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Introduction

R eady to load your statistical toolbox with a new level of tools?
Intermediate Statistics For Dummies picks up where Statistics For
Dummies (or your introductory statistics course) leaves off, and keeps you
moving along the road of statistical ideas and techniques in a positive step-
by-step way.

The focus of intermediate statistics is on building and testing models based
on data. You're trying to estimate, investigate, correlate, and congregate cer-
tain variables based on the information at hand. The process for doing this is
two-fold. First you build a model that you think describes your situation (the
model-building phase), and then you test your model, using the data you've
collected (the data analysis phase).

The techniques presented in intermediate statistics are used even more heav-
ily in medical and scientific studies than the introductory topics were. The
reason is that most real-world studies have more complex problems to solve;
they ask more questions and collect more data. Given that the results of
these more complex studies are used to make decisions in a host of different
areas (including medical science, biology, engineering, business, and politics
to name a few) most anyone can benefit from reading this book. You can see
applications that give you exposure to real problems and to the process of
interpreting and understanding other people’s results.

About This Book

This book is designed for people who want to get into (or at least be able to
understand and interpret) some of the more involved techniques in statistics,
beyond medians and means, the Central Limit Theorem, and confidence
intervals and hypothesis tests. (However, I do add some brief overviews of
introductory statistics as needed, just to remind everyone of what was cov-
ered and get new readers up to speed.) The topics this time around are many
flavors of regression (including simple, multiple, nonlinear, and logistic);
ANOVA (one-way and two-way); Chi-square tests (for independence and
goodness-of-fit); and nonparametric procedures.

[ also include interpretation of computer output for data analysis purposes. |
do show how to use the software to get the results, but I focus more on how
to interpret the results found in the output. It’s likely that more people will
be interpreting this kind of information rather than doing the programming
specifically. And because the equations and calculations can get too involved
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by hand, you often use a computer to get your results. [ include instructions
for using Minitab to conduct many of the calculations in this book. Most sta-
tistics teachers who cover these intermediate topics hold this philosophy as
well. (What a relief!)

This book is different from the other intermediate statistics books in many
ways, including the following:

v+~ Full explanations of intermediate statistical ideas. Many statistics text-
books squeeze all the intermediate level topics at the very end of their
huge introductory-level textbooks; as a result, these topics tend to get
condensed and presented as if they were optional topics. But no wor-
ries; | take the time to clearly and fully explain all the information you
need to survive and thrive.

v Dissection of computer output. Throughout the book, I present many
examples that use statistical software to analyze the data. In each case,
[ present the computer output as well as an explanation of how I got the
output and what it means.

» An extensive number of examples. | include several examples to cover
the many different types of problems you will face.

1 Lots of tips, strategies, and warnings. [ share with you some of the
trade secrets, based on my experience teaching and supporting students
and grading their papers.

v~ Nonlinear approach. The setup of this book allows you to skip around
in the book and still have easy access and understanding of any given
topic.

v+ Understandable language. [ try to keep things conversational to help
you understand, remember, and put into practice statistical definitions,
techniques, and processes.

v Clear and concise step-by-step procedures. In most chapters, you can
find steps that intuitively explain how to work through intermediate sta-
tistics problems, and remember how to do it later on.

Conventions Used in This Book

Throughout this book, I've used several conventions that I want you to be
aware of:

v lindicate multiplication by using a times sign, indicated by a lowered
asterisk, *.

v~ 1l also indicate the null and alternative hypotheses as Ho (for the null
hypothesis) and Ha (for the alternative hypothesis).
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v The statistical software package [ use and display throughout the book
is Minitab 14, but I simply refer to it as Minitab.

v Whenever | introduce a new term, I italicize it.
v Keywords and numbered steps appear in boldface.

v Web sites and e-mail addresses appear in monofont.

What Vou're Not to Read

At times [ get into some of the more technical details of formulas and proce-
dures for those individuals who may need to know (or just really want to).
These minutiae are marked with a Technical Stuff icon. I also include sidebars
as an aside to the essential text, usually in the form of a real-life statistics
example or some bonus info you may find interesting. You can feel free to
skip those icons and sidebars because you won’t miss any of the main infor-
mation you need (but by reading it, you may just be able to impress your stat
professor with your above-and-beyond knowledge of intermediate statistics!).

Foolish Assumptions

Because this books deals with intermediate statistics, | assume you have had
one previous course in introductory statistics under your belt (or have at
least read Statistics For Dummies [Wiley]), with topics taking you up through
the Central Limit Theorem and perhaps an introduction to confidence inter-
vals and hypothesis tests (although I review these concepts briefly in Chap-
ter 3). Prior experience with simple linear regression isn’t necessary. Only
college algebra is needed for the mathematics details. Some experience using
statistical software is a plus but not required.

As a student, you may be covering these topics in one of two ways: either at
the tail end of your introductory statistics course (perhaps in a hurried way,
but in some way nonetheless); or through a two-course sequence in statistics
in which the topics in this book are the focus of the second course. If so, this
book provides you just the information you need to do well in those courses.

You may simply be interested in intermediate statistics from an everyday
point of view or want to add to your understanding of studies and statistical
results presented in the media. If this is you, you can find plenty of real-world
examples and applications of these statistical techniques in action as well as
cautions for interpreting them.
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How This Book Is Organized

This book is organized into five major parts that explore the main topic areas
in intermediate statistics, along with one bonus part that offers a series of
quick top-ten references for you to use. Each part contains chapters that
break down the part’s major objective into understandable pieces.

Part I: Data Analysis and
Model-Building Basics

This part goes over the big ideas of descriptive and inferential statistics
and simple linear regression in the context of model building and decision
making. Some material from introductory statistics receives a quick review.
[ also present you with the typical jargon of intermediate statistics.

Part II: Making Predictions
by Using Regression

Here, you can review and extend the ideas of simple linear regression to that
of using more than one predictor variable. This part presents techniques for
dealing with data that follows a curve (nonlinear models) and models for yes
or no data used to make predictions about whether or not an event will happen
(logistic regression). It includes all you need to know about conditions, diag-
nostics, model building, data-analysis techniques, and interpreting results.

Part 1II: Comparing Many
Means with ANOVA

You may want to compare the means of more than two populations. In this
case, you use analysis of variance (ANOVA). I discuss the basic conditions
required, the F-test, one-way and two-way ANOVA, and multiple comparisons.
The final goal of these analyses is to show whether the means of the given
populations are different and if so, which ones are higher or lower than

the rest.
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Part JU: Building Strong Connections
with Chi-Square Tests

This part deals with the Chi-square distribution and how you can use it to
model and test qualitative (categorical) data. You see how to test for inde-
pendence of two categorical variables using a Chi-square test. (No more spec-
ulations just by looking at the data in a two-way table!) You also see how to
use Chi-square to test how well a model for categorical data fits.

Part U: Rebels without a Distribution:
Nonparametric Statistics

You can look at techniques used in situations where you can’t (or don’t want
to) assume your data comes from a population with a certain distribution.
For example, when your population isn’t normal (the condition required by
most other methods in intermediate statistics).

Part Ul: The Part of Tens

Reading this part can give you an edge in two major areas that go beyond the
formulas and techniques of intermediate statistics. Those areas are starting
the problem right (knowing what type of problem it is and how to attack it)
and ending the problem right (knowing what kinds of conclusions you can
and can’t make).

You also find an appendix at the back of the book that contains all the tables
you need to understand and complete the calculations used in this book.

Icons Used in This Book

[ use icons in this book to draw your attention to certain features that occur
on a regular basis. Think of them as road signs that you encounter on a trip.
Some signs tell you about shortcuts, but others offer more information that
you may need; some signs alert you to possible warnings, while others leave
you with something to remember.

When you see this icon, it means I'm explaining how to carry out that particu-
lar data analysis using Minitab. I also explain the information you get in the
computer output so you can interpret your results.
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I use this icon to reinforce certain ideas that are critical for success in inter-
mediate statistics, such as things I think are important to go over as you
prepare for an exam.

This icon points out exciting and perhaps surprising situations where inter-
mediate statistics is being used in the real world.

When you see this icon, you can skip over it if you don’t want to get into the
nitty-gritty details. They exist mainly for people who have a special interest
or obligation to know more about the more technical aspects of the statistical
issues.

Tips refer to helpful hints, ideas, or shortcuts that you can use to save time,
or alternative ways to think about a particular concept.

[ use warning icons to help you stay away from common misconceptions
and pitfalls you can face when dealing with intermediate statistics ideas and
techniques.

Where to Go from Here

This book is written in a nonlinear way, so you can start anywhere and still
be able to understand what’s happening. However, [ can make some recom-
mendations to those who are interested in knowing where to start.

If you're thoroughly familiar with the ideas of hypothesis testing and simple
linear regression, start with Chapter 5 (multiple regression). Use Chapter 1
if you need a reference for the jargon that statisticians use in intermediate
statistics.

If you have covered all topics up through the various types of regression
(simple, multiple, nonlinear, and logistic) or a subset of those as your professor
deemed important, proceed to Chapter 9, the basics of analysis of variance
(ANOVA).

Chapter 14 is the place to begin if you want to tackle qualitative (categorical)
variables before hitting the quantitative stuff. You can work with the Chi-
square test there.

Nonparametric statistics are presented starting with Chapter 16. This area is
a hot topic in today’s statistics courses, yet one that doesn’t seem to get as
much space in textbooks as it should. Start here if you want the full details on
the most common nonparametric procedures.
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Data Analysis
and Model-
Building Basics

The 5th Wave By Rich Tennant
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“Is it just me or did the whole ‘509 satisfaction’
statistic seem a little unimpressive?”



In this part . . .

T) get everyone on the same page moving from
introductory to intermediate statistics, I go over the
basics of data analysis, important terminology, the main
goals and concepts of model building, tips for choosing
appropriate statistics to fit the job, and a review of the
most heavily referred to items from introductory statis-
tics. You also get a head start on making and looking at
some basic computer output.




Chapter 1

Beyond Number Crunching: The
Art and Science of Data Analysis

In This Chapter

Realizing your role as a data analyst

Avoiding statistical faux pas

Delving into the jargon of intermediate statistics

Because you’re reading this book, you’re likely familiar with the basics
of statistics. You're now ready to take it up a notch. That next level
involves using what you know, picking up a few more tools and techniques
at the intermediate level, and finally putting it all to use to help you answer
more realistic questions by using real data.

In statistical terms, you're ready to enter the world of the data analyst. This
world’s an exciting one, with many options to explore and many tools avail-
able. But, as you may have guessed, you have to navigate this world very
carefully, choosing the right methods for each situation. In this book, you can
see that I'm including the underlying theories and ideas behind the methods
where necessary to help you make good decisions — and not just get into the
point-and-click mode that today’s software packages offer.

In this chapter, you review the terms involved in statistics as they pertain to
data analysis at the intermediate level. You get a glimpse of the impact that your

results can have by seeing what these analysis techniques can do. You also gain
insight into some of the common misuses of data analysis and their effects.

Data Analysis: It's Not Just for
Statisticians Anymore

It used to be that statisticians were the only ones who really analyzed data.
The reason for this is because the only computer programs that were available
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then were very complicated to use, requiring a great deal of knowledge about
statistics to set up and carry out. The calculations were tedious and at times
unpredictable and required a thorough understanding of the theories and
methods behind the calculations to get correct and reliable answers.

Today, anyone who wants to analyze data can do it easily. Many user-friendly
statistical software packages are made expressly for that purpose — Microsoft
Excel, Minitab, SAS, and SPSS, just to name a few. Free online programs are
even available, such as Stat Crunch, to help you do just what it says — crunch
your numbers and get an answer. As you see in this section, the modern
easy-to-use statistical packages are good in some ways, and not-so-good in
other ways.

S(,N\BEI? The most important idea when applying statistical techniques to analyze data
& is to know what’s going on behind the number crunching, so you (not the
computer) are in control of the analysis. That’s why knowledge of intermedi-
ate statistics is so critical.

Remembering the old days

In the old days, in order to determine whether methods gave different
results, you had to write a computer program to do it, using code that you
had to take a class to learn. You had to type in your data in a specific way
that the computer program demanded, and you had to submit your program
to a mainframe computer and wait for the printer to print out your results.
This method was time consuming and a general all-around pain.

I remember the day in college when I reached bottom. I was just learning to
write those sophisticated programs you needed to do the simplest analysis.
No matter how hard I tried to write the perfect program, the computer kept
spitting my work back at me without doing my analysis, noting error after
error in the way I typed the commands. The last straw came when [ gave my
program to the computer for the umpteenth time: At the end of the printout,
the computer told me on the very last line: “Error #34410: Too many errors.”

Now, don’t get the idea that your author doesn’t know what she’s doing. I had
all the statistical methods right; I just wasn’t very good at writing computer
programs. So for anyone out there who’s ever been frustrated by a computer,
[ feel your pain, and I try to minimize your troubles throughout this book.

Enough lamenting about having to walk to school uphill both ways in the
snow with plastic bags on my feet instead of boots. The point is, statistical
software packages have undergone an incredible evolution in the last 10 to 15
years, to the point where you can now enter your data quickly and easily in
almost any format. Moreover, the choices for data analysis are well organized
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and listed in pull-down menus. Now almost anyone (even me) can quickly see
how to find the necessary procedure and tell the computer what to do. The
results come instantly and successfully, and you can cut and paste them into
a word-processing document without blinking an eye. For example, compar-
ing the weight loss for people on different weight-loss programs now takes
less than three clicks of the mouse to perform, which is great news for folks
like me.

Many very useful and efficient statistical software packages exist, including
SAS, SPSS, Data Desk, Stat Crunch, MS Excel, and Minitab, and each one has
its own pros and cons (and its own users and protesters). My software of
choice, and the one I reference throughout this book, is Minitab, because it’s
very easy to use, the results are correct, the output is very clear and profes-
sional looking, and the software’s loaded with all the data-analysis techniques
that are used in intermediate statistics as well as in this book. While a site
license for Minitab can be expensive, the downloadable student version is
available for rent for only a few bucks a semester.

The downside of today’s
statistical software

You may be wondering where the downside is in all of this. Is it too good to
be true that what was once a tedious, complicated process for analyzing data
has now become as easy as checking your e-mail on your cell phone? Yes and
no. Yes, it’s too good to be true that the software practically does everything
for you — if you don’t pay attention to what the programs are really doing.
Yes, it’s too good to be true if you don’t understand that conditions need to
be checked in every situation before an analysis should be applied. Yes, it’s
too good to be true if you take all the results as complete and utter gospel
(as too many statistician wannabees do).

Bottom line: Today’s software packages are too good to be true if you don’t
have a clear and thorough understanding of the intermediate level of statis-
tics that lie underneath them.

Here’s the good news, though. By reading this book, you gain the understand-
ing you need to set you up for success. You get enough of the underlying
intermediate statistical concepts to be empowered, but not be dangerous.
You find out what conditions need to be checked on the data before applying
an analysis and how to check them. You get a good feel for which analyses to
use to answer your question (and which ones can cause you trouble), and
you become aware of the kinds of results you can expect. Most importantly,
you discover what’s possible and appropriate to conclude from your analysis
and what limitations and caveats you need to make.

11
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Many people don’t realize that statistical software can’t tell you when to use
and not to use a certain statistical technique. You have to determine that on
your own. As a result, people think they’re doing their analyses correctly, but
they can end up making all kinds of mistakes. Statistical software packages
are centered on mathematical formulas, and mathematical formulas aren’t
smart enough to know how you’re applying them or to warn you when you’re
doing something wrong (that’s where this book comes in).

In this section, I give some examples of some of the major situations where
innocent data analyses can go wrong and why it’s important to know what'’s
happening behind the scenes from a statistical standpoint before you start
crunching numbers.

Nothing (even a straight line )
lasts forever

After you get a statistical equation, or model, that tries to explain or predict
some random phenomena, you need to specify for what values the equation
applies and for what values the equation doesn’t apply. Equations don’t know
when they work and when they don’t; it’s up to the data analyst to determine
that. This idea is the same for applying the results of any data analysis that
you do.

Bill Prediction is a statistics student, studying the affect of study time on
exam score. Based on his experience, and that of a few friends, Bill comes up
with the equation y = 10x + 30, where y represents the test score you get if
you study a certain number of hours (x). This equation is Bill’'s model for pre-
dicting exam score using study time. Notice that this model is the equation of
a straight line with a y-intercept of 30 and a slope of 10.

So Bill predicts, using this model, that if you don’t study at all, you’ll get a 30
on the exam (plugging x = 0 into the equation and solving for y; this point rep-
resents the y-intercept of the line). And he predicts, using this model, that if
you study for five hours, you’ll get an exam score of y = 10 = 5 + 30 = 80. So,
the point (5, 80) is also on this line. (I won’t talk in detail at this point about
how well Bill’s model does at predicting exam score, but you can just say he’s
got some work to do on this and leave it at that for now.)

I'm sure you would agree that because x is the amount of study time, that x

can never be a number less than zero. If you plug a negative number in for x,
say x = -10, you get y = 10 * =10 + 30 = =70, which makes no sense. The worst
possible score, according to Bill's model, is 30, which occurs when x equals 0.
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And, you can’t study a negative number of hours, so a negative number for x
itself isn’t even possible.

On the other side of the coin, x probably isn’t a number in the two-digit range
(10 or more). Why is this? Say someone did study ten hours for this exam.
Plugging in 10 for x in Bill’s equation, you get y = 10 = 10 + 30, which equals
130. Remember, y is the predicted exam score. Because most exams are out
of 100 possible points, a score of 130 isn’t possible. (I'm all for extra credit on
exams, but 30 points of extra credit is too much, even for me.)

The point is that there are limits on the values of x that make sense in this
equation. However, the equation itself, y = 10x + 30, doesn’t know that, and if
you graph this line, it’ll go on forever in both the positive and negative direc-
tions (see Figure 1-1).

200

150 y=10x+30

(10, 130)

Data snooping isn’t cool

Statisticians have come up with a saying that you may have heard of: “Figures
don’t lie. Liars figure.” Make sure that you find out about all the analyses that
were performed on a data set, not just the ones reported as being statistically
significant.

Suppose Bill Prediction tries to apply his simple model (from the preceding
section) to predict exam scores for his whole class, based on their reported
amounts of study time, and he finds out that his results fall flat. He figures out

13
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that he needs more information, so he tries to uncover what other factors
help determine exam score on a statistics test besides study time. Bill mea-
sures everything from soup to nuts. His set of possible variables includes
study time, GPA, previous experience in statistics, math grades in high
school, attitudes toward statistics, whether you listen to classical music
while studying, shoe size, whether you chew gum during the exam, and even
what your favorite color is (after all, you never know, he figures). For good
measure, he includes 11 other variables, for a total of 20 possible factors that
he thinks may relate to exam score.

Bill starts out by looking for relationships between each of these variables
and exam score, so he does 20 correlations. (Correlation is a measure of the
linear relationship between two variables; see the section on correlation later
in this chapter). He finds out that four variables have a statistically signifi-
cant relationship with exam score (that means the results are supposed to be
correct with a 95 percent chance — but only if he collected the data properly
and did the analysis correctly).

The variables that Bill found to be related to exam score were study time,
math grades in high school, GPA, and whether the person chews gum during
the exam. It turns out that his new model fits pretty well (by criteria I discuss
in Chapter 5 on multiple linear regression models). Bill now thinks he’s
scored a home run and has answered that all-elusive question: How can I do
better on my statistics test?

But as they said in Apollo 13, “Houston, we have a problem.” By looking at all
possible correlations between his 20 variables and exam score, Bill is actually
doing 20 separate statistical analyses. Under typical conditions (I describe
these conditions in Chapter 3), each statistical analysis has a 5 percent
chance of being wrong just by chance (this value of 5 percent is called the sig-
nificance level of the test).

Because 5 percent of 20 analyses is equal to one, you can expect that when
you do 20 statistical analyses, one of them will give the wrong result, just by
chance, over the long term. I bet you can guess which one of Bill’s correla-
tions likely came out wrong in this case. Of course, study time has nothing to
do with exam score, and gum-chewing is the answer to all of our problems,
right? (If that were the case, all statisticians would be out of business and
working for chewing-gum companies instead.)

What Bill is doing is called data snooping in the data-analysis business. Bill
looks around until he finds something, and then he believes the result. This
strategy is dangerous, but one that’s done all too often in the real world. One
of the reasons data snooping is running rampant today is because everyone
and his brother is out there collecting data and analyzing it — and everyone
wants to find something. They’re using statistical software that allows them
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to just point and click to do as many analyses as they want, without any warn-
ing about what statisticians call the overall error rate (that is, the probability
of making an error due to chance during any step of the entire analysis, not

just the probability of making an error due to chance on any single analysis).

No (data) fishing allowed

Redoing analyses in different ways to try to get the results you want is called
data fishing in the statistics business, and folks in the stat biz consider it to
be a major no-no (however, people unfortunately do it all too often in the
name of research).

For example, Ellen Go-getter is convinced that dissolving sugar in the water
helps cut flowers last longer. She performs an experiment to prove her
hypothesis. She cuts two dozen roses and puts one rose in each vase. She
fills each vase with 3 cups of water, but in 12 of the vases she adds 1 table-
spoon of sugar (the other 12 vases constitute the control group, meaning that
Ellen doesn’t apply any new treatment to them to show what happens if she
adds nothing). In the next sections, you follow Ellen through her experiment,
keeping an eye on the statistical analyses that pop up along the way.

Examining Ellen’s data

Ellen counts how many days the flowers still look nice and uses the same cri-
teria for each flower. After ten days, all the flowers have withered to the point
where they need to be thrown away, so the experiment is over. You can see
Ellen’s data in Table 1-1.

Table 1-1 Ellen’'s Data: Days Roses Lasted in Sugar Water
versus Regular Water (Control Group)

Observation Days Lasted: Water Only Days Lasted: Sugar Water
1 3 5
2 3 5
3 4 5
4 4 4
5 4 4
6 4 4
7 3 3

(continued)

15
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Figure 1-2:
Histograms
showing
number of
days roses
lasted, using
water only
versus
sugar
added.

Table 1-1 (continued)

Observation Days Lasted: Water Only Days Lasted: Sugar Water
8 3 4
9 2 3
10 4 3
" 4 5
12 4 5

Setting the hypothesis

Ellen wants to compare the two methods, water and sugar, to see whether
the roses that had sugar added lasted longer than the regular water group.
She needs to conduct a hypothesis test whose null hypothesis is Ho: There is
no difference in days lasted for sugar group versus control group. Her alter-
native hypothesis, which she hopes to show, is Ha: The roses in the sugar
group lasted longer than the control group. She figures a two-sample ttest is
in order here. (I discuss hypothesis tests in Chapter 3.)

Checking the conditions

Ellen has taken a few statistics classes before and knows that before she
plunges into an analysis, she needs to check the proper conditions. For a
comparison of two groups, she has to plot the data from each group on a
histogram (a bar graph showing the number of days the flowers lasted,
organized into groupings in numerical order versus the number of flowers
that lasted each number of days). According to what she knows about a two-
sample t-test, the data in each group has to have a normal distribution before
she starts. That is, the data has to have a bell-shaped curve when you look at
the histogram. Ellen plots the data in histograms for the two groups and gets
the following results (see Figures 1-2a and 1-2b).

Histogram of Days Lasted: Water Only Histogram of Days Lasted: Sugar Group

w
w

Frequency
Frequency

~
~

)

o

2 3
Days Lasted: Water Only
a b

4 5

3
Days Lasted: Sugar Group
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Getting the bad news

As you can see in Figures 1-2a and 1-2b, Ellen’s data doesn’t follow the typical
bell-shaped curve. One of the problems is her data only takes on values that
are positive whole numbers, so numbers like 1.2, 2.3, and the like aren’t pos-
sible. (Normal distributions are supposed to have many possible values.) The
other problem is that the data has no values outside the typical two-, three-,
four-, or five-day range, so the histogram doesn’t have a chance to take on a
bell shape. Perhaps more data would have curbed this problem. At any rate,
Ellen knows that the conditions for a two-sample #test aren’t met here;
namely that the data doesn’t have a normal distribution and is, in fact,
skewed (meaning set off to one side or the other).

Going nonparametric

Undaunted by this turn of events, Ellen employs a nonparametric test of her
data, which is the right thing to do. Statisticians use nonparametric statistics
in situations where the assumptions of the typical analyses aren’t met (like
not having a normal distribution). However, nonparametric stats often give
more conservative (albeit more accurate) results than the typical (paramet-
ric) procedures you're used to using. (I discuss nonparametrics a bit more in
the last section of this chapter. Nonparametric procedures are discussed in
full detail in Chapters 16-19.)

Because Ellen’s data doesn’t have a normal distribution or even a symmetric
distribution (meaning one that looks the same on each side when you split it
down the middle), the mean (or average) isn’t a good measure of the center
of the data, so a two-sample ttest isn’t possible. As an alternative, she can
test whether the two histograms are the same or not, if she compares the his-
tograms of the two populations in question (all roses given water, versus all
roses given sugar water).

Because she’s comparing two groups, Ellen uses a Wilcoxon Rank Sum test,
also known as the Mann-Whitney test (see Chapter 19). The Wilcoxon Rank
Sum test checks whether two populations have the same distribution (mean-
ing whether the two histograms look the same) versus one of the populations
shifting to the right or left. Ellen’s theory is that the sugar group lasts longer,
so she tests Ho: Sugar group and control group have the same distribution
versus Ha: Sugar group is shifted to the right of the control group.

Ellen strikes out

To cut to the chase, the Wilcoxon Rank Sum test unfortunately fails to reject
Ellen’s null hypothesis. She didn’t prove what she wanted to confirm by her
experiment. Not enough roses in the sugar group lasted longer than those
roses in the control group. You can see the underlying reason for this result
by comparing the medians of the two groups. When you find the median of
each of the data sets in Table 1-1, you get the value of 4 in each case. Because
the medians of the two data sets are equal, it’s unlikely that Ellen can find a
statistically significant result by using this test.
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Breaking the rules

According to the rules that all good statisticians live by, Ellen’s story should
end there. She may still be convinced that sugar indeed helps roses last
longer. She may use sugar with her roses for the rest of time and tell her
friends to use it too. But, she isn’t allowed to say that sugar water gives sta-
tistically different results than water alone; her analysis failed to show that.

But remember, Ellen’s last name is Go-getter, so she’s out to get those results.
She knows that nonparametric tests usually give more conservative results
than regular tests, and despite the fact that the conditions aren’t met, she
decides to analyze her data again, this time using the two-sample t-test.

Putting her data into a two-sample ttest takes only two more clicks of the
mouse, and Ellen’s results give her a p-value of 0.043. Using the usual signifi-
cance level used for hypothesis tests, 0.050, her p-value is less than this
number, so she can reject Ho. (In a two-sample #test, Ho is that there’s no
difference in the means of the two groups. And her Ha in this case is that
the mean of the sugar group is larger than the mean of the control group.)
So Ellen gleefully cheers herself on for getting the results she wanted and
decides there’s no harm in trying a different analysis when all else fails.

Seeing the error of Ellen’s ways

But again, “Houston. . .” — you know the rest. Ellen’s problem is that she
cheated her way to getting a result that’s incorrect. She knew that the condi-
tions for the two-sample ttest weren’t met, but when the correct analysis
failed to get the results she wanted, she found an analysis that did. The trou-
ble is, the results of the two-sample ttest are bogus.

Now it may not be a life-and-death situation whether your roses actually do
last a little bit longer on sugar or not. (Incidentally, the gardening crowd says
they don’t, and that sugar in fact can encourage the growth of stem-clogging
bacteria so the flower can’t take in water.) But imagine a situation where doc-
tors are trying to test to see whether a certain medication helps people get
over an illness faster or whether some procedure helps cancer patients live
longer. Now you're talking about results with a very serious impact.

Using the wrong data analysis for the sake of getting the results you desire
results in two major problems:

» You mislead your audience into thinking that your hypothesis is actually
correct, which it may not be.

v Sooner or later someone is going to try to replicate those results and
will find out that they can’t be replicated. This discovery will result in a
loss of your credibility big time. And unfortunately, you mislead many
people in the meantime.
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Because of the dangers and lingering effects of using the wrong techniques in
the wrong situation to analyze data to answer questions, knowing what’s hap-
pening behind the scenes of any data analysis and staying within the rules of
well-chosen techniques and appropriate practices is very important. In other
words, it’s crucial for you to take your knowledge of statistics to the next level.

Intermediate statistics is an extension of introductory statistics, so the jargon
follows suit and the techniques build on what you already know. If you've
been able to grasp the ideas from the first course, you'll find no trouble with
the terminology for intermediate statistics. If you're still unsure about some
of the terms from introductory statistics, you can consult your textbook from
your first course or see my other book, Statistics For Dummies (Wiley), for a
complete rundown.

