
by Doug Sahlin and Bill Sanders

Flash® CS4
A L L - I N - O N E

FOR

DUMmIES
‰

01_385395-ffirs.indd iii01_385395-ffirs.indd iii 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

01_385395-ffirs.indd ii01_385395-ffirs.indd ii 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

Flash® CS4
A L L - I N - O N E

FOR

DUMmIES
‰

01_385395-ffirs.indd i01_385395-ffirs.indd i 10/28/08 7:59:14 PM10/28/08 7:59:14 PM

01_385395-ffirs.indd ii01_385395-ffirs.indd ii 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

by Doug Sahlin and Bill Sanders

Flash® CS4
A L L - I N - O N E

FOR

DUMmIES
‰

01_385395-ffirs.indd iii01_385395-ffirs.indd iii 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

Flash® CS4 All-in-One For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
Adobe and Flash are registered trademarks of Adobe Systems Incorporated in the United States and/or
other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.,
is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008939711

ISBN: 978-0-470-38539-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_385395-ffirs.indd iv01_385395-ffirs.indd iv 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

www.wiley.com

About the Authors
Doug Sahlin: Doug Sahlin is an author, a photographer, and a Web designer

living in Lakeland, Florida. He is the author of more than 20 books on Web

design, image editing, and digital photography. Recent titles include How
To Do Everything: Adobe Acrobat 9.0 and Digital Photography Workbook For
Dummies (Wiley). Many of his books have been bestsellers at Amazon.com.

Doug uses Flash to create Web content and multimedia presentations for his

clients.

Bill Sanders: Bill Sanders is faculty in the University of Hartford’s Multimedia

Web Design and Development program and owner of Sandlight Productions.

He also works as a developer, software architect, and consultant for Adobe

Flash Media Server and Flash. His latest project is Sandlight Green, a series of

applications to replace carbon-burning commutes with interactive software

for Internet-based management. He has published 49 books on computer-

related topics including several on Flash and ActionScript.

01_385395-ffirs.indd v01_385395-ffirs.indd v 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

01_385395-ffirs.indd vi01_385395-ffirs.indd vi 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

Dedication
Doug Sahlin: Dedicated to the memory of my loving mother, Inez. Miss you,

kiddo!

Bill Sanders: Dedicated to my folks, William and Eleanor Sanders.

Authors’ Acknowledgments
Doug Sahlin: Thanks to Steve Hayes, for making this project possible. Kudos

to my coauthor, Bill Sanders, for his knowledge of ActionScript and for being

a great guy to work with. A tip of the hat to project editor extraordinaire Kim

Darosett, for keeping my inbox full and making this a better book. Thanks

to Rebecca Whitney, for understanding my sense of humor, being a kindred

spirit, and manicuring the text in this book to perfection. Kudos to the entire

Wiley publishing team — you guys and gals are the greatest! Special thanks

to Margot Hutchison, for being legally blonde and the best agent an author

could hope for. As always, thanks to my friends, mentors, and fellow authors

for your support and inspiration. Special thanks to my family, especially you,

Karen and Ted. A tip of the hat too to Niki, the furball who shares my space,

who is also known as Queen of the Universe.

Bill Sanders: Thanks to Doug Sahlin for being a perfect coauthor, knowl-

edgeable, and amiable. The folks at Adobe were most helpful in providing

assistance with queries about Flash as were fellow designers and developers

who share the Flash adventure. Steve Hayes and Kim Darosett deftly steered

the project and myself through the unique style of this series. Likewise, I

want to thank Kathy Simpson, Becky Whitney, and James Russell who con-

tributed to the copy and developmental editing. I imagined them having a tag

team to replace each other as they fell exhausted from my manuscript, and

after being given a stiff shot of brandy, gamely returning to do battle with

the tome. Danilo Celic did the technical editing made sure that all the code

worked as promised, and I’m glad he did! Margot Hutchinson did her usual

marvelous job of bringing author and publisher together. My wife Delia was

as supportive as always. My dogs WillDe and Ruby liked the fact that I was

available for a pat on the head and so encouraged further writing.

01_385395-ffirs.indd vii01_385395-ffirs.indd vii 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and

Media Development

Project Editor: Kim Darosett

Executive Editor: Steven Hayes

Copy Editors: James Russell, Kathy Simpson,

Rebecca Whitney

Technical Editor: Danilo Celic

Editorial Manager: Leah Cameron

Media Development Project Manager:

Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Assistant Producers:

Angela Denny, Josh Frank, Kit Malone,

Shawn Patrick

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Katherine Key

Layout and Graphics: Reuben Davis,

Stephanie Jumper, Christin Swinford,

Ronald Terry

Proofreaders: Laura Albert, Linda Seifert

Indexer: Slivoskey Indexing Services

Contributions:

Corbis Digital Stock: pgs. 33, 47, 77, 91, 241, 445

Nic Miller/Digital Vision/Getty Images: pg. 207

PhotoDisc, Inc.: pgs. 123, 141, 179, 385

PhotoDisc/Getty Images: pg. 233

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_385395-ffirs.indd viii01_385395-ffirs.indd viii 10/28/08 7:59:15 PM10/28/08 7:59:15 PM

Contents at a Glance
Introduction .. 1

Book I: Introducing Flash ... 7
Chapter 1: Exploring Flash.. 9

Chapter 2: Introducing Graphics, Symbols, and Animations 33

Chapter 3: The Engine Beneath Flash: ActionScript 3... 47

Chapter 4: Creating Your First Flash Project ... 63

Chapter 5: Pushing the Panic Button — Help!.. 77

Book II: Creating Graphics ... 89
Chapter 1: Creating Flashy Graphics ... 91

Chapter 2: A Splash of Color, S’il Vous Plaît ... 123

Chapter 3: Getting the Word Out with Text ... 141

Chapter 4: Creating Graphic Symbols for Fun and Profi t ... 159

Chapter 5: Organizing Your Work .. 179

Chapter 6: Working with Images (Or, Bumpin’ with Bitmaps) 189

Book III: Animating Graphics 205
Chapter 1: Working with the Flash Timeline .. 207

Chapter 2: Creating a Flash Animation ... 215

Chapter 3: Animating Text .. 233

Chapter 4: Advanced Animation Techniques... 241

Book IV: Adding ActionScript 3.0 Magic 265
Chapter 1: Who’s Afraid of the Big Bad ActionScript 3.0? .. 267

Chapter 2: Working Off the Timeline with Symbol and Component Classes 283

Chapter 3: Formal Features and Structures ... 305

Chapter 4: Making Decisions . . . and Repeating Yourself .. 321

Chapter 5: Harnessing the Power of ActionScript 3.0 ... 337

Book V: Working with Flash Audio 359
Chapter 1: Understanding Web Audio .. 361

Chapter 2: Adding Sound to a Flash Production .. 371

Chapter 3: Editing Sound Files ... 385

02_385395-ftoc.indd ix02_385395-ftoc.indd ix 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Book VI: Working with Flash Video 391
Chapter 1: Playing Video with Flash: The Producer’s Chair 393

Chapter 2: From Camera to Desktop: Getting Video Ready for Prime Time 413

Chapter 3: Getting Video Files Ready for Flash .. 427

Chapter 4: Getting Fancy with Video ... 445

Chapter 5: Live! From Your Desktop! .. 463

Chapter 6: Shooting a Video That Looks Good on the Web 485

Book VII: Getting Interactive 495
Chapter 1: Adding Buttons to a Flash Project .. 497

Chapter 2: Using Flash Components ... 511

Chapter 3: The Art and Science of Creating a Flash Application 533

Chapter 4: Up in the AIR.. 555

Book VIII: Finalizing a Flash Project 575
Chapter 1: Testing and Debugging a Flash Project .. 577

Chapter 2: Fine-Tuning and Optimizing Your Flash Project 585

Chapter 3: Dealing with Bandwidth ... 589

Chapter 4: Publishing Your Flash Project ... 599

Index .. 615

02_385395-ftoc.indd x02_385395-ftoc.indd x 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Table of Contents
Introduction ... 1

About This Book .. 1

Conventions Used in This Book ... 2

What You Don’t Have to Read .. 2

Foolish Assumptions ... 2

How This Book Is Organized .. 2

Book I: Introducing Flash .. 3

Book II: Creating Graphics .. 3

Book III: Animating Graphics .. 3

Book IV: Adding ActionScript 3.0 Magic ... 3

Book V: Working with Flash Audio .. 4

Book VI: Working with Flash Video ... 4

Book VII: Getting Interactive... 4

Book VIII: Finalizing a Flash Project... 4

Companion Web site ... 4

 Icons Used in This Book .. 5

Where to Go from Here ... 5

Book I: Introducing Flash .. 7

Chapter 1: Exploring Flash .9
Finding Out What’s New in Flash CS4 ... 10

Discovering the new features ... 10

Introducing the new tools ... 11

Flash CS4 and you .. 12

Exploring the Flash Workspace ... 15

Getting to know the menu bar .. 16

Examining the display bar .. 18

Taking the stage ... 19

Exploring the panels .. 19

Getting chummy with the Tools panel .. 22

Customizing the Workspace .. 25

Customizing the Tools panel .. 25

Rearranging the workspace .. 26

Saving a custom workspace ... 26

Managing workspaces ... 28

Changing keyboard shortcuts .. 28

Setting Flash preferences .. 31

02_385395-ftoc.indd xi02_385395-ftoc.indd xi 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Flash CS4 All-in-One For Dummiesxii

Chapter 2: Introducing Graphics, Symbols, and Animations 33
Working with Flash Graphics ... 33

Creating graphics with drawing tools ... 34

Introducing the Text tool .. 35

Getting colorful .. 36

Finding Out about Symbols and Instances ... 37

Understanding graphic symbols .. 38

Buttons, buttons, and more buttons ... 38

Changing movie clip properties ... 39

Checking out symbols from the library .. 40

Introducing Flash Animation .. 41

Frame-by-frame animation (the old school) 41

Motion tweening will move ya.. 42

Shape tweening will morph ya ... 43

Inverse kinematics is bad to the bone .. 44

Chapter 3: The Engine Beneath Flash: ActionScript 3.47
Understanding What ActionScript 3 Can Do for You 47

Controlling the Timeline ... 48

Working with the Timeline ... 49

Creating Timeline Functions with ActionScript ... 49

Creating two buttons ... 49

Formatting the buttons ... 50

Adding the ActionScript .. 52

The ActionScript’s actions ... 52

Bringing in New Objects ... 53

Providing information just in time ... 55

Organizing tasks ... 55

Looking at the Many Levels of ActionScript .. 56

The Timeline code ... 56

ActionScript fi les and classes ... 59

Chapter 4: Creating Your First Flash Project .63
Planning Your Project ... 63

Mapping out the project ... 64

Determining the scope of your project ... 65

Making a list and checking it twice .. 66

Covering your assets ... 66

Creating Your First Flash Document ... 66

Ye olde Welcome screen ... 67

Creating a document from a template .. 68

Creating a document from scratch .. 69

Setting the document size, background color, and frame rate 70

Creating your fi rst animation ... 72

02_385395-ftoc.indd xii02_385395-ftoc.indd xii 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Table of Contents xiii

Chapter 5: Pushing the Panic Button — Help! .77
Getting By with a Little Help from Flash ... 77

Using Flash Help ... 78

Getting ActionScript help ... 79

Updating Flash ... 80

Extending Flash .. 83

Finding Flash extensions ... 83

Installing Flash extensions .. 84

Managing Flash extensions ... 85

Flash Online Resources .. 86

Book II: Creating Graphics .. 89

Chapter 1: Creating Flashy Graphics .91
A Tale of Two Graphic Types ... 91

Understanding vector graphics ... 92

Understanding bitmap (raster) graphics .. 92

Creating Shapes ... 93

Using the Primitive Oval and Rectangle tools 93

Creating shapes with the Oval and Rectangle tools 98

Mastering the Polystar tool .. 100

Creating unique shapes with the Oval Rectangle

and Polystar tools .. 100

Creating lines — the straight and narrow 103

Using the basic shape tools in Object Drawing mode................... 104

Modifying basic shapes ... 104

Using the Drawing Tools ... 107

Drawing with the Pencil tool .. 107

Painting with the Brush tool ... 109

Using the Spray Brush tool ... 110

Creating paths with the Pen tool ... 111

The Eraser tool — the quicker picker-upper 113

Modifying Objects ... 114

Selecting objects .. 114

Modifying shapes point by point ... 115

Modifying objects with the Pen tool and friends 116

Modifying objects with the Property inspector 116

Using the Free Transform tool ... 117

The Transform panel — a geek’s best friend 119

The Info panel — read all about it ... 120

The Align panel — when precision counts 121

Creating groups .. 122

02_385395-ftoc.indd xiii02_385395-ftoc.indd xiii 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Flash CS4 All-in-One For Dummiesxiv

Chapter 2: A Splash of Color, S’il Vous Plaît .123
Getting to Know Color: The Skinny on RGB, HSB, and Hexadecimal 123

Stroked and Filled, but Not Punched .. 124

Defi ning the stroke color .. 125

Defi ning the fi ll color ... 126

Finding Your Way around the Swatches Panel .. 127

Understanding Web-safe colors ... 127

Getting to know the Swatches panel ... 127

Creating a custom color set.. 129

Mixing a Color .. 131

Getting up close and personal with the Color panel 131

Mixing a swatch of color ... 131

Creating a gradient .. 133

Using the Transform Gradient tool .. 136

Changing Colors ... 137

Using the Ink Bottle tool ... 137

Using the Paint Bucket tool .. 138

Using the Kuler Extension .. 138

Chapter 3: Getting the Word Out with Text .141
Using the Text Tool ... 141

Creating static text .. 142

Adding a hyperlink to text .. 143

Creating input text ... 144

Creating dynamic text ... 144

Formatting Text ... 145

Specifying text character parameters ... 145

Working with paragraph text ... 148

Creating Text .. 149

Font considerations ... 150

Converting text to graphics .. 151

Editing Text Fields ... 152

Resizing a text fi eld .. 152

Editing text .. 152

Spell-checking text fi elds .. 152

Setting up the Flash spell check... 153

Running the Flash spell checker .. 154

Using the Find and Replace Command ... 156

Chapter 4: Creating Graphic Symbols for Fun and Profi t.159
Understanding Symbols and Instances ... 159

Creating Symbols ... 160

Understanding symbol types ... 160

Converting an object to a symbol .. 161

Creating a new symbol .. 163

Spraying symbols ... 166

02_385395-ftoc.indd xiv02_385395-ftoc.indd xiv 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Table of Contents xv

Editing Symbols ... 168

Editing symbols in place ... 168

Using symbol-editing mode .. 169

Editing symbols in another window .. 169

Swapping symbols ... 170

Modifying symbol instance properties ... 171

Using the Document Library .. 172

Creating library folders ... 172

Duplicating symbols .. 174

Understanding that default names are not your friends 175

Keeping the document library neat and tidy:

The Felix Unger factor ... 175

Importing symbols from another Flash document 176

Chapter 5: Organizing Your Work .179
Organizing a Project with Layers .. 179

Creating a new layer .. 180

Creating layer folders .. 181

Editing layers .. 182

Editing layer properties .. 183

Being Precise with Rulers and Guides and the Grid 184

Using rulers... 185

Creating guides .. 185

Using the grid ... 186

Chapter 6: Working with Images (Or, Bumpin’ with Bitmaps).189
Knowing Your File Formats .. 189

Preparing Images for Flash ... 191

Importing Image Sequences ... 193

Importing a Photoshop Document with Layers 195

Tracing Bitmaps ... 196

Editing Images .. 198

Editing images in an external editor .. 199

Editing image properties ... 199

Creating a Bitmap Fill .. 201

Swapping Bitmaps — It’s Legal in All 50 States 202

Book III: Animating Graphics 205

Chapter 1: Working with the Flash Timeline. .207
Getting to Know the Timeline .. 207

Frames and Keyframes and Blank Keyframes .. 208

Creating Frames, Keyframes, and Blank Keyframes 209

Adding a frame ... 209

Adding multiple frames ... 210

02_385395-ftoc.indd xv02_385395-ftoc.indd xv 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Flash CS4 All-in-One For Dummiesxvi

Adding a keyframe ... 210

Adding multiple keyframes ... 211

Adding a blank keyframe .. 211

Editing Frames ... 212

Selecting a frame .. 212

Copying a frame ... 212

Managing a Timeline ... 213

Chapter 2: Creating a Flash Animation. .215
Creating an Animated Background ... 216

Creating a Frame-by-Frame Animation ... 217

Making a Motion Tween Animation ... 218

Building a Shape Tween Animation ... 220

Reversing an Animation .. 222

Simulating 3D Animation .. 223

Using the 3D Rotation tool .. 224

Using the 3D Translation tool... 225

Animating with the Spray Brush Tool ... 226

Creating an Inverse Kinematics (IK) Animation 227

Creating the IK chain minus the daisies ... 227

Constraining the bones ... 229

Creating the animation .. 231

Using the Bind tool .. 232

Chapter 3: Animating Text .233
Creating Typewriter Text ... 233

Creating Flying Text .. 235

Chapter 4: Advanced Animation Techniques .241
Using Motion Presets .. 241

Creating a motion preset .. 242

Managing motion presets ... 243

Manually Editing a Motion Path ... 244

Editing Motion Tween Animations .. 245

Fine-tuning the animation ... 245

Introducing the Motion Editor ... 249

Understanding nonroving and roving keyframes 253

Copying Motion .. 254

Using the Copy Motion command ... 254

Copying motion using ActionScript ... 255

Editing a Shape Tween Animation ... 258

Editing Multiple Frames and Other Delights .. 261

Using onion skins ... 261

Editing multiple frames ... 261

02_385395-ftoc.indd xvi02_385395-ftoc.indd xvi 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Table of Contents xvii

Book IV: Adding ActionScript 3.0 Magic 265

Chapter 1: Who’s Afraid of the Big Bad ActionScript 3.0? 267
Vive la Différence: New versus Old ActionScript 268

Button scripts ... 268

Bossing around movie clip scripts .. 271

Movin’ On the Timeline .. 273

Controlling Movie Clip Timelines .. 276

Chapter 2: Working Off the Timeline with Symbol
and Component Classes .283

Breaking the Timeline Habit ... 284

Forming a tag team with ActionScript and a Flash fi le 284

Comments and clip code .. 286

The world’s simplest class ... 287

Code and Design Made Easy .. 295

Going back to instance names ... 296

Easy application and easy objects... 296

The Simple Power of User Interface (UI) Component Classes 299

Choosing from a list ... 299

Don’t quote me! .. 301

Chapter 3: Formal Features and Structures .305
Checkin’ Out the Basics: “My, My, I Declare!” .. 306

You are soooo not my type! ... 306

Access denied! Setting access .. 312

Operators: Assign, Compare, and Do the Math 315

Operator? Operator? ... 315

Elementary logic, my dear Watson .. 317

Chapter 4: Making Decisions . . . and Repeating Yourself321
On One Condition! (Or, Maybe More than One):

Conditional Statements ... 322

The if statement ... 322

The else clause... 323

Let’s do the switch! ... 325

Let the Looping Computer Do the Work .. 329

The for loop .. 329

The foreign . . . er, for..in loop .. 331

The for each..in loop ... 332

The while and do..while loops .. 334

02_385395-ftoc.indd xvii02_385395-ftoc.indd xvii 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Flash CS4 All-in-One For Dummiesxviii

Chapter 5: Harnessing the Power of ActionScript 3.0337
Meet the Gang: Arrays .. 338

Creating an array ... 338

Getting pushy: Adding data to an array .. 339

pop() goes the element! Retrieving data from an array 339

Sorting with an array ... 341

Array practice .. 341

New in Flash CS4: Vectors .. 345

Checking out non-numeric ID for vector elements 345

Using the forEach() method .. 347

Look what the cat dragged in! .. 350

An Introduction to ActionScript Graphic Programming 351

Get in Shape! ... 351

The triangle and the vector .. 355

Book V: Working with Flash Audio 359

Chapter 1: Understanding Web Audio .361
Exploring Flash-Sanctioned Audio Formats ... 361

Understanding Bit Depths, Data Rates, and Sample Rates 362

Recording Hardware ... 364

Zoom H2 ... 364

Blue Snowball ... 365

Blue Snowfl ake ... 366

Sound-Editing Software ... 367

Adobe Audition .. 367

Sony Sound Forge .. 368

Sony ACID Music Studio (Windows only) 369

Chapter 2: Adding Sound to a Flash Production371
Importing Audio ... 371

Using Sound in a Project ... 373

Adding a sound from the document library 374

Synching sound .. 374

Adding sound effects ... 375

Adding Sound to Buttons .. 376

Using the Flash Sounds Library ... 377

Use ActionScript to Load an External Sound File 378

Using ActionScript to Load a Soundtrack .. 381

Chapter 3: Editing Sound Files .385
Optimizing Sound for Your Project ... 385

Editing Your Sound Files .. 388

Editing sound in Flash ... 388

Editing in an external editor ... 390

02_385395-ftoc.indd xviii02_385395-ftoc.indd xviii 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Table of Contents xix

Book VI: Working with Flash Video 391

Chapter 1: Playing Video with Flash: The Producer’s Chair.393
What Is Web Video? ... 393

Embedded Video in Flash: Old School .. 394

Converting a video fi le for use in Flash ... 395

Embedding the video in a Flash fi le ... 395

Progressive Downloading: Almost Streaming from a Web Server 399

Understanding progressive downloading 399

Creating a progressive download .. 400

Changing videos ... 405

Changing the appearance of the play controls 407

Streaming Video: Leaving the Socket Wide Open 409

HTTP and RTMP: A tale of two protocols 410

Enter Flash Media Server .. 410

Chapter 2: From Camera to Desktop:
Getting Video Ready for Prime Time. .413

Whatcha Gonna Do? Video Camera or Webcam 413

Choosing a Webcam .. 414

Choosing a video camera .. 416

Free Resources for Creating Videos .. 416

Windows Movie Maker .. 417

Adobe Flash Media Live Encoder (Windows) 419

Webcam software .. 421

iMovie (Macintosh) ... 422

Chapter 3: Getting Video Files Ready for Flash.427
Managing Postproduction before Conversion ... 428

Choosing File Types for Conversion ... 429

Converting Files with Default Options .. 429

Customizing Conversions ... 433

Choosing a compression codec ... 433

Managing bandwidth ... 433

Trimming Your Video: A Little Nip and Tuck ... 434

Fine-Tuning Your Settings .. 435

Filters ... 436

Format ... 437

Video.. 437

Audio ... 440

Others .. 441

Adding Cue Points ... 442

Chapter 4: Getting Fancy with Video .445
Making Your Own Video Player ... 445

Understanding the process .. 445

Creating a video player ... 446

02_385395-ftoc.indd xix02_385395-ftoc.indd xix 10/28/08 7:59:33 PM10/28/08 7:59:33 PM

Flash CS4 All-in-One For Dummiesxx

Getting to the Cue Points .. 448

Extracting and displaying cue points .. 448

Working with cue point properties ... 450

Managing Metadata ... 451

Putting on a Show with ActionScript Cue Points 453

Captioning a Video .. 458

Using timed text in an XML fi le .. 458

Launching the captions ... 459

Chapter 5: Live! From Your Desktop! .463
Understanding Streaming versus Broadcasting 463

Streaming media .. 464

Open socket technology ... 464

Streaming Media with Flash Media Server ... 464

Installing the server ... 465

Connecting to the server .. 467

Confi guring your connection .. 468

Making a Live Audio/Video Receiver .. 469

Making an inventory .. 470

Creating the receiver ... 471

Testing the player .. 476

Creating a Universal Chat Application .. 477

Sending video and audio ... 478

Making the server-side application ... 479

Creating the chat application ... 480

Testing the application ... 483

Chapter 6: Shooting a Video That Looks Good on the Web 485
Getting It Right in the Camera .. 485

Panning, Zooming, and Other Delights ... 487

To zoom or not to zoom? .. 488

Panning smoothly and at the right speed 488

Using a tripod ... 488

Composing a Scene ... 489

Lights, Camera, Action! ... 490

Being a director .. 490

Telling a story ... 491

Conducting an interview ... 491

Editing DV for the Web ... 491

The cutting-room fl oor .. 492

Transitions, transitions ... 493

Beginning and ending credits ... 493

Rendering for the Web .. 494

02_385395-ftoc.indd xx02_385395-ftoc.indd xx 10/28/08 7:59:34 PM10/28/08 7:59:34 PM

Table of Contents xxi

Book VII: Getting Interactive..................................... 495

Chapter 1: Adding Buttons to a Flash Project .497
Creating Buttons .. 497

Creating a multistate button .. 498

Creating an invisible button ... 499

Creating an animated button .. 501

Creating a navigation menu with buttons....................................... 502

Using the Button Library .. 505

Making Buttons Functional with ActionScript ... 506

Creating the ActionScript Code to Make a Button Interactive 507

Chapter 2: Using Flash Components .511
Working with Flash Components ... 511

Using the List and Label Components .. 512

Creating a calculator application ... 512

Adding a CHANGE choice ... 515

Extending visible selections without scrolling 516

The Check Box and Radio Button: Making Life Easier for the User 517

Reading results ... 518

Creating a swinging shop .. 519

Creating an Interface with Flash Components ... 523

Setting up the components ... 524

Tracking the elements ... 525

Loading As You Go: Why You’ll Love the UILoader 525

Graphic versus SWF fi les... 526

What about loading text and XML fi les? ... 527

Creating the Bottom Feeder Travel Agency Web Site 528

Adding the site’s components .. 528

Adding text ... 528

Adding maps ... 529

Finishing the application .. 530

Chapter 3: The Art and Science of Creating a Flash Application . . .533
Organizing a Flash Page .. 533

Separating static and dynamic elements .. 534

Laying out the parts .. 535

Organizing the layout for ActionScript ... 538

Styling Code .. 543

Formatting the TextField class with the TextFormat class 543

Applying dynamic text style to UI components 544

02_385395-ftoc.indd xxi02_385395-ftoc.indd xxi 10/28/08 7:59:34 PM10/28/08 7:59:34 PM

Flash CS4 All-in-One For Dummiesxxii

Chapter 4: Up in the AIR .555
The AIR on Your Desktop ... 555

Making a Simple AIR Application ... 556

Creating the Flash fi le .. 556

Creating the ActionScript fi le ... 558

Publishing the AIR fi le ... 560

Installing and testing the application .. 562

Converting Standard Flash Applications to AIR 565

Made for AIR: Using ActionScript Exclusively for AIR 566

Making a Desktop AIR Browser .. 567

Using the File class .. 567

Creating the AIR application .. 568

Modifying the AIR application .. 573

Book VIII: Finalizing a Flash Project 575

Chapter 1: Testing and Debugging a Flash Project 577
Testing a Movie .. 577

Testing a Movie in Another Window ... 578

Previewing a Movie ... 579

Debugging a Movie .. 579

Setting breakpoints .. 580

Using the debugger .. 580

Chapter 2: Fine-Tuning and Optimizing Your Flash Project 585
Using the Movie Explorer ... 585

Optimizing a Flash Movie ... 587

Chapter 3: Dealing with Bandwidth .589
Using the Bandwidth Profi ler ... 589

Creating a Preloader ... 592

Adding ActionScript to the preloader ... 594

Displaying the percentage of a fi le that’s been loaded 596

Chapter 4: Publishing Your Flash Project .599
Publishing a Flash File ... 599

Specifying publish settings ... 600

Publishing Flash documents in other formats 608

Integrating Flash Movies with HTML Documents 613

Index ... 615

02_385395-ftoc.indd xxii02_385395-ftoc.indd xxii 10/28/08 7:59:34 PM10/28/08 7:59:34 PM

Introduction

Welcome to Flash CS4 All-in-One For Dummies. Our goal when writing

this book was to share our enthusiasm for Flash and, at the same

time, demystify the application. You can do so many things with Flash that

it becomes mind boggling. The minibooks in this reference are designed to

take the boggle out of your mind and show you how to use Flash to create

Web banners, animations, and other delights. We also delve into the topics

of ActionScript and Flash video.

If you’re reading this introduction in a bookstore and deciding whether this

Flash book is the one for you, we want to give you a few facts. The authors

of this book are card-carrying geeks who love working in Flash. We’re also

professional authors, which means that we value our readers. We don’t

overload you with technical terms. Each section was written as though we

were looking over a friend’s shoulder while they were working with Flash

and then showing them how to work smarter and not harder. We’ve also

injected enough humor to keep you awake while learning Flash, and (we

hope) to make you chuckle out loud at least once per chapter.

About This Book
This book isn’t meant to be read from front to back. It’s more like a refer-

ence: Each chapter is divided into sections, each of which has self-contained

information about something you can do in Flash CS4.

You don’t have to memorize anything in this book. The information here is

what you need to know to get by and see how Flash works. When you need

specific information, let your fingers do the walking to the table of contents

or the index, and then open the book to that page and read. We recom-

mend that you use those little sticky flags to mark pages that interest you.

Feel free to highlight text and scribble in the borders (it’s your book). We

request that you keep this book on your desk and out of harm’s way — for

some reason, poodles love to chew For Dummies books.

Wherever we mention a new term or are possessed by the need to get geeky

with our technical descriptions, we let you know so that you can decide

whether to read them or ignore them. You can thank us now, or you can

thank us later.

03_385395-intro.indd 103_385395-intro.indd 1 10/28/08 9:31:57 PM10/28/08 9:31:57 PM

2 Conventions Used in This Book

Conventions Used in This Book
We realize that doing something the same way over and over again can be

boring (such as always having to put on your socks before your shoes), but

sometimes consistency is a good thing. For one thing, it makes stuff easier to

understand. In this book, those consistent elements are conventions. In fact,

we use italics to identify and define new terms.

Our book is cross-platform. In fact, your friendly authors are cross-platform:

Doug uses Flash on a PC; Bill, on a Mac. Whenever we show a keyboard

shortcut, we list the keyboard sequence for both platforms.

Whenever you have to type something to complete a task, we put the stuff

you need to enter in a bold type so that it’s easy to see.

When we type URLs (Web addresses) within a paragraph, they look like this:

www.pixelicious.info.

What You Don’t Have to Read
We’ve added little tidbits of interest in many parts of this book. You’ll see

sidebars with information relating to the topics being discussed and icons

that list technical information relating to tasks we’re showing you how to

do. Treat these little tidbits like snacks: You can devour them when you see

them, ignore them, or read them when you get a chance.

Foolish Assumptions
This is the spot where we help you determine whether you’ve got the stuff

that’s needed to do what we show you how to do in this book. First, if you

thought that this book was about flashing, you’re in the wrong section of

the bookstore. Second, we assume that you have a computer capable of run-

ning Flash CS4. Third, we assume that you have Flash CS4 installed on your

computer, or will have it installed soon. If you’re blushing because we’ve

assumed incorrectly, quietly put this book back on the shelf and slowly walk

away, carefully avoiding any closed-circuit TV monitors in the store.

How This Book Is Organized
We’ve divided this book into minibooks, which are organized by topic.

The minibooks point out the most important aspects of Flash CS4. If you’re

looking for information on a specific Flash topic, such as motion tweens or

ActionScript, skim the table of contents or check the headings in it, or check

out ye olde index.

03_385395-intro.indd 203_385395-intro.indd 2 10/28/08 9:31:57 PM10/28/08 9:31:57 PM

3How This Book Is Organized

By design, this book enables you to find as much (or as little) information as

you need at any particular moment. If you need to know something superfast

for your meeting with a new client who wants an all-singing, all-dancing Flash

site, for example, just skim the index until you find the topic, and then read

that section. By design, Flash CS4 All-in-One For Dummies is your desktop

companion for all things Flash. When you’re working on a project and you’re

stumped, pick up this book and quickly find the information you need.

Book I: Introducing Flash
When you launch Flash and first see all that stuff on your monitor, you might

let loose with an expletive that we can’t print in this book because our edi-

tors would delete it. But we agree: Flash has a lot of features. If you’re not

familiar with Flash, you’ll find Book I rather comforting because our sole

purpose when writing it was to show you what you can do with Flash and

familiarize you with the application. If you’re a Flash veteran, you may be

tempted to skip this minibook, but we advise you to skim through it so that

you can see some of the cool new Flash features.

Book II: Creating Graphics
Flash has a Tools panel filled with neat-looking icons. In Book II, we show

you how to use these icons to create objects for your Flash movies. In addi-

tion to showing you the Flash drawing tools, we show you how to create

text. And because it seems that nothing in today’s world is black and white,

we show you how to add color to your Flash projects. And while we’re on

the subject of projects, in Book II we show you how to streamline your proj-

ects by creating symbols for the items you use repeatedly and how to orga-

nize your work with layers. If your project involves digital images, fear not:

We devote one chapter of this minibook to that topic.

Book III: Animating Graphics
Animation is a moving subject, which is why we devote an entire minibook

to it. If you’ve seen Flash animations, you know that they can be complex.

Fortunately, Flash CS4 makes it easier than ever to create an interesting

animation. In Book III, we show you how to create motion tween and shape

tween animations. We also show you how to animate text.

Book IV: Adding ActionScript 3.0 Magic
ActionScript 3.0 is used to show you how to control every aspect of your

Flash CS4 creation. Although powerful, ActionScript 3.0 is perfectly manage-

able, and you will quickly find out how to create the effects and functionality

that you always wanted but didn’t know how to produce. We show you how

to use the latest ActionScript classes in ActionScript files and how to make

simple Timeline entries using the Actions panel.

03_385395-intro.indd 303_385395-intro.indd 3 10/28/08 9:31:57 PM10/28/08 9:31:57 PM

4 How This Book Is Organized

Book V: Working with Flash Audio
Flash is alive, with the sound of music. Well, not by default, but if you want

to add music to your Flash projects, Book V is the place to go. We show you

how to import sound into your Flash projects, synch it with the Timeline,

edit the sound, optimize it for your project, and much more. We also show

you how to create buttons that make noises when you click them.

Book VI: Working with Flash Video
One of the best new benefits of Flash CS4 is the ease with which you can

incorporate video into your Flash project. You can create a video using

anything from a humble Webcam to a state-of-the-art digital video camera to

either stream live or create recorded video to be played at the user’s leisure.

We show you how to use the FLVPlayback component to set up a video in a

few steps and to create your own video player using ActionScript 3.0. On top

of all of this, Flash CS4 allows you to use the crystal-clear H.264 format for

high-quality playback.

Book VII: Getting Interactive
In Book VII, we start by showing you how to create buttons and then use

ActionScript to make them do interesting things when users click them. You

also find out how to use the components for making menus, text displays

with scrollbars, interactive buttons that change dynamically when the user

presses them, and a host of other powerful components to add a highly pro-

fessional touch to your Flash masterpiece. In addition, Book VII shows you

how to use the newest version of AIR to create desktop versions of the same

Flash applications that are launched on the Web.

Book VIII: Finalizing a Flash Project
Creating a Flash document is a lot of fun. But at some point, you have to

publish the document so that you can share it with the world, or at least

with a few close friends. In Book VIII, we show you how to test and preview

your Flash creations. We also show you how to debug the ActionScript code

in your Flash projects. The last chapter of this minibook shows you how to

publish your creation for the Web and other destinations.

Companion Web site
Graphic files, text files, AIR files, source code (FLA) files, ActionScript (.as)

files, and other necessary files for the featured projects in the book are avail-

able for downloading at the book’s companion Web site: www.dummies.
com/go/flashallinone. Everything has been tested (and retested) so

that if you make a typo in one of the project applications, you still have what

you need.

03_385395-intro.indd 403_385395-intro.indd 4 10/28/08 9:31:58 PM10/28/08 9:31:58 PM

5Where to Go from Here

 Icons Used in This Book
To make your experience with this book easier, we use various icons in the

margins to indicate particular points of interest. If fact, you can use these

icons to skim through a chapter and find sections that interest you.

Whenever we give you a hint or a tip that makes an aspect of Flash CS4

easier to understand, we mark it with this little Tip doohickey — it’s our way

of sharing the tidbits of wisdom we’ve learned by being charter members of

the School of Hard Knocks — so that you don’t have to.

This icon is a friendly reminder or a marker for information that you want to

make sure to keep in mind when performing a task.

Ouch! Warnings give you important directions to keep you from doing some-

thing that throws a giant roadblock in your path or that, even worse, causes

Flash to crash and obliterates your hard work. We know what not to do, and

this handy little icon can prevent you from having to struggle through the

same pitfalls we once encountered.

Sometimes we feel obligated to share some geek stuff with you that’s inter-

esting but not essential to your knowledge of Flash. We mark that informa-

tion with our supergeeky hero so that you know that it’s just background

information.

This icon identifies files available for downloading from the book’s compan-

ion Web site (www.dummies.com/go/flashallinone).

Where to Go from Here
Now you’re ready to use this book. Look over the table of contents and find

something that catches your attention or a topic that you think can help you

solve a problem. Launch Flash and then read about the topics that interest

you. We find it best to just jump in and perform a task, so if you follow along

while you read, you’ll get the knack of Flash rather quickly.

03_385395-intro.indd 503_385395-intro.indd 5 10/28/08 9:31:58 PM10/28/08 9:31:58 PM

6 Flash CS4 All-in-One For Dummies

03_385395-intro.indd 603_385395-intro.indd 6 10/28/08 9:31:58 PM10/28/08 9:31:58 PM

Book I
Introducing Flash

04_385395-pt01.indd 704_385395-pt01.indd 7 10/28/08 9:32:22 PM10/28/08 9:32:22 PM

Flash CS4 is new. And, it’s different. You can

do the same tasks with Flash CS4 that you

could do with Flash CS3 — and then some. If you

want to fi nd out about all the things you can do

with Flash, and get a preview of the features we

show you in this book, you’ve parked your bi-

focals on the right minibook.

In Book I, we show you what’s new and different in

Flash, and we show you some of the works of art

you can expect to create if you fi nish reading this

book in its entirety. So, if you want to see what

Flash and this book are all about, fl ip the page.

04_385395-pt01.indd 804_385395-pt01.indd 8 10/28/08 9:32:23 PM10/28/08 9:32:23 PM

Chapter 1: Exploring Flash

In This Chapter
✓ Discovering what’s new in Flash CS4

✓ Examining the Flash workspace

✓ Exploring the Flash tools

✓ Customizing Flash

Just when you thought you had Flash all figured out and believed that it

was safe to continue merrily with your old Flash CS3 habits, along comes

Flash CS4. The fact that you hold this book in your hands means that you

own Flash CS4 and want to know more about the application. Flash CS4 is

an extremely sophisticated piece of software. And — yikes! — it has come a

long way since Adobe purchased Macromedia in December 2005. It seems

like only yesterday that Flash 4 (and its medieval

ActionScript and shape tweening) were consid-

ered the best thing since sliced bread.

Using a program like Flash has a tendency to

organize you. Organized authors that we are, we

figured the best place to start a book is by get-

ting to know the lay of the land, so to speak. This

process is kind of like a car manual: You don’t

start out by showing the driver how to change a

tire — you start with a diagram that shows the nut

behind the wheel where to park and then show

him how to start his fuel-efficient hybrid car that

takes dainty sips of gas when it’s not running on

electricity. First, we tell you what’s new and excit-

ing in Flash CS4, and then we familiarize you with

the new workspace. And, because we know that

no two people work alike (that’s why they cre-

ated preferences), we show you how to customize

Flash to suit your working preference.

05_385395-bk01ch01.indd 905_385395-bk01ch01.indd 9 10/28/08 8:02:42 PM10/28/08 8:02:42 PM

10 Finding Out What’s New in Flash CS4

Finding Out What’s New in Flash CS4
It’s always something with new software, and for that matter, with life. Just

when you think that you know something like the back of your hand, tech-

nology raises its pointy little head and turns your beloved application into

an 800-pound gorilla that must be tamed.

As authors, we’re glad that technology keeps changing, because it gives us

something to write about. When we find a new application, the software

maker sends us a prerelease version of the software because it’s not ready

for prime time yet. The first thing we do is “lift the hood” and poke around

until we find the new features. After that, our next job is to figure out just

what the heck the feature is and why it was added. The following sections

highlight some of the flashy stuff we found in Flash CS4.

Discovering the new features
Working with a new version of an application is like peeling an onion: The

outside looks familiar, but then you start revealing its layers. And, without

documentation, using a program’s new features can bring you to tears. Don’t

worry: We already peeled Flash CS4. The following list shows you the new

features we found:

 ✓ Inverse kinematics: If you feel the need to add an animation of a dancing

chicken to a Web site, you can do it with Flash CS4, thanks to the Inverse

Kinematics animation tool. You can use it to create animations such as

people walking across the screen or working with machinery. You use

the Flash drawing tools to create, in essence, the parts of the dancing

chicken, dancing dude, or dancing fool. Then you create an inverse kine-

matics chain, which creates your character’s bones. We show you how

to get bad to the bone with inverse kinematics in Book III, Chapter 2.

 ✓ Kuler: Adobe Kuler is an online resource for creating color palettes for

Web pages and illustrations, for example. Flash CS4 comes with a Kuler

panel that you use to view color palettes created by other designers and

to create your own color palettes. We show you how to be cooler with

Kuler in Book II, Chapter 2.

 ✓ Scrubby sliders: A scrubby slider is an interactive way of entering a value.

When you see a value in blue with a line underneath it, pause the cursor

over the value. The cursor becomes a hand with a pointing forefinger

sprouting a dual-headed arrow. Click and drag to interactively change

the value. Hold down the Shift key while dragging to change the value in

large increments, or hold down the Ctrl key (Windows) or the Command

key (Macintosh) while dragging to change the value in small increments.

Use scrubby sliders to enter precise, minty-fresh, ecologically safe values.

(No pixels were harmed or destroyed in the creation of this paragraph.)

05_385395-bk01ch01.indd 1005_385395-bk01ch01.indd 10 10/28/08 8:02:43 PM10/28/08 8:02:43 PM

11

Book I
Chapter 1

Exploring Flash

Finding Out What’s New in Flash CS4

 ✓ Motion tweening: If you’ve used Flash for a while, you’ve no doubt cre-

ated a motion tween animation. As its name implies, you move an object

from Point A to Point B, and Flash calculates the frames between the

start and end of the animation. The designers of Flash CS4 have now

made motion tweening child’s play, and you have more control than

ever. For example, if you need to create an animation of a ball jump-

ing through many hoops (which is similar to getting a bill through

Congress), we show you everything you need to know about motion

tweening but were afraid to ask in Book III, Chapter 2.

 ✓ Motion Editor: If you’re a veteran Flash animator, you may be familiar

with the term easing, which determines how the animation starts and

ends. You can ease into the animation slowly, and ease out quickly, like

a car accelerating, or vice versa. In Flash CS4, the new Motion Editor

tool enables you to edit any facet of your animation, not just the begin-

ning and end. In the Motion Editor, you use straight lines, curved lines,

graphs, and grids, for example. In other words, the Motion Editor is a

virtual treasure trove for animators who want to precisely control every

facet of an animation. And yes, Virginia, the Motion Editor has scrubby

sliders.

Introducing the new tools
When you have new features, you have new tools. (It’s a law, you know.)

Many new Flash tools were created for use with the new features listed in

the previous section. Some of the other new tools have absolutely nothing to

do with new features, but are welcome additions to the Tools panel. The fol-

lowing list discusses the new tools and what you can do with them:

 ✓ 3D Rotation: Gives you the power to take an object for a spin. Create a

motion tween animation, add this tool, and spin gently (or not), and you

end up with a cool animation when the object appears to flutter through

space in three dimensions. Can you envision an animation of falling

leaves? This tool can do it.

 ✓ 3D Translation: Has three axes — X, Y, and Z — that you use to move

an object left and right, up and down, forward and backward. We know

what you’re thinking: Flash is 2D. And you’re right. But in a motion

tween animation, this tool makes it possible for you to simulate a 3D

experience. Don’t preview animations made with this tool in front of

your pet because it may make the critter dizzy.

 ✓ Deco: Used with the default graphic to populate a Flash project with

vines and flowers. Or, you can use symbols from the document library

to put your own spin on the graphic created by the tool. You can also

animate the graphic created by the tool.

05_385395-bk01ch01.indd 1105_385395-bk01ch01.indd 11 10/28/08 8:02:43 PM10/28/08 8:02:43 PM

12 Finding Out What’s New in Flash CS4

 ✓ Bone: Helps define the structure of your object when you delve into

the world of inverse kinematic animations. In essence, you use this tool

to give the object a skeleton. When you add bones to an object, Flash

creates a new layer named Armature. You can use as many bones as

you need in order to animate an object, and you can create additional

branches to create sophisticated animation. Yep, Flash is still 2D, but

this tool takes your animations to the next level.

