the cycloid function. This function has a deriva-
tive that is equal to the slope of the tangent of the cycloid:

In Figure 12.9, the positive sign applies where /(*) is nondecreasing, the
part of the cycloid between 0 and Q; and the negative sign where f ( x ) is
nonincreasing, between Q and P.

From equation (12.7), we can find an even simpler expression for the
derivative of arc length s with respect to x. In fact, for the cycloid function,
we have, using equations (11.11) and (12.7),

A differential equation

An equation, like (12.7), that involves the derivative of a function is called
a differential equation. We found above that the cycloid function satisfies
the differential equation (12.7). We will find below that a solution of a
modified brachistochrone problem also satisfies the differential equation
(12.7).

To solve a differential equation means to solve the inverse problem:
Given a differential equation, like (12.7), find all functions that satisfy that
equation.

The preceding sentence needs some qualification. How big an "all" is
necessary? Answer: A universe of curves, of functions, that is reasonably
simple but big enough for the intended discussion. The following defini-
tion makes use of a coordinate system in which the y-axis points downward.

Definition 12.1. Let XQ be a fixed nonnegative number. A smooth downward
ramp on the interval / = (0 < x < XQ) is the graph of a function y = f ( x ) ,
defined all for x in /, satisfying the following properties:

1. The function y = f ( x ) is smooth. That is, the derivative f ' ( x ) exists
and is continuous for all x in the interval 0 < x < XQ. Moreover, f ( x )
is continuous in I.

2. The function y = f ( x ) is nondecreasing. That is, f ' ( x ) > 0 for all x
in the interval 0 < x < XQ.

A smooth downward ramp corresponds to a nondecreasing function y ( x )
because the y-axis points downward, as in Figure 12.11.

(12.7)

(12.8)
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A smooth upward ramp is defined by making the following alterations
in item 2 of the above definition: Replace "nondecreasing" with "nonin-
creasing" and "/'(*) > °" with "/'(*) ^ °-"

The curve T> in Figure 12.11 is an example of a graph of a function
that is a smooth downward ramp. Note that it is impossible for a smooth
downward ramp proceeding from 0 to P to drop below the elevation of the
terminal point P. Like curve C in Figure 12.11, it is possible for a smooth
downward ramp to include a horizontal segment. In fact, once the ramp
drops to the elevation of the terminal point P, it must proceed along a
horizontal line segment. For example, in Figure 12.11, the ramp C contains
the line segment RP.

One might be tempted to say that if a smooth downward ramp satis-
fies the differential equation (12.7), then the graph of the function must be
a cycloid, but this would be jumping to a false conclusion. In fact, the con-
stant function y = M satisfies equation (12.7), but its graph is a horizontal
straight line, not a cycloid.

There is a further complication: The right side of equation (12.7), the
derivative of the cycloid function, has a difficulty at the initial point 0; in
fact, the term M/y in equation (12.7) is undefined at 0 because, at that
point, y is equal to zero, and division by zero is not allowed. However,
corresponding to the geometrical fact that the cycloid has a vertical tan-
gent at 0, the derivative of the cycloid function tends to +00 as x tends to
0 through positive values. Notice that item 2 above does not require that
the derivative exist for x = 0. The following fact characterizes a smooth
downward ramp y = f ( x ) that satisfies equation (12.7):

Fact 12.1. As in Figure 12.11, let T> be the graph of a smooth downward ramp
y = f ( x ] connecting the points 0 : (0,0) and P : (XQ, M), and let the following
conditions be satisfied:

1. XQ is at least equal to the circumference x\ of a semicircle of diameter M:

2. For all x in the interval 0 < x < XQ, the derivative dy/dx = f ' ( x ) satisfies
the equation

Then the graph ofy = f ( x ] is the curve C in Figure 12.11: half of an arch of the
cycloid OQ, followed (if XQ > x\) by the horizontal line segment QP : y = M
for all x in the interval jq < x < XQ.

(12.9)
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The restricted brachistochrone

This section continues the search, begun on page 206, for a roller coaster
with a more rapid descent. We have seen (Problem 12.4 and Figure 12.4)
that sometimes a 60° ramp with a horizontal extension shortens the time
of descent compared to a straight-line ramp. We consider below an ex-
tension of this problem: How should we design a curved roller-coaster
track, for example, the dashed curve T> in Figure 12.11, to achieve the de-
scent from points 0 to P in the least time? We depart from the standard
brachistochrone problem by assuming that the elevation of the track is
nonincreasing — that the track never proceeds from a lower to a higher el-
evation. This assumption of nonincreasing elevation is satisfied, for exam-
ple, by the inclined plane with a horizontal extension in Figure 12.4. This
assumption excludes the cycloid curve in Figure 12.9 because on the arc
QP the elevation of the sliding particle increases. Using the roller-coaster
image, the point P is at ground level, and the track is not permitted to go
below ground. We will see that in Figure 12.11 the curve C, the half arch
of a cycloid with a horizontal extension, achieves the descent in least time.
The roller-coaster passengers will complete the ride in less time—although
they will miss the thrilling spine-crushing bump at point R in Figure 12.4.

The following is a more precise mathematical statement of the problem.

Problem 12.10. Find a smooth downward ramp T>, the graph of a function
y — f ( x ) (defined for x in the interval 0 < x < XQ) such that a mass particle
starting at rest from point 0 in Figure 12.11 descends under gravity with-
out friction on the ramp T> from point 0 to the point P in the least possible
time. The smooth downward ramp T> must carry the particle forward a
fixed distance XQ and downward a distance M. In other words:

1. Point 0 has coordinates (0,0); that is, y(O) = 0.
2. Point P has coordinates (XQ, M); that is, y(xo) = M.

Figure 12.11. The graph C of y = f (x), the solution of the differential
equation (12.9), is a half arch of a cycloid joined to a horizontal line segment. The
dashed curve T> represents an arbitrary smooth downward ramp connecting 0 and P.
It is shown below that, of all smooth downward ramps T>, the curve C —the cycloid
C with horizontal extension —achieves the descent from 0 to P in minimum time.
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In order to proceed with this problem, we need to find the time of de-
scent. First, we must find the speed of the particle. On page 209, we found
that if we measure distances in short chains (64 foot units), and if we as-
sume the particle at rest at y = 0, the speed v is given by

v — ^/y short chains/second (12.10)

In equation (11.19) we found that the time of descent T is given by the
integral

In this integral, v is the speed and s is the arc length on the curve V. Us-
ing equation (11.11) on page 207 and equation (12.10) above, we find the
following expression for the time of descent:9

(12.11)

The following proposition is the key to the solution of Problem 12.10.
The proof of this proposition requires the use of inequalities discussed on
pages 220-223.