In this section, you get an introduction to the terminology you use in interme-
diate statistics, and you get a broad overview of the techniques that statisti-
cians use for the purpose of analyzing data and the big picture behind them.

Population parameter

A parameter is a number that summarizes the population (the entire group
you’re interested in investigating). Examples of parameters include the mean
of a population, the median of a population, or the proportion of the popula-
tion that falls into a certain category.

Suppose you want to determine the average length of a cell-phone call among
teenagers (ages 13 to 18). You're not interested in making any comparisons;
you just want to make a good guesstimate as to what the average time is. So
you want to estimate a population parameter (such as the mean or average).
The population is all cell-phone users between the ages of 13 and 18 years old.
The parameter is the average length of a phone call this population makes.

Sample statistic

You normally can’t study every member of an entire population (how would
you like to measure and record the length of every single cell-phone call
made by all teenagers?). So you can’t determine population parameters
exactly; you can only estimate them. But all is not lost; by taking a sample (a
subset of individuals) from the population and studying them, you can come

19



20

Part I: Data Analysis and Model-Building Basics

up with a good guess (estimate) of the population parameter, if you play your
cards right. A subset of this population is called a sample. A sample statistic is
a single number that summarizes that subset of the population.

For example, in the cell-phone scenario, you select a sample of teenagers and
measure the length of their cell-phone calls over a period of time (or look at
their cell-phone records if you can gain access legally). You take the average
of the cell-phone call lengths. For example, the average length of 100 cell-
phone calls may be 12.2 minutes — this average is a statistic. This particular
statistic is called the sample mean, because it’s the average value from your
sample data.

You can also find a statistic called the sample proportion (the proportion of
individuals in the sample that have a certain characteristic — for example, the
percentage of female teens who use cell phones). Many different statistics are
available (which you probably picked up in intro stats) to study different char-
acteristics of a sample, such as the median, variance, and standard deviation.

Confidence interval

A confidence interval is a range of values that provides reasonable estimates
for a population parameter. A confidence interval is based on a sample and
the statistics that come from that sample. The main reason you want to pro-
vide a range of possible values rather than a single number is that sample
results vary from sample to sample.

For example, say you want to estimate the percentage of people who eat
chocolate. According to the Simmons Research Bureau, 78 percent of adults
reported eating chocolate, and of those, 18 percent admitted to eating sweets
frequently. What’s missing in these results? These numbers are only a single
sample of people, and those sample results are guaranteed to vary from
sample to sample. You need some measure of how much you can expect
those results to move if you were to repeat the study.

This expected movement in your statistic is measured by the margin of error,
which reflects a certain number of standard deviations of your statistic you
add and subtract to have a certain confidence in your results (see Chapter 3
for more on margin of error). If the chocolate-eater results were based on
1,000 people, the margin of error would be approximately 3 percent, meaning
the actual percentage of people who eat chocolate in the entire population is
expected to be 78 percent, plus or minus 3 percent. In other words, it’s some-
where between 75 percent and 81 percent. Now if you only base these results
on a sample of 100 people, the margin of error balloons to 10 percent, mean-
ing the percentage of chocolate eaters can only be reported to be between 68
and 88 percent. Notice how much wider the interval becomes when a smaller
sample size is used. This result confirms that more data means more preci-
sion in your results (provided the data is collected properly).
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Hypothesis test

A hypothesis test is a statistical procedure that you use to test an existing
claim about the population, using your data. The claim is noted by Ho (the
null hypothesis). If your data support the claim, you fail to reject Ho. If your
data don’t support the claim, you reject Ho and conclude an alternative
hypothesis, Ha. The reason most people conduct a hypothesis test is not to
merely show that their data support an existing claim, but rather to show
that the existing claim is false, in favor of the alternative hypothesis.

The Pew Research Center studied the percentage of people who go to ESPN
for their sports news. Their statistics, based on a survey of about 1,000
people, found that in 2000, 23 percent of people said they go to ESPN; while in
2004, only 20 percent reported going to ESPN. The question is this: Does this
3-percent reduction in viewers from 2000 to 2004 represent a significant trend
that ESPN should worry about?

To test these differences formally, you can set up a hypothesis test. You set
up your null hypothesis as the result you have to believe without your study,
Ho = no difference exists between 2000 and 2004 data for ESPN viewership.
Your alternative hypothesis (Ha) is that a difference is there.

In very general terms, here’s what’s happening with a hypothesis test. You
have the sample data, and you find the statistics that are relevant. In this
case, you have two sample percentages, one for 2000 and one for 2004. You
take the difference between the two samples (3 percent), and divide it by the
standard error for the difference. The standard error measures how much the
difference in the statistics is expected to change from sample to sample. In
this case, the standard error comes to about 1.8 percent (for specific calcula-
tions see Chapter 3).

Taking the difference in the statistics (3 percent = 0.03) divided by the stan-
dard error (1.8 percent = 0.018) gives you the value of 1.67 (called the test
statistic). This value represents the difference between the two statistics, in
terms of number of standard errors. This result has a universal interpreta-
tion. Roughly speaking, if your test statistic falls between -2.00 and +2.00,
that means the results you found don’t differ enough to get excited about,
because 95 percent of the time, this outcome happens just by chance. (And
this example falls right into that situation.) After you take the variability of
the sample results into account, the difference in these particular samples
doesn’t transfer over to the populations they represent. So, because you
can’t reject Ho, you have to say the percentage of viewers of ESPN in the
entire population probably didn’t change from 2000 to 2004.

Because you have a 95 percent confidence level, this test uses a significance
level (o level) of 1 - 0.95 = 0.05 or 5 percent. This percentage measures how
likely your results would have been just by chance.
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The trouble is that people often just report the sample statistics and give no
regard to the expected amount of change with a new sample. This disregard
leads to big mistakes in the conclusions (more on hypothesis testing in
Chapter 3).

Analysis of variance (ANOVA)

ANOVA is the acronym for analysis of variance. You use ANOVA in situations
where you want to compare the means of more than two populations. For
example, you want to compare the lifetime of four brands of tires, in number
of miles. You take a random sample of 50 tires from each group, for a total of
200 tires, and set up an experiment to compare the lifetime of each tire, and
record it. You have four means and four standard deviations now, one for
each data set. But you have different types of variability in your data, each
measured by using various sums of squares. (Remember from your intro stats
that the variance of a data set is the total of all the squared distances
between the data and the mean, all divided by n-1.)

One of the types of variability in your data is called the variability between
treatments (also known as SS7, the treatment sums of squares). SST mea-
sures the variation in the average lifetimes of each brand of tire, compared to
the overall average lifetime. If SST is large, you have a chance that there’s a
difference in lifetimes due to the treatment (in this case, the brand of tire).

Next, you have the variability within the treatments (also known as SSE, the
error sums of squares). SSE measures the overall average amount of variabil-
ity of the tire lifetimes within each particular brand (after all, not all tires are
created equal, even if they're of the same brand). If SSE is large, you have so
much variability within the tire brands themselves, that it will be harder to
see any real difference between the brands, even if it actually exists.

And finally, you have the total overall variability in the data values if you just
put them all together into one big data set. This variability is known as SSTO,
the total sums of squares. ANOVA splits up the total variability (SSTO) into

the between-groups variability (SST) plus the within-groups variability (SSE).

Then, to test for differences in average lifetime for the four brands of tires, you
compare the mean sums of squares for treatments (MST) to the mean sums

of squares for error (MSE) in a ratio called the F-stafistic. If this ratio is large,
then the variability between the brands is more than the variability within the
brands, giving evidence that not all the means are the same for the different
tire brands. If the F-statistic is small, that means not enough difference was
between the treatment means, compared to the general variability within the
treatments themselves. In this case, you can’t say that the means are different
for the groups. (I give you the full scoop on ANOVA in Chapters 9 and 10.)
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Multiple comparisons

Suppose you conduct ANOVA, and you find a difference in the average life-
times of the four brands of tire (see preceding section). Your next questions
would probably be, which brands are different, and how different are they?
To answer these questions, you use multiple-comparison procedures.

A multiple-comparison procedure is a statistical technique that compares
means to each other and finds out which ones are different and which ones
aren’t. You're then able to put the groups in order, from those with the largest
mean to those with the smallest mean, realizing that sometimes two or more
groups were too close to tell and so you put them in the same group.

Suppose you compare the exam scores of four different classes (call them
class one, class two, class three, and class four), and your ANOVA procedure
finds out that not all the means were the same. That means the F-statistic is
large. Next, you use multiple-comparison procedures in order to make sepa-
rate comparisons and figure out which classes were about the same and
which ones were different, and come up with an ordering of the classes. It
may be, for example, that class four was statistically higher than all the
others; classes one and two were statistically equivalent, but both were lower
than class four. And class one was in a group all by itself at the bottom. The
ordering is: class four (highest average), classes two and three (tied for
second highest), and class one (the lowest average).

Never take that second step to compare the means of the groups if the ANOVA
procedure doesn’t find any significant results during the first step. (See Chap-
ter 11 for more information.)

Many different multiple-comparison procedures exist to compare individual
means and come up with an ordering in the event that your F-statistic does
find that some difference exists. Some of the multiple-comparison procedures
include Tukey’s test, LSD, and pairwise ttests. (While these tests’ names may
cause you to raise an eyebrow, don’t worry. They're legitimate statistical
tests.) Some procedures are better than others, depending on the conditions
and your goal as a data analyst. | discuss multiple-comparison procedures in
detail in Chapter 11.

Interaction effects

An interaction effect in statistics operates the same way that it does in the
world of medicine. Sometimes if you take two different medicines at the same
time, the combined effect is much different than if you take the two individual
medications separately.
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Interaction effects come up when you have a model that includes two or
more variables, and you’re using those variables to explain differences or to
make comparisons regarding some outcome. When you have two or more
variables in a model, you can’t automatically study the effect of each variable
separately; you also have to take into account the way those variables inter-
act in terms of the outcome. In other words, you have to examine whether or
not an interaction effect is present.

For example, suppose medical researchers are studying a new drug for
depression and want to know how this drug affects the change in blood pres-
sure for a low dose versus a high dose of the drug. They also compare the
effects for children versus adults. In total, the model being studied has one
response variable, an increase in blood pressure, and two factors that may
possibly explain changes in the outcome, namely age group (adults versus
children) and dosage level (low versus high). It could be that dosage level
affects the blood pressure of adults differently than the blood pressure of
children. This type of model is called a two-way ANOVA model, with a possible
interaction effect between the two factors (age group and dosage level). See
Chapter 11 for more.

One of the first things statisticians do when they have a two-way ANOVA is to
plot the mean outcomes for each group they’re comparing and look for pat-
terns. This is called an interaction plot. One interaction plot for the drug-
study scenario is in Figure 1-3.
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As you can see by Figure 1-3, the lines cross. If you look at the line represent-
ing children, you can see that the mean increase in blood pressure is low for
the low dose of the drug, but then for the high dose of the drug; the increase
in blood pressure goes way up. Alternatively, the reaction is the exact oppo-
site for adults; on the low dose, the mean increase in blood pressure is very
high, but for the high dose, the increase is very low. If the doctors neglected to
study children as well as adults, the results of this study could be extremely
damaging to children if doctors applied the rules for adults to children. This
example shows that interaction effects are very important to look at.

Figure 1-4 shows the situation where you have no interaction effect for this
drug. The lines are parallel, which tells you that the mean blood pressure
increases more on a higher dosage of the drug for both adults and children.
Because the line for the adults is higher up than the line for children, that
means that overall, the increase in blood pressure is more for adults than the
increase in blood pressure for children, no matter what the dosage level is.
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Correlation

The term correlation is often misused. Statistically speaking, the correlation
measures the strength and direction of the linear relationship between two
quantitative variables (variables that represent counts or measurements only).

You aren’t supposed to use the word correlation to talk about relationships
of any other kind. For example, it’s wrong to say that a correlation exists
between eye color and hair color. While these variables may be related in
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some way, they’re not quantitative variables, so you can’t discuss their rela-

tionship in terms of a correlation. (In this case, you would use the term asso-
ciation; in Chapter 14, you see how to test for association of two categorical

variables.)

The long and short of correlation is the following: Correlation is a number
between -1.0 and +1.0. Positive one indicates a perfect positive relationship;
in other words, as you increase one variable, the other one increases in per-
fect sync. On the other side of the coin, a correlation that is —1.0 indicates a
perfect negative relationship between the variables. As one variable increases,
the other one decreases in perfect sync. A correlation of zero indicates that
you found no linear relationship at all between the variables. Most correla-
tions in the real world aren’t exactly +1.0, -1.0, or 0 — they fall somewhere in
between. The closer to +1.0 or -1.0, the stronger the relationship is; the
closer to 0, the weaker the relationship is.

Figure 1-5 shows an example of a plot showing the number of coffees sold

at football games in Buffalo, New York, as well as the air temperature (in
Fahrenheit) at each game. This data set seems to follow a downhill straight line
fairly well, indicating a negative correlation. When you calculate the correla-
tion, you get the value of —0.741. This value says that coffees sold has a fairly
strong negative relationship with the temperature of the football game. This
makes sense, because on days when the temperature is low, people will get
cold and want more coffee. On days when the temperature is higher, people
will tend to drink less coffee and perhaps tend more toward soft drinks, which
are cold. [ discuss correlation further, as it applies to model building, in
Chapter 4.

Number of Coffees Sold versus Temperature
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Linear regression

After you've determined that two variables have a fairly strong linear rela-
tionship, you may want to try to make predictions for one variable based on
the value of the other variable. For example, if you know that a fairly strong
negative linear relationship exists between coffees sold and the air tempera-
ture at a football game, you may want to use this information to predict how
much coffee is needed for a game, just by knowing the temperature. This
method of finding the best-fitting line is called linear regression.

In the coffees and temperature example (see Figure 1-5), the best-fitting line
has the equation y = 49,337 — 554 * x , where x is temperature and y is the
number of coffees sold. So when the temperature (x) is zero degrees, you can
expect to sell around 49,337 coffees (this is how you interpret the y-intercept
of the line). To interpret the slope of this line, think of =554 as -554 divided
by one and use the old rise-over-run idea using coffees and degrees of tem-
perature. Applied here, it means that for every one degree increase in tem-
perature, you can expect the coffee sales to decrease by 554. You can use this
line to make predictions for reasonable values of the temperature (x). For
example, if the temperature is a cold 20-degrees Fahrenheit, you can predict
that the number of coffees sold will be around 49,337 - 554 = 20 = 38,257.

When you use only one variable to predict the response, the method of
regression is called simple linear regression. (1 review the basics of simple
linear regression in Chapter 4. But many other types of regression are out
there, many of which I discuss in this book.)

Most researchers use more than one variable to predict a response; this tech-
nique is called multiple linear regression. (Check out Chapter 5 for the details
about multiple linear regression.) Multiple linear regression has many issues
of its own because some variables you can use in the model may be related
to each other, making overlapping contributions to the response. That possi-
bility of overlapping makes their individual contributions hard to track. You
also have to watch for interaction effects when using more than one variable
to predict a response.

Simple and multiple linear regression assume that the response variable (the
one being studied) is quantitative in nature (that is, it measures or counts
something). However, you may be interested in making predictions about a
variable that has only two outcomes: yes or no. For example, whether or not
a certain horse will win a race; whether a baby will be a girl or a boy; or
whether or not a tropical storm is going to make landfall. These situations
require a different kind of regression called logistic regression. (1 discuss logis-
tic regression in Chapter 8.)
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Finally, you may be interested in building a model for which a straight line
doesn’t fit. For example, you may want to predict miles per gallon, using the
speed of the car. While high speeds get low miles per gallon, low speeds can
get low miles per gallon as well. So the relationship between speed and miles
per gallon actually follows that of a parabola (an upside-down bowl, in this
case). This kind of relationship is called a quadratic relationship. More gener-
ally speaking, relationships that don’t follow a straight line are called nonlin-
ear relationships, and the technique you use to handle these situations is
called (no surprise) nonlinear regression. I get into the meat of this technique
in detail in Chapter 7.

Chi-square tests

Correlation and regression techniques all assume that the variable being
studied in most detail (the response variable) is quantitative. That is, the
variable measures or counts something. However, you can run into many sit-
uations where the data being studied isn’t quantitative, but rather qualitative.
In other words, the data themselves represent categories, not measurements
or counts.

For example, suppose you want to compare the views of the president by
political affiliation. Say that in this particular year, the president is a
Republican, and you select a random sample of 150 Republicans, 150
Democrats, and 150 Independents to find out their views on the president.
The data may look like Table 1-2.

Table 1-2 Views on a (Republican) President
by Political Affiliation
Approve Neutral Disapprove
Republican 100 40 10
Democrat 40 10 100
Independent 50 50 50

In looking at how the numbers appear across the columns for various rows

in Table 1-2, you may suspect that something is up. It appears that Republicans
tend to approve of the president, while Democrats tend to disapprove,

and Independents are split down the middle. (So much for the spirit of
bipartisanship. . . .)
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Now does this association you found in the data set for this sample of 450
people carry over to the entire population? In order to answer this question,
you need to conduct a hypothesis test. And not just any hypothesis test — a
Chi-square test for independence. You're testing to see whether the two quali-
tative variables, political affiliation and views on the president, are related or
not. If they are related, the variables are deemed not independent; if they are
unrelated, the variables are independent.

A Chi-square test basically does the following: It figures out the number of
values that you expect to see in each cell of the table if the variables are inde-
pendent (these values are brilliantly called the expected cell counts). The Chi-
square test then compares these expected cell counts to what you actually
saw in the data (called the observed cell counts) and compares them to each
other in a Chi-square statistic (see Chapter 14).

If the Chi-square test statistic is large, you're likely to find an association
between the two variables, because the total differences are large between
the observed and expected cell counts. In other words, the variables are not
independent, and you can look at the observed cell counts to discuss the
relationship you see. If the Chi-square test statistic is small, then you can’t
conclude you’ve found a relationship, and the two variables are independent.

In the case of political affiliation and views on the president, the Chi-square
test statistic is huge, and you conclude a relationship is there somewhere.
You can say that in the population, Republicans tend to support the presi-
dent, Democrats tend to oppose the president, and the Independents are
split down the middle. (You can find the details of how to find the expected
counts and conduct the Chi-square test in Chapter 14.)

You can also use the Chi-square test to see whether your theory about what
percent of each group falls into a certain category is true or not. For example,
can you guess what percentage of M&Ms fall into each color category? More
on these Chi-square variations, as well as the M&Ms question, in Chapter 15.

Nonparametrics

Nonparametrics is an entire area of statistics that provides analysis tech-
niques to use when the conditions for the more traditional and commonly
used methods aren’t met. For example, in order to use a t-test, the data needs
to be collected from a population that has a normal distribution (that is, it
has to have a bell-shaped curve). In order to do a hypothesis test for two
means, the data from each group must be from its own normal population. In
fact, most all of the commonly used data-analysis procedures have condi-
tions that must be met in order to use them.
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The trouble with these requirements is that many times people forget or just
don’t bother to check those conditions, and if the conditions are actually not
met, the entire analysis goes out the window, and the researcher doesn’t
even know it. Or, someone finds out that the conditions aren’t being met, yet
she still goes ahead and uses the procedures anyway (for more on this faux
pas, see the section in this chapter “No [data] fishing allowed”).

While many of the traditional methods are what statisticians call robust, with
respect to violations of their conditions (that’s fancy terminology for the fact
that they’re pretty forgiving), you can only push the window so far. Proceeding
to use a statistical procedure that isn’t appropriate causes a great deal of trou-
ble with respect to the correctness of the conclusions and the credibility of the
researcher.

Have no fear, nonparametrics comes to your rescue. If the conditions aren’t
met for a data-analysis procedure that you want to do, chances are that an
equivalent nonparametric procedure is waiting in the wings. And the good
news is that they’re generally pretty tame, in terms of formulas, and most sta-
tistical software packages can do them just as easily as the regular (paramet-
ric) procedures.

Conditions aren’t checked automatically by statistical software packages,
before doing a data analysis. It’s up to the user to check any and all appropri-
ate conditions, and if they’re seriously violated, to take another course of
action. Many times a nonparametric procedure is just the ticket. For much
more information on different nonparametric procedures, see Chapters 16
through 19.



Chapter 2

Sorting through Statistical
Techniques

In This Chapter

Deciphering the difference between qualitative and quantitative variables
Choosing appropriate statistical techniques for the task at hand
Evaluating bias and precision levels

Interpreting the results properly

0ne of the most critical elements of statistics and data analysis is the
ability to choose the right statistical technique for each job. Carpenters
and mechanics know the importance of having the right tool when they need
it and the problems that can occur if they use wrong tool. They also know
that the right tool helps to increase their odds of getting the results they
want the first time around, using the “work smarter not harder” approach.

In this chapter, you look at the some of the major statistical analysis tech-
niques from the point of view of the mechanics and carpenters — knowing
what each statistical tool is meant to do, how to use it, and when to use it.
You also zoom in on mistakes some number crunchers make in applying the
wrong analysis or doing too many analyses. Knowing how to spot these prob-
lems can help you avoid making the same mistakes, but it also helps you to
steer your way through the ocean of statistics that may await you in your job
and in everyday life.

If many of the ideas you find in this chapter seem like a foreign language to
you and you feel like you need more background information, don’t fret. Before
continuing on in this chapter, head to your nearest intro stats book or check
out another one of my books, Statistics For Dummies (Wiley).
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Oualitative versus Quantitative Variables
in Statistical Analysis

After you've collected all the data you need from your sample, you want to
organize it, summarize it, and analyze it. Before plunging the data in to do

all the number crunching though, you need to first identify the type of data
you’re dealing with. The type of data you have points you to the proper types
of graphs, statistics, and analyses you're able to use.

Before I begin, here’s an important piece of jargon: Statisticians call any quan-
tity or characteristic you measure on an individual a variable; the data col-
lected on a variable is expected to vary from person to person (hence the
creative name).

The two major types of variables are the following:

v Qualitative: A qualitative variable classifies the individual based on cat-
egories. For example, political affiliation may be classified into four cate-
gories: Democrat, Republican, Independent, and other; gender as a
variable takes on two possible categories: male and female. A person
may be categorized as a female Republican, which means that, regarding
the gender variable, she falls into the female category, and regarding the
political affiliation variable, she falls into the Republican category.
Another name for a qualitative variable is a categorical variable.

v Quantitative: A quantitative variable measures or counts a quantifiable
characteristic, such as height, weight, number of children you have,
your GPA in college, or the number of hours of sleep you got last night.
The quantitative variable value represents a quantity (count) or a mea-
surement and has numerical meaning. That is, you can add, subtract,
multiply, or divide the values of a quantitative variable, and the results
make sense as numbers. This characteristic isn’t true of qualitative vari-
ables, which can take on numerical values only as placeholders.

Because the two types of variables represent such different types of data, it
makes sense that each type has its own set of statistics. Qualitative variables,
such as gender, are somewhat limited in terms of the statistics that can be per-
formed on them. For example, suppose you have a sample of 500 classmates
classified by gender — 180 of them are male, and 320 are female. How can you
summarize this information? You already have the total number in each cate-
gory (this statistic is called the frequency). You're off to a good start, but fre-
quencies are hard to interpret because you find yourself trying to compare
them to a total in your mind in order to get a proper comparison. In the previ-
ous example, you may be thinking “One hundred and eighty males out of what?
Let’s see, it’s out of 500. Hmmm . . . what percentage is that? I can’t think.”
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The next step is to find a means to relate these numbers to each other in an
easy way. You can do this by using what is called a relative frequency. The rel-
ative frequency is the percentage of data that falls into a specific category of a
qualitative variable. You can find a category’s relative frequency by dividing
the frequency by the sample total (500, using this example) and multiplying

by 100. In this case, you have % =0.36 %100 = 36 percent males and

320

500 - 0.64 %100 = 64 percent females.

You can also express the relative frequency as a proportion in each group by
leaving the result in decimal form and not multiplying by 100. This statistic
is called the sample proportion. If you continue with the same example, the
sample proportion of males is 0.36, and the sample proportion of females

is 0.64.

You mainly summarize qualitative variables by using two statistics — the
number in each category (frequency) and the percentage (relative frequency)
in each category.

Statistics for Qualitative Variables

The types of statistics done on qualitative data may seem to be limited; how-
ever, the wide variety of analyses you can perform using frequencies and rela-
tive frequencies offers answers to an extensive range of possible questions
you may want to explore.

In this section, you see that the proportion in each group is the number-one
statistic for summarizing qualitative data. Beyond that, you see how you can
use proportions to estimate, compare, and look for relationships between the
groups that compose the qualitative data.

Comparing proportions

Researchers, the media, and even everyday folk like you and me love to com-
pare groups (whether you like to admit it or not). For example, what propor-
tion of Democrats support oil drilling in Alaska, compared to Republicans?
What percentage of women watch college football versus men? What propor-
tion of readers of Intermediate Statistics For Dummies pass their stats exams
with flying colors, compared to nonreaders? To answer these questions, you
need to compare the sample proportions using a hypothesis test for two pro-
portions (see Chapter 3 or your intro stat textbook).

33
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Suppose you've collected data on a random sample of 1,000 United States
voters. You may want to compare the proportion of female voters to the pro-
portion of male voters and find out whether they’re equal. Suppose in your
sample you find that the proportion of females is 0.53, and the proportion of
males is 0.47. So for this sample of 1,000 people, you have a higher propor-
tion of females than males. But here’s the big question: Are these sample pro-
portions different enough to say that the entire population of U.S. voters has
more females in it than males? After all, sample results vary from sample to
sample. The answer to this question requires comparing the sample propor-
tions by using a hypothesis test for two proportions. I demonstrate and
expand on this technique in Chapter 3.

Estimating a proportion

You can also use relative frequencies (check out the section “Qualitative
versus Quantitative Variables in Statistical Analysis”) to make estimates
about a single population proportion.

Say, for example, you want to know what proportion of females in the United
States are Democrats. According to a sample of 29,839 female voters from the
U.S. conducted by the Pew Research Foundation in 2003, the percentage of
female Democrats was 36. Now because the Pew researchers based these
results on only a sample of the population and not on the entire population,
these results may vary from sample to sample. The amount of variability is
measured by the margin of error (the amount that you add and subtract from
your sample statistic), which for this sample is only about 0.5 percent. (To
find out how to calculate margin of error, explore Chapter 3.) That means that
the estimated percentage of female Democrats in the U.S. voting population is
estimated to be somewhere between 35.5 percent and 36.5 percent.

The margin of error, combined with the sample proportion, forms what statis-
ticians call a confidence interval for the population proportion. Recall from
intro stats that a confidence interval is a range of likely values for a popula-
tion parameter, formed by taking the sample statistic plus or minus the
margin of error. (For more on confidence intervals, see Chapter 3.)

Looking for relationships between
qualitative variables

Suppose you want to know whether two qualitative variables are related
(for example, is gender related to political affiliation?). Answering this ques-
tion requires putting the sample data into a two-way table (using rows and
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columns to represent the two variables), and analyzing the data by using a
Chi-square test (see Chapter 14). By following this process, you can deter-
mine whether two categorical variables are independent (unrelated) or
whether a relationship exists between them. If you find a relationship, you
can use percentages to describe it.

Table 2-1 shows an example of data organized in a two-way table. The data
was collected by the Pew Research Foundation.

Table 2-1 Gender and Political Affiliation for 56,735 U.S. Voters

Gender Republican Democrat Other
Males 32% 27% 41%
Females 29% 36% 35%

Notice that the percentage of male Republicans in the sample is 32 and the
percentage of female Republicans in the sample is 29. These percentages are
quite close in relative terms. However, the percentage of female Democrats
seems much higher than the percentage of male Democrats (36 percent
versus 27 percent); also, the percentage of males in the “Other” category is
quite a bit higher than the percentage of females in the “Other” category (41
percent versus 35 percent). These large differences in the percentages indi-
cates that gender and political affiliation are related in the sample. But do
these trends carry over to the population of all U.S. voters? This question
requires a hypothesis test to answer. The particular hypothesis test you need
in this situation is a Chi-square test, which I discuss in detail in Chapter 14.

To make a two-way table from a data set by using Minitab, first enter the data
in two columns, where column one is the row variable (continuing with the
previous example, this variable would be gender) and column two is the
column variable (in this case, political affiliation). For example, suppose the
first person is a male Democrat. In row one of Minitab, enter M (for male) in
column one and D (Democrat) in column two. Then go to Stat>Tables>Cross
Tabulation and Chi-square. Highlight column one and click Select to enter this
variable in the For Rows line. Highlight column two and click Select to enter
this variable in the For Columns line. Click on OK.

People often use the word correlation to discuss relationships between vari-
ables, but in the statistical world, you can use correlation only to discuss the
relationship between two quantitative (numerical) variables, not two qualita-
tive (categorical) variables. Correlation measures how closely the relation-
ship between two quantitative variables, such as height and weight, follows a
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straight line and tells you the direction of that line as well. In total, for any
two quantitative variables, x and y, the correlation measures the strength

and direction of their linear relationship. As one increases, what does the

other one do?