 ✓ Bind: Used in conjunction with the Bone tool, but, contrary to its name,

not to bind things. If an animation isn’t performing the way you want,

you use the Bind tool to tell Flash which points should be connected to

which bone.

 ✓ Spray Brush: Extra! Extra! Read all about it: Creates graffiti in Flash

designer. You use this interesting addition to the Flash toolbox to spray

color that looks like it was applied with an airbrush. Or, you can load the

brush with a symbol from the document library and have some fun. You

can use this virtual spray gun to add decoration to any Flash project

with no toxic fumes or messy clean-up from clogged spray heads.

Flash CS4 and you
Like the proverbial well, Flash CS4 is deep. How deep you go is entirely up

to you. This book gives you a full-course serving of Flash, from soup to nuts.

And, the fact that this book is thicker than most phone books means that

Flash CS4 has lots of features. As card-carrying geeks and fastidious authors,

it’s our job to show as much as we possibly can about Flash CS4 in this book.

That’s why we give you eight minibooks to get the job done. It’s a smorgas-

bord with a heaping helping of everything Flash has to offer. The good news

is that if you need just a little snack, you can cut right to the chase and read

a minibook, or a chapter of a minibook.

There’s so much you can do with Flash that the mind boggles. If you just dip

your toe in the shallow end of the pool, you can create some awesome ani-

mations for Web pages. If you’ve ever seen Web site banners that move and

thereby move the visitor, you’ve seen only the tip of the iceberg. Figure 1-1

shows a Web site (phoenixfl.com) with an all-singing, all-dancing banner.

The Flash intros that were all the rage a few years ago have gone the way of

the dodo. Would you want to see the same thing every time you visit a cer-

tain Web site? Flashy intros fail to thrill after a couple of visits.

05_385395-bk01ch01.indd 1205_385395-bk01ch01.indd 12 10/28/08 8:02:43 PM10/28/08 8:02:43 PM

13

Book I
Chapter 1

Exploring Flash

Finding Out What’s New in Flash CS4

Figure 1-1: If you use your imagination, you can see all the dancing text at the top of this page — or just visit
the site.

Here’s a taste of the interactivity that Flash CS4 provides:

 ✓ ActionScript: You can also use Flash to build full-fledged interactive Web

sites with all kinds of bells and whistles or flashy games. Interactive Flash

designs and games rely heavily on ActionScript. ActionScript 3.0 has

been around since Flash CS3. You can still create interactive designs

using ActionScript 2.0, but that version of ActionScript will eventu-

ally be relegated to history. In this book, we show you how to use

ActionScript 3.0. Although this version can seem a little daunting if you

want to create an interactive Web site, we do our best to demystify it

in Book IV. Figure 1-2 shows an interactive, online Flash portfolio for an

aspiring model (dasdesigns.net/demo).

05_385395-bk01ch01.indd 1305_385395-bk01ch01.indd 13 10/28/08 8:02:43 PM10/28/08 8:02:43 PM

14 Finding Out What’s New in Flash CS4

Figure 1-2: Interactive Flash Web sites are a thing of beauty and a joy forever.

 ✓ Flash video: Flash video is a wonderful thing. Flash CS4 supports high-

definition video. And yes, you can put high-definition video on the Web

for visitors to see and enjoy. If you or a client records video using a stan-

dard camcorder, you still see great results when converting it to Flash

video. The file format for Flash Video is FLV.

 ✓ Adobe Media Encoder: Flash CS4 also ships with the Adobe Media

Encoder, which makes it possible for you encode video while you sleep.

All you do is load the encoder with your videos, choose a setting for

each video, click a button, and let the media encoder do its thing while

you solve the world’s problems or tackle a less lofty goal. The media

encoder has a wide variety of presets, or you can modify a preset to suit

a particular video or Web site. We show you how to master the video

encoder and much more in Book VI. Figure 1-3 shows a Web site with

some Flashy video (www.antonioswinterhaven.com/video.htm).

05_385395-bk01ch01.indd 1405_385395-bk01ch01.indd 14 10/28/08 8:02:43 PM10/28/08 8:02:43 PM

15

Book I
Chapter 1

Exploring Flash

Exploring the Flash Workspace

Those are just a few of the tasks you can do with Flash. As you become more

familiar with the application, you may venture into creating games that can

be played online or on devices. When you’re armed with a creative mind,

Flash CS4, and a little help from your friendly authors, the possibilities to

create compelling content with Flash are virtually endless.

Figure 1-3: Flash video is squeaky clean, and it streams.

Exploring the Flash Workspace
The Flash CS4 interface has all the familiar parts you’ve come to know and

love in Flash CS3 — and a couple of new ones. Adobe’s first iteration of Flash

was CS3, and the interface looked decidedly Adobe. The Flash CS4 interface

is even more Adobe-like — if that’s possible. Adobe interfaces are similar

to German sports cars, where form follows function. The new interface has

been well thought out. In the following sections, we show you the nuts and

bolts of the interface and the manner in which it’s constructed. But, hey —

if you don’t like the way it’s constructed, we also show you how to decon-

struct it and set it up to your liking. Figure 1-4 shows the new interface in all

its glory.

05_385395-bk01ch01.indd 1505_385395-bk01ch01.indd 15 10/28/08 8:02:44 PM10/28/08 8:02:44 PM

16 Exploring the Flash Workspace

Now that you know what the new interface looks like, roll up for a magical

mystery tour of it. The lists in the following sections demonstrate the closest

we could come to an actual survey of the new workspace:

Property inspectorStageMenu bar Document libraryDisplay bar

Motion Editor ToolsTimeline

Figure 1-4: I can’t find anything in this new interface. Please pass the GPS.

Getting to know the menu bar
When you create a new document in Flash, or open an existing one, the

menu bar changes to display all menu groups. It’s almost the same as the

one you came to know and love in Flash CS3, and it’s at the top of the inter-

face, which is why we decided to start there. The menu bar is divided into

the groups described in Table 1-1.

05_385395-bk01ch01.indd 1605_385395-bk01ch01.indd 16 10/28/08 8:02:44 PM10/28/08 8:02:44 PM

17

Book I
Chapter 1

Exploring Flash

Exploring the Flash Workspace

Table 1-1 The Menu Bar
Menu What You Can Do with It

File Create new documents, open existing documents, and close and
save documents. You also find commands for publishing and print-
ing documents.

Edit Cut, copy, paste, duplicate, and find objects; work with the
Timeline; and edit symbols, for example. Because Flash has many
Timeline commands, they’re conveniently grouped on a submenu.

View Zoom in and out, change the level of magnification, enable rulers,
show the grid, enable snapping to other objects and the grid, plus
much more. The Go To submenu is especially useful because it lists
symbols in the document. Click a symbol name to go to that symbol.

Insert Insert symbols, create motion or shape tweens that you use to
animate objects in your project, and create scenes. You can use
the Timeline submenu to create layers, layer folders, frames, key-
frames, and blank keyframes.

Modify Modify the document, and modify objects in the document. Use
submenus to modify bitmaps (photorealistic digital images), sym-
bols, shapes, and the Timeline. You also find commands to trans-
form, arrange, and align objects.

Text If you’re going to have text in your document, you can use this
menu group to specify fonts, sizes, and styles, for example. You
can even find a command to check your spelling.

Commands Although the name of this menu group may seem redundant, you
use the group to manage commands you create, find more com-
mands from Adobe, and run commands, for example.

Control Navigate the Timeline; play, rewind, and test a movie; test a scene,
and much more.

Debug Ensure that everything in your Flash production runs without a
hitch. When you debug a movie, you can stop it at critical points
to see what’s happening and to make sure that any ActionScript
is executing as expected.

Window Display Tools panels or libraries or switch to another workspace,
for example.

Help Use this menu when you need to get by with a little help from
Flash — but not before you check the index in this book.

05_385395-bk01ch01.indd 1705_385395-bk01ch01.indd 17 10/28/08 8:02:44 PM10/28/08 8:02:44 PM

18 Exploring the Flash Workspace

Examining the display bar
This part of the interface changes to let you know where you’re at in the

Flash universe. When you are working on the main Timeline, the current

scene is displayed. When you edit a symbol, the symbol name is displayed

with a Back button you click to exit Symbol Editing mode.

Additionally, the display bar contains these standard elements:

 ✓ Edit Scene icon: Click this icon to display all scenes in your production.

Click a scene name to edit it.

 ✓ Edit Symbol icon: Click this icon to display a list of the symbols in your

document. Click a symbol name to edit it.

 ✓ Magnification drop-down menu: Change the magnification or fit the

project on the stage, for example. Figure 1-5 shows a symbol being

edited and the choices from the Magnification drop-down menu.

Edit Scene

Edit Symbol

Magnification

Figure 1-5: Editing a scene.

05_385395-bk01ch01.indd 1805_385395-bk01ch01.indd 18 10/28/08 8:02:44 PM10/28/08 8:02:44 PM

19

Book I
Chapter 1

Exploring Flash

Exploring the Flash Workspace

Taking the stage
Published Flash projects are known as movies, so it’s only fitting that the

spot where you do your animation wizardry is the Stage.

Exploring the panels
The default workspace has two panel docks: one on the right side of the

interface, and one on the bottom. The right panel dock is home to the docu-

ment library and the Property inspector. The lower panel dock is home to the

Timeline and Motion Editor. But nothing is cast in stone, of course. If you don’t

like this setup, you can customize it, a task we show you in a later section.

Property inspector
The Property inspector tells you

everything you want to know about

a selected object. You also use it

to modify the parameters of tools

used to create shapes, to change the

properties of an object on the Stage,

name (in Symbol Editing mode)

movie clips that will be accessed by

ActionScript, and much more.

The Property inspector has a cha-

meleon nature. It changes on the

fly when you select an object or

tool. Figure 1-6 shows the Property

inspector as a floating window,

 displaying the parameters for a

 document.

Document library
The document library displays all

objects used in a Flash project and

helps you stay organized. You can

also check out items from the docu-

ment library for use in your current

Flash project. For that matter, you

can open a library from a differ-

ent document and use items from it

in your current project. Figure 1-7

shows a document library as a float-

ing window.

Figure 1-6: Properties that aren’t on the real
estate market.

05_385395-bk01ch01.indd 1905_385395-bk01ch01.indd 19 10/28/08 8:02:44 PM10/28/08 8:02:44 PM

20 Exploring the Flash Workspace

Figure 1-7: A library you don’t need a card for.

Timeline
The Timeline is sort of a roadmap: It shows you the frames, keyframes,

layers, and layer folders that were created for your Flash project. We show

you how to master the Timeline (which is shown as a floating window in

Figure 1-8) in Book III, Chapter 1.

Figure 1-8: Timelines stand still for no man.

05_385395-bk01ch01.indd 2005_385395-bk01ch01.indd 20 10/28/08 8:02:45 PM10/28/08 8:02:45 PM

21

Book I
Chapter 1

Exploring Flash

Exploring the Flash Workspace

Motion Editor
The Motion Editor is a new addition to Flash. You can use it to precisely con-

trol the speed at which an animation starts and finishes. You can control other

parameters by using the Motion Editor, such as object opacity during the ani-

mation. You can also add keyframes and manually adjust any parameter from

within the Motion Editor. It’s shown as a floating window in Figure 1-9.

Figure 1-9: The Motion Editor controls animations without inducing motion sickness.

Other panels
Flash has panels — lots of panels.

If you read the preceding sections,

you already know what to use the

panels for that are displayed in the

workspace by default. Other panels

remain incognito — wherever that

is — until you select them from the

Window menu. You can have as

many panels as you want floating in

the workspace. You can also access

panels by using keyboard shortcuts.

Figure 1-10 shows the Align panel.

The little X icon at the top is used

Figure 1-10: You can float panels in the
workspace.

05_385395-bk01ch01.indd 2105_385395-bk01ch01.indd 21 10/28/08 8:02:45 PM10/28/08 8:02:45 PM

22 Exploring the Flash Workspace

to close the panel, and the left-pointing

double arrows collapse the panel to an

icon. Keeping a frequently used panel

in the workspace is an efficient way to

work. We give you the straight scoop

on individual panels when they’re

needed to perform a task.

Getting chummy with
the Tools panel
On the right side of the default work-

space, dangerously close to the docu-

ment library and a few scant pixels

away from the Property inspector, is

the lean, mean Tools panel. It’s lean

because it’s one tool wide and quite

tall, and it’s mean because it packs a

lot of wallop. The Tools panel gives

you the power to create and move

objects and do much more.

Figure 1-11 shows the Tools panel float-

ing in a separate window. The panel has

so many tools that some of them share

space on the Tools panel. Whenever

you see a triangle in the lower-right

corner of a tool, click it to have access

to the other tools that share the space,

as shown in Figure 1-11. The last tool

used is always displayed when multiple

tools occupy the same space.

Table 1-2 gives you the lowdown on

the tools at your disposal.

Figure 1-11: A Flashy Tools panel, if there
ever was one.

05_385395-bk01ch01.indd 2205_385395-bk01ch01.indd 22 10/28/08 8:02:45 PM10/28/08 8:02:45 PM

23

Book I
Chapter 1

Exploring Flash

Exploring the Flash Workspace

Table 1-2 The Tools Panel
Tool What You Can Do with It

Selection Select and move objects.

Subselection Select points on a path.

Free Transform Transform an object. You can resize an object proportion-
ately, change its width or height, and skew or rotate the
object.

Gradient
Transform

Transform the position of a gradient that fills an object. This
tool resides on a fly-out menu with the Free Transform tool.

3D Translation Change the X, Y, and Z positions of an object in a motion
tween animation. Flash isn’t 3D, but the tool can make an
object appear as though it’s traveling in three dimensions.

3D Rotation Rotate a tool along its X, Y, or Z axis in a motion tween anima-
tion. It works well for mimicking objects fluttering in space.

Lasso This tool is used to select objects, or round up if you will;
hence the name Lasso.

Pen Create paths. This tool has several buddies on the fly-out
menu that are used to add, delete, and convert anchor points
on the path.

Text Add text to a document. Flashes uses three flavors of text:
Static, Input, and Dynamic. Input and Dynamic text are used
in conjunction with ActionScript to accept text (Input text), or
display text (Dynamic text). Static text is used when you want
to display text, and can also be used to display hyperlinks in
a Flash project.

Line Create a straight line from Point A to Point B.

Rectangle Create rectangles and rounded rectangles.

Oval Create objects of the elliptical variety, known as ovals. You
can also use this tool to create objects that look like pies with
wedges and a piece missing.

Rectangle
Primitive

Create rectangles and rounded rectangles. The beauty of
using a primitive shape is that you can edit all its attributes at
any time by using the Property inspector.

Oval Primitive Create ovals that can be edited in the Property inspector any
time after they’re created.

Polystar Create multisided polygons and stars.
(continued)

05_385395-bk01ch01.indd 2305_385395-bk01ch01.indd 23 10/28/08 8:02:46 PM10/28/08 8:02:46 PM

24 Exploring the Flash Workspace

Table 1-2 (continued)

Tool What You Can Do with It

Pencil In the Property inspector, specify the color and width of
the stroke and many other attributes. (This tool is the virtual
equivalent of a 2H Eberhard Faber pencil.) Flash smoothes
shapes that you create with the Pencil tool. You determine
how much smoothing by choosing a modifier from the bottom
of the Tools panel.

Brush Add splashes of color to a Flash project, or, if you’re really
talented, to actual artwork. You determine how the brush
stroke looks by choosing options in the Property inspector
and choosing modifiers from the bottom of the Tools panel.

Spray Brush Add graffiti-like splashes of color to a document. You can
change the color that sprays out of the nozzle, or spray a
symbol from the document library out of the nozzle.

Deco Draw a shape that looks like a flowering vine. You specify the
colors in the Property inspector, and you can also choose a
symbol from the document library for the leaf and the vine.

Bone Create an inverse kinematics (IK) animation. You use this tool
to add bones to the object you’re animating. The bones com-
prise the inverse kinematics chain: You tug on a bone and the
bones that are higher in the chain move.

Bind Fine-tune an IK animation that’s not performing up to snuff
(that’s bound up, if you will). You use this tool to bind points
from an object with a bone.

Paint Bucket Fill a shape with color or a gradient.

Ink Bottle Change the outline (the stroke, in Flash-speak) of an object.

Eye Dropper Sample a fill color.

Eraser Erase parts of objects. You can specify how the tool works by
choosing a modifier from the bottom of the Tools panel.

Hand Pan from one part of the document to another.

Zoom Change the level of magnification. You specify whether the
tool zooms in or out by choosing a modifier from the bottom
of the Tools panel.

Stroke Color Show the selected color for strokes (outlines) created with
the drawing tools.

Fill Color Show the selected fill for shapes. A fill can be a solid color or
a gradient.

Default Colors Revert the stroke and fill to the default colors, which are
black and white, respectively, just like in a newspaper.

Swap Colors Swap the current stroke and fill colors.

No Color Change the current color to no color.

05_385395-bk01ch01.indd 2405_385395-bk01ch01.indd 24 10/28/08 8:02:46 PM10/28/08 8:02:46 PM

25

Book I
Chapter 1

Exploring Flash

Customizing the Workspace

Customizing the Workspace
If you’re one of those right-brained people using Flash, which was obviously

designed by left-brained people, you’ll be happy to know that you can cus-

tomize the workspace to suit the way you work and, for that matter, think.

You can customize the layout of the workspace, the Tools panel, and much

more. If you’re interested in changing the way the Flash workspace is set up,

the following sections are just for you.

Customizing the Tools panel
The default Tools panel shows you every tool that the Flash designers have

known, and that’s quite a few tools. You’ll be happy to know that if you don’t

use every tool on the Tools panel, you can customize the panel by removing

tools and rearranging the locations of the others. To customize the Tools

panel, follow these steps:

 1. Choose Edit➪Customize Tools Panel.

 The Customize Tools Panel dialog box appears (see Figure 1-12).

Figure 1-12: Create your own, special Tools panel.

 2. Select the tool you want to modify from the facsimile of the Tools

panel on the left side of the dialog box.

 The name of the tool appears in the Current Selection pane. If other

tools are available from a fly-out menu, they’re listed as well.

 3. Do one of the following:

 • Make a tool available as a choice on a fly-out menu: Select the tool

from the Available Tools pane and then click Add. You can add as

many tools as you want to a fly-out menu.

05_385395-bk01ch01.indd 2505_385395-bk01ch01.indd 25 10/28/08 8:02:46 PM10/28/08 8:02:46 PM

26 Customizing the Workspace

 • Remove a tool from the Tools panel: Select the tool in the Current

Selection pane and then click Remove. This action leaves a blank

space on the Tools panel, which you fill by choosing a tool from the

Available Tools pane and then clicking Add.

 4. Continue arranging the Tools panel to suit your needs and then click OK.

 Voilà — you have your own, special Tools panel.

You can always revert to the default Flash workspace by choosing Window➪
Workspaces➪Default.

Rearranging the workspace
The easiest way to change the Flash workspace is to change where items are

located. And, you don’t need an interior designer to show up with a bunch

of color swatches and talk about applying feng shui (whoever he is!) to your

space. Here are some ways to customize your workspace:

 ✓ Undock a panel. Click the panel’s title and drag it into the workspace.

 ✓ Dock a floating panel. Click the panel’s title bar and drag it to the one

of the interface sides. When you see an opaque vertical bar, release the

mouse. The panel docks to a side of the workspace. When you see an

opaque, horizontal black bar, release the mouse to dock the panel at the

top or bottom of the workspace.

 ✓ Dock one floating panel with another. Drag one panel’s title bar toward

the other panel. When an opaque blue overlay appears over the other

panel, release the mouse button to dock the panels together. If you see

an opaque blue line appear over the panel to which you’re docking, the

panel you’re moving docks on top of the other panel.

 ✓ Change the size of a panel. Move the cursor toward a corner of the

screen. When the panel becomes a line with a double-headed arrow,

click and drag to resize the panel.

Saving a custom workspace
When you rearrange the workspace to suit your preferences, Flash remembers

the setting when you close the application. The next time you launch Flash, all

the panels and Tools panels are right where you left them. However, if another

Flash designer shares your computer, she may want to arrange the workspace

differently. After she uses the computer, you’re stuck with her custom work-

space, and a Battle of the Designers ensues. This unfortunate situation doesn’t

have to happen. You can save a custom workspace by following these steps:

 1. Rearrange the workspace to suit your needs.

05_385395-bk01ch01.indd 2605_385395-bk01ch01.indd 26 10/28/08 8:02:46 PM10/28/08 8:02:46 PM

27

Book I
Chapter 1

Exploring Flash

Customizing the Workspace

 2. Customize the Tools panel.

 If you don’t know how to customize the Tools panel, we show you how

in the section “Customizing the Tools panel,” earlier in this chapter.

 3. Choose Window➪Workspace➪
New Workspace.

 The New Workspace dialog box

appears (see Figure 1-13), in

which you can save a custom

workspace for posterity.

 4. Enter a name for the workspace.

 5. Click OK.

 The new workspace is saved and is added to the Workspace submenu.

To change from the current workspace to a saved workspace, choose

Window➪Workspace, and then click to select a workspace. Figure 1-14

shows a custom workspace that Doug created, which looks a lot like the

Flash CS3 workspace. If you don’t like the new workspace, you can create a

reasonable facsimile of the old one.

Figure 1-14: A custom workspace that looks vaguely familiar.

Figure 1-13: Saving a custom workspace.

05_385395-bk01ch01.indd 2705_385395-bk01ch01.indd 27 10/28/08 8:02:46 PM10/28/08 8:02:46 PM

28 Customizing the Workspace

Managing workspaces
Flash designers and developers can change their minds whenever they want.

If you’ve experimented with different workspace designs and find that you

have too many lurking about on the Workspaces submenu, you can alleviate

the clutter by managing your workspaces as outlined in these steps:

 1. Choose Window➪Workspaces➪
Manage Workspaces.

 The Manage Workspaces dialog

box appears (see Figure 1-15).

You can manage your custom

workspaces at any time.

 2. Select the workspace you want

to modify.

 From here, you can either

rename or delete the workspace.

To rename the workspace, follow these steps:

 1. Click Rename to rename the selected workspace title.

 The Rename Workspace dialog box appears.

 2. Enter a new name for the workspace and click OK.

 The workspace is renamed.

 3. Click OK again to close the Manage Workspaces dialog box.

To delete the workspace, follow these steps:

 1. Click Delete.

 Flash displays a message box telling you that the deletion cannot be

undone.

 2. Click Yes to delete the workspace, or No to save the selected workspace.

 If you click Yes, the workspace vanishes into the great cyberspace ether.

 3. Click OK to apply your changes.

 Your changes are saved, and the Manage Workspaces dialog box closes.

Changing keyboard shortcuts
Keyboard shortcuts are tremendous timesavers. (Doug uses them all the

time.) Adobe has a default set of keyboard shortcuts for Flash CS4, which

may or may not be ideally suited to your working preferences. For example,

Figure 1-15: Managing custom workspaces.

05_385395-bk01ch01.indd 2805_385395-bk01ch01.indd 28 10/28/08 8:02:48 PM10/28/08 8:02:48 PM

29

Book I
Chapter 1

Exploring Flash

Customizing the Workspace

if you remember a set of keyboard shortcuts from another application that

has commands similar to Flash and the Flash keyboard shortcuts are differ-

ent, you can modify the default set to match the shortcuts you memorized.

To change keyboard shortcuts, follow these steps:

 1. Choose Edit➪Keyboard Shortcuts.

 The Keyboard Shortcuts dialog box appears (see Figure 1-16).

Duplicate Set

Figure 1-16: Use this dialog box to make keyboard shortcuts work the way you want.

 2. Click the Duplicate Set button.

 The Duplicate dialog box appears. You cannot modify the default set,

but you can modify a duplicate set.

 To match the keyboard shortcuts of popular applications, choose a set

from the Current Set drop-down menu. You can choose to match the

keyboard shortcut set of applications such as Flash 5, Photoshop 6, or

Illustrator 10, for example.

05_385395-bk01ch01.indd 2905_385395-bk01ch01.indd 29 10/28/08 8:02:48 PM10/28/08 8:02:48 PM

30 Customizing the Workspace

 3. Enter a name for the duplicate shortcut set.

 You can give it any name you want. However, if you’re creating multiple

keyboard shortcut sets, it makes sense to give the keyboard shortcut a

name that reflects the task for which you use the shortcut set; for exam-

ple, My ActionScript Shortcuts.

 4. Choose an option from the Commands drop-down list.

 The list includes all command groups, such as Actions Panel Commands,

Debug Movie Commands, and Drawing Menu Commands.

 5. Click the plus sign (+) icon next to a command group.

 The command group expands to display all commands.

 6. Select the menu command for which you want to assign a keyboard

shortcut, or change an existing keyboard shortcut.

 If the command has a keyboard shortcut, it’s displayed in the Shortcuts

pane. If the command doesn’t have a keyboard shortcut, the pane is

empty.

 7. To create a keyboard shortcut for a command the doesn’t have one,

click the plus sign to the right of the Shortcuts title.

 The word <empty> appears in the Shortcuts pane and the Press Key pane.

 8. Press the key sequence you want to use as a shortcut for the command.

 You can use keys such as Backspace or Delete or the arrow keys without

a modifier. If you use a letter or number for a shortcut, you must use it

in conjunction with the Ctrl key; for example, Ctrl+T. If you press a key-

board shortcut used by another command, a warning message appears

underneath the Press Key pane.

 9. Press Change to apply the keyboard sequence to the command.

 If you choose a keyboard sequence assigned to another command, the

Reassign dialog box appears. Click Reassign to reassign the keyboard

shortcut sequence or press Cancel. When you reassign a keyboard

shortcut, it’s no longer associated with the other command (to avoid

any potential conflicts).

 10. Continue modifying and adding keyboard shortcuts to suit your work-

ing preferences.

 11. Click OK to apply the changes to your new keyboard shortcut set and

then close the Keyboard Shortcuts dialog box.

 The new keyboard shortcuts remain in effect until you invoke the

Keyboard Shortcuts command again and choose a different keyboard

shortcut set from the Current Set drop-down menu.

05_385395-bk01ch01.indd 3005_385395-bk01ch01.indd 30 10/28/08 8:02:48 PM10/28/08 8:02:48 PM

31

Book I
Chapter 1

Exploring Flash

Customizing the Workspace

Setting Flash preferences
Flash is a popular application that’s used by a wide variety of people. Some

of them are card-carrying geeks, like your friendly authors, and others are

mild-mannered designers. Yes, even some soccer moms use the application

to create cool animations for their kids’ soccer teams.

Of course everyone is different and works differently, so you’ll be glad to

know that, in addition to modifying the Tools panel, workspace, and key-

board shortcuts, you can change other Flash elements to suit your own

working preferences. For example, if you’ve worked behind a computer so

long that the text in the Actions panel looks positively miniscule, you can

change the font type and size by modifying ActionScript preferences.

If we showed you the steps involved to modify every single Flash preference,

our editors would pull their hair out because we would exceed our allocated

page count. Besides, many of the options are self explanatory. The following

steps give you a jumping-off point:

 1. Choose Edit➪Preferences.

 The Preferences dialog box appears (see Figure 1-17).

Figure 1-17: You can change Flash preferences to suit the way you work.

05_385395-bk01ch01.indd 3105_385395-bk01ch01.indd 31 10/28/08 8:02:48 PM10/28/08 8:02:48 PM

32 Customizing the Workspace

 2. Choose the category you want to modify from the Category pane.

 The title changes and the dialog box is updated to show the options you

can modify.

 3. Modify the options however you want.

 Most options are self explanatory. For example, if you use Adobe

Illustrator to create artwork for your Flash projects, the options in the AI

File Importer category should be familiar to you. If you don’t use Adobe

Illustrator to create artwork for your Flash projects, you have no busi-

ness mucking about in that category.

 4. Continue modifying categories and options as needed.

 5. Click OK to apply the changes and close the Preferences dialog box.

05_385395-bk01ch01.indd 3205_385395-bk01ch01.indd 32 10/28/08 8:02:49 PM10/28/08 8:02:49 PM

Chapter 2: Introducing Graphics,
Symbols, and Animations

In This Chapter
✓ Creating good-looking graphics in Flash

✓ Introducing symbols and instances

✓ Flash Animation 101

Flash is an extremely versatile application. You can create interactive

Flash projects with audio and video and other bells and whistles. But

Flash’s humble beginnings were all about graphics and animations. Combine

great-looking graphics with interactivity, and the sky’s the limit.

If you’re a first-time user of Flash CS4, you might

feel like a kid in a candy store — you literally want

to experiment with every tool. But, like anything

else that’s new, before you dive into the deep

end of the pool, you have to dip your toe in the

shallow end. In this chapter, we show you what

you can accomplish with the Flash tools, and we

introduce you to the backbone of any lean, mean

Flash production: symbols, which are reusable

graphics. But we’re getting ahead of ourselves. In

this chapter, you get an introduction to the type

of things you can create with the drawing tools,

plus an introduction to symbols and the docu-

ment library.

Working with Flash Graphics
Great-looking graphics separate a ho-hum Flash

production from something that grabs viewers by the scruff of the neck and

makes them want to view the entire project, whether it’s a game, an interac-

tive Web site, or a great-looking Flash banner on a Web site. If you’re artis-

tically inclined, you can use the Flash drawing tools to create compelling

graphics. In the following sections, we introduce you to some of the things

you can accomplish using the drawing tools and the Text tool, and we show

you how to get colorful with the Swatches panel.

06_385395-bk01ch02.indd 3306_385395-bk01ch02.indd 33 10/28/08 8:03:28 PM10/28/08 8:03:28 PM

34 Working with Flash Graphics

Creating graphics with drawing tools
Flash has a plethora (one of Doug’s favorite words) of drawing tools. You

can draw lines, rectangles, ovals, polygons, and stars. You can use several

tools to create a finished drawing. For example, to create a facsimile of a

storefront, you can use the rectangle tool to create the basic shape and win-

dows and then use the Oval tool to create some objects in the store window,

the sun, and perhaps a sign or two. If you have a street in your project, you

can use the Polystar tool to create a stop sign. Figure 2-1 shows a logo that

was created with the Primitive Oval tool and the Text tool.

Figure 2-1: Colorful logos are a snap to create with the drawing tools.

The Pencil and Brush tools
If you know how to get the most out of a pencil or a paint brush, you’ll be

happy to know that Flash has the digital equivalent of these tools in its Tools

panel. When you create graphics with the Pencil tool, you can modify the

tool so that each stroke you draw is a separate object, or you can use the

old paradigm of the Flash drawing tool, where each stroke of the same color

develops a magnetic attraction to those you draw over. The Brush tool also

works in a similar manner. If you’re drawing with these tools using a mouse,

Flash automatically smoothes the shape after you draw it.

06_385395-bk01ch02.indd 3406_385395-bk01ch02.indd 34 10/28/08 8:03:28 PM10/28/08 8:03:28 PM

35

Book I
Chapter 2

Introducing
Graphics, Sym

bols,
and Anim

ations
Working with Flash Graphics

Use a pressure-sensitive tablet and stylus to gain precise control over your

work. Flash still smoothes the lines and brush strokes you draw, but the

resulting artwork looks more professional.

The Pen tool
Another drawing tool in the Flash Tools panel enables you to create shapes

and paths with point-by-point accuracy. If you work with illustration pro-

grams, you’re familiar with what the Pen tool can do. If you don’t work with

illustration programs and you’re brand-new to Flash, you create paths with

the Pen tool. The path is composed of points, which come in two flavors:

 ✓ Straight

 ✓ Curve

You use the Pen tool to create an open path (a series of connected points

resulting in a curved line or several connected straight line segments), or a

closed path (an outline or solid shape filled with color).

The control you have with the Pen tool enables you to create sophisticated

shapes and artwork. You can edit the paths by moving the points or by

changing straight points to curve points and vice versa. You can also edit

curve points by changing the tangent handles. If you’re new to the wonderful

world of paths and Bezier curves, we give you a full-course serving in Book II,

Chapter 1.

If you own Adobe Illustrator, you can use the program to create vector art-

work for your Flash projects. Illustrator has a robust toolset for creating

sophisticated vector illustrations. You can import Illustrator artwork into

Flash and preserve layers, and you can import an Adobe Illustrator EPS file

or Adobe PDF file by saving it in the AI format and then importing the file

into Flash. You can also import the file to the stage or into the document

library.

Introducing the Text tool
If you have (or your client has) something to say and you’re going to say it in

Flash, you have to use the Text tool. Text in Flash comes in three flavors:

 ✓ Static: Displays text in a document. When you create the text, you can

specify the font type, size, and color, for example. You can even embed

fonts that may not be on your viewer’s computers.

 ✓ Input: Captures user input.

 ✓ Dynamic: Creates a text field that can be dynamically changed during

the course of a Flash movie. You use ActionScript to determine the text

that’s displayed in the field. You can also convert text into a vector

06_385395-bk01ch02.indd 3506_385395-bk01ch02.indd 35 10/28/08 8:03:29 PM10/28/08 8:03:29 PM

36 Working with Flash Graphics

object that can be manipulated on a point-by-point basis. Figure 2-2

shows a published Flash movie in which the Text tool was used to

create informational text, text for the navigation menu, and text for the

banner.

Figure 2-2: Using the Text tool for fun and profit.

Getting colorful
A Flash production without color would be, well black and white. And a day

without sunshine is night. But seriously, if you’re going to attract visitors to

a Flash Web site or create Flash projects for a living, you have to use color.

We don’t tell you which colors to use, but we do show you how to specify

which colors are used for object strokes, fills, and backgrounds, for example.

Figure 2-3 shows the Color panel, which has been used to mix the radial gra-

dient that you see as the background for the Flash project.

You can use solid colors or gradients as fills:

 ✓ Solid color: The Solid Color option fills an object with one color. (We

know that seems blatantly obvious, but we have to cover all the bases.

You never know when an alien might find our Internet and download

this book in electronic format.)

 ✓ Gradient: A blend of two or more colors. You can create one of these

types of gradients:

06_385395-bk01ch02.indd 3606_385395-bk01ch02.indd 36 10/28/08 8:03:29 PM10/28/08 8:03:29 PM

37

Book I
Chapter 2

Introducing
Graphics, Sym

bols,
and Anim

ations
Finding Out about Symbols and Instances

 • Linear: Blends colors from Point A to Point B in a straight line

 • Radial: Blends colors from the center out in a concentric pattern

 • Bitmap: Uses a photograph as the fill

Use the default colors and gradients from the Swatches panel, or mix your

own by using the Color panel. After you master working with colors, you can

create cool items, such as facsimiles of tie-dyed T-shirts and much more.

Figure 2-3: Add a splash of color to create a compelling Flash movie.

Finding Out about Symbols and Instances
Symbols and instances are the lifeblood of any Flash project. When you use

instances of symbols rather than create a new symbol every time you need

one, it’s like feeding your Flash project one of those diets used by the rich

and incredibly vain (diets with fancy names that are copyrighted and there-

fore can’t be used in our book). That’s right: Symbols decrease the file size

of a published Flash project.

06_385395-bk01ch02.indd 3706_385395-bk01ch02.indd 37 10/28/08 8:03:30 PM10/28/08 8:03:30 PM

38 Finding Out about Symbols and Instances

You can create a symbol from scratch or convert an object to a symbol.

Symbols are stored in the document library. When you use a symbol in a

Flash project, you’re creating an instance of a symbol. And then disaster

strikes. Suppose that the client (the guy with the fat wallet) calls you up and

tells you that he wants to change the color of the soup can symbol, which is

used a gazillion times in the project, from green to red. When this happens,

you must be stern and tell the client that completing this task will take a

long time. Then when you hang up the phone, you simply edit the symbol

and change the color from green to red, and each instance of the symbol is

instantly updated.

Understanding graphic symbols
Graphic symbols are static symbols that you create by using drawing

tools or by importing vector artwork from an application such as Adobe

Illustrator. When you create complex graphic symbols that are composed of

many objects, you use layers to segregate the objects, which makes it easy

to edit complex symbols.

You can also use an image as the basis for a symbol. This capability is useful

when you need to display the image several times in a Flash project or ani-

mate the symbol. That’s right: You can animate graphic symbols, and they’re

static. The later section on animation makes this perfectly clear.

Buttons, buttons, and more buttons
Buttons are everywhere. You see them on jackets and shirts and on Web

sites. It’s the clickable type we’re referring to, although you can create a

graphic symbol that looks like a shirt button. A button in Flash is a symbol

with four states:

 ✓ Up

 ✓ Down

 ✓ Over

 ✓ Hit

The graphic in each state defines what the viewer sees when the button is

first visible, when the cursor is paused over the button, and when the button

is clicked. The Hit state defines the size of the active area of the button. You

can create multiple layers when creating a button. You can also use sounds

in a button. For example, if the button is used for a shopping cart checkout,

you can have a “ka-ching” sound play when the button is clicked. Figure 2-4

shows a button being created.

06_385395-bk01ch02.indd 3806_385395-bk01ch02.indd 38 10/28/08 8:03:31 PM10/28/08 8:03:31 PM

39

Book I
Chapter 2

Introducing
Graphics, Sym

bols,
and Anim

ations
Finding Out about Symbols and Instances

Figure 2-4: As Wimpy might have said, click me today and I’ll gladly pay you on Tuesday.

Changing movie clip properties
Movie clips serve several purposes: You can use them as self-contained

animations, as targets for external content that will be loaded into a project,

or as containers for ActionScript. You create a movie clip when you want

to create multiple instances of an animation in a Flash project. Why work

harder when you can work smarter instead?

Movie clips can also be addressed by ActionScript. You can use ActionScript

to change various properties of a movie clip. For example, if you want the

movie clip to change dimensions, give the Movie Clip instance a name, and

then change its .xscale and .yscale properties. Figure 2-5 shows a movie clip

on the Stage that’s being addressed by ActionScript. Notice that the instance

name in the Property inspector is also present in the Actions panel. We

show you how to control movie clips in Book IV, Chapter 1.

06_385395-bk01ch02.indd 3906_385395-bk01ch02.indd 39 10/28/08 8:03:31 PM10/28/08 8:03:31 PM

40 Finding Out about Symbols and Instances

Figure 2-5: Listen here, movie clip — become transparent.

Checking out symbols from the library
When you create a symbol, it’s added to the document library. Each symbol

type can be identified by a unique icon. When you select a symbol, you see a

preview at the top of the library. If the symbol is a movie clip, you can play it

before adding it to your production.

Tools in the library make it possible for you to segregate objects into fold-

ers. This capability is useful when you have a huge Flash show with lots of

graphics, movie clips, and buttons. You can create a folder for each symbol

type, as shown in Figure 2-6. When you finish perusing a folder, you can col-

lapse it to get a better look at the other items in the document library. You

can also modify objects from another document library to suit the current

document.

06_385395-bk01ch02.indd 4006_385395-bk01ch02.indd 40 10/28/08 8:03:31 PM10/28/08 8:03:31 PM

41

Book I
Chapter 2

Introducing
Graphics, Sym

bols,
and Anim

ations
Introducing Flash Animation

Figure 2-6: Be quiet, numbskull. You’re in the document library.

Introducing Flash Animation
Flash began life as the animation program FutureSplash. Macromedia bought

the application and developed it, and then Adobe bought Macromedia and

developed Flash into the application you use today. In every iteration of

Flash, animation has always been a strong Flash feature. And it’s gotten even

better with Flash CS4. In the following sections, we introduce you to Flash

animation, and we cover the topic in more detail in Book III.

Frame-by-frame animation (the old school)
If you’ve watched cartoons, you’ve seen frame-by-frame animations at work.

Artists draw the characters in different poses and motions. The whole thing

is assembled as a video, and you see seamless motion. Flash gives you easier

ways to create animation. However, frame-by-frame animation can some-

times still be used to good effect without causing you to break much of a

sweat. You have to create lots of frames, however. Creating an image slide-

show and typewriter text are two uses we can think of for frame-by-frame

animation. Figure 2-7 shows the timeline for a frame-by-frame animation.

06_385395-bk01ch02.indd 4106_385395-bk01ch02.indd 41 10/28/08 8:03:32 PM10/28/08 8:03:32 PM

42 Introducing Flash Animation

Figure 2-7: Let’s see — one frame for each letter and then. . . .

Motion tweening will move ya
Suppose that your client wants, on the home page of his Web site, a Flash

animation that moves an object from Point A to Point B to Point C. If you are

new to Flash and just finished reading the preceding section, on frame-by-

frame animation, you’re probably thinking, “Yikes. That will take three fore-

vers.” Calm down, Flash Grasshopper. Breathe deeply and chant the mantra:

Motion tween. When you need to create a complex animation, you create the

symbol you want to animate (or not) and then choose Motion Tweening, and

Flash creates the in-between frames. Get it? In between! Motion Tween.

After Flash creates the initial frames, you can add frames and keyframes to

create the animation you want. And, if that’s still not enough, you can tweak

the animation 57 ways to Tuesday in the Motion Editor. Figure 2-8 shows a

motion tween animation. We enabled onion skins so that you can see each

frame of the animation. If we add ActionScript, we can have a “Twinkle, twin-

kle, little star” motion tween animation.

06_385395-bk01ch02.indd 4206_385395-bk01ch02.indd 42 10/28/08 8:03:33 PM10/28/08 8:03:33 PM

43

Book I
Chapter 2

Introducing
Graphics, Sym

bols,
and Anim

ations
Introducing Flash Animation

Figure 2-8: An animation that’s not between a rock and a hard place.

Shape tweening will morph ya
Did you ever wish that you could change one thing into another — such

as turn your former significant other into a piece of coal? Flash can’t help

you with your significant other, but it can morph one shape into another by

using shape tweening. All you have to do is create two keyframes on which

there are two separate shapes, apply shape tweening, and watch the fun

begin. There’s a bit more to it than that, so we show you how to morph the

shape of your choice into another shape in Book III, Chapter 2.

Figure 2-9 shows a Shape Tween animation in which a star is morphing into

an oval while moving. Onion skins are enabled so that you can see the in-

between frames. If the thought of onion skins brings you to tears, you prob-

ably haven’t tweaked a Shape Tween animation, a task we show you how to

do in Book III, Chapter 4.

06_385395-bk01ch02.indd 4306_385395-bk01ch02.indd 43 10/28/08 8:03:33 PM10/28/08 8:03:33 PM

44 Introducing Flash Animation

Figure 2-9: Morphing magic with shape tweening.

Inverse kinematics is bad to the bone
Character animation is loads of fun. (Doug did a lot of character animation in

3D programs.) Now you can create 2D character animations in Flash. If you

want a character to strut her stuff into your Flash project, you can do so by

creating an Inverse Kinematics animation. After you create your character

using Flash drawing tools, you use the Bone tool to give the character form.

And, if your character is a dog, for example, you use the Bone tool to give

the dog a skeleton (see Figure 2-10).

If the animation doesn’t play properly, you use the Bind tool to unbind the

parts that were bound and determined to not make your animation run

smoothly. We show you how to bone and bind in Book III, Chapter 2.

06_385395-bk01ch02.indd 4406_385395-bk01ch02.indd 44 10/28/08 8:03:34 PM10/28/08 8:03:34 PM

45

Book I
Chapter 2

Introducing
Graphics, Sym

bols,
and Anim

ations
Introducing Flash Animation

Figure 2-10: Knick, knack, paddy whack, bone the dog a skeleton.

06_385395-bk01ch02.indd 4506_385395-bk01ch02.indd 45 10/28/08 8:03:35 PM10/28/08 8:03:35 PM

46 Book I: Introducing Flash

06_385395-bk01ch02.indd 4606_385395-bk01ch02.indd 46 10/28/08 8:03:35 PM10/28/08 8:03:35 PM

Chapter 3: The Engine Beneath
Flash: ActionScript 3

In This Chapter
✓ Understanding what you can do with ActionScript 3

✓ Placing ActionScript on the Timeline

✓ Communicating with buttons

✓ Providing information just in time

✓ Exploring ActionScript levels

ActionScript 3 is the programming language that can be used with Flash

CS4. If you’re new to Flash, you will find ActionScript to be a powerful

and extensive language. However, you will also

find that just a little goes a long way. Experienced

Flash hands will see how to use ActionScript and

shift from many of the old practices to new tech-

niques for getting the most out of ActionScript 3’s

new features.