Proposition 12.2. Let D : y = f ( x ] be a smooth downward ramp connecting
from the initial point 0 : (0,0) to the final point P : (XQ,M). (For example, the
dashed curve T) in Figure 12.11.) Then, assuming that distances, for example,
XQ and M, are measured in short chains (64 foot units), the time of descent T
satisfies the inequality

(12.12)

Equality holds in (12.12) if and only if the function y — f ( x ) satisfies, for all x
in the interval 0 < x < XQ, the differential equation:

(12.13)

Proof. Recall that Cauchy's inequality, Theorem 12.3, asserts that for any
real numbers a, b, c, and d, the following inequality holds:

(12.14)

Apply this inequality with the following substitutions:

(12.15)
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Note that, in the definition of d, the quantity under the square root sign
is nonnegative because we have assumed f ( x ) < M; that is, y < M. We
now substitute the values in (12.15) for a, b, c, and d in inequality (12.14),
obtaining

Now apply Cauchy's inequality to the expression (11.19) for the descent
time T, obtaining

(12.16)

It can be shown that the second integral above in inequality (12.16) is
equal to | n\/M. Although it is beyond the scope of this book to ev
this integral, it would be a standard problem in a course in integral calcu-
lus. If we accept this value, \n\fM., then inequality (12.16) is equivalent
to the claimed inequality (12.12).

It remains to show that equality holds in inequality (12.12) if and only
if the function y = f ( x ) satisfies the differential equation (12.13). Recall
that inequality (12.16) was obtained through an application of Cauchy's in-
equality (12.14) with the substitutions (12.15). According to Theorem 12.3,
equality holds in Cauchy's inequality if and only if ad = be, that is, if and
only if

The above equation is equivalent to the claimed differential equation (12.13).
D

Notice that the right side of inequality (12.12) is a lower bound on T that
does not depend on the choice of the function y = f ( x ) . If we can show
that inequality (12.12) is sharp, in other words, if we can find a smooth
downward ramp that achieves this lower bound, we will have solved the
restricted brachistochrone problem. Indeed, Fact 12.1 asserts that if the dis-
tance XQ is sufficiently large relative to M—specifically, if XQ > f M—then
a half arch of a cycloid followed by a portion of the horizontal line y — M,
the curve C in Figure 12.11, is the one and only smooth downward ramp
that solves the differential equation (12.13). Therefore, the curve C is the
one and only solution of this restricted brachistochrone problem.
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Notice that the question, raised on page 226, regarding the existence of
a solution has been answered. We have identified the curve of minimum
descent without previously assuming its existence.

The number x\ = f M is half of the circumference of a circle of diam-
eter M, the x-coordinate of the point on a cycloid obtained by rolling the
generating circle half a turn, the lowest point on the cycloid —for example,
in Figure 12.11, the point Q.

The following proposition summarizes the above facts.

Proposition 12.3. If the distance XQ is sufficiently large— specifically, if XQ >
TJr M — inequality (12.12) z's sharp. In particular, equality is achieved if the smooth
downward ramp is, like the curve C in Figure 12.11, a downward half arch of a
cycloid (OQ), followed, ifxQ > ^M, by a segment of the horizontal line y — M
(QP). In other words, the curve C solves the restricted brachistochrone problem,
and the corresponding minimum time T is given by

A loose end

Proposition 12.3 solves an extension of Problem 12.4, illustrated in Fig-
ure 12.4. However, something is missing. Figure 12.11, which illustrates
Problem 12.3, seems analogous to Figure 12.4(b), but there does not seem
to be any analogy to Figure 12.4(a), where the inclined plane is so steep
that no horizontal extension is needed. This is reasonable because Propo-
sition 12.3 requires that the drop from initial point 0 to the final point P
is not too steep; that is the meaning of the assumption XQ > ^-M. This
loose end will be tied down on page 239 when we consider the possibility
of a steep drop from 0 to P, corresponding to the inequality XQ < f M,
analogous to Figure 12.4(a).

As we have seen above, inequality (12.12) is sharp if XQ > ^M. On
the other hand, if XQ is smaller than this bound, that is, if XQ < f M, then
inequality (12.12) is still correct, but it is not sharp. In fact, this inequality
gives an estimate that is too small.

For example, consider the case of free vertical fall. That is, suppose
that XQ is equal to 0. The time for the particle to fall directly downward to
the depth M is 2%/M seconds. This can be seen by using the fact, stated
in Problem 11.2, that the time of descent on a straight path is equal to the
length of the path, M, divided by the mean speed \ \/M. That is, the time
of descent T is given by
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Common sense urges, and it can be shown mathematically, that no
ramp can achieve a faster descent to the point at depth M directly below
the starting point. However, since XQ = 0, the right side of inequality (12.12)
is equal to \n^fM w 1.57080\/M seconds. This lower bound for the time
of descent is too small because we know that the fastest time of descent
is actually equal to 2\/M seconds. Thus, in case XQ = 0, we see that the
lower bound given by the right side of inequality (12.12) fails to be sharp.

Two more entries, silver and gold

Formula (12.12) can be used to compute the time of descent for another
contestant in the race discussed on pages 208-211 and 217-218. This path
is shown in Figure 12.12(a)—half of an arch of a cycloid followed by a

Figure 12.12. (a) Silver and (b) gold medal winners of the roller-coaster Olympics.
A mass particle slides without friction under gravity starting from rest at point 0,
descending to point P. Figure (a) shows the path of quickest descent if the path is
not permitted to drop lower than the terminal point P —half of the arch of a cycloid
followed by a horizontal straight line. Figure (b) shows the quickest path if descent
below the terminal point is allowed —a cycloid generated by a larger circle. For
convenience of calculation, distances are measured in short chains (64 foot units).
Point P is down 5 unit (21 j feet) and forward 1 unit (64 feet) from point O. Times
of descent are (a) 2.63895 seconds and (b) 2.60416 seconds.
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horizonal straight line. The time of descent for this path is computed as
follows. In formula 12.12, put XQ = 1 and M = 1/3, obtaining for the time
T of descent

A track that is permitted to drop below ground achieves an even bet-
ter time. The cycloid shown in Figure 12.12(b) achieves a descent time of
2.60416 seconds.10 The final results of the brachistochrone Olympics are
shown in Table 12.1.