Because qualitative variables don’t have a numerical order to them, they
don’t increase or decrease in value. For example, just because male = 1 and
female = 2 doesn’t mean that a female is worth twice a male. (Although some
women may want to disagree.) These numbers represent categories, not
values. Therefore, you can’t use the word correlation to describe the relation-
ship between, say, gender and political affiliation. The appropriate term to
describe the relationships of qualitative variables is association. You can say
that political affiliation is associated with gender, and explain how. (For full
details on association, see Chapter 13. For more information on correlation,
see Chapter 4.)

Building models to make predictions

You can also build models to predict the value of a qualitative variable based
on other related information. In this case, building models is more than a lot
of little plastic pieces and some irritatingly sticky glue. When you build a
model, you look for variables that help explain, estimate, or predict some
response you're interested in (the variables that do this are called explana-
tory variables). You sort through the explanatory variables and figure out
which ones do the best job of predicting the response, and you put them
together into a type of equation like y = 2x + 4 where x = shoe size and y =
length of your calf. That equation is a model.

For example, what if you want to know which factors or variables can help
you predict someone’s political affiliation? Is a woman without children more
likely to be a Republican or a Democrat? What about a middle-aged man who
proclaims Hinduism as his religion? In order for you to compare these com-
plex relationships, you must build a model to evaluate each group’s impact
on political affiliation (or some other qualitative variable). This kind of model
building is explored more in-depth in Chapter 8, where I discuss the topic of
logistic regression.

Logistic regression builds models to predict the outcome of a qualitative vari-
able, such as political affiliation. If you want to make predictions about a
quantitative variable, such as income, you need to use the standard type of
regression (check out Chapters 4 and 5).
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In 2003, the Pew Research Foundation studied the following variables in terms
of their relationship with political affiliation: gender, race, state of residence,
income level, age, education, religion, marital status, and whether or not you
have children. While you can do individual Chi-square analyses to examine
possible connections between each of these variables and political affiliation
separately, you can’t find out which combinations of these variables increase
the likelihood of someone being a Democrat, Republican, or other.

For example, the Foundation found that women are more likely to be
Democrats than men, but age is also a factor. Younger people tend to be more
inclined to be Republican, and older people lean toward being Democrat.
However, if you look at the combination of gender and age, you can see
mixed results; males who are older are more likely than young females to be
Democrat rather than Republican, for example. This kind of result is called an
interaction effect between gender and age group. An interaction effect occurs
when certain combinations of variables produce different results than other
combinations. The only way to look for these kinds of more-complex relation-
ships is to do model building, which allows you to examine the combinations
of variables and their impact on political affiliation. The Pew Foundation was
able to make conclusions about the United States population based on its
model linking political affiliation, age and gender, as well as their interactions.

Statistics for Quantitative Variables

Quantitative variables, unlike qualitative variables, have a wider range of statis-
tics that you can do, depending on what questions you want to ask. The main
reason for this wider range is that quantitative data are numbers that represent
measurements or counts, so it makes sense that you can order, add or sub-
tract, and multiply or divide them — and the results all have numerical mean-
ing. Examining quantitative date opens up a whole world of possibilities for
analysis. In this section, | present the major data-analysis techniques for quan-
titative data. I further expand each technique in later chapters of this book.

Making compatrisons

Suppose you want to look at income (a quantitative variable) and how it
relates to a qualitative variable, such as gender or region of the country. Your
first question may be: Do males still make more money than females? In this
case, you can compare the mean incomes of two populations — males and

37



38 Part |: Data Analysis and Model-Building Basics

\NG/
V?‘“

females. This assessment requires a hypothesis test of two means (often-
times called a ttest for independent samples). | present more information
on this technique in Chapter 3.

When comparing the means of more than two groups, don’t simply look at all
the possible ttests that you can do on the pairs of means, because you have
to control for an overall error rate in your analysis. Too many analyses can
result in errors — adding up to disaster. For example, if you conduct 100
hypothesis tests, each one with a 5 percent error rate, then 5 of those 100
tests give wrong results on average, just by chance.

If you want to compare the average wage in different regions of the country
(the East, the Midwest, the South, and the West, for example), this compari-
son requires a more sophisticated analysis, because you're looking at four
groups rather than just two. The procedure you can use to compare more
than two means is called analysis of variance (ANOVA), and I discuss this
method in detail in Chapters 9 and 10.

Finding connections

Suppose you're an avid golfer and you want to figure out how much time you
should spend on your putting game. The question is this: Is the number of
putts related to your total score? If the answer is yes, then spending time on
your putting game makes sense. If not, then you can slack off on it a bit. Both
of these variables are quantitative variables, and you're looking for a connec-
tion between them. You collect data on 100 rounds of golf played by golfers
at your favorite course over a weekend. Table 2-2 shows the first few lines of
your data set.

Table 2-2 First Ten Golf Scores (ordered)
Number of Putts Total Score

23 76

27 80

28 80

29 80

30 80

29 82
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Number of Putts Total Score
30 83
31 83
33 83
26 84

The first step in looking for a connection between putts and total scores (or
any other quantitative variables) is to make what is called a scatterplot of the
data, which graphs your data set in two-dimensional space by using an x and
y plane. You can take a look at the scatterplot of the golf data in Figure 2-1.
Here, x represents the number of putts, and y represents the total score. For
example, the point in the lower-left corner of the graph represents someone
who had only 23 putts and a total score of 75. (For instructions on making a
scatterplot by using Minitab, see Chapter 4.)

Scatterplot of Total Score versus Number of Putts
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According to Figure 2-1, it appears that as the number of putts increases, so
does total score. The relationship seems pretty strong — the number of putts
plays a big part in determining the total score.

Now you need a measure of how strong the relationship is between x and y
and whether it goes uphill or downhill. Correlation is the number that mea-
sures how close the points follow a straight line. Correlation is always
between -1.0 and +1.0, and the more closely the points follow a straight line,
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the closer the correlation is to —1.0 or +1.0. A positive correlation means that
as x increases on the x-axis, y also increases on the y-axis. Statisticians call
this type of relationship an uphill relationship. A negative correlation means
that as x increases on the x-axis, y goes down. Statisticians call this type of
relationship — you guessed it — a downhill relationship.

For the golf data set, the correlation is 0.896 = 0.90, which is extremely high
as correlations go. This strong correlation (close to +1.0) is a good thing
because it means number of putts can do a great job of predicting total score.
Because the sign of the correlation is positive, it means as you increase
number of putts, your total score increases (an uphill relationship). For
instructions on calculating a correlation in Minitab, see Chapter 4.

Making predictions

If you want to predict some response variable (y) using one explanatory vari-
able (x), and you want to use a straight line to do it, you can use simple linear
regression (see Chapter 4 for all the fine points on this topic). Linear regres-
sion finds the best-fitting line that cuts through the data set, called the regres-
sion line. After you get the regression line, you can plug in a value of x and
get your prediction for y. (For instructions on using Minitab to find the best-
fitting line for your data, see Chapter 4.)

To use the golf example from the previous section, suppose you want to pre-
dict the total score you can get for a certain number of putts. In this case, you
want to calculate the linear regression line. By using the data set shown in
Table 2-2, and running a regression analysis, the computer tells you that the
best line to use to predict total score using number of putts is the following:

Total score = 39.6 + 1.52 * Number of putts

So if you have 35 putts in an 18-hole golf course, your total score is predicted
to be about 39.6 + 1.52 % 35 = 92.8, or 93. (Not bad for 18 holes!)

Notice that the slope of the regression line tells you what you really want to
know — how much does your total score increase with every additional putt?
In other words, how much damage is done when you miss the hole on your
first, or second, or third putt? The slope of the regression line for the golf
data set is 1.52. Because the slope of a line is the ratio of the change in y
(total score) to the change in x (number of putts) this means that every addi-
tional putt you need results in an overall increase in total score by 1.52.
Maybe that’s why Tiger Woods spends so much time on his short game.
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Don’t try to predict y for x-values that fall outside the range of where the data
was collected; you have no guarantee that the line still works outside of that
range, or that it will even make sense. For the golf example, you can’t say that
if x (the number of putts) = 0 the total score would be 39.6 + 1.52 * 0 = 39.6
(unless you just call it good after your ball hits the green). This mistake is
called extrapolation.

You can discover more about simple linear regression, and expansions on it,
in Chapters 4 and 5.

Avoiding Bias

Bias is the bane of a statistician’s existence; it’s easy to create and very hard
to deal with, if not impossible in most situations. The statistical definition of
bias is the systematic overestimation or underestimation of the actual value.
In language the rest of us can understand, it means that the results are always
off by a certain amount in a certain direction. For example, a bathroom scale
may always report a weight that’s five pounds more than it should be (I'm
convinced this is true of my doctor’s office scale); this consistent adding of
five points to every outcome represents a systematic overestimation of the
actual weight.

The most important idea when dealing with bias is prevention, or at least
minimizing it. Bias is like weeds in a garden: After they’re present, they're
very hard to deal with, and it’s always better to eliminate them from the start.
In this section, you see ways bias can creep into a data set, or even into a sta-
tistic, and what you can do about it.

Looking at bias through statistical glasses

Bias can show up in a data set a variety of different ways. Here are some of
the most common ways bias can creep into your data:

v Selecting the sample from the population: Bias occurs when you leave
some intended groups out of the process, and/or give certain groups too
much weight.

For example, TV surveys (the ones where they ask you to phone in

your opinion) are biased because no one has selected a prior sample of
people to represent the population — people call in on their own. When
people participate in a survey on their own, they’re more likely to have
stronger opinions than those who don’t choose to participate. Such sam-
ples are called self-selected samples and are typically very biased.

41



42 Part I: Data Analysis and Model-Building Basics

 Designing the data-collection instrument: Poorly designed instruments
(including surveys) can result in inconsistent or even incorrect data.

For example, a survey question’s wording plays a large role in whether
or not results are biased. A leading question can make people feel like
they should answer a certain way. For example: “Don’t you think that
the president should be allowed to have a line-item veto to prevent gov-
ernment spending waste?” Who would feel they should say no to that?

v~ Collecting the data: In this case, bias can infiltrate the results if some-
one makes errors in the recording of the data or if interviewers deviate
from the script.

v Deciding how and when the data is collected: The time and place you
collect data can affect whether your results are biased. For example, if
you conduct a telephone survey during the middle of the day, people
who work from nine to five aren’t able to participate. Depending on the
issue, the timing of this survey could lead to biased results.

A\
Bias can creep into a data set very easily. The best way to deal with bias is to
avoid it in the first place. You can do this in two major ways:

v Use a random process to select the sample from the population. The
only way a sample is truly random is if every single member of the popu-
lation has an equal chance of being selected. Self-selected samples aren’t
random.

1 Make sure that the data is collected in a fair and consistent way. Be
sure to use neutral question wording and time the survey properly.

Settling the variance controversy:
The battle of n—1 versus n

Not all statistical formulas are free of bias. In other words, some statistics
have good characteristics (like offering great precision) and some not-so-
good characteristics (like not giving the best possible result in all situations).
Statisticians definitely prefer statistics that are both precise and unbiased,
and the techniques you find in this book have both qualities. However, pre-
cise and unbiased statistics doesn’t always happen naturally; sometimes the
basic idea requires a little tweaking to get a statistic that actually meets the
standards of the statistical powers that be (of which [ am not one). The clas-
sic example of this need to fine-tune is the formula for the variance of a data
set, which [ describe in the following section.
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The problem

Statistics textbooks sometimes show two formulas for the variance of a data

w _\2
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set. One formula shown for the variance is s*= “—5;——, where n is the

sample size, the values of x are the data values, and the sample mean (or the
3,

i
i=1

7—- This formula for vari-

average of all the values of the data set) is x=

ance, you may note, contains an n all by itself in the denominator. The fact
that the denominator is n and not n - 1 makes a teacher’s job of explaining
variance a whole lot easier, because it represents the average squared
distance from the mean. In this case, the values being squared are the differ-
ences between the data values and their mean. You get the average of these
squared values by summing them up and dividing by n, the sample size.

However, this version of a formula for variance, as it’s written, is biased. That
means in a statistical sense, you know that in the long term, the results are
always off by a very small amount from their target value. If you take repeated
samples, find the variance, and do this over and over, the results on average
are a little smaller than they should be. (Statisticians can prove this, but you
don’t have to worry about that. I'm sure you have better things to do.)

The solution

Because statisticians prefer results being correct to results that can be more
easily explained, they decided to do something about this bias problem in
the formula for the sample variance. A group of stat big wigs figured out that
dividing by n was the problem, and if you divide by n — 1 rather than n, you
can get answers that are right on target. That’s how the following commonly
used formula for sample variance came into being:

Notice that an n - 1 rather than an n is now in the denominator. However,
trying to explain why the formula isn’t dividing by n does tend to open up a
can of worms for statistics professors (and explains why biased statistics are
a topic left for the intermediate-level students, like you!).

Because statistics can be biased too, in terms of the results they create
through their formulas alone, it’s always a good idea to check with a statisti-
cian or someone else in the know whether a particular statistic is unbiased
before you use it.
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Don't put all your data into one basket!

An animal science researcher came to me one
time with a data set he was so proud of. He was
studying cows and the variables involved in
helping determine their longevity. He came in
with a super-mega data set that contained over
100,000 observations. He was thinking “Wow,
this is gonna be great! I've been collecting this
data for years and years, and | can finally have
it analyzed. There's got to be loads of informa-
tion | can get out of this. The papers I'll write,
the talks I'll be invited to give . . . the raise I'l
get!” He turned his precious data over to me
with an expectant smile and sparkling eyes.

But after looking at his data for a few minutes |
made a terrible realization — all of his data came
from exactly one cow. With no other cows to
compare with and a sample size of just one, he
had no way to even measure how much those
results would vary if he wanted to apply them to
another cow. His results were so biased toward
that one animal that | couldn’t do anything with
the data. After | summed up the courage to tell
him, it took a while to peel him off the floor. The
moral of the story, | suppose, is to find a statisti-
cian and check out your big plans with her
before you go down a cow path like this guy did.

Getting Good Precision

Precision is the amount of movement you expect to have in your sample
results if you repeat your entire study again with a new sample. Low precision
means that you expect your sample results to move a lot (not a good thing).
High precision means you expect your sample results to remain fairly close in
the repeated samples (a good thing). In this section, you find out what preci-
sion does and doesn’t measure, and you see how to measure the precision of
a statistic in general terms.

Understanding precision from
a statistical point of view

You may think that precision means the level of correctness you have in your
statistical results. But precision only measures the level of consistency in the
results from sample to sample. Your results can be consistently correct or
consistently incorrect.

For example, a field-goal kicker on a football team may consistently kick the
ball two feet to the right of the goalposts every single time. Even though he’s
consistent, he never gets to score, because his results are systematically off
by the same amount each time. In other words, his results are biased, even
though they’re precise.
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A statistic can be precise with or without bias, and vice versa. The best situa-
tion is when your results are both precise (consistent) as well as unbiased
(on target). That goal is what statisticians always strive for. How often does

it happen? You can have a lot of control of the precision part by simply taking
a larger sample. However, the goal of completely unbiased results is rarely
achieved, but that doesn’t stop statisticians from trying. And you do have
ways to minimize it (keep reading).

Measuring precision with margin of error

You can measure precision by the margin of error. The margin of error is the
amount that you expect your statistical results to change from one sample

to the next. While you always hope, and may even assume, that statistical
results shouldn’t change much with another sample, that’s not always the
case. It’s like a commercial that tries to sell a weight-loss product by showing
a person who lost 50 pounds in a single weekend; then in small letters at the
bottom of the screen, you see the words “results will vary.” Before you report
or try to interpret any statistical results, you need to have some measure-
ment of how much those results are expected to vary from sample to sample.

The following sections show how to calculate the precision of your statistic
and how to come up with a margin of error.

Calculating precision

The exact formulas for margin of error differ depending on the type of data
that you’re analyzing; however, they all contain two major components:

v Confidence coefficient

v Standard error of the statistic

The general structure of a formula for margin of error is the following, where
standard error is the standard deviation of the population divided by the
square root of the sample size (you can see all the details on margin of error
in Chapter 3):

Margin of error = + Confidence coefficient * Standard error

The big idea is that the confidence coefficient tells you the number of stan-
dard errors you'’re willing to add and subtract in order to have a certain level
of confidence in your results. If you want to be more confident in your results,
you add or subtract more standard errors. If you don’t have to be as confi-
dent, you don’t have to add or subtract as many standard errors. Typically,
you add and subtract about two standard errors if you want to be 95 percent
confident and three standard errors if you want to be more than 99 percent
confident. This rule of thumb follows a statistical result called the Empirical
Rule, also known as the 68-95-99.7 Rule.
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The standard error is the average amount of movement in the statistic you're
using. It’s a function of two quantities:

1 Sample size: Sample size is perhaps the most important factor in con-
trolling margin of error. The sample size is in the denominator of the
standard error, meaning that as your sample size increases, the standard
error goes down, and that’s why the margin of error goes down.

This result makes sense, because having a larger sample means having
more information in your analysis, which should lead to greater precision.
As the sample size decreases, the margin of error goes up, because you
have less information to work with and that makes for less-precise results.

v~ Standard deviation in the population: Standard deviation is close to the
average distance from the mean. If the population you took your sample
from has a large amount of variability, the standard deviation is large,
and the margin of error for your statistic goes up (because standard
deviation is in the numerator of the margin of error). If the population is
more homogeneous, your sample results are more homogeneous as well,

and the margin of error goes down (because the standard error gets

smaller).

Up close and personal: Survey results

The Gallup Organization states its survey results
in a universal, statistically correct format. Using
a specific example from a recent survey it con-
ducted, you can see the language it uses to
report its results:

“These results are based on telephone inter-
views with a randomly selected national
sample of 1,002 adults, aged 18 years and
older, conducted June 9-11, 2006. For results
based on this sample, one can say with 95%
confidence that the maximum error attribut-
able to sampling and other random effects is
+3 percentage points. In addition to sampling
error, question wording and practical diffi-
culties in conducting surveys can introduce
error or bias into the findings of public opin-
ion polls.”

The first sentence of the quote refers to how the
Gallup Organization collected the data, as well

as the size of the sample. As you can guess, pre-
cision is related to the sample size, as seen in the
section “Calculating precision.”

The second sentence of the quote refers to the
precision measurement: How much did Gallup
expect these sample results to vary? The fact
that Gallup is 95 percent confident means that if
this process were repeated a large number of
times, in 5 percent of the cases the results would
be wrong, just by chance. This inconsistency
occurs if the sample selected for the analysis
doesn't represent the population — not due to
biased reasons, but due to chance alone (more
on this in Chapter 3).

(Check out the section “Bias notincluded” to get
the info on why the third sentence is included in
this quote.)
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For more details on how to calculate margin of error in various statistical
techniques, see Chapter 3.

Interpreting margin of error

Finding the margin of error is one thing — figuring out what it means is a
whole other ball o’ wax. But don'’t fear; it’s actually not so bad. To interpret
the margin of error, just think of it as the amount of play you allow in your
results to cover most of the other samples you could have taken.

Suppose you’re trying to estimate the proportion of people in the population
who support a certain issue, and you want to be 95 percent confident in your
results. You sample 1,002 individuals and find that 65 percent support the
issue. The margin of error for this survey turns out to be plus or minus 3 per-
centage points (you can find the details of this calculation in Chapter 3). That
result means that you can expect the sample proportion of 65 percent to
change by as much as 3 percentage points either way if you took a different
sample of 1,002 individuals. In other words, you believe the actual population
proportion is somewhere between 65 - 3 = 62 percent and 65 + 3 = 68 percent.
That’s the best you can say.

Bias not included!

Realizing that the margin of error measures the consistency (precision) of a
statistic only, not its level of bias is extremely important. In other words, a
margin of error can appear on paper to be very small yet actually be way off
target because of bias in the data that was collected. (In the nearby sidebar,
you can see that Gallup discusses margin of error and bias separately.)

Any reported margin of error was calculated on the basis of having zero bias
in the data. However, this assumption is rarely true. Before interpreting any
margin of error, check first to be sure that the sampling process and the data-
collection process don’t contain any obvious sources of bias. If a great deal of
bias exists, you should ignore the results, or take them with a great deal of
skepticism.

Making Conclusions and Knowing
Vour Limitations

The most important goal of any data analyst is to remain focused on the big
picture — the question that you or someone else is asking — and make sure
that the data analysis used is appropriate and comprehensive enough to
answer that question correctly and fairly.
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Here are some tips for analyzing data and interpreting the results, in terms of
the statistical procedures and techniques that you may use — at school, in
your job, and in everyday life. These tips are implemented and reinforced
throughout this book:

v~ Be sure that the research question being asked is clear and definitive.
Some researchers don’t want to be pinned down on any particular set of
questions because they have the intent of mining the data (looking for
any relationship they can find, and then stating their results after the
fact). This can lead to overanalyzing the data, making the results subject
to skepticism by statisticians.

v Double-check that you clearly understand the type of data being col-
lected. Is the data qualitative or quantitative? The type of data used
drives the approach that you take in the analysis.

1 Make sure that the statistical technique you use is designed to answer
the research question. If you want to make comparisons between two
groups and your data is quantitative, use a hypothesis test for two
means. If you want to compare five groups, use analysis of variance
(ANOVA). You can use this book as a resource to help you determine
the technique you need.

1 Look for the limitations of the data analysis. For example, if the
researcher wants to know whether negative political ads affect the popu-
lation of voters, and she bases her study on a group of college students,
you can find severe limitations here. For starters, student reactions to
negative ads don’t necessarily carry over to all voters in the population.
And even if the population were limited to all student voters, the stu-
dents from this particular class don’t represent all students. In this case,
it’s best to limit the conclusions to college students in that class (which
no researcher would ever want to do). Ultimately what needs to be
done is design the study so the sample contains a representation of the
intended population of all voters in the first place (a much more difficult
task, but well worth it).

One of the hardest parts of my job as a statistical consultant is dealing with
analyses after the design was already done — and done incorrectly. It’s much
better to put in a little work to get a good design together first, and then the
analysis will take care of itself.



Chapter 3

Building Confidence
and Testing Models

In This Chapter

Utilizing confidence intervals to estimate parameters
Testing models by using hypothesis tests
Finding the probability of getting it right and getting it wrong

Discovering power in a large sample size

0ne of the major goals in statistics is to use the information you collect
from a sample in order to get a better idea of what’s going on in the
entire population you’re studying (because populations are generally large
and exact info is often unknown). The most common items to study are the
mean of the population, the proportion of the population that has a certain
characteristic, or a comparison of the means or proportions from two differ-
ent populations. These unknown values that summarize the population are
called population parameters. Researchers typically either want to get a
handle on what those parameters are, or they want to test a hypothesis
about the population parameters. In introductory statistics, you typically go
over confidence intervals and hypothesis tests for one and two population
means and one and two population proportions. Your instructor hopefully
emphasized that no matter which parameters you're trying to estimate or
test, the general process is the same. If not, don’t worry; that’s what this
chapter’s all about.

The most important idea you can gain from this chapter is that intermediate
statistics focuses on building and testing models. You're typically faced with
some random phenomena, and you're trying to build a model that explains or
predicts that phenomena. The situation is more complex than it was in intro
stats, where you used one variable to predict another variable in simple
linear regression. Intermediate statistics takes it up a notch to using many
variables to predict another one. But as long as you keep the big picture of
how the process works in your mind, you’ll be okay.
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It all comes down in the end to testing hypotheses to see whether certain
models fit, and if they do, to using confidence intervals to estimate certain
values in the population or to make predictions based on the model that you
built.

This chapter reviews the basic concepts of confidence intervals and hypothe-
sis tests, including the probabilities of making errors by chance. I also dis-
cuss how statisticians measure the ability of a statistical procedure to do a
good job — of detecting a real difference in the populations, for example.
Hang on — you're in for quite a ride.

Estimating Parameters by Using
Confidence Intervals

Confidence intervals are a statistician’s way of covering themselves when it
comes to estimating a population parameter. For example, instead of just
giving a one-number guess as to what the average household income is in the
United States, a statistician would give a range of likely values for this
number. Statisticians do this for two reasons:

v All good statisticians know sample results vary from sample to sample,
so a one-number estimate isn’t any good.

v~ Statisticians have developed some awfully nice formulas you can use to
give a range of likely values, so why not use them?

In this section, you get the general formula for a confidence interval, includ-
ing the margin of error, and a good look at the common approach to building
confidence intervals. I also discuss interpretation and the chance of making
an error.

Getting the basics: The general form
of a confidence interval

The big idea of a confidence interval is coming up with a range of likely
values for a population parameter. The confidence level represents the
chance that if you repeated your sample-taking over and over, you'd get a
range of likely values that actually contains the actual population parameter.
In other words, it’s the long-term chance of being correct.
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The general formula for a confidence interval is the following:
Confidence interval = Sample statistic + Margin of error

The confidence interval has a certain level of precision (measured by the
margin of error). Precision calculates how close you expect your results
to be to the truth.

For example, you want to know the average amount of time a student at Ohio
State University spends listening to music per day, using an MP3 player. The
average time for the entire population of OSU students that are MP3-player
users is the parameter you're looking for. Certain that you can’t ask every
student who uses an MP3 player at OSU this question, you take a random
sample of students and find the average from there.

Suppose the average time a student uses an MP3 player per day to listen to
music based on a random sample of 1,000 OSU students is 2.5 hours, and the
standard deviation is 0.5 hours. Is it right to say that the population of all
OSU-student MP3-player owners use their players an average of 2.5 hours
per day for music listening? No. You hope and may assume that the average
for the whole population is close to 2.5, but it probably isn’t exact. After all,
you’re only sampling a tiny fraction of the 60,000 member population of all
OSU students. The fact is that sample results vary from sample to sample.

What’s the solution to this problem? The solution is to not only report the
average from your sample, but along with it, report some measure of how
much you expect that sample average to vary from one sample to the next,
with a certain level of confidence. You want to cover your bases, so to speak
(at least most of the time). The number that you use to represent this level of
precision in your results is called the margin of error. You take your sample
average and add and subtract the margin of error (to get that plus-or-minus
factor going), which gives you a confidence interval for the average time all
OSU students use their MP3 players.

Finding the confidence interval
for a population mean

The sample statistic part of the confidence-interval formula is fairly straight-
forward. If you want to estimate the population mean, you use the sample
mean. If you want to estimate the population proportion, use the sample
proportion. If you want to find the difference of two population means,

take two samples, find their sample means, and subtract them.
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In the case of the population mean, you use the sample mean to estimate it.
The sample mean has a standard error of 9 In this formula, you can see the

n
population standard deviation (¢) and the sample size (n).

If you think about it though, why would you know the standard deviation of
the population, ¢, when you don’t even know the mean (recall that the mean
is what you're trying to estimate)? To handle this additional unknown, do
what statisticians always do — estimate it and move on. So you estimate o,
the population standard deviation, using (what else?) the standard deviation
of the sample, denoted by s. So you replace ¢ by s in the formula for the stan-
dard error of the mean.

To estimate the population mean by using a confidence interval when ¢ is

n
standard deviation (s), the sample size (n), and a t-value representing how
many standard errors you want to add and subtract to get the confidence
you need. To get the margin of error for the mean, you see the standard error,

unknown, you use the formula x £+ ¢, _, % . This formula contains the sample

%, is being multiplied by a factor of t. Notice that t has n - 1 as a subscript
n

to indicate which of the myriad +-distributions you use for your confidence
interval. The n -1 is called degrees of freedom, where n is the sample size.

The value of t in this case represents the number of standard errors you add
and subtract to or from the sample mean to get the confidence you want. If you
want to be 95 percent confident, for example, you add and subtract about two
of those standard errors. If you want to be 99.7 percent confident, you add or
subtract about three of them. (Table A-1 in the Appendix presents the #distribu-
tion from which you can find +values for any confidence level you want.)

If you do know the population standard deviation for some reason, you would
certainly use it. In that case, you use the corresponding number from the
Z-distribution (standard normal distribution) in the confidence interval for-
mula. (The Z-distribution from your intro stat book can give you the numbers
you need.) Or if you know ¢ and have a large sample size, you can simply use
the bottom line of the ~distribution, because a -distribution with a large
number of degrees of freedom gives very similar values to the Z-distribution.

For the MP3 player example from the preceding section, a random sample of
1,000 OSU students spends an average of 2.5 hours using their MP3 players to
listen to music. The standard deviation is 0.5 hours. Plugging this information

0.5

/1,000

0.03 hours. You can conclude that OSU MP3-player owners spent an average
of between 2.47 and 2.53 hours listening to music on their players. (The value
for tin this example came from the last line of Table A-1 in the Appendix,
because this line represents the situation where n is large.)

=25=

into the formula for a confidence interval, you get 2.5 = 1.96
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What changes the margin of error?