Book IV, which is dedicated to ActionScript 3,

guides you through several uses of ActionScript

and its levels of sophistication. In this chapter, we

provide you with an introduction to ActionScript

and tell you how to start using it. Also, if you

have used ActionScript in Flash CS3, you will be

delighted to find that the CS4 version has changed

little from the CS3 version, which means that you

don’t have to figure out how to use the language

all over again (as has often been the case in past

revisions).

Understanding What ActionScript 3 Can Do for You
We like to treat ActionScript as the engine beneath your Flash creation.

Think of it as you would after building a beautiful automobile chassis and

body: You need an engine and a steering mechanism to make the device go

and to guide it through the many different possibilities you plan for your

project.

07_385395-bk01ch03.indd 4707_385395-bk01ch03.indd 47 10/28/08 8:04:13 PM10/28/08 8:04:13 PM

48 Understanding What ActionScript 3 Can Do for You

Suppose that you build an eye-catching animation with a beautiful design

and that viewers see your Flash page on the Web. The first time a viewer

sees your page, she’s impressed and shows it to her friends. After a few

views of the page with your animation on it, however, the viewer becomes

bored. It’s similar to telling a joke: The first time you tell it, it’s funny.

However, with every retelling, the joke loses its flavor and you need to dip

into your repertoire to pull out another one. Unless you want to go through

life repeatedly telling the same joke (or repeatedly showing the same Flash

movie), you need ActionScript in order to make practical and interesting

Web sites with Flash CS4.

Controlling the Timeline
In many ways, the Flash Timeline is like a runaway train: After the playhead

starts moving through the different frames and your animation begins, the

viewer can do nothing other than watch whatever you created. In even the

earliest versions of Flash, the software engineers realized that Flash viewers

needed some way to start and stop the playhead on the Timeline. Thus, the

first ActionScript version consisted of a simple set of commands to control

the Timeline. (It was ActionScript in diapers!)

To let viewers control the playhead, early versions of Flash had Button

symbols that could be programmed with ActionScript. The Button symbols

were bandwidth friendly because, as symbols, they could be reused as dif-

ferent instances. You could create a single Button symbol and then make

100 instances, and only a single symbol’s code was hauled over the Internet.

(Buttons are still bandwidth friendly, as are movie clips.)

When ActionScript was updated, the plan of putting it into buttons and

movie clips got progressively worse. The more movie clips and buttons in

a Flash application, the more little pieces of disconnected ActionScript that

need to be dealt with. Trying to track down hundreds of buttons and movie

clips that had snippets of code on each one was similar to playing Where’s

Waldo? in a house of mirrors. Even the addition of Movie Explorer was of

little help because, after you located the code in Movie Explorer, you had to

try to find the object’s frame in what might be a very long Timeline with lots

of layers.

With ActionScript 3, Flash’s key language is no longer at the proverbial chil-

dren’s table of Internet programming languages. ActionScript is all grown up

now, and although many users miss the old ways, it’s similar to missing a

bad habit, such as smoking. So use the new ActionScript to see how to move

along the Timeline without adding code directly to the button. (See Book IV,

Chapter 1 for a more detailed example.)

07_385395-bk01ch03.indd 4807_385395-bk01ch03.indd 48 10/28/08 8:04:13 PM10/28/08 8:04:13 PM

49

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Creating Timeline Functions with ActionScript

Working with the Timeline
In a nutshell, working with the Timeline, you must

 ✓ Make a button. You can do it on the Stage or by using ActionScript.

 ✓ Attach a listener to the button. The listener tells the button what to

listen for — usually a click on the button.

 ✓ Write a function that alters movement on the Timeline. Actions include

moving to a frame and stopping, moving to a frame and restarting stopped

movement, or starting play from the Timeline’s current position.

Of course, the best way to show this process is to create an example.

Creating Timeline Functions with ActionScript
In this section, you create two buttons: a winning choice and a losing choice.

(If only life were that simple! Sigh.)

Creating two buttons
To create the buttons, follow these steps:

 1. Open a new Flash file (ActionScript 3), and save it as Fate.fla.

 2. Add two layers by clicking the New Layer icon below the Timeline,

naming the top layer Actions, the second layer Frames, and the bottom

layer Buttons, as shown in Figure 3-1.

 3. In the Actions layer, click Frame 3, and press F5 to insert keyframes

out to Frame 3.

 4. In the Frames layer, click Frames 2 and 3, and press F6 to add

keyframes.

 5. In the Buttons layer, click Frame 3, and press F5 to add three frames.

 6. Click the lock icon in both the Actions and Frames layers.

 This step locks the layers to help prevent you from making mistakes.

 7. Click the first frame of the Buttons layer.

 8. Using the Oval tool, draw a circle to be used as a button; select the

oval and press F8 to open the Convert to Symbol dialog box.

 9. Type Btn for the name, select Button as the type, select the Export for

ActionScript check box, and click OK.

 (If you don’t see the check box, click the Advanced button.)

 Now you should have a button on the Stage.

07_385395-bk01ch03.indd 4907_385395-bk01ch03.indd 49 10/28/08 8:04:13 PM10/28/08 8:04:13 PM

50 Creating Timeline Functions with ActionScript

Figure 3-1: Setting up layers in an application.

 10. Select the button, and while holding down the Ctrl key (the Option

key on the Mac), drag the button to create a duplicate.

 11. Position one button above the other.

Formatting the buttons
Now you’re ready to apply some properties to the buttons. Follow these

steps:

 1. Select the top button by clicking on it.

 2. Choose Window➪Properties (Ctrl+F3, Ô+F3 on the Mac) from the

menu bar to open the Property inspector. In the Instance name box,

type Win, as shown in Figure 3-2.

 3. Select the bottom button.

 4. In the Instance name box of the Property inspector, type Lose.

 5. Next to the top button, type Win; next to the bottom button, type Lose.

 6. Lock the Buttons layer by clicking the column beneath the lock icon.

 A lock icon appears in the layer.

 7. Unlock the Frames layer by clicking the lock icon.

 8. Click the first frame, and select the Text tool.

 9. Select a 36-point font, and type Choose your fate (see Figure 3-3).

07_385395-bk01ch03.indd 5007_385395-bk01ch03.indd 50 10/28/08 8:04:13 PM10/28/08 8:04:13 PM

51

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Creating Timeline Functions with ActionScript

Figure 3-2: Adding an instance name to a button.

Figure 3-3: Added static text labels.

07_385395-bk01ch03.indd 5107_385395-bk01ch03.indd 51 10/28/08 8:04:14 PM10/28/08 8:04:14 PM

52 Creating Timeline Functions with ActionScript

 10. Select Static Text in the pop-up menu in the Property inspector, if it

isn’t already selected.

 11. Click the second frame, and then using the Text tool, type You won!

You can program in ActionScript 3.0.

 12. Click the third frame with the Selection Tool, and then with the Text

Tool, type You lost your fear of programming in ActionScript 3.0!.

 13. Lock the layer.

Adding the ActionScript
The last part of the process is adding the code. Follow these steps:

 1. Click the Actions layer, and choose Window➪Action.

 The Actions panel opens.

 2. Click inside the Actions panel and add the following script:

stop();
Win.addEventListener(MouseEvent.CLICK,goWin);
Lose.addEventListener(MouseEvent.CLICK,goFearless);

function goWin(e:MouseEvent):void
{
 gotoAndStop(2);
}

function goFearless(e:MouseEvent):void
{
 gotoAndStop(3);
}

 3. Save the .fla file.

The ActionScript’s actions
The following points show exactly what the ActionScript did to the flow on

the Timeline:

 1. The playhead was stopped with the stop() statement.

 2. The event listener was added to both the Win and Lose instances of the

buttons. Each one listens for a button CLICK.

 3. The Win button’s function is goWin(); the Lose button’s function is

goFearless(). Each function moves the playhead to the appropriate

keyframe.

07_385395-bk01ch03.indd 5207_385395-bk01ch03.indd 52 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

53

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Bringing in New Objects

As you can see, the example used the simple sequence of Make (you made

the button), Listen (the button listened for the CLICK), and Action (the

ActionScript functions moved the playhead where specified.)

Test the movie by choosing Control➪Test Movie. The message you see

depends on which button you click. Figure 3-4 shows what happens when

you click the Lose button.

Figure 3-4: Clicking the Lose button leads to this output.

Bringing in New Objects
One persistent challenge in developing Web sites — whether it’s in HTML

or Flash or any other Internet language — is sending an object over the

Internet. The size of the object you’re sending determines the experience of

the person on the receiving end.

Big objects take more time to transport than small ones do. Suppose that

you’re making a Flash site for a travel agency. The agency wants a Flash ani-

mation on every page along with a photograph to accompany the animation.

The site will have a total of ten pages. Your client tells you that under no cir-
cumstances can any page be larger than 50KB. However, because you know

Flash, you want to place each page in a keyframe with each one taking up

no more than 50KB. By using buttons to control the Timeline, you can then

have viewers quickly change content, including the animation and graphic.

07_385395-bk01ch03.indd 5307_385395-bk01ch03.indd 53 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

54 Bringing in New Objects

If you place all ten elements in the Flash document at the same time, it has

a load cost of 500KB. That takes a while to load, and impatient users may

not wait — the deadly Back button in a browser always beckons whenever a

page loads slowly.

On the other hand, you can display ten pages by using ActionScript to load a

movie clip whenever it’s needed. At only 50KB, the clip should load quickly,

and users may not even be able to notice. Also, after the materials are in the

cache (temporary memory), they load even more quickly the second time

around. The other pages simply wait on the server until requested. Because

the pages aren’t loaded, users don’t have to wait for pages they haven’t

asked to see.

Figure 3-5 illustrates the difference between the two approaches.

All objects are loaded
at once.

Only one object is
loaded at one time.
All others wait for
a request.

=500KB

=50KB

Figure 3-5: Loading all at once and loading on request.

07_385395-bk01ch03.indd 5407_385395-bk01ch03.indd 54 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

55

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Bringing in New Objects

Both techniques require ActionScript, and because it makes more sense in

the context of real-world Web use to load pages only when requested, that

technique is the one you want to use. (See Book IV for examples.)

You reuse the same code repeatedly. Just dust off the old code and reuse it

whenever you need it. There’s no sense in reinventing the wheel every time

you use ActionScript.

Providing information just in time
The concept of organizing your Flash application so that ActionScript

loads materials only when requested is related to another important

consideration — getting what you want when you want it. Some materials may

be requested, but the information need not be in front of viewers until a speci-

fied time. For example, a recipe doesn’t require its baking instructions until

all the ingredients have been prepared and mixed. Other types of information

may arrive in real time, such as a Web service that tracks thunderstorms. By

breaking down tasks into smaller parts and keeping them on the server until

needed, you avoid cluttering your screen or overworking your computer’s

processor. You get what you need just in time.

Organizing tasks
When you’re developing Flash Web sites, you can depend on two events

taking place:

 1. Your site will change.

 2. Your site will grow.

By breaking down a Flash site into smaller parts and using ActionScript to

control those parts, you make your life easier. Suppose that a client runs a

grocery store and wants to run weekly specials, and that you have to change

the site weekly. If that client then decides to expand her services to include

a soup-and-salad bar, you have to add another component. Figure 3-6 com-

pares two ways to approach that problem.

By taking a more granular approach to your application, you create far more

flexibility for growth and change. The “parts” are really just little Flash pro-

grams in .swf format. These smaller Flash files (in .swf format) make it

easy to find out about Flash and to build sophisticated applications.

07_385395-bk01ch03.indd 5507_385395-bk01ch03.indd 55 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

56 Looking at the Many Levels of ActionScript

Single SWF file

Change requires that the
whole application be
changed.

Only the new
element needs
to be added.

Controlled by
ActionScript

Figure 3-6: Organizing for change and growth.

Looking at the Many Levels of ActionScript
Working with ActionScript 3 in Flash CS4 provides you with a wide range of

options. Flash CS4 can use earlier versions of ActionScript (ActionScript 1 and

ActionScript 2), but we don’t cover these earlier versions. ActionScript 3 was

introduced in Flash CS3, so it’s not even brand-new. If we were to spend time

discussing earlier ActionScript versions, we would just be going backward,

and many of the functions in those earlier versions have been deprecated.

The Timeline code
If you use ActionScript on the Timeline, you’re best served by keeping it in

a single frame on a single layer. It can be tempting to add code in keyframes

wherever you think you need to, but you can bet that doing so will lead to

problems. As you can see in Figure 3-1, the top layer is the Actions layer,

and you can see in the first frame the little a, indicating that the frame has

ActionScript.

When you place your script on the Timeline, use the Actions panel. It helps

you write ActionScript and provides aid in the form of code hints and avail-

able options. Figure 3-7 shows the Actions panel and all its parts.

07_385395-bk01ch03.indd 5607_385395-bk01ch03.indd 56 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

57

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Looking at the Many Levels of ActionScript

Help
Remove

Comment

Apply Block Comment

Collapse
Section

Debug Options

Auto
Format

Insert Target Path

Add
Item

Active
panel

in dock

Show/
Hide

Toolbox

Apply Line Comment

Expand
All

Collapse between Braces

Show
Code
HintCheck Syntax

Find

Toolbox

Script Navigator

Figure 3-7: The Actions panel.

For the most part, you just use your keyboard to write in ActionScript.

However, the following list briefly describes each part of the panel:

 ✓ Toolbox: A library of ActionScript language that’s organized into classes.

At the end is an index with all the terms arranged alphabetically.

 ✓ Script Navigator: Helps you find where you placed your code. Put it all

in one place, and the Script Navigator shows the current selection and

scene with ActionScript. (If you put your code all over the place on the

Timeline, the Script Navigator can’t save you! You still have to select

each element with ActionScript to show it in the Script Navigator.)

07_385395-bk01ch03.indd 5707_385395-bk01ch03.indd 57 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

58 Looking at the Many Levels of ActionScript

 ✓ Add Item: Allows you to click an ActionScript statement to enter it into

the program (an alternative to typing).

 ✓ Find: Lets you search for terms in the program.

 ✓ Insert Target Path: Helps to define the absolute or relative path to an

object, such as a movie clip.

 ✓ Check Syntax: Checks for syntax errors and reports them.

 ✓ Auto Format: Formats code and makes your code more readable. It auto-

matically adds semicolons where needed and checks for syntax errors.

Rather than use Check Syntax, we favor using Auto Format. If no errors

are found, your code is formatted; if it’s not, all syntax errors are

reported.

 ✓ Show Code Hint: Helps you figure out how to use ActionScript far better

than the Script Assist feature does. (We keep this feature turned on all

the time.) For example, if you place a period (.) next to an object, all the

properties and methods associated with that object’s class appear.

 ✓ Debug Options: Adds little red dots to the left of the line number. In

longer programs, these little red dots make it easier to find a problem

you’re working on.

 ✓ Collapse between Braces, Collapse Selection, Expand All: Three tools

used to hide or show code that can be useful in longer programs.

 ✓ Apply Block Comment, Apply Line Comment, Remove Comment:

Assist in creating and removing comments, which are notes that a pro-

grammer inserts into the code.

 ✓ Show/Hide Toolbox: A toggle button that displays and hides the

Toolbox on the left side of the Actions panel.

 ✓ Script Assist: The original ActionScript entry mode. Some people see

it as the greatest thing since solar power, and others see it as an awk-

ward programming tool. It shows the options available and helps display

the structure of statements. (Code hints are, in our opinion, a better

alternative.)

 ✓ Help (?): An essential tool that helps you use ActionScript. Rather

than a typical Help resource, this one instead opens the ActionScript

3.0 Reference, including examples, in your browser. You can select

a term, and the Help (?) button immediately displays the term in the

ActionScript 3.0 Reference.

07_385395-bk01ch03.indd 5807_385395-bk01ch03.indd 58 10/28/08 8:04:15 PM10/28/08 8:04:15 PM

59

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Looking at the Many Levels of ActionScript

Keep in mind that the Actions panel is used only for programs developed by

placing the code in the Timeline. However, there’s a better way to develop

ActionScript wholly independently of the Timeline that we introduce in the

next section.

ActionScript files and classes
Writing code on the Timeline leaves a lot to be desired. For programmers,

it’s an unnatural place for programs. For designers, while offering certain

advantages, has long-range consequences for applications that are likely to

fail at some point. Also, scripts linked to the Timeline hinder changing code

and reusing the same code in another project.

To write scripts that are independent of the Timeline, you use ActionScript

files along with the familiar Flash file. The Flash (.fla) file’s primary use is

to hold the symbols in its library and hold the name of the class to be loaded

and run.

From Timeline to ActionScript file
Preparing to program using an

ActionScript file begins with the

Flash file. You simply open a new

Flash file and put the name of the

ActionScript file in the Class window,

found in the Property inspector, as

shown in Figure 3-8.

If you have any movie clips or

buttons in the Flash file, you can

address the movie clips and buttons

by using ActionScript statements.

Suppose that you build some but-

tons that you want to use. All you

have to do is to leave them in the

library and let ActionScript put them

where you want them on the Stage.

Figure 3-9 shows code that’s similar

to the code shown in Step 2 of the

section “Adding the ActionScript,”

earlier in this chapter.

Figure 3-8: Placing the class name in the
Property inspector.

07_385395-bk01ch03.indd 5907_385395-bk01ch03.indd 59 10/28/08 8:04:16 PM10/28/08 8:04:16 PM

60 Looking at the Many Levels of ActionScript

Figure 3-9: All ActionScript is in the ActionScript file.

Notice that the buttons named Win and Lose in the code shown in Figure 3-9

make a reference to the same buttons that you saw in the example using the

Actions panel (see the section “Creating Timeline Functions with ActionScript,”

earlier in this chapter). The only difference is that rather than provide instance

names for them, each one is named in the code.

Don’t expect to understand much of the ActionScript coding at first. Just

look at the statements and how they’re used. Even though ActionScript is

a little more difficult to use initially, it has a consistent logic that makes it

much easier in the long run. Book IV has more examples and explanations to

ease you through the process.

When you test an application that was created with ActionScript files rather

than on the Timeline, the results can be either similar or identical. In this

case, you can see the differences by comparing Figure 3-10, which uses the

trace() statement to send the text messages to the Output panel, and

Figure 3-4, which places messages on the Stage.

07_385395-bk01ch03.indd 6007_385395-bk01ch03.indd 60 10/28/08 8:04:16 PM10/28/08 8:04:16 PM

61

Book I
Chapter 3

The Engine Beneath
Flash: ActionScript 3

Looking at the Many Levels of ActionScript

Figure 3-10: The ActionScript structure is similar to the one used on the Timeline.

Taking it in a little at a time
When you start using ActionScript and Flash, slow and steady works best.

Because ActionScript is so powerful, it must have a large set of ActionScript

statements. Figure out how to use the basics and then extend your knowl-

edge (and power!) a little at a time. Book IV is dedicated to showing you how

to use ActionScript, and it gets you going.

07_385395-bk01ch03.indd 6107_385395-bk01ch03.indd 61 10/28/08 8:04:16 PM10/28/08 8:04:16 PM

62 Book I: Introducing Flash

07_385395-bk01ch03.indd 6207_385395-bk01ch03.indd 62 10/28/08 8:04:17 PM10/28/08 8:04:17 PM

Chapter 4: Creating Your
First Flash Project

In This Chapter
✓ Planning your project

✓ Creating your first Flash document

✓ Creating your first animation

Every project has a beginning and an end, which is the point where you

breathe a sigh of relief and then sit back and bask in the glow of accom-

plishment of a job well done. But the beginning isn’t where you think it

might be. If you begin a project without planning, it’s like trying to go some-

where you’ve never been without using a road map. If you don’t know where

you’re going, any road will take you there. So, the

first step when you’re creating a Flash project,

whether it’s for fun or for hire, is to plan.

The amount of planning you do is directly propor-

tionate to the scale of your project, and whether

you’re creating the project for a client. If you’re

planning the project for a client, the 90/10 rule

takes effect: The first 90 percent of any phase of a

project takes 90 percent of the allotted time. The

final 10 percent of any phase of a project is equal

in duration to the first 90 percent of the project.

When the planning phase is over, you can roll up

your sleeves and launch Flash.

In this chapter, we discuss some things you

should consider when planning your project, and

we show you how to create your first Flash document

and animation. Let’s delve into the wonderful world

of Flash.

Planning Your Project
The loftiest goal in the world isn’t anything more than a dream until you

write it down on paper along with a list of action steps you have to take

to accomplish the goal. Creating a project in Flash is similar: We like to

start with a clean sheet of paper and start noodling — a technical term for

08_385395-bk01ch04.indd 6308_385395-bk01ch04.indd 63 10/28/08 8:05:23 PM10/28/08 8:05:23 PM

64 Planning Your Project

daydreaming on paper with a purpose in mind. During the initial planning

stage, you come to grips with the scope of your project and determine what

you need in order to — as Larry the Cable Guy would say — get ’er done.

Mapping out the project
When Doug starts a new project, he uses the mind-mapping technique: He

starts with a blank piece of unlined paper and draws circles to define the

various parts of the project. This strategy is especially useful if you’re creat-

ing a large project that has a lot of content. For example, if you’re creating

a Flash Web site, you have the home page and the other sections of the site

(see Figure 4-1). Mapping out a site in this manner helps you envision the

entire project. You also have associated items, such as the interface, back-

ground music, and images. After you have all the items listed, you draw lines

to show how the various objects are connected.

Home PageGalleries
Thumbnail Link

To Galleries

Slide
Show

Training

Links

Ye
Olde
Blog

Services
Offered

BG
Music

Mail
To

Link

Macro
&

Lensbaby

Landscapes

Portraits
Abstract

About
Doug

Doug’s
Books

Cityscape

Superb
Weddings

Superb
Images

Form

Store
Amazon
Affiliate

Contact

Figure 4-1: Map out your site.

If you’re creating a complex animation or game, you can use storyboarding,
a filmmaking technique. In a nutshell, you create a facsimile of each major

scene in the animation. Your storyboard doesn’t have to be a work of art;

it’s just a visual reference to keep you on track. Your storyboard can consist

of several rectangles that are the approximate aspect ratio of your Flash

project. Create one rectangle for each keyframe or scene in your project and

08_385395-bk01ch04.indd 6408_385395-bk01ch04.indd 64 10/28/08 8:05:24 PM10/28/08 8:05:24 PM

65

Book I
Chapter 4

Creating Your First
Flash Project

Planning Your Project

draw stick figures. If you’re working out a storyboard in a restaurant with

your client, you may end up using napkins to sort out your storyboard. Just

make sure that the napkins don’t get wet after you create the storyboard.

Whether you create your storyboard on a legal pad, computer screen, or

napkin, the result is your vision of the final project.

Different people work in different ways, so mind mapping and storyboarding

may not work for you. But we urge you to do some kind of planning when

you tackle a complex Flash project, even if you just make some notes on a

legal pad. When you put it in writing, what you see in your mind’s eye may

not be as cut and dried as you first thought.

Determining the scope of your project
After you do your initial planning, you have a good idea of what you need to

get the job done. At this stage, you have an idea of the approximate amount

of time it will take to finish your project. This information is useful if a client

is chomping at the bit to post your Flash masterpiece on the Web.

If you’re dealing with a client and the project is grand in nature, create some

milestones and discuss them with the client. The milestones help keep you

focused, especially if you’re juggling more than one project.

Your initial planning also gives you an idea of whether you have the neces-

sary knowledge to create your grand vision. If the project involves a lot of

ActionScript and you don’t know how to use the actions necessary to pull off

the project, you may have to

 ✓ Find some assistance.

 ✓ “Dummy down” (big grin) the project.

 ✓ Thumb through the index of the reference book you hold in your hands

and find the information you need to get the job done. We packed a lot

of gems of wisdom — and blood, sweat, and tears — into this handy

reference.

Planning a project may seem like a huge expenditure of time, and we agree

that planning isn’t as much fun as working in Flash. However, if you spend a

little extra time up front, it can save you a huge amount of time when you’re

working on a project. Another benefit of planning ahead of time is that you

don’t reach the end of a project (or what you thought was the end of it) and

realize that it has a fatal flaw or that you forgot to do one little thing at the

start of the project. When you’re dealing with hundreds of frames or hun-

dreds of lines of ActionScript code, trying to find a flaw is like trying to find

the proverbial needle in the haystack.

08_385395-bk01ch04.indd 6508_385395-bk01ch04.indd 65 10/28/08 8:05:24 PM10/28/08 8:05:24 PM

66 Creating Your First Flash Document

Making a list and checking it twice
Creating a checklist is a handy way to manage a project. Your list shows you

everything you need to create for the project. The objects you need to create in

Flash are assumed, but listing them helps you recognize areas where you can

save time and bandwidth by creating symbols, which help keep the resulting

project rather svelte in regard to file size. Even with today’s fast Internet con-

nections, file size is still a factor. When you’re listing the objects you need to

create in Flash, begin with symbols, which are reusable. For example, you can

create a rounded rectangle graphic symbol that can be used as a background

for text. The same symbol can double as the basis for a button. Creating reus-

able symbols means less work for you. Then add to the list the other items you

need to create, such as the user interface, movie clips, and animations.

The last part of the list consists of the objects you need from your client, such

as photos, text, and logos. Here are some tips for gathering those items:

 ✓ Images: Make sure that you tell your client the size and resolution you

require for the project images. Better yet, ask the client to send you the

original digital file on disc, as long as it meets or exceeds your minimum

requirements.

 ✓ Video and audio files: If your client supplies video and audio files, make

sure that they’re in the proper format. If the client is supplying video,

ask for the original video captured by the camcorder. If she gives you

video that has already been compressed, she won’t like the results.

Compressing a compressed file isn’t just redundant — it doesn’t pro-

duce good results, either. Plop the original file into the Adobe Media

Encoder and do something exciting while the application renders a

squeaky-clean FLV file for your project.

Covering your assets
After you create your list, you know what you need in order to create the

project. We recommend rounding up all necessary items ahead of time. It’s

extremely counterproductive to realize, right in the middle of a project, that

you’re missing a vital element. We also recommend that you store all project

assets in the same folder. Eventually, they’ll end up in the document library,

but being organized ahead of time is helpful. When your creative juices are

flowing like the mighty Niagara Falls, it’s not a good idea to slow down and try

to remember where you stored an asset. Nothing stifles creativity quicker.

Creating Your First Flash Document
After you know where you’re going and all your assets are safely nestled

away in a folder, it’s time to get down and get funky with Flash. When you

create a Flash document, you have choices: You can start with a template

or create your own document from scratch. If you use a template, it has

08_385395-bk01ch04.indd 6608_385395-bk01ch04.indd 66 10/28/08 8:05:24 PM10/28/08 8:05:24 PM

67

Book I
Chapter 4

Creating Your First
Flash Project

Creating Your First Flash Document

all the information you need to start your project. However, if you create a

document from scratch, you specify the document type, width, height, back-

ground color, and frame rate.

In the following sections, we show you how to create a simple Flash anima-

tion. If you’re new to Flash, this information is extremely helpful. If you’re an

old hand at Flash, it’s still helpful because animation is done slightly differ-

ently in Flash CS4.

Ye olde Welcome screen
When you launch Flash for the first time, you see the Welcome screen (see

Figure 4-2). From there, you can do several things: Create a new document,

click links to view online tutorials, find out about new features, or check out

online resources, for example.

Figure 4-2: Welcome back, my friends, to the show that never ends.

You can find the same Welcome-screen resources on the Help menu, includ-

ing the Flash Exchange. (No, unfortunately, you cannot exchange an old

version of Flash for a new one.) What you can do in the Flash Exchange is

find extensions for Flash. Extensions are similar to plug-ins in an image edit-

ing application: They enable you to create some cool elements, such as

Flash slide shows, without breaking a sweat. We leave it up to you to decide

whether you want to display the Welcome screen each time you launch

Flash, or disable it by selecting the Don’t Show Again check box (which is

what Doug will do as soon as he finishes writing this sentence.) From now

on, we use menu commands to create new documents.

08_385395-bk01ch04.indd 6708_385395-bk01ch04.indd 67 10/28/08 8:05:24 PM10/28/08 8:05:24 PM

68 Creating Your First Flash Document

Creating a document from a template
A template is a wonderful thing. It’s all set up for a specific application, wait-

ing for you to add your own splash of creativity to turn the published project

into something special. Flash templates are in several categories: You can

choose a template to create a Flash advertising banner, create a Flash proj-

ect for a mobile device, create a photo slide show, or create a Flash project.

To create a document from a template, follow these steps:

 1. Choose File➪New.

 The New Document dialog box appears.

 2. Click the Templates tab.

 The dialog box refreshes and displays the template categories (see

Figure 4-3).

 Figure 4-3: Creating a Flash document from a template is easy.

 3. Choose a category from the left pane.

 Flash displays all templates associated with the category.

 4. Select a template.

 A description of the typical use of the template appears in the lower-

right corner of the dialog box.

 5. Click OK to close the dialog box.

 Your shiny, new document is front and center on the Stage.

08_385395-bk01ch04.indd 6808_385395-bk01ch04.indd 68 10/28/08 8:05:24 PM10/28/08 8:05:24 PM

69

Book I
Chapter 4

Creating Your First
Flash Project

Creating Your First Flash Document

Creating a document from scratch
Flash has a default template for each document type. You can modify the

document to suit your specific project after you create the document. The

document type determines what the published document will be used for.

To create a new document, follow these steps:

 1. Choose File➪New.

 The New Document dialog box appears (see Figure 4-4).

Figure 4-4: Which type of document do you want to create today?

 2. Review the available document types.

 The document type determines the ultimate use of the published file.

Your choices are described in this list:

 • Flash File (ActionScript 3.0): Creates a new Flash FLA file in the

Document window using the default dimensions. The resulting docu-

ment is published as a Flash ActionScript 3.0 SWF file that plays in

the Adobe Flash Player.

 • Flash File (ActionScript 2.0): Creates a new Flash FLA file in the

Document window using the default dimensions. The resulting docu-

ment is published as a Flash ActionScript 2.0 SWF file that plays in

the Adobe Flash Player.

 • Flash File (Adobe AIR): Creates a new Flash FLA file in the Document

window using the default dimensions. The Publish settings are for

Adobe AIR, which enables you to publish a desktop application that’s

played on the Adobe AIR runtime. The published file is cross-platform.

08_385395-bk01ch04.indd 6908_385395-bk01ch04.indd 69 10/28/08 8:05:25 PM10/28/08 8:05:25 PM

70 Creating Your First Flash Document

 Adobe AIR makes it possible for you to create an application in Flash.

The published file can be installed and executed on any computer that

has the free Adobe AIR extension for the Flash Player (http://get.
adobe.com/air).

 • Flash File (Mobile): After you choose this option, the Adobe Device

Central CS4 application appears. Choose a device, a player version,

an ActionScript version, and a content type, which creates a new

document tailored to the device you select.

 • Flash Slide Presentation: Choose this option to create a Flash slide-

show presentation that’s published as a Flash SWF file.

 • Flash Project: Choose this option to create a Flash Project, which is

essentially a folder in which you store project content. This option is

handy when you have many SWF and ActionScript files for a project.

 3. Choose ActionScript 3.0 and then click OK.

 Flash creates a document with publish settings that are tailor-made for

an ActionScript 3.0 document.

Setting the document size, background
color, and frame rate
When you create an ActionScript 2.0 or 3.0 document, the default size is

550 x 400 pixels, the frame rate is 24 fps (frames per second), and the default

Stage color is white, which isn’t terribly useful if you’re creating an anima-

tion of a polar bear in a snowstorm. You can change any of these options to

suit your project by following these steps:

 1. After creating a new document, choose Window➪Properties.

 The Property inspector opens (see Figure 4-5). If you’re using the default

workspace, you can open the Property inspector by clicking its tab in

the Panel Dock on the right side of the workspace. In Figure 4-5, notice

the options to change the Publish settings.

 2. Click the Edit button in the Properties area.

 The Document Properties dialog box opens (see Figure 4-6).

 3. Enter some dimensions in the (width) and (height) fields.

 4. Choose a Match option:

 • Default: The default option matches the document to the default

dimensions of the ones you specify.

 • Printer: If you choose Printer, the document size changes to match

the dimensions of the paper now in the default printer, minus the

printer margin size.

08_385395-bk01ch04.indd 7008_385395-bk01ch04.indd 70 10/28/08 8:05:25 PM10/28/08 8:05:25 PM

71

Book I
Chapter 4

Creating Your First
Flash Project

Creating Your First Flash Document

Figure 4-5: It’s time to change your Flash document’s properties.

 • Contents: If you have objects on the Stage when you modify docu-

ment properties, the Contents radio button becomes available.

Choosing this option leaves an equal margin around the content on

all sides.

 5. Click the Background color

swatch.

 The Swatches panel opens (see

Figure 4-7).

 6. Click to select a swatch.

 The Background color swatch

changes to the selected color.

 7. Enter a value in the Frame Rate

field.
Figure 4-6: Every document has properties. It’s
a Flash law.

08_385395-bk01ch04.indd 7108_385395-bk01ch04.indd 71 10/28/08 8:05:25 PM10/28/08 8:05:25 PM

72 Creating Your First Flash Document

Figure 4-7: Is there a sky-blue pink in this panel?

 The default frame rate of 24 frames per second (fps) is ideal for many

projects, including those with external streaming video that loads into

the published file. However, if you’re creating a project for people who

will be accessing the Internet with a slow connection, you can specify a

frame rate as low as 12 fps and still produce good results with motion

tweening and shape tweening animations.

 8. Choose a unit of measure from the Ruler Units drop-down menu.

 This option changes the unit of measure for the document. The default

option is pixels. Your choices include inches, inches (decimal), points,

centimeters, millimeters, and pixels. The change is reflected in every

dialog box that changes the size or location of an object.

If you create lots of documents with the same dimensions, background

color, and frame rate, you should create a new document, change the

document properties as outlined in this section, and then click the Make

Default button in the Document Properties dialog box before clicking OK.

 9. Click OK.

 The dialog box closes, and your changes are applied to the document.

Creating your first animation
After you create a document, it’s time to make something happen. In this

section, we show you how to create a basic animation using motion tween-

ing. To create your first animation, follow these steps:

08_385395-bk01ch04.indd 7208_385395-bk01ch04.indd 72 10/28/08 8:05:26 PM10/28/08 8:05:26 PM

73

Book I
Chapter 4

Creating Your First
Flash Project

Creating Your First Flash Document

 1. Create a new document, as out-

lined earlier in this chapter.

 If you rushed to this section to find

out how to create your first anima-

tion and you don’t know how to

create a new document, take a deep

breath and flip back a few pages to

the section about creating a docu-

ment from scratch.

 2. In the Tools panel, select the Oval

Primitive tool.

 If you haven’t used the tools yet,

click the triangle to the lower-right

of the Rectangle tool and select the

Oval Primitive tool from the fly-out

menu (see Figure 4-8).

 3. Click and drag on the Stage to

create the oval.

 Create a relatively small oval on

the left side of the Stage.

 4. Right-click (Windows) or

Control+click (Macintosh), and

choose Create Motion Tween from

the context menu.

 Flash displays a dialog box telling

you the shape because it cannot be

tweened. You have the option to

have Flash automatically convert it.

 5. Click OK.

 Flash converts the object to a

symbol and adds several frames

to the Timeline. The last frame is

selected (see Figure 4-9).

 6. Select the Selection tool.

 It’s the solid, left-pointing arrow at the top of the Tools panel.

Figure 4-8: Allow us to introduce the Oval
Primitive tool.

08_385395-bk01ch04.indd 7308_385395-bk01ch04.indd 73 10/28/08 8:05:27 PM10/28/08 8:05:27 PM

74 Creating Your First Flash Document

 7. Drag the oval to the right side of the Stage and down.

 Flash creates a solid green line with a point for each frame. A keyframe

is also added to the end of the Timeline (see Figure 4-10).

 8. Move the Selection tool close to the green line.

 When you see a curve icon appear below the tool, click and drag to arc

the line (see Figure 4-11).

 9. Release the mouse button when the arc looks like the one shown in

Figure 4-11.

 Flash curves the line, which in Flash-speak is known as the path.

 10. Choose Control➪Test Movie.

 Flash opens another window and your animation plays again and again

and again. After you tire of looking at your handiwork, click the red X to

close the dialog box.

Figure 4-9: Gee, it’s easy to create animations in Flash CS4.

08_385395-bk01ch04.indd 7408_385395-bk01ch04.indd 74 10/28/08 8:05:27 PM10/28/08 8:05:27 PM

75

Book I
Chapter 4

Creating Your First
Flash Project

Creating Your First Flash Document

Figure 4-10: Holy motion tween, Batwoman!

Figure 4-11: Bend me, shape me, any way you want to.

08_385395-bk01ch04.indd 7508_385395-bk01ch04.indd 75 10/28/08 8:05:28 PM10/28/08 8:05:28 PM

76 Creating Your First Flash Document

 11. If you want to save your first animation for posterity, choose File➪
Save and follow the prompts to save the document in its native

FLA format.

 When you combine animation with ActionScript and the other delightful

features we discuss in this book, you create compelling Flash projects

that will amaze your friends and family members and, if you’re learning

to use Flash for a living, your clients.

08_385395-bk01ch04.indd 7608_385395-bk01ch04.indd 76 10/28/08 8:05:29 PM10/28/08 8:05:29 PM

Chapter 5: Pushing the
Panic Button — Help!

In This Chapter
✓ Summoning help

✓ Updating Flash

✓ Finding and installing Flash extensions

✓ Joining the Flash online community

F lash is a multifaceted software application. You can use it to create ani-

mations, multimedia presentations, interactive applications, and much

more. You might say that Flash is vast: If it had only 50 percent of its current

features, it would be half-vast. But even a half-vast program can present stum-

bling blocks. Your first line of defense is this book.

Suppose that you’re working in a client’s office,

though. Faced with an insurmountable problem,

you don’t want to whip out a For Dummies desk ref-

erence, so you can always resort to using the Help

information supplied with the Flash application. It

doesn’t have any traces of the authors’ charm and

wit, but it provides help, and fast.

In this chapter, we show you how to summon Flash

Help. We also show you how to use the other good-

ies lurking on the Flash Help menu. And, if you’re

a communal kind of Flash designer or developer,

we show you the way to the Adobe online forums.

Something for everyone, a Forum tonight.

Getting By with a Little
Help from Flash

Flash can stump you when you least expect it. You may be working away,

merrily drawing vectors and shapes and symbols and adding interactive

snippets of ActionScript when Murphy (the guy who wrote the law) rains on

your parade. Fear not, trepid Flash groupie, when Murphy strikes with a ven-

geance, an umbrella and some sunshine are just a few mouse clicks away.

09_385395-bk01ch05.indd 7709_385395-bk01ch05.indd 77 10/28/08 8:10:37 PM10/28/08 8:10:37 PM

78 Getting By with a Little Help from Flash

Using Flash Help
The Flash Help menu, like the program, is bi-i-ig. With a bit of work, though,

you can cut to the chase and find the information you’re seeking. To

summon Flash Help, follow these steps:

 1. Choose Help➪Flash Help.

 Alternatively, you can press F1 to get help. The menu command or

keyboard shortcut displays an HTML page with Flash CS4 Help loaded

and awaiting your command (see Figure 5-1).

Figure 5-1: Help me, Flash.

If you like to have information at your fingertips, click the PDF link in the

upper-right corner of the Flash Help pages. A PDF file called Using Adobe

Flash CS4 Professional loads in your browser. On the Acrobat toolbar,

click the Save button to save a copy of the document on your computer.

If you’re online when you summon Flash Help, pages from an Adobe

Web site load in your default Web browser. If you’re offline when you

summon Flash Help, you see HTML pages that were added to your hard

drive when you installed Flash.

 2. Choose an option from one of the menus.

 The menu consists of several topics that contain information about

every conceivable nook and cranny in Flash, minus the sage wisdom

and humor of your friendly authors, Bill and Doug. If you want to cut to

the chase, choose a book that appears to be the logical choice for the

topic about which you need help. For example, to find information on

ActionScript 3.0 components, choose the book with that title.

 3. Click the plus sign (+) icon to the left of a topic to see a list of

information related to that topic.

09_385395-bk01ch05.indd 7809_385395-bk01ch05.indd 78 10/28/08 8:10:38 PM10/28/08 8:10:38 PM

79

Book I
Chapter 5

Pushing the Panic
Button —

 Help!
Getting By with a Little Help from Flash

 If you’re searching for information on a topic like ActionScript, you’ll

find more topics with more plus signs. Click the applicable plus sign to

reveal more topics. When you see the title that contains the information

you’re looking for, click it, and the related information appears on the

right side of the Help window. You may have to click another plus sign

to find what you’re seeking. When you select a topic of interest, you see

a list of items related to the topic.

 4. Click an item of interest.

 The Flash help menu gives you detailed information about the item

the piques your curiosity — the topic that had you stumped just a few

seconds ago (see Figure 5-2).

Figure 5-2: Finally, the information I’m looking for!

You can also find information by entering a word or phrase in the Search text

box and then pressing Enter or Return. This returns a page of results from

Adobe Community Help. The topics are listed in order of relevance. You can

refine your search by choosing a topic from the list below your search query.

Getting ActionScript help
ActionScript is a whole different kettle of fish. When you’re knee-deep in

code and trying to create an interactive jigsaw puzzle before it rains any-

more and Murphy’s Law takes over, you need to get help. But you don’t want

09_385395-bk01ch05.indd 7909_385395-bk01ch05.indd 79 10/28/08 8:10:39 PM10/28/08 8:10:39 PM

80 Updating Flash

help for everything — just information about what a specific action does and

how to properly format the code.

To get ActionScript help, open the Actions panel and then follow these steps:

 1. From the left side of the Actions panel, select the action that has you

stumped.

 Don’t double-click the action, or else you add it to your script.

 2. Right-click (Windows) or Ô+click (Mac) and choose View Help.

 Help information for the object appears in a different window, in

HyperText Markup Language (HTML). In other words, it’s an HTML

document from Adobe’s Web site. Figure 5-3 shows ActionScript help for

the Date object, which is used for telling the time (and not for wowing

unmarried Flash designers of the opposite sex).

Figure 5-3: Getting ActionScript help is easy.

Updating Flash
The people who designed Flash are like Santa’s elves: They’re continually

working to make the product the best possible application it can be. To that

end, they periodically make application updates available. If you use Flash

on a computer that’s always connected to the Internet, available updates

09_385395-bk01ch05.indd 8009_385395-bk01ch05.indd 80 10/28/08 8:10:39 PM10/28/08 8:10:39 PM

81

Book I
Chapter 5

Pushing the Panic
Button —

 Help!
Updating Flash

are installed automatically weekly or monthly whenever you start your com-

puter. You see a warning message to this effect that shows the updates to be

installed. If you have additional Adobe applications on your machine, avail-

able updates for those applications are also displayed.

You can also update Flash manually by following these steps:

 1. Launch Flash and then choose Help➪Updates.

 The Adobe Updater appears, displaying the message shown in Figure 5-4.

 Figure 5-4: And now, the latest and greatest Flash updates will
appear.

 After the Adobe Updater scans for Flash updates, the dialog box

refreshes and shows you whether updates are available for Flash — and

other Adobe applications installed on your computer (see Figure 5-5).

Figure 5-5: Update now!

 2. Choose one of the following options:

 • Preferences: Click this link to open the Adobe Updater Preferences

dialog box (see Figure 5-6). From within this dialog box, you can

determine whether your computer automatically checks for updates,

how often the Updater scans for updates to your Adobe applica-

tions, whether the updates are downloaded automatically or you’re

prompted when updates are available, and which applications are

automatically updated.

09_385395-bk01ch05.indd 8109_385395-bk01ch05.indd 81 10/28/08 8:10:39 PM10/28/08 8:10:39 PM

82 Updating Flash

Figure 5-6: Setting Updater preferences.

To disable automatic updates, deselect the Automatically Check for
Adobe Updates check box. After disabling automatic updates, you can

manually scan for updates by choosing Help➪Updates.

 • Show Details: Click this link to open a dialog box that shows the avail-

able updates for each Adobe application installed on your computer.

When you choose this option, a check box appears next to each

update (see Figure 5-7). Deselect an update’s check box if you don’t

want to install it.