The unrestricted brachistochrone

In this section, we will see that sometimes the time of descent can be
shortened —as in Figure 12.12(b)—if the path is permitted to drop be-
low the elevation of the final point P. Where previously we allowed only
smooth downward ramps, now we permit paths, like the dotted curve T>
in Figure 12.13, consisting of a smooth downward ramp—for example, the
dashed curve OS in Figure 12.13—joined to a smooth upward ramp—for
example, the dashed curve SP. We will call a curve of this sort a smooth
down-up ramp.

More precisely, we define a smooth down-up ramp to be a smooth
downward ramp possibly joined to a smooth upward ramp. A down-up
ramp, although it is permitted to rise above its deepest point, is not re-
quired to do so. In this way, the class of down-up ramps includes the class
downward ramps.

We consider the special case that the final point P has the same eleva-
tion as the initial point O, as in Figure 12.13. Assuming no frictional loss,
the particle, descending from 0 on an arbitrary smooth down-up ramp T>,

Table 12.1. Comparison of descent times of a sliding particle on various shaped
downward ramps.

The Roller-Coaster Olympics
Down 21 feet 4 inches, forward 64 feet

1.
2.
3.
4.
5.

Cycloid without horizontal extension
Cycloid with horizontal extension
60° to horizontal ramp
Straight ramp
Curved ramp y = ^x^/x

Time (sees)

2.60416
2.63895
2.73205
3.65147

3.73970

Figure

12.12(b)
12.12(a)
12.5
11.10 (dashed)

11.10 (solid)
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has just enough energy to ascend back up to its initial depth at the final
point P. Of course, it is no longer appropriate to call the entire journey
a descent. We wish to find the smooth down-up ramp that completes the
journey in the least time from the initial point 0 to the final point P.

The strategy for solving the unrestricted brachistochrone is to solve
first a family of restricted brachistochrone problems—restricted by the
maximum allowable depth. Then find the depth that achieves the passage
from 0 to P in the least time.

The quantity XQ denotes the ^-coordinate of the final point P of the
ramp, and M denotes the depth of the ramp. The quantities XQ and M
answer the two questions: how far and how deep.

We will find the path of least time by conducting a tournament of two
rounds. Round 1 involves an application of Cauchy's inequality, and round
2 involves an application of the inequality of the arithmetic and geometric
means.

Round 1. For each positive M, find the smooth down-up ramp of depth
M that achieves the most rapid journey from point 0 to point P.

Round 2. The winners of round 1 compete to determine the smooth down-
up ramp that achieves the most rapid journey from 0 to P.

Round 1: Ramps of fixed depth M

We will find that the winner of round 1 is the solid curve C in Figure 12.13:
two half arches of a cycloid, OR and QP, connected by the horizonal line
segment RQ at depth M. First we need a modification of Proposition 12.2
that applies to smooth down-up ramps.

Proposition 12.4. Let T> : y = f ( x ) be a smooth down-up ramp of depth M
connecting from the initial point 0 : (0,0) to the final point P : (xo/0). (E.g.,
the dashed curve T> in Figure 12.13. Note that the initial and final points must
have the same depth.) Then, assuming that all distances, such as XQ and M, are
measured in short chains (64 foot units), the time Tfor a particle, initially at rest,

Figure 12.13.
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to move along the ramp under gravity from 0 to P satisfies the inequality

(12.17)

Let (;t3, M) be an arbitrary point of depth M on the ramp T), for example,
point S in Figure 12.13. Equality holds in (12.17) if and only if the function
y = f(x] satisfies, for all x in the interval 0 < x < XQ, the differential equation

(12.18)

In the above equation, "±" is taken to be "+"for x in the interval 0 < x < x$
and "—" in the interval x^ < x < XQ.

Proof. Let TI and T2 be, respectively, the time to traverse from x = 0 to
x = £3 (in Figure 12.13, from 0 to S) and from x = x$ to x — XQ (in
Figure 12.13, from S to P).

By Proposition 12.2 — Cauchy's inequality was used to establish this
proposition—the time TI satisfies the inequality

The time T2 for the particle to ascend from S up to P is the same as the
time for a descent from P down to S. For ascent or descent, the speed at
depth y is the same, ^/y, but in opposite directions. Thus, from Proposi-
tion 12.2, we have the inequality

Putting these two inequalities together, we have, as claimed,

The condition (12.18) follows from condition (12.13). The minus sign
holds for x in the interval x$ < x < XQ to take account of the fact that in
this interval we have y' < 0. D

The following analogue of Proposition 12.3 discusses further the con-
ditions under which inequality (12.17) is sharp.

Proposition 12.5. If the distance XQ is sufficiently large—specifically, if XQ >
TcM— inequality (12.17) is sharp. In particular, equality is achieved if the smooth
down-up ramp, like the curve C in Figure 12.13, consists of three parts: a down-
ward half arch of a cycloid (OR), joined, if XQ > nM, to RQ, a segment of the
horizontal line y = M, and, finally, joined to an upward half arch of a cycloid
(QP).
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Inequality (12.21) is the "brachistochrone oracle." If we can understand
the language it speaks, we will have answers to the questions before us.

As we have seen, the first inequality sign of (12.21) leads to the solu-
tion of the restricted brachistochrone problem. In fact, we saw in Proposi-
tion 12.5 that the restricted problem is solved by the down-up ramp that
is shown in Figure 12.13, the ramp that gives rise to equality in the first
inequality of (12.21).

The crucial and astonishing fact is that the conditions XQ > nM and
XQ = nM for sharpness of the two inequalities in (12.21) can be satisfied
simultaneously. The first inequality in (12.21) is sharp if XQ > nM and the
ramp satisfies the differential equation (12.18). The second inequality in
(12.21) is sharp if XQ = nM. The ramp that satisfies both these condi-
tions for equality in (12.21) is the solid curve shown in Figure 12.14 — a full
arch of a cycloid with no horizontal line segment interpolated. Thus, we
see that the unrestricted brachistochrone problem is solved by the smooth
down-up ramp consisting of a full arch of a cycloid, as in Figure 12.14, and
we have solved Problem 12.8.