What do you need to know in order to come up with a margin of error?
Margin of error, in general, depends on three elements:

v The standard deviation of the population, ¢ (or an estimate of it,
denoted by s, the sample standard deviation)

v The sample size, n

v The level of confidence you need

You can see these elements in action in the following formula for margin of

error of the sample mean: t,_,* -5 Here I assume that ¢ isn’t known; t,_;
n

represents the value on the t-distribution (Table A-1 in the Appendix) with

n -1 degrees of freedom.

Each of these three elements has a major role in determining how large the
margin of error will be when you estimate the mean of a population. At times
it may seem that different elements work against each other (and they do!),
but you can find ways around that. In the following sections, [ show how each
of the elements of the margin of error formula work separately and together
to affect the size of the margin of error.

The population standard deviation’s affect on margin of error

The standard deviation of the population is typically combined with the
sample size in the margin of error formula, with the population standard
deviation on top of the fraction, and n in the bottom. (In this case, the
standard error of the population, o, is estimated by the standard deviation
of the sample, s, because ¢ is typically unknown.)

This combination of standard deviation of the population and sample size is
known as the standard error of your statistic. It measures how much the sample
statistic deviates from its mean in the long term.

How does the standard deviation of the population (c) affect margin of error?
As the standard deviation of the population (or its estimate, s) gets larger, the
margin of error increases, so your range of likely values is wider. That’s why
you typically see the population standard deviation in the numerator of
margin of error formulas. The formula for the margin of error for one popula-
tion is an example of this.

Suppose you have two gas stations, one on a busy corner (gas station #1)
and one farther off the main drag (gas station #2). You want to estimate the
average time between customers at each station. At the busy gas station #1,
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customers are constantly using the gas pumps, so you basically have no time
between customers, and that model holds day after day. At gas station #2,
customers sometimes come all at once, and sometimes you don’t see a
single person for an hour or more. So the time between customers varies
quite a bit.

For which gas station would it be easier to estimate the overall average time
between customers as a whole? Gas station #1 has much more consistency,
which represents a smaller standard deviation of times between customers.
Gas station #2 has much more heterogeneity of times between customers,
so that one is harder to get a handle on. That means ¢ for gas station #1 is
smaller than o for gas station #2.

Sample size and margin of error

Sample size affects margin of error in a very intuitive way. Suppose you're
trying to estimate the average number of pets per household in your city.
Which sample size would give you better information: 10 homes or 100
homes? You'd agree that 100 homes would give more precise information
(as long as the data on those 100 homes was collected properly).

If you have more data to base your conclusions on, and that data is collected
properly, your results will be more precise. Precision is measured by margin
of error; so as the sample size increases, the margin of error of your estimate
goes down. That’s why you typically see an n (sample size) in the denomina-
tor of margin of error formulas. In the formula for the margin of error of the
sample mean, you can see n in the denominator.

Bigger is only better in terms of sample size if the data is collected properly.
That is, you should find no bias in the way the members of the sample were
selected or in the way the data was collected on those subjects. If the quality
of the data can’t be maintained with a larger sample size, it does no good to
have it.

Confidence level and margin of error

The amount of confidence you need to have differs from problem to problem.
Suppose you're estimating the mean weight that an elevator can hold. You
would want to be pretty confident about your results, right? But, if you
wanted to estimate the percentage of females that may come to your party on
Saturday night, you may not need to be so confident (despite the desperation
you see in your single buddies’ eyes). For each problem at hand, you have to
address how confident you need to be in your results over the long term,
and, of course, more confidence comes with a price in the margin of error for-
mula. This level of confidence in your results over the long term is reflected
in a number called the confidence level, reported as a percentage. In general,
more confidence requires a wider range of likely values. Ninety-five percent

is the most common confidence level statisticians use.
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Every margin of error is interpreted as plus or minus a certain number of
standard errors. The number of standard errors added and subtracted is
determined by the confidence level. If you need more confidence, you add
and subtract more standard errors. If you need less confidence, you add and
subtract fewer standard errors. The number that represents how many stan-
dard errors to add and subtract is different from situation to situation. For
one population mean, you use a value on the t-distribution, represented by
t,_,, where n is the sample size. See Table A-1 in the Appendix.

Here’s an example. Suppose you have a sample size of 20, and you want to
estimate the mean of a population. The number of standard errors you add
and subtract is represented by ¢,_,, which in this case is t,5. Suppose your
confidence level is 90 percent. To find the value of ¢, you look at row 19 in the
t-distribution table (Table A-1 in the Appendix). The table uses the area to the
right, so that area in this case is 0.05. (You get this value because 90 percent
is within the confidence interval, so 10 percent is outside of it. Half of that 10
percent lies above the confidence interval, and the other half lies below it.)
So look at row 19 and the column headed by the value 0.05. You get the value
of t = 1.73. So to be 90 percent confident with a sample size of 20, you need to
add and subtract 1.73 standard errors.

Now suppose you want to be 95 percent confident in your results, with the
same sample size of n = 20. The area above the interval is now half of 5 percent,
which is 2.5 percent or 0.025. Row 19 and column 0.025 in Table A-1 gives you
the value of £,4 = 2.09. Notice that this value of ¢ is larger than the value of ¢ for
90 percent confidence, because in order to be more confident, you need to go
out more standard deviations on the ~distribution table to cover more possible
results.

Large confidence, narrow intervals — just the right size

A narrow confidence interval is much more desirable than a wide one. For
example, if you said that you think the average cost of a new home is $150,000
plus or minus $100,000, that wouldn’t be helpful at all because this makes
your estimate anywhere between $50,000 and $250,000. (Who has an extra
hundred grand to throw around?) But you have to be 99 percent confident, so
your statistician has to add and subtract more standard errors to get there,
which makes the interval that much wider (a downer). She tells you to be
happy with 95 percent confidence, but no!

Wait, don’t panic — you can have your cake and eat it too! If you know you
want to have a high level of confidence, but you don’t want a wide confidence
interval, just increase your sample size to meet that level of confidence. The
effect of sample size and the effect of confidence level cancel each other out,
so you can have a precise (narrow) confidence interval and a high level of
confidence at the same time. It all depends on sample size, something you
can control (up to the size of your pocketbook of course).
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For example, say the standard deviation of the house prices from a previous
study is s = $15,000, and you want to be 95 percent confident in your estimate
of average house price. Using a large sample size, your value of ¢ (from the
last row of Table A-1 in the Appendix) would be 1.96. With a sample of 100
homes, your margin of error would be plus or minus 1.96 times $15,000
divided by the square root of 100, which comes out to $2,940. If this is too
large for you but you still want 95 percent confidence, crank up your value of
n. If you sample 500 homes, the margin of error decreases to plus or minus
1.96 times $15,000 divided by the square root of 500, which brings you down
to $1,314.81.

You can actually use a formula to find the sample sizze you need to meet a
51;151;) , where MOE is the
desired margin of error (as a proportion), s is the sample standard deviation,
and ¢ is the value on the ~distribution that corresponds with the confidence
level you want. (You can use the last line of Table A-1 in the Appendix, which
will work fine, assuming that your sample size is fairly beyond 30.)

desired margin of error. That formula is n= <

Interpreting a confidence interval

Interpreting a confidence interval involves a couple of subtle but important
issues, which I discuss in this section. The big idea is that a confidence inter-
val presents a range of likely values for the population parameter, based on
your sample. It includes this range because your sample results are going to
vary, and you want to address that. A 95 percent confidence interval, for
example, provides a range of likely values for the parameter such that the
parameter is included in the interval 95 percent of the time in the long term.

A 95 percent confidence interval doesn’t mean that your particular confi-
dence interval has a 95 percent chance of capturing the actual value of the
parameter; after the sample has been taken, it’s either in the interval or it
isn’t. A confidence interval represents the long-term chances of capturing the
actual value of the population parameter over many different samples.

Suppose a polling organization wants to estimate the percentage of people
in the United States who drive a car with more than 100,000 miles on it, and
it wants to be 95 percent confident in its results. The organization takes a
random sample of 1,200 people and finds that 420 of them (35 percent) drive
a much-driven car.

The meaty part of the interpretation lies in the confidence level — in this case,
the 95 percent. Because the organization took a sample of 1,200 people in the
U.S., asked each of them whether his or her car has more than 100,000 miles
on it and made a confidence interval out of it, the polling organization is, in
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essence, accounting for all of the other samples out there that it could have
gotten by building in the margin of error (£3 percent). The organization wants
to cover its bases on 95 percent of those other situations, and the £3 percent
satisfies that.

Another way of thinking about the confidence interval is to say that if the
organization sampled 1,200 people over and over again and made a confi-
dence interval from its results each time, 95 percent of those confidence
intervals would be right. (You just have to hope that yours is one of those
right results.)

Using stat notation, you can write confidence levels as 1 — a. So if you want
95 percent confidence, you write it as 1 — 0.05. The number that o represents
is the chance that your confidence interval is one of the wrong ones. This
number, ¢, is also related to the chance of making a certain kind of error with
a hypothesis test, which I explain in the hypothesis-testing section.

S

Setting Up and Testing Models

A model is an equation that attempts to describe how a population behaves.
It can be a claim that’s made about a population parameter; for example, a
shipping company might say that its packages are on time 95 percent of the
time, or a campus official claims that 75 percent of students live off campus.
It is important to test these models to see whether they actually hold up in
the population, which you can do by using hypothesis tests.

In this section, you see the big ideas of hypothesis testing that are the basis
for the data-analysis techniques in this book. You review and expand on the
concepts involved in a hypothesis test, including the hypotheses, the test
statistic, and the p-value.

What do Ho and Ha represent — really?

The big idea here is that you set up a hypothesis test to see whether your
model fits the population, based on your data. In the intro stat course, you
tested simple hypotheses — like whether the population mean is equal to
ten. At the intermediate statistics level, you get to look at much more sophis-
ticated and relevant models that involve several variables and/or several
different populations in a variety of situations. The good news, though, is
that the basic ideas from intro stats apply here as well. (If you need a brief
refresher before barreling through this section, feel free to flip through your
intro stats book or check out my other book Statistics For Dummies [Wiley].)
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You use a hypothesis test in situations where you have a certain model in
mind, and you want to see whether that model fits your data. Your model may
be one that just revolves around the population mean (testing whether that
mean is equal to ten, for example). Your model may be testing the slope of a
regression line (whether or not it’s zero, for example, with zero meaning you
find no relationship between x and y). You may be trying to use several differ-
ent variables to predict the marketability of a product, and you believe a model
using customer age, price, and shelf location can help predict it, so you need to
run one or more hypothesis tests to see whether that model works. (This
process is called multiple regression; more info on this in Chapter 5.)

A hypothesis test is made up of two hypotheses:

+ The null hypothesis (Ho): Ho symbolizes the current situation — the
one that everyone assumed was true until you got involved.

v The alternative hypothesis (Ha): Ha represents the alternative model
that you want to consider. It stands for the researcher’s hypothesis, and
the burden of proof lies on the researcher to prove it.

Ho is the model that’s on trial. If you get enough evidence against it, you con-
clude Ha, which is the model you're claiming is the right one. If you don’t get
enough evidence against Ho, then you can’t say that your model (Ha) is the
right one.

Gathering your evidence
into a test statistic

A test statistic is the statistic from your sample, standardized so you can look
it up on a table, basically. While each hypothesis test is a little different, the
main thought is the same. For whatever model you're trying to test, you
come up with a statistic that you use to test that model. Take that statistic,
standardize it (take the statistic minus its expected value from Ho and divide
all that by the standard error). Then look up your test statistic on a table to
see where it stands. That table may be the ttable (Table A-1 in the Appendix),
it may be the Chi-square table (Table A-3 in the Appendix), or it may be a dif-
ferent table. The type of test you need to you use on your data dictates which
table you use.

In the case of testing a hypothesis for a population mean, L, you use the sample
mean, X, as your statistic. To standar_dize it, you take X and convert it to a

¥ —
value of ¢ by using the formula ¢,_,= su" , where |, is the value in Ho. This

Jn

value is your test statistic. You compare your test statistic to the ~distribution
(check out Table A-1 in the Appendix).
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Determining strength of
evidence with a p-value

If you want to know whether your data has the brawn to stand up against Ho,
you want to figure out the p-value and compare it to a prespecified cutoff, o
(typically 0.05). The p-value is a measure of the strength of your evidence
against Ho. You can calculate the p-value by doing the following:

1. Calculate the test statistic. See the preceding section for more info
on this.

2. Look up the test statistic on the appropriate table (such as the t-table,
A-1 in the Appendix).

3. Find the percentage of values on the table that fall beyond your test
statistic. This percentage is the p-value.

Suppose you're conducting a hypothesis test and have already decided you
will reject Ho at level o = 0.05. You collect your data and find the test statistic
(see preceding section). If your test statistic is extremely high or extremely
low compared to other values on the table (whatever that table is), then you
reject Ho.

For example, say the cutoff value for rejecting Ho at a level o = 0.05 is 1.645,
where you’re testing for the mean of one population. If you get a test statistic
of 1.7, you reject Ho. If you get a test statistic of 2.7, you really reject Ho. That
is, you have more evidence against Ho with a test statistic of 2.7 than with a
test statistic of 1.7. The two p-values of 1.7 and 2.7 are what statisticians call
marginally significant and highly significant results respectively, to use proper
terms.

Your friend, o, is the cutoff for your p-value — and the star of this chapter.
(o is typically set at 0.05 — sometimes 0.10.) If your p-value is less than your
predetermined value of o, reject Ho, because you have sufficient evidence
against it. If your p-value is greater than or equal to o, you can’t reject Ho.

For example, if your p-value is 0.002, then your test statistic is so far away
from Ho that the chance of getting this result only by chance is only 2 out

of 1,000. So, you conclude that Ho is very likely to be false. However, if your
p-value turns out to be 0.30, then this result happens 30 percent of the time
anyway, so you see no red flags there, and you can’t reject Ho. You don’t have
enough evidence against it. It doesn’t mean Ho is true, but you don’t have the
evidence to say it’s false — a subtle, but important, difference.

When I compare the p-value to the o (the cutoff value), I like to think of a foot-
ball analogy, assuming that Hois “the opposing team can’t make a touch-
down.” The burden is on the other team to show enough evidence to reject
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Ho. Now, imagine that their running back makes a touchdown by pushing the
ball just barely over the goal line, so close that his team needs to have a ref-
eree review the film before calling it a touchdown. This situation is equivalent
to rejecting Ho with a p-value just below your prespecified value of o = 0.05.
In this case, the p-value is close to the borderline, say 0.045. But, if their team
makes a touchdown by catching a pass deep in the end zone, no one has

any doubt about the result because the ball was obviously past the goal line,
which is equivalent to the p-value being very small, say something like 0.001.
The opposing team’s showing a lot of evidence against Ho (and your team
could be in a lot of trouble).

Deconstructing Type 1 and Type 1 errors

Any technique you use in statistics to make a conclusion about a population
based on a sample of data has the chance of making an error. The errors [ am
talking about, Type I and Type Il errors, are due to random chance.

For example, you could flip a fair coin ten times and get all heads, making you
think that the coin isn’t fair at all. This thinking would result in an error,
because the coin actually was fair, but the data just wasn’t confirming that
due to chance. On the other hand, another coin may be unfair, and, just by
chance, you flip it ten times and get exactly five heads, which makes you
think that particular coin is equally balanced and doesn’t present any prob-
lem. (This tells you strange things can happen, especially when the sample
size is small.)

The way you set up your test can help to reduce these kinds of errors, but
they are always out there. As a data analyst, you need to know how to mea-
sure and understand the impact of the errors that can occur with a hypothe-
sis test and what you can do to possibly make those errors smaller. In the
following sections, [ show you how you can do just that.

Making false alarms with Type I errors

A Type I error represents the situation where the coin was actually fair (using
the example from the preceding section), but your data led you to conclude
that it wasn’t, just by chance. I think of a Type I error as a false alarm: You
blew the whistle when you shouldn’t have.

To include a definition that makes all those stat experts happy, a Type I error
is the conditional probability of rejecting Ho, given that Ho is true.

The chance of making a Type I error is equal to o, which is predetermined
before you begin collecting your data. This o is the same o that represents
the chance of missing the boat in a confidence interval. It makes some sense
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that these two probabilities are both equal, because the probability of reject-
ing Ho when you shouldn’t (Type I error) is the same as the chance that

the true population parameter falls out of the range of likely values when it
shouldn’t. That chance is o.

Say someone claims that the mean time to deliver packages for a company is
3.0 days on average (so Ho is u = 3.0), but you believe it’s not equal to that (so
Ha is p # 3.0). Your alpha level is 0.05, and because you have a two-sided test,
this means you have 0.025 on each side. Your sample of 100 packages has a
mean of 3.5 days with a standard deviation of 1.5 days. You find the test
statistic ¢, ,= d S“” = 3'51_53'0

/oo oo
1.96 (the value on the last row and the 0.025 column of the #distribution,
Table A-1 in the Appendix). So you don’t think 3.0 is a likely value for the mean
time of delivery, over all possible packages, and you reject Ho. Your data led
you to that decision and you stick to it.

, which equals 3.33. This value falls beyond

But suppose your sample just by chance contained some longer than normal
delivery times, and that in reality, the company’s claim is right. You just made
a Type I error. You made a false alarm about the company’s claim.

To reduce the chance of a Type I error, reduce your value of o. However I
wouldn’t recommend reducing o too far. On the positive side, this reduction
makes it harder to reject Ho, because you need more evidence in your data to
do so. On the negative side, by reducing your chance of a Type I error, you
increase the chance of another type of error — the Type Il error. To tackle
Type Il errors, keep reading!

Missing an opportunity with a Type 11 ervor

A Type Il error represents the situation where (continuing with the coin
example) the coin was actually unfair, but your data didn’t have enough evi-
dence to catch it, just by chance. You can think of a Type Il error as a missed
opportunity — you didn’t blow the whistle when you should have. In statisti-
cal terms, a Type Il error is the conditional probability of not rejecting Ho,
given that Ho is false. I call it a missed opportunity, because you were sup-
posed to be able to find a problem with Ho and reject it, but you didn’t.

The chance of making a Type Il error depends on a couple of things:

v Sample size: If you have more data, you're less likely to miss something
that’s going on. For example, if a coin actually is unfair (and you don’t
know it), flipping the coin only ten times may not reveal the problem,
because results can go all over the place when the sample size is small.
But if you flip the coin 1,000 times, you have a good chance of seeing a
pattern that favors heads over tails or vice versa.

01
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v Actual value of the parameter: A Type Il error is also related to how big
the problem is that you're trying to uncover. For example, suppose a com-
pany claims that the average delivery time for packages is 3.5 days. If the
actual average delivery time is 5 days, you won’t have a very hard time
detecting that with your sample (even a small sample). Evidence will
mount up fast for rejecting Ho, which is exactly what you’re supposed to
do in this situation. But if the actual average delivery time is 4.0 days, you
have to do more work to actually detect the problem. Note that you never
do know the actual value of a parameter, but you want to protect yourself
against the different possibilities, which is why you consider them.

To reduce the chance of a Type Il error, take a larger sample size. A greater
sample size makes it easier to reject Ho, but increases the chance of a Type |
error. Type I and Type Il errors sit on opposite ends of a seesaw — as one
goes up, the other goes down. To try to meet in the middle, choose a large
sample size (the bigger, the better; see Figures 3-1 and 3-2) and a small o level
(0.05 or less) for your hypothesis test.

Getting empowered by the
power of a hypothesis test

Type Il errors (see preceding section) show the downside of a hypothesis
test. Statisticians, despite what many may think, actually try to look on the
bright side once in a while, and this case is one of those times. Instead of
looking at the chance of missing a difference from Ho that actually is there,
you can look at the chance of defecting a difference that really is there. This
detection is called the power of a hypothesis test.

The power of a hypothesis test is one minus the probability of making a
Type Il error. So power is a number between 0 and 1 that represents the
chance that you rejected Ho when Ho was false. (You can even sing about it
“If Ho is false and you know it, clap your hands. . ..”) Remember that power
(just like Type II errors) depends on two elements: the sample size and the
actual value of the parameter (see the preceding section for a description of
these elements).

In the following sections, you discover what power means in statistics (not
being one of the big wigs, mind you); you also find out how to quantify power
by using a power curve.
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Figure 3-1:
Power

curve for
Ho:nu=0
versus Ha:
u>0,for
n=10and
o=2
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OQuantifying power with a power curve

The specific calculations for the power of a hypothesis test are beyond the
scope of this book (so, take that sigh of relief), but computer programs and
graphs are available online to show you what the power is for different hypoth-
esis tests and various sample sizes (just type “power curve for the [blah blah
blah] test” into an Internet search engine). These graphs are called power
curves for a hypothesis test. A power curve is a special kind of graph. It gives
you an idea of how much of a difference from Ho you can detect with the
sample size that you have. Because the precision of your test statistic
increases as your sample size increases, sample size is directly related to
power. But it also depends on how much of a difference from Ho you’re trying
to detect. For example, if a package delivery company claims that its pack-
ages arrive in 2 days or less, do you want to blow the whistle if it’s actually
2.1 days? Or wait until it’s 3 days? You need a much larger sample size to
detect the 2.1-days situation versus the 3-days situation just because of the
precision level needed.

In Figure 3-1, you can see the power curve for a particular test of Ho: u =0
versus Ha: 1 > 0. You can assume that ¢ (the standard deviation of the popu-
lation) is equal to two (I give you this value in each problem) and doesn’t
change. I set the sample size at ten throughout.

The horizontal (x) axis on the power curve shows a range of actual values of
u. For example, you hypothesize that | is equal to 0, but it may actually be
0.5, 1.0, 2.0, 3.0, or any other possible value. If 1 equals 0, then Ho is true, and
the chance of detecting this (rejecting Ho) is equal to 0.05, the set value of c.
You work from that baseline. So, on the graph in Figure 3-1, when x = 0, you
get a y-value of 0.05.

Power
(n=10)

=] f f f f f f
0.5 1.0 1.5 20 25 3.0
Actual Value of the Parameter
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Suppose that p is actually 0.5, not 0, as you hypothesized. A computer tells
you that the chance of rejecting Ho (what you’re supposed to do here) is
0.197 = 0.20, which is the power. So, you have about a 20 percent chance of
detecting this difference with a sample size of ten. As you move to the right,
away from zero on the horizontal (x) axis, you can see that the power goes
up, and the y-values get closer and closer to 1.0.

For example, if the actual value of p is 1.0, the difference from 0 is easier to
detect than if it’s 0.50. In fact, the power at 1.0 is equal to 0.475 = 0.48, so you
have almost a 50 percent chance of catching the difference from Ho in this
case. And as the values of the mean increase, the power gets closer and
closer to 1.0. Power never reaches 1.0, because statistics can never prove
anything with 100 percent accuracy. But you can get close to 1.0 if the actual
value is far enough from your hypothesis.

Controlling the sample size

You don’t have any control over what the actual value of the parameter is,
though, because that number is unknown. So what do you have control over?
The sample size. As the sample size increases, it becomes easier to detect a
real difference from Ho.

Figure 3-2 shows the power curve with the same numbers as Figure 3-1,
except for the sample size (n), which is 100 instead of 10. Notice that the
curve increases much more quickly and approaches 1.0 when the actual
mean is 1.0, compared to your hypothesis of 0. You want to see this kind of
curve — one that moves up quickly toward the value of 1.0, while the actual
values of the parameter increase on the x-axis.

Power
(n=100)

| |

T T T T
05 1.0 1.5 20 25 30
Actual Value of the Parameter
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If you compare the power of your test when p is 1.0 for the n = 10 situation (in
Figure 3-1) versus the n = 100 situation (in Figure 3-2), you see that the power
increases from 0.475 to more than 0.999. Table 3-1 shows the different values
of power for the n = 10 case versus the n = 100 case, when you test Ho: = 0
versus Ha: 1 > 0, assuming a value of ¢ = 2.

Table 3-1 Comparing the Values of Power
for n=10 versus n=100 (Ho is p=0)

Actual Value of p Power when n =10 Power when n = 100
0.00 0.050 = 0.05 0.050 = 0.05

0.50 0.197 =0.20 0.804 =0.81

1.00 0.475=0.48 approx. 1.0

1.50 0.766 = 0.77 approx. 1.0

2.00 0.935=0.94 approx. 1.0

3.00 0.999 = approx. 1.0 approx. 1.0

You can find power curves for a variety of hypothesis tests under many dif-
ferent scenarios. Each has the same general look and feel to it: starting at the
value of o when Ho is true, increasing in an S-shape as you move from left to
right on the x-axis, and finally approaching the value of 1.0 at some point.
Power curves with large sample sizes approach 1.0 faster than power curves
with low sample sizes.

You can have too much power. For example, if you make the power curve for
n = 10,000 and compare it to Figures 3-1 and 3-2, you can find that it’s practi-
cally at 1.0 already for any number other than 0.0 for the mean. In other
words, the actual mean could be 0.05 and with your hypothesis Ho: u = 0.00,
you would reject Ho, because of the huge sample size you've got. If you zoom
in enough, you can always detect something, even if that something makes no
practical difference. If the sample size is incredibly large, it can inflate power
to the point where you can detect differences from Ho that are smaller than
you really want, from a practical standpoint. Beware of surveys and experi-
ments that have what appears to be an excessive sample size — for example,
in the tens of thousands. They may be reporting “statistically significant”
results that don’t mean diddly.
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Power in manufacturing

The power of a test plays a role in the manufac-
turing process. Manufacturers often have very
strict specifications regarding the size, weight,
and/or quality of their products. During the man-
ufacturing process, manufacturers want to be
able to detect deviations from these specifica-
tions, even small ones, so they must think about
how much of a difference from Ho they want
to detect, and then figure out the sample size
they need in order to detect that difference
when it appears. For example, if the candy bar is
supposed to weight 2.0 ounces, the manufac-
turer may want to blow the whistle if the actual

average weight shifts to, say, 2.5 ounces.
Statisticians can work backwards in calculat-
ing the power and find the sample size they
need to know to stop the process.

Medical scientists also think about power when
they set up their studies (called clinical trials).
Suppose they're checking to see whether an
antidepressant adversely affects blood pressure
(as a side effect of taking the drug). Scientists
need to be able to detect small differences in
blood pressure, because for some patients, any
change in blood pressure is important to note.
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In this part . . .

ou really get into the modeling process, using various

pieces of known info to predict one elusive variable.
(Sounds sneaky? In a way, it is . . .) This part goes way
beyond using one variable to predict another, beyond
simple linear regression to multiple, nonlinear, and
even logistic regression. These methods can solve more
complex problems, so they lend themselves to many real-
world applications.




Chapter 4

Getting in Line with
Simple Linear Regression

In This Chapter

Using scatterplots and correlation coefficients to examine relationships

Building a simple linear regression model to estimate y from x
Testing how well the model fits

Interpreting the results and making good predictions

Looking for relationships and making predictions is one of the staples of
data analysis. Everyone wants to answer questions like “Can I predict

how many units I'll sell if I spend x amount of advertising dollars?”; or “Does
drinking more diet cola really relate to more weight gain?”; or “Do children’s
backpacks seem to be getting heavier each year in school, or is it just me?”

Linear regression tries to find relationships between two or more variables
and comes up with a model that tries to describe that relationship, much like
the way the line y = 2x + 3 explains the relationship between x and y. But
unlike math where functions like y = 2x + 3 tell the entire story about the two
variables, in statistics, things don’t come out that perfectly; some variability
and error is involved (that’s what makes it fun!).

This chapter is partly a review of the concepts of simple linear regression
presented in an intro stats book. But the fun doesn’t stop there. [ expand on
the ideas you learned about regression in your intro stat course and set you
up for some of the other types of regression models you see in Chapters 5
through 8.

In this chapter, you see how to build a simple linear regression model that
examines the relationship between two variables. You also see how simple
linear regression works from a model-building standpoint.
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Exploving Relationships with
Scatterplots and Correlations

Before looking ahead to predicting a value of y by using a value of x, you

need to first establish that you have a legitimate reason to do so by using a
straight line, and you also need to feel confident that using a line to make that
prediction will actually work well. In order to achieve both of these important
steps, you need to first plot the data in a pairwise fashion so you can visually
look for a relationship; then you need to somehow quantify that relationship
in terms of how well those points follow a line. In this section, you do just
that, using scatterplots and correlations.

Here’s a perfect example of a situation where simple linear regression is useful:
In 2004, the California State Board of Education wrote a report entitled “Text-
book Weight in California: Analysis and Recommendations.” In this report, they
discussed the great concern over the weight of the textbooks in student’s back-
packs, and the problems it presents for students. They conducted a study
where they weighed a variety of textbooks from each of four core areas studied
in grades 1 through 12 (reading, math, science, and history — where’s statis-
tics?) over a range of textbook brands and found the average total weight for
all four books for each grade.