 • Download and Install Updates: Click this button to install the

updates — or selected updates, if you choose not to install all avail-

able updates — to your computer. If you choose this option, a dialog

box appears, showing you which update is being downloaded. A bar

shows you the progress of the update. Below the progress bar, the

Updater displays the time remaining to complete the update.

 After the download is complete, the Installation Progress dialog box

appears, showing you which update is being installed. You have

the option to cancel the install or minimize the Installation Process

dialog box to the system tray (Windows). The dialog box notifies you

if an installation fails and tells you what you need to do to apply the

update to the application in question. When the update is complete,

a message to that effect appears and the dialog box disappears.

09_385395-bk01ch05.indd 8209_385395-bk01ch05.indd 82 10/28/08 8:10:40 PM10/28/08 8:10:40 PM

83

Book I
Chapter 5

Pushing the Panic
Button —

 Help!
Extending Flash

Extending Flash
Lots of geeks out there love to write extensions for Flash. The majority of

the extensions are pretty cool and do just as they’re advertised to do — give

you the capability to do something different from within the Flash applica-

tion. You extend Flash by taking a short and tumble journey from Flash to

the Flash Exchange. Here you find all kinds of extensions: some for video and

some for ActionScript, for example.

The Flash Exchange is a popular place where lots of designers and develop-

ers upload extensions for Flash and other Adobe applications. Some of the

extensions are free, and others aren’t. But if an extension makes it possible

for you to do something with Flash that you couldn’t do before, it must have

some value.

Finding Flash extensions
If you want to explore which Flash extensions are available, follow these

steps:

 1. Launch Flash and choose Help➪Flash Exchange.

 Your default Web browser opens to the Adobe Exchange.

 2. In the Exchanges by Product section, click Flash.

 The page refreshes to show the Flash Exchange (see Figure 5-7). The

Flash Exchange is divided into four tabs: Staff Picks, Most Recent, Most

Popular, and Highest Rated.

 3. Click to select a tab.

 The page refreshes and shows the extensions filtered to all license

types.

 4. Choose an option from the License Type drop-down menu, and then

click Filter.

 For example, one of the license options is Freeware. If you’re on a

budget and looking to extend Flash, this is the place to start.

 5. Click the Download button to the right of any extension to download

it. The applications that cost money have a Buy button next to them.

Click the button to purchase and download the extension.

 Alternatively, you can click the extension title to display a page that has

more information about the extension. If, after reading the description,

you decide that the extension is for you, click Download or Buy. If you

09_385395-bk01ch05.indd 8309_385395-bk01ch05.indd 83 10/28/08 8:10:40 PM10/28/08 8:10:40 PM

84 Extending Flash

download an extension, you’re prompted for your Adobe ID and pass-

word. If you don’t have an Adobe account, you can set one up at this

page. (It’s free — what are you waiting for?) After signing in, the down-

load begins.

Figure 5-7: The Flash Exchange is chock-full of extensions for Flash.

Installing Flash extensions
After you download some Flash extensions, you install them. After you install

them, you can use them to extend Flash in ways that may boggle your mind.

To install an extension, follow these steps:

 1. From within Flash, choose Help➪Manage Extensions.

 Alternatively, you can double-click an extension. Either method launches

the Adobe Extension Manager CS4. When you launch the Extension

Manager for the first time and have extensions installed in the previous

version of it, you have the option to migrate them to the current version.

 2. Click Yes to migrate extensions from the previous version of the

Extension Manager into the current one.

09_385395-bk01ch05.indd 8409_385395-bk01ch05.indd 84 10/28/08 8:10:40 PM10/28/08 8:10:40 PM

85

Book I
Chapter 5

Pushing the Panic
Button —

 Help!
Extending Flash

 If you’re pressed for time, click Later. If you don’t want the old exten-

sions, click Never. If you click Yes, the Extension Manager migrates the

extensions. Click OK to complete the migration, and then restart the

Adobe Extension Manager CS4.

 3. Click Install.

 The Select Extension to Install dialog box appears.

 4. Navigate to the extension you want to install.

 We generally download extensions to the computer desktop. They’re

easy to find there, and you can delete them after the Extension Manager

installs them.

 5. Select the extension you want to install, and then click Open.

 The Extension Manager displays the extension disclaimer. In essence,

the disclaimer says that a third party created the extension and that

Adobe doesn’t warrant or support it. (It says a lot more, but we’re not

from Philadelphia, nor are we lawyers.) We suggest that you read the

disclaimer thoroughly before accepting it.

 6. Click Accept to install the extension.

 The extension is installed, and a message to that effect is displayed,

which also notes that you must restart Flash CS4 for the extension to be

recognized.

 7. Click OK.

 The message box closes.

 8. Close Adobe Extension Manager CS4 and then restart Flash.

 After installing an extension and restarting Flash, you can use the

extension. Whether it appears as a tool or a menu command is prede-

termined by its designer. Refer to the Adobe Extension Manager CS4 for

information.

Managing Flash extensions
After you download and install extensions for any Adobe application, you

use Adobe Extension Manager CS4 to manage your extensions. You can dis-

able an extension, remove an extension, or visit the Flash Exchange from

within Adobe Extension Manager CS4. To manage your extensions, follow

these steps:

 1. Launch Flash and choose Help➪Manage Extensions.

 The Adobe Extension Manager CS4 appears.

 2. Select from the Products column the application whose extensions

you want to manage.

09_385395-bk01ch05.indd 8509_385395-bk01ch05.indd 85 10/28/08 8:10:41 PM10/28/08 8:10:41 PM

86 Flash Online Resources

 The check box in the Enabled column is selected for any extension that’s

enabled (see Figure 5-8).

Figure 5-8: Manage your extensions with ease by using Adobe
Extension Manager CS4.

 3. Click a selected check box next to an extension to disable it.

 A bar appears, showing the progress, and then a message appears, tell-

ing you that the extension was successfully disabled.

 4. Click Remove to remove the extension.

 A message appears, telling you that you’re about to remove an

extension.

 5. Click OK to remove the extension.

From within Adobe Extension Manager CS4, click Exchange to visit the

Adobe Exchange.

Flash Online Resources
Adobe believes that its customers should be informed and have access to a

plethora of online resources. And, you don’t have to do a Google search to

find these resources. You can access a wealth of information by choosing

one of these options from the Help menu:

09_385395-bk01ch05.indd 8609_385395-bk01ch05.indd 86 10/28/08 8:10:41 PM10/28/08 8:10:41 PM

87

Book I
Chapter 5

Pushing the Panic
Button —

 Help!
Flash Online Resources

 ✓ Flash Support Center: Opens the Flash Support Center, where you can

search the Flash Knowledge Base by entering a few key words in the Search

For text field. You also see a Search Tips link and an Advanced Search link.

 ✓ Adobe Online Forums: Opens the Flash Support Forums Web page,

which is divided into several categories. Click a category that interests

you to read the posts. You can add your two cents to a thread or use

the forums as a resource for ideas or to search for information about a

design problem that has been bothering you.

 ✓ Adobe Training: Leads you to the Flash Resources section of the Design

Center tutorial, where you find tutorials, articles, and reference materi-

als as well as links to blogs and other resources.

09_385395-bk01ch05.indd 8709_385395-bk01ch05.indd 87 10/28/08 8:10:41 PM10/28/08 8:10:41 PM

88 Book I: Introducing Flash

09_385395-bk01ch05.indd 8809_385395-bk01ch05.indd 88 10/28/08 8:10:41 PM10/28/08 8:10:41 PM

Book II
Creating Graphics

10_385395-pt02.indd 8910_385395-pt02.indd 89 10/28/08 8:11:13 PM10/28/08 8:11:13 PM

Flash! The very name of this application leads

you to believe that you can create compelling

projects. That’s right — we’re talking fl ashy here.

To create fl ashy projects to present on the Web,

you need to create good-looking graphics. Flash

has all the tools you need to create rectangles,

ovals, stars, and other shapes. You can add artis-

tic splashes of color to the shapes you create with

the Flash drawing tools. You can also kick up your

projects a notch or two by importing photo-

realistic images. And, when you need to get the

word out, you can use the Text tool.

Creating graphics can be time consuming, though.

You’ll be happy to know that you can create a

symbol, which is in essence a reusable graphic.

You can also organize your work with layers. We

show you how to do all of the above and more in

Book II.

10_385395-pt02.indd 9010_385395-pt02.indd 90 10/28/08 8:11:14 PM10/28/08 8:11:14 PM

Chapter 1: Creating Flashy
Graphics

In This Chapter
✓ Understanding vectors and bitmaps

✓ Creating shapes with the Drawing tools

✓ Modifying shapes

A thing of beauty is a joy forever. If you want your Flash design to be

a thing of beauty, you need to have eye-catching graphics. Can you

imagine an interface with just text? You don’t see one of those in modern

designs. If you’ve been around for a few years, like your friendly authors

have, you may remember when the Internet was text-only. When you

opened a Web page, it looked like a giant outline

from a word processing application. That was

back when computers had black-and-white moni-

tors and not much processing power. Even the

most basic modern computer can handle pretty

much anything the Web or Flash can throw at it.

So, unless you want your Flash project to look like

something from the Jurassic period of the Internet,

you need to become friendly with the tools that are

used to add shapes to a design. In this chapter, we

show you how to come to grips with the tools you

use to create shapes and the drawing tools.

A Tale of Two Graphic Types
Flash graphics have a split personality. The

shapes you draw with the shape and drawing tools can be scaled almost

infinitely, with the exception of graphics that are filled with complex gradi-

ents. (Color is covered in the next chapter, so we stick with shapes here.)

The shapes you create with the Flash drawing and shape tools are known as

vector graphics. (Give me a vector, Victor.) When you import photorealistic

images into Flash, you’re importing raster graphics, mon. Raster graphics

come in many flavors, but have one thing in common: If you try to greatly

increase the size of a raster graphic, the result doesn’t look good. If it all

seems about as clear as a gallon of molasses, read the following sections to

discover the difference between the two.

11_385395-bk02ch01.indd 9111_385395-bk02ch01.indd 91 10/28/08 8:13:16 PM10/28/08 8:13:16 PM

92 A Tale of Two Graphic Types

Understanding vector graphics
When you create a graphic using

a Flash drawing or shape tool, the

resulting graphic is composed of

points and line segments. In essence,

it’s pure math. When you increase

the size of a vector graphic, mathe-

matical formulas preserve the place-

ment of the points, whether the point

is a straight or curve point or the

relative length of the line segment

between the points, for example.

Figure 1-1 shows a shape created

with the Polystar tool. The shape has

been selected with the Subselect tool

to show you the points that make up

the shape.

Understanding bitmap (raster) graphics
A photograph taken with a digital camera or scanned into a computer is known

as a bitmap, which you shouldn’t confuse with the Windows .bmp format —

also called bitmap. A bitmap is a pixel-based image (see Figure 1-2). A pixel is

a square of color. If you zoom in on a bitmap — we’re geeks, so we prefer the

term raster — you can see the individual pixels, as shown in Figure 1-3.

Figure 1-2: It’s a bitmap image, mon.

Figure 1-1: Vector images are all about the
math.

11_385395-bk02ch01.indd 9211_385395-bk02ch01.indd 92 10/28/08 8:13:17 PM10/28/08 8:13:17 PM

93

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

Bitmaps are resolution dependent.

For example, an 8x10-inch image,

with a resolution of 300 ppi (pixels

per inch) has a document size of

2400 (8 inches x 300 ppi) x 3000 (10

inches x 300 ppi) pixels. A resolution

of 300 pixels per inch is perfect for

printing, but is more than you need

for your Flash projects. A resolution

of 96 or 72 ppi is perfect for view-

ing images on a computer monitor,

which is where most Flash projects

are viewed.

We don’t launch into a long disserta-

tion on sizing images. Just keep the

size of your Flash project in mind

when you’re optimizing images for a

Flash project. If you use the default document size of 550 x 400 pixels, resize

your images so that they don’t exceed either dimensions with a resolution

of 96 pixels per inch. You can also shrink them to the size you want in Flash,

but if you try to increase them, you don’t produce good results because

you’re asking Flash to increase the size of each pixel. For more information

on working with bitmaps, check out Chapter 6 of this minibook.

Creating Shapes
You can get a lot of mileage out of shapes. You can use your garden-variety

rectangle as a background for text, the framework for a building, part of an

interface, and much more. You can create five basic shapes: lines, ovals,

polygons, rectangles, and stars. These five basic shapes are the framework

for your Flash artwork. Rectangles and ovals have special status in Flash:

primitive rectangles and ovals, and basic rectangles and ovals. You can

modify primitive rectangles and ovals at any time. This isn’t the case with

basic ovals and rectangles, but basic ovals and rectangles have other tricks

up their vector sleeves. In the following sections, we show you how to get

the most bang for your buck by using the shape tools.

Using the Primitive Oval and Rectangle tools
The Primitive Oval and Primitive Rectangle tools are anything but primi-

tive. In fact, they’re downright sophisticated. However, referring to a tool as

sophisticated might seem a little snobbish, so the Flash guys and gals settled

on the moniker Primitive. Using these tools, you can create a rectangle with

rounded or chamfered corners or an oval that looks like a slice of pie or a

doughnut.

Figure 1-3: Pixels are a bitmap’s lowest
common denominator.

11_385395-bk02ch01.indd 9311_385395-bk02ch01.indd 93 10/28/08 8:13:18 PM10/28/08 8:13:18 PM

94 Creating Shapes

Creating a Primitive Oval shape
A primitive oval can be perfectly round or elliptical in nature. You can create

lots of interesting shapes with the Primitive Oval tool. To check out this

powerful tool, follow these steps:

 1. Select the Primitive Oval tool.

 The Primitive Oval tool hangs out with his other shape pals on the ninth

slot of the Tools panel. The last used tool is always at the top of the

heap.

 2. Click on the Stage to define the starting point for your shape, and then

drag to create the shape.

 As you drag the tool, an oval outline appears, designating the current

size of the oval. Hold down the Shift key to constrain the oval to a circle.

 3. Release the mouse button when the oval is the shape you want.

 This step gives you a garden-variety oval. But you can do so much more

with this tool after the shape is created. If you’re using the Shift modifier

to constrain the tool to a circle, make sure to release the mouse button

before you release the Shift key.

 4. Choose Window➪Properties.

 The Property inspector appears.

By default, the drawing tools snap to grid points as you create objects

with them. To disable snapping to the grid, click the magnet icon in the

Tool Options section of the Tools panel.

 5. In the Oval Options section, drag the Start Angle slider to the right.

 An alternative method is entering a value in the Start Angle text field,

but we find that using the slider is more intuitive and more rewarding.

As you drag the slider, watch the shape change into something like a pie

with a couple of slices gone.

 6. In the Oval Options section, drag the End Angle slider to the right.

 The missing slice starts getting smaller.

Experiment with the Start Angle and End Angle sliders to see the variety

of shapes you can create with these options.

 7. Click the Reset button.

 The garden variety ho-hum oval returns.

 8. Drag the Inner Radius slider to the right.

 Holy doughnut hole, Batman!

11_385395-bk02ch01.indd 9411_385395-bk02ch01.indd 94 10/28/08 8:13:18 PM10/28/08 8:13:18 PM

95

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

 9. Drag the Start Angle and End Angle sliders to see the different variety

of shapes you can create with the tool.

 Figure 1-4 shows a shape created with the tool. Notice the parameters in

the Oval Options section.

 10. Click the Close Path check box to deselect the default option.

 If you changed any of the Oval Options, you see a path with the current

Stroke color.

Figure 1-4: This is a primitive oval? Hmm.

Creating a Primitive Rectangle shape
You can create some unique shapes with the Primitive Rectangle tool. If you

like rectangles or squares with corners that aren’t square, this tool is the

one for you. Follow these steps to try it out:

 1. Select the Primitive Rectangle tool.

 The Primitive Rectangle tool hangs out with his other shape pals on the

ninth slot of the Tools panel. The last used tool is always at the top of

the heap.

11_385395-bk02ch01.indd 9511_385395-bk02ch01.indd 95 10/28/08 8:13:18 PM10/28/08 8:13:18 PM

96 Creating Shapes

 2. Click on the Stage to define the starting point for your rectangle, and

then drag to create the shape.

 As you drag the tool, a rectangular outline appears, designating the cur-

rent size of the rectangle. Hold down the Shift key to constrain the tool

to a square.

 3. Release the mouse button when the rectangle is the shape you want.

 This step creates a rectangle with square corners, and that may or

may not be cool. If you use the Shift modifier to constrain the tool to a

square, make sure to release the mouse button before you release the

Shift key.

 4. Choose Window➪Properties.

 The Property inspector appears.

 5. In the Rectangle Options section, drag the slider to the right.

 The Rectangle now sports round corners.

 6. In the Rectangle Options section, drag the slider to the left.

 As you drag the slider, the corners are squared off. Drag the slider until

negative values appear and the corners are chamfered (see Figure 1-5).

You can create rounded or chamfered corners while creating the shape.

Press the down-arrow key while creating the shape for rounded corners

or the up-arrow key for chamfered corners.

 7. Click the Reset button.

 You have a rectangle with sharp, pointy corners again.

 8. Click the Lock icon.

 You can now create a rectangle with a different radius or chamfer on

each corner. When you choose this option, the slider is no longer

functional.

 9. Enter a value in a corner text field.

 Enter a negative value to chamfer the corner, or a positive value to

round the corner.

 10. Continue experimenting with different values to see the variety of

shapes you can create with this tool.

You can set the parameters for the Primitive Oval and Rectangle tools before

you draw the shape by selecting a tool, opening the Property inspector, and

then entering values or dragging sliders in the Oval or Rectangle Options

section. The options remain in effect for every shape you draw with the tool

until you change the values.

11_385395-bk02ch01.indd 9611_385395-bk02ch01.indd 96 10/28/08 8:13:19 PM10/28/08 8:13:19 PM

97

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

Lock icon

Figure 1-5: Chamfered corners, just like on a piece of antique furniture.

Modifying Primitive Ovals and Rectangles
As you create shapes for your Flash project, you may decide that a shape

you created with the primitive tool needs a little tweaking or touching up.

You can easily modify a shape by following these steps:

 1. Select the shape with the Selection tool.

 2. Chose Window➪Properties.

 The Property inspector opens.

 3. Modify the values in the Oval Options (shape created with the

Primitive Oval tool) or Rectangle Options (shape created with the

Rectangle Primitive tool) for the shape.

 From the Property inspector, you can also modify the size and posi-

tion of the shape, a topic we cover in the “Modifying Objects with the

Property Inspector” section, later in this chapter.

11_385395-bk02ch01.indd 9711_385395-bk02ch01.indd 97 10/28/08 8:13:19 PM10/28/08 8:13:19 PM

98 Creating Shapes

Creating shapes with the Oval and Rectangle tools
When you create ovals and rectangles with these tools, you can create the

same type of shapes as the tool’s primitive counterparts, but you can’t edit

the options after the fact. But these tools have two different drawing modes:

Standard Drawing mode and Object mode. We explain the difference in the

following sections.

The Oval tool
The Oval tool creates shapes that look identical to what you can create

with the Oval Primitive tool (discussed earlier in this chapter), with two

exceptions:

 ✓ You have to set your parameters in the Property inspector before you

create the shape.

 ✓ You can’t edit the parameters in the Property inspector after you create

the shape.

Follow these steps to create a shape with the Oval tool:

 1. Select the Oval tool.

 The Oval tool bunks with his other shape pals on the ninth slot of the

Tools panel. The last used tool is displayed at the top of the heap.

 2. Choose Window➪Properties.

 The Property inspector appears, looking like that famed TV detective in

a rumpled raincoat. (“Err, just one more thing, Oval tool.”)

 3. In the Oval Options section, drag the Start Angle slider to the right.

 An alternative method is entering a value in the Start Angle text field,

but we find that using the slider is more intuitive and more rewarding.

Larger values create a shape that looks like a pie with a couple of pieces

missing. Larger values create a shape that looks like a piece of pie.

 4. In the Oval Options section, drag the End Angle slider to the right.

 The type of shape that results depends on the start angle value. If you

have a high start angle value, the wedge gets larger. If you have a small

start angle value, you end up with a smaller wedge missing from the

circle.

 5. Drag the Inner Radius slider to the right.

 This step is similar to punching a hole in a doughnut. You modify this

option in conjunction with the start and end angle values to produce a

shape that looks like the letter C, or a curve.

11_385395-bk02ch01.indd 9811_385395-bk02ch01.indd 98 10/28/08 8:13:19 PM10/28/08 8:13:19 PM

99

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

 6. Click the Stage to define the starting point for your shape, and then

drag to create the shape.

 As you drag the tool, an oval outline appears, designating the current

size of the oval. Hold down the Shift key to constrain the oval to a circle.

 7. Release the mouse button when the oval is the shape you want.

 This step results in a nice shape that can’t be edited. The parameters

you specify in the Property inspector are used with other shapes you

create with the tool until you specify different options.

The Rectangle tool
You use the Rectangle tool to create rectangles with pointy, round, or

chamfered corners. You can modify the rectangle corners as you create the

shape, or by modifying parameters in the Property inspector. To create a

ho-hum, or not so ho-hum, rectangle, follow these steps:

 1. Select the Rectangle tool.

 This rascal sublets space on the ninth slot of the Tools panel.

 2. Click to define the starting point for your rectangle and then drag

diagonally.

 As you drag the tool on the Stage, a rectangular outline shows the cur-

rent size of the shape. Hold the Shift key to create a square. Press the

down-arrow key to create rounded corners or the up-arrow key to create

chamfered corners. Release the arrow key when the corners are the way

you want them.

You can modify the corner radius by opening the Property inspector

after you select the tool and before you create the shape. This action

is counterintuitive, however, because you can’t see the result. And you

cannot modify the options after you create the shape. The only bonus

for setting rectangle options in the Property inspector is when you want

a different radius on each corner. To achieve this effect, click the Lock

icon and then manually enter values in the text fields.

 3. Release the mouse button when the rectangle is the size and shape

you want.

 The Property inspector plays the ultrasmart detective and records the

radius values for the shape you just created. These values are applied

to future shapes you create with the tool until you either click the Reset

button in the Property inspector and manually enter values or create a

new rectangle and define the shape of the corners by using the arrow

keys.

11_385395-bk02ch01.indd 9911_385395-bk02ch01.indd 99 10/28/08 8:13:19 PM10/28/08 8:13:19 PM

100 Creating Shapes

Mastering the Polystar tool
You have a Flash project with a boring, jet black midnight sky in need of a

star or 50. Or, perhaps you have a project that needs a multisided shape.

When either occasion occurs, you need look no further than the Tools panel.

Check out the Polystar tool — Poly is short for polygon, which is a multi-

sided shape, and star represents twinkle, twinkle, big or little. You use this

multifaceted tool to create multisided shapes. Talk about your ultimate mul-

titasker. (Yikes — our copy editor will probably tell us that using multi that

many times is redundant.)

To master the Polystar tool, follow these steps:

 1. Select the Polystar tool.

 The tool is a tad introverted and

may be hidden on the fly-out menu,

on the ninth slot of the Tools

panel.

 2. In the Tool Settings section

of the Property inspector

(Window➪Property Inspector),

click the Options button.

 The Tool Settings dialog box

appears (see Figure 1-6).

 3. Choose an option from the Style

menu.

 You have a choice: Polygon or Star.

 4. Enter a value for the number of sides.

 We advise that you don’t get too carried away here. If you create a shape

with a lot of sides, it’s hard to edit, and it increases the file size of the

published movie.

 5. Enter a value between 0 and 1 in the Star Point Size field.

 This value determines the depth of the star, when you choose that

option. If you specify a value closer to 0, the star has longer points. This

option has no effect on polygons.

Creating unique shapes with the
Oval Rectangle and Polystar tools
When you create shapes with the Oval and Rectangle tools with no stroke,

the shapes have an affinity for each other. You can create unique shapes in

one of two ways. Here’s the first one:

Figure 1-6: Okay, Polystar — this is a set-up.

11_385395-bk02ch01.indd 10011_385395-bk02ch01.indd 100 10/28/08 8:13:20 PM10/28/08 8:13:20 PM

101

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

 1. Select the Oval, Rectangle, or Polystar tool.

 Don’t select one of the Primitive tools. They’re independent critters who

like to maintain their own identity.

 2. Select a fill color and no stroke.

 We know: We haven’t covered selecting stroke and fill colors yet. But,

hey: Which came first — the chicken or the egg? We show you how to

specify strokes and fills in Chapter 2 of this minibook.

 3. Create a shape on the Stage.

 4. Create another shape with the Oval, Rectangle, or Polystar tool with

the same fill color and no stroke.

 When you create the second shape, make sure that it overlaps the first.

 5. Release the mouse button after

you create the second shape.

 6. Select the Selection tool and

click the shape to select it.

 7. Drag the shape to a different

spot on the Stage.

 Notice that the two shapes are

joined at the hip (see Figure 1-7).

You can stack multiple shapes to

create some truly unique shapes.

You can also use the Brush tool

to add to a shape when painting

a brush stroke that’s the same

color over an existing shape.

If you prefer more control when combining basic shapes to create unique

shapes, create the second shape, but don’t overlap it with the first one.

Select the shape with the Selection tool and then overlap it with the first

shape. You can now freely move the second shape until you have it exactly

where you want it. It doesn’t join with the first shape until you click a blank

area of the Stage with the Selection tool.

When you overlap shapes that aren’t the same color, one shape cuts away

from the other. This oil-and-vinegar relationship makes it possible for you

to create some truly unique shapes. Follow these steps to get an idea of how

this second method works:

Figure 1-7: I declare, Lance, the sum is better
than the parts.

11_385395-bk02ch01.indd 10111_385395-bk02ch01.indd 101 10/28/08 8:13:20 PM10/28/08 8:13:20 PM

102 Creating Shapes

 1. Select the Oval tool.

 2. Open the Property inspector (choose Window➪Properties) and select

a fill color but no stroke.

 We know we haven’t covered

color yet. Here’s your baptism

by fire. In the Fill & Stroke sec-

tion of the Property inspector,

click the Stroke swatch (it’s next

to the pencil icon) and click the

No Stroke icon (the white rect-

angular icon with a red diagonal

slash in the Swatches panel, as

shown in Figure 1-8). Then click

the fill color swatch (it’s next to

the paint bucket icon), and click

one of the color swatches in the

Swatches panel.

 3. Draw an oval on the Stage.

 4. With the Oval tool still selected, click the fill color swatch in the

Property inspector and choose a different color.

 It doesn’t matter which color you choose. You delete the shape when

you’re done.

 5. Create a smaller oval that doesn’t overlap the first shape you created.

 6. Select the shape with the Selection tool.

 The Selection tool is the head honcho at the top of the Tools panel.

 7. Drag the second shape over the first shape until it’s in the position

you want.

 8. Click anywhere outside the shape.

 This step deselects the shape.

 9. Click the smaller oval and drag it outside the first shape.

 A hole appears in the first shape. You can continue using the different-

colored oval to cut out of the first oval. Just drop it into position, dese-

lect it, and then move it someplace else. With a bit of work, you could

create a piece of Swiss cheese for your favorite digital mouse (see Fig-

ure 1-9). Oh, you noticed the outlines around the cheese and the holes.

These were created with the Ink Bottle tool, which we show you in

Chapter 2 of this minibook.

No stroke

Figure 1-8: To stroke or not to stroke. . . .

11_385395-bk02ch01.indd 10211_385395-bk02ch01.indd 102 10/28/08 8:13:20 PM10/28/08 8:13:20 PM

103

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

Figure 1-9: Look! It’s Flash Swiss cheese! Where’s my digital Swiss Army knife?

Creating lines — the straight and narrow
If you have a Flash project that needs to toe the line, so to speak, summon

the Line tool. You use the tool to create straight lines. When you feel the

need to draw a straight line, follow these steps:

 1. Select the Line tool.

 This tool is prominently displayed on the eighth slot of the Tools panel.

 2. Click on the Stage to define the starting point, and then drag to create

the line.

 As you drag the tool, a crosshair signifies the current position of the

tool.

 3. Release the mouse button when the line is the length you want.

 We were going to include an illustration, but realized that you already

know what a straight line looks like.

11_385395-bk02ch01.indd 10311_385395-bk02ch01.indd 103 10/28/08 8:13:20 PM10/28/08 8:13:20 PM

104 Creating Shapes

Hold the Shift key while dragging the line tool diagonally to constrain the

line to a 45-degree angle. Hold the Shift key while dragging from left to right

(or from right to left, if you’re so inclined) to create a horizontal line, or

while dragging from top to bottom (or from bottom to top) to create a verti-

cal line.

Using the basic shape tools in Object Drawing mode
You have seen the basic shape tools in their default mode. In this section,

we show you how to use the basic shape tools in Object Drawing mode.

When you use this mode, you create a unique object that cannot be merged

with other objects. You can, however, edit the basic shape after you create

it. To create a shape in Object Drawing mode, follow these steps:

 1. Select the Line, Oval, Rectangle, or Polystar

tool.

 The Line tool appears in the eighth slot of the

Tools panels, and the other tools appear on

the fly-out menu in the ninth slot of the Tools

panel (see Figure 1-10).

 2. Click the Drawing Object icon at the bottom

of the Tools panel.

 3. Create a shape.

 After you create the shape, a border appears around the shape, which

signifies that it’s an object (see Figure 1-11).

Modifying basic shapes
The basic shapes you create with the Line, Oval, Rectangle, or Polystar tool

can be modified to create unique shapes. As discussed previously, you can

overlap shapes of the same color to create a new shape, or use a different-

colored shape to take a chunk out of another shape. You can also mold a

shape like putty with the Selection tool, or use the Line tool like a scalpel to

carve up a shape as long as you don’t click the Object Drawing icon in the

Tool Options section. To modify a basic shape:

 1. Select the Selection tool.

 2. Use the tool to select, move, or modify the shape as follows:

 • Click the shape to select it. If the shape has a stroke, double-click the

fill to select both the stroke and the fill. After selecting a shape, drag

it to a position on the Stage.

Figure 1-10: Choosing a shape
tool.

11_385395-bk02ch01.indd 10411_385395-bk02ch01.indd 104 10/28/08 8:13:21 PM10/28/08 8:13:21 PM

105

Book II
Chapter 1

Creating Flashy
Graphics

Creating Shapes

Figure 1-11: Creating an object with a shape tool.

 • To select several shapes,

click and drag the Selection

tool around the shapes you

want to select.

 • Move the Selection tool

toward a shape that hasn’t

been selected. When a curve

icon appears beneath the

tool icon, click and drag to

change the shape (see Fig-

ure 1-12).

The Line tool can also be used to

cut a basic shape into two or more

pieces. To cut a shape down to size,

follow these steps:

 1. Select the Line tool.

 It’s the diagonal line icon right below the T (Text tool) on the Tools

panel.

Figure 1-12: Bend me, shape me, any way you
want to.

11_385395-bk02ch01.indd 10511_385395-bk02ch01.indd 105 10/28/08 8:13:21 PM10/28/08 8:13:21 PM

106 Creating Shapes

 2. Create a line that intersects and is wider than or taller than the shape

you want to cut.

 3. Select the Selection tool.

 4. Select one part of the shape and drag it away from the other.

 What was once joined is now parted (see Figure 1-13). If the shape has a

stroke, make sure that you double-click it to select both the shape and

the stroke.

 5. You can now select the line, which is now in three segments, and

delete it by pressing the Delete key.

 Thank you, line. You have served us well.

You can also use a line to slice and dice another line. Move one line over

another, and then select a piece with the Selection tool and move it to

another position.

Figure 1-13: The Line tool cuts like a knife.

11_385395-bk02ch01.indd 10611_385395-bk02ch01.indd 106 10/28/08 8:13:22 PM10/28/08 8:13:22 PM

107

Book II
Chapter 1

Creating Flashy
Graphics

Using the Drawing Tools

Using the Drawing Tools
If you’re the artistic type who likes to doodle with a pen or brush (Doug’s

drawing tool of choice when he was a kid was an Etch-A-Sketch), you’ll enjoy

working with the drawing tools. If you like creating freeform shapes, become

familiar with the Pencil and Brush tools. If you like point-by-point accuracy

when creating shapes, the Pen tool has your initials carved on it.

Drawing with the Pencil tool
The Pencil tool should be colored yellow to resemble the good old Eberhard

Faber pencil that also made a good impromptu drum stick that could be

used to good effect when trying to drive a substitute teacher absolutely bon-

kers. But it’s a boring gray, just like the other tools. Don’t let that fool you,

though. This single tool is the equivalent of every pencil you’ve ever used

and then some. To create lines with the Pencil tool, follow these steps:

 1. Select the Pencil tool.

 It’s the tenth tool in the Tools

panel.

 2. Choose Window➪Properties.

 The Property inspector appears,

displaying the parameters you

can modify for the tool (see

Figure 1-14).

 3. Select a stroke color.

 Click the color swatch next to

the pencil icon and choose a

color from the Swatches panel.

For more information on work-

ing with the Swatches panel, see

Chapter 2 of this minibook.

 4. Drag the Stroke slider to specify

the width of lines you draw with

the tool.

 Alternatively, you can enter a

value from 1 to 200 in the text field to the right of the slider.

 5. Choose an option from the Style drop-down menu.

 You can draw a hairline or a solid, dashed, dotted, ragged, stippled, or

hatched line.

To create with the Pencil tool a line that doesn’t interact with other

shapes, click the Object Drawing icon in the Options section of the Tools

panel.

Figure 1-14: Even a pencil stroke has
properties.

11_385395-bk02ch01.indd 10711_385395-bk02ch01.indd 107 10/28/08 8:13:23 PM10/28/08 8:13:23 PM

Using the Drawing Tools108

 To create a custom style, click the Edit Stroke Style icon (it looks like

a pencil) in the Property inspector to open the Stroke Style dialog box.

Follow the prompts to create your custom line. The parameters you can

modify depend on the style you start with.

 6. Choose a scale option.

 These options determine how the stroke is scaled in Flash Player. Your

options are described in this list:

 • Normal: Scales the thickness of the stroke.

 • Horizontal: Doesn’t scale the thickness if the object is resized

horizontally.

 • Vertical: Doesn’t scale the thickness if the object is resized vertically.

 • None: Doesn’t scale the stroke.

 7. Select the Hinting check box to enable stroke hinting.

 This option positions anchor points on pixels, which prevents blurry

lines.

 8. Choose one of the following options from the Cap drop-down menu:

 • None: Makes the cap flush with the end of the line.

 • Round: Adds to the end of the line a round cap that’s half the width

of the stroke.

 • Square: Adds to the end of the line a square cap that’s half the width

of the stroke.

 9. Choose one of the following options from the Join drop-down menu:

 • Miter: Creates a 45-degree miter joint where path ends join.

 • Round: Creates a rounded corner where path ends join.

 • Square: Creates a square corner where ends join.

 10. If you choose Miter for the Join option, specify a Miter value.

 This option is a scrubby slider. Drag the slider to specify the Miter

value, which prevents the join from being beveled. For example, if you

specify a value of 2 for a three-point stroke width, when the length of the

join is more than six points, the join is squared off.

 11. Specify a smoothing option.

 This option appears in the Modifier section of the Tools panel. Your

choices are described in this list:

 • Straight: Straightens lines. Use it when you want to draw objects,

such as triangles and rectangles.

 • Smooth: Smoothes lines. This option is useful when you use a mouse

with the Pencil tool.

11_385395-bk02ch01.indd 10811_385395-bk02ch01.indd 108 10/28/08 8:13:23 PM10/28/08 8:13:23 PM

Using the Drawing Tools 109

Book II
Chapter 1

Creating Flashy
Graphics

 • Ink: Applies no smoothing to lines. Use this option when you’re cre-

ating freeform artwork with the Pencil tool.

 12. Specify a smoothing value.

 This option determines the degree to which Flash smoothes a line. The

default value is 50. Specify a higher value for a smoother line. Note that

this is a scrubby slider. Hover the cursor over the current value until

you see a pointing finger icon with two arrows, and then click and drag

to change the value.

 13. Drag the tool on the Stage to create the line.

 The default drawing mode creates a basic shape, which acts like a line

drawn with the Line tool. If you draw it over other shapes, the line you

create bisects the other shape.

 Alternatively, you can click the Object Drawing button (shown in the

margin) to draw a line that becomes an object and doesn’t interact with

other shapes.

Painting with the Brush tool
If you like dabbling with a paint brush and watercolor, oil, or acrylic paint,

check out the Brush tool. It gives you the power to add artistic or calli-

graphic splashes of color to your Flash projects. If you’re truly talented and

use a digital tablet and stylus, you’ll love the artistic strokes you can create

with this tool. To grace your Flash projects with eye-catching strokes from

the Brush tool, follow these steps:

 1. Select the Brush tool.

 We love truth in advertising. This tool’s icon, which occupies the elev-

enth slot on the Tools panel, looks just like an artist’s paint brush.

 2. Select a fill color.

 We know: We haven’t covered color yet. That happens in the next chap-

ter. The quick and easy way is to click the fill color swatch (it’s next to

the paint bucket icon in the Property inspector or the Tools panel), and

choose a color from the Swatches panel.

 3. Choose a painting mode.

 By default, the tool creates strokes just like a normal brush. When you

paint over something, it disappears. You can change the way the tool

creates strokes by choosing a different painting mode in the Options

section of the Tools panel (see Figure 1-15).

 You have these options:

 • Paint Normal: Paint over lines and fills on the same layer.

 • Paint Fills: Paint within closed paths (outlines) and blank areas of the

Stage without affecting lines.

11_385395-bk02ch01.indd 10911_385395-bk02ch01.indd 109 10/28/08 8:13:23 PM10/28/08 8:13:23 PM

Using the Drawing Tools110

 • Paint Behind: Paint color on blank areas

of the Stage on the active layer, without

affecting lines and fills. In other words,

you’re painting behind the lines and fills

you already created.

 • Paint Selection: Paint within selected

objects.

 • Paint Inside: Paint within a closed path

(shape outline) without affecting other

lines. You can also paint on blank areas of

the Stage without affecting other fills and

lines on the same layer. After choosing

this mode, click inside the object with the

fill you want to change.

 4. Choose a brush tip size.

 You choose this option from

the Options section of the Tools

panel (see Figure 1-16).

 5. Choose a brush tip shape.

 You choose this option from

the Options section of the Tools

panel (see Figure 1-17).

 6. If you use a Wacom tablet and

stylus, click the Use Pressure icon.

 This option changes the size of

the brush tip depending on the

amount of pressure you apply

against the stylus.

 7. If you use a Wacom tablet and

stylus, click the Use Tilt icon.

 This option changes the angle of

calligraphic brush tips when you

tilt the stylus.

 8. Create something nice to

look at.

 You can dabble with the tool until you’re good enough to create some-

thing nice to look at.

Using the Spray Brush tool
If you have the urge to spray graffiti in parts of a Flash project, check out the

Spray Brush tool. It’s multifunctional. In this section, we show you how to

use this tool to spray color.

Figure 1-15: Choosing a
different painting mode.

Figure 1-16: Do I
need a teeny-weeny
brush or a big ’un?

Figure 1-17: I’m in a
calligraphic state of
mind.

11_385395-bk02ch01.indd 11011_385395-bk02ch01.indd 110 10/28/08 8:13:23 PM10/28/08 8:13:23 PM

Using the Drawing Tools 111

Book II
Chapter 1

Creating Flashy
Graphics

 1. Select the Spray Brush tool.

 This tool is introverted by nature and shares space with the Brush tool

on the eleventh slot of the Tools panel.

 2. Choose Window➪Properties.

 The Property inspector opens, displaying the properties you can modify

for the Brush Spray tool (see Figure 1-18). Don’t fret about the Symbol

section yet. We show you how to spray symbols in Book II, Chapter 4.

 3. In the Brush section, specify

the width and height.

 These options determine how

large a burst of color one click

of the tool produces. The

default sprays a burst of color

92 x 92 pixels. These values are

changed by using scrubby slid-

ers. Position the cursor over

the current value, and when the

icon becomes a pointing finger

with two arrows, drag left to

decrease the size or right to

increase the size.

 4. In the Brush section, specify

the brush angle.

 This option determines the

angle at which the spray dis-

perses from the tool. The default

option sprays horizontally. Vary

the angle to achieve different

effects.

 5. Spray with the tool.

 We know you want to. That’s

right: Experimentation is the key

to success with any new tool. We had lots of fun using the tool to spray

graffiti on a blank Flash document.

Creating paths with the Pen tool
If you like precision, you’ll like the Pen tool. When you create a shape with

the Pen tool (known as a path in vector-speak), you create points. It’s like

that connect-the-dots artwork you find in restaurants that keep your kids

endlessly amused while you decide whether to order a salad or indulge and

have a decadent appetizer, like deep-fried mozzarella. When you create a

path with the Pen tool, you can create straight points or curve points. To

create a basic path with the Pen tool, follow these steps:

Figure 1-18: And the mother skunk said to her
children, “Let us spray.”

11_385395-bk02ch01.indd 11111_385395-bk02ch01.indd 111 10/28/08 8:13:24 PM10/28/08 8:13:24 PM

Using the Drawing Tools112

 1. Select the Pen tool.

 2. Choose Window➪Properties.

 This step opens the Property inspector and displays the properties you

can modify for the Pen tool. The options are identical to those for the

Pencil tool (refer to Figure 1-14). Please refer to our words of wisdom

in the “Drawing with the Pencil tool” section, earlier in this chapter, for

concise instructions on how to set these properties.

 To create a shape with the Pen tool that doesn’t interact with other

shapes, click the Object Drawing icon in the Modifier section of the

Tools panel.

 3. Click to define your first point.

 The first anchor point appears as a hollow dot.

 4. Click to define the second point.

 A line segment appears between the two points. Shift+click to constrain

the line segment to a 45-degree angle. Shift+drag to create a curve point.

When you create a curve point, tangent handles appear and the outer

tangent handle is active. If you continue to drag the tangent handle, the

radius of the curve increases. You can also change the angle of the tan-

gent handle as you create the curve point.

 5. To finish creating the path, do one of the following:

 • To create an open path: Select a different tool.

 • To close the path: Click the first anchor point (the hollow dot).

Figure 1-19 shows a closed path and an open path.

Figure 1-19: A tale of two paths.

11_385395-bk02ch01.indd 11211_385395-bk02ch01.indd 112 10/28/08 8:13:25 PM10/28/08 8:13:25 PM

Using the Drawing Tools 113

Book II
Chapter 1

Creating Flashy
Graphics

The Eraser tool — the quicker picker-upper
Digital erasers are the greatest thing since the

invention of computer image-editing applica-

tions. You get to eradicate your mistakes, and

you don’t have to deal with a bunch of pink or

white eraser crumbs. You might think that you

know how to use an eraser, but the Flash Eraser

tool has some special modes you should know

about. To use the Eraser tool, follow these

steps:

 1. Select the Eraser tool.

 This tool looks like the pink erasers your

friendly authors used in grade school.

 2. Select an eraser mode.

 You choose Eraser mode in the Options

section of the Tools panel (see Figure 1-20).

 Your options are described in this list:

 • Erase Normal: Erase lines and fills on the same

layer.

 • Erase Fills: Erase fills within closed paths (outlines)

and blank areas of the Stage without affecting lines.

 • Erase Lines: Erase color on blank areas of the Stage

on the active layer, without affecting lines and fills.

In other words, you erase behind lines and fills

that you already created.

 • Erase Selected Fills: Erase fills within selected

objects.

 • Erase Inside: Erase within a closed path (shape

outline) without affecting other lines. After choos-

ing this mode, click inside the object whose fill you

want to erase either partially or totally.

 3. Choose an eraser tip size and shape.

 You choose this option from the Tool Modifiers sec-

tion of the Tools panel, shown in Figure 1-21. The sizes

are identical to those of the Brush tool.

Wait — there’s more. If you need to erase line segments, or fills within

shapes, select the Eraser tool, select the Faucet modifier from the Tools

panel Options section, and then click the fill you want to remove. Like magic,

Figure 1-20: Erasers are a digital
artist’s best friend.

Figure 1-21: Do
square erasers
erase square pixels
and round erasers
remove dots?

11_385395-bk02ch01.indd 11311_385395-bk02ch01.indd 113 10/28/08 8:13:25 PM10/28/08 8:13:25 PM

Modifying Objects114

the tool and selected option suck it up, just like one of those superfantastic

paper towels. To remove a line segment, select it with the Selection tool, and

then select the Eraser tool and enable the Faucet modifier. Click the selected

line segment and it is, to quote the raven, “Nevermore.”