Fastest descent to anywhere

We have solved the unrestricted brachistochrone problem in the case that
the final point P has the same depth as the initial point 0. However, an
application of Proposition 12.1 will show that we have solved the prob-
lem no matter where the final point is, provided the final point is no higher
than the initial point. Referring to Figure 12.14, Proposition 12.1 tells us

Round 2: Finding the grand prize winner

To find the depth M that minimizes the time to travel from 0 to P in Fig-
ure 12.13, we apply the inequality of the arithmetic and geometric means,
Theorem 12.2, using n = 2, to the right side of inequality (12.17), obtaining

(12.19)

According to Theorem 12.2, inequality (12.19) becomes an equality if and
only if

(12.20)

that is, if and only if XQ = nM.
Putting inequality (12.19) together with inequality (12.17), we find that

the time of passage from 0 to P in Figure 12.13 satisfies the following chain
of two inequalities:

(12.21)
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that optimality of the cycloid among all ramps that connect 0 with P is
inherited by any partial arch of the cycloid C, for example, the solid curve
OS. In other words, the cycloidal ramp OS achieves a faster descent than
any other smooth down-up ramp T> connecting 0 to S — for example, the
dotted curve T> in Figure 12.14.

Figure 12.15 illustrates how the entire quarter plane to the right of and
below 0 can be covered by the family of cycloidal arches emanating from
0. An arbitrary point P to the right of 0, but no higher than 0, lies on ex-
actly one cycloid of this family. This cycloid is the unique path of quickest
descent from 0 to P. These facts are summarized in the following propo-
sition:

Proposition 12.6. Suppose that P is an arbitrary point to right of, and no higher
than, the initial point 0. Then there is exactly one cycloid arch C that has a
vertical tangent at 0 and that passes through the point P. This cycloidal arch is
the down-up ramp that achieves the most rapid descent from 0 to P.

Figure 12.15 facilitates a comparison between the content of Proposi-
tions 12.6 and 12.3. Recall that Proposition 12.3 specifies the most rapid
descent on a downward ramp. In particular, in Figure 12.15, the fastest
downward ramp from 0 to P is half arch from OQ joined to the horizon-
tal line segment QP. On the other hand, Proposition 12.6 specifies that the
most rapid descent on a down-up ramp is the dashed cycloid OP.

Tying down a loose end

On page 233, we examined a gap in the analogy between Problem 12.4, the
inclined plane with horizontal extension, and Proposition 12.3, the restricted
brachistochrone. Now we have the tools necessary to tie down this "loose
end."

In Problem 12.4, two cases were distinguished, as shown in Figures
12.4(a) and (b):

(a) If the inclined plane connecting 0 and P is sufficiently steep, steeper
than 60°, then a horizontal extension provides no benefit.

Figure 12.14. The unrestricted brachistochrone.
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Figure 12.15. Covering a quarter plane with a family of cycloids.

(b) Otherwise a 60° inclined plane followed by a horizontal ramp is opti-
mal.

Proposition 12.3, the restricted brachistochrone, which puts a limit on the
steepness of the drop from 0 to P, provides an analogy to (b), but not to
(a). However, we can now fill in this lack.

The point Q in Figure 12.15 lies on the half line C, consisting of the
points satisfying x — j_y, y > 0. The line £ consists of the deepest points
on all of the cycloids of the family. Proposition 12.3 says that if P is to
the right of £, the downward ramp of fastest descent is the curve OQP,
described above. The region to the left of £ is shown shaded because
Proposition 12.3—by assuming the inequality XQ > f M—leaves us "in the
dark" about what happens if the terminal point (e.g., R) is in the shaded
region. Proposition 12.6, however, sheds light on this matter because it
does not exclude the shaded region from consideration. Moreover, if the
terminal point R is in the shaded region, the cycloidal arc OR is a downward
ramp —and, also, a down-up ramp, because a down-up ramp, although it
is permitted to rise above its deepest point, is not required to do so; in
other words, the class of down-up ramps includes the class of downward
ramps. Since the cycloidal arc OR is optimal in the class of down-up ramps, it is
also optimal in the class of downward ramps connecting 0 and R.

The preceding remark achieves two ends: (1) It complements Proposi-
tion 12.3 by specifying the optimal descent when the drop from the initial
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point O to terminal point P is too steep to be covered by the proposition.
(2) It completes the analogy with the part of Problem 12.4 discussed in (a)
above and illustrated in Figure 12.4(a).

On the one hand, the brachistochrone problem is merely a curious puz-
zle, albeit one that attracted serious attention of the mathematical giants
of the late seventeenth century. On the other hand, this problem signaled
the beginning of the calculus of variations, a cornerstone of mathematical
physics.

In this book, we have seen many other curiosities that have led to im-
portant mathematics. I hope that in these pages I have shown these two
sides of mathematics: on the one hand, the puzzler, the poser, the brain-
teaser; on the other, the search for understanding of the world we live in.
To those who wish to continue this search, I wish enjoyable and successful
further explorations.
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Glossary

algorithm A completely specified step-by-step mathematical procedure
— a "mathematical recipe/' for example, long division. Computer
science is largely concerned with algorithms, p. 14.

anthyphairesis The process of back-and-forth subtraction (BAFS) that de-
fines a ratio in the sense of Theaetetus. The anthyphairesis of a ratio
is equivalent to the representation of a number by a simple contin-
ued fraction, p. 26.

axiomatic method A process whereby all assertions of an area of discourse
are derived by specified rules of inference from basic propositions
called axioms or postulates referring to a small number of primitive
undefined terms (for example, in Euclidean geometry, line and point
are undefined), p. 74.

6

bilateral symmetry Organization of a two- or three-dimensional object
(organism, art work, etc.) in which the right and left sides are mirror
images of each other, p. 142.

binary system The representation of numbers as a sum of powers of 2. A
number is represented in the binary system using 0 and 1 as digits.
E.g., the number 11 in the binary system is:

Computers represent numbers internally in the binary system, p. 8.
brachistochrone The curve that achieves the minimum time of descent,

p. 224.
byte A unit of computer storage comprising eight bits of information.