The California Board of Education consulted pediatricians and chiropractors,
who recommended that the weight of a student’s backpack should not
exceed 15 percent of his body weight. From there, the Board hypothesized
that the total weight of the textbooks in these four areas increases for each
grade level and wanted to see whether they could find a relationship between
the average child’s weight in each grade and the weight of his books. So along
with the average weight of the four core-area textbooks for each grade, they
also recorded the average weight for the students in that grade. Their results
are shown in Table 4-1.

Table 4-1 Average Textbook Weight and Student Weight
(Grades 1-12)

Grade Average Student Wk. (Ibs.) Average Texthook W (Ibs.)
1 48.50 8.00

2 54.50 9.44

3 61.25 10.08

4 69.00 11.81

5 7450 12.28
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Grade Average Student Wt. (Ibs.) Average Texthook Wt. (Ibs.)
6 85.00 13.61
7 89.00 15.13
8 99.00 15.47
9 112.00 17.36
10 123.00 18.07
" 134.00 20.79
12 142.00 16.06

In this section, you begin exploring whether or not a relationship exists
between these two quantitative variables. You start by displaying the pairs of
data using a two-dimensional scatterplot to look for a possible pattern, and
you quantify the strength and direction of that pattern using the correlation
coefficient.

Data analysts should never make any conclusions about a relationship
between x and y based solely on either the correlation or the scatterplot
alone; the two elements need to be examined together. It is possible (but of
course not a good idea) to manipulate graphs to look better or worse than
they really are just by changing the scales on the axes. Because of this, statis-
ticians never go with the scatterplot alone to determine whether or not a
linear relationship exists between x and y. A correlation without a scatterplot
is dangerous too, because the relationship between x and y may be very
strong, but just not linear.

Using scatterplots to explore relationships

In order to explore a possible relationship between two variables, such as
textbook weight and student weight, you first plot the data in a special graph
called a scatterplot. A scatterplot is a two-dimensional graph that displays
pairs of data, one pair per observation in the (x, y) format. Figure 4-1 shows
a scatterplot of the textbook weight data from Table 4-1.

You can see that the relationship appears to follow the straight line that’s
included on the graph, except possibly for the last point, where textbook
weight is 16.06 pounds and student weight is 142 pounds (for grade 12). This
point appears to be an outlier — it’s the only point that doesn’t fall into the

/1
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Figure 4-1:
Scatterplot
of average
student
weight
versus
average
textbook
weightin
grades 1-12.

pattern. So overall, an uphill, or positive linear relationship appears to exist
between textbook weight and student weight; as student weight increases, so
does textbook weight.

Average Textbook Wt. (Ibs.)

50 60 70 8 9 100 110 120 130 140
Average Student Wt. (lbs.)

To make a scatterplot in Minitab, enter the data in columns one and two of
the spreadsheet. Go to Graphs>Scatterplot. Click Simple and then OK. High-
light the response variable () in the left-hand box, and click Select. This vari-
able shows up as the y variable in the scatterplot. Click on the explanatory
(x) variable in the left-hand box and click Select. It shows up in the x variable
box. Click OK, and you get the scatterplot.

Collating the information by using
the correlation coefficient

After you've displayed the data using a scatterplot (see preceding section), the
next step is to find a statistic that quantifies the relationship somehow. The
correlation coefficient (also known as Pearson’s correlation coefficient) mea-
sures the strength and direction of the linear relationship between two quan-
titative variables x and y. It’s a number between -1 and +1 that’s unit-free;
that means if you change from pounds to ounces, the correlation coefficient
doesn’t change. (What a messed-up world it would be if this wasn’t the case!)

Statistical software packages, such as Minitab, refer to the correlation coeffi-
cient as Pearson’s correlation coefficient. (Don’t worry — they’re the same!)
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If the relationship between x and y is uphill, or positive (as x increases so
does y), the correlation is a positive number. If the relationship is downhill, or
negative (as x increases, y gets smaller), then the correlation is negative. If
the correlation is zero, you can find no linear relationship between x and y.

(It may be that a different relationship exists, such as a curve; see Chapter 7
for more on this.)

If the value of the correlation is +1 or -1, this value indicates that the points
fall in a perfect, straight line. If the correlation is close to +1 or -1, this corre-
lation value signifies a strong relationship. If the correlation is closer to +0.5
or —0.5, these values show a moderate relationship. A value close to 0 signi-
fies a weak relationship or no linear relationship at all.

You can calculate the correlation coefficient by using a formula involving the
standard deviation of x, the standard deviation of y, and the covariance of x
and y, which measures how x and y move together, in relation to their means.
However, the formula isn’t the focus here (you can find it in your intro stats
text or in my other book Statistics For Dummies [Wiley])); it’s the concept
that’s important. Any computer package can calculate the correlation coeffi-
cient for you with a simple click of the mouse.

To have Minitab calculate a correlation for you, go to Stat>Basic Statistics>
Correlation. Highlight the variables you want correlations for and click Select.
Then click on OK.

The correlation for the textbook weight example is (can you guess before
looking at it?) 0.926, which is very close to 1.0. This correlation means that a
very strong linear relationship is present between average textbook weight
and average student weight for grades 1 through 12, and that relationship is
positive and linear (follows a straight line). This correlation is confirmed by
the scatterplot shown in Figure 4-1.

Building a Simple Linear
Regression Model

After you have a handle on which x variables may be related to y in a linear
way, you go about the business of finding that straight line that best fits the
data. You find the slope and y-intercept, put them together to make a line,
and you use the equation of that line to make predictions for y. All of this is
part of building a simple linear regression model.

In this section, you set the foundation for regression models in general
(including those you can find in Chapters 5 through 8). You plot the data,
come up with a model that you think makes sense, assess how well it fits,
and use it to guesstimate the value of y given another variable, x.
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Finding the best-fitting line
to model your data

After you've established that x and y have a strong linear relationship, as evi-
denced by both the scatterplot and the correlation coefficient (see the previ-
ous sections), you're ready to build a model that estimates y using x. In the
textbook-weight case, you want to estimate average textbook weight using
average student weight.

The most basic of all the regression models is the simple linear regression
model that comes in the general form of y = a + bx. Here a represents the y-
intercept of the line; b represents the slope.

A straight line that’s used in simple linear regression is just one of an entire
family of models (or functions) that statisticians use to express relationships
between variables. A model is just a general name for a function that you can
use to estimate or guess what outcome will occur if you have some given
information about related items.

To find the right model for your data, the idea is to scour all possible lines and
choose the one that fits the data best. Thankfully, you have an algorithm that
does this for you (computers use it in their calculations). Formulas also exist
for finding the slope and y-intercept of the best-fitting line by hand. (You can
find those formulas in your intro stats text or in Statistics For Dummies [Wiley].)

To run a linear regression analysis in Minitab, go to Stat>Regression>
Regression. Highlight the response (y) variable in the left-hand box, and click
on Select. The variable shows up in the Response Variable box. Then high-
light your explanatory (x) variable, and click on Select. This variable shows
up in the Predictor Variable box. Click OK.

The equation of the line that best describes the relationship between average
textbook weight and average student weight is: y = 3.69 + 0.113x, where x is
the average student weight for that grade, and y is the average textbook
weight. Figure 4-2 shows the Minitab output of this analysis.

The regression equation is
textbook wt = 3.69 + 0.113 student wt

Predictor Coef SE Coef T P
Constant 3.694 1.395 2.65 0.024
student wt 0.11337 0.01456 7.78 0.000

S = 1.51341 R-Sq = 85.8% R-Sq(adj) = 84.4%
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By writing y = 3.69 + 0.113x, you mean that this equation represents your
estimated value of y, given the value of x that you observe with your data.
Statisticians write this equation by using a carrot (or hat as statisticians call
it), like ¥, so everyone can know it’s an estimate, not the actual value of y.
This y-hat is your estimate of the average value of y over the long term, based
on the observed values of x. However, in many intro stats texts, the hat is left
off because statisticians have an unwritten understanding as to what y repre-
sents. This issue comes up again in Chapters 5 through 8. (By the way, if you
think y-hat is a funny term here, it’s even funnier in Mexico, where statisti-
cians call it y-sombrero — no kidding!)

The y-intercept of the regression line

Selected parts of that Minitab output shown in Figure 4-2 are of importance to
you at this point. First, you can see that under the column “Coef” you have
the numerical values on the right side of the equation of the line — in other
words, the slope and y-intercept. The number 3.69 represents the coefficient
of “Constant,” which is a fancy way of saying that’s the y-intercept (because
the y-intercept is just a constant, it never changes). The y-intercept is the
point where the line crosses the y-axis, in other words, the value of y when

X equals 0.

The y-intercept of a regression line may or may not have a practical meaning
depending on the situation. To determine whether the y-intercept of a regres-
sion line has practical meaning, look at the following:

v Does the y-intercept fall within the actual values in the data set? If yes,
then it has practical meaning.

v Does the y-intercept fall into negative territory where negative y-values
aren’t possible? For example if the y-values, are weights, they can’t be
negative. Then the y-intercept has no practical meaning. It is still correct
though, because it just happens to be the place where the line, if
extended to the y-axis, crosses the y-axis.

v Does the value x = 0 have practical meaning? For example, if x is temper-
ature at a football game in Green Bay, then x = 0 is a value that’s relevant
to examine. If x = 0 has practical meaning, then the y-intercept would
also because it represents the value of y when x = 0. If not, for example,
when x represents height of a toddler, then the y-intercept has no practi-
cal meaning.

In the textbook example, the y-intercept doesn’t really have a practical mean-
ing because students don’t weigh zero pounds, so you don’t really care what
the estimated textbook weight is for that situation. But you do need to find a
line that fits the data you do have (where average student weights go from
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48.5 pounds to 142 pounds). That best-fitting line must include a y-intercept,
and for this problem, that y-intercept happens to be 3.69.

The slope of the regression line

The value 0.113 from Figure 4-2 indicates the coefficient (or number in front of)
of the student-weight variable. This number is also known as the slope. It repre-
sents the change in y (textbook weight) due to a one-unit increase in x (student
weight). As student weight increases by one pound, textbook weight increases

by about 0.113 pounds, on average. To make this relationship more meaningful,
you can multiply both quantities by ten to say that as student weight increases
by 10 pounds, the textbook weight goes up by about 1.13 pounds on average.

Whenever you get a number for the slope, just take that number and put it over
1. Doing this can help you get started on a proper interpretation of slope. For
example, a slope of 0.113 is rewritten as *"%. Using the idea that slope equals rise
over run, or change in y over change in x, you can interpret the value of 0.113 in
the following way: As x increases by one pound, y increases by 0.113 pounds.

Making estimates by using
the regression line

Now that you have a line that estimates y given X, you can use it to estimate
the (average) value of y for a given value of x. The basic idea is to take a rea-
sonable value of x, plug it in to the equation of the regression line, and see
what the value of y gives you.

In the textbook-weight example, the best-fitting line (or model) is the line y =
3.69 + 0.113x. For an average student that weighs 60 pounds, for example, the
estimated average textbook weight is 3.69 + 0.113 * 60 = 10.47 pounds (those
poor little kids!). If the average student weighs 100 pounds, the estimated aver-
age textbook weight is 3.69 + 0.113 » 100 = 14.99, or nearly 15 pounds.

Checking the Model’s Fit (The Data,
Not the Clothes!)

After you've established a relationship between x and y and have come up
with an equation of a line that represents that relationship, you may think
your job is done. (Many researchers erringly stop here, so 'm depending on
you to break the cycle on this!) But the most-important job remains to be
completed: checking to be sure that the conditions of the model are truly met
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and that the model fits well in more specific ways than the scatterplot and
correlation measure. This section presents methods for defining and assess-
ing the fit of a simple linear regression model.

Defining the conditions

Two major conditions must be met before you apply a simple linear regres-
sion model to a data set:

v The y’s have to have a normal distribution for each value of x.

v The y’s have to have a constant amount of spread (standard deviation)
for each value of x.

In the following sections, you look at these important conditions in depth.

Normal y’s for every x

For any value of x, the population of possible y-values must have a normal
distribution. The mean of this distribution is the value for y that is on the
best-fitting line for that x-value. That is, some of your data falls above the
best-fitting line, some data falls below the best fitting line, and a few may
actually land right on the line.

If the regression model is fitting well, the data values should be scattered
around the best-fitting line in such a way that about 68 percent of the values
lie within one standard deviation of the line, about 95 percent of the values
should lie within two standard deviations of the line, and about 99.7 percent
of the values should lie within three standard deviations of the line. This
specification, as you may recall from your intro stats course, is called the
68-95-99.7 rule, and it applies to all bell-shaped data (for which the normal
distribution applies).

You can see in Figure 4-3 how for each x-value, the y-values you may observe
tend to be located near the best-fitting line in greater numbers, and as you
move away from the line, you see fewer and fewer y-values, both above and
below the line. More than that, they’re scattered around the line in a way that
reflects a bell-shaped curve, the normal distribution.

Why does this condition makes sense? The data you collect on y for any partic-
ular x-value varies from individual to individual (for example, not all students’
textbooks weigh the same, even for students who weigh the exact same
amount). But those values aren’t allowed to vary any way they want to. To fit
the conditions of a linear regression model, for each given value of x, the data
should be scattered around the line according to a normal distribution. Most of
the points should be close to the line, and as you get farther and farther from
the line, you can expect fewer and fewer data points to occur. So condition
number one is that the data have a normal distribution for each value of x.

/7
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Same spread for every x

The second condition for being able to use the simple linear regression model
is the following: As you move from left to right on the x-axis, the spread in the
y-values around the line should be the same, no matter which value of x you're
looking at. This requirement is called the homoscedasticity condition. (How they
came up with that mouthful of a word just for describing the fact that the stan-
dard deviations stay the same across the x-values, I'll never know.) This condi-
tion ensures that the best-fitting line works well for all relevant values of x, not
just in certain areas where the y-values lie close to each other.

You can see in Figure 4-3 that no matter what the value of x is, the spread in
the y-values stays the same throughout. If the spread got bigger and bigger as
x got larger and larger, for example, the line would lose its ability to fit well
for those large values of x.

In the next sections, you can find out how to check the two conditions for
simple linear regression, so keep reading.

Finding and exploring the residuals

To check to see whether the y-values come from a normal distribution, you
need to measure how far off your predictions were from the actual data that
came in, and you need to check those errors and see how they stack up.

In the following sections, you center on finding a way to measure these errors
that the model makes. You also explore the errors to identify particular prob-
lems that occurred in the process of trying to fit a straight line to the data. In
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other words, you can discover that looking at errors helps you assess the fit of
the model and diagnose problems that caused a bad fit, if that was the case.

Finding the residuals

A residual is the difference between the observed value of y (from the best-
fitting line) and the predicted value of y (from the data set). Specifically, for
any data point, you take its observed y-value (from the data) and subtract the
expected y-value (from the line). If the residual is large, the line doesn’t fit
well in that spot. If the residual is small, the line fits well in that spot.

For example, suppose you have a point in your data set (2, 4) and the equa-
tion of the best-fitting line is y = 2x +1. The expected value of y in this case

is 2 * 2 + 1 = 5. The observed value of y from the data set is 4. Taking the
observed value minus the estimated value you get 4 — 5 = -1. The residual for
that particular data point (2, 4) is -1. If you observe a y-value of 6 and use the
same straight line to estimate y, then the residual would be 6 -5 = +1.

In general, a positive residual means you underestimated y at that point, and
a negative residual means you overestimated y at that point.

Standardizing the residuals

To make interpreting the residuals easier, statisticians typically standardize
them; that is, subtract the mean of the residuals (zero) and divide by the stan-
dard deviation of all the residuals. The residuals are a data set just like any
other data set, so you can find their mean and standard deviation like you
always do. Standardizing just means converting to a Z-score, so you see where
it falls on the standard normal distribution.

Making residual plots

You can plot the residuals on a graph called a residual plot. (If you’ve stan-
dardized the residuals, you call it a standardized residual plot.) Figure 4-4
shows Minitab output for a variety of standardized residual plots, all getting
at the same idea: checking to be sure the conditions of the simple linear
regression model are met.

Checking normality

If the condition of normality is met, you can see on the residual plot lots of
(standardized) residuals close to zero; as you move farther and farther away
from zero, you can see fewer and fewer residuals. Note: A standardized resid-
ual at or beyond +3 or -3 is something you shouldn’t expect to see. If this
occurs, you can consider that point an outlier, which warrants further investi-
gation. (For more on outliers, see the section “Scoping for outliers.”)

The residuals should also occur at random — some above the line, some below
the line. If a pattern occurs in the residuals, the line may not be fitting right.

79
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The plots in Figure 4-4 seem to have an issue with the very last observation,
the one for twelfth graders. In this observation, the average student weight
(142) seemed to follow the pattern of increasing with each grade level, but
the textbook weight (16.06) was less than for eleventh graders (20.79) and is
the first point to break the pattern.

You can also see in the plot in the upper-right corner of Figure 4-4 that the
very last data value has a residual that sticks out from the others and has a
value of -3.0 (something that should be a very rare occurrence). So the value
you expected for y based on your line was off by a factor of 3 standard devia-
tions. And because this residual is negative, what you observed for y was
much lower than you may have expected it to be using the regression line.

The other residuals seem to fall in line with a normal distribution, as you can
see in the upper-right plot of Figure 4-4. The residuals concentrate around zero,
with fewer appearing as you move farther away from zero. You can also see
this pattern in the upper-left plot of Figure 4-4, which shows how close to
normal the residuals are. The line in this graph represents the equal-to-normal
line. If the residuals follow close to the line, then normality is okay. If not, you
have problems (in a statistical sense, of course). You can see the residual with
the highest magnitude is -3, and that number falls outside the line quite a bit.

The lower-left plot in Figure 4-4 makes a histogram of the standardized resid-
uals, and you can see it doesn’t look much like a bell-shaped distribution. It
doesn’t even look symmetric (the same on each side when you cut it down the
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middle). The problem again seems to be the residual of -3, which makes the
histogram be skewed to the left.

The lower-right plot of Figure 4-4 plots the residuals in the order presented in
the data set in Table 4-1. Because the data was ordered already, the lower-
right residual plot looks like the upper-right residual plot in Figure 4-4, except
the dots are connected. This lower-right residual plot makes the residual

of -3 stand out even more.

Checking the spread of the y’s for each x

The graph in the upper-right corner of Figure 4-4 also addresses the
homoscedasticity condition. If the condition is met, then the residuals for
every x-value have about the same spread. If you cut a straight line down
through each x-value, the residuals have about the same spread (standard
deviation) each time, except for the last x-value, which again represents
grade twelve. That means the condition of equal spread in the y-values is met
for the backpack example.

If you look at only one residual plot, choose the one in the upper-right corner
of Figure 4-4, the plot of the fitted values (the values of y on the line) versus
the standardized residuals. Most problems with model fit pop up on that plot
because a residual is defined as the difference between the observed value

of y and the fitted value of y. In a perfect world, all the fitted values have no
residual at all; a large residual (such as the one where the estimated weight is
20 pounds for twelfth graders; see Figure 4-4) is indicated by a point far off
from zero. This graph also shows you deviations from the overall pattern of
the line; for example, if large residuals are on the extremes of this graph (very
low or very high fitted values), that shows the line isn’t fitting in those areas.

Using ¥’ to measure model fit

One important way to assess how well the model fits is to measure the value
of r?, where r is the correlation coefficient. Statisticians measure how well a
model fits by looking at what percentage of the variability in y is explained by
the model.

The y-values of the data you collect have a great deal of variability in and of
themselves. You look for another variable (x) that helps you explain that vari-
ability in the y-values. After you put that x variable into the model, and you
find it’s highly correlated with y, you want to find out how well this model did
at explaining why the values of y are different.

As it turns out, the value of r?, gives you that measure of model fit. Because
squaring a number between 0 and +1 makes the result get smaller (except for
0 and +1), how do you interpret r*? A value of r = +0.9 or -0.9 is quite high;
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note that when you square either one of them, you get 0.81, which you
W should also interpret as being high.

The following are some general guidelines for interpreting the value of r*

v~ If the model containing x explains a lot of the variability in the y-values,
then r is high (in the 80 to 90 percent range is considered to be
extremely high). Values like 0.70 are still considered fairly high. A high
percentage of variability means that the line fits well because there is
not much left to explain about the value of y other than using x and its
relationship to y. So a larger value of r* is a good thing.

v~ If the model containing x doesn’t help much in explaining the difference
in the y-values, then the value of r* is small (closer to zero; say between
0.00 and 0.30 roughly). The model, in this case, would not fit well. You
need another variable to explain y other than the one you already tried.

v~ Values of r? that fall in the middle (between, say, 0.30 and 0.70) mean
that x does help somewhat in explaining y, but it doesn’t do the job well
enough on its own. In this case, statisticians would try to add one or
more variables to the model to help explain y more fully as a group (read
more about this in Chapter 5).

For the textbook weight example, the value of r (the correlation coefficient)
is 0.93. Squaring this result, you get r* = 0.8649. That number means approxi-
mately 86 percent of the variability you find in average textbook weights for
all students (y-values) is explained by the average student weight (x-values).
This percentage tells you that the model of using year in school to estimate
backpack weight is a good bet.

In the case of simple linear regression, you have only one x variable, but in
Chapter 5, you can see models that contain more than one x variable. In this
situation, you use r” to help sort out the contributions each individual vari-
able brings to the model.

Scoping for outliers

Sometimes life isn’t perfect (oh really?), and you may find a residual in your
otherwise tidy data set that totally sticks out, which is called an outlier. That
is, it has a standardized value at or beyond +3 or -3. It threatens to blow the
conditions of your regression model and send you crying to your professor.

Before you panic, the best thing to do is to examine that outlier more closely.
First, can you find an error in that data value? Did someone report her age as
642, for instance? (After all, mistakes do happen.) If you do find a certifiable
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error in your data set, you remove that data point (or fix it if possible) and
analyze the data without it. However, if you can’t explain away the problem
by finding a mistake, you must think of another approach.

If you can’t find a mistake that caused the outlier, you don’t necessarily have
to trash your model; after all, it’s only one data point. What you do is analyze
the data with that data point and analyze the data again without it. Then
report and compare both analyses. This comparison can give you a sense of
how influential that one data point is. [t may lead other researchers to con-
duct more research to zoom in on the issue you brought to the surface.

In Figure 4-1, you can see the scatterplot of the full data set for the textbook
weights example. Figure 4-5 shows the scatterplot for the data set minus the
outlier. The scatterplot fits the data better without the outlier. The correla-
tion increases to 0.993. The value of r? increases to 0.986. The equation for
the regression line for this data set is y = 1.78 + 0.139x.

164
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The slope of the regression line hasn’t changed much by removing the outlier
(compare it to Figure 4-2, where the slope is 0.113). However, the y-intercept
has changed; it’s now 1.78 without the outlier compared to 3.69 with the out-
lier. The slope of the lines are about the same, but the lines cross the y-axis in
different places. It appears that the outlier (the last point in the data set) has
quite an affect on the best-fitting line.

Figure 4-6 shows the residual plots for the regression line for the data set with-
out the outlier. Each of these plots shows a much better fit of the data to the
model compared to Figure 4-4. This result tells you that the data for grade
twelve is influential in this data set, and that outlier needs to be noted and
perhaps explored further. Do students peak out when they’re juniors in high
school? Or do they just decide when they're seniors that it isn’t cool to carry
books around? (A statistician’s job isn’t to wonder why, but to do and analyze.)
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Making Correct Conclusions
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The bottom line of any data analysis is to make the correct conclusions given
your results. When you’re working with a simple linear regression model,
three major errors can be made. In this section, you see those errors and how
to avoid them.

Avoiding slipping into cause-
and-effect mode

In a simple linear regression, you investigate whether x is related to y, and if
you get a strong correlation and a scatterplot that shows a linear trend, then
you find the best-fitting line and use it to estimate the value of y for reason-
able values of x.

There is a fine line, however (no pun intended), that you don’t want to cross
with your interpretation of regression results. Be careful to not interpret
slope in a cause-and-effect mode when you're using the regression line to
estimate the value of y using x. Doing so can result in a leap of faith that can
send you into the frying pan. Unless you have used a controlled experiment
to get the data, you can only assume that the variables are correlated; you
can’t really give a stone-cold guarantee why they are related.
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In the textbook weight example, you estimate the average weight of the stu-
dents’ textbooks by using the students’ average weight, but that doesn’t
mean that increasing a particular child’s weight causes his textbook weight
to increase. For example, because of the strong positive correlation, you do
know that students with lower weights are associated with lower total text-
book weights, and students with higher weights tend to have higher textbook
weights. But you can’t take one particular third-grade student, increase his
weight, and presto — suddenly his textbooks weigh more.

The variable that is underlying the relationship between a child’s weight and
the weight of his backpack is the grade level of the student; as grade level
increases, so does the size of his books. Student grade level drives both stu-
dent weight and textbook weight. In this situation, student grade level is what
statisticians call a confounding variable: it’s a variable that wasn’t included in
the study but is related to both the outcome and the response, and the vari-
able confounds or confuses the issue of what is causing what to happen.

If the collected data was the result of a well-designed experiment that con-
trols for possible confounding variables, you can establish a cause-and-effect
relationship between x and y if they're strongly correlated. Otherwise, you
can’t.

Extrapolation: The ultimate no-no

Plugging values of x into the model that fall outside of the reasonable bound-
aries of x is called extrapolation. And one of my colleagues sums up this idea
very well, “Friends don'’t let friends extrapolate.”

When you determine a best-fitting line for your data, you come up with an
equation that allows you to plug in a value for x and get a predicted value
for y. In algebra, if you found the equation of a line and graphed it, the line
would typically have an arrow on each end indicating it goes on forever in
either direction. But that doesn’t work for statistical problems ('cause statis-
tics represents the real world). What [ mean is that when you're dealing with
real-world units like height, weight, 1Q, GPA, house prices, and the weight of
your statistics textbook, only certain numbers make sense.

So the first point is, don’t plug in values for x that don’t make any sense. For
example, if you're estimating the price of a house (y), using its square footage
(x), you wouldn’t think of plugging in a value of x like 10 square feet or 100
square feet, because houses simply aren’t that small. You also wouldn’t think
about plugging in values like 1,000,000 square feet for x (unless your “house”
is the Ohio State football stadium or the like). It wouldn’t make sense. If
you’re estimating tomorrow’s temperature using today’s temperature, nega-
tive numbers for x could possibly make sense, but if you're estimating the
amount of precipitation tomorrow given the amount of precipitation today,
negative numbers for x (or y for that matter) don’t make sense.
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Second, choose only reasonable values of x for which you try to make esti-
mates about y. That is, look at the values of x for which your data was collected
and stay within those bounds when making predictions. In the textbook weight
example, the smallest average student weight is 48.5 pounds, and the largest
average student weight is 142 pounds. Choosing student weights between 48.5
and 142 to plug in for x in the equation is okay, but choosing values less than
48.5 or above 142 isn’t a good idea. You can’t guarantee that the same linear
relationship (or any linear relationship for that matter) continues outside the
given boundaries.

Think about it: If the relationship you found actually continued for any value
of x, no matter how large, then a 250-pound linebacker from OSU would have
to carry 3.69 + 0.113 * 250 = 31.94 pounds of books around in his backpack.
Of course this would be easy for him, but what about the rest of us?

Knowing the limitations of a simple
linear regression model

A simple linear regression model is just what it says it is: simple. I don’t

mean easy to work with, necessarily, but simple in the uncluttered sense. The
model tries to estimate the value of y by only using one variable, x. However,
the number of real-world situations that can be explained by using a simple,
one-variable linear regression is small. Oftentimes one variable just can’t do
all the predicting.

If one variable alone doesn’t result in a model that fits, add more variables.
Oftentimes it takes many variables to make a good estimate for y. In the
case of stock market prices, they’re still looking for that ultimate prediction
model.

As another example, health insurance companies try to estimate how long
you will live by asking you a series of questions (each of which represents a
variable in the regression model). You can’t find one single variable that esti-
mates how long you'll live; you must consider many factors: your health,
your weight, whether or not you smoke, genetic factors, how much exercise
you do each week, and the list goes on and on and on.

The point is, regression models don’t always use just one variable, x, to esti-
mate y. Some models use two, three, or even more variables to estimate y.
Those models aren’t called simple linear regression models; they're called
multiple linear regression models, because of their employment of multiple
variables to make an estimate. (You can explore multiple linear regression
models in Chapter 5.)



Chapter 5

When Two Variables Are Better
than One: Multiple Regression

In This Chapter

Getting the basic ideas behind a multiple regression model

Finding, interpreting, and testing coefficients
Checking model fit

Fe idea of regression is to build a model that estimates or predicts one
quantitative variable (y) by using at least one other quantitative variable
(x). Simple linear regression uses exactly one x variable to estimate the y
variable. (See Chapter 4 for all the information you need on simple linear
regression.) Multiple linear regression, on the other hand, uses more than
one x variable to estimate the value of y.