Modifying Objects
After you create an object, you have the option to modify it. You can modify

objects using menu commands or tools or both. Modifying objects isn’t

rocket science, or brain surgery, but you have to choose the right menu

command or tool for the job. After all, you don’t drive home a finishing nail

with a sledgehammer. In the following sections, we show you how to use the

drawing tools to modify the shapes you create.

Selecting objects
After you populate a Flash project with a bunch of objects, you need to grab

the critters by the scruff of their pixels so that you can modify them. After

you select one or more objects, you can use menu commands or tools to

modify them.

 You select objects with the Selection tool. We know that’s a case of the bla-

tantly obvious, but you can use the tool in different ways. To master the

Selection tool, create a Flash document and then create a couple of objects

with the drawing tools. Select the Selection tool and do the following:

 ✓ To select a stroke segment of an object created in Basic Drawing

mode: Click the segment.

 ✓ To select the stroke of an object created in Basic Drawing mode:

Double-click any stroke segment.

 ✓ To select the stroke and fill of an object created in Basic Drawing

mode: Double-click the object’s fill.

 ✓ To edit an object created in Object Drawing mode: Double-click the

shape to display the object in another window. You can then use the

Selection tool to select individual stroke segments or modify the object

on a point-by-point basis, as outlined in the following section.

 ✓ To select several objects: Click and drag the tool around the objects you

want to select. As you drag the tool, Flash displays a bounding box that

shows the current selection area. Release the mouse button when the

bounding box surrounds the objects.

11_385395-bk02ch01.indd 11411_385395-bk02ch01.indd 114 10/28/08 8:13:26 PM10/28/08 8:13:26 PM

Modifying Objects 115

Book II
Chapter 1

Creating Flashy
Graphics

 ✓ To add objects to the selection: Select an object and then Shift+click. To

add an object created in basic Shape Drawing mode, Shift+double-click

the object’s fill to add it to the selection.

 ✓ To round up objects: Select the Lasso tool (it’s on the fly-out menu in

the fourth slot of the Tools panel), and drag it around the objects you

want to round up.

Modifying shapes point by point
When you create a shape with one of the shape tools or drawing tools, you

create a Vector object that’s composed of points and line segments (see

Figure 1-22). You can modify these shapes on a point-by-point basis. In this

section, we show you how to move points, add points, convert points, and

perform other, similar tasks.

When you select an object with the Subselection tool, which is like the

Selection tool on steroids, you can modify the shape on a point-by-point

basis. To quickly get to the point with the Subselection tool, follow these

steps:

 1. Select the Subselection tool.

 2. Click the perimeter of the shape

you want to modify.

 The points that make up the shape

are displayed as hollow dots.

 3. Click a point to select it.

 The dot is filled, which signifies

that the point is selected.

 4. Drag the point to a new

location.

 The shape changes.

 5. Click a curve point.

 The point and the tangent handles for the connecting line segments are

displayed.

 6. Drag a tangent handle to modify the line segment.

 As you drag the handle, Flash displays a preview of what the resulting

line segment will look like. If you select a point with two tangent handles

(the intersection of two curve line segments), the handles move in lock-

step. Press the Alt key (Windows) or Option key (Macintosh) and then

one tangent handle to modify it and not the adjoining tangent handle. If

you select a point that is the intersection of a straight and curve line seg-

ment, you have only one tangent handle to modify (see Figure 1-22).

Figure 1-22: A tangent handle that twists a
curved line segment into submission.

11_385395-bk02ch01.indd 11511_385395-bk02ch01.indd 115 10/28/08 8:13:26 PM10/28/08 8:13:26 PM

Modifying Objects116

Modifying objects with the Pen tool and friends
What you create with the Pen tool, you can modify with the Pen tool. In

fact, you can modify any Vector shape with the Pen tool or one of his pals

that hang out on the same fly-out menu. You can modify a Vector shape by

adding anchor points and convert straight anchor points to curve anchor

points and vice versa.

 To modify an object’s anchor points, select the object with the Subselection

tool and do one of the following:

 ✓ Select the Add Anchor Point tool, and click a line segment to add an

anchor point. This action adds a straight point to the line segment. Click

and drag the point to convert it to a curve point.

 ✓ Select the Delete Point tool, and click a point to remove it.

 ✓ Select the Convert Anchor Point tool and click a curve point to convert

it to a straight point.

 ✓ Select the Convert Anchor Point tool, and then click and drag a straight

point to convert it to a curve point and modify the tangent handles at

the same time.

You can also use the Pen tool to modify the anchor points of an object you

select with the Subselection tool. As you move the tool toward a line seg-

ment, you see a plus sign (+) to the lower right of the tool icon, indicating

that you can click the line segment to add a point. If you move the tool

toward an anchor point and see a minus sign appear to the lower right of

the tool icon, you can click the point to delete it. If you move the tool toward

an anchor point and see an angled inverted lowercase v to the lower left of

the icon, you can convert the anchor point to its polar opposite by clicking

it. Make sure that you click the point you intend to modify; if you don’t, you

start creating a new path.

Modifying objects with the Property inspector
You use the Property inspector to set the properties for a drawing tool

before you use it. After you create the shape, you can also use the Property

inspector to modify it. The properties you can modify depend on the type of

object you created. To modify a basic shape:

 1. Select the shape with the Selection tool.

 2. Choose Window➪Properties.

 The Property inspector appears, displaying the properties you can

modify for the selected object. Figure 1-23 shows the properties for a

shape created with the Oval tool. You can modify all basic properties for

the shape, such as fill color, stroke color, stroke width, and style.

11_385395-bk02ch01.indd 11611_385395-bk02ch01.indd 116 10/28/08 8:13:26 PM10/28/08 8:13:26 PM

Modifying Objects 117

Book II
Chapter 1

Creating Flashy
Graphics

 You can also modify the follow-

ing factors for any object you

select:

 • X: The position of the object

registration point from the

left side of the document.

 • Y: The position of the object

registration point from the

top of the document.

 • W: The width of the object.

 • H: The height of the object.

You use scrubby sliders to change

these values. Position the cursor

over a value. When it changes to a

pointing finger with two arrows, drag

left to decrease the value, and drag

right to increase it.

The unit of measure for values in

the Property inspector is the same

unit of measure you specify for the

document.

Using the Free Transform tool
Another way to transform an object is by using the Free Transform tool. The

tool isn’t free, of course. You or your boss paid for Flash, the application in

which you find the tool. But you do use the tool to freely transform an object

into something that suits your Flash project. To freely transform an object,

follow these steps:

 1. Select the Free Transform tool and then click the object you want to

transform.

 If the object was created using Basic Drawing mode, double-click the

center of the object to select the stroke and fill. After selecting the

object with the tool, eight handles appear around the object, as shown

in Figure 1-24.

 2. To freely change the dimensions of the object, do one of the following:

 • To change the height: Click the middle handle on the top or bottom of

the object, and then drag up or down.

 • To change the width: Click the middle handle on the right or left side

of the object, and then drag right or left.

 • To resize the object: Click a corner handle and then drag diagonally.

Figure 1-23: Modifying a basic shape.

11_385395-bk02ch01.indd 11711_385395-bk02ch01.indd 117 10/28/08 8:13:26 PM10/28/08 8:13:26 PM

Modifying Objects118

Figure 1-24: The buck doesn’t stop here with the Free Transform tool.

 Hold the Shift key while dragging a corner handle to resize the object

proportionately. Remember to release the mouse button before releas-

ing the Shift key, or else the object may not resize proportionately.

 3. To move the object, place the cursor in the center of the object. When

it becomes a left-pointing arrow, with a four-sided arrow at the lower

left, click and drag the object to the position you want.

 If the Free Tranform tool isn’t enough for you, choose Modify➪
Transform➪Envelope. This command creates an envelope with eight

handles. Each handle is a Bezier point with two tangent handles. You

can click and drag the Bezier point to distort the object, and then fur-

ther distort the object by dragging the tangent handles. Such fun!

 4. To rotate the object, move the cursor toward one of the corner han-

dles. When it becomes a curved line with a downward-pointing arrow,

click and drag left or right to rotate the object.

 5. To skew the object, move the cursor to a line between the handles.

When the cursor becomes two lines with arrows pointing in opposite

directions, click and drag to skew the object.

 6. To transform an object using only one of the corner handles, press

Ctrl (Windows) or Ô (Macintosh) and move the cursor toward the

handle you want. When the cursor becomes a hollow arrow, click and

drag to transform the object from only that handle (see Figure 1-25).

11_385395-bk02ch01.indd 11811_385395-bk02ch01.indd 118 10/28/08 8:13:26 PM10/28/08 8:13:26 PM

Modifying Objects 119

Book II
Chapter 1

Creating Flashy
Graphics

Figure 1-25: Ouch! You got me by the short handle.

The Transform panel — a geek’s best friend
Some Flash designers are card-carrying, pocket-protector-wearing, duct-

taped-glass-wearing folks who think that math rules. If you find yourself

in that category, the Transform panel is your best friend. To transform an

object using the Transform panel, follow these steps:

 1. Select the object you want to transform.

 2. Choose Window➪Transform.

 The Transform panel appears (see Figure 1-26).

 3. To change the dimensions of the object, do one of the following:

 • Drag the scrubby slider that’s located to the right of the horizontal,

dual-headed arrow to the left to decrease the width or to the right to

increase the width.

 • Drag the scrubby slider that’s to the right of the vertical dual-headed

arrow to the right to increase the height or to the left to decrease the

height.

 • Click the Constrain slider and then change the width or height. Flash

changes to other dimensions to resize the object proportionately.

 4. To rotate the object, click the Rotate radio button (the default selec-

tion), and drag the scrubby slider to the right to rotate the object

clockwise or to the left to rotate the object counterclockwise.

 5. To skew the object, click the Skew radio button and drag the first

scrubby slider to skew the object horizontally, and the second

scrubby slider to skew the object vertically.

11_385395-bk02ch01.indd 11911_385395-bk02ch01.indd 119 10/28/08 8:13:27 PM10/28/08 8:13:27 PM

Modifying Objects120

Duplicate Selection and Transform

Remove Transform

Figure 1-26: It’s time to transform an object.

 The 3D Rotation section is used for animation, a topic we cover in

Book III.

 6. To remove all transformations applied to the object, click the Remove

Transform icon in the lower-right corner of the panel.

 7. To duplicate the object and transformation, click the Duplicate the

Selection and Transform icon in the lower-right corner of the dialog box.

 This option is quite useful. For example, to create spokes for a wheel, use

the Line tool to create a vertical line. Then open the Transform panel and

rotate the line 15 degrees. After applying the first transformation, click the

Duplicate and Transform icon 11 times to spin your spokes.

The Info panel — read all about it
Sometimes you need precise information. When this need occurs, you can

find out the size of an object and its position from one handy little panel.

You can also use the panel to change the object’s dimensions and position

and to specify the coordinates of the cursor and the RGB values under the

cursor. (Talk about your multitasker!) To find out almost everything you

ever wanted to know about an object, follow these steps:

 1. Select the object.

 2. Choose Window➪Info.

11_385395-bk02ch01.indd 12011_385395-bk02ch01.indd 120 10/28/08 8:13:27 PM10/28/08 8:13:27 PM

Modifying Objects 121

Book II
Chapter 1

Creating Flashy
Graphics

 The Info panel appears, dis-

playing information about the

dimensions and position of the

selected object (see Figure 1-27).

 3. To change the size of the

object, enter different values in

the W and H fields.

 The Info dialog box doesn’t

change the size proportionately.

Use at your own risk.

 4. To change the position of the

selected object, enter different

values in the X and Y fields.

 The X value controls the horizontal position of the object, and the Y

value controls the vertical position of the object.

 5. Hover the cursor over an object to display its color values.

 The Info panel displays color information using the RGB color model,

and also displays the alpha (transparency) value of the object.

 6. Move the cursor to different positions on the Stage.

 As you move the cursor, its current position (X and Y coordinates) are

displayed in the lower-right corner of the panel.

The Align panel — when precision counts
Freeform can be fun. But sometimes you have to align objects with precision.

At other times, you have to distribute a selection of objects equally (you

know, get your ducks in a row?), match their size, or space them equally.

When one of these tasks confronts you, there’s no need to whip out a calcula-

tor — or abacus or slide rule, if either one is your preferred calculation tool.

All you need to do is summon the Align panel and let it take care of the grunt

work for you. You can perform the following tasks with the Align panel:

 ✓ To align an object to Stage: Select the object, open the Transform

panel (choose Window➪Align), shown in Figure 1-28, click the To Stage

icon, and then click to select vertical and horizontal alignment icons.

The Transform panel is the one to use when your objects are out of

alignment.

 ✓ To align objects relative to each other: Select the objects you want to

align, open the Transform panel, deselect the To Stage option, and select

the horizontal or vertical alignment icons you want.

 ✓ To evenly distribute selected objects relative to each other: Open the

Transform panel, deselect the To Stage option, and then select the verti-

cal or horizontal distribution buttons you want.

Figure 1-27: Extra! Extra! Read all about it.

11_385395-bk02ch01.indd 12111_385395-bk02ch01.indd 121 10/28/08 8:13:27 PM10/28/08 8:13:27 PM

Modifying Objects122

 ✓ To evenly distribute selected

objects relative to Stage: Open

the Transform panel, click the

To Stage icon, and then select

the vertical or horizontal distri-

bution buttons you want.

 ✓ To match the size of selected

objects: Open the Transform

panel, deselect the To Stage

option, and then click an icon

to match the width or height,

or both. If you select the To

Stage option and choose one of

the Match Size options, Flash

matches the selected objects

to the width, height, or both

dimensions of the Stage.

 ✓ To space three or more

selected objects relative

to their current positions: Open the Transform panel, deselect the

To Stage option, and then click the space-vertically icon or space-

horizontally icon (or both).

 ✓ To space two or more selected objects relative to the Stage: Open the

Transform panel, select the To Stage option, and then click the space-

vertically icon or the space-horizontally icon (or both).

When you use the Align panel to match sizes or alignment of objects, Flash

uses the last selected object as the reference.

Creating groups
When you create a complex object that’s composed of many shapes, it’s

time to round them all up into a group. When you create a group, it behaves

like an individual object on the Stage, which is a good thing when your group

is a complex character. You can edit individual objects in the group, and

you can disband the group at any time, which can be useful if you’re creat-

ing a Flash project that documents the history of a rock-and-roll band that

changed members more often than most people change underwear. Here are

some ways to work with groups:

 ✓ To create a group: Select the objects you want to group and then

choose Modify➪Group.

 ✓ To edit individual objects in the group: Double-click the group. This action

opens the group in a new window. You can now select individual objects in

the group and edit them using one of the many methods described in this

chapter. After you edit a group, click the Back or Scene button.

 ✓ To ungroup a group: Select it and then choose Modify➪Ungroup.

Align
horizontally

Distribute
vertically

Align
vertically

Distribute
horizonatally

Figure 1-28: The panel to call when your objects
are out of alignment.

11_385395-bk02ch01.indd 12211_385395-bk02ch01.indd 122 10/28/08 8:13:27 PM10/28/08 8:13:27 PM

Chapter 2: A Splash of Color,
S’il Vous Plaît

In This Chapter
✓ Choosing the stroke color

✓ Choosing the fill color

✓ Using the Swatches panel

✓ Working with the Color panel

✓ Creating gradients

A Flash document without color would be black and white — or, in

other words: boring. Fortunately, Flash gives you all the tools you

need to create stunning full-color or, if you’re so

inclined, Web-safe color documents. Whether

you’re creating ho-hum rectangles, rotund circles,

or curvy paths, you can get wild and crazy, like

Van Gogh or Dalí, or take a slightly more sedate

route by just adding a splash of Web-safe color. If

you like rainbows of color, you’ll love our section

on creating gradients.

Color is what this chapter is all about. So put on

your rose-colored sunglasses and mix up a frothy

glass of pink lemonade while we show you every-

thing you need to know to create a colorful Flash

document.

Getting to Know Color: The Skinny
on RGB, HSB, and Hexadecimal

When you mix up a color for your Flash project, you mix a combination of

red, green, and blue; in other words, the RGB color model. In Flash, you can

specify the color by entering values for red, blue, and green or for hue, satura-

tion, and brightness. In another method, you enter the hexadecimal value for

a color. Here’s the lowdown on these methods for expressing color values:

12_385395-bk02ch02.indd 12312_385395-bk02ch02.indd 123 10/28/08 8:14:42 PM10/28/08 8:14:42 PM

124 Stroked and Filled, but Not Punched

 ✓ RGB: When you use the RGB color model to mix a color, you work with

256 hues of each color. When you do the math, you see that you can

choose from 16,777,216 colors. Even the trendiest interior designer would

go slightly bonkers from working with that many colors. But the possi-

bility exists. When you specify colors using RGB values, lower numbers

mean darker hues. Pure black is 0,0,0, and pure white is 255,255,255. Pure

red is 255,0,0; pure green is 0,255,0, and pure blue is 0,0,255.

 ✓ HSB: When you specify colors using H,S,B values, you enter values for the

hue, saturation, and brightness. The Hue value is from 0 to 360 degrees,

and pure black is 0 or 360. Yellow is 120 degrees, green is 180 degrees,

and blue is 240 degrees. The Saturation value is from 0 to 100 percent; 0 is

totally unsaturated, and 100 is fully saturated. The Brightness value is also

a percentage, with darker colors falling on the lower end of the spectrum

and brighter colors falling at the high end of the spectrum.

 ✓ Hexadecimal values: When you specify colors using hexadecimal

values, you use a combination of numbers from 0 to 9 and letters

from A to F (six digits total). Pure black is #000000, and pure white

is #FFFFFF. The first two digits represent the Red value; the next two

digits, the Green value; and the last two digits, the Blue value. The pos-

sible combinations give you 256 hues of each color. Yep, you guessed it:

Hexadecimal is just a different way of expressing RGB values.

There’s no right or wrong way of expressing color values. If you’re a pho-

tographer or you’re familiar with Photoshop, you probably prefer the RGB

method of expressing color. If you were born to be wild on HTML, you may

prefer hexadecimal. (We’re not sure about HSB, but we think that it may

have originated in France after a night of Brie and Bordeaux.) Now that you

know everything — or perhaps more than you wanted to know — about

color, it’s time to work it into your Flash workflow.

Stroked and Filled, but Not Punched
When you create a shape with one of the shape tools, you have the option

of creating an outline for the shape — which, in Flash-speak, is known as the

stroke — and filling the shape with color or a gradient. The color inside the

outline is the fill.

A shape can have a stroke but no fill, or a fill but no stroke. If you like to

cover all the bases, you can create a shape that has no stroke and no fill, but

unless you’re creating a Flash version of a polar bear in a snowstorm, we

advise against this strategy. In the following the sections, we show you how

to define the stroke and fill colors.

12_385395-bk02ch02.indd 12412_385395-bk02ch02.indd 124 10/28/08 8:14:42 PM10/28/08 8:14:42 PM

125

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Stroked and Filled, but Not Punched

Defining the stroke color
When you create a shape such as a circle or rectangle, you can add a stroke

to the shape, which in essence is a border. When you use the Pencil, Pen, or

Line tool, a stroke is all you’ve got. And, if you use the Pen tool to create a

sword — that’s another kettle of fish. To define the stroke color, follow these

steps:

 1. Click the color swatch below the Stroke icon.

 It looks like a pencil, near the bottom of the Tools panel.

 The Swatches panel opens, as shown in Figure 2-1. The selected color is

shown in the upper-left corner of the panel. Notice the number next to

the color. That’s the hexadecimal — Gesundheit! — value for the color.

You also see an Alpha value, which determines the opacity of the color.

Currently selected color

Hexadecimal value No Stroke

Figure 2-1: Defining the stroke color.

 2. To create a shape with no stroke, click the No Stroke icon.

 3. To specify the stroke color, do one of the following:

 • Click a swatch. After you click a swatch, the panel closes, and the

Stroke color swatch changes to reflect your choice.

 • Double-click the current hexadecimal value and enter a value.

 • Click the color wheel in the upper-right corner to open the system

color picker. From within the color picker, click a color swatch or

enter values in the Red, Green, and Blue fields or the Hue, Sat, and

Lum fields.

12_385395-bk02ch02.indd 12512_385395-bk02ch02.indd 125 10/28/08 8:14:42 PM10/28/08 8:14:42 PM

126 Stroked and Filled, but Not Punched

 After clicking the current stroke color swatch, move the cursor to the

Stage and click an object whose color you want to match perfectly. This

technique is an ideal way to match a color from an image or a logo.

 4. Accept the default Alpha value or drag the scrubby slider to specify a

different value.

 Alternatively, you can double-click the current value and enter one

you want. When you specify a value less than 100 percent, the color

of underlying objects or the background is visible, which changes the

hue of the stroke. When you specify a low value, more of the underlying

color influences the color of the stroke.

You can also specify the stroke for objects you create with a tool in the

Property inspector. Select the tool, and in the Property inspector, click the

Stroke icon and follow these steps again.

Defining the fill color
Whether you create a cool shape by mixing and matching regular shapes

or create a shape using one of the drawing tools, your next step is to flesh

out your creation by filling it with color. To define the fill color, follow these

steps:

 1. Click the color swatch below the Fill icon, which looks like a paint

bucket, near the bottom of the Tools panel.

 The Swatches panel opens (refer to Figure 2-1). The selected color is

shown in the upper-left corner of the panel. The number next to the

color is the Hexadecimal value for the color. You also see an Alpha

value, which determines the transparency of the color. (We discuss

hexadecimal values in the section “Getting to Know Color: The Skinny on

RGB, HSB, and Hexadecimal,” at the beginning of this chapter.)

 2. To create a shape with no fill, click the No Color icon (which is the

white square with the diagonal red slash).

 3. To specify the fill color, do one of the following:

 • Click a swatch. After you click a swatch, the panel closes, and the

Stroke color swatch changes to reflect your choice.

 • Double-click the current hexadecimal value and enter a value.

 • Click the color wheel in the upper-right corner to open the system

color picker. From within the color picker, select a color swatch or

enter values in the Red, Green, and Blue fields or the Hue, Sat, and Lum

fields.

12_385395-bk02ch02.indd 12612_385395-bk02ch02.indd 126 10/28/08 8:14:43 PM10/28/08 8:14:43 PM

127

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Finding Your Way around the Swatches Panel

 After clicking the current fill color swatch, move the cursor to the Stage

and click an object whose color you want to match perfectly. This tech-

nique is an ideal way to match a color from an image or a logo.

 4. Accept the default Alpha value, or drag the scrubby slider to specify a

different value.

 Alternatively, you can double-click the current value and enter one of

your own. When you specify a value less than 100 percent, the color

of underlying objects or the background is visible, which changes the

hue of the stroke. When you specify a low value, more of the underlying

color influences the color of the stroke.

Finding Your Way around the Swatches Panel
The Swatches panel is what you see when you specify a stroke or fill color.

There are, however, other ways to access this color collection of cubes that

may have inspired Rubik. If you’re the adventurous type, you’ll be glad to

know that you have full control over the colors in the panel. You can delete

colors, add colors, and export colors, for example. We show you how to use

the Swatches panel in the following sections.

Understanding Web-safe colors
In a perfect world, you could use any color and it would look the same in

all Web browsers and all operating systems. But don’t forget the infamous

browser wars and whether ’tis nobler to Mac or PC — facts that leave the

poor Flash designer in a color-choosing quandary. Most modern monitors

and video cards can display any color you can throw at them. However, if

you’re creating a Flash project that will be viewed on a device that doesn’t

support 16- or 24-bit color, choose your colors from the default Flash color

palette, which consists of 216 colors that are unsafe at any speed — er, we

mean safe in any browser viewed on any platform.

Getting to know the Swatches panel
The Swatches panel has color swatches (216, to be exact) and gradient

swatches. You use the Swatches panel to select colors for the fill and stroke

of objects created with the drawing tools. You also use the Swatches panel

to manage and export color sets, for example. Follow these steps for a quick

tour of the Swatches panel:

 1. Choose Window➪Swatches.

 The Swatches panel (see Figure 2-2) appears. If you’re into keyboard

shortcuts like we are, press Ctrl+F9 (Windows) or Ô+F9 (Mac) to open

the panel.

12_385395-bk02ch02.indd 12712_385395-bk02ch02.indd 127 10/28/08 8:14:43 PM10/28/08 8:14:43 PM

128 Finding Your Way around the Swatches Panel

 2. To add a color to the panel from an object

in the workspace, move the cursor over

the object whose color you want to sample

and then click. Move the cursor inside the

Swatches panel (the icon becomes a paint

bucket) and then click to add the sampled

color to the panel.

 3. Click the icon to the far right of Swatches.

 The Swatches panel Options menu (see

Figure 2-3) opens.

 4. Choose one of the following options from

the menu:

 • Duplicate Swatch: Duplicates the selected

swatch.

 • Delete Swatch: Deletes the selected

swatch.

 • Add Colors: Opens the Import Color

Swatch dialog box, which enables you to add a Flash color set (using

the .CLR extension) or a color table (using the .ACT extension). You

also have the option to import colors from an existing image in the

GIF format. When you choose the latter option, Flash recognizes the

colors in the image and creates a swatch for each color.

Figure 2-3: Every panel has to have options.

Click to open Options menu

Figure 2-2: The Swatches panel
has lovely cubes of color.

12_385395-bk02ch02.indd 12812_385395-bk02ch02.indd 128 10/28/08 8:14:43 PM10/28/08 8:14:43 PM

129

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Finding Your Way around the Swatches Panel

 If you’re creating a Flash project for a client and you need to match

the colors from the client’s logo, import the logo into your favorite

image-editing application and save it as a GIF file. Use the Add Colors

command from the Swatches panel Options menu and then select

the image to add the colors to the existing color set.

 • Replace Colors: Opens the Image Color Swatch dialog box. Select a

Flash color set or a color table. The colors from the imported color

set or table replace the existing colors. Another option is to select an

image in the GIF format. Flash recognizes the colors in the image and

uses them to replace the existing colors.

 • Load Default Colors: Loads the default color set.

 • Save Colors: Opens the Export Color Swatch dialog box, in which

you can save the colors that are currently in the Swatches panel as

a Flash color set with the .CLR extension or a color set with the .ACT

extension.

 If you’re going to use an exported color set in another Adobe applica-

tion, such as Fireworks or Photoshop, save the exported colors as a

color set with the .ACT extension.

 • Save as Default: Saves the current colors as the default color set for

creating new documents.

 • Clear Colors: Removes all color swatches except for the default black

and white colors. This choice is excellent if you’re creating a color

set from scratch using the Color panel or by adding colors from an

existing color set or .GIF image.

 • Web 216: Loads the Web Safe palette with 216 colors.

 • Sort by Color: Arranges the swatches according to hue.

Creating a custom color set
If you’re creating Flash projects for clients and use the same colors regu-

larly, you may find it beneficial to create a custom color set. You can easily

do so from within the Swatches panel by following these steps:

 1. Choose Window➪Swatches.

 The Swatches panel appears.

 2. Delete the colors you don’t want saved with the custom color set.

 To delete a color, select the swatch you want to delete and then choose

Delete Swatch from the Swatches panel Options menu.

12_385395-bk02ch02.indd 12912_385395-bk02ch02.indd 129 10/28/08 8:14:43 PM10/28/08 8:14:43 PM

130 Finding Your Way around the Swatches Panel

 3. Add colors to the color set.

 You can add colors by choosing Add Colors from the Swatches panel

Options menu and then importing a color set or having Flash create the

color swatches from an existing GIF image.

 4. To sample a color from an object on the Stage, select the eyedropper tool,

click the color you want to sample, move the cursor into the Swatches

panel, and then click to add the sampled color to the color set.

 5. Add and delete additional colors as needed.

 6. After customizing the color set, choose Save Colors from the Swatches

panel Options menu.

 The Export Color Swatch dialog box appears, as shown in Figure 2-4.

Figure 2-4: Exporting a custom color set.

 7. Navigate to the folder in which you want to save the color set.

 Store the file in a folder you can easily find. You may want to create

a new folder named Color Sets in either your client’s folder or your

Documents folder.

 8. Enter a name for the color set.

 Choose a name that reflects the purpose for which the color set is used.

If it’s for a client, use the initials of the client’s company as the filename.

12_385395-bk02ch02.indd 13012_385395-bk02ch02.indd 130 10/28/08 8:14:43 PM10/28/08 8:14:43 PM

131

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Mixing a Color

 9. Choose an option from the Save as Type drop-down menu.

 Your choices are Flash Color Set (.CLR), or Color Set (.ACT). If you’re

only using the color set in Flash, save it as a Flash color set. For maxi-

mum compatibility with other Adobe image-editing applications that use

color sets, choose Color Set.

 10. Click Save.

 Flash saves the color set for future use.

Mixing a Color
Yellow, blue, what’ll you do?

Maybe you should mix a color.

Black, white, is all right

Living color may be what you need.

The Swatches panel is a useful starting point when you need to choose

a color for a Flash project. But sometimes the color you need isn’t in the

Swatches panel. Mixing a color, though, isn’t just about mixing up a solid

color like the paint department down at your local hardware store does.

You can mix gradients, which are blends of two or more colors. When you

need a hipper-than-hip-funkier-than-funky color or a gradient that contains a

plethora of colors, look no further than on the Color panel. In the following

sections, we show you how to mix a color and gradient.

Getting up close and personal with the Color panel
A swatch is a cool tool when you need to get down, get funky, and grab a

color quickly. But if you’re creating a Flash project on a rainy day while

you’re dreaming away, you can create any color — even sky-blue pink — in

the Color panel. The Color panel also makes it possible for you to mix gra-
dients — blends of two or more colors — that come in different flavors. We

show you everything you need to know about mixing colors and gradients

with the Color panel in the following sections.

Mixing a swatch of color
When you need a color for a stroke or fill that’s not present on the Swatches

panel, you can easily mix what you need by using the Color panel. You can

mix a color by dipping the cursor into the color well or by entering the

values of the color, if you know them. To mix a color by using the Color

panel, follow these steps:

12_385395-bk02ch02.indd 13112_385395-bk02ch02.indd 131 10/28/08 8:14:44 PM10/28/08 8:14:44 PM

132 Mixing a Color

 1. Choose Window➪Color.

 The Color panel appears, as

shown in Figure 2-5. The panel

gives you the option of mixing a

color for strokes or fills created

by using the drawing tools. You

can also revert to the default

stroke and fill colors (black

and white), specify no color, or

swap the existing stroke and fill

colors.

 2. Click the Stroke or Fill color

icon.

 This step determines whether

the mixed color appears in the

Stroke or Fill color swatch in the

Tools panel.

 3. Choose an option from the

Type drop-down menu.

 Your options are None, Solid,

Linear, Radial, or Bitmap. The

Linear and Radial options are

for gradients, which are covered in

the “Creating a gradient” section,

later in this chapter. (Creating a

bitmap fill is covered in Chapter 6

of this minibook.)

 4. If you know the color values, enter them.

 If you know the RGB, HSB, or hexadecimal values, you can enter them

in the appropriate fields. If the color model you want isn’t displayed,

you can choose it from the Color panel Options menu (see Figure 2-6),

which is accessed by clicking the icon in the upper-right corner of the

panel.

 5. To mix a color from scratch, drag inside the color well until the

swatch is the hue you want, and then drag the Brightness slider.

 As you change the color and brightness, the Current Color Swatch is

updated in real time.

Fill

Stroke

Figure 2-5: Mix a color without getting
paint on your hands.

12_385395-bk02ch02.indd 13212_385395-bk02ch02.indd 132 10/28/08 8:14:44 PM10/28/08 8:14:44 PM

133

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Mixing a Color

Color well

Brightness slider

Figure 2-6: Options are a good thing.

 6. Drag the Alpha slider to change the opacity of the color.

 Alternatively, you can enter a value from 0 to 100. When you specify a

value less than 100 percent, the color becomes partially transparent,

and you can see the underlying colors.

 7. Choose Add Swatch from the Color panel Options menu to add the

color to the Swatches panel.

 After mixing a color for the stroke or fill, you can keep the panel open to

mix the other color. If you’re creating a custom color set from scratch,

you can continue mixing colors and choose Add Swatch from the Color

panel Options menu to finish creating the custom color set.

Creating a gradient
The Flash Swatches panel has a couple of default gradients you can use.

But if you or your client think that the project needs custom color gradients,

you can mix your own in the Color panel. You can create a linear gradient,
which mixes the colors from left to right, or a radial gradient, which mixes

the colors concentrically. Figure 2-7 shows both a linear and radial gradient.

12_385395-bk02ch02.indd 13312_385395-bk02ch02.indd 133 10/28/08 8:14:44 PM10/28/08 8:14:44 PM

134 Mixing a Color

Linear Radial

Figure 2-7: Gradients come in two flavors — linear and radial.

To create a gradient, follow these steps:

 1. Choose Window➪Colors.

 The Color panel appears.

 2. Click the Fill icon.

 You wouldn’t specify a gradient for a stroke, would you?

 3. Select a gradient type from the Type drop-down menu.

 Your choices are Linear and Radial. The

default gradient colors are black and white

(see Figure 2-8). (Black-and-white gradients

are only one stop removed from monotone,

from which the word monotonous is derived.)

 4. Choose an option from the Overflow drop-

down menu.

 This option determines how colors are

applied when they extend beyond the gradi-

ent. You have three overflow options:

 • Extend: The default option applies the

colors past the end of the gradient.

 • Reflect: The colors of the gradient are

repeated in a pattern from beginning to

end and then reversed, which fills a shape

with a mirror-like reflection.

 • Extend: Repeats the gradient colors from

beginning to end until the shape is filled.

Figure 2-8: Black-and-white
gradients — boring.

12_385395-bk02ch02.indd 13412_385395-bk02ch02.indd 134 10/28/08 8:14:44 PM10/28/08 8:14:44 PM

135

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Mixing a Color

 5. Select the Linear RGB check box to create a gradient that’s SVG

(Scalable Vector Graphics) compliant.

 You can scale the vector object to which the gradient fill is applied, and

the fill scales properly with no degradation.

 6. Select the first color stop and specify a color for it.

 The default gradients have two stops. You add a stop wherever you

want to introduce a new color. You can specify a color for a stop in sev-

eral ways: You can double-click the stop to open the Swatches panel,

drag the cursor in the color well, and then drag the brightness slider,

enter the RGB, HSB, or hexadecimal values for the color you want, or

drag the individual color sliders.

 7. Specify the Alpha value for the first color stop.

 To specify the Alpha value, enter a value in the text field or drag the

slider.

 8. Select the second color stop and specify its color and Alpha value.

 We know what you’re thinking: Are two stops all we get? If that question

weighs heavily on your mind, please read Step 9.

 9. Move the cursor toward the color bar and click when it becomes a

left-pointing arrow with a plus sign (+).

 Another color stop is added. You can add as many color stops as you

need.

 10. To remove an unneeded color stop, select it and drag it off the

color bar.

 The secretary disavows any record of its existence.

 11. Specify the color and Alpha value for any

color stops you add.

 Figure 2-9 shows a radial gradient with more

colors than a psychedelic ice cream concoc-

tion you’d find in a Haight-Ashbury ice cream

store.

 If you want to save a gradient for future use,

choose Add Swatch from the Color panel Options

menu.

When you create a radial gradient, the leftmost

stop is the color in the center of the gradient.

Figure 2-9: Two scoops of
Strawberry Alarm Clock,
please.

12_385395-bk02ch02.indd 13512_385395-bk02ch02.indd 135 10/28/08 8:14:45 PM10/28/08 8:14:45 PM

136 Mixing a Color

Using the Transform Gradient tool
After you apply a gradient to a shape, you can change the way the gradient is

mapped to the shape by using the Transform Gradient tool. You can use it to

scale the gradient, rotate the gradient, and change the width of the gradient.

To modify a gradient with the Transform Gradient tool, follow these steps:

 1. Select the Transform Gradient tool.

 The Transform Gradient tool shares the third slot on the Tools panel.

If the tool isn’t visible, click the Free Transform tool and select the

Transform Gradient tool from

the fly-out menu.

 2. Click the shape whose gradient

you want to transform.

 If you click an object with a

linear gradient, two handles

appear around the object, and

one hollow dot appears in the

center (see Figure 2-10). If you

click an object with a radial

gradient, three handles appear

around the object, and one

hollow dot appears in the center (see Figure 2-11).

 3. If you’re transforming a linear gradient, these are your options:

 • Rotate the gradient: Position the cursor over the round handle, and

when it becomes a circle with four curved arrows, drag clockwise or

counterclockwise to rotate the gradient relative to the shape.

Hollow dot Handles

Figure 2-11: Transforming a radial gradient.

Hollow dot Round handle

Square handle

Figure 2-10: Transforming a linear gradient.

12_385395-bk02ch02.indd 13612_385395-bk02ch02.indd 136 10/28/08 8:14:45 PM10/28/08 8:14:45 PM

137

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Changing Colors

 • Change the width: Position the cursor over the square handle, and

when it becomes a dual-headed arrow, drag left or right to decrease

or increase the width of the gradient.

 • Change the center: Position the cursor over the hollow dot, and when

it becomes a cross with four arrows, drag to change the center of the

gradient relative to the object.

 4. If you’re transforming a radial gradient, here are your options:

 • Change the width: Position the cursor over the uppermost handle,

and when it becomes a dual-headed arrow, drag left or right to

decrease or increase the width of the gradient.

 • Change the scale: Position the cursor over the uppermost circular

icon, and when it becomes a hollow circle with a diagonal arrow,

drag in or out to increase or decrease the scale of the gradient.

 • Rotate the gradient: Position the cursor over the lower circle, and

when it becomes a hollow circle with four curved arrows, drag clock-

wise or counterclockwise to rotate the gradient relative to the shape.

 • Change the center: Position the cursor over the hollow dot, and when

it becomes a cross with four arrows, drag to change the center of the

gradient relative to the object.

Changing Colors
Editing colors on Flash objects is a piece of cake. You can change the stroke

or fill of an object at any time. You change the stroke by using the Ink Bottle

tool and change the fill by using the Paint Bucket tool.

Using the Ink Bottle tool
You use the Ink Bottle tool to change an object’s stroke. You can change an

object’s stroke at any time by following these steps:

 1. Select the Ink Bottle tool.

 2. In the Property inspector, click the Stroke color swatch and select a

color from the Swatches panel.

 3. In the Property inspector, specify the stroke width and style.

 4. Click the object whose stroke you want to change.

 The object’s stroke changes to reflect the stroke parameters you specify

in the Property inspector. If the object has no stroke, a stroke is applied

to it.

12_385395-bk02ch02.indd 13712_385395-bk02ch02.indd 137 10/28/08 8:14:45 PM10/28/08 8:14:45 PM

138 Using the Kuler Extension

Using the Paint Bucket tool
When you need to ch-ch-ch-change the fill of an object, you use the Paint

Bucket tool. The ability to quickly change the fill of any object comes in

handy when you have a client who can’t seem to make up her mind, and a

blinding flash of artistic insight tells you that every pink object in your Flash

project should be mellow yellow. To change the fill of an object with the

Paint Bucket tool, follow these steps:

 1. Select the Paint Bucket tool.

 2. In the Property inspector, click the Fill color swatch and select a color

from the Swatches panel.

 3. Click the object whose fill you want to change.

Using the Kuler Extension
If you want to have a colorful Flash design (and who doesn’t?), consider

using the Kuler extensions. We’re not sure how

this term is pronounced or how Adobe came up

with the name, but we’re pronouncing it “cooler.”

So whenever you want a cooler Flash design, call

up the Kuler extension and mix up some master-

ful color:

 1. Choose Window➪Kuler.

 The Kuler panel appears (see Figure 2-12).

Notice the colorful round area — the color

wheel.

 2. Select an option from the Rule menu.

 Your choices are described in this list:

 • Analogous: Creates a color palette using

colors that are adjacent to the base color

on the color wheel. This color scheme is

also referred to as harmonious.

 • Monochromatic: Creates a color palette

using different values the base color.

 • Triad: Creates a color palette using colors

that are 120 degrees from the base color

on the color wheel.

 • Complementary: Creates a color palette

using colors that are opposite each other

on the color wheel.
Figure 2-12: Kuler rhymes (we
think) with cooler.

12_385395-bk02ch02.indd 13812_385395-bk02ch02.indd 138 10/28/08 8:14:45 PM10/28/08 8:14:45 PM

139

Book II
Chapter 2

A Splash of Color,
S’il Vous Plaît

Using the Kuler Extension

 • Compound: Creates a color palette using a combination of the rules.

 • Shades: Creates a color palette using colors that are shades of the

base color. If your client is a blues guitarist, this option is an excel-

lent choice. Choose blue as the base color and you’ll have several

shades of blue for your Flash creation.

 • Custom: Creates a palette based on your input.

 3. Select a base color.

 You can select a base color by dragging the R, G, and B sliders.

Alternatively, you can enter the R, G, B, or hexadecimal values of a color.

 4. Modify the color scheme.

 The beauty of Kuler comes into play in this step. You can drag any of the

dots to modify the color scheme. You can also double-click any color

to make it the active color and then modify the R, G, B, or hexadecimal

values. You can also control the brightness of the active color by drag-

ging the brightness slider. This action creates a darker or lighter shade

of the color.

 To create a color scheme based on the current stroke color, click the

Add Current Stroke Color as Base Color icon. To create a color scheme

based on the current fill color, click the Add Current Fill Color as Base

Color icon.

 5. Click a color swatch and the click the Remove This Color from the

Theme icon.

 The color is removed from the palette. After you remove a color from

the palette, the Add a New Color to the Theme icon becomes available.

After clicking the icon, you can mix a new color by entering R, G, B, or

hexadecimal values. The other colors are changed based on the color

rule you specify in Step 2. You can remove any color from the palette

except the base color.

 You can also modify the color palette by clicking the Affect the Other

Colors in the Theme Based On Harmony icon.

 6. Click the Stroke color swatch and then click a color from the Kuler

color palette you created.

 The stroke color is updated to reflect your choice.

 7. Click the Fill color swatch and then click a color from the Kuler color

palette you created.

 The fill color is updated to reflect your choice.

 8. Click Save Theme.

 The Save Theme dialog box appears.

 9. Enter a name for the theme and click OK.

12_385395-bk02ch02.indd 13912_385395-bk02ch02.indd 139 10/28/08 8:14:45 PM10/28/08 8:14:45 PM

140 Using the Kuler Extension

 The color palette is saved to the Kuler panel. To use the saved theme,

click Browse and then choose Saved from the drop-down menu.

 10. Click Add This Theme to Swatches.

 The color palette is added to the Swatches panel.

 11. Click Upload to Kuler.com.

 Choose this option if you want to share your creation with other Kuler

fans. When you choose this option, you’re prompted for your username

and password.

If you’re not feeling terribly creative or you just want to see what other Kuler

users are doing, click Browse. The Kuler panel refreshes to show color pal-

ettes created by other Kuler users. You can sort the palettes by choosing an

option from the drop-down menu. For example, you can choose the highest-

rated or most popular palettes. You can fine-tune your search by limiting the

time period in which the palettes were uploaded to Kuler. The default is All

Time, but you can limit the number of palettes by choosing Last 7 Days or

Last 30 Days. After navigating the themes, you can add a selected theme to

the Swatches panel or edit the theme as outlined in this section.

12_385395-bk02ch02.indd 14012_385395-bk02ch02.indd 140 10/28/08 8:14:45 PM10/28/08 8:14:45 PM

Chapter 3: Getting the
Word Out with Text

In This Chapter
✓ Mastering the Text tool

✓ Stylizing text

✓ Creating text

✓ Editing text

✓ Finding and replacing items

Writers love words. So do readers. If you create Flash projects with

information from writers that will be read by site visitors, it’s your

job to add the words to the Flash project. You do

so with the Text tool. We know that sounds like

a case of the blatantly obvious, but the Text tool

isn’t as easy to use as some would think. In fact,

each of the three text types has different proper-

ties: garden-variety static text when you need to

get the word out; dynamic text when you’re creat-

ing a project with text that changes frequently or

otherwise need to be addressed with ActionScript;

and input text when you want site users to enter

information such as their names or credit card

numbers. (In fact, you can even animate text, but

that’s a subject for another chapter.) In this chap-

ter, we show you how to master the Text tool.