One byte can be used to encode one character or an integer between
0 and 255. A character can be a lower or upper case letter; or a punc-
tuation mark, a space, or other special symbol, p. 83.
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c
chain A surveyor's measure of length equal to 66 feet. In the discussion

of mass particles sliding on ramps, this book uses a unit of length
called a short chain, equal to 2g « 64 feet. p. 208.

commensurable Possessing a common measure. More precisely, two mag-
nitudes are said to be commensurable if their ratio is equal to the
ratio of two natural numbers, p. 21.

commutative law A property of a binary operation, for example, ordinary
addition or multiplication, whereby the result of applying the oper-
ation to two elements is independent of the order of application, for
example, a + b = b + a, ab = ba. p. 146.

continued fraction A fraction of the form

bi
00 + r

b2al +
h

a2 +

«3 + '' •

where UQ, a\, ... and b\, b2, ... are natural numbers—called a sim-
ple continued fraction if bn — 1, n = 1, 2, There is a connection
between the theory of continued fractions and (1) the Euclidean Al-
gorithm and (2) anthyphairesis. p. 22.

coplanar Lying in the same plane, p. 75.
curvature of a curve The curvature at a point on a curve is the reciprocal

of the radius of the osculating circle. The larger the curvature, the
"tighter" the curve, p. 63.

D

difference quotient Suppose that the values of a variable y depend on
the values of a variable x, and suppose y\ and 1/2 are values of the
variable y corresponding to distinct values x\ and x2f respectively, of
the variable x. Putting k = y2 — y\ and h = x2 — x\, the difference
quotient is defined as k/h. For the graph of y vs. x, the difference
quotient is the slope of the secant through the points (xi,yi) and
(x2/y2). If y is distance and x is time, then the difference quotient is
equal to the mean velocity over the time interval (x\, x2). p. 172.

discriminant The discriminant of an algebraic equation is a quantity de-
pending on the coefficients of the equation whose vanishing implies
that the equation has repeated roots. E.g., the discriminant of the
quadratic equation ax2 + bx + c = 0 is b2 — 40c. p. 172.

distributive law The distributive law of multiplication with respect to ad-
dition says that, for any numbers a, b, and c, we have a(b + c) =
ab + ac. p. 115.
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division algorithm Given two positive real numbers a and b, the division
algorithm expresses a as a multiple of b plus a remainder smaller
than b. More precisely, the division algorithm determines a unique
nonnegative integer q, called the quotient, and a unique real number
r, called the remainder, such that 0 < r < b and a = qb + r. p. 26.

E

equimultiple Magnitudes A and B are equimultiples of a and b, respec-
tively, if there exists a natural number n such that A — na and
B = nb.p.24.

Euclidean Algorithm A procedure for finding the greatest common divi-
sor of two natural numbers, p. 27.

F

fungible A commodity is said to be fungible if quantity, for example, area,
volume, or weight, is the sole measure of value. Grain is generally a
fungible commodity—one bushel is as good as another, p. 7.

G

Gaussian curvature The intrinsic curvature of a surface: the product of
the two principal curvatures. An ellipsoid and a saddle surface
have, respectively, positive and negative Gaussian curvature, p. 66.

geodesic A path that connects every sufficiently close pair of its points by
a path of shortest distance. E.g., on the surface of the earth, circles of
longitude are geodesies, but circles of latitude (except the equator)
are not. p. 65.

greatest common divisor The greatest common divisor (GCD) of two nat-
ural numbers is the largest natural number that is a divisor of both.
The Euclidean Algorithm is a method of computing the GCD of two
numbers, p. 27.

group A set with an operation of multiplication satisfying the axioms
listed on page 148. The set of nonzero real numbers is a group with
respect to ordinary multiplication, p. 143.

I

instantaneous velocity The instantaneous velocity of a particle at an in-
stant of time to is equal to the limit of the mean velocities over time
intervals containing to as the length of those time intervals tends to
0. p. 179.

integer A whole number—positive, negative, or zero. p. 16.
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interval An interval of real numbers consists of all numbers between a
pair of given numbers called endpoints. If one of the endpoints is
±00, the interval is said to be unbounded. An interval that contains its
endpoints is said to be closed, for example, 0 < x < I. An interval
that contains neither of its endpoints is said to be open, for example,
0 < x < 1. A point of an interval that is not an endpoint is called an
interior point, p. 191.

intrinsic geometry Also called inner geometry; a geometry based on mea-
surements within a particular geometric universe. E.g., the radius
of a circle is not meaningful in the intrinsic geometry of the circle
because it cannot be measured, or even inferred indirectly, without
leaving the circle. Intrinsic geometry is trivial for a circle, but more
complex for a two-dimensional surface, p. 62.

irrational number A number not expressible as the quotient of two inte-
gers. It can be shown that \/2 is irrational, p. 21.

isometry A mapping between two spaces that preserves distances, p. 150.
isoperimetric problem The classic isoperimetric problem is to find the

plane figure of greatest area having fixed perimeter. The problem has
been generalized in various ways. E.g., one can restrict the figures,
or the manner in which "perimeter" is understood; or, in three di-
mensions, find the figure of greatest volume with fixed surface area,
p. 213.

M

mean velocity If a particle travels a certain distance in a certain time inter-
val, then the mean velocity with respect to that time interval is equal
to the distance traveled divided by the length of the time interval,
p. 180.

median In geometry, a median of a triangle is a line segment from a vertex
to the midpoint of the opposite side. In statistics, the median of a set
of numerical data is the middle value of the data. There are equally
many data points above the median as there are below it. p. 98.

N

natural number A positive whole number, p. 5.

o
osculating circle The osculating ("kissing") circle at a point on a curve

is the circle that fits the curve most closely at that point. (Recall
that three noncollinear points—three distinct points not in a straight
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line—determine a circle.) The osculating circle at P can be approxi-
mated as close as desired by circles that pass through triples of points
on the curve close to P. p. 63.

P

partial quotient The sequence of natural numbers that defines a simple
continued fraction. For the simple continued fraction

1

6+l
the numbers 6 and 5 are partial quotients, p. 27.

prime factorization The representation of a natural number as a prod-
uct of prime numbers, for example, 60 = 22 • 3 • 5. According to
the unique factorization theorem, every natural number greater than 1
can be expressed as a product of prime numbers in exactly one way
(apart from the order of the factors), p. 16.

prime number A natural number greater than 2 that is divisible only by
itself and 1. p. 16.

principal curvature In general, a point P on a surface S has two princi-
pal curvatures, the maximum and the minimum curvatures at P of
curves on S containing P. The product of the principal curvatures is
the Gaussian curvature of <5 at P. p. 66.

proportion An equality of two ratios. The proportion asserting the equal-
ity of ratios a : b and c : d is written a : b :: c : d. p. 22.