In this chapter, you see how multiple regression works and how to apply it to
build a model for y. You see all the steps necessary for the process, including
determining which x variables to include, estimating their contributions to
the model, finding the best model, using the model for estimating y, and
assessing the fit of the model. It may seem like a mountain of information, but
you won'’t regress on the topic of regression if you take this chapter one step
at a time.

The Multiple Regression Model

Before being able to jump right into using the multiple regression model, its
good to get a feel for what it’s all about. In this section, you see the useful-
ness of multiple regression as well as the basic elements of the multiple
regression model. Some of the ideas are just an extension of the simple linear
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regression model (Chapter 4). Some of the concepts are a little more com-
plex, as you may guess because the model is more complex. But the concepts
and the results should make intuitive sense, which is always good news.

Discovering the uses of multiple regression

One situation in which multiple regression is useful is when the y variable is
hard to track down; that is, its value can’t be measured straight up, and you
need more than one other piece of information to help get a handle on what
its value will be. For example, you may want to estimate the price of gold
today. It would be hard to imagine being able to do that with only one other
variable. You may base it on recent gold prices, the price of other commodi-
ties on the market that move with or against gold, and a host of other possi-
ble economic conditions associated with the price of gold.

Another case for using multiple regression is when you want to figure out
what factors play a role in determining the value of y. For example, what
information is important to real estate agents in setting a price for a house
going on the market?

Looking at the general form of
the multiple regression model

The general idea of simple linear regression is to fit the best straight line
through that data that you possibly can and use that line to make estimates
for y based on certain x-values. The equation of the best-fitting line in simple
linear regression is y = b, + b.x;, where b, is the y-intercept and b, is the slope.
(The equation also has the form y = a +bx; see Chapter 4.)

In the multiple regression setting, you have more than one x variable that is
related to y. Call these x variables X, x, . . . X;. In the most basic multiple
regression model, you use some or all of these x variables to estimate y
where each x variable is taken to the first power. This process is called find-
ing the best-fitting linear function for the data. This linear function looks like
the following: y = by + bix; + bax, + . . . + byX;, and you can call it the multiple
(linear) regression model. You use this model to make estimates about y
based on given values of the x variables.

A linear function is an equation whose x terms are taken to the first power
only. For example y = 2x, + 3x, + 24x; is a linear equation using three x vari-
ables. If any of the x terms are squared, the function would be a quadratic
one; if an x term is taken to the third power, the function would be a cubic
function, and so on. In this chapter, [ consider only linear functions.
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Stepping through the analysis

Your job in conducting a multiple regression analysis is to do the following
(the computer can help you do steps three through six):

1. Come up with a list of possible x variables that may be helpful in
estimating y.
2. Collect data on the y variable and your x variables from step one.

3. Check the relationships between each x variable and y (using scatter-
plots and correlations) and use the results to eliminate those x vari-
ables that aren’t strongly related to y.

4. Look at possible relationships between the x variables themselves to
make sure you aren’t being redundant (in statistical terms, you’re
trying to avoid the problem of multicolinearity).

If two x variables relate to y the same way, you don’t need both in the
model.

5. Use those x variables (from step four) in a multiple regression analysis
to find the best-fitting model for your data.

6. Use the best-fitting model (step five) to predict y for given x-values by
plugging those x-values into the model.

[ outline each of these steps in the sections to follow.

Looking at X’s and V'’s
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The first step of a multiple regression analysis comes way before the number
crunching on the computer; it occurs even before the data is collected. Step
one is where you sit down and think about what variables may be useful in pre-
dicting your response variable y. This step will likely take more time than any
other step, except maybe the data-collection process. Deciding which x vari-
ables may be candidates for consideration in your model is a deal-breaking
step, because you can’t go back and collect more data after the analysis

is over.

Always check to be sure that your response variable, y, and at least one of
the x variables are quantitative. For example, if y isn’t quantitative but at
least one X is, a logistic regression model may be in order (see Chapter 8).
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Suppose you're in the marketing department for a major national company
that sells plasma TVs. You want to sell as many TVs as you can, so you want
to figure out which factors play a role in plasma TV sales. In talking with your
advertising people and remembering what you learned in those college
classes on business, you know that one powerful way to get sales is through
advertising. You think of the types of advertising that may be related to sales
of plasma TVs and your team comes up with two ideas:

v TV ads: Of course, how better to sell a TV than through a TV ad?

1 Newspaper sales: Hit '’em on Sunday when they’re watching the game
through squinty eyes that are missing all the good plays and the terrible
calls the referees are making.

By coming up with a list of possible x variables to predict y, you have just
completed step one of a multiple regression analysis, according to the list in
the previous section. Note that all three variables I use in the TV example are
quantitative (the TV ad and newspaper sales variables and the TV sales
response variable), which means you can go ahead and think about a multi-
ple regression model by using the two types of ads to predict TV sales.

Collecting the data

Step two in the multiple regression analysis process is to collect the data for
your x and y variables. To do this, make sure that for each individual in the
data set, you collect all the data for that individual at the same time (including
the y-value and all x-values) and keep the data all together for each individ-
ual, preserving any relationships that may exist between the variables. You
must then enter the data into a table format by using Minitab or any other
software package (each column represents a variable and each row repre-
sents all the data from a single individual) to get a glimpse of the data and to
organize it for later analyses.

To continue with the TV sales example from the preceding section, say that
you start thinking about all the reams of data you have available to you
regarding the plasma TV industry. You remember you’ve worked with the
advertising department before to do a media blitz by using, among other
things, TV and newspaper ads. So you have data on these variables from a
variety of store locations. You take a sample of 22 store locations in different
parts of the country and put together the data on how much money was
spent on each type of advertising, along with the plasma TV sales for that
location. You can see the data in Table 5-1.
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Table 5-1 Advertising Dollars and Sales of Plasma TVs
Location  Sales ($ mil) TV Ads ($1,000) Newspaper Ads ($1,000)
1 9.73 0 20
2 11.19 0 20
3 8.75 5 5
4 6.25 5 5
5 9.10 10 10
6 9.7 10 10
7 9.31 15 15
8 1.77 15 15
9 8.82 20 5
10 9.82 20 5
1 16.28 25 25
12 15.77 25 25
13 10.44 30 0
14 9.14 30 0
15 13.29 35 5
16 13.30 35 5
17 14.05 40 10
18 14.36 40 10
19 15.21 45 15
20 17.41 45 15
21 18.66 50 20
2 17.17 50 20

The question is, can the amount of money spent on these two forms of adver-
tising do a good job of estimating sales (in other words, are the ads worth the
money)? And if so, do you need to include spending for both types of ads to
estimate sales, or is one of them enough? Looking at the numbers in Table 5-1,
you can see that higher sales may be related at least to higher amounts spent
on TV advertising; the situation with newspaper advertising may not be so
clear. So will the final multiple regression model contain both x variables or
only one? In the following sections, you can find out.
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Pinpointing Possible Relationships

|
Figure 5-1:
Scatterplots
of TV and
newspaper
ad spending
versus
plasma TV
sales.
|

The third step in doing a multiple regression analysis (see the list in the
“Stepping through the analysis” section) is to find out which (if any) of your
possible x variables are actually related to y. If an x variable has no relationship
with y, including it in the model is pointless. Data analysts use a combination
of scatterplots and correlations to examine relationships between pairs of vari-
ables (as you can see in Chapter 4). While these two techniques can be viewed
under the heading of looking for relationships, [ walk you through each one
separately in the following sections to discuss their nuances.

Making scatterplots

You make scatterplots in multiple linear regression to get a handle on whether
your possible x variables are even related to the y variable you’re studying. To
investigate these possible relationships, you make one scatterplot of each x
variable with the response variable y. If you have k different x variables being
considered for the final model, you make k& different scatterplots.

To make a scatterplot in Minitab, enter your data in columns, where each
column represents a variable and each row represents all the data from one
individual. Go to Graph>Scatterplots>Simple. Select your y variable on the
left-hand side and click Select. That variable appears in the y-variable box on
the right-hand side. Then select your x variable on the left-hand side and
click Select. That variable appears in the x-variable box on the right-hand
side. Click OK.

Scatterplots of TV ad spending versus TV sales and newspaper spending
versus TV sales are shown in Figure 5-1.
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|
Figure 5-2:
Correlation
values and
p-values for
the TV sales
example.
|

You can see from Figure 5-1a that TV spending does appear to have a fairly
strong linear relationship with sales. This observation gives evidence that TV
ad spending may be useful in estimating plasma TV sales. Figure 5-1b shows a
linear relationship between newspaper ad spending and sales, but the rela-
tionship isn’t as strong as the one between TV ads and sales. However it may
be somewhat helpful in estimating sales.

Correlations: Examining the bond

The second portion of step three involves calculating and examining the cor-
relations between the x variables and the y variable. (Of course, if a scatter-
plot of an x variable and the y variable fails to come up with a pattern, then
you drop that x variable altogether and don’t proceed to find the correlation.)

Whenever you employ scatterplots to explore possible linear relationships,
correlations are typically not far behind. The correlation coefficient is a
number that measures the strength and direction of the linear relationship
between two variables, x and y. (See Chapter 4 for all the information you
need on correlation.) This process involves two parts:

v Finding and interpreting the correlations

v Testing the correlations to see which ones are statistically significant
(thereby determining which x variables are significantly related to y)

[ explain these two steps in the following sections.

Finding and interpreting correlations

You can calculate a set of all possible correlations between all pairs of vari-
ables in Minitab. This set of all possible correlations between all pairs of vari-
ables in a given set is called a correlation matrix. You can see the correlation
matrix output for the TV data from Table 5-1 in Figure 5-2. You can see the
correlations between the y variable (sales) and each x variable (TV = TV ads;
and Newspaper = newspaper ads). You also get the correlation between TV
ads and newspaper ads.

Correlations: Sales, TV, Newspaper

Sales TV
TV 0.791
0.000

Newspaper 0.594 0.058
0.004 0.799

93
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Minitab can find a correlation matrix between any pairs of variables in the
model, including the y variable and all the x variables as well. To calculate a
correlation matrix for a group of variables in Minitab, first enter your data in
columns (one for each variable). Then go to Stat>Basic Statistics>Descriptive
Statistics>Correlation. Highlight the variables from the left-hand side for
which you want correlations, and click on Select. Typically you also want to
test those correlations, so check the Display p-values box as well. (I discuss
how to interpret those p-values later in this section.)

To interpret the values of the correlation matrix from the computer output,
intersect the row and column variables you want to find the correlation for,
and the top number in that intersection is the correlation of those two vari-
ables. (I discuss the bottom number later in this section.) For example, the
correlation between TV ads and TV sales is 0.791, because it intersects the
TV row with the Sales column in the correlation matrix in Figure 5-2. This
result indicates a fairly strong positive linear relationship between these two
variables. (That is, as dollars spent on TV ads increase, so do plasma TV
sales.) You can also see that the correlation between newspaper ads and
plasma TV sales is 0.594, showing a moderately strong positive linear rela-
tionship. This correlation isn’t as strong as that of the TV ads, but it’s still
worth examining further. These results together indicate that TV and news-
paper ads are each somewhat related to TV sales.

Testing correlations for significance

Many times in statistics a rule-of-thumb approach to interpreting a correlation
coefficient is sufficient. However, you're in the big leagues now, so you need a
more precise tool for determining whether or not a correlation coefficient is
large enough to be statistically significant — that’s the real test of any statistic.
Not that the relationship is fairly strong or moderately strong in the sample,
but whether or not the relationship can be generalized to the population.

Now that phrase statistically significant should ring a bell in your memory. It’s
your old friend the hypothesis test calling to you (see Chapter 3 for a brush-
up on hypothesis testing). Just like a hypothesis test for the mean of a popu-
lation or the difference in the means of two populations, you also have a test
for the correlation between two variables within a population.

The null hypothesis to test a correlation is Ho: p = 0 versus Ha: p # 0. If you
can’t reject Ho based on your data, you can’t conclude that the correlation
between x and y differs from zero, indicating you don’t have evidence that
the two variables are related and x shouldn’t be in the multiple regression
model. However, if you can reject Ho, you conclude that the correlation isn’t
equal to zero, based on your data, so the variables are related. More than
that, their relationship is deemed to be statistically significant; that is, the
relationship would occur very rarely in your sample just by chance.
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The letter p is the Greek version of r and represents the true correlation of x
and y in the entire population; r is the correlation coefficient of the sample.

Any statistical software package can calculate a hypothesis test of a correla-
tion for you. The actual formulas used in that process are beyond the scope
of this book. However the interpretation is the same as for any test: If the p-
value is smaller than your prespecified value of o (typically 0.05), reject Ho
and conclude x and y are related. Otherwise you can’t reject Ho, and you con-
clude you don’t have enough evidence that the variables are related.

In Minitab, you can conduct a hypothesis test for a correlation by clicking

on Stat>Basic Statistics>Correlation, and checking the Display p-values box.
Choose the variables you want to find correlations for, and click Select. You’ll
get output that is in the form of a little table that shows the correlations
between the variables for each pair with the respective p-values under each
one. You can see the correlation output for the ads and sales example in
Figure 5-2.

Looking at Figure 5-2, the correlation of 0.791 between TV ads and sales has a
p-value of 0.000, which means it’s actually less than 0.001. That’s a highly sig-
nificant result, much less than 0.05 (your predetermined o level). So TV ad
spending is strongly related to sales. The correlation between newspaper ad
spending and sales was 0.594, which is also found to be statistically signifi-
cant with a p-value of 0.004.

Checking for Multicolinearity

WING/

You have one more very important step to complete in the relationship-
exploration process before going on to using the multiple regression model.
That is, you need to complete step four: looking at the relationship between
the x variables themselves and checking for redundancy. Failure to do so can
lead to problems during the model-fitting process.

Multicolinearity is a term you use if two x variables are highly correlated. Not
only is it redundant to include both related variables in the multiple regres-
sion model, but it’s also problematic. The bottom line is this: If two x vari-
ables are significantly correlated, only include one of them in the regression
model, not both. If you include both, the computer won’t know what numbers
to give as coefficients for each of the two variables, because they share their
contribution to determining the value of y. Multicolinearity can really mess
up the model-fitting process and give answers that are inconsistent and often-
times not repeatable in subsequent studies.
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To head off the problem of multicolinearity, along with the correlations you
examine regarding each x variable and the response variable y, also find the
correlations between all pairs of x variables. If two x variables are highly cor-
related, don’t leave them both in the model, or multicolinearity will result. To
see the correlations between all the x variables, have Minitab calculate a cor-
relation matrix of all the variables (see the section “Finding and interpreting
correlations”). You can ignore the correlations between the y variable and the
x variables and only choose the correlations between the x variables shown
in the correlation matrix. Find those correlations by intersecting the rows
and columns of the x variables for which you want correlations.

<MBER

If two x variables x; and x, are strongly correlated (that is their correlation is

beyond +0.7 or -0.7), then one of them would do just about as good a job of

estimating y as the other, so you don’t need to include them both in the model.

Now if x; and x, aren’t strongly correlated, then both of them working together
would do a better job of estimating sales than either variable alone. For the ad
spending example, you have to examine the correlation between the two x
variables, TV ad spending and newspaper ad spending, to be sure no multi-
colinearity is present. The correlation between these two variables (as you can
see in Figure 5-2) is only 0.058. You don’t even need a hypothesis test to tell you
whether or not these two variables are related; they're clearly not. However, if
you want to know, the p-value for the correlation between the spending for the
two ad types is 0.799 (see Figure 5-2), which is much, much larger than 0.05
ever thought of being and therefore not statistically significant.

The large p-value for the correlation between spending for the two ad types
confirms your thoughts that both variables together may be helpful in esti-
mating y because each makes its own contribution. It also tells you that
keeping them both in the model will not create any multicolinearity prob-
lems. (This completes step four of the multiple regression analysis, as listed
in the “Stepping through the analysis” section.)

Finding the Best-Fitting Model

After you have a group of x variables that are all related to y and not related
to each other (see previous sections), you're ready to perform step five of the
multiple regression analysis (as listed in the “Stepping through the analysis”
section). That is, you're ready to find the best-fitting model that fits the data.

In the multiple regression model with two x variables, you have the general
equation y = by + byx; + byx,, and you already know which x variables to
include in the model (by doing step four); the task now is to figure out which
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coefficients (numbers) to put in for b,, b, and b,, so you can use the resulting
equation to estimate y. This specific model is the best-fitting multiple linear

regression model. In this section, you see how to get, interpret, and test those
coefficients in order to complete step five in the multiple regression analysis.

Finding the best-fitting linear equation is like finding the best-fitting line in
simple linear regression, except that you're not finding a line. When you have
two x variables in multiple regression, for example, you're estimating a best-
fitting plane for the data.

Getting the multiple regression
coefficients

In the simple linear regression model, you have the straight line y = by + b,x;
the coefficient of x is the slope, and it represents the change in y per unit
change in x. In a multiple linear regression model, the coefficients b,, b,, and
so on quantify in a similar matter the sole contribution that each correspond-
ing x variable (x,, x,) makes in predicting y. The coefficient b, indicates the
amount by which to adjust all of these values in order to provide a final fit to
the data (like the y-intercept does in simple linear regression).

Computer software does all the nitty-gritty work for you to find the proper
coefficients (b, b;, and so on) that fit the data best. The coefficients that
Minitab settles on to create the best-fitting model are the ones that as a
group minimize the sum of the squared residuals (sort of like the variance in
the data around the selected model). The equations for finding these coeffi-
cients by hand are too unwieldy to include in this book; a computer can do
all the work for you. The results appear in the regression output in Minitab.
You can find the multiple regression coefficients (by, b, b, . . ., b,) on the
computer output under the column labeled Coef.

To run a multiple regression analysis in Minitab, click on Stat>Regression>
Regression. Then choose the response variable (y) and click on Select. Then
choose your predictor variables (x variables), and click Select. Click on OK,
and the computer will carry out the analysis.

For the plasma TV sales example from the previous sections, Figure 5-3
shows the multiple regression coefficients in the Coef column for the multiple
regression model. The first coefficient (5.257) in Figure 5-3 is just the constant
term (or b, term) in the model and isn’t affiliated with any x variable. This
constant just sort of goes along for the ride in the analysis — the number
that you tack on the end to make the numbers work out right. The second
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Figure 5-3:
Regression
output for
the ads and
plasma TV
sales
example.
|

WMBER
@&
&

coefficient in the Coef column of Figure 5-3 is 0.162; this value is the coeffi-
cient of the x; (TV ads) term, also known as b,. The third coefficient in the
Coef column of Figure 5-3 is 0.249, which is the value for b, in the multiple
regression model and is the coefficient that goes with x, (newspaper ad
amount).

The regression equation is
Sales = 5.267 + 0.162 TV ads + 0.249 Newsp ads

Predictor Coef SE Coef T P
Constant 5.2574 0.4984 10.55 0.000
TV ads 0.16211 0.01319 12.29 0.000

Newsp ads 0.24887 0.02792 8.91 0.000

S =0.976613 R-Sq = 92.8% R-Sq(adj) = 92.0%

Putting these coefficients into the multiple regression equation, you see the
regression equation is Sales = 5.267 + 0.162 (TV ads) + 0.249 (Newspaper ads).

So you have your coefficients (no sweat, right?), but where do you go from
here? What does it all mean? Keep reading.

Interpreting the coefficients

In simple linear regression (Chapter 4), the coefficients represented the slope
and y-intercept of the best-fitting line and were straightforward to interpret.
The slope in particular represents the change in y due to a one-unit increase
in x, because you can write any slope as a number over one (and slope is rise
over run).

In the multiple regression model, the interpretation’s a little more compli-
cated. Due to all the mathematical underpinnings of the model and how it’s
finalized (believe me you don’t want to go there unless you want a PhD in sta-
tistics), the coefficients have a different meaning.

The coefficient of an x variable in a multiple regression model is the amount
by which y changes if that x variable increases by one and the values of all
other x variables in the model don’t change. So basically, you're looking at the
marginal contribution of each x variable when you hold the other variables in
the model constant.
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In the ads and sales regression analysis (see Figure 5-3), the coefficient of x;
(TV ad spending) equals 0.16211. So y (plasma TV sales) increases by 0.16211
million dollars when TV ad spending increases by $1,000 and spending on
newspaper ads doesn’t change. (Note that keeping more digits after the deci-
mal point reduces rounding error when in units of millions.)

You can more easily interpret the number 0.16211 million dollars by converting
it to a dollar amount without the decimal point: $0.16211 million is equal to
$162,110. (To get this value, I just multiplied 0.16211 by 1,000,000.) So plasma
TV sales increases by $162,110 for each $1,000 increase in TV ad spending and
newspaper ad spending remains the same.

\\3

Similarly, the coefficient of x, (newspaper ad spending) equals 0.24887. So
plasma TV sales increases by 0.24887 million dollars (or $248,870) when news-
paper ad spending increases by $1,000 and TV ad spending remains the same.

QUING/ Don’t forget the units of each variable in a multiple regression analysis.
Ny This mistake is one of the most common in intermediate statistics. If you
forgot about units in the ads and sales example, you would think that sales
increased by 0.24887 dollars with a dollar in newspaper ad spending!

Knowing the multiple regression coefficients (b, and b,, in this case) and
their interpretation, you can now answer the original question: Is the money
spent on TV or newspaper ads worth it? The answer is a resounding Yes!/

Not only that, but you can also say how much you expect sales to increase
per $1,000 you spend on TV or newspaper advertising. Note that this conclu-
sion assumes the model fits the data well. You have some evidence of that
through the scatterplots and correlation tests, but more checking needs to
be done before you can run to your manager and tell her the good news. (See
the section “Testing the coefficients” to figure out what to do next.)

Testing the coefficients

Another step in determining whether you have the right x variables in your
multiple regression model is to do a formal hypothesis test to make sure the
coefficients are not equal to zero. Note that if the coefficient of an x variable is
zero, then when you put that coefficient into the model, you get zero times that
x variable (which equals zero). This result is essentially saying that if an x vari-
able’s coefficient is equal to zero, you don’t need that x variable in the model.

<MBER The computer performs all the necessary hypothesis tests for the regression
coefficients automatically with any regression analysis. Along with the regres-
sion coefficients you can find on the computer output, you see the test
statistics and p-values for a test of each of those coefficients in the same

row for each coefficient. Each one is testing Ho: Coefficient = 0 versus Ha:
Coefficient # 0.
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The general format for finding a test statistic in most any situation is to take
the statistic (in this case, the coefficient), subtract the value in Ho (zero), and
divide by the standard error of that statistic (for this example, the standard
error of the coefficient). (For more info on the general format of hypothesis
tests, see Chapter 3.)

To test a regression coefficient, the test statistic (using the labels from Fig-
ure 5-3) is (Coef — 0)/SE Coef. In non-computer language, that means you take
the coefficient, subtract zero, and divided by the standard error (SE) of the
coefficient. The standard error of a coefficient here is a measure of how much
the coefficient is expected to vary when you take a new sample. (See Chapter
3 for more on standard error.)

The test statistic has a t-distribution with n — k — 1 degrees of freedom, where
n equals the sample size and k& is the number of predictors (x variables) in
the model. This number of degrees of freedom works for any coefficient in the
model (except you don’t bother with a test for the constant, because it has no
x variable associated with it).

The test statistic for testing each coefficient is listed in the column marked

T (because it has a t-distribution) on the Minitab output. You compare the
value of the test statistic to the t-distribution with n — k — 1 degrees of free-
dom (using Table A-1 in the Appendix) and come up with your p-value. If the
p-value is less than your prespecified o (usually 0.05), then you reject Ho and
conclude that the coefficient of that x variable isn’t zero and that variable
makes a significant contribution toward estimating y (given the other vari-
ables are also included in the model). If the p-value is larger than 0.05, you
can’t reject Ho, so that x variable makes no significant contribution toward
estimating y (when the other variables are included in the model).

In the case of the ads and plasma TV sales example, Figure 5-3 shows that the
coefficient for the TV ads is 0.1621 (the second number in column two). The
standard error is listed as being 0.0132 (the second number in column three).
To find the test statistic for TV ads, take 0.1621 minus zero and divide by

the standard error, 0.0132. You get a value of ¢t = 12.29, which is the second
number in column four). Comparing this value of ¢ to a ~-distribution with
n-k-1=22-2-1=19 degrees of freedom (Table A-1 in the Appendix), you
see the value of ¢ is way off the scale. That means the p-value is smaller than
can be measured on Table A-1. Minitab lists the p-value in column five of
Figure 5-3 as 0.000 (meaning it’s less than 0.001). This result leads you to
conclude that the coefficient for TV ads is statistically significant, and TV ads
should be included in the model for predicting TV sales.

The newspaper ads coefficient is also significant with a p-value of 0.000 by
the same reasoning; these results can be found by looking across the news-
paper ads row of Figure 5-3. From this you should include both the TV ads
variable and the newspaper ads variable in the model for estimating TV sales.
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Predicting V by Using the X Variables

By now, you should have your multiple regression model. You're finally ready
to complete step six of the multiple regression analysis: to predict the value
of y given a set of values for the x variables. To make this prediction, you take
those x values for which you want to predict y, plug them into the multiple
regression model, and simplify.

In the ads and plasma TV sales example (see analysis from Figure 5-3), the
best-fitting model is y = 5.26 + 0.162x, + 0.249x,. In the context of the problem,
the model is Sales = 5.26 + 0.162 TV ad spending (x,) + 0.249 newspaper ad
spending (x,).

QNING/ Remember that the units for plasma TV sales is in millions of dollars and the
Y units for ad spending for both TV and newspaper ads is in the thousands of
dollars. That is, $20,000 spent on TV ads means x, = 20 in the model. Similarly,
$10,000 spent on newspaper ads means X, = 10 in the model. Forgetting the
units can lead to serious miscalculations.

Suppose you want to estimate plasma TV sales if you spend $20,000 on TV
ads and $10,000 on newspaper ads. Plug x; = 20 and x; = 10 into the multiple
regression model, and you get y = 5.26 + 0.162(20) + 0.249(10) = 10.99. In other
words, if you spend $20,000 on TV advertising and $10,000 in newspaper
advertising, you estimate that sales will be $10.99 million dollars.

This estimate at least makes some sense in terms of the data shown in
Table 5-1. At location ten, they spent $20,000 on TV ads and $5,000 on news-
paper ads (short of what you had) and got sales of $9.82 million. Location
eleven spent a little more on TV ads and a lot more on newspaper ads than
what you had, and got sales of $16.28 million. Your spending amounts fall
between the amounts of locations ten and eleven, and your estimated sales
fall in between theirs also.

V?‘“\NG! Be careful to put in only values for the x variables that fall in the range of
K where the data lies. In other words, Table 5-1 shows data for TV ad spending
between $0 and $50,000; newspaper ad spending goes from $0 to $25,000. It
would not be appropriate, say, to try to estimate sales for spending amounts
of $75,000 for TV ads and $50,000 for newspaper ads, respectively. The reason
is that the regression model you came up with only fits the data that you col-
lected; you have no way of knowing whether that same relationship contin-
ues outside that area. This no-no of estimating y for values of the x variables
outside their range is called extrapolation. As one of my colleagues says,
“Friends don’t let friends extrapolate.”



]2 Partii: Making Predictions by Using Regression

Checking the Fit of the Model

Before you run to your boss in triumph saying you've slam-dunked the ques-
tion of how to estimate plasma TV sales, you first have to make sure all your
i’s are dotted and all your ¢’s are crossed, as you do with any other statistical
procedure. In this case, you have to check the conditions of the multiple
regression model. These conditions mainly focus on the residuals (the differ-
ence between the estimated values for y and the observed values of y from
your data). If the model is close to the actual data you collected, you can

feel somewhat confident that if you collected more data, it would fall in line
with the model as well, and your predictions shouldn’t be too bad.

In this section, you see what the conditions are for multiple regression, and
specific techniques statisticians use to check each of those conditions. The
main character in all of this condition checking is the residual.

Noting the conditions

The conditions for multiple regression concentrate on the error terms, or resid-
uals. The residuals are the amount that’s left over after the model has been fit.
They represent the difference between the actual value of y observed in the
data set and the estimated value of y based on the model. The conditions of
the multiple regression model are the following (note that all need to be met in
order to give the go-ahead for a multiple regression model):

v The residuals have a normal distribution with mean zero.

v The residuals have the same variance for each fitted (predicted)
value of y.

v The residuals are independent (don'’t affect each other).

Plotting a plan to check the conditions

It may sound like you have a ton of things to check here and there, but luck-
ily, Minitab gives you all the info you need to know in a series of four graphs,
all presented at one time. These plots are called the residual plots, and they
graph the residuals against the values of a normal distribution to see whether
the normality condition fits.
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Figure 5-4:
Residual
plots for the
ads and
plasma TV
sales
example.