Using the Text Tool
The Text tool is similar to one of those pens with

three colors of ink and a PDA stylus all wrapped in one neat container. With

the Flash text tool, you can create static text, dynamic text, or input text. In

the following sections, we show you how to use the Text tool to create each

text type.

13_385395-bk02ch03.indd 14113_385395-bk02ch03.indd 141 10/28/08 8:15:31 PM10/28/08 8:15:31 PM

142 Using the Text Tool

Creating static text
Static text may sound somewhat boring, but you can get a charge out of it.

You can use any font on your system when creating static text. You can styl-

ize the text, have a multiline text field, and do much more. To create static

text, follow these steps:

 1. Select the Text tool.

 2. In the Property inspector (choose

Window➪Properties), choose

Static Text from the uppermost

drop-down menu (see Figure 3-1).

 3. Click and drag the area where

you want the text to appear.

 When you create static text boxes,

you can only set the width of the

text box. The default option is to

display a single line of text.

 4. Set the text parameters in the

Property inspector.

 The parameters for static,

dynamic, and input text are almost

identical. We cover them in the

later section “Formatting Text.”

 5. Select an option from the

Orientation section of the Property

inspector.

 The default option is horizontal.

You can also create vertical text that goes from left to right or from right

to left.

 You can change the orientation of the text after creating it and then

choosing an option in the Orientation section of the Property inspector.

 6. Type some text.

 As you enter text, it automatically wraps to the next line.

 7. Modify the width of the text box in the Property inspector.

 You cannot modify the height of a static text field.

Figure 3-1: Creating static text.

13_385395-bk02ch03.indd 14213_385395-bk02ch03.indd 142 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

143

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Using the Text Tool

 8. When you finish creating text, click outside the text box or select

another tool.

 As long as the cursor is inside the text field, the Text tool is still active,

primed, and ready.

Adding a hyperlink to text
When you create static text, you can

apply a hyperlink to a selection of text.

After you create the hyperlink, you

specify whether it opens in the same

window or a different window. To

create a hyperlink, follow these steps:

 1. Create a block of static text.

 If you don’t know how to create

a block of static text, read the

“Creating Static Text” section, ear-

lier in this chapter.

 2. Using the Text tool, select the text

to which you want to apply the

hyperlink.

 3. In the Options section of the

Property inspector (choose

Window➪Properties) enter the

URL for the Web page that will

open when the link is clicked.

 4. Choose an option from the Target

drop-down menu (see Figure 3-2).

Your choices are shown in this

list:

 • _blank opens the page in a new

window.

 • _parent opens the page in the

parent of the current frame.

 • _self opens the page in the

current frame in the current

window.

 • _top opens the page in the

top-level frame in the current

window. Figure 3-2: Aim to load the URL in the
target.

13_385395-bk02ch03.indd 14313_385395-bk02ch03.indd 143 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

144 Using the Text Tool

Creating input text
You create an input text field when you want the Flash application to accept

input from the user. Input text fields can be formatted to accept a single line

of text or multiple lines of text. You can also specify whether the text wraps

to a new line when it exceeds the width of the field. And you can and limit

the maximum number of characters that users can input into the field. To

create an input text field, follow these steps:

 1. Select the Text tool.

 2. In the Property inspector, choose Input Text from the Text drop-down

menu.

 3. Enter an instance name for the text box.

 You use the instance name when you address the text box with

ActionScript.

 4. Click and drag the area where you want the text to appear.

 When you create input text boxes, you can set the dimensions as you

drag the tool on the Stage.

 5. Set the text parameters in the Property inspector.

 The parameters for static, dynamic, and input text are almost identical.

We cover those in the later section “Formatting Text.”

Creating dynamic text
Dynamic text boxes display text that’s updated dynamically at runtime or

by the use of ActionScript. Dynamic text boxes can also be used to display

text that’s loaded from an external file. To create a dynamic text box, follow

these steps:

 1. Select the Text tool.

 2. In the Property inspector, choose Dynamic Text from the Text drop-

down menu.

 3. Enter an instance name for the text box.

 You use the instance name when you address the text box with

ActionScript.

 4. Click and drag the area where you want the text to appear.

 When you create dynamic text boxes, you can set the dimensions as you

drag the tool on the Stage.

13_385395-bk02ch03.indd 14413_385395-bk02ch03.indd 144 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

145

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Formatting Text

 5. Set the text parameters in the Property inspector.

 The parameters for formatting static, dynamic, and input text are almost

identical. We cover those in the later section “Formatting Text.”

To make an input or dynamic text box that’s scrollable, create the text field

and then choose Text➪Scrollable. After you issue this command, a black dot

appears in the lower-left corner of the text box. You can fill it to overflowing.

When the file is published, a user can click inside the text box and drag the

mouse to scroll the text.

If you have a lot to say, create your text in a word processing application,

press Ctrl+A (Windows) or Ô+A (Mac) to select the text and then press

Ctrl+C (Windows) or Ô+C (Mac) to paste the text to the Clipboard. In Flash,

place the cursor inside the text field and then press Ctrl+V (Windows) or

Ô+V (Mac). Note that some of the formatting you apply in a word processing

application may not be preserved when you paste it into Flash.

Formatting Text
Text without formatting is boring. When you create static, input, or dynamic

text, you can specify all the usual suspects, such as font, size, style, and

color. You can also determine whether viewers of your Flash masterpiece

(why would you create anything less?) can select text. In the upcoming sec-

tions, we show you how to set character parameters, format paragraph text,

and resize text fields.

Specifying text character parameters
Formatting text in Flash is almost like formatting text in your favorite word

processing application. The options are almost identical for static, dynamic,

and input text, which is why we’re conserving paper and showing you how

to specify character styles in one section. When a parameter is unique to a

specific type of text, we tell you which type of text for which the parameter

is used. To specify character parameters, follow these steps:

 1. Create a text field.

 Vive la difference. Specify whether the text is input, dynamic, or static in

the Property inspector. The Character section of the Property inspec-

tor updates to show you the available options. Figure 3-3 shows the

Property inspector after creating a dynamic text box.

13_385395-bk02ch03.indd 14513_385395-bk02ch03.indd 145 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

146 Formatting Text

 2. In the Property inspector, select a

font type from the Family

drop-down menu.

 You have lots of choices; one for

each font you installed on your

computer.

 3. Select a style from the Style drop-

down menu.

 This is Word Processing 101 — you

can choose from Regular, Italic,

Bold, or Bold-Italic.

 4. Drag the scrubby slider to specify

the text size.

 Alternatively, click the current

size to reveal a text field, and then

enter a value.

 5. Drag the scrubby slider to specify

text spacing.

 Alternatively, click the current

value to reveal a text field and

then enter a value. Positive values

space the letters farther apart, and

negative values scrunch the text

closer together.

 6. Accept the default text color or

click the color swatch.

 Clicking the color swatch reveals

the Swatches panel. Select a color.

If you want the text to be semitrans-

parent, specify an alpha value less

than 100. For more information

on color, refer to Chapter 2 of this

minibook.

 7. Accept the default Auto Kern

option, or click the check box to

deselect it.

Figure 3-3: Dynamic, isn’t it?

13_385395-bk02ch03.indd 14613_385395-bk02ch03.indd 146 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

147

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Formatting Text

 Auto Kern uses the font family information to determine the spacing

between characters. If you disable this option, all characters are spaced

equally, which may cause certain character pairings to look a bit odd.

 8. Choose an option from the Anti-Alias drop-down menu. Your

choices are

 • Use Device Fonts: Anti-aliases text according to the fonts installed on

a user’s computer. If you choose this option, make sure that you use

one of the Flash device fonts when creating the text: _sans, _serif, or

_typewriter.

 • Bitmap Text (No Anti-Alias): Disables anti-aliasing and renders crisp

text, which results in a larger file size because font outlines are

embedded with the resulting SWF file. The text renders well at the

original size but doesn’t scale well.

 • Anti-Alias for Animation: Alignment and kerning information are dis-

regarded, which results in a smoother animation. This option results

in a larger file size because font outlines are embedded. When using

this option, in order for the text to be legible, make sure that the font

size is 10 or larger.

 • Anti-Alias for Readability: The Flash text engine renders the font to

ensure high quality and legibility. The file size increases because the

font outlines are embedded. When you use this option, the file must

be published for Flash Player 8 or later.

 • Custom Anti-Alias: The Custom Anti-Aliasing dialog box opens, which

enables you to modify the font by specifying the thickness of the font

anti-alias transition and the sharpness of the transition between the

font and the background. This option increases the file size. To spec-

ify custom anti-aliasing, you must publish the file for Flash Player 8

or later.

 9. (Optional) Click the Selectable icon.

 This option enables users to select the text.

 10. (Optional) Click the Render Text as HTML icon.

 This option enables you to use HTML formatting on an external text file

that’s loaded into the field. For example, to make text boldface, you use the

 and tags. Any text between the tags conforms to the tag attribute.

 11. To create an outline around the text field, click the Show Border

around Text icon.

13_385395-bk02ch03.indd 14713_385395-bk02ch03.indd 147 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

148 Formatting Text

 12. To add superscripting or sub-

scripting to selected text, click

the applicable icon.

 You can apply character set-

tings to an entire block of text or

apply settings to a selected set of

characters or, in non-geek-speak,

a word or selection of words.

 13. To embed font characters with

the published file, click the

Character Embedding button.

 This step opens the Character

Embedding dialog box (see

Figure 3-4). Select a character

set from the list. You can select

multiple character sets by press-

ing Ctrl and then clicking the

sets you want to embed. You

can have Flash determine which

characters need to be embed-

ded based on what you already

entered in the field by clicking

the Auto Fill button. After selecting a character set, click OK to close the

dialog box.

Working with paragraph text
If you’re creating a simple banner or one line of input or dynamic text,

you’re finished after you specify the character settings. However, if you have

multiple lines of text, you can format the text just like you would format a

paragraph in your favorite word processing application. To apply paragraph

settings to a text field, follow these steps:

 1. Create a text field.

 Select Static, Input, or Dynamic from the Type drop-down menu. If

you select Static, you can’t apply paragraph settings to the field until

you create several lines or paragraphs of text. Figure 3-5 shows the

Paragraph section in the Property inspector when formatting a dynamic

text box.

 2. Choose an option from the Format section.

 Your choices are align left, align center, align right, or justify.

 3. Drag the Indent Spacing scrubby slider to set an indent for the first

sentence in each paragraph.

 Alternatively, you can click the current value and enter a value.

Figure 3-4: Yikes! We’re gonna be embedded.

13_385395-bk02ch03.indd 14813_385395-bk02ch03.indd 148 10/28/08 8:15:33 PM10/28/08 8:15:33 PM

149

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Creating Text

 4. Drag the Line Spacing scrubby

slider to set the spacing between

lines.

 Alternatively, you can click the

current value and enter a value.

 5. Drag the Left Margin scrubby

slider to set the left margin.

 Alternatively, you can click the

urrent value and enter a value.

 6. Drag the Right Margin scrubby

slider to set the right margin.

 Alternatively, you can click the

current value and enter a value.

 7. Choose an option from the

Behavior drop-down menu.

 The option you choose determines

how the text flows. Your choices

are Single Line, Multiline, Multiline

No Wrap, and (if you’re creating

input text) Password.

 8. If you’re creating input text, in

the Options section drag the Max

Chars scrubby slider to the value

you want.

 Use this optional step if you want

to limit the number of characters

that the characters using the

published file can enter into the

text box. Alternatively, you can

click the current value and enter a

value.

Creating Text
A Flash project without text is just graphics. If you already read the previous

sections, you know that you have a great deal of flexibility when you need to

add text to a Flash project. However, sometimes even the best-laid plans go

to waste and you end up with a document with gobs of text. In this section,

we point out some issues you need to consider when creating text for your

documents — and some solutions.

Figure 3-5: Formatting paragraph text.

13_385395-bk02ch03.indd 14913_385395-bk02ch03.indd 149 10/28/08 8:15:34 PM10/28/08 8:15:34 PM

150 Creating Text

Font considerations
Some designers get carried away when using fonts. They mix and match

font types and mix boldface and italicized fonts, for example. This creates a

confusing message to viewers because it looks like the designer cashed in on

a font sale at Font’s Fifth Avenue and finally found a design in which to use

them. In addition to presenting a confusing message, it bloats the file size.

So, whenever possible, think “less is more” when choosing fonts. In the fol-

lowing sections, we offer more sage advice for choosing fonts.

Choosing fonts for static text fields
When you specify a font for a static text field, Flash embeds the font outline

in the resulting SWF file to ensure that the text looks identical when played

in the Flash Player on other users’ computers. However, if you have a large

amount of text in a Flash project that uses different font families and styling,

you run the risk of creating a large file that takes a while to load. When you

plan a project that contains a lot of text, make sure to stick with one font

family. If file size is a real issue, consider using device fonts because they

aren’t embedded in a Flash SWF file. When you use a device font, the Flash

Player uses the closest match from the user’s computer to render the text.

As a bonus, device fonts result in more legible text when you specify a font

size of 10 points or smaller. To convert a text field to device fonts, follow

these steps:

 1. Select the Text tool.

 2. Double-click the text field you want to convert to device fonts.

 All the text is selected.

 3. In the Character section of the Property inspector, choose one of the

following choices from the Family drop-down menu:

 • _sans: Resembles Arial or Helvetica

 • _serif: Resembles Times Roman

 • _typewriter: Resembles Courier

Some font outlines cannot be embedded in a Flash SWF file. To ensure that

you choose fonts that can be embedded, choose View➪Preview➪Anti-Alias

Text. If any text you create with a font family has jagged edges, don’t use

that family in your project.

Choosing fonts for input and dynamic text fields
When you create input or dynamic text fields and specify a font family, Flash

records the name with the published SWF file. When the file is played, Flash

Player renders the text using the same font or a similar one from the user’s

13_385395-bk02ch03.indd 15013_385395-bk02ch03.indd 150 10/28/08 8:15:34 PM10/28/08 8:15:34 PM

151

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Creating Text

computer. To ensure that the file renders correctly, you can embed font out-

lines with the file, but that increases file size. You can also specify a device

font as outlined in the previous section.

Converting text to graphics
Sometimes you pick a cool font that you want to use for a banner or for an

animation. You can embed a font with the file, which increases the file size. If

you already have lots of other text, embedding your way-cool text bloats the

file size. So, if the text is just another pretty face, you can convert each letter

to a graphic. Here’s how:

 1. Create some text.

 If you’re in an experimental state of mind, try something big and bold

using the Impact font family.

 2. Select the text with the Text tool.

 3. Choose Modify➪Break Apart.

 Flash breaks the text into individual pieces; one piece per letter.

 4. Choose Modify➪Break Apart.

 No, we’re not being redundant. The first time you break the text apart,

it’s still text and can be edited as text. The second time you apply the

command, each letter is converted into a shape. You can now convert

each shape to a symbol or, if you want to have some fun, select a letter

with the Subselection tool. Now you can select and manipulate each

point. You can also modify each shape with the Selection tool. For more

information on folding, spindling, mutilating, and performing other edits

on shapes, refer to Book II, Chapter 1. Figure 3-6 shows a letter that has

been modified after it was converted to a shape.

Figure 3-6: Shaken but not stirred.

13_385395-bk02ch03.indd 15113_385395-bk02ch03.indd 151 10/28/08 8:15:34 PM10/28/08 8:15:34 PM

152 Editing Text Fields

Editing Text Fields
When you have a document with lots of text, you almost always end up

making some kind of change. The client may change his mind, or you may

decide that a text field is a little too large. You may also find that your

spelling isn’t perfect. Nothing is worse than a Flash project with typos.

Unfortunately, text is infinitely editable in the native FLA document, except

when you convert it to a shape. Then it becomes infinitely malleable. In the

upcoming sections, we show you some of the most common edits you need

to perform.

Resizing a text field
The great thing about text fields is that you can resize them at any time. You

can resize text fields in two ways, and neither distorts the text within the

field. To resize a text field, do one of the following:

 ✓ Select the text field with the Selection tool, and then drag one of the

handles.

 ✓ In the Property inspector, use a scrubby slider to change the width or

height of the text field. Click the icon that locks the width and height

values (it looks like a broken link) if you want to resize the field

proportionately.

Editing text
To err is human, and to change one’s mind is also human. The fact that Flash

designers and developers work for humans means that at some point you

have to edit text on one of your projects. Before you can edit text, you have

to select it. Here are your options for selecting text:

 ✓ Drag the text tool over the character, word, or sentence you want to edit.

 ✓ Double-click a word with the Text tool to select it.

 ✓ Select the Text tool, click to designate the beginning of a selection you

want to edit, and then Shift+click to designate the end of the selection.

 ✓ Select the Text tool, click inside a text field, and then Press Ctrl+A

(Windows) or Ô+A (Mac) to select all text within a field.

Spell-checking text fields
Don’t you just hate it when you have tons of text to type, your fingers go

numb, your finger slips from F to V, and without knowing it you make a

couple of bad typos. If you miss the mistake when you proofread, — you do

13_385395-bk02ch03.indd 15213_385395-bk02ch03.indd 152 10/28/08 8:15:35 PM10/28/08 8:15:35 PM

153

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Editing Text Fields

proofread your stuff before you post it to the Web, don’t you?— after you

upload the published file to your client’s Web site, you’re up the proverbial

creek without a paddle, not to mention the copious amounts of egg you’ll

have to wipe off your face. Typos are bad, but typos posted to the Web can

be fatal to your career as a Flash designer. Fortunately, there’s a backup for

your proofreading. It’s known as spell check.

Setting up the Flash spell check
Before you can run a spell check, you have to tell Flash the items you want

spell-checked, what to ignore, or which dictionary to use. You can also add

words to a personal dictionary (like your last name if it’s not common) that

might otherwise be listed as suspects for correction. To set up the Flash

spell check feature, follow these steps:

 1. Choose Text➪Spelling Setup.

 The Spelling Setup dialog box appears (see Figure 3-7).

Figure 3-7: Setting up the Flash spell check.

13_385395-bk02ch03.indd 15313_385395-bk02ch03.indd 153 10/28/08 8:15:35 PM10/28/08 8:15:35 PM

154 Editing Text Fields

 2. Select the options you want Flash to include when you invoke the

Check Spelling command.

 You see two groups of options: Document and Checking. To prevent you

from nodding off, we refrain from listing every option, because they’re

self explanatory. Note that you have options to spell-check scene and

layer names, which is something we use so that our editors don’t send

screen shots back because of misspelled words.

 3. Choose a dictionary.

 You can include multiple dictionaries, if you

want. You can also switch dictionaries, which

is a handy option if you’re creating a Flash

document in a different language.

 4. Click Edit Personal Dictionary.

 The Edit Personal Dictionary dialog box

appears (see Figure 3-8).

 5. Enter words that Flash may list as suspects

for correction.

 Press Enter or Return after entering a word.

Add words like your last name, the name of

your client’s business, or any unusual techni-

cal terms that may not appear in the diction-

aries Flash is using as resources when checking spelling.

 6. Click OK to close the Edit Personal Dictionary dialog box, and then

click OK to close the Spelling Setup dialog box.

 You’re now ready to let Flash check your documents for spelling errors.

Running the Flash spell checker
After spending hours sprinkling a Flash document full of graphics, anima-

tions, and text fields, it’s time to test your handiwork. We cover testing the

entire document in Book VIII, Chapter 1. Now we show you how to check the

document for spelling errors:

 1. Choose Text➪Check Spelling.

 The Check Spelling dialog box appears and Flash highlights the first

word that it suspects is spelled incorrectly. If suggested corrections are

available, Flash lists them in the Suggestions pane (see Figure 3-9).

Figure 3-8: Flash lets you
set up your own, personal
dictionary. How great is that?

13_385395-bk02ch03.indd 15413_385395-bk02ch03.indd 154 10/28/08 8:15:35 PM10/28/08 8:15:35 PM

155

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Editing Text Fields

 Figure 3-9: Oops. Somebody spelled something wrong!

 2. When Flash highlights a suspect, click one of the following buttons:

 • Add to Personal: Adds the highlighted word to your personal dictionary.

 • Ignore: Ignores this instance of the suspect word, and Flash contin-

ues to check the document for spelling errors.

 • Ignore All: Ignores all instances of the suspect word.

 • Change: Changes this instance of the suspect to a suggested replace-

ment that you select in the Suggestion pane. When you select a

suggestion, it appears in the Change To field. Alternatively, you can

enter a word in the Change To field.

 • Change All: Changes all instances of the suspect to a suggested

replacement that you select in the Suggestion pane. When you select

a suggestion, it appears in the Change To field. Alternatively, you can

enter a word in the Change To field.

 • Delete: Deletes the suspect word from the object that Flash is spell-

checking.

 • Setup: Opens the Spelling Setup dialog box, which is a handy option

if you notice that Flash isn’t handling the spell checking the way you

want it to.

 • Close: Exits the spelling check before Flash finishes checking the

document.

 3. After Flash finishes checking the document, a dialog box appears, tell-

ing you that the spelling check has been completed. Click OK to close

the dialog box.

13_385395-bk02ch03.indd 15513_385395-bk02ch03.indd 155 10/28/08 8:15:35 PM10/28/08 8:15:35 PM

156 Using the Find and Replace Command

Using the Find and Replace Command
When your client changes her mind and needs you to change some text, it

can be a time-intensive task if you’re working on a large project. Fortunately,

you can find and replace text in a document. For that matter, you can find

and replace almost anything in a Flash document. To use the Find and

Replace command, follow these steps:

 1. Choose Edit➪Find and Replace.

 The Find and Replace dialog box appears (see Figure 3-10).

 2. Select an option from the Search In drop-down menu.

 You can search in the entire document or the current scene.

 3. Choose an option from the For drop-down menu.

 You can search for the following:

 • Text: Search for a word or block of text. You can also enter text that

replaces the text for which you’re searching. You also have the usual

suspects for options, such as searching for the whole word or for

matching case.

Figure 3-10: Looking for something?

13_385395-bk02ch03.indd 15613_385395-bk02ch03.indd 156 10/28/08 8:15:36 PM10/28/08 8:15:36 PM

157

Book II
Chapter 3

Getting the W
ord

Out w
ith Text

Using the Find and Replace Command

 • Font: Search for instances of text using a specific font. You can

narrow your search by specifying a style and a size. You can replace

all instances of the font with a different font.

 • Color: Search for all instances of a specific color. You choose the

color to search for by clicking a swatch, which opens the Swatches

panel. Click to choose the color or enter its hexadecimal value. You

choose the replacement color in the same manner. You can replace

the color in fills or strokes or text or any combination thereof.

 • Symbol: Search for all instances of a symbol and replace them with

another symbol, if you want. Drop-down menus list each symbol you

created for the document. Think of this option as the Swap Symbol

command on steroids.

 • Sound: Search for a sound file in the document and replace it with

another, if you want. Drop-down menus list each sound you imported

into the document.

 • Video: Search for a video file in the document and replace it with

another, if you want. Drop-down menus list each video you imported

into the document.

 • Bitmap: Search for an image file in the document and replace it with

another, if you want. Drop-down menus list each image you imported

into the document.

 4. After selecting an object, click one of the following:

 • Find Next: Finds the next instance of the object for which you’re

searching.

 • Find All: Finds all instances of the object for which you’re searching.

 • Replace: Replaces the current instance of the object with the replace-

ment object.

 • Replace All: Replaces all instances of the object for which you’re

searching with the replacement object.

13_385395-bk02ch03.indd 15713_385395-bk02ch03.indd 157 10/28/08 8:15:36 PM10/28/08 8:15:36 PM

158 Book II: Creating Graphics

13_385395-bk02ch03.indd 15813_385395-bk02ch03.indd 158 10/28/08 8:15:36 PM10/28/08 8:15:36 PM

Chapter 4: Creating Graphic
Symbols for Fun and Profit

In This Chapter
✓ About symbols and instances

✓ Creating and editing symbols

✓ Putting the document library to good use

When you need to create a Flash project with lots of graphics that are

similar, you don’t have to reinvent the wheel. When you create a

graphic symbol, it appears in the document library. You can use the symbol

whenever and wherever you need, even in another document. You can even

duplicate an existing symbol and use it as the basis for a new symbol. (Talk

about recycling resources! We wonder whether

using a symbol repeatedly reduces Flash’s carbon

footprint on the planet and can be considered

“going green.”) If the judicious use of symbols

requires less time behind the computer, which

enables a Flash designer to turn off her computer

sooner, thereby conserving energy, we guess that

symbols can be considered going green. In the

spirit of conserving resources, we’ll cut to the

chase and show you how to use symbols in your

own Flash project.

Understanding Symbols and
Instances

When you create a graphic symbol in a Flash

document, it’s a stand-alone object, kind of like a

stand-up comic. It can entertain, but if you need more than one graphic, you

have to create another. When you create a symbol, it’s like creating a DVD

of a stand-up comic. You can play it in other places, and it looks and sounds

just like the original. When you create a symbol, it resides in the document

library. You can create an instance of the symbol at any time by dragging

it from the document library to the Stage. When the Flash Player sees an

14_385395-bk02ch04.indd 15914_385395-bk02ch04.indd 159 10/28/08 8:17:38 PM10/28/08 8:17:38 PM

160 Creating Symbols

instance of a symbol in a Flash movie, the player uses the information from

the document library to reconstruct the symbol, which means a smaller file

size — and less work for you.

Creating Symbols
Symbols are the lifeblood of any Flash document. As we mention elsewhere,

you can create a symbol and then use instances of it as needed. In the following

sections, we explain the different symbol types and show you how to create a

symbol from scratch or convert an object to a symbol. A symbol can be edited

at any time. When you edit a symbol, all instances are affected. The carte

blanche use of graphics increases file size. However, when you use instances of

symbols in lieu of creating new graphics, you greatly reduce the file size.

Understanding symbol types
You can create three types of symbols in Flash: Movie Clip, Button, and

Graphic. When you examine the symbol names, you may think that the

movie clip is the only symbol that can be animated. You can animate a

graphic and have an animated button too. Each symbol type has a unique

icon in the document library. The following list explains the differences

between the symbol types:

 ✓ Movie Clip: Can have multiple frames and be an animation. A Movie Clip

symbol can also be a single object on a single frame. When you create an

instance of a movie clip and give it a unique name, you can address the

symbol instance with ActionScript and get it to do some cool stuff, such

as change dimensions and move, for example. When you create an ani-

mation inside a movie clip, the parent Timeline doesn’t need to have the

same number of frames as the movie clip. An animation in a movie clip

loops endlessly unless you address its Timeline with ActionScript.

 ✓ Button: An interactive critter that responds to mouse clicks. You can use

ActionScript to determine what happens when a button is clicked. A Button

symbol has four frames, which enables you to display different graphics

when the user hovers the mouse over the button and clicks it. You can use

a short animation in a button frame to create a unique button.

 ✓ Graphic: Can contain multiple graphics and be an animation. However,

an instance of a Graphic symbol cannot be addressed with ActionScript.

A Graphic symbol is locked to the main Timeline. If you create a graphi-

cal symbol with multiple frames, the main Timeline must have enough

frames from the point where you add it to the Timeline to play the entire

animation.

14_385395-bk02ch04.indd 16014_385395-bk02ch04.indd 160 10/28/08 8:17:38 PM10/28/08 8:17:38 PM

161

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit

Creating Symbols

Converting an object to a symbol
If you create a graphic on the Stage and decide that you need to use it

repeatedly, you can convert the object into a symbol. Then you can choose

the type of symbol that the object becomes and do much more. To convert

an object to a symbol, follow these steps:

 1. Select the object you want to

convert to a symbol.

 2. Choose Modify➪Convert to

Symbol.

 The Convert to Symbol dialog

box appears (see Figure 4-1).

 3. Enter a name for the symbol.

 Use a logical name with no spaces or special characters. Even though

the document library provides methods for organizing a project, we add

prefixes to our symbols that further identify their use. For example, our

graphic symbols might be GCar01; our movie clip, McCar01; and our

button, Btn01.

 4. Choose the symbol type from the Type drop-down menu.

 Your choices are Movie Clip, Button, or Graphic. If you fast-forwarded to

this part of the chapter, and don’t know about symbol types, rewind to

the section “Understanding symbol types.”

 5. Choose the registration point.

 We prefer to use the upper-left registration point, which makes it easy to

align objects relative to the edge of the Stage, which is x=0, y=0.

 6. Click Advanced.

 This step expands the dialog box to show the advanced options for

converting an object to a symbol (see Figure 4-2). The options differ for

a button and movie clip. If you’re converting an object to a graphical

symbol, you have no advanced options.

 7. If you’re converting a graphic into a movie clip that will have

instances to scale, click the Enable Guides for 9-slice Scaling option.

 When you choose this option, you have more control when you scale

instances of a symbol. A movie clip with 9-slice scaling has a visual

overlay with nine sections. When you scale the instance, each section

is sized individually, without scaling the corners. This option maintains

the visual integrity of movie clip instances when scaled.

Figure 4-1: Converting an object to a symbol.

14_385395-bk02ch04.indd 16114_385395-bk02ch04.indd 161 10/28/08 8:17:38 PM10/28/08 8:17:38 PM

162 Creating Symbols

Figure 4-2: Yikes! Advanced options.

 8. If applicable, select the Export for ActionScript check box.

 This step reveals the Identifier, Class, and Base Class fields. It also gives

you the option to export the symbol in the first frame, which means that

it’s accessible to ActionScript during the course of your Flash project.

For more information on the ActionScript identifiers, classes, and base

classes, see Book IV.

 9. If applicable, select the Export for Runtime Sharing check box.

 This step allows you to treat the symbol as a class and to instantiate

instances of it from ActionScript. For more information on importing and

exporting for runtime sharing, see Book IV.

14_385395-bk02ch04.indd 16214_385395-bk02ch04.indd 162 10/28/08 8:17:38 PM10/28/08 8:17:38 PM

163

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit

Creating Symbols

 10. Click OK.

 The object is converted to a symbol and added to the document library.

Creating a new symbol
If you plan out your project ahead of time (you did plan out your project,

didn’t you?), you know exactly how many symbols you need for your proj-

ect. Whenever possible, we like to take care of the grunt work before creat-

ing instances of symbols on the Stage, adding frames to the Timeline, writing

ActionScript code, and performing other delightful tasks. To create a new

symbol, follow these steps:

 1. Choose Insert➪New Symbol.

 If you like keyboard shortcuts,

press Ctrl+F8 (Windows) or Ô+F8

(Mac). Both methods open the

Create New Symbol dialog box

(see Figure 4-3).

 2. Enter a name for the symbol.

 Use a logical name with no

spaces or special characters.

Even though the document library provides methods for organizing a

project, we add prefixes to our symbols that further identify their use.

For example, our graphical symbols might be GCar01; our movie clips,

McCar01; and our buttons, Btn01.

 3. Choose a symbol type from the

Type drop-down menu.

 Your choices are Button, Graphic,

or Movie Clip. If you don’t know a

graphic from a movie clip, check

out the section “Understanding

Symbol Types,” at the beginning of

this chapter.

 4. Accept the default folder (the

Library root) or click the default

folder name to open the Move To

dialog box (see Figure 4-4).

Figure 4-3: It’s time to get symbolic and
create a new symbol.

Figure 4-4: Moving the new symbol to a
different folder.

14_385395-bk02ch04.indd 16314_385395-bk02ch04.indd 163 10/28/08 8:17:39 PM10/28/08 8:17:39 PM

164 Creating Symbols

 We’re strong believers in being organized. If your project has lots of

Button, Movie Clip, and Graphic symbols, we recommend storing them

in separate folders. Notice in Figure 4-4 that we already created a folder

for each symbol type. Step 5 assumes that you think our advice is sage,

Rosemary, and segregates your symbols in separate folders.

 5. Select the folder in which to store the symbol, or create a new folder.

 To create a new folder, enter the name in the New Folder text field.

Alternatively, click the Existing Folder radio button, and then select a

folder. If you like the idea of creating your folders ahead of time, like we

did, check out the section “Creating library folders,” later in this chapter.

 6. Click Advanced.

 The dialog box expands to show the Advanced options for creating

a symbol (see Figure 4-5). The options differ for a button and movie

clip. If you’re converting an object to a graphical symbol, you have no

advanced options.

 7. If you’re converting a graphic into a movie clip that will have

instances to scale, click the Enable Guides for 9-Slice Scaling option.

 When you choose this option, you have more control when you scale

instances of a symbol. A movie clip with 9-slice scaling has a visual

overlay with nine sections. When you scale the instance, each section

is sized individually, without scaling the corners. This option maintains

the visual integrity of movie clip instances when scaled.

 8. If applicable, select the Export for ActionScript check box.

 This step reveals the Identifier, Class, and Base Class fields. It also gives

you the option to export the symbol in the first frame, which means that

it’s accessible to ActionScript during the course of your Flash project.

For more information on the ActionScript identifiers, classes, and base

classes, see Book IV.

 9. If applicable, select the Export for Runtime Sharing check box.

 This step lets you treat the symbol as a class and instantiate instances

of it from ActionScript. For more information on importing and export-

ing for runtime sharing, see Book IV.

 10. Click OK.

 If you’ve never used Flash, don’t freak out — you haven’t crashed the

program. A new window opens when you create a symbol from scratch.

14_385395-bk02ch04.indd 16414_385395-bk02ch04.indd 164 10/28/08 8:17:40 PM10/28/08 8:17:40 PM

165

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit

Creating Symbols

Figure 4-5: Advanced symbols go to the head of the class.

 11. Use the Flash tools to create the symbol.

 You can also use images you imported into the document library as

part of your symbol. You can also use multiple layers when creating a

symbol. Figure 4-6 shows a button symbol being constructed.

 12. When you finish creating the symbol, click the Back button or the

current scene button.

 The symbol is added to the document library.

14_385395-bk02ch04.indd 16514_385395-bk02ch04.indd 165 10/28/08 8:17:40 PM10/28/08 8:17:40 PM

166 Creating Symbols

Figure 4-6: Build me a button, my lovely.

Spraying symbols
The Spray Brush tool lets you spray graffiti-like strokes of color wherever

you want, as outlined in Chapter 1 of this minibook. But you can also load

the Spray Brush tool with a symbol. This sprays instances of the symbol,

which reduces the document file size. For example, if you need a sky full of

stars, use the Polystar tool to create a star and then use the Spray Brush

tool to sprinkle the sky full of stars. To spray symbols, follow these steps:

 1. Select the Spray Brush tool.

 2. In the Symbol section of the Property inspector, click the Edit button.

 The Swap Symbol dialog box appears (see Figure 4-7).

 3. Select the symbol you want to load in the Spray Brush tool and click OK.

 The tool is primed and ready for you to set the rest of the parameters in

the Property inspector.

14_385395-bk02ch04.indd 16614_385395-bk02ch04.indd 166 10/28/08 8:17:40 PM10/28/08 8:17:40 PM

167

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit

Creating Symbols

 4. Set parameters in the Symbol sec-

tion of the Property inspector

(see Figure 4-8).

 You can scale the size of the

symbol by changing the Width

and Height values. We advise you

to change both parameters to

the same value; otherwise, the

tool sprays a distorted variation

of your lovely (or not so lovely,

depending on your artistic capa-

bilities) symbol. You can add some

variety to the sprayed symbol by

choosing one or more of the fol-

lowing options: Random Scaling,

Rotate Symbol, and Random

Rotation.

 5. Change the parameters in the

Brush section.

 You can change the brush width

and height as well as the angle of

rotation.

 6. Click on the Stage where you

want to spray the symbol.

 Figure 4-9 shows a starry, starry

night, courtesy of the Spray Brush

tool and a symbol created with the

Polystar tool.

Figure 4-9: Are the stars out tonight?

Figure 4-7: Swapping symbols to load the
Spray Brush tool.

Figure 4-8: The Spray Brush tool will soon
be locked and loaded.

14_385395-bk02ch04.indd 16714_385395-bk02ch04.indd 167 10/28/08 8:17:41 PM10/28/08 8:17:41 PM

168 Editing Symbols

Editing Symbols
Symbols are a wonderful thing, especially when you get a document library

filled with them. Then when your client comes up with a “brainstorm” when

you’re 90 percent done with the project, you wince and then smile as you

remember that you did most of your work with symbols. When you edit a

symbol, all instances of the symbol are updated. What could be simpler?

Editing symbols in place
When you need to edit a symbol and it’s imperative that you know what

effect your edits will have on the rest of your project, you can edit a symbol

in place. In reality, you’re editing a symbol instance, but the changes are

applied to every symbol instance in the document. To edit a symbol in place,

follow these steps:

 1. Select the Selection tool.

 2. Right-click (Windows) or Control+click (Mac). Select the symbol you

want to edit.

 A context menu appears.

 3. Choose Edit in Place.

 The rest of the objects on the current frame are dimmed. The symbol

name is listed to the right of the scene (see Figure 4-10).

You can also edit a symbol in place by double-clicking any instance of it

on the Stage.

Figure 4-10: You can edit a symbol in place.

14_385395-bk02ch04.indd 16814_385395-bk02ch04.indd 168 10/28/08 8:17:41 PM10/28/08 8:17:41 PM

169

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit

Editing Symbols

 4. Perform any edits you want.

 You can use any tool to change the symbol. In addition, you can add

objects to the symbol.

 5. Click the Back button or the current scene button.

 Alternatively, you can choose Edit➪Edit Document. Your edits are

applied to the symbol and all instances thereof.

Using symbol-editing mode
When you edit a document in symbol-editing mode, you edit it separately

from the main Timeline. This action is similar to creating a new symbol. To

edit a symbol in symbol-editing mode, follow these steps:

 1. Do one of the following to invoke symbol-editing mode:

 • Double-click the symbol’s icon in the document library.

 • Right-click (Windows) or Control+click (Mac) a symbol instance on

the Stage and choose Edit from the context menu.

 • Select an instance of the symbol on the Stage and choose Edit➪Edit

Symbols.

 • Select the symbol in the document library and choose Edit from the

context menu, or choose Edit from the Library panel Options menu.

 2. Apply any edits you want to the symbol.

 You can add graphics to the symbol or nest graphics or other symbols

within the symbol, for example.

 3. To leave symbol-editing mode, click the Back button or current scene

button.

 Alternatively, you can choose Edit➪Edit Document. Your edits are

applied to the symbol and all instances thereof.

Editing symbols in another window
Another option for editing a symbol is to edit it in another window. When

you edit the symbol in another window, you have access to the symbol and

the main Timeline. To edit a symbol in another window, follow these steps:

14_385395-bk02ch04.indd 16914_385395-bk02ch04.indd 169 10/28/08 8:17:42 PM10/28/08 8:17:42 PM

170 Editing Symbols

 1. Select an instance of the symbol on the Stage, right-click (Windows) or

Control+click (Mac) and then choose Edit in New Window.

 2. Perform any edits you want on the symbol.

 3. Click the Close button to return to the main Timeline and apply your

edits to all instances of the symbol.

Swapping symbols
When a client changes his mind when a project is almost complete, you can

use another method to thwart the fork he puts in your road. Suppose that

your client represents an insurance company whose symbol is a duck and

you created an animation designed to “quack up” the viewer. Then your client

switches insurance companies, and now the mascot is an English bulldog.

Don’t fret — just create a new symbol with a dancing bulldog (with or without

stiff upper lip) and swap the symbol. To swap a symbol, follow these steps:

 1. Select the symbol instance on the Stage.

 To open the Swap Symbol dialog box (see Figure 4-11), do one of the

following:

 • Right-click (Windows) or Control+click (Mac) and choose Swap

Symbol from the context menu.

 • In the Property Inspector, click Swap.

 2. Select a symbol and click OK.

 Presto-chango. The symbol is swapped.

Figure 4-11: Swapping one from Column A with one from Column B.

14_385395-bk02ch04.indd 17014_385395-bk02ch04.indd 170 10/28/08 8:17:42 PM10/28/08 8:17:42 PM

171

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit

Editing Symbols

Modifying symbol instance properties
You edit a symbol to modify every instance of it in a Flash project. However,

you can also modify the properties of a symbol instance. You can change the

dimensions of a symbol instance, tint it, and change its brightness or Alpha

(transparency) value. To modify the properties of a symbol instance, follow

these steps:

 1. Select the symbol instance on the Stage.

 2. Choose Window➪Properties.

 The Property inspector opens.

 3. Change the position and size of the symbol instance by entering

values in the applicable fields in the Position and Size section of the

Property inspector.

 4. To change the appearance of

the symbol instance, choose an

option from the Style drop-down

menu in the Color Effect section.

Your options are described in this

list:

 • Brightness: Displays a slider

that enables you to change the

brightness of a symbol. Drag

the slider to the right to make

the symbol instance brighter,

or to the left to make it darker.

 • Tint: Displays four sliders (see

Figure 4-12). Drag the sliders

until the object becomes the

color you want, and then drag

the Tint slider to specify the

amount of tint to be applied

to the object. The Red, Green,

and Blue sliders enable you

to precisely “dial in” the color

by using the RGB color model.

(See Chapter 2 of this mini-

book.) Figure 4-12: Tinting a symbol instance.

14_385395-bk02ch04.indd 17114_385395-bk02ch04.indd 171 10/28/08 8:17:42 PM10/28/08 8:17:42 PM

172 Using the Document Library

 • Advanced: Displays eight values

(see Figure 4-13). You can use

the values on the left to reduce

the transparency or color in

the symbol instance by a spe-

cific percentage from –100 to

100, and use the values on the

right to modify the red, green,

and blue values of the symbol

instance from –255 to 255.

 • Alpha: Displays a slider you can

use to change the transparency

of the object. Values less than

100 percent render the symbol

instance partially opaque.

 5. Use the Free Transform tool to

skew, scale, rotate, or move the

symbol instance.

 As its name implies, you use this

tool to freely transform the object.

For more information about the

Free Transform tool, see Chapter 1

of this minibook.

Using the Document Library
When you create a symbol or import an image clip or a video or sound clip,

it ends up in the document library. If you create complex Flash projects,

you can end up with a lot of items in your document library. The document

library takes up a relatively small spot in the Flash workspace; therefore, a

document library with lots of items ends up looking cluttered. But you can

whip the document library of any Flash project into shape — without resort-

ing to a professional organizer — by reading the following sections.

Creating library folders
When you create a new Flash document, you start with an empty document

library, which you can quickly fill to the brim by creating symbols and import-

ing media, for example. When you create a symbol, you can create a folder at

the same time. When you import external media, it’s placed in the root folder

of the document library. You can quickly alleviate clutter by creating a sepa-

rate folder for each type of object that you plan to use in your Flash project.

To create a folder in your document library, follow these steps:

Figure 4-13: And now, the Advanced Color
Effect.

14_385395-bk02ch04.indd 17214_385395-bk02ch04.indd 172 10/28/08 8:17:42 PM10/28/08 8:17:42 PM

173

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit
Using the Document Library

 1. Choose Window➪Library.

 The document library appears (see

Figure 4-14) without that musty

old book smell. (This document

library isn’t an example of the way

we work. We create folders for

each type of object in our Flash

projects.)

 2. Click the New Folder icon at the

bottom of the document library.

 A folder icon appears at the

bottom of the document library,

with the default name Untitled

Folder 1. The folder name is high-

lighted, which indicates that you

can rename it. We strongly advise

you to never accept default names.

 3. Enter a new name for the folder.

 The logical choice is a name that

indicates what you’re storing in

the folder. For example, Movie

Clips is a logical name for a folder

that you stuff full of movie clips.

 4. Select the items you want to store in the folder, and then drop them

on top of the folder.

 The selected items are no longer

visible, but the arrow to the left of

the folder indicates that the folder

can be expanded to reveal the con-

tents within.

 5. Continue creating new folders as

needed and populate them with

the applicable objects.

 We create a folder for each object

type that we intend to use in a

project. Working in this manner

keeps us organized from the

get-go. Figure 4-15 shows our

squeaky-clean document library

with a folder for everything, and

everything in its folder. One folder

has been expanded to reveal its

contents.

Figure 4-14: A document library in need of
some TLC.

Figure 4-15: A neat and tidy document
library.

14_385395-bk02ch04.indd 17314_385395-bk02ch04.indd 173 10/28/08 8:17:42 PM10/28/08 8:17:42 PM

174 Using the Document Library

Duplicating symbols
When you need to create a new symbol, there’s no need to reinvent the

wheel. For example, if you’re creating a navigation bar with buttons that use

identical graphics with the exception of the button name, you can save a lot

of time by duplicating a symbol, and then editing it. To duplicate a symbol,

follow these steps:

 1. Open the document library and then select the symbol you want to

duplicate.