R

radical 1. A square root, cube root, nth root, etc. 2. The radical sign J.
p. 129.

ratio The relative size of two magnitudes. The ratio a : b of two numerical
quantities is defined by the fraction a/b (assuming that b is not equal
to zero), p. 21.

rational number A number expressible as the quotient of two integers,
for example, 7/5. p. 5.

reciprocal The reciprocal of a number n is equal i/n. E.g., the reciprocal of
6 is 1/6. p. 6.

relatively prime Two natural numbers are said to be relatively prime if
their greatest common divisor is equal to 1. p. 27.

root 1. A number that solves an equation. E.g., x = 3 is a root of x2 +
lOx — 39 = 0. 2. Square root, cube root, nth root, etc. A number
whose square, cube, nth power, etc., is equal to a given number. The



248 Glossary

square roots of 4 are 2 and —2 (that is, ±2). The positive nth root of a
number a (if it exists) is denoted If/a. p. 116.

s
sexagesimal system The representation of numbers as a sum of powers

of 60. E.g., in the sexagesimal system, 11,0,21; 12,45 represents the
number

Using hours, minutes, and seconds, time is represented in the sexa-
gesimal system, p. 15.

sharp An inequality involving < or > is said to be sharp if the inequality
sign can be replaced by equality for some choice of the variables.
E.g., the inequality x2 + y2 > 2xy is sharp because equality holds if
x = y. p. 223.

sphere In mathematics, a sphere is a certain surface, exclusive of its inte-
rior. A sphere, together with its interior, is called a ball. p. 67.

T

taxonomic key A hierarchical tree of questions that achieves the classifi-
cation of an item belonging to a given taxonomy, p. 158.

taxonomy A hierarchical system of classification.
theorema egregium The theorem of Gauss that asserts that the Gaussian

curvature of a surface is an intrinsic property, p. 66.

u
unit fraction A fraction with numerator equal to 1, for example, Vs. p. 6.

V

variational principle One of a class of physical laws that assert, in some
limited context, that of all conceivable outcomes, the one that actu-
ally happens maximizes or minimizes a certain quantity; e.g., the
principle of least action, p. 212.

W

waveform A graphical representation of a (periodic or nonperiodic) wave.
An acoustical waveform is a graph of pressure against time. p. 39.



Notes

Chapter 1 Ancient Fractions
1. Leonardo of Pisa is also known as Fibonacci. He is best known for the Fi-

bonacci sequence: 1,1,2,3,5,8,13,21,... . He used this sequence to describe the
population growth of a colony of rabbits. He introduced the Hindu-Arabic place-
valued decimal system of numerals to Europe.

2. A more sophisticated theory of fair division can show how to divide a (non-
fungible) pizza among people who have different notions of the desirability of
anchovies versus pepperoni.

3. Van der Waerden (1975) gives a more complete account of the ancient Egyp-
tian arithmetic techniques.

4. Benson (1999, p. 101).
5. Van der Waerden (1975) discusses several such patterns.

Chapter 2 Greek Gifts
1. Translated by G. R. G. Mure.
2. For example, see Hardy and Wright (1979).
3. Translated by T. L. Heath.
4. In modern terms, we would define ratios as equivalence classes.
5. Fowler (1987) supports this thesis. Van der Waerden (1975, pp. 176-7) also

supports an important role for anthyphairesis in ancient Greek mathematics.
6. Dedekind's unique further contribution was the concept of completeness and

the foundations of the arithmetic of the real numbers.
7. Or, perhaps, the Euclid team. Nothing is known of Euclid's curriculum vi-

tae—not even the dates of his birth and death. His role in the authorship of the
Elements is unclear.

8. It can be argued that the standard term division algorithm is inappropriate
because this procedure involves no division—only repeated subtraction.

9. Despite the fact that no division is involved, we use the term partial quotient
because that is the standard term in the theory of continued fractions.

10. Euclid's Elements, Book VII, Proposition 1. When two unequal numbers are
set out, and the less is continually subtracted in turn from the greater, if the number
which is left never measures the one before it until a unit is left, then the original
numbers are relatively prime.

Proposition 2. To find the greatest common measure of two given numbers
not relatively prime.

11. Euclid's Elements, Book X, Proposition 1. Two unequal magnitudes being
set out, if from the greater there be subtracted a magnitude greater than its half,
and from that which is left a magnitude greater than its half, and if this process be
repeated continually, there will be left some magnitude which will be less than the
lesser magnitude set out.

Proposition 2. If, when the less of two unequal magnitudes is continually
subtracted in turn from the greater that which is left never measures the one before
it, then the two magnitudes are incommensurable.

12. See Fowler (1987) and Van der Waerden (1975).
13. However, the completeness of the real numbers was not understood by the

249
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Greeks. Furthermore, the Greeks gave ratios an order, but they were much less
clear concerning the arithmetic properties of ratios.

14. It can be shown by truncating the continued fraction—using a sufficiently
large but finite number of the partial quotients—we obtain arbitrarily close ap-
proximations of \/2.

Chapter 3 The Music of the Ratios
1. Aristotle, Metaphysics.
2. A diatonic scale consists of seven distinct tones: do re mi fa sol la ti.
3. For an ideal spring, the restoring force is proportional to the displacement.

The vibrating spring is an example of simple harmonic motion.
4. Decibels are related to pressure amplitude by the formula d = 10 log p, where

p and d denote pressure and decibels, respectively. The unit of pressure is defined
such that one unit represents a barely audible sound.

5. The details of this approximation are addressed by the theory of Fourier se-
ries.

6. The sum of waveforms is obtained by adding vertical dimensions.
7. Ohm is also known for Ohm's law of electrical resistance.
8. "The advancement and perfection of mathematics are intimately connected

with the prosperity of the State" Napoleon Bonaparte, 1769-1821.
9. Helmholtz was a scientist of remarkable breadth. He made important contri-

butions in physiology, optics, acoustics, and electrodynamics. Helmholtz showed
the power of physical science in the study of sight and hearing. See Helmholtz
(1954).

10. Musically unsophisticated subjects were sought for this experiment. It was
thought that musically trained subjects would give undue weight to intervals that
they were trained to hear.