You can get the set of residual plots in two flavors:

v Regular residuals: The regular residual plots (the vanilla-flavored ones)
show you exactly what the residuals are for each value of y. Figure 5-4
shows the plots of the regular residuals for the TV sales example. Use
these plots if you want to mainly look for patterns in the data.

1~ Standardized residuals: The standardized residual plots (the strawberry-
flavored kind) take each residual and convert it to a Z-score by subtract-
ing the mean and dividing by the standard deviation of all the residuals.
Figure 5-5 shows the plots of the standardized residuals for the TV sales
example. Use these plots if you want to not only look for patterns in the
data, but you want to assess the standardized values of the residuals in
terms of values on a Z-distribution to check for outliers. (Most statisti-
cians use standardized residual plots.)

Residual Plots for Sales
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To make residual plots in Minitab, go to Stat>Regression>Regression. Select
your response () variable and your predictor variables (x) variables. Click
on Graphs, and choose either Regular or Standardized for the residuals,
depending on which one you want. Then click on Four-in-one, which indi-
cates you want to get all four residual plots shown in Figure 5-4 (using regular
residuals) and Figure 5-5 (using standardized residuals).
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In the following sections, you see how to check the residuals to see whether
these three conditions are met in your data set.

Meeting the first condition

The first condition to meet (outlined in the previous section “Noting the con-
ditions™) is that the residuals must have a normal distribution with mean
zero. The upper-left plot of Figure 5-4 shows how well the residuals match a
normal distribution. If the residuals fall in a straight line, that means the nor-
mality condition is met. By the looks of this plot, I'd say that condition is met
for the ad and sales example.

The upper-right plot of Figure 5-4 shows what the residuals look like for the
various estimated y values. Look at the horizontal line going across that plot;
it’s at zero as a marker. The residuals should average out to be at that line
(zero). This Residuals versus Fitted Values plot checks the mean-of-zero con-
dition and holds for the ads and sales example looking at Figure 5-4.

You need the regular residual plots to see whether the mean of the residuals
equals zero (via the plot on the upper right of Figure 5-4). If you look at the
standardized residuals, they will always have mean zero due to the fact that
they have been standardized to have a mean of zero. If the mean of zero con-
dition isn’t met for the regular residuals, that means that many of the esti-
mated values are off in the same direction by a certain amount, which would
not be good.
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As an alternative check for normality apart from using the regular residuals,
you can look at the standardized residuals plot (Figure 5-5) and check out the
upper-right plot. It shows how the residuals are distributed across the vari-
ous estimated (fitted) values of y. Standardized residuals are supposed to
follow a standard normal distribution. That is, they should have mean zero
and standard deviation one. So when you look at the standardized residuals,
they should be centered around zero in a way that has no predictable pat-
tern, with the same amount of variability around the horizontal line that
crosses at zero as you move from left to right.

\\3

You should also find looking at the upper-right plot of Figure 5-5 that most (95
percent) of the standardized residuals fall within two standard deviations of
the mean, which in this case is -2 to +2 (via the 68-95-99.7 Rule — remember
that from intro stats?). You should see more residuals hovering around zero
(where the middle lump would be on a standard normal distribution), and
you should have fewer and fewer of the residuals as you go away from zero.
The upper-right plot in Figure 5-5 confirms a normal distribution for the ads
and sales example on all the counts I just mentioned.

The lower-left plot of Figures 5-4 and 5-5 show histograms of the regular

and standardized residuals, respectively. These histograms should reflect a
normal distribution; that is, the shape of the histograms should be approxi-
mately symmetric and look like a bell-shaped curve. Note that if the data set
is small (as is the case here with only 22 observations), the histogram may
not be as close to normal as you would like; in that case, consider it part of
the body of evidence that all four residual plots show you. The histograms
shown in the lower-left plots of Figure 5-4 and 5-5 aren’t terribly normal look-
ing; however, because you can’t see any glaring problems with the upper-
right plots, don’t be worried.

Satisfying the second condition

To look at the variance issue (condition two from a previous section), you can
look again at the upper-right plot of Figure 5-4 (or Figure 5-5). You shouldn’t
see any change in the amount of spread (variability) in the residuals around
that horizontal line as you move from left to right. Looking at Figure 5-4, the
upper-right graph, you can see no reason to say that condition number two
(the residuals have the same variance for each combination of the x vari-
ables) hasn’t been met.

QNING/ One particular problem that raises a red flag is if the residuals fan out, or
Sy increase in spread, as you move from left to right on the upper-right plot.
This fanning out means that the variability increases more and more for
higher and higher predicted values of y, so the condition of equal variability
around the fitted line isn’t met, and the regression model would not fit well in
that case.
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Checking the third condition

The third condition is that the residuals are independent (in other words,
they don’t affect each other). Looking at the lower-right plot on either Figure
5-4 or 5-5, you can see the residuals plotted by observation number, which is
the order in which the data came in the sample. If you see a pattern (if you
were to connect the dots so to speak, you get a straight line, or a curve, or
any kind of predictable up or down trend), you have trouble. You can see no
patterns in the lower-right plots, so the independence condition is met for
the ads and plasma TV sales example.

If the data must be collected over time, such as stock prices over a ten-year
period, the independence condition may be a big problem because the data
from the previous time period may be related to the data from the next time
period. This kind of data requires time series analysis and is beyond the
scope of this book.
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One Step Forward and Two

Steps Back: Regression
Model Selection

In This Chapter

Evaluating different methods for choosing a multiple regression model

Understanding how forward selection and backward selection works

Using the best subsets methods to find a good model
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Slppose you're trying to estimate some quantitative variable, y, and you
have many x variables available at your disposal. You have so many
variables related to y, in fact, that you feel like I do in my job every day —
overwhelmed with opportunity. Where do you go? What do you do? Never
fear, this chapter is for you.

In this chapter, you see three different procedures statisticians use to find a
best possible model — forward selection, backward selection, and best sub-
sets selection. Each procedure can lead you to a different final model, and you
can’t find one single procedure that everyone agrees is the one to use. Each
selection method has positives and negatives associated with it, as you can see
in this chapter. No matter what method you choose, each method has the same
goal: to get the best possible model for y by using a set of x variables. Yet the
road that each procedure takes to get there is a bit different, so read on!

Note that the term best has many connotations here. You can’t find one end-
all-be-all model that everyone comes up with in the end. That is to say that
each data analyst can come up with a different model, and each model still
does a good job of predicting y.
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Getting a Kick out of Estimating
Punt Distance

Before you jump into a model selection procedure to predict y by using a set
of x variables, you have to do some legwork. The variable of interest is y, and
that’s a given. But where do the x variables come from? How do you choose
which ones to investigate as being possible candidates for predicting y? And
how do those possible x variables interact with each other toward making
that prediction? All of these questions must be answered before any model
selection procedure can be used. However, this part is the most challenging
and the most fun; a computer can’t think up x variables for you!

Suppose you're at a football game and the opposing team has to punt the
ball. You see the punter line up and get ready to kick the ball, and a question
comes to you. “Gee, | wonder how far this punt will go? I wonder what factors
influence the distance of a punt? Can I use those factors in a multiple regres-
sion model to try to estimate punt distance? Hmm, I think I'll consult my
Intermediate Statistics For Dummies book on this and analyze some data
during half-time. . . .” Well, maybe that’s pushing it, but it’s still an interest-
ing question for football players, golfers, soccer players, and even baseball
players. Everyone’s looking for more distance and a way to get it.

In the following sections, you can see how to identify and assess different x
variables in terms of their potential contribution to predicting y.

Brainstorming variables
and collecting data

Starting with a blank slate and trying to think of a set of x variables that may
be related to y may sound like a daunting task, but in reality, this task is prob-
ably not as bad as you think. Most researchers who are interested in predict-
ing y in the first place have some ideas about which variables may be related
to it. After you come up with a set of logical possibilities for x, you collect
data on those variables, as well as y, to see what their actual relationship
with y may be.

The Virginia Polytechnic Institute did a study to try to estimate the distance
of a punt in football (something Ohio State fans aren’t familiar with). Possible
variables they thought may be related to the distance of a punt included the
following: hang time (time in the air, in seconds), right leg strength (measured
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in pounds of force), left leg strength (in pounds of force), right leg flexibility
(in degrees), left leg flexibility (in degrees), and overall leg strength (in
pounds). The data collected on a sample of 13 punts (by right-footed pun-
ters) is shown in Table 6-1. (Distance is measured in feet.)

Table 6-1 Data Collected for Punt Distance Study
R L R L 0

Distance Hang Strength  Strength  Flexibility  Flexibility — Strength
162.50 475 170 170 106 106 240.57
144.00 407 140 130 92 93 195.49
147.50 404 180 170 93 78 152.99
163.50 418 160 160 103 93 197.09
192.00 435 170 150 104 93 266.56
171.75 416 150 150 101 87 260.56
162.00 443 170 180 108 106 219.25
104.93 3.20 110 110 86 92 132.68
105.67 302 120 110 90 86 130.24
117.59 3.64 130 120 85 80 205.88
140.25 368 120 140 89 83 153.92
150.17 360 140 130 92 94 154.64
165.17 385 160 150 95 95 240.57

Other variables you may think of that are related to punt distance may
include the direction and speed of the wind at the time of the punt, the angle
at which the ball was snapped, the average distance of punts made in the
past by this punter, whether the game is at home or away in a hostile environ-
ment, and so on. However, these researchers seem to have enough informa-
tion on their hands to build a model to estimate punt distance. For the sake
of simplicity, you can assume the kicker is right-footed, which isn’t always the
case, but it represents the overwhelming majority of kickers.

Looking just at this raw data set in Table 6-1, you can’t figure out which vari-
ables, if any, are related to distance of the punt or how those variables may
be related to punt distance. You need more analyses to get a handle on this.
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Examining scatterplots and correlations

After you've identified a set of possible x variables, the next step is to find
out which of these variables are highly related to y in order to start trimming
down the set of possible candidates for the final model. In the punt distance
example, the goal is to see which of the six variables in Table 6-1 are strongly
related to punt distance. The two ways to look at these relationships are the
following:

v~ Scatterplots: A graphical technique

v Correlation: A one-number measure of the linear relationship between
two variables

Both of these elements are important, and I discuss each of them in the fol-
lowing sections.

Seeing relationships through scatterplots

To begin examining the relationships between the x variables and y, you use
a series of scatterplots. Figure 6-1 shows all the scatterplots, not only of each
X variable with y, but each x variable with itself. The scatterplots are in the
form of a matrix, which is a table made of rows and columns. For example,
the first scatterplot in row two of Figure 6-1 looks at the variables of distance
(which appears in column one) and hang time (which appears in row two).
This scatterplot shows a possible positive (uphill) linear relationship
between distance and hang time.
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Note that Figure 6-1 is essentially a symmetric matrix across the diagonal
line. That is, the scatterplot for distance and hang time is the same as the
scatterplot for hang time and distance; the x and y axes are just switched.
The essential relationship shows up either way. So you only have to look at
all the scatterplots below the diagonal (where the variable names appear)
or all the scatterplots above the diagonal. You need not examine both.

To get a matrix of all scatterplots between a set of variables in Minitab, go to
Graph>Matrix Plot> and choose Matrix of Plots>Simple. Highlight all the vari-
ables in the left-hand box for which you want scatterplots by clicking on
them; click Select, and then click OK. You will see the matrix of scatterplots
with a format similar to Figure 6-1.

Looking across row one of Figure 6-1, you can see that all the variables seem
to have a positive linear relationship with punt distance except left leg flexibil-
ity. Perhaps the reason left leg flexibility isn’t much related to punt distance is
because the left foot is planted into the ground when the kick is made — for a
right-footed kicker, the left leg doesn’t have to be nearly as flexible as the right
leg, which does the kicking. So it doesn’t appear that left leg flexibility con-
tributes a great deal to the estimation of punt distance on its own.

You can also see in Figure 6-1 that the scatterplots showing relationships
between pairs of x variables are to the right of column one and below row one.
(Remember you need to look on only the bottom part of the matrix or the top
part of the matrix to see the relevant scatterplots.) It appears that hang time
is somewhat related to each of the other variables (except left leg flexibility,
which doesn’t contribute to estimating y). So hang time could possibly be the
most important single variable in estimating the distance of a punt.

You also need to look at the scatterplots showing the relationships between
each pair of x variables. It’s important to be mindful that if two x variables
are strongly related to each other, then including them both in the model is
not a good idea. First, adding the second of those two variables adds virtually
nothing toward helping predict y. But more important than that, if two x vari-
ables are highly correlated and both are included in the model, the computer
gets confused and doesn’t know how much of the model to attribute to which
x variable. This problem is called multicolinearity. (See Chapter 5 for more on
how you can spot multicolinearity and avoid it.)

Finding connections by using correlations

Scatterplots can give you some general ideas as to whether two variables
are related in a linear way. However, pinpointing that relationship requires a
numerical value to tell you how strongly the variables are related (in a linear
fashion) as well as the direction of that relationship. That numerical value is
the correlation (also known as Pearson’s correlation, see Chapter 4). So the
next step toward trimming down the possible candidates for x variables is to
calculate the correlation between each x variable and y.

111
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To get a set of all the correlations between any set of variables in your model
by using Minitab, go to Stat>Basic Statistics>Correlation. Then highlight all the
variables you want correlations for and click Select. (To include the p-values
for each correlation, click the Display p-values box.) Then click OK. You can
see a listing of all the variables’ names across the top row and down the first
column. Intersect the row depicting the first variable with the column depicting
the second variable, and you can find the correlation for that pair.

Table 6-2 shows the correlations you can calculate between y = punt distance
and each of the x variables. These results confirm what the scatterplots were
telling you. Distance seems to be related to all the variables except left leg
flexibility, because that’s the only variable that didn’t have a statistically sig-
nificant correlation with distance using the o level 0.05. (For more info on the
test for correlation, see Chapter 5.)

Table 6-2 Correlations between Distance of a Punt
and Other Variables

X Variable Correlation with Punt Distance P-value

Hang time 0.819 0.001*

Right leg strength 0.791 0.001*

Left leg strength 0.744 0.004*

Right leg flexibility ~ 0.806 0.001%

Left leg flexibility 0.408 0.167

Overall leg strength ~ 0.796 0.001*

* statistically significant at level o. = 0.05

If you take a look at Figure 6-1, you can see that hang time is related to other
variables such as right foot and left foot strength, right leg flexibility, and so
on. This is where things start to get sticky. You have hang time related to dis-
tance, and lots of other variables related to hang time. While hang time is
clearly the most related to distance, the final multiple regression model may
not include hang time. Here’s one possible scenario: You find a combination of
other x variables that can do a good job estimating y together. And all of those
other variables are strongly related to hang time. This result might mean that
in the end you don’t need to include hang time in the model. Strange things
happen when you have many different x variables to choose from.

After you narrow down the set of possible x variables for inclusion in the
model to predict punt distance, the next step is to put those variables through
a selection procedure of some sort, which trims down the list to a set of essen-
tial variables for predicting y. The next sections show various techniques for
going through this model selection process.
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Using the Forward Model
Selection Procedure

The first of the three model selection procedures I present in this chapter is
called forward selection. This process gives a systematic way of selecting a
good model to predict y. It starts out with no variables at all, and then adds
one variable, then another one, and then another one — each time including
the variable that contributes the highest amount toward estimating y, given
the other variables that are already in the model.

This section shows you how the forward selection procedure works for
selecting a final regression model, and what the philosophy is for doing so.
It also shows you how to assess the fit of the final model by using some new
criterion.

Adding variables — one at a time

The forward selection procedure starts with a model that contains no x vari-
ables and then adds x variables one at a time until the final model has been
reached.

Here’s how the forward selection procedure works in general, but before the
hair begins to stand up on the back of your neck, note that Minitab or any
other statistical software takes care of all the heavy lifting used for this and
all the other model selection procedures:

1. Choose a prespecified value of o for determining when to add a vari-
able to the model.

This o is called the entry level for a variable. Typically you want to
choose the value o = 0.05 or 0.10 as the entry level. The higher the o
level, the easier it is to add a variable to the model.

2. Start with the model containing no variables: y = b,.
You are left with just the constant b, term.

3. Go through each possible x variable that could be included in the
model and test each one’s coefficient to see whether it’s statistically
significant by using a t-test.

If the variable is statistically significant, it has a significant contribution
to determining y, given that the rest of the variables in the model are
fixed. Any variable that isn’t statistically significant is out of the running
to be added to the model at this point. (See Chapter 5 on conducting
t-tests for regression coefficients.)
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4. Examine the p-values from each of the t-tests in step three (listed on
the Minitab output) and choose the smallest one.

The variable associated with that p-value is the best candidate to be
added to the model, because that variable is the most statistically signif-
icant of all the possible x variables at this point.

5. If the p-value for the x variable found in step four is smaller than the
prespecified o, add that x variable to the model.

After the first round, you have the model y = b, + b;x; where x; refers to
the first x variable you added to the model.

6. Repeat steps three through five, using the new model from step
five, and keep adding variables one at a time as long as the smallest
p-value of each round is less than the prespecified o = 0.05.

If the smallest p-value is larger than the prespecified o, don’t add any
more variables to the model and stop the forward selection process.
Your final model contains all of the x variables that were added during
each phase of the forward selection process.

To find a best multiple linear regression model by using the forward selection
procedure in Minitab, go to Stat>Regression>Stepwise. Highlight which vari-
able is the response () variable and click Select. This variable will show up
in the Response box. Then highlight which variables are the predictor (x)
variables and click Select. These variables will show up in the Predictor box.
Click on Methods, and click on Forward Selection. In the Alpha to Enter box,
put in your prespecified value of oo you want to require to allow an x variable
to be included in the model. Typically statisticians would set this value at
between 0.05 and 0.10. (1 use 0.05.) This prespecified o level is called the
entry level for the forward selection procedure. The higher the entry level,
the easier it is for a variable to be entered, but the greater chance that the
variable was just significant by random chance. (In the F-value box, the
default is 4.0, which should be fine. The F~value is beyond the scope of this
book in this context, although you do work with it when you do analysis of
variance — see Chapter 10.) Click OK and you get the output from the for-
ward selection procedure.

You use a prespecified o level as the entry criteria for adding a variable
because it represents the chance of making a Type I error and inadvertently
putting in a variable based on your sample when it shouldn’t be included.
(See Chapter 3 for more on Type I errors.) You choose a small o level because
you don’t want to make it too easy to add a variable, because it increases the
chance of adding something that isn’t truly meaningful. (You have to put a lid
on it somehow!)
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How well does the model fit?

The details regarding the formulas used behind the model selection proce-
dures in this chapter are beyond the scope of this book. However, knowing
what the procedure is doing and how to interpret the results are what’s most
important. To assess the fit of any multiple regression model, you can use the
following three techniques: R?, R* adjusted, and Mallows’s C-p. You can find
all three on the bottom line of the Minitab output when you do any sort of
model selection procedure.

[ describe these techniques in the following:

» R%: R’ is the percentage of the variability in the y values that’s explained
by the model. It falls between 0 percent and 100 percent (0 and 1.0).
Values closer to 0 mean the model doesn’t do a good job of explaining y.
Values closer to 1.0 mean the model does an excellent job. Typically, I
say that you can consider R* values higher than 0.70 to be good.

»* R? adjusted: R® adjusted is the value of R*, adjusted down for a higher
number of variables in the model (which makes it much more useful
than the regular value of R*). A high value of R* adjusted means the
model you have is fitting the data very well. I typically find a value of
0.70 to be considered high for R* adjusted.

1 Mallow’s C-p: Mallow’s C-p is another measure of how well a model fits.
It basically looks at how much error is left unexplained by a model with
k predictor (x) variables compared to the average error left over from
the full model (with all the x variables) and adjusts it for the number of
variables in the model. The smaller Mallow’s C-p is, the better. Because
when it comes to the amount of error in your model, less is more.

QNING/ Always use R?adjusted rather than the regular R* to assess the fit of a multi-
Y ple regression model. With every addition of a new variable into a multiple
regression model, the value of R? stays the same or increases; it will never go
down. That’s because a new variable will either help explain some of the vari-
ability in the y’s (thereby increasing R* by definition), or it will do nothing
(leaving R’ exactly where it was before). So theoretically, you could just keep
adding more and more variables into the model just for the sake of getting a
larger value of R Here’s why the R? adjusted is important: It keeps you from
adding more and more variables by taking into account how many values are
in the model. This way, the value of R* adjusted can actually decrease if the
added value of the additional variable is outweighed by the number of vari-
ables in the model. This gives you an idea of how much or how little added
value you get from a bigger model (bigger isn’t always better).
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The goal of any model selection procedure is to have the smallest number of
x variables in the model as possible, with a high enough value of R* adjusted
and a small enough Mallow’s C-p to feel good about it.

Applying forward selection
to punt distances

To get a better feel for the forward selection procedure, you can apply it to the
punt distance example. The researchers turn their data over to your capable
hands for model selection. Using Minitab, you decide to apply the forward
selection procedure to the punt distance data shown in Table 6-1, using an
entry level of o = 0.05. You can now examine your results, shown in Figure 6-2.

In this section, you see the step-by-step process Minitab used to come up
with your results; you also see how to interpret those results in a way your
client researchers will appreciate and understand (which is the goal of all
things data analytical). You also get a heads up on how your choice of entry
level can impact your results.

Stepwise Regression: Distance versus Hang, R_Strength ...

Forward Selection. Alpha-to-Enter: 0.05
Response is Distance on 6 predictors, with N =13

Step 1
Constant —-22.33
Hang 43.5
T-Value 4.73
P-Value 0.001
S 15.6
R-Sq 67.05
R-Sq(adj) 64.06

Mallows C-p 1.7

Breaking down the results

You can see in Figure 6-2 that the procedure you asked Minitab to use is
forward selection (line one) and that you set the o level for entering a new
variable to be 0.05. In line two, you can see the response (y) variable is dis-
tance, and you have six predictor (x) variables to start with, all based on a
sample of NV = 13 observations.
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In the next part of the output, you see that at Step 1 the model has the constant
listed as —22.33. You can also see it includes hang time as the first variable in
the model. In the section “Exploring scatterplots and correlations,” you can see
that hang time is one of the more prominent variables, so you may not be sur-
prised that it shows up in the model selection process right away.

The p-value of hang time is 0.001, indicating that the variable is significant
(less than o = 0.05). However, no Step 2 is in this output. That means after hang
time was included, no other variables made a significant enough contribution
beyond hang time. The other variables’ p-values were all greater than 0.05.
§,‘&N\BEI:’
& The forward selection procedure’s modus operandi is that you have to be
in the in-crowd in order to be added to the model. The model is like an A-list
in a way.

The final model for the punt distance data using the forward selection proce-
dure with o = 0.05 is y = -22.33 + 43.50x where y = punt distance and x = punt

hang time. Note that this is a simple linear regression model (Chapter 4 style),
because it has only one x variable in it.

You can now use this final model to predict punt distance by using hang time.
Say the hang time is three seconds. That means the punt is expected to go
y =-22.33 +43.50 * 3 = 108.17 feet, or 36.06 yards. (Hang times for punts can
range anywhere from 0 seconds if the punt is blocked to around 5.00 seconds
(see Table 6-1), so don’t put numbers into this equation like 8 seconds. That
would make for an unbelievable punt distance — seriously!).
¥ You can find the coefficient of an x variable by looking at the value in the
output directly across from the name of the variable. Under that value is the
t-value of this coefficient, and its p-value follows.

Looking at the fit of the final model

The value of R* adjusted for this model as shown in Figure 6-2 is 64.06 per-
cent, which may not seem all that great. However, you're dealing with a
simple linear regression model, and the value of R in this case is the correla-
tion coefficient between hang time and distance. This value of R (denoted

by small r in its own simple regression context) is the square root of 0.6406,
which is 0.80. This correlation is somewhat strong, actually, so the model fits
fairly well. Mallow concurs, with a relatively small value of 1.7, as you can see
on the last line of Figure 6-2.

A cautionary word about entry level

So you can have an example where you see more than one variable added to
a model via forward selection, I conducted a forward selection procedure on

117
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the punt distance data. [ bumped the entry level of o up to 0.25. (Don’t try
this at home; it’s much too high of an entry level for practical use. I reran the
analysis, and I've included the results in Figure 6-3.

Stepwise Regression: Distance versus Hang, R_Strength . ..
Forward selection. Alpha-to-Enter: 0.25
Response is Distance on 6 predictors, with N =13
Step 1 2 3
Constant  —22.326 —1.300 1.672
Hang 43.5 26.9 8.9
T-Value 4.73 2.07 0.50
P-Value 0.001 0.065 0.630
—— O_Strength 0.22 0.24
. T-Value 1.69 1.86
F'?:“’eﬁ'& P-Value 0.122 0.096
(lJI‘WE-lrd R_Strength 0.44
selection ¢ 1., 1.41
results for | p_ya14e 0.191
the punt | ¢ 15.6  14.4 13.7
data, using | . g, 67.05 74.38 79.03
entry level | r-5q(adj) 64.06 69.26 72.04
0.25. | Mallows C-p 1.7 1.3 1.8
|

Looking at Figure 6-3, you see the coefficient of the variables in the final
model, located in the Step 3 column. The final model, using forward selection
with this way-too-large entry level of o = 0.25, is y = 1.67 + 8.9x; + 0.24x, +
0.44x; where y = punt distance, x; = punt hang time, x, = overall leg strength,
and x; = right leg strength. With this three-variable model, the R? adjusted is
72.04 percent (this number is found in Figure 6-3 in the third column, second
value up from the bottom). This value of R* adjusted is a fairly small increase
over the one-variable model you found by doing the forward selection proce-
dure, using the more reasonable entry level of 0.05 (see Figure 6-2).

Shifting into Reverse: The Backward
Model Selection Procedure

The backward selection procedure for selecting a best multiple linear regres-
sion model works in a similar way as the forward selection procedure from
the previous section. The big difference is that instead of starting with no x
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variables and adding x variables one by one until you stop, you start with
all the x variables in the model and remove x variables one by one until you
stop. You may think that the forward selection procedure and the backward
selection procedure would give you the same final model, but in many cases
they don’t, which you can discover in the sections that follow.

Eliminating variables one by one

The backward selection procedure starts out with the full multiple regression
model containing all of the x variables (of which there are k of them.) The
starting model is y = b, + byx; + . . . + bpx;. The object is to whittle down the
model so it includes the fewest number of variables needed to still fit well.
(Statisticians, as mysterious, mystical, and complicated as they may seem,
actually like their models to be as simple as possible!)

The computer does all the work for all model selection procedures, but you
have to set the criteria for when to allow a variable to be removed. You're
also left standing with the output that needs to be interpreted. Don’t worry
though. It’s all a step-by-step process that you take one at a time. (Hopefully
those steps are forward and not backward, right? Right.)

In general, here’s how the backward selection procedure works (note that
Minitab does all the work for you on this procedure; all you have to do is
interpret the results and understand the process by which those results
were attained):

1. Choose a prespecified value of o for determining when to remove a
variable from the model.

In the backward selection procedure, you call a the removal level.
Typically you want to choose the removal level o. = 0.10. The higher the
o level, the easier it is to remove a variable from the model. Statisticians
warn against using a removal level higher than the traditional value of 0.10
for fear of dropping variables out of the model too quickly, removing
important contributions that may be made by those variables. However,
if o is too small, the model could wind up being overly complex.

2. Start with the model containing all of the x variables: y = b, + byx; +
b.x, + . ..+ bx,, where k is the total number of x variables.

Remember that this model is called the full model.

3. Conduct a t-test on the coefficient of each x variable to see whether
it’s statistically significant (see Chapter 5 for conducting t-tests on
coefficients of a multiple regression model), and note the p-value of
each t-test.
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If the x variable is statistically significant (its p-value is less than the pre-
selected o level), it makes a significant contribution to determining y,
given that the rest of the variables in the model are fixed. In that case,
that x variable remains a possible candidate for inclusion in the model
at this point. If the x variable isn’t statistically significant, then it is con-
sidered for removal at this particular point.

4. Find the variable with the largest p-value on the Minitab output.

This variable is the one that has the least contribution toward y given
the rest of the variables in the model.

5. If the p-value for the variable found in step four is larger than the
removal level, then remove the variable from the model.

6. Repeat steps three through five on the new model, removing one vari-
able at a time; after the largest p-value from step four falls below the
removal level, stop the backward selection process and don’t remove
that variable or more variables.

You now have your final model, which will include some subset of x vari-
ables from the full model in step two.

To find a best multiple linear regression model by using the backward selec-
tion procedure in Minitab, go to Stat>Regression>Stepwise. Highlight the
variable that is the response () variable, and click Select. Then highlight
the variables that are the predictor (x) variables, and click Select. Click on
Methods, and choose Backward Selection. Choose the o to remove (the
removal level for a variable chosen by you). The F~value for removal has a
default at 4.0, which should be fine. Click OK, and you get the output for the
backward selection procedure similar to Figure 6-4.