 2. Right-click (Windows) or Control+click (Mac) and choose Duplicate

from the context menu.

 The Duplicate Symbol dialog box appears, as shown in Figure 4-16.

Figure 4-16: Duplicating a symbol.

14_385395-bk02ch04.indd 17414_385395-bk02ch04.indd 174 10/28/08 8:17:43 PM10/28/08 8:17:43 PM

175

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit
Using the Document Library

 3. Enter a name for the duplicate symbol.

 Give the symbol a meaningful name.

 If you’re exporting the duplicate symbol for ActionScript, click the

Advanced button. The options are the same as the Create New Symbol

dialog box, which we cover in the section “Creating a new symbol,” ear-

lier in this chapter.

Understanding that default
names are not your friends
As we mention earlier in this chapter, in the section “Creating a new

symbol,” you should never, never, never (we apologize for being redundant,

but this advice is important) use the default name that Flash assigns for a

symbol. The default names don’t make a lot of sense, especially if you’re

using ActionScript. The same rule applies for folders you create in the docu-

ment library or the media you import into the document library. If you’re

using someone else’s assets (in case you don’t have your own assets cov-

ered) that have less-than-desirable names, you can easily rename them in

the document library. Follow these steps:

 1. Open the document library and double-click the item you want to

rename.

 The current name of the item is highlighted, indicating that you can

enter a new name.

 2. Enter a new name for the item and then click Enter or Return.

 The object has a new moniker.

Keeping the document library neat
and tidy: The Felix Unger factor
Sometimes you err on the side of caution and create more items than you

need for a project. If you publish a Flash project with more items in the

Library than you need, you increase its file size. Therefore, it’s in your best

interest to keep the document library fastidiously clean. Follow these steps:

 1. Choose Window➪Library.

 The document library appears.

14_385395-bk02ch04.indd 17514_385395-bk02ch04.indd 175 10/28/08 8:17:43 PM10/28/08 8:17:43 PM

176 Using the Document Library

 2. Click a symbol to preview it.

 The preview appears at the top of

the Library panel. If the symbol is

a movie clip, a Play button appears

next to it (see Figure 4-17).

 3. Press Delete to remove a selected

symbol from the document

library.

 Alternatively, you can click the

Delete button. It looks like a trash

can at the bottom of the Library

panel. Either method deletes the

symbol from the document library

and removes all instances of it

from the document. Flash doesn’t

warn you before you delete a

symbol. Make sure that you don’t

need the symbol before deleting it.

 4. To see all unused symbols in the

document, choose Select Unused

Items from the Library panel

Options menu.

 All unused items are highlighted.

You can now delete them by click-

ing the Delete button at the bottom

of the Library panel.

The document library has other tricks up its sleeve. Click the Library panel

Options icon to reveal the Library panel Options menu, from which you can

create new symbols; rename, delete, or duplicate selected symbols; move a

selected symbol to another folder; edit, play, or update a symbol; or display

symbol properties, for example.

Importing symbols from another Flash document
If you’ve already spent a lot of time creating symbols for a Flash project and

you create a new Flash project that can use the same or similar symbols,

you have no need to re-create them. Simply grab the symbols from the other

Flash project and drag them into the current document library. Here’s how

to do it:

Figure 4-17: This library’s a mess. Call in the
cleaning crew.

14_385395-bk02ch04.indd 17614_385395-bk02ch04.indd 176 10/28/08 8:17:43 PM10/28/08 8:17:43 PM

177

Book II
Chapter 4

Creating Graphic
Sym

bols for Fun and
Profit
Using the Document Library

 1. Choose Window➪Library.

 The document library appears (see

Figure 4-18).

 2. Click the New Library Panel icon.

 A copy of the document library

appears on the Stage.

 3. In the new library panel, click the

Pin Current Library icon.

 This step keeps the duplicate

library open, even when you open

another document.

 4. Open the document that contains

the symbols you want to use in the current document.

 The document opens and is designated by another tab. The document

library from your other project is on the Stage.

 5. Select a symbol from the library of the document you just opened, and

drag the symbol into the document library from your other project.

 When you drag the symbol into the other document library, a plus sign

appears, indicating that the symbol will be added to the pinned docu-

ment library (see Figure 4-19).

Figure 4-19: Robbing from Peter to pay Paul.

Figure 4-18: You can pin a document
library.

14_385395-bk02ch04.indd 17714_385395-bk02ch04.indd 177 10/28/08 8:17:43 PM10/28/08 8:17:43 PM

178 Using the Document Library

 6. Release the mouse button.

 The symbol is added to the document library.

 7. Continue dragging symbols between libraries.

 Work smarter, not harder. It’s a creed we authors live by.

14_385395-bk02ch04.indd 17814_385395-bk02ch04.indd 178 10/28/08 8:17:44 PM10/28/08 8:17:44 PM

Chapter 5: Organizing Your Work

In This Chapter
✓ Understanding layers

✓ Adding layers to a document

✓ Using layer folders

✓ Viewing rulers and grids

Being organized is a good thing, especially when you’re dealing with a

document full of symbols, movie clips, and buttons, not to mention

ActionScript. When you have this much going on in a document, trying to

stuff it all on one layer is like storing your clothes in a dresser with no draw-

ers. (You can’t find nothing, honey.) In the last chapter — you did read it,

didn’t you? — we showed you how to organize your symbols in the docu-

ment library. In this chapter, we get down to brass tacks and show

you how to organize the stuff on Stage.

Organizing a Project with Layers
When you create a new document, you have one

layer with which to work. No, the Flash guys and

gals weren’t being stingy when they designed the

program; they just wanted to give you options.

The option to create a layer whenever you need

to gives you a tremendous amount of flexibility.

You can think of layers as a place to put your

Flash stuff. But if you have lots of Flash stuff on lots

of Flash layers, you have a hard time finding your

stuff. When that happens, you create a layer folder that

neatly collapses to a single icon. Figure 5-1 shows a Flash

document with a lot of stuff neatly segregated on layers, and

neatly packed away in layer folders. (This paragraph was inspired

by the late George Carlin, who taught us everything we needed to know

about stuff.)

15_385395-bk02ch05.indd 17915_385395-bk02ch05.indd 179 10/28/08 8:19:17 PM10/28/08 8:19:17 PM

180 Organizing a Project with Layers

Figure 5-1: Layers and layer folders are places to put your Flash stuff.

It’s useful to think of layers as clear sheets of plastic. The objects on an

upper layer eclipse the objects directly below them on underlying layers.

When you work with objects on one layer, it doesn’t affect the objects on the

underlying layers. When you have a lot of objects on many layers, getting a

good grasp on what you’re doing is difficult, especially when you’re trying to

edit objects on the bottommost of five layers. When that happens, you can

temporarily hide a layer. And, when the magic moment arrives and you have

everything on a layer just the way you want it, you can lock it. Don’t worry

about having to locate a key — you unlock a layer by clicking an icon. In

upcoming sections, we show you how to organize your work with layers.

Creating a new layer
You know when you need to create a layer — when the Stage looks like a

dressing room for a troupe of ballet dancers with shoes scattered every-

where, topped with tutus and boas. You get the picture. Layers don’t make

a crowded Stage look less cluttered, but they make it easier for you to find

objects and edit them. To create a new layer, follow these steps:

15_385395-bk02ch05.indd 18015_385395-bk02ch05.indd 180 10/28/08 8:19:17 PM10/28/08 8:19:17 PM

181

Book II
Chapter 5

Organizing Your
W

ork
Organizing a Project with Layers

 1. Select the layer below the spot where you want the new layer to

appear.

 When you have only one layer, it’s a no-brainer. But when you have

multiple layers, the new layer you create is directly above the selected

layer.

 2. To create the layer, do one of the following:

 • Right-click (Windows) or Control+click (Macintosh) and choose

Insert Layer from the context menu.

 • Click the New Layer icon at the bottom of the Timeline panel.

 3. Accept the default layer name, or double-click it and enter a new

layer name.

 Unless you’re dealing with a two- or three-layer document, we strongly

advise you to give your layers meaningful names.

Creating layer folders
When a Flash project has a heaping helping of layers, you have somewhat of

a logistical nightmare: You use the scrollbar incessantly to move from one

layer to the next. Fortunately, the Flash designers added a layer folder to the

application. A layer folder can be filled with layers and then collapsed to a

single icon on the Timeline. How convenient. Of course, you have to expand

the layer folder again to edit the Timelines. But that’s a small price to pay for

the convenience of not having to slog through layer after layer after layer. To

create a layer folder, follow these steps:

 1. Open the Timeline panel.

 You can open the Timeline panel by clicking its title or choosing

Window➪Timeline.

 2. Select the layer below the spot where you want the layer folder to

appear.

 If you have an extremely busy Timeline, the obvious place to create the

layer folder is just above the last object in the stack that you want to

add to the layer folder.

 3. Click the Layer Folder icon.

 A layer folder is born.

 4. Double-click the default folder name.

 The text is highlighted, indicating that you can enter a new title name.

 We strongly advise you to give everything in the project a unique name.

15_385395-bk02ch05.indd 18115_385395-bk02ch05.indd 181 10/28/08 8:19:18 PM10/28/08 8:19:18 PM

182 Organizing a Project with Layers

 5. Enter a new name for the folder.

 Create a name that reflects the folder contents.

 6. Drag and drop some layers into the folder.

 Make sure that you stack the layers in the same order that they previ-

ously appeared on the Timeline.

 7. Collapse the layer folder.

 Click the downward-pointing arrow to the left of the folder’s name to col-

lapse the folder. Click it again to expand the folder. Figure 5-2 shows a

Timeline that has been organized with named layers and layer folders.

Show or Hide All Layers

Lock or Unlock All Layers

Show All Layers as Outlines

New Layer

New Folder

Delete Layer

Figure 5-2: A group of layers whipped into shape by a fastidious Flash designer.

Editing layers
After you organize your work with layers and layer folders, you can edit

them as needed. In this section, we show you everything you need to know

about editing objects on layers and editing layers.

Hiding one or more layers is beneficial when you have a lot of objects on the

Stage stacked in different layers. When you have this much going on, it can be

hard to select an individual object on a layer. To select, reveal, or hide a layer:

 ✓ To select a layer for editing: Click the layer name. This action makes

the layer the active layer (as indicated by the pencil icon), which

enables you to edit objects on only that layer.

15_385395-bk02ch05.indd 18215_385395-bk02ch05.indd 182 10/28/08 8:19:18 PM10/28/08 8:19:18 PM

183

Book II
Chapter 5

Organizing Your
W

ork
Organizing a Project with Layers

 ✓ To hide a single layer: Click the dot to the right of the layer’s name and

below the eyeball icon.

 ✓ To hide all layers except the selected layer: Right-click (Windows) or

Control+click (Macintosh) and choose Hide Others from the context

menu.

 ✓ To hide all layers: Click the eyeball icon.

 ✓ To reveal hidden layers: Right-click (Windows) or Control+click

(Macintosh) and choose Show All from the context menus.

Locking one or more layers is beneficial when things are just the way you

want them. When you lock a layer, it prevents you from inadvertently select-

ing an object that’s in pixel-perfect position. To lock or unlock layers:

 ✓ To lock a single layer: Click the dot to the right of the layer’s name and

below the lock icon.

 ✓ To lock all layers except the selected layer: Right-click (Windows) or

Control+click (Macintosh) and choose Lock Others from the context menu.

 ✓ To lock all layers: Click the lock icon.

 ✓ To unlock a locked layer: Click the lock icon to the right of the layer’s

name.

Displaying layer objects as outlines is another way to alleviate clutter and

make it easier to see what’s going on in a busy project. To display objects on

layers as outlines, do one of the following:

 ✓ To display objects on a single layer as outlines: Click the Show Objects

as Outlines icon to the right of the layer’s name.

 ✓ To display all layers as outlines: Click the Show Layers as Outlines icon

in the upper-left corner of the Timeline panel.

Editing layer properties
Everything in Flash has properties, even layers. You can edit layer proper-

ties to change the manner in which the layer is displayed on the Timeline,

the layer type, or the layer name, for example. To edit layer properties,

follow these steps:

 1. Select the layer whose properties you want to edit.

 2. Right-click (Windows) or Control+click (Macintosh) and choose

Properties from the context menu.

 The Layer Properties dialog box appears (see Figure 5-3).

 3. Accept the current name for the layer or enter a new name.

15_385395-bk02ch05.indd 18315_385395-bk02ch05.indd 183 10/28/08 8:19:18 PM10/28/08 8:19:18 PM

184 Being Precise with Rulers and Guides and the Grid

 If you suddenly decide to get

organized and the current name

is the default name, we strongly

suggest that you give the layer a

meaningful name.

 4. Select the Show check box to

toggle visibility of the layer.

 If the layer is visible, the check

box is selected.

 5. Select the Lock check box to

lock or unlock the layer.

 If the layer is unlocked, the

check box isn’t selected.

 6. Accept the current layer type or

click a different radio button.

 Unless you’re a Flash veteran, the choices other than Normal and Folder

may seem strange to you. Don’t worry; we describe each layer type as

needed in later chapters. Just remember how to change them and you’re

good to go.

 7. Accept the default layer outline color or click the swatch, which opens

the Swatches panel and enables you to select a different color for the

layer outline.

 This color is the one that’s used to designate objects when you choose

to display the layer contents as outlines.

 8. Select the View Layer as Outlines check box to specify whether the

layer objects are displayed as outlines.

 When the check box is selected, layer objects are displayed as outlines.

 9. Choose an option from the Layer Height drop-down list.

 The default layer height is 100 percent. You can increase the height to

200 or 300 percent. Increasing the layer height makes it easier to work

with keyframes and frame spans.

 10. Click OK to apply the new properties to the layer.

Being Precise with Rulers and Guides and the Grid
Flash has a powerful trio of features that are quite useful when you’re creat-

ing a document. Using rulers and guides and the grid enables you to pre-

cisely place objects. In fact, you can choose options to have objects snap to

the grid or guides when you move them. If you’re a precise kind of person,

read the following sections, where we show you how to be precise when

working on a Flash project.

Figure 5-3: Layers have properties that make
no sense to Realtors.

15_385395-bk02ch05.indd 18415_385395-bk02ch05.indd 184 10/28/08 8:19:18 PM10/28/08 8:19:18 PM

185

Book II
Chapter 5

Organizing Your
W

ork
Being Precise with Rulers and Guides and the Grid

Using rulers
Rulers are displayed on the top and left sides of the Stage. The unit of mea-

sure for rulers is the same unit of measure as the document. When you move

an object, lines appear on the applicable ruler to designate the width and

height plus the x and y position of the object. To display rulers and modify

the unit of measure, follow these steps:

 ✓ To display or hide rulers, choose View➪Rulers.

 ✓ To change the rulers’ unit of measure, choose Modify➪Document and

choose an option from the Ruler Units drop-down menu.

Creating guides
Guides are a wonderful thing unless you have a mouthy global positioning

system (GPS) in your vehicle. When you work in Flash, you can create as

many guides as you need to align the objects in your project. Guides are

useful when you’re creating a navigation menu and you want to align buttons

with pinpoint accuracy. To create guides, follow these steps:

 1. Position the cursor over a ruler, and then click and drag a guide onto

the Stage.

 The current position of the guide is indicated by a line that’s parallel to

the ruler from which the guide is created. You also see the current posi-

tion marked off on the opposite ruler.

 2. Release the mouse button when the guide is in the position you want.

 The new guide is designated by a line that is the default guide color.

After adding one or more guides to a Flash document, you can do the following:

 ✓ Move a guide: Click it with the Selection tool and drag it to another

position.

 ✓ Make objects snap to guides: Choose View➪Snapping➪Snap to Guides.

 ✓ Lock guides in their current positions: Choose View➪Guides➪Lock

Guides.

 ✓ Toggle visibility of guides: Choose View➪Guides➪Show Guides.

 ✓ Edit guides: Choose View➪Guides➪Edit Guides. This command opens

the Guides dialog box, which enables you to change the color of guides

and determine whether guides are shown, whether objects can snap to

them, and whether guides are locked. You can also choose a snap accu-

racy from a drop-down menu. Your snap accuracy choices are

 • Must Be Close

 • Normal

 • Can Be Distant

15_385395-bk02ch05.indd 18515_385395-bk02ch05.indd 185 10/28/08 8:19:19 PM10/28/08 8:19:19 PM

186 Being Precise with Rulers and Guides and the Grid

 You can also remove all guides from the document by clicking Clear All.

 ✓ Remove all guides from the document: Choose View➪Guides➪Clear

Guides.

Using the grid
Flash has a grid that’s hidden by default. When you choose to view the grid,

it looks like somebody put a piece of transparent graph paper over the Stage.

We don’t think the default grid is particularly useful because the grid spacing is

so small (10x10 pixels is the default size of each grid square). However, with a

little work, the grid can be extremely useful. To use the grid, follow these steps:

 1. Choose View➪Grid➪Show Grid.

 The grid is displayed. However, the default size and color may not suit

your project.

 2. To edit the grid, choose

View➪Grid➪Edit Grid.

 The Grid dialog box appears (see

Figure 5-4).

 3. Accept the default grid color, or

click the swatch to specify a dif-

ferent color from the Swatches

panel.

 This step is useful when you’re

working on a document that’s

almost the same color as the

grid. When this is the case, select

a color that contrasts well with the background.

 4. Click the Show Grid check box to toggle grid visibility.

 5. Select the Show Over Objects check box to display the grid on top of

the objects.

 We’re not crazy about this option especially with the default grid size,

but try it — you might like it.

 6. Select the Snap to Grid check box.

 When this option is selected, objects develop a magnetic attraction to

grid intersections.

 7. Accept the default grid measurements or enter different values.

 You can change the width independently of the height and vice versa. If

you’re creating a document with a lot of objects that have similar dimen-

sions, you may want to change the dimensions of the grid to a common

dimension for your most-often-used object. (You know — similar to navi-

gation menu buttons.)

Figure 5-4: Edit the grid to suit your document
and preferences.

15_385395-bk02ch05.indd 18615_385395-bk02ch05.indd 186 10/28/08 8:19:19 PM10/28/08 8:19:19 PM

187

Book II
Chapter 5

Organizing Your
W

ork
Being Precise with Rulers and Guides and the Grid

 8. Choose an option from the Snap Accuracy drop-down menu.

 This option determines how close an object must be to the grid before it

can be snapped to a grid intersection. Your snap accuracy choices are

 • Must Be Close

 • Normal

 • Can Be Distant

 9. Click OK.

 The changes are applied to the grid. Figure 5-5 shows a grid that has

been modified to suit a specific document.

If you use the grid frequently on similar documents, modify the grid as out-

lined in this section and then click Save Default. You have to close Flash and

then relaunch the application for the new default settings to take effect.

Figure 5-5: Flash grids are better than gridlock.

15_385395-bk02ch05.indd 18715_385395-bk02ch05.indd 187 10/28/08 8:19:19 PM10/28/08 8:19:19 PM

188 Book II: Creating Graphics

15_385395-bk02ch05.indd 18815_385395-bk02ch05.indd 188 10/28/08 8:19:20 PM10/28/08 8:19:20 PM

Chapter 6: Working with Images
(Or, Bumpin’ with Bitmaps)

In This Chapter
✓ Understanding compatible file formats

✓ Getting images ready for Flash

✓ Working with image sequences

✓ Tracing bitmaps

✓ Editing images

✓ Creating a bitmap fill

✓ Swapping images

Images can make or break a Flash project. The size and

quality of your images determine the file size and qual-

ity of the resulting Flash movie. If you or your client

starts out with crisp images, you get good results. On

the other hand, if your client presents you with a

bunch of images that have already been severely

compressed, you have no way to create a decent-

looking Flash movie. In this chapter, we’re letting

Doug take the lead. He has published books on

digital photography and knows Photoshop and

Fireworks inside and out. In this chapter, Doug

shows you how to create Flash movies with great-

looking images.

Knowing Your File Formats
Flash supports the popular image file formats. Unfortunately, if you

don’t deal with images regularly, choosing the right image format for a Flash

project can be daunting. The following list describes some characteristics

about the image file formats supported by Flash.

16_385395-bk02ch06.indd 18916_385395-bk02ch06.indd 189 10/28/08 8:20:51 PM10/28/08 8:20:51 PM

190 Knowing Your File Formats

 ✓ PNG File: The PNG (PNG) file format is the native Fireworks file format.

In Fireworks, the format supports layers and slices and all the other

goodies you need in order to create image documents for the Web.

Other applications can also export PNG files. The PNG format supports

8-, 16-, 24-, and 32-bit depth. If you’re using this file format in a Flash doc-

ument, the best bet is a 24-bit (true color) PNG file. You can, however,

use an 8-bit PNG file if you’re working with an image, such as a logo, that

has large areas of solid color.

 ✓ Photoshop: The Photoshop image format (PSD) supports layers, mul-

tiple color models, adjustment layers, and much more. When you import

a Photoshop image, you have the option to import each layer. Certain

Photoshop layers aren’t supported by Flash and cannot be imported.

 ✓ Bitmap: The Bitmap image format (BMP) can be exported from many

image editing applications. The term bitmap is often confused with the

generic reference to all photorealistic images as bitmaps. One drawback

to bitmap images is that the file size is quite large as a result of an image-

editing application applying no compression when saving images to this

file format. Some image editing applications use Zip lossless compres-

sion when saving in this file format, which results in a smaller file size.

 ✓ GIF Image: The GIF image format (GIF) is widely used for Web page images.

This format is best suited to images with large areas of solid color. It also

works well for images that have lots of text. As a rule, you’re better off creat-

ing your text in Flash because you can edit Flash text at any time. The only

time you should consider using a GIF file in a Flash project is when you’re

working with a logo, which generally has large areas of solid color.

 ✓ JPEG Image: The widely used JPEG image format (JPG) uses full (24-bit)

color. The JPEG format is known as a lossy format because data is lost

when images are compressed. The amount of data that’s lost depends

on the amount of compression you apply to the image when saving it.

In Photoshop and many other image editing applications, you have the

option of setting the quality of the image on export. In Photoshop, image

quality ranges from 0 (high compression, poor image quality, and small

file size) to 12 (little or no compression, high image quality, and large

file size). Some image editing applications use a range from 0 to 100; the

latter yields the best image quality and the largest file size.

 ✓ Macintosh PCT Image: The Macintosh PCT Image format (PCT) was origi-

nally a Macintosh-only image format. Many image editing applications,

including image editing programs in the Windows operating system, can

export in the PCT format. The image format is full (24-bit) color.

 ✓ MacPaint Image: The MacPaint Image format (PNTG) is a Macintosh

format. Images using this file format are similar to images created with

the Windows Paint program and are not compressed.

 ✓ TGA Image: The TGA Image file format (TGA) can be created by most

popular image editing programs. The resulting file doesn’t support

layers and isn’t compressed.

16_385395-bk02ch06.indd 19016_385395-bk02ch06.indd 190 10/28/08 8:20:51 PM10/28/08 8:20:51 PM

191

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Preparing Images for Flash

 ✓ TIFF Image: The TIFF image format (TIF, TIFF) is widely used. TIFF

images support layers, and the file format can be saved from most popu-

lar image editing applications. The format supports layers and can be

compressed on export. Flash, however, cannot import TIFF files com-

pressed using the Zip or JPEG compression options.

Preparing Images for Flash
If you read the previous section, you know that you can import most popular

file formats into Flash. However, just because you can import an image into

Flash doesn’t mean that it’s the right image for the job. Image editing applica-

tions refer to image size in document dimensions, which is a combination of

the image size in pixels and the resolution of the image in pixels per inch. For

example, an 8-x-10-inch image with a resolution of 300 pixels per inch (ppi)

has dimensions of 2400 x 3000 pixels with a whopping file size of 20.6MB. The

same image at 72 pixels per inch has dimensions of 720 x 576 pixels and a

relatively svelte file size of 1.19MB. Using the right commands in a good image-

editing application enables you to get an even smaller file size on the order of

about 50K or smaller. For monitor viewing, a resolution of 72 pixels per inch

is sufficient. If you’ve ever saved a properly optimized image from a Web site

(shame on you!) and printed it, you noticed that the image is blocky. That’s

because the image doesn’t have a resolution that’s high enough for printing.

To give you an example of the impact that image size and resolution can

have on a Flash project, consider the following. The 8-x-10-inch image noted

in the previous section was exported from Photoshop with no compression

using the TIFF format and then imported into Flash. The image size was

huge — much larger than needed for the document. The image was cut down

to size using the Transform command. However, the original image was in

the document library; the same bloated 20.6MB file that was imported to

Flash. Flash applies image compression when exporting a file. The document

was published using the default compression settings, resulting in a file size

of 410K; it’s relatively small compared to the size of the original image, but

imagine what the file size would be if you added other elements, such as

graphic objects, text, or animation.

The same image was exported from Photoshop in the JPEG format with a

Quality setting of 10 after being resampled to dimensions of 400 x 320 pixels

with a resolution of 72 ppi. The image that was imported into Flash was the

proper size. The file when published was 58K, considerably smaller than

the first published file. In Photoshop, the original image was resampled to

the same dimensions and resolution as the previous example, and exported

with a Quality setting of 7. The visual difference between the two images was

negligible. The image with a quality setting of 7 was imported into Flash. The

published file size was 28K — a considerable savings.

16_385395-bk02ch06.indd 19116_385395-bk02ch06.indd 191 10/28/08 8:20:51 PM10/28/08 8:20:51 PM

192 Preparing Images for Flash

As you can see from the previous example, preparing images ahead of time is

beneficial when you start to work with the images in Flash. Here are some rec-

ommendations you should consider when optimizing images for a Flash project:

 ✓ Resample the image to pixel dimensions that aren’t wider than or taller

than your Flash document.

 ✓ Change the image resolution to 72 ppi.

 ✓ If you’re creating lots of Flash movies with images, consider investing in

an application such as Fireworks, which gives you the capability of com-

paring, side by side, the original image (2-Up, if you’re being technical)

and the image with compression applied (see Figure 6-1).

 ✓ If you’re working in an application like Photoshop and using the Adobe

RGB color profile or working with images from a digital camera that uses

the Adobe RGB color profile, convert the color profile to sRGB IEC61966-

2.1. If you don’t, the image doesn’t display properly.

 .

Figure 6-1: Optimizing images in Fireworks CS4.

16_385395-bk02ch06.indd 19216_385395-bk02ch06.indd 192 10/28/08 8:20:51 PM10/28/08 8:20:51 PM

193

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Importing Image Sequences

 ✓ Export the image using the JPEG format with Medium quality. However,

if you export at a higher quality, you can optimize the image in Flash.

 ✓ If you’re creating images for a Flash file show, give the images sequential

names, such as img_01, img_02, and so on. You see why in the next section.

Importing Image Sequences
Creating Flash slide shows is fairly easy: Stack some images on the Timeline,

add a few frames to determine how long each image is displayed, add a little

ActionScript on the back end to loop the show, and you have something you

can plug into an HTML page or use as part of a Flash project. The trick is to

rename the images before you import them into Flash. Here’s how:

 1. Rename the images that will be in your image sequence.

 Give the images sequential names, such as img_01, img_02, and so on.

 2. In Flash, choose File➪Import➪Import to Stage.

 The Import dialog box appears.

 3. Select the first image of your image sequence and click Open.

 Logic may tell you to select them all. Don’t. It creates more work if you do.

If you select the first image, you see the dialog box shown in Figure 6-2.

Figure 6-2: Yes, you can easily import an image sequence.

 4. Click Yes.

 Flash imports each image in the sequence and creates a keyframe for

each one on the Timeline (see Figure 6-3). Notice that the image you can

see isn’t aligned properly. If you’re a Flash veteran, you may know how

to correct it. If you don’t, or if you’ve never worked with frames, this is

your indoctrination by fire.

 5. Click the Edit Multiple Frames icon.

 Three frames are selected.

16_385395-bk02ch06.indd 19316_385395-bk02ch06.indd 193 10/28/08 8:20:52 PM10/28/08 8:20:52 PM

194 Importing Image Sequences

Figure 6-3: Imported and stacked on the Stage.

 6. Drag the first handle to the first keyframe.

 Now all the frames created from importing the image sequence are

selected for editing (see Figure 6-4).

 7. Select the Selection tool, and then drag to marquee-select all images.

 The easiest way to select all images is to click and drag outside the

perimeter of the Stage.

 8. Choose Window➪Align.

 The Align panel appears.

 9. Align the select images to the vertical and horizontal center of the

Stage.

 For more information on using the Align panel, see Book II, Chapter 1.

Now that you have all your ducks in a row — er, we mean images aligned — you

can start adding frames between each keyframe, which determines how long

each image is displayed. Detailed information on working with the Timeline is in

Book III, Chapter 1.

16_385395-bk02ch06.indd 19416_385395-bk02ch06.indd 194 10/28/08 8:20:52 PM10/28/08 8:20:52 PM

195

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Importing a Photoshop Document with Layers

Figure 6-4: Selected, not rejected.

Importing a Photoshop Document with Layers
If you’ve created a document in Photoshop with objects on different layers,

you can preserve the layers when importing the document into Flash. After

the document is in Flash, you can move the objects on the layers to suit your

project. Imagine the power! You could create a collage in Photoshop with each

image on a different layer. Import the document into Flash and apply a motion

tween (see Book III, Chapter 2) to each image, and you have an animated col-

lage. To import a Photoshop document with layers, follow these steps:

 1. Choose File➪Import to Stage.

 The Import dialog box appears.

 2. Select the Photoshop document (with the PSD extension) you want to

import and then click Open.

 The Import [Name of Document] to Stage dialog box appears, as shown in

Figure 6-5. All layers supported in Flash are selected for import by default.

16_385395-bk02ch06.indd 19516_385395-bk02ch06.indd 195 10/28/08 8:20:53 PM10/28/08 8:20:53 PM

196 Tracing Bitmaps

Figure 6-5: Import a Photoshop document to the Stage.

 3. To deselect a layer, select its check box.

 4. Choose an option from the Convert Layers To drop-down menu.

 Your choices are Flash Layers and Keyframes.

 5. Accept the default option, Place Layers at Original Position.

 This option places the layers in the same position as they were in

Photoshop. If you deselect this option, the layers are centered to the Stage.

 6. (Optional) Choose Set Stage Size to Same Size as Photoshop Canvas.

 This option resizes the stage to the same size as the image.

 7. Click OK to import the document.

Tracing Bitmaps
If you have an image you want to convert to vector objects, you can easily

do so with the Trace Bitmap command. When you convert an image to vec-

tors, it’s no longer linked with the bitmap in the document library. To trace a

bitmap, follow these steps:

 1. Select the image you want to trace.

 Figure 6-6 shows a photo of a flower that will be traced.

16_385395-bk02ch06.indd 19616_385395-bk02ch06.indd 196 10/28/08 8:20:54 PM10/28/08 8:20:54 PM

197

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Tracing Bitmaps

Figure 6-6: You’re going to trace a bitmap!

 2. Choose Modify➪Bitmap➪Trace

Bitmap.

 The Trace Bitmap dialog box

appears (see Figure 6-7).

 3. Accept the default Color

Threshold value or enter a dif-

ferent value.

 Increase the value to decrease

the number of colors in the

traced bitmap, or decrease the value to increase the number of colors in

the traced bitmap. If you choose a lower value, the traced bitmap looks

more like the original image, but the file size is larger.

 4. Accept the default Minimum Area value or enter a different value.

 This value determines the number of surrounding pixels to consider

when Flash determines which colors are assigned to which pixels.

Smaller values prevent banding if your image has lots of colors.

 5. Choose an option from the Curve Fit drop-down menu.

 The Pixels option creates a traced bitmap that looks close to the origi-

nal. These options work differently depending on the number of curves

in your image and the complexity of the image. Our best advice is to

experiment. If you don’t like the result, undo the Trace Bitmap command

and try different settings until you find something you like.

 6. Choose an option from the Corner Threshold drop-down menu.

 The Many Corners option creates a traced bitmap that looks more like

the original bitmap. Again, we advise you to experiment.

Figure 6-7: Tracing a bitmap.

16_385395-bk02ch06.indd 19716_385395-bk02ch06.indd 197 10/28/08 8:20:54 PM10/28/08 8:20:54 PM

198 Editing Images

 7. Click OK.

 Flash traces the bitmap. Alternatively, you can click the Preview button

to get a sneak peek at what the traced bitmap looks like with the current

settings. If you don’t like what you see, change the settings and click

Preview again. Figure 6-8 shows the traced bitmap that results from the

following settings:

 • Color Threshold = 30

 • Minimum Area = 4

 • Curve Fit = Pixels

 • Corner Threshold = Many Corners

Figure 6-8: The traced bitmap.

 8. After you trace a bitmap, all the pixels are still selected. At this stage,

we advise you to choose Modify➪Group.

 If you don’t, you run the risk of inadvertently selecting several pixels

and moving them. When you create a group, it acts as one object.

Editing Images
After you import images into Flash, you can edit them. No, we’re not talking

about transforming them; we’re talking about editing the actual image and

changing its image properties. In the following sections, we show you how to

edit images in an external image editor and how to change image properties.

16_385395-bk02ch06.indd 19816_385395-bk02ch06.indd 198 10/28/08 8:20:55 PM10/28/08 8:20:55 PM

199

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Editing Images

Editing images in an external editor
After you import an image into Flash, you can edit the image in an external

editor. What happens is that you make a round trip from Flash to the exter-

nal editor (Fireworks CS4 by default) and back again. When you finish the

round trip, the image is updated to reflect your edits. To edit an image in an

external editor, follow these steps:

 1. In the document library, select the image you want to edit.

 2. Right-click (Windows) or Control+click (Macintosh) and choose Edit

with Fireworks from the context menu.

 After you choose this command, Fireworks launches and the Find

Source dialog box appears. This action gives you the option of choosing

a Fireworks source file in the application’s native PNG format or using

the file you imported into Flash.

 3. Choose the source file option.

 After choosing a source file option, the file opens in Fireworks. The Flash

symbol and the message “Editing from Flash” appear above the image,

which is a handy reference in case you become flummoxed and forget

the application in which you’re working.

 4. Use the Fireworks image editing tools to perform the edits you want.

 Unfortunately, a tutorial on editing images in Fireworks is beyond the

scope of this book.

 5. After editing the image, click Done.

 The image is updated to reflect your edits in Fireworks.

If you don’t own Fireworks, choose Edit With from the context menu and

from the Select External Editor dialog box, locate the EXE file for your image-

editing application.

If you edit an image in an external editor without taking a round trip from

Flash, your edits aren’t reflected in the image you imported into Flash. You

can easily rectify this situation by selecting the image and then choosing

Update from the context menu.

Editing image properties
You can affect the file size of a published document and the quality of

the images by editing image properties. You can modify the compression

method and the amount of compression applied to an image. To edit image

properties, follow these steps:

16_385395-bk02ch06.indd 19916_385395-bk02ch06.indd 199 10/28/08 8:20:55 PM10/28/08 8:20:55 PM

200 Editing Images

 1. In the document library, select the image whose properties you want

to update.

 2. Right-click (Windows) or Control+click (Macintosh) and choose

Properties from the context menu.

 The Bitmap Properties dialog box appears (see Figure 6-9). From within

this dialog box, you can modify the compression settings and test the

next settings before committing to them. If the dialog box opens in

Advanced mode, don’t worry — be happy. Advanced mode is used when

ActionScript is involved. ActionScript is covered in Book IV.

Figure 6-9: Editing image properties.

 3. Accept the default label (the image filename) or enter a different

label.

 Changing the label makes it easier to indentify what’s in the image when

you see the label in the document library. This is useful when you work

with images from a digital camera with filenames such as img2641.jpg. If

you change the label, the link to the original file is still intact.

 4. (Optional) Select the Allow Smoothing check box.

 This option anti-aliases the edges of the bitmap. In our experience,

you don’t need this option if you’re working with a sharp digital image.

Smoothing makes the image look a little fuzzy around the edges.

 5. Select an option from the Compression drop-down menu.

 Choose Photo (JPEG) for photorealistic images or choose Lossless

(PNG/GIF) if the image contains large areas of solid color.

 6. Accept the default image quality, which is based on the original

image, or click Custom.

 If you choose Custom, a text box appears.

16_385395-bk02ch06.indd 20016_385395-bk02ch06.indd 200 10/28/08 8:20:55 PM10/28/08 8:20:55 PM

201

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Creating a Bitmap Fill

 7. If you choose Custom, enter a value.

 The highest quality is 100, which matches the quality of the original

image. Lower values result in smaller file sizes at the expense of image

quality.

 8. Click Test.

 This step tests your custom settings. The image in the dialog box is

updated to reflect the current quality setting. If you’re not happy with

the results, enter a different value and test the settings again. When you

change compression settings, text at the bottom of the dialog box notes

the current compression setting, the original file size, and the com-

pressed file size.

 If you decide to accept a low quality setting, you may notice that the

image looks blocky. Click Enable Deblocking to smooth the blocky

pixels.

 9. Click OK.

 The new properties are applied to the image.

Creating a Bitmap Fill
If you read Chapter 2 of this minibook, you might recall that we show you how

to specify a fill for an object. In case you didn’t read the chapter (sniff — it’s

some of our best work), you have your solid fills and you have your gradient

fills. Guess what? If you have images in your document library, you can create

a bitmap fill. That’s right: You can fill an object with an image by following

these steps:

 1. Select the object you want to fill with a

bitmap.

 2. Choose Window➪Color.

 The Color panel appears.

 3. Choose Bitmap from the Type drop-down

menu.

 The dialog box refreshes, and the first bitmap

in the document library replaces the previous

fill. Thumbnails of all images in the document

library appear at the bottom of the panel (see

Figure 6-10).

 4. Move the cursor over the thumbnails in the

bottom of the Color panel.

 The cursor becomes an eyedropper.

Figure 6-10: Fill me with a
bitmap.

16_385395-bk02ch06.indd 20116_385395-bk02ch06.indd 201 10/28/08 8:20:55 PM10/28/08 8:20:55 PM

202 Swapping Bitmaps — It’s Legal in All 50 States

 5. Click a bitmap.

 The object is filled with the bitmap.

 If you don’t see a bitmap worthy of filling your object, click Import to

open the Import to Library dialog box. Select an image and click Open

to import it to the library. The imported image appears at the bottom of

the Color panel and can be selected to fill the object.

 6. After selecting a bitmap, close the Color panel.

 If the bitmap doesn’t fill the image the way you want, use the Transform

Gradient tool to resize the bitmap fill relative to the object, rotate it, or

skew it, for example. For more information on the Transform Gradient

tool, see Chapter 2 of this minibook. Figure 6-11 shows a rectangle that

has been filled with a bitmap. The fill was transformed by using the

Transform Gradient tool.

Figure 6-11: Oh, my — filled with a bitmap.

Click the Fill icon in the Tools panel to open the Swatches panel. At the

bottom of the panel, next to the gradients, you see thumbnails of bitmaps

you imported to the Stage or to the document library. Click the thumbnail

and it becomes the current fill.

Swapping Bitmaps — It’s Legal in All 50 States
After you import a bunch of bitmaps into the document library and start

using them, you may find that a different image is needed. And then there’s

the scenario in which you have almost finished the project and your client

suddenly decides that the picture that was sent to you looks horrible and

wants a recent glamour shot used instead. When either event occurs, you

can swap a bitmap quicker than this paragraph was typed. Here’s how:

16_385395-bk02ch06.indd 20216_385395-bk02ch06.indd 202 10/28/08 8:20:56 PM10/28/08 8:20:56 PM

203

Book II
Chapter 6

W
orking w

ith
Im

ages (Or, Bum
pin’

w
ith Bitm

aps)
Swapping Bitmaps — It’s Legal in All 50 States

 1. With the Selection tool, select the bitmap you want to swap.

 2. Right-click (Windows) or Control+click (Macintosh) and choose Swap

Bitmap from the context menu.

 Alternatively, you can choose

Modify➪Bitmap➪Swap Bitmap.

Either method opens the Swap

Bitmap dialog box (see Figure

6-12). The Swap bitmap dialog

box shows the selected bitmap

and a list of all bitmaps in the

document library.

 3. Click a filename.

 The dialog box is updated to

show the replacement bitmap.

Unfortunately, the dialog box doesn’t show thumbnails of the other bit-

maps in the document library. If you didn’t pick the right file, you can

select a different one.

 4. Click OK to swap the bitmap.

Figure 6-12: Shhh — we’re swapping a
bitmap.

16_385395-bk02ch06.indd 20316_385395-bk02ch06.indd 203 10/28/08 8:20:56 PM10/28/08 8:20:56 PM

204 Book II: Creating Graphics

16_385395-bk02ch06.indd 20416_385395-bk02ch06.indd 204 10/28/08 8:20:56 PM10/28/08 8:20:56 PM

Book III
Animating
Graphics

17_385395-pt03.indd 20517_385395-pt03.indd 205 10/28/08 8:21:29 PM10/28/08 8:21:29 PM

Flash has always provided the tools to create

compelling animations. However, in previous

versions of Flash, you had to jump through a cou-

ple of hoops before you could create even the sim-

plest animation. Flash CS4 makes it easier than

ever to animate graphics. You can make a shape

go from Point A to Point B and back again, or you

can morph one shape into another without having

to do a bunch of work on the Timeline.

In Book III, we show you how to harness the

power of Flash to create your own animations. We

also show you how to master the Timeline, simu-

late 3D animation, and create character anima-

tions with the new Inverse Kinematics feature. So

if you have the notion to get a move on, take this

minibook for a spin.

17_385395-pt03.indd 20617_385395-pt03.indd 206 10/28/08 8:21:31 PM10/28/08 8:21:31 PM

Chapter 1: Working with
the Flash Timeline

In This Chapter
✓ Understanding the Timeline

✓ Creating frames and keyframes

✓ Editing frames

When you create a Flash document, the default settings give a

Timeline with one keyframe, which is great if you’re creating

something static. But Flash is all about motion and animation, so 1-frame

Timelines just don’t cut the mustard. The Timeline determines what hap-

pens during the course of your Flash movie. Keyframes on Timelines are

places where things change, because if something didn’t change, it

wouldn’t be Flash. When you create animations, you use the

Timeline to designate where action starts and stops. In

this chapter, we present a timely treatise on keyframes,

frames, and Timelines. And the Timeline signifies

that it’s time to stop the intro and start writing.

Getting to Know the Timeline
Someone told us that it’s all happening on the

Timeline. We do believe it. We do believe it’s

true. In Flash, the Timeline is used to arrange

content over time. You can put forks in the road,

known as keyframes, where things happen. The

document frame rate determines how the action on

each frame occurs. The default document frame rate of 12

frames per second (fps) means that you need 12 frames for

each second of action and that each frame is 1⁄12 of a second. And,

we computed all that without the aid of a calculator or an abacus.

Each layer has its own Timeline. Each layer’s Timeline runs independently

of other Timelines. Flash gives you the tools to create a sophisticated ani-

mation. When you work with the Timeline, you can navigate from frame

to frame (also known as scrubbing the Timeline) by dragging the playhead

across the Timeline. Figure 1-1 shows the Timeline of a Flash project.

18_385395-bk03ch01.indd 20718_385395-bk03ch01.indd 207 10/28/08 8:22:03 PM10/28/08 8:22:03 PM

208 Frames and Keyframes and Blank Keyframes

Figure 1-1: The Flash Timeline is a happening place.

Frames and Keyframes and Blank Keyframes
Flash has three kinds of frames: frames (no, we aren’t being redundant),

keyframes, and blank keyframes. A Flash Timeline is composed of frames,

keyframes, blank keyframes, and frame spans. Figure 1-2 shows the anatomy

of a Timeline.

Keyframe Blank keyframePlayhead

Frames

End of frame span

Frames

Figure 1-2: A Timeline waits for no man.

This list describes the elements on the Flash Timeline:

18_385395-bk03ch01.indd 20818_385395-bk03ch01.indd 208 10/28/08 8:22:03 PM10/28/08 8:22:03 PM

209

Book III
Chapter 1

W
orking w

ith the
Flash Tim

eline
Creating Frames, Keyframes, and Blank Keyframes

 ✓ Frame: A placeholder; a place where content stays the same — at least

at this stage of the game. In Chapter 2 of this minibook, when we show

you how to create motion tween animations, you’ll see that frames

become in-between frames, where Flash takes the reins and determines

what happens. Frames are designated by blank spaces on the Timeline.