11. A semitone is the interval between two adjacent notes of the chromatic scale,
for example, C-CjJ.

12. See also Schechter (1980).
13. Here is the exact calculation of the BAFS of the ratio log 2 : log 3/2.

14. See Hardy and Wright (1979).
15. Piano tuners "stretch" the tuning of the upper and lower octaves of the piano.

This means that they tune the upper octaves slightly sharp and the lower octaves
slightly flat. It is generally agreed that this adjustment improves the sound of
the piano. It is thought that this happens because real piano strings, due to their
stiffness, do not vibrate exactly like an ideal vibrating string.

16. Silver (1971).
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17. Jeans (1937) refers to use of continued fractions for equal-tempered tuning
and notes that a scale of 53 equal intervals has an additional incidental advantage:
The 53-tone scale gives an excellent approximation to the interval associated with
the ratio 5 : 4, the major third according to just tuning.

Chapter 4 Tubeland
1. Sphereland, Burger (1965).
2. By a consortium led by Andrew Lange of the California Institute of Technol-

ogy and Paolo Bernardis of Universita de Roma, "La Sapienza."
3. By a University of California team led by Paul L. Richards.
4. In ordinary usage, one might say the surface in Figure 4.3(a) is convex when

viewed from above and concave when viewed from below. This distinction is not
important in our current discussion.

5. This is a real theorem of Euclidean geometry, not just a fictional one.
6. In modern notation, if the sides of the top and bottom squares are a and b,

then the volume is given by h(a2 + ab + b2)/3.
7. Let the consecutive sides of a quadrilateral be a, b, c, and d. For the area, the

Egyptians used the incorrect formula (a + b)(c + rf)/4.
8. As we will see, one of the axioms, the parallels axiom, is much less self-evident

than the others.
9. Euclid, himself, occasionally erred in this respect. In fact, the foundations of

geometry as presented in The Elements have certain flaws. Using Euclid's axioms
as he wrote them, certain proofs make tacit use of geometric intuition—despite
Euclid's requirement to the contrary. These shortcomings—dealing, for example,
with the concepts of betweenness and continuity—have been corrected, for example,
in Hilbert (1902). By Euclidean geometry we mean the geometry of Euclid with all
the necessary additions and corrections.

10. In fact, Euclid does give definitions of point, line, and plane. For example,
Book I, Definition 1 reads, "A point is that which has no part." From the modern
point of view, this is not a definition because it does not define point in terms of
previously defined terms. In fact, since this is the very first definition, there are no
previously defined terms.

11. This form of the parallels axiom is known as Play fair's axiom after the Scottish
mathematician John Playfair (1748-1819), uncle of the architect William Playfair
(see page 89). It is more transparent than the equivalent version of the parallels
axiom stated in Euclid's Elements.

Chapter 5 The Calculating Eye
1. For look at the many forms graphs may take, see Harris (1999). For beauti-

ful and ingenious examples of the visual display of information, see Tufte (1983),
(1990), and (1997).

2. Represented (without foundation) as a Chinese saying, this quotation was
used in advertisements for Royal Baking Powder.

3. See Carter (1999).
4. In 1907, extensive development of the inferior parietal regions was already

noted in the preserved brains of the mathematician C.F. Gauss and the physicist
Siljestrom (Witelson et al. (1999)).

5. Sir Jacob Epstein (1880-1959), U.S.-born English sculptor. Gertrude Stein
(1874-1946), French-resident U.S. author.
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6. See the essay by Henri Poincare in Newman (1956, pp. 2041-2050), and Had-
amard (1954).

7. Van der Waerden (1975, p. 118).
8. Outline of proof: Observe that the triangle with vertexes (0,0), (0,1), and

(x, y) is a right triangle. The vertical line through (x, y) divides this large right
triangle into two smaller right triangles, each similar to the large right triangle.
Similarity implies that certain ratios hold, which imply the desired result.

9. Uncle of the noted Scottish architect William Henry Playfair (1789-1857) and
brother of the mathematician John Playfair (1748-1819).

10. By 1933, the New York Times showed graphs of Weekly and Daily Averages of 50
Combined Stocks.

11. For a point below the X-axis or to the left of the Y-axis, the corresponding
coordinate (x or y) is negative.

12. Smith (1959, pp. 389-402). Both Descartes and Fermat discovered analytic
geometry in 1629, although Descartes published La Geometric in 1637 and Fermat's
work was published posthumously in 1679. We say that the analytic geometry
of Descartes and Fermat is concerned with the graphs of equations; nevertheless,
their diagrams did not include explicit coordinate axes.

13. Recall the mathematical meaning of the word circle. A circle is a curve—the
circumference only. The circle, together with its interior, is called a disk.

Chapter 6 Algebra Rules
1. This quote is from the movie The Wizard ofOz, not from the book by Frank

Baum.
2. Military theorist Karl von Clausewitz (1780-1831) said, "War is merely the

continuation of politics by other means."
3. Hewlett-Packard calculators use a system called postfix instead of the order

of precedence.
4. Euclid's proposition is slightly more general. It provides for division of the

rectangle 7£ into an indefinite number of subrectangles. This extension is proved by
repeated application of the proposition as stated.

5. This equation is called quadratic because of the presence of the term x2. Equa-
tions involving x3 and x4 are called cubic and biquadratic, respectively.

6. The square of —19.5 is also 380.25. This gives us a second solution of the
equation n(n — 1) = 380, namely, n = —19.5 + 0.5 = —19. However, the original
statement of the problem does not permit a negative value for n.

7. A computer spreadsheet enables tabulation, manipulation, and calculation
with rectangular arrays of data. Spreadsheet calculations are automatically up-
dated as the data change. Although spreadsheets are widely used for business ap-
plications, they should be considered a general purpose computational tool. Visi-
Calc, the first commercial computer spreadsheet, became available to the public in
1979.

Chapter 7 The Root of the Problem
1. Recall that a number is rational or irrational depending on whether or not it

can be expressed as the quotient of two integers. For example, 2/3 is rational, and
Proposition 2.1 shows that \/2 is irrational. See page 21.

2. Recall that a complex number is of the form a + ib where i = \/—I and a and
b are real numbers.
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Chapter 8 Symmetry Without Fear
1. The Alhambra is the Moorish fortress and palace overlooking Grenada, Spain.

It was built in the twelfth and thirteenth centuries.
2. For a beautiful and historic collection of plane ornaments from many epochs

starting with ancient Egypt, see Jones (1986) (originally published in 1856). For
a discussion of the mathematical theory of plane ornaments together with a fine
collection of examples from many cultures, see Washburn and Crowe (1988). M.C.
Escher is the premier twentieth-century artist in this genre. See, for example, Es-
cher (1961).