Assessing model fit

The fit of the models at each stage of the backward selection procedure

are the same as those for the forward selection procedure in the previous
section. The computer output shows you the value of R?, the value of R
adjusted, and Mallow’s C-p. (See an earlier section “How well does the model
fit?” for more information on each of these measures.)

Kicking variables out to
estimate punt distance

This section applies the backward selection procedure to the punt distance
data so you can see how the process works and how to interpret the results
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at each step. Note that each type of model selection procedure can produce a
different final model, which is normal. After all, if all the techniques led you
to the same result, why bother having more than one technique?

Using the punt distance data presented in Table 6-1, imagine that you ana-
lyzed the data by using the backward selection procedure with level of
removal o = 0.10. [ show your results in Figure 6-4. Each stage in the model
selection process is represented by a column in the results.

Examining the x variables: The Step 1 column

The Step 1 column of Figure 6-4 shows all the x variables in the model.
Looking at the p-values in that first column, you can see that the largest one
turns out to be 0.953. This p-value is associated with the left leg strength vari-
able. (Check out the next section on the Step 2 column to find out what hap-
pens to this variable.)

Stepwise Regression: Distance versus Hang, R_Strength . ..
Backward elimination. Alpha-to-Remove: 0.1
Response is Distance on 6 predictors, with N =13
Step 1 2 3 4 5
Constant —-31.26 -33.29 —33.30 -35.25 12.77
Hang 3 4
T-Value 0.10 0.16
P-Value 0.927 0.874
R_Strength 0.28 0.29 0.33 0.39 0.56
T-Value 0.56 0.78 1.08 1.46  2.64
P-Value 0.596 0.461 0.310 0.178 0.025
L_Strength 0.04
T-Value 0.06
P-Value 0.953
R_Flexibility 1.24 1.28 1.34  0.86
T-Value 0.79 0.96 1.10  0.99
P-Value 0.457 0.371 0.303 0.346
L_Flexibility -0.41 -0.42 -0.4l
|
T-Value -0.50 -0.57 —0.59
Figure6-4: /| p-value 0.634 0.588 0.574
Backward | o strength 0.21 0.21 0.22  0.22  0.27
selection || T-value 1.21  1.50 1.87 2.00 2.71
procedure | P-value 0.271 0.177 0.098 0.077 0.022
o for g 15.8 14.6 13.7  13.2  13.2
estimating || r-sq 81.47 81.45 81.38 80.58 78.45
punt || R-Sq(adj) 62.93 68.21 72.07 74.11 74.14
distance. | Mallows C-p 7.0 5.0 3.0 1.3 -0.0
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Removing one variable: The Step 2 column

Notice in the Step 2 column of Figure 6-4 that the left leg strength variable

no longer appears as a result (and it stays that way), because it has the high-
est p-value at Step 1 and that p-value is larger than the entry level of 0.10.
This is the work of the backward selection procedure. It operates in the only-
the-strong-survive mode when it comes to variable elimination.

In looking at the p-values for this new model in the Step 2 column, you see
the variable with the highest p-value is hang time (0.874). This result doesn’t
make sense at first because in Table 6-2 you saw hang time had the strongest
relationship with punt distance.

However, remember what the p-value represents here — the significance of
the variable in its contribution to y, given all the other variables already in
the model. Because so many of the other variables in the model were shown
to be correlated with hang time (see Figure 6-1), it makes sense that hang
time could possibly be eliminated somewhere near the beginning of this
procedure.

Working down to the final model: The Step 3 column and beyond

The Step 3 column of Figure 6-4 shows the model without left leg strength or
hang time. The next variable to be removed is left leg flexibility, which has a
p-value = 0.574. Looking at the Step 4 column of Figure 6-4, the next variable
to be removed is right leg flexibility, which has a p-value of 0.346.

After right leg flexibility is removed from the model, you can see the result in
Step 5 of Figure 6-4. All the remaining variables in the model have p-values
smaller than the level for removal, which is 0.10. This means you stop the
backward selection procedure and keep the model you've got. The final
model for the punt distance data using the backward selection procedure
with removal level 0.10 is y = 12.77 + 0.56 x; + 0.27x,, where X, = right leg
strength and x, = overall leg strength. The final value of R? adjusted is 74.14
percent, which isn’t all that bad. (I've seen higher values of R?, but I've also
seen a lot worse.) Mallow cheers this model on with a C-p value of 0, which
has been rounded off a bit.

Always remember to use the R? adjusted rather than R* to assess the fit of
your model at each step of any selection procedure, and here’s why: In the
punt distance example, the values of R* and R* adjusted appear on the second
and third lines from the bottom of the Minitab output in Figure 6-4. You can
see that with each step, the values of R* decrease because fewer variables are
in the model to contribute something to predicting y. However, the values of
R? adjusted increase because the adjustment needed for the number of vari-
ables in the model goes down. Each variable left in the model is providing
more bang for the buck in terms of helping predict y.
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Using the Best Subsets Procedure

The best subsets procedure presents yet another way to find a best multiple
regression model. It basically examines the fit of every single possible model
that could be formulated from your x variables. You then use those model-
fitting results to make a decision about which model is the best one to use.

In this section, you see how the best subsets procedure works for model
selection in a step-by-step manner. Then you see how to take all the informa-
tion given to you and wade through it to make your way to the answer — the
best-fitting model based on a subset of the available x variables. Finally, you
see how this procedure is applied to find a model to predict punt distance.

Forming all models and
choosing the best one

The best subsets procedure has fewer steps than the forward or backward
selection model because the computer formulates and analyzes all possible
models in a single step. In this section, you see how to get the results and then
use them to come up with a best multiple regression model for predicting y.

Here are the steps for conducting the best subsets model selection proce-
dure to select a multiple regression model (note that Minitab does all the
work for you to crunch the numbers):

1. Conduct the best subsets procedure in Minitab, using all possible
subsets of the x variables being considered for inclusion in the
final model (see the nearby Computer Output icon).

The output contains a listing of all models that contain one x variable,
all models that contain two x variables, all models that contain three

x variables, and so on, all the way up to the full model (containing all the
x variables). Each model is presented in one row of the output.

2. Choose the best of all the models shown in the best subsets Minitab
output by finding the model with the largest value of R* adjusted and
the smallest value of Mallow’s C-p; if two competing models are about
equal, choose the model with the fewer number of variables.

WBER Mallow’s C-p is a measure of the amount of error in the predicted values
& compared to the overall amount of variability in the data. If the model
fits well, the amount of error in the predicted values is small compared
to the overall variability in the data, and Mallow’s C-p will be small. So
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look for a model that has a small value of Mallow’s C-p compared to its
competitors. R* adjusted measures how much of the variability in the
y-values can be explained by the model, adjusted for the number of vari-
ables included. (R* adjusted ranges from 0 to 100 percent; see the section
“How well does the model fit?” earlier in this chapter.) If the model fits
well, R* adjusted is high. So you also want to look for the smallest possi-
ble model that has a high value of R* adjusted, and a small value of
Mallow’s C-p compared to its competitors. And if it comes down to two
similar models, you always want to make your final model as easy to
interpret as possible by selecting the model with the fewer variables.

To carry out the best subsets selection procedure in Minitab, go to Stat>
Regression>Best Subsets. Highlight the response variable (y), and click Select.
Highlight all the predictor (x) variables, and click Select. Click on OK.

Applying best subsets to the
punt distance example

Say that you analyzed the punt distance data by using the best subsets model
selection procedure. Your results are shown in Figure 6-5. This section fol-
lows Minitab’s footsteps in getting these results, and provides you with a
guide for interpreting the results.

Pouring over the output

Assuming that you already used Minitab to carry out the best subsets selec-
tion procedure on the punt distance data, you can now analyze the output
from Figure 6-5. Each variable shows up as a column on the right side of the
output. Each row represents the results from a model containing the number
of variables shown in column one. The X’s at the end of each row tell you
which variables were included in that model. The number of variables in the
model starts at one and increases to six because six x variables are available
in the data set.

The models with the same number of variables are ordered by their values of
R? adjusted and Mallows C-p, from best to worst. The top-two models (for
each number of variables) are included in the computer output.

For example, rows one and two of Figure 6-5 (both marked 1 in the Vars
column) show the top-two models containing one x variable; rows three and
four show the top two models containing two x variables (and so on). Finally
the last row of Figure 6-5 shows the results of the full model containing all six
variables. (Only one model contains all six variables, so you don’t have a
second-best model in this case.)
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Figure 6-5:
Best
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procedure
results for
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distance
example.
|

Best Subsets Regression: Distance versus Hang, R_Strength . ..
Response is Distance
R L
FTF
RL110
__ee_
S S x xS
ttidt
rrbbr
eedide
Hnnl 1ln
aggiig
Mallows nttttt
Vars R-Sq_R:Sq(adi)____Czp____ s, ghhyyh __________
1 67.1 64.1 1.7 15.570 X
1 65.0 61.8 2.3 16.043 X
2 78.5 74.1 -0.0 13.206 X X
2 78.2 73.8 0.1 13.294 X X
3 80.6 74.1 1.3 13.214 X X X
3 79.5 72.7 1.6 13.581 X X X
4 81l.4 72.1 3.0 13.724 X X X X
4 80.7 72.0 3.3 13.977 X X X X
5 81.5 68.2 5.0 14.643 X X X X X
5 81.4 68.2 5.0 14.650 X X XXX
6 81.5 62.9 7.0 15.812 X X X X X X

Looking at the first two rows of Figure 6-5, the top one-variable model is the
one including hang time only. The second-best one-variable model includes

only right foot flexibility. The right foot flexibility model has a lower value of
R? and a higher Mallow’s C-p than the hang time model, which is why it’s the
second best.

Row three shows that the best two-variable model for estimating punt dis-
tance is the model containing right leg strength and overall leg strength. The
best three-variable model is in row five. It shows that the best three-variable
model includes right foot strength, right foot flexibility, and overall leg
strength. The best four-variable model is found in row seven, and includes
right foot strength, right and left foot flexibility, and overall foot strength.
The best five-variable model is found in row nine and includes every variable
except left foot strength. The only six-variable model is listed in the last row.

Choosing the best model by using R’ adjusted and Mallow’s C-p

Now among the best one-variable, two-variable, three-variable, four-variable,
and five-variable models, which one should you choose for your final multi-
ple regression model? That is, which model is the best of the best? With all
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these results, it would be easy to have a major freak out over which one to
pick, but never fear — Mallow’s is here (along with his friendly sidekick, the
R%adjusted).

Looking at Figure 6-5, you see that as the number of variables in the model
increase, R* adjusted peaks out and then drops way off. That’s because R*
adjusted takes into account the number of variables in the model and reduces
R? accordingly. You can see that R* adjusted peaks out at a level of 74.1 per-
cent for two models. The corresponding models are the top two-variable
model (right leg strength and overall leg strength) and the best three-variable
model (right foot strength, right foot flexibility, and overall leg strength).

Now look at Mallow’s C-p for these two models. Notice that Mallow’s C-p is 0
for the two-variable model and 1.3 for the three-variable model. Both values
are small compared to others in Figure 6-5, but because Mallow’s C-p is
smaller for the two-variable model and because it has one less variable in it,
you should choose the two-variable model (right leg strength and overall leg
strength) as the final model, using the best subsets procedure.

Comparing Model Selection Procedures

Upon examining the results of the previous sections, the first concern you
may have is why you don’t get the same results with all three model selection
procedures. (I suppose one could argue that if you got the same results all
the time, you would have no need for three different procedures, right? But
that’s beside the point.) All attempts at humor aside, | address this issue, as
well as compare how the procedures (from the previous sections) stack up
against one another here in this section.

Why don’t all the procedures
get the same results?

The forward and backward selection procedures’ overall goals and general
process are similar. In both the forward and backward selection procedures,
you’re trying to fit a good model to the data. In both procedures, you evalu-
ate each new model based on how it compares to the previous model that
you examined (which has only a one-variable difference). But because the
forward selection model starts at one end of the number of x variables spec-
trum and the backward selection model starts at the other end, the two pro-
cedures build their final models differently, one variable at a time. Therefore
these two models might meet in the middle and give the same model, but it is
certainly not the norm.
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In the punt distance example, you can see that in Figure 6-2 (forward selec-
tion) the computer includes hang time first because it makes the biggest con-
tribution toward estimating y. But in Figure 6-4 (backward selection), all the
variables are in the model from the get-go, and after the weakest variable (on
all counts) was eliminated (left foot flexibility), the remaining variables were
the ones strongly related to hang time (see Figure 6-1). That made hang time
a redundant variable, so it was removed.

The best subsets model takes a totally different approach from forward and
backward selection. It just looks at all possible models you could have and
chooses the best ones at each level (one, two, three variables, and so on).
This model selection procedure has no building process that goes on where
subsequent models depend on what was selected in previous steps. That
means the best subsets procedure can easily give different results than either
of the other two procedures simply because it has many more possible
models to choose from.

How do the procedures stack
up against each other?

So the big question is which model selection procedure is the best one? You
can’t find a straight answer to that. The debate over this issue goes on and
on among the various research groups that analyze their data by using model
selection procedures. All three procedures, for example, are available in
Minitab, so they are considered viable procedures. However, many statisti-
cians do prefer one model selection procedure over the others, which I reveal
to you later in this section along with the positives and negatives of each
procedure.

Looking at the positives

What is nice about each of these procedures is that they have some order to
them and they make sense. You don’t take a haphazard approach with any of
the procedures, and any two people choosing the same procedure for build-
ing the best model with the same data set would get the same answer, which
is reassuring. All three procedures also usually provide results that are rea-
sonable and final models that have interpretative value, and each has its
own plus side. The forward selection keeps the models as simple as possible;
backward selection helps you not miss any important variables; and the best
subsets model examines every possible model and makes straight compar-
isons between them.
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Because all three model selection procedures are available in Minitab, the
temptation may be to just run all three procedures, see what you get, and
choose the one you like the best. This approach wouldn’t be a good idea and
is called data fishing or data snooping, which can lead to conclusions that
others can’t confirm (for more on these no-no’s, flip to Chapter 1).

Examining the downsides

The forward and backward selection procedures are somewhat limiting in
the way they build their models. After hang time, for example, is eliminated
in the backward selection procedure (in Figure 6-4), it never appears again
in any later models. After hang time is added in the forward selection proce-
dure, it stays in every model from then on. The best subsets procedure (in
Figure 6-5), on the other hand, examines all possible models including those
containing hang time and those that don’t.

Standing out above the rest: The best subsets procedure

Because of its versatility and the comprehensive way it looks at all possible
models, the best subsets model is generally the model of choice by statisti-
cians. With six possible variables having two possibilities for each one (being
included or not being included in the model), youhave 2 * 2 * 2 * 2 % 2 % 2 =
64 possible models to look at in the best subsets procedure. Notice that this
set of all possible (64) models includes all the models shown in the step-by-
step process of forward and backward selection.



Chapter 7

When Data Throws You a Curve:
Using Nonlinear Regression

In This Chapter

Determining when a straight-line regression model isn’t enough

Fitting a polynomial to your data set

Exploring exponential models to fit your data

n introductory statistics, you concentrate on the simple linear regression

model, where you look for one quantitative variable, x, that you can use to
make a good estimate of another quantitative variable, y. The examples you
look at fell right in line with this kind of model, such as using height to esti-
mate weight or using GPA to estimate exam score. (For information on simple
linear regression models, see Chapter 4.)

Nonlinear regression comes into play in situations where you have graphed
your data on a scatterplot (a two dimensional graph showing the x variable

on the x-axis and the y variable on the y-axis), and you see a pattern emerging
that doesn’t look like a straight line, but instead looks like some type of curve.
Examples of data that follow a curve include population sizes over time,
demand for a product as a function of supply, or the length of time that a bat-
tery lasts. When a data set follows a curved pattern, the time has come to
move away from the linear regression models (Chapters 4 and 5) and move
on to a nonlinear regression model.

In this chapter, you see how to make your way around the curved road of
data that leads to nonlinear regression models. The good news is that you
can use many of the same techniques you use for regular regression and that
Minitab, in the end, does the analysis for you.
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Starting Out with Scatterplots

|
Figure 7-1:
A
scatterplot
showing the
spread of a
secret over
a six-day
period.
|

As with any type of data analysis, before you plunge in and select a model
that you think fits the data, or that is supposed to fit the data, you have to
step back and take a look at the data and see whether any patterns emerge.
To do this, look at a scatterplot of the data, and see whether or not you can
draw a smooth curve through the data and find that most of the points follow
along that curve.

Suppose you're interested in modeling how quickly a rumor spreads. One
person knows a secret, tells another person, and now two know the secret;
each of them tells a person, and now four know the secret; some of those
people may pass it on, and so it goes on down the line. Pretty soon, a large
number of people know the secret (which is a secret no longer). To collect your
data, you count the number of people who know a secret by tracking who tells
who over a six-day period. You can see a scatterplot of the data in Figure 7-1.

Correlation r = 0.906

35

254

20

Number of people who know the secret

In this situation, the explanatory variable, x, is day, and the response vari-
able, y, is the number of people who know the secret. Looking at Figure 7-1,
you can see a pattern between the values of x and y. But this pattern isn’t
linear. It curves upwards. If you tried to fit a line to this data set anyway, how
well would it fit?

To figure this out, you can look at the correlation coefficient between x and y,
which is found on Figure 7-1 to be 0.906 (see Chapter 4 for more on correla-
tion). You can interpret this correlation as a strong, positive (uphill) linear
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relationship between x and y. However in this case, the correlation is mislead-
ing, because the scatterplot appears to be curved. As with any regression
analysis, taking into account both the scatterplot and the correlation when
making a decision about how well the model being considered would fit the
data is very important. The contradiction in this example between the scat-
terplot and the correlation is a red flag telling you that a straight-line model
isn’t the best idea.

The correlation coefficient measures only the strength and direction of the
linear relationship between x and y (see Chapter 4). However, you may run
into situations (like the one shown in Figure 7-1) where a correlation can be
strong, yet the scatterplot shows a curve would fit better. Don’t rely solely
on either the scatterplot or the correlation coefficient alone to make your
decision about whether to go ahead and fit a straight line to your data.

The bottom line here is that fitting a line to data that appears to have a curved
pattern isn’t the way to go. What you need to do in this situation is explore
models that have curved patterns themselves. In the following sections, you
see two major types of nonlinear (or curved) models that are used to model
curved data: polynomials (beyond a straight line) and exponential models
(that start out small and quickly increase, or the other way around). Because
the pattern of the data in Figure 7-1 starts low and bends upward, the correct
model to fit this data is an exponential regression model. (This model would
also be appropriate for data that starts out high and bends down low.)

Handling Curves in the Road
with Polynomials

One major family of nonlinear models is the polynomial family. You use these
models when a polynomial function (beyond a straight line) best describes
the curve in the data. (For example, the data may follow the shape of a
parabola, which is a second-degree polynomial.) You typically use polynomial
models when the data follow a pattern of curves going up and down a certain
number of times. For example, suppose a doctor examines the occurrence of
heart problems in patients as it relates to their blood pressure. She finds that
patients with very low or very high blood pressure had a higher occurrence
of problems, while patients whose blood pressure fell in the middle, consti-
tuting the normal range, had fewer problems. This pattern of data has a
U-shape, and a parabola would fit this data well.

In this section, you see what a polynomial regression model is, how you can
search for a good-fitting polynomial for your data, and how you can assess
polynomial models.
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|
Figure 7-2:
Examples of
second-,
third-, and
fourth-
degree
polynomials.
|

Bringing back polynomials

You may recall from algebra that a polynomial is a sum of x terms raised to a
variety of powers, and each x is preceded by a constant called the coefficient of
that term. For example, the model y = 2x + 3x* + 6x* is a polynomial. The general
form for a polynomial regression model is y = By + Byx" + Box® + Bsx+ . .. + Brx”.
Here, k represents the total number of terms in the model.

An example of a polynomial regression model is y = 2x + 3x*. This model is
called a second-degree (or quadratic) polynomial, because the largest exponent
is a 2. A second-degree polynomial forms a parabola shape — either an upside-
down or right-side-up bowl; it changes direction one time (see Figure 7-2a). A
third-degree polynomial typically (those having 3 as the highest power of x) has
a sideways S-shape, changing directions two times (see Figure 7-2b). Fourth-
degree polynomials (those involving x*) typically change directions in curva-
ture three times to look like the letter W or the letter M, depending on whether
they’re upside down or right-side up (see Figure 7-2¢). In general, if the largest
exponent on the polynomial is n, the number of curve changes in the graph is
typically n — 1. (For more information on graphs of polynomials, see your alge-
bra textbook or Algebra For Dummies by Mary Jane Sterling [Wiley].)

The nonlinear models in this chapter involve only one explanatory variable,
x. You can include more explanatory variables in a nonlinear regression, rais-
ing each separate variable to a power. These models are beyond the scope
of this book; I give you information on basic multiple regression models in
Chapter 5.

rises left 6~ rises right

x
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Searching for the best polynomial model

When fitting a polynomial regression model to your data, the most important
idea is to always start with the simplest model possible and work your way
up as you need to. Don’t plunge in with a high-order polynomial regression
model right off the bat. Here are a couple reasons why:

1 High-order polynomials are hard to interpret, and their models are
complex. For example, with a straight line you can interpret the values
of the y-intercept and slope easily, but interpreting a tenth-degree poly-
nomial is hard (putting it mildly).

v~ High-order polynomials also tend to cause overfitting. If you're fitting
the model as close as you can to every single point in a data set, your
model may not hold for a new data set; your estimates for y could be
way off.

To fit a polynomial to a dataset in Minitab, go to Stat>Regression>Fitted Line
Plot> and click on the type of regression model you want: linear, quadratic,
or cubic. (It doesn’t go beyond a second-degree polynomial; however, these
options should cover 90 percent of the cases.) Click on the y variable from
the left-hand box and click Select; this variable will appear in the Response
(v) box. Click on the x variable from the left-hand box and click Select; it will
appear in the Predictor (x) box. Click OK.

Following are the steps for fitting a polynomial model to your data (statistical
software can jump in and fit the models for you after you tell it which ones
to fit):

1. Try to fit a first-degree polynomial (straight line) to the data first:
y=by + bx.

This model is for a straight line. If it doesn’t fit (using both the correla-
tion coefficient, r, and the scatterplot), move to step two.

2. Try to fit a second-degree polynomial (parabola): y = b, + b,x + b,x°.

If the data fits the model well, stop here (see the section on assessing
model fit). If the model still doesn’t fit well, go to step three.

3. Try to fit a third-degree polynomial: y = b, + b;x + b,x* + b;x".

If the data fits the model well (check out the section on assessing model
fit), don’t go on to the next polynomial. If the model still doesn’t fit well,
go to step four.

4. Continue trying to fit higher-order polynomials until you find one that
fits or until the order of the polynomial (largest exponent) is simply
getting too large to find a reliable pattern.
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How large is too large? Typically, if you can’t fit the data by the time the
degree of the polynomial reaches three, then perhaps a different type of
model would work better. Or you may determine that you observe too
much scatter and haphazard behavior in the data to try to fit any model.

\\3

Minitab can do each of these steps for you up to degree two (step two); from
there, you need a more sophisticated statistical software program, such as
SAS or SPSS. However, most of the models you need to fit go up to the
second-degree polynomials. In the next section, you use a second-degree
polynomial to predict a student’s quiz score based on his or her study time.

Using a second-degree polynomial
to pass the quiz

The first step in fitting a polynomial model is to graph the data in a scatter-
plot and see whether the data fall into a particular pattern. Many different
types of polynomials exist to fit data that has a curved type of pattern. One
of the most common patterns found in curved data is the quadratic pattern,
or second-degree polynomial, which goes up and comes back down, or goes
down and comes back up, as the x values move from left to right (see Fig-

ure 7-2a). The second-degree (quadratic) polynomial is the simplest and most
commonly used polynomial beyond the straight line, so it deserves special
consideration.

This section is dedicated to looking at a second-degree polynomial. You can
see the exploratory process of graphing data and looking at the graph’s
shape by using the data involving quiz scores and study time. (After you
master the basic ideas based on second-degree polynomials, you can apply
them to polynomials with higher powers.)

Suppose 20 students take a statistics quiz. You record the quiz scores (which
have a maximum score of ten) and the number of hours students reported
studying for the quiz. (You can see the results in Figure 7-3.)

Looking at Figure 7-3, it appears that three camps of students are in this
class. Camp One, on the left end of the x-axis, understands the stuff (as
reflected in their higher scores) but didn’t have to study hardly at all
(because their study time on the x-axis is low). Camp Three also did very well
on the quiz (as indicated by their high quiz scores), but had to study a great
deal to get that grade (as seen on the far-right end of the x-axis). The stu-
dents in the middle, Camp Two, didn’t seem to fare well. All in all, from the
scatterplot in Figure 7-3, it does appear that study time may explain quiz
scores on some level, and explains it in a way indicative of a second-degree
polynomial. So a quadratic regression model may fit this data.
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see the data and the straight line that he tried to fit it in. The correlation as
shown in the figure is —0.033, which is basically zero. This correlation means
that no linear relationship lies between x and y. (It doesn’t mean that no rela-
tionship is present at all, just not a linear relationship — see Chapter 4 for
more on linear relationships.) So trying to fit a straight line here was indeed a

bad idea.
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Figure 7-5:
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After you know that a quadratic polynomial seems to be a good fit for the
data, the next challenge is finding the equation for that particular parabola
that fits the data, among all the possible parabolas out there. Remember from
algebra that the general equation of a parabola is y = ax® + bx + c. Now you
have to find the values of a, b, and c that create the best-fitting parabola to
the data (just like you find the a and the b that create the best-fitting line to
data in a linear regression model). That is the object of the regression model.

Say that you fit a quadratic regression model to the quiz-score data by using
Minitab (see the Minitab output in Figure 7-5 and the instructions for using
Minitab to fit this model in the previous section). On the top line of the
output, you can see that the equation of the best-fitting parabola is quiz
score = 9.82 - 6.15 * study time + 1.00 * study time squared. (Note that y is
quiz score and x is study time in this example because you’re using study
time to predict quiz score.)

Polynomial Regression Analysis: Quiz Score versus Study Time

The regression equation is
Quiz score = 9.823-6.149 study time + 1.003 study time**2

S = 1.04825 R—-Sq = 91.7% R-Sq(adi) = 90.7%

The scatterplot of the quiz-score data and the parabola that was fit to the
data via the regression model is shown in Figure 7-6. From algebra, you may
remember that a positive coefficient on the quadratic term (here a = 1.00)
means the bowl is right-side-up, which you can see is the case here.

Looking at Figure 7-6, it appears that the quadratic model fits this data pretty
well, because the data fall closely to the curve that Minitab found. However,
data analysts can’t live by scatterplots alone. In the next section, you figure
out how to assess the fit of a polynomial model in more detail.

Assessing the fit of a polynomial model

You have made a scatterplot of your data, and you saw a curved pattern. You
used polynomial regression to fit a model to the data; the model appears to
fit well because the points follow closely to the curve Minitab found. But
don’t stop there. To make sure your results can be generalized to the popula-
tion from which your data was taken, you need to do a little more checking
beyond just the graph to make sure your model fits well.
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|
Figure 7-6:
The
parabola
appears to
fit the quiz-
score data
nicely.
|
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To assess the fit of any model beyond the usual suspect, a scatterplot of

the data, you look at two additional items. Those items are the value of R*
adjusted and the residual plots, which you typically check in that order after
assessing the scatterplot.

All three assessments must agree before you can conclude that the model
fits. If the three assessments don’t agree, you’ll likely have to use a different
model to fit the data besides a polynomial model, or you'll have to change
the units of the data to help a polynomial model fit better. However, the latter
fix is outside the scope of intermediate statistics, and you probably will not
encounter that situation.

In the following sections, you take a deeper look at the value of R* adjusted
and the residual plots and figure out how you can use them to assess your
model’s fit. (You can find more info on the scatterplot in the section “Starting
out with Scatterplots” earlier in this chapter.)

Examining R and R adjusted

Finding R?, the coefficient of determination (see Chapter 5 for full details), is
like the day of reckoning for any model. You can find R* on your regression
output, listed as “R-Sq” right under the portion of the output where the
coefficients of the variables are shown (see Figure 7-5).
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Figure 7-5 shows the Minitab output for the quiz-score data example; the
value of R’ in this case is 91.7 percent. The value of R* tells you what percent-
age of the variation in the y-values the model can explain. To interpret this
percentage, the closer a value of R? is to 100 percent, the better. You can con-
sider values of R*over 80 percent good. Values under 60 percent aren’t good.
Those in between I'd consider to be so-so; they could be better. (This assess-
ment is just my rule of thumb; opinions may vary a bit from one statistician
to another.)

However, you can find such a thing in statistics as too many variables spoil-
ing the pot. Right beside R? on the computer output from any reg