3. Based on Jones (1986), Plate XLV-21,22.
4. (a) Based on Jones (1986), Plate XLII*-4. (b) Based on Jones (1986), Plate

XLIIt-5. These sources are more ornate than Figures 8.2(a) and (b).
5. A recent novel by Petsinis (1997) gives a fictionalized account of Galois's short

life. Galois made fundamental contributions to mathematics before his absurd
death in a duel at the age of 21.

6. An element that is its own inverse is said to be idempotent.
7. See Schattschneider (1978) for details of this naming convention and a de-

tailed discussion of the wallpaper groups.
8. For example, see Munz (1970).
9. Figure 8.1(a): pma2. Figure 8.1(b): plal. Figure 8.2(a): p4m. Figure 8.2(b): p6.

Chapter 9 The Magic Mirror
1. Hilbert and Ackermann (1950).
2. Godel (1931).
3. The twentieth century brought on many other influences pulling in the same

direction: Einstein's theory of relativity, the mathematical theory of chaos, and the
Heisenberg uncertainty principle.

Chapter 10 On the Shoulders of Giants
1. Indiana House Bill No. 246 (1897) reads in part, "Be it enacted by the Gen-

eral Assembly of the State of Indiana: it has been found that a circular area is to
the square on a line equal to the quadrant of the circumference, as the area of an
equilateral rectangle is to the square of one side." It is unclear what value for n is
actually proposed here. The wording is unclear, but it probably implies n = 4.

2. Normality requires randomness of the sequence of, not only the base-10 dig-
its, but even the digits with respect to each base. Furthermore, each finite subse-
quence of digits must recur randomly.

3. Thanks to G.D. Chakerian for this observation.
4. See Heath (1953, p. 4, Assumption 2), On the Sphere and Cylinder. The inside

curve, the waist W, must be convex, but it is possible to weaken the assumption
that the outer curve, the belt B, is also convex.

5. Figure A.4 provides a demonstration of this ratio.
On the given 30°-60° right triangle OAB find point C such
that the angle CAO is 30°. The two single-ticked angles
are both 30°, and all three double-ticked angles are 60°.
It follows that triangle OAC is isosceles and triangle ABC
is equilateral. Therefore, the lengths of the ticked sides
OC, CB, and AB are of equal length. By the Pythagorean Figure A.4
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theorem, if the length AB is equal to 1, then OB = 2 and
OA = V22 - I2 = V3.

6. An equation of a parabola is also mentioned on page 106.
7. Quadratic equations are discussed on pages 130-135.
8. Slope is discussed on page 99.
9. Secant formerly denoted a straight line that meets a circle in two points, but

now it also means a straight line that intersects an arbitrary curve in (at least) two
points. Secant has a technical meaning in trigonometry—the reciprocal of the co-
sine.

10. See Drake (1978) for an account of Galileo's scientific work including an ac-
count of the inclined plane experiment described below.

11. See the discussion of constant speed on page 99. Speed is always a nonneg-
ative quantity. Velocity is defined as speed together with the direction of motion.
One-dimensional velocity is speed together with a plus or minus sign to denote
the direction.

Chapter 11 Six-Minute Calculus
1. Bishop George Berkeley (16857-1753) was an outspoken critic. In The Analyst:

A Discourse addressed to an Infidel Mathematician, he called Newton's fluxions "the
ghosts of departed quantities."

2. Euler was surely the most prolific mathematician of all time. Publication of
his collected works, almost all in Latin, is an ongoing project that currently consists
of 72 volumes.

3. The arrow —»• in the formula lim*-^ g(x) = L means "tends." The arrow i—>,
used on page 187, means "maps to."

4. Note that we are using mean velocity in the same sense as in the preceding
chapter. (See Table 10.)

5. Differentials can be given a modern rigorous meaning, but we will not do so
in this book.

6. For curvilinear motion of a particle, velocity has both magnitude and direc-
tion.

7. The variable t in the expression J0 f ( t ) dt is called the variable of integration.
This is an example of a dummy variable, so named because this formula does not
depend on t. In place of t, we could have used u or any other variable.

8. This assertion is a consequence of the mean value theorem:

Theorem (Mean value theorem). Suppose that the function G(t) is continuous on the
interval a < t < b and has a derivative g(t) in the interior of that interval. Then there
exists a number c (a < c < b} such that g(c) is equal to

This fraction can be interpreted as a difference quotient or as the mean velocity
over the interval a < t < b.

9. The second fundamental theorem of calculus is the following:

Theorem (Second fundamental theorem of calculus). Let g(t) be continuous on the
interval a < t <b. Define G(t) by the formula

Then G(t) is differentiate and G' (t) = g(t) for all t in the interval a < t < b.
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Chapter 12 Roller-Co aster Science
1. See page 196.
2. For help in computing derivatives, see Table 11.3 (table of derivatives) and

Table 11.4 (rules for derivatives).
3. See Honsberger (1973).
4. This is an example of a standard topic of elementary algebra—completing the

square.
5. Inequalities are the mainstay of mathematical analysis. The classic work on

this subject is Hardy, Little wood, and Poly a (1934).
6. The following is the general case of Cauchy's inequality:

Theorem (Cauchy's inequality—general case). Let n be a natural number. For any
real numbers Xi,X2,. • -,xn andyi,y2,... ,yn,wehave

Equality holds only if the numbers x\,xi,...,xn and y\, 1/2,..., yn are proportional. In
other words, equality holds only ifx^j = Xjyifor all natural numbers i and j satisfying
1 < i, j < n.

7. See Figure 5.3(b) on page 86.
8. See Twardokens (1990).
9. The definition of integral (12.11) entails a technical difficulty. Since y is zero

when x is zero, the fraction

is undefined at x = 0 because division by 0 is undefined. In fact, this fraction
becomes unbounded near x = 0. The integral (12.11) is an example of what is
called an improper integral. For positive numbers e, however small, the integral

is an ordinary integral. The limit, finite or infinite, of this integral as e tends to
zero through positive values is technically what is meant by the integral (12.11).
Of course, an infinite value is not relevant to the brachistochrone problem because
we already know that there are paths that produce finite descent times.

10. Calculating the particulars of this cycloid is beyond the scope of this book.
Approximate numerical methods were used.
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