 ✓ Keyframe: Designates where something changes in your animation. You

create a keyframe when you need a fork in the road. The keyframe can

contain a different graphic, or the graphic from the previous keyframe in a

different position. A keyframe is identified by a solid dot on the Timeline.

 ✓ Blank keyframe: Signifies that a change is going to happen, but the frame

is empty. You can create blank keyframes at the beginning of a project to

set up the timing. You can then populate the blank keyframe by selecting

it and dragging an item from the document library to the Stage.

 ✓ Frame span: Consists of a keyframe and the following frames exclusive

of the next keyframe. The end of a frame span is indicated by an unfilled

rectangle.

Now that you know who all the players are, we suggest that you rock on to

the next section, where we show you how to create frame, keyframes, and

blank keyframes.

Creating Frames, Keyframes, and Blank Keyframes
After you map out your Flash project, you know where you need to add

frames, blank keyframes, or frames to your Timeline. In this section, we

show you how to add these gems to your Timeline.

If you do a lot of work with frame spans, you may prefer the option of click-

ing a frame in the sequence to select the entire sequence. To enable this

selection option, choose Edit➪Preferences to open the Preferences dialog

box. In the Timeline section of the General tab, choose Span Based Selection.

Click OK to close the dialog box and immediately enable the feature.

Adding a frame
To add a frame to the Timeline, follow these steps:

 1. Click the spot on the Timeline where you want to add the frame.

 If you click in a frame span, the frame is added at that place in the frame

span. If you click an unused frame beyond the last frame in the Timeline,

Flash adds frames up to that point.

18_385395-bk03ch01.indd 20918_385395-bk03ch01.indd 209 10/28/08 8:22:03 PM10/28/08 8:22:03 PM

210 Creating Frames, Keyframes, and Blank Keyframes

 If you enabled span-based selection in the Preferences dialog box,

Ctrl+click (Windows) or Ô+click (Mac) to select a single frame.

 2. To add the frame, do one of the following:

 • Choose Insert➪Timeline➪Frame.

 • Press F5.

Adding multiple frames
To add multiple frames to the Timeline, follow these steps:

 1. Click the spot where you want to add multiple frames to the Timeline.

 Congratulations. You successfully selected a frame.

 If you enabled span-based selection in the Preferences dialog box,

Ctrl+click (Windows) or Ô+click (Mac) to select a single frame.

 2. Drag right or left to increase the selection to the number of frames

you want to add.

 Alternatively, you can Shift+click the final frame you want to select.

 If you enabled span-based selection in the Preferences dialog box,

hold down the Ctrl key (Windows) or Ô key (Mac) while dragging.

Alternatively, you can press Ctrl+Shift (Windows) or Ô+click (Mac) to

select the final frame you want to select.

 3. Choose Insert➪Timeline➪Frame.

 Alternatively, you can press F5. Either method adds the same number of

frames to the Timeline you selected.

Adding a keyframe
To add a keyframe to the Timeline, follow these steps:

 1. Click the spot on the Timeline where you want to add the keyframe.

 If you click in a frame span, the keyframe is added at that place in the frame

span. If you click an unused frame beyond the last frame in the Timeline,

Flash adds a keyframe at the point and adds frames to fill the gap.

 2. To add the frame, do one of the following:

 • Choose Insert➪Timeline➪Keyframe.

 • Press F6.

18_385395-bk03ch01.indd 21018_385395-bk03ch01.indd 210 10/28/08 8:22:03 PM10/28/08 8:22:03 PM

211

Book III
Chapter 1

W
orking w

ith the
Flash Tim

eline
Creating Frames, Keyframes, and Blank Keyframes

Adding multiple keyframes
If you’re creating a project such as a frame-by-frame animation, you need to

add multiple keyframes to the Timeline. To add multiple keyframes to the

Timeline, follow these steps:

 1. Click the spot where you want to add multiple keyframes to the

Timeline.

 One frame of the Timeline is selected.

 If you enabled span-based selection in the Preferences dialog box,

Ctrl+click (Windows) or Ô+click (Mac) to select a single frame.

 2. Drag right or left to increase the selection to the number of keyframes

you want to add.

 Alternatively, you can Shift+click the final frame you want to select.

 If you enabled span-based selection in the Preferences dialog box,

hold down the Ctrl key (Windows) or Ô key (Mac) while dragging.

Alternatively, you can press Ctrl+Shift (Windows) or Ô+click (Mac) to

select the final frame you want to select.

 3. Choose Insert➪Timeline➪Keyframe.

 Alternatively, you can press F6. Either method adds the same number of

keyframes to the Timeline as the number of frames you selected.

Adding a blank keyframe
Did you ever have to make up your mind? Well, sometimes you know that

something is going to happen, and you know where it’s going to happen, but

you don’t know what is going to happen. If that’s what’s troubling you, just

walk right in and sit right down because we show you how to add a blank

keyframe to the Timeline. To add a blank keyframe to the Timeline, follow

these steps:

 1. Click the spot on the Timeline where you want to add the blank key-

frame.

 If you click in a frame span, the blank keyframe is added at that location

in the frame span. If you click an unused frame beyond the last frame in

the Timeline, Flash adds a blank keyframe at that point and add frames

to fill the gap.

 If you enabled span-based selection in the Preferences dialog box,

Ctrl+click (Windows) or Ô+click (Mac) to select a single frame.

18_385395-bk03ch01.indd 21118_385395-bk03ch01.indd 211 10/28/08 8:22:04 PM10/28/08 8:22:04 PM

212 Editing Frames

 2. To add the blank keyframe, do one of the following:

 • Choose Insert➪Timeline➪Blank Keyframe.

 • Press F7.

Editing Frames
Sometimes, you hit it right the first time, and your Flash project plays just the

way you want it to. And sometimes things happen too fast or too slow. You may

also find the need to cut frames or copy frames to another layer, for example.

Like the heading says, in this section we show you how to edit frames.

Selecting a frame
You can select one of your frames by doing one of the following:

 ✓ Click a frame to select it.

 If you enabled span-based selection in the Preferences dialog box,

Ctrl+click (Windows) or Ô+click (Mac) to select a single frame.

 ✓ Click one frame and then drag to select a range of frames.

 ✓ Click one frame and then Shift+click another frame to select contiguous

frames.

 ✓ Double-click inside a frame span to select the entire frame span.

 If you enabled span-based selection in the Preferences dialog box, click

any frame in-between keyframes to select a frame span.

 ✓ To select the entire Timeline, select a frame and then choose

Edit➪Timeline➪Select All Frames. Alternatively, you can press

Ctrl+Alt+A (Windows) or Ô+Option+A (Mac).

Copying a frame
Another change you may need to make is to copy and paste a frame of a

frame span. To copy and paste, do one of the following:

 ✓ Alt+click (Windows) or Option+click (Mac) a keyframe and drag it to the

location to which you want to paste it.

 ✓ Select a frame or frame span, choose Edit➪Timeline➪Copy Frames, click

inside a frame span, and then choose Edit➪Timeline➪Paste Frames to

replace the frame span.

18_385395-bk03ch01.indd 21218_385395-bk03ch01.indd 212 10/28/08 8:22:04 PM10/28/08 8:22:04 PM

213

Book III
Chapter 1

W
orking w

ith the
Flash Tim

eline
Managing a Timeline

 Alternatively, click a blank frame at the end of the Timeline, and then

choose Edit➪Timeline➪Paste Frames to add the copied frames to the

end of the Timeline. You can also paste frames to another layer.

Managing a Timeline
There are many other ways to manage a Timeline. You can remove frames

and copy and paste frames, for example. The following list describes the dif-

ferent options you have for managing a Timeline filled with frames and key-

frames and frame spans and — whew!

 ✓ If you enabled the span-based selection option, you can change the dura-

tion of a frame span by moving the cursor over the last frame in the frame

span. When the cursor becomes a line with two arrows, click and drag to

the right to extend the frame span, or drag to the left to shorten it.

 ✓ To delete a frame or frame

sequence, select the frame or

frame sequence, and then choose

Edit➪Timeline➪Remove Frames.

After invoking the command, Flash

moves the upstream keyframes

and frame spans to fill in the gap.

 ✓ To move a keyframe or frame

sequence, select it and drag it to a

location you want. After you move

the selection, Flash extends the

appropriate selection to fill the gap.

 ✓ To clear a keyframe, select it and

then choose Edit➪Timeline➪Clear

Frames.

 ✓ To convert a keyframe to a frame,

choose Edit➪Timeline➪Convert

to Keyframes. Flash fills the con-

verted frame with the contents of

the previous keyframe.

We wouldn’t be doing our job if we

didn’t introduce you to the power

of the context menu. Right-click

(Windows) or Ctrl+click (Mac) a key-

frame to reveal the context menu

shown in Figure 1-3. Every conceivable

command you can use is just a mouse

click away. Figure 1-3: The Timeline context menu.

18_385395-bk03ch01.indd 21318_385395-bk03ch01.indd 213 10/28/08 8:22:04 PM10/28/08 8:22:04 PM

214 Book III: Animating Graphics

18_385395-bk03ch01.indd 21418_385395-bk03ch01.indd 214 10/28/08 8:22:04 PM10/28/08 8:22:04 PM

Chapter 2: Creating a Flash
Animation

In This Chapter
✓ Creating a frame-by-frame animation

✓ Creating a motion tween animation

✓ Creating a shape tween animation

✓ Animating with tools

✓ Creating an IK animation

Animation has always been a staple of Flash projects. Motion tweening

and shape tweening have been part of Flash since we can remember,

and that was just before the Watergate scandal. (Kidding.) Tween

animations are slightly younger than dirt, and creating a

tween animation has changed considerably in Flash CS4.

You no longer have to create a symbol and then begin-

ning and ending keyframes before applying a motion

tween. That’s too much work.

Instead, you create a shape and tell Flash that

you want it to be a motion tween animation, and

Flash adds enough frames for a 1-second anima-

tion. You move the object to the last frame, and

Flash fills in the in-between frames to create your

animation. Tween, in between. Logical, isn’t it? In

this chapter, we show you how to create anima-

tions with motion and shape tweening. Careful with

the motion tween, Eugene!

19_385395-bk03ch02.indd 21519_385395-bk03ch02.indd 215 10/28/08 8:22:49 PM10/28/08 8:22:49 PM

216 Creating an Animated Background

Creating an Animated Background
The new Art Deco tool makes child’s play out of creating a background that

draws itself. Yes, that’s right — the background is animated. It makes an

interesting background for certain projects. You can use the Art Deco tool to

replace the default symbols with any symbol you’ve added to the document

library. To create an animated background with the Art Deco tool, follow

these steps:

 1. Select the Art Deco tool and then select the frame where you want the

animation to start.

 If you’re creating a background, select the first frame.

 2. In the Drawing Effect section of the Property inspector, accept the

default symbols or click Edit to choose a symbol from the document

library.

 Our experiments indicate that you’ll be happy if you accept the default

leaf shape and choose a flower shape from a symbol in the document

library. For example, you can create a star Graphic symbol with the

Polystar tool and use vines of stars for the background. (That might

work for a rock star’s Web site.)

 3. In the Advanced Options section, change the branch angle, pattern

scale, and segment length to suit your project.

 For more information on setting up the Art Deco tool, see Book II,

Chapter 4.

 4. Select the Animate Pattern check box.

 This option creates keyframes as you drag the tool across the Stage.

 5. Specify the Frame Set option.

 This step determines how many frames it takes for each step of the ani-

mation to occur. If you accept the default option, Flash creates lots of

keyframes and your published file has more baggage than your ex-

girlfriend or -boyfriend does, which means that it’s a large file. If you

choose a value of about 30, the file size is manageable.

 6. Click on the Stage.

 Sit back and relax while the tool fills the Stage with vines and leaves and

creates a keyframe for each step (see Figure 2-1).

19_385395-bk03ch02.indd 21619_385395-bk03ch02.indd 216 10/28/08 8:22:49 PM10/28/08 8:22:49 PM

217

Book III
Chapter 2

Creating a Flash
Anim

ation
Creating a Frame-by-Frame Animation

Figure 2-1: Creating an animated background with the Art Deco tool.

Creating a Frame-by-Frame Animation
A frame-by-frame animation is similar to the way cartoonists work. A car-

toonist creates a separate drawing for each frame of the cartoon, and when

the frames are compiled, they play back smoothly. You might have created

flip books when you were young, in which you draw stick figures at the top

of the pages on a small pad, change the character ever so slightly on each

page of the pad, and then quickly thumb through the pages to make the stick

figure move. This process is similar to a frame-by-frame animation, and you

know that it involves a lot of work.

In a nutshell, what you do is create an object on a keyframe. Then you

create additional keyframes and change the object ever so slightly in each

keyframe. When the keyframes are played back, you see relatively smooth

motion. We don’t show you the steps for creating a frame-by-frame anima-

tion in this chapter because it’s not used often with graphics. It’s useful

when you’re animating text, though, so we show you how to create a frame-

by-frame animation in Chapter 3 of this minibook.

19_385395-bk03ch02.indd 21719_385395-bk03ch02.indd 217 10/28/08 8:22:50 PM10/28/08 8:22:50 PM

218 Making a Motion Tween Animation

Making a Motion Tween Animation
Motion tween animations have been around forever in Flash. In Flash CS4,

you can create a motion tween animation more easily (much more easily)

than you could do it in previous versions of Flash. When you create a motion

tween animation in Flash, you use keyframes, which is where the changes in

motion take place. Flash interpolates the motion on the in-between frames.

When you play the animation, you see smooth motion. To create a motion

tween, follow these steps:

 1. Create a new document and create an object, and then position the

object where you want it on the Stage.

 For the purpose of this exercise, create an oval; any color you like. When

you create your own animations, you can place the object anywhere you

want. For the purpose of this exercise, place the object in the lower-left

corner of the Stage.

 2. Double-click the object with the Selection tool to select it.

 You have to double-click an object to select both the stroke and the fill.

 3. Choose Insert➪Motion Tween.

 Alternatively, you can right-click (Windows) or Ctrl+click (Mac) and

choose Motion Tween from the context menu. Either method displays a

dialog box warning you that the symbol cannot be tweened but notifying

you that Flash will gladly convert it to a symbol for you.

 The dialog box doesn’t appear if you select a Graphic or Movie Clip

symbol from the document library.

 4. Click OK.

 Flash adds 23 frames to the animation and positions the playhead on the

twenty-fourth frame of the animation, to give you a 1-second animation.

 5. Move the object to a different position on the Stage.

 For the purpose of this exercise, move the object to the upper-right

corner of the Stage. After you move the object, Flash creates a keyframe

in the twenty-fourth frame and a line with dots from the starting point of

the animation to the ending point of the animation (see Figure 2-2).

 6. Drag the playhead to preview the animation.

 You see smooth motion from Point A to Point B.

 7. Click the sixth frame and drag the oval up.

 Flash converts the twelfth frame to a keyframe. The oval changes direc-

tion at this point and travels in a straight line unless you modify the path

between keyframes.

19_385395-bk03ch02.indd 21819_385395-bk03ch02.indd 218 10/28/08 8:22:50 PM10/28/08 8:22:50 PM

219

Book III
Chapter 2

Creating a Flash
Anim

ation
Making a Motion Tween Animation

Figure 2-2: Creating a motion tween animation.

 8. Select the Selection tool.

 You use this tool to modify the motion tween path.

 9. Move the cursor toward the bottom segment of the path.

 When a curved line appears under the cursor, it’s your notification that

you can curve the motion path.

 10. Click and drag to curve the path.

 11. Repeat Steps 9 and 10 for the upper segment of the path.

 The motion path should resemble the one shown in Figure 2-3.

 12. Press Ctrl+Enter (Windows) or Ô+Return (Mac) to preview the anima-

tion in another window.

 Flash publishes the animation as an SWF movie and plays it in another

window over and over and over and — the movie continues looping until

you press Esc. To prevent this from happening when you publish your

file for public consumption, you have to add some ActionScript, which

we cover in Book IV.

19_385395-bk03ch02.indd 21919_385395-bk03ch02.indd 219 10/28/08 8:22:50 PM10/28/08 8:22:50 PM

220 Building a Shape Tween Animation

Figure 2-3: This animation is not on the straight and narrow.

You can create a motion tween animation inside a movie clip. When you do

this, it occupies only a single frame on the Timeline, and you can use it wher-

ever it’s needed in your Flash project. (Talk about your reusable animations!)

After creating a motion tween animation, you can tweak the animation with

the Motion Editor or Property inspector. The sophisticated Motion Editor

feature gives you more control over your animations than was possible in

previous versions of Flash. (Like the proverbial well, this subject is deep.)

We cover the Motion Editor and other ways you can tweak your motion

tween animations in Chapter 4 of this minibook.

Building a Shape Tween Animation
Another form of animation you can create in Flash is a shape tween anima-

tion. You supply the keyframes and the shapes, and Flash morphs one shape

into another on the in-between frames. (It’s a shame that you can’t morph

images in Flash — what better way to get even with a significant other who

turned into a significant nothing?) To create a shape tween animation in

Flash, follow these steps:

19_385395-bk03ch02.indd 22019_385395-bk03ch02.indd 220 10/28/08 8:22:51 PM10/28/08 8:22:51 PM

221

Book III
Chapter 2

Creating a Flash
Anim

ation
Building a Shape Tween Animation

 1. Create a shape on a keyframe.

 When you create a shape tween animation, you cannot use a symbol. The

shape must be created with one of the object drawing tools. For the pur-

pose of this exercise, create a rectangle with the Rectangle Primitive tool.

 2. Select a blank frame and then press F7 to create a blank keyframe.

 The number of frames between the first keyframe and the blank keyframe

determines the length of the animation. With a default frame rate of 24

frames per second (fps), a 48-frame animation lasts for two seconds.

 3. With the blank keyframe still selected, create another shape.

 For the purpose of this exercise, create an oval using the Oval Primitive

tool. The shape doesn’t need to be in the same size or in the same position.

With a shape tween animation, one shape morphs into another and moves.

 4. Click a frame between the keyframes and then choose Insert➪Shape

Tween.

 Alternatively, you can right-click (Windows) or Ctrl+click (Mac) and

choose Shape Tween from the context menu. After using either method,

the in-between frames become green, and an arrow appears between

keyframes (see Figure 2-4).

Figure 2-4: Creating a shape tween animation.

19_385395-bk03ch02.indd 22119_385395-bk03ch02.indd 221 10/28/08 8:22:52 PM10/28/08 8:22:52 PM

222 Reversing an Animation

 5. Drag the playhead to preview your animation.

 One shape morphs smoothly into the other.

In most instances, Flash does the math correctly, and you have an outstand-

ing shape tween animation. We recommend against trying to tween a shape

with negative space (a hole, if you will), which can cause undesirable results.

However, if you’re bound and determined to create a complex shape tween

animation, shape hints can be added to show Flash which part of the first

shape should morph into which part of the second shape. We cover tweak-

ing an animation with shape hints in Chapter 4 of this minibook.

Reversing an Animation
Sometimes, you may need to have an animation reverse itself. For example,

you can create a motion tween animation in which an object gently arcs

in a direction from the upper-left to the lower-right of the Stage and then

reverses direction. You can do the same thing for a shape tween animation:

Have an object morph to another shape and then unmorph itself. It’s easier

than you think. Follow these steps:

 1. Create a motion tween or shape tween animation as outlined earlier

in this chapter.

 What? You didn’t read the previous sections? If you don’t know the new

and much easier way of creating motion tween and shape tween anima-

tions, we suggest that you flip back a page or two where we show you

how much easier it is in Flash CS4.

 2. Select the first keyframe of the animation, and then Shift+click the last

keyframe of the animation.

 You’ve selected the enter animation.

 3. Right-click (Windows) or Ctrl+click (Mac) and then choose Copy

Frames from the context menu.

 4. Select the blank frame after the last keyframe in your animation,

right-click (Windows) or Ctrl+click (Mac), and then choose Paste

Frames from the context menu.

 Flash pastes all frames from the animation to the Timeline.

 5. Select the first keyframe of the frames you just pasted, and then

Shift+click the last keyframe of the frames you just pasted.

 The pasted frames are selected.

 6. Right-click (Windows) or Ctrl+click (Mac) and choose Reverse

Keyframes from the context menu.

 It doesn’t look like anything has happened. To see the results of your

handiwork, you have to preview the animation.

19_385395-bk03ch02.indd 22219_385395-bk03ch02.indd 222 10/28/08 8:22:52 PM10/28/08 8:22:52 PM

223

Book III
Chapter 2

Creating a Flash
Anim

ation
Simulating 3D Animation

 7. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 Flash publishes the movie as an SWF file and plays it in another window.

Your animation goes from Point A to Point B and then to Point A again.

To reverse the order in which a motion tween animation plays, select the

frame span, right-click (Windows) or Ctrl+click (Mac), and choose Reverse

Keyframes from the context menu. After you invoke this menu command, the

last keyframe becomes the first keyframe and vice versa.

Simulating 3D Animation
Maybe some future version of Flash will be 3D, but true 3D isn’t available in

Flash CS4. However, the application has taken a quantum leap because now

you can simulate 3D using the 3D Translation tool and the 3D Rotation tool.

The first tool is used to make it appear as though an object is closer to or

farther from the viewer during the course of an animation. The 3D Rotation

tool can be used to make it appear as though an object is spinning through

space during the course of an animation. These new tools are useful addi-

tions to an animator’s arsenal. Combine the tools in the same animation and

you get something way cool.

Going retro
Flash motion tweening seems to have been
around forever. In the Jurassic period before
Flash CS4, you had to create a symbol and then
create keyframes and apply the motion tween.
Flash CS4 makes it easy for anyone to create
a motion tween animation. However, if you like
the old way of creating a motion tween, you’re
in luck. After performing the preliminary steps of
creating the symbol and keyframes, position the
cursor on an in-between frame and then choose
Insert➪Classic Tween. We like the new way
better because you produce a motion path that
you can edit. Speaking of motion paths, you can
also use the old method of animating a symbol
along a path. After creating your classic motion

tween, right-click (Windows) or Ctrl+click (Mac)
the layer on which you created the classic tween
and choose Create Classic Guide from the con-
text menu. After you invoke the command, Flash
creates a classic motion guide layer, just like
the ones we knew and loved in previous ver-
sions of Flash. To finish the animation, you need
to create a path on that layer, align your symbol
to the start of the path on the first frame of the
animation, and then align your object to the end
of the path on the final frame of the animation.
That’s way too much work, as far as we’re con-
cerned. We tried the new way and we like it. But
you know what they say: “Different strokes for
different folks.”

19_385395-bk03ch02.indd 22319_385395-bk03ch02.indd 223 10/28/08 8:22:52 PM10/28/08 8:22:52 PM

224 Simulating 3D Animation

Using the 3D Rotation tool
The 3D Rotation tool makes it possible for you to create animations where

objects look like they’re spinning in space. As with a regular 3D spinning top,

you can use the tool to make an object appear as though it’s spinning on the

X (top to bottom), Y (left to right), or Z (front to back) axis. To use the 3D

Rotation tool, follow these steps:

 1. Create a motion tween animation with three or four keyframes.

 For the skinny on how to create a motion tween animation, refer to the

“Making a Motion Tween Animation” section, earlier in this chapter.

 2. Select the second keyframe, and then select the 3D Rotation tool.

 Okay, you can select the first keyframe, but we want you to see how cool

this tool is by comparing the shape on the first keyframe to the second

keyframe.

 3. Click the object.

 Three rings appear around the object (see Figure 2-5): a red ring, which

controls rotation around the X axis, a green ring, which controls rotation

around the Y axis, and a blue ring, which controls rotation around the Z

axis.

 Figure 2-5: What goes up must come down. Spinnin’ wheel, spinnin’ round.

 4. Click and drag your favorite color.

 The object spins about the associated axis.

19_385395-bk03ch02.indd 22419_385395-bk03ch02.indd 224 10/28/08 8:22:52 PM10/28/08 8:22:52 PM

225

Book III
Chapter 2

Creating a Flash
Anim

ation
Simulating 3D Animation

 5. Click and drag other rings to rotate along the other axes.

 The tool gets addictive — use it with discretion. You never know

whether viewers might be susceptible to motion sickness.

 6. Repeat Steps 4 and 5 on the other keyframes however you want.

 With a bit of experimentation, you create some interesting results by

using this tool. Use it in conjunction with the 3D Translation tool to

amaze your friends and the viewers of your Flash animations.

Using the 3D Translation tool
The 3D Translation tool makes it possible for you to create an animation that

looks like an object is traveling toward and away from you during the course

of the animation. Imagine creating a symbol that looks like the Enterprise and

then creating a complex motion tween animation where the ship is bobbing and

weaving between planets. Then use the 3D translation tool to make the ship

appear to be at different distances from the viewer during the course of the

animation. Put a reasonable facsimile of your favorite captain at the helm — we

vote for Picard.

To use the 3D Translation tool, follow these steps:

 1. Create a motion tween animation with three or four keyframes.

 For the skinny on how to create a motion tween animation, refer to the

“Making a Motion Tween Animation” section, earlier in this chapter.

 2. Select the second keyframe, and then select the 3D Translation tool.

 3. Click the object.

 A red and green arrow appear from the center of the object (see Figure 2-6).

The red arrow controls motion along the Y axis (from left to right), and the

green arrow controls motion along the Y axis (from top to bottom). You

can control motion on both axes with the Selection tool. The 3D Translation

tool has another axis, which is Z (from front to back).

 4. Move the cursor over the center dot until a small z appears.

 You can now make the object appear closer to or farther away from you.

 5. Drag left to make the object appear closer, and drag right to make it

appear farther away.

 6. Repeat Steps 3 through 5 after selecting the object on other key-

frames.

 If you want, use the other arrows to move the object along the X and

Y axes. When you do so, the motion path is redrawn to reflect your

changes.

 7. Press Enter or Return to preview the animation.

 “I canna hold Warp Six, Cap’n; the reactor’s gonna blow.”

19_385395-bk03ch02.indd 22519_385395-bk03ch02.indd 225 10/28/08 8:22:53 PM10/28/08 8:22:53 PM

226 Animating with the Spray Brush Tool

Figure 2-6: Say what? 3D in Flash! Way kewl.

Animating with the Spray Brush Tool
When you use the Spray Brush tool, you can fill it full of symbols and spray

them at Will, if you have Mr. Robinson (in danger or not) in your Flash proj-

ect. If you load the Spray Brush with a movie clip symbol of an animation,

you have the basis of a cool animation. To animate with the Spray Brush

tool, follow these steps:

 1. Create a Movie Clip symbol.

 If you’re not sure how to create a movie clip, place a bookmark here

(we would appreciate it if you didn’t dog-ear the corner of the page) and

check out Book II, Chapter 4.

 2. Create an animation.

 A shape tween or motion tween animation works equally well with this

tool. You can also create an animation using an effect in the Property

inspector. For example, you can use the Alpha effect on an object, like

a star you create with the Polystar tool. Create an animation with three

keyframes. On the first and third keyframes, set the Alpha value to zero

and leave the middle frame at 100 percent. The resulting animation looks

like a flashing star.

 3. Select the Spray Brush tool.

 4. In the Symbol section of the Property inspector, click Edit.

 The Swap Symbol dialog box appears (see Figure 2-7).

19_385395-bk03ch02.indd 22619_385395-bk03ch02.indd 226 10/28/08 8:22:53 PM10/28/08 8:22:53 PM

227

Book III
Chapter 2

Creating a Flash
Anim

ation
Creating an Inverse Kinematics (IK) Animation

Figure 2-7: Swap symbols to load the Spray Brush tool.

 5. Select the desired symbol and click OK.

 The Spray Brush tool is locked and loaded.

 6. Click the tool wherever you want in order to sprinkle the animation

into your project.

Creating an Inverse Kinematics (IK) Animation
A cool new feature of Flash CS4 is the ability to create an inverse kinemat-

ics animation. If you’ve ever worked with 3D applications, you know what an

inverse kinematics animation is. If you aren’t familiar with 3D, think about how

your body moves. You have a skeleton of bones that are connected at joints.

The joint has a range of motion. For example, unless you’re a cast member of

a horror movie, your neck has a range of motion of 180 degrees. Bones also

work in unison. When you move your hand, the connected bones move as well.

This is exactly what inverse kinematics is. You use the Bones tool to create an

inverse kinematics chain and then specify the range of motion for each bone.

When you drag a bone that’s a child of another bone, the parent moves. This is

just another shocking case where the child has control over the parent, which

proves that it pays not to grow up when you grow older. In the upcoming sec-

tions, we show you how to create an inverse kinematics animation.

Creating the IK chain minus the daisies
When you create an IK animation, you use the Bones tool to create a skel-

eton for the object or symbols that are part of your animation. When you use

the tool, you drag out the bones for the skeleton. The first bone you create

is the parent for the following bones you create. Each subsequent bone in

the chain is the parent of the next bone. You animate the chain by dragging

a child to move the parent and all bones upstream. To create an IK chain,

follow these steps:

 1. Select the object to which you want to add an IK chain.

 2. Select the Bones tool, which looks like a dog bone.

19_385395-bk03ch02.indd 22719_385395-bk03ch02.indd 227 10/28/08 8:22:54 PM10/28/08 8:22:54 PM

228 Creating an Inverse Kinematics (IK) Animation

 3. Click where you want to position the head of the first bone, and then

drag to determine the length of the bone.

 When you create a bone, Flash automatically adds an armature layer.

 4. Release the mouse button when the bone is the length you want.

 Be as precise as you can when creating the bones. This is the first ver-

sion of IK in Flash, and there’s no way to change the length of a bone

after it’s created. It may be beneficial to add guides as a visual reference

where you want each bone to end.

 5. Click and drag to create the next bone.

 Continue in this manner until you’ve created the skeleton for your

shape. Figure 2-8 shows a finger created with the Oval tool and a bit of

tweaking. The Bones tool was used to create a skeleton for the finger.

Figure 2-8: Pull my finger.

You can also create an IK chain with symbols. Create a Movie Clip symbol

for each part of your IK chain and then use the Bones tool to create the

skeleton as outlined in the previous steps. The only weird thing you’ll notice

is you can’t see the last bone in the IK chain. Oh well, this is the first time

we’ve had inverse kinematics in Flash.

19_385395-bk03ch02.indd 22819_385395-bk03ch02.indd 228 10/28/08 8:22:54 PM10/28/08 8:22:54 PM

229

Book III
Chapter 2

Creating a Flash
Anim

ation
Creating an Inverse Kinematics (IK) Animation

You can change the way bones are displayed by selecting the armature layer

and choose an option from the Style drop-down menu in the Options section

of the Property inspector. You can display the bones on the armature by

using one of the following styles: Solid, Wire, or Line.

Constraining the bones
When you create an IK chain, each bone rotates 360 degrees by default. If

you’re going to create realistic animations, you know that will never fly.

You can, however, change this situation by constraining the bone. You can

constrain the rotation of a bone, and constrain movement along the X and Y

axes. You can also disable rotation or movement along the X and Y axes. To

constrain bones in an IK chain, follow these steps:

 1. Using the Selection tool, select the first bone in the chain.

 The Property inspector reconfigures to display options for constraining

a bone (see Figure 2-9).

Figure 2-9: It’s time to put a constraining order
on this bone.

19_385395-bk03ch02.indd 22919_385395-bk03ch02.indd 229 10/28/08 8:22:55 PM10/28/08 8:22:55 PM

230 Creating an Inverse Kinematics (IK) Animation

 2. Accept the default Speed value, or use the scrubby slider to specify a

different speed.

 You can also click the current value and enter a different value. The

Speed value determines how quickly the bone moves when a child is

moved. If you want the bone to lag behind a bit, specify a slower speed.

If you specify a speed of 0, the bone doesn’t move.

 3. In the Joint Rotation area, modify the following options:

 • Enable: Joint rotation is enabled by default. Deselect this option, and

the bone cannot rotate and instead acts an anchor.

 • Constrain: Enable this option and the Min and Max options become

available. Use the scrubby slider to constrain the minimum and maxi-

mum angle to which the bone can rotate. For example, if you were

constraining rotation for a bone that will function as a forearm, the

minimum angle would be 0 (zero), and the maximum angle would be

about 90 because the human forearm has approximately a 90-degree

range of motion unless you’re double-jointed. When you constrain

rotation, an icon appears at the head of the bone and is a graphical

representation of how far the bone can rotate in each direction.

 4. Specify translation options in the Joint: X Translation and Joint: Y

Translation sections.

 These options determine whether the bone can move from left to right

(X Translation) or up and down (Y Translation). You have the following

options:

 • Enable: Choose this option to enable movement along the applicable

axis. For example, if you were animating a leg, the bone you create

for the foot would be able to move forward and backward with mini-

mal rotation. When you enable this option for the X axis, a horizontal

line with two arrows appears at the head of the bone. If you enable

this option for the Y axis, a vertical line with two arrows appears at

the head of the bone.

 • Constrain: Enable this option to constrain motion along the applicable

axis. When you choose this option, the Min and Max options are avail-

able. Use the scrubby slider to constrain the minimum and maximum

range of motion that the object has along the applicable axis. The Min

value for the X axis determines the range of motion to the left, and the

Max value determines the range of motion to the right. The Min value of

the Y axis determines the range of motion in a downward direction, and

the Max value determines the range of motion in an upward direction.

Use the arrow keys at the top of the Property inspector to navigate from one

bone to the next.

19_385395-bk03ch02.indd 23019_385395-bk03ch02.indd 230 10/28/08 8:22:55 PM10/28/08 8:22:55 PM

231

Book III
Chapter 2

Creating a Flash
Anim

ation
Creating an Inverse Kinematics (IK) Animation

Creating the animation
After you create the IK chain and constrain the bones, you’re ready to ani-

mate the puppy, or whatever you decided to animate. All you need to do

is create a couple of keyframes and tug a bone or two, and Flash fills in the

frames between the keyframes. To get a move on with your IK chain, follow

these steps:

 1. Select the Armature layer.

 If you have a lot of layers in your project, you may find it beneficial to

lock the layers not directly associated with your IK animation.

 2. Click the frame where you want a change to occur and then press F6.

 This step creates a keyframe.

 3. Click a bone and drag it.

 It’s alive — err, we mean, the bone moves.

 4. Move the other bones as needed.

 Press the Shift key to constrain motion to the selected bone. This option

comes in handy when you want to simulate motion, such as the second

joint of a finger bending without affecting the first joint. Figure 2-10

shows a bent finger ready to point at something.

 5. Continue adding keyframes and moving bones as needed to finish

your animation.

Figure 2-10: Let me make my point perfectly clear.

19_385395-bk03ch02.indd 23119_385395-bk03ch02.indd 231 10/28/08 8:22:55 PM10/28/08 8:22:55 PM

232 Creating an Inverse Kinematics (IK) Animation

Using the Bind tool
In a perfect world, Flash would know which points to connect to which

bones. But Flash is a computer application. Flash employs, at best, a scien-

tific wild guess when interpolating which points should move when a bone is

moved. If your animation isn’t playing as expected, you need the help of the

Bind tool. To use the Bind tool, follow these steps:

 1. Select the Bind tool and then click the bone that needs to be edited —

unbound, if you will.

 The points influenced by the bone are highlighted in yellow. Points that

are connected to more than one bone are designated as triangles (see

Figure 2-11).

Figure 2-11: Some of these points are bound to be changed by
the Bind tool.

 2. To prevent a point from being influenced by a bone, Alt+drag

(Windows) or Option+drag (Mac) the point to whichever bone you

want.

 The point is highlighted in red. If the point was previously influenced by

more than one bone, the icon changes from a triangle to a rectangle.

 3. To determine which bone influences a point, select it with the Bind

tool and then Shift+drag it to the bone you want.

 The modified point is highlighted in red. If the point was previously

influenced by only one bone, its icon changes to a triangle.

19_385395-bk03ch02.indd 23219_385395-bk03ch02.indd 232 10/28/08 8:22:55 PM10/28/08 8:22:55 PM

Chapter 3: Animating Text

In This Chapter
✓ Creating typewriter text

✓ Animating text

As authors, text is near and dear to our hearts. Without text, there

wouldn’t be books, and without books, there wouldn’t be authors,

which wouldn’t be much fun for us. Dummies authors like to have fun with

words, which means that we also like to play with text. So whenever we’re

writing about an application such as Flash, it’s a no-brainer to create some

flashy text about flashy techniques that animate text. If that’s too much

Flash for you, we’ll excuse you while you catch your breath. Ah, you’re

back. Get ready to have some fun animating text.

Creating Typewriter Text
Believe it or not, people used to use a device

known as a typewriter to write things like letters

and books. It had no spell check. And it had no

cut-and-paste feature. If you made a mistake, you

dabbed on some correction fluid, waited for it to

dry, and then typed again. If you remember type-

writers (Doug still has one), we’re sure that you

welcome the power of the computer and the word

processor. But if you’re creating a Flash Web site

for an author, for example, and you want to make

it look like his name is being typed, you’ve come

to the right chapter in this book. In this section,

we show you how to create an animation that

appears as though each word was typed. Follow

these steps:

 1. Create a block of static text.

 Choose a font type, size, and color to suit your project. Because we’re

authors, we’re partial to the Courier font because it looks like it was cre-

ated by a typewriter.

 2. Select the text and then choose Modify➪Break Apart.

 The text block is divided into individual, selectable letters.

20_385395-bk03ch03.indd 23320_385395-bk03ch03.indd 233 10/28/08 8:23:42 PM10/28/08 8:23:42 PM

234 Creating Typewriter Text

 3. With the text still selected, choose Modify➪Timeline➪Distribute to

Layers.

 Flash creates a separate layer for each letter, and each layer is named

for the letter (see Figure 3-1).

Figure 3-1: Distributed to layers again.

 4. Delete Layer 1.

 It contains all the letters on the layers just created by the Distribute to

Layers command. Therefore, you don’t need it any more.

 5. Select the keyframe in the second layer and drag it one frame to the

right.

 Flash creates a blank keyframe in the first frame and moves the key-

frame to the second frame.

 6. Select the keyframe on the third layer and drag it two frames to the

right.

 Starting to get the picture? You’re adding an additional space between

each keyframe to make the text look like it’s being typed one letter at a

time.

 7. Continue moving the keyframe for each letter, as outlined in Steps 1

through 6.

 8. Select the blank frame to the right of the keyframe in the second-to-

last layer, and then Shift+click the same frame in the first layer.

 You’ve selected the same frame in all layers.

 9. Press F5.

 This keyboard shortcut adds enough frames to display all letters until

the end of the animation. If you didn’t add the frames, each letter would

disappear as soon as the next one appears. Your Timeline should resem-

ble the one shown in Figure 3-2.

235

Book III
Chapter 3

Anim
ating Text

Creating Flying Text

Figure 3-2: The typewriter text Timeline.

 10. Press Ctrl+Enter (Windows) or Ô+Enter (Mac).

 Flash displays the animation in another window (see Figure 3-3). The

only thing missing is the sound of a typewriter. If you like this technique

and want to add some sound, take a look at Book V, Chapter 2, where we

show you how to add sound to a Flash project.

Figure 3-3: It’s the old hunt-and-peck animation.

Creating Flying Text
Cool animation isn’t reserved for graphical objects. When you create static

text, you can use motion tweening to animate text. Of course, when you

create a motion tween animation, it must be on its own layer, which is easily

done with the Distribute to Layers command. If you have a lot of letters to

animate, you may think that this task is difficult, but it’s not. Follow along

with us and we’ll show you how to create an animation where text flies into

the scene. Follow these steps:

20_385395-bk03ch03.indd 23520_385395-bk03ch03.indd 235 10/28/08 8:23:43 PM10/28/08 8:23:43 PM

236 Creating Flying Text

 1. Use the Text tool to create a block of static text.

 Create the text off the Stage. The effect you’re creating has the text

flying in from every direction.

 2. With the text still selected, choose Modify➪Break Apart.

 Flash breaks the block of text into individual letters that you can

animate.

 3. Modify➪Timeline➪Distribute to Layers.

 Flash creates a separate layer for each letter.

 4. Select Layer 1 and drag it to the Delete icon.

 You no longer need this layer because each letter is on its own layer.

 5. Select the first frame of the first layer, and then Shift+click the first

frame of the last layer.

 You’ve selected the first frame in all layers.

 6. Right-click (Windows) or Ctrl+click (Mac), and choose Create Motion

Tween from the context menu.

 Flash adds 11 frames to each layer’s timeline. The background is blue,

indicating that a motion tween animation can be created by changing

the position of the object in the last frame.

 7. Move the playhead to the last frame.

 8. Using the Selection tool, move the letters to the position where you

want them to stop.

 Flash adds a keyframe to the twelfth frame of each layer.

 9. Move the playhead to the first frame.

 10. Using the Selection tool, move each letter to a different position.

 The letters “fly in” from the position to which you move them. Make

sure that you truly jumble the position of the letters and vary the dis-

tance they have to travel. Your goal is to create some visual eye candy.

 11. Select an individual letter.

 The letter’s frame span is selected, and you can see its motion path.

 12. Move the cursor toward the motion path.

 When the cursor changes to a pointing arrow with a curve beneath it,

you can bend the motion path into a graceful curve.

 13. Click and bend the motion path into a graceful curve (see Figure 3-4).

20_385395-bk03ch03.indd 23620_385395-bk03ch03.indd 236 10/28/08 8:23:43 PM10/28/08 8:23:43 PM

237

Book III
Chapter 3

Anim
ating Text

Creating Flying Text

Figure 3-4: Bending the motion path.

 14. Bend the motion paths for the other letters.

 Bend the paths in different directions to make each animation look

random.

 15. Select the frame span in the second layer, and drag it a couple of

frames to the right.

 The goal is to have the letters fly in at different times. Moving the frame

span to the right causes the second letter to fly in after the first.

 16. Select the frame span in the third layer, and drag it a couple of frames

to the right of the second layer.

 Your Timeline should resemble Figure 3-5.

 17. Repeat Step 16 for the remaining layers in your animation.

20_385395-bk03ch03.indd 23720_385395-bk03ch03.indd 237 10/28/08 8:23:44 PM10/28/08 8:23:44 PM

238 Creating Flying Text

Figure 3-5: No letter will fly before its time.

 18. Select the blank frame directly above the last keyframe in the bottom

layer.

 19. Shift+click the same frame in the first layer and then press F5.

 Flash adds enough frames to display each letter for the duration of the

animation (see Figure 3-6).

Figure 3-6: Adding enough frames to display each letter for the entire animation.

239

Book III
Chapter 3

Anim
ating Text

Creating Flying Text

 20. Press Ctrl+Enter (Windows) or Ô+Enter (Mac).

 Flash publishes the project as an SWF file and plays it in another window

(see Figure 3-7). The animation plays repeatedly, which means that you

need to add some ActionScript to stop the animation.

Figure 3-7: Is it a flock of seagulls? No. It’s
flying letters.

You can modify the animation by adding keyframes and then moving the let-

ters to a different position. Imagine having the letters fly in and then pause

before flying out to different directions. Your only limitation is your imagi-

nation. When you have some spare time, experiment with different ways to

animate text. If you don’t have any spare time, check out Successful Time
Management For Dummies, by Dirk Zeller (Wiley Publishing).

When you create a text animation, it doesn’t have to be on the main Timeline.

You can create a Movie Clip symbol for your animation. When you create an

instance of a movie clip, it occupies only one frame on the Timeline.

20_385395-bk03ch03.indd 23920_385395-bk03ch03.indd 239 10/28/08 8:23:44 PM10/28/08 8:23:44 PM

240 Book III: Animating Graphics

20_385395-bk03ch03.indd 24020_385395-bk03ch03.indd 240 10/28/08 8:23:45 PM10/28/08 8:23:45 PM

Chapter 4: Advanced Animation
Techniques

In This Chapter
✓ Using motion presets

✓ Manually editing motion paths

✓ Editing animations

✓ Copying motion

✓ Using visual aids

In Flash CS4, animation took a quantum leap forward. In addition to

changing the manner in which you create animation, the designers of

Flash gave animators some bells and whistles that they can use

to create sophisticated animations. New to Flash CS4 is the

Motion Presets panel. The panel has some impressive

presets that enable you to take your animations to the

next level. And, if you create an animation of your

own that you want to use again, you can add it to

the panel.

The new Motion Editor is another tool you can

use to create a sophisticated animation. From

within the Motion Editor, you can control all

phases of the animation, including property

changes. You can also manually edit a motion

path using the Subselection tool. You can even

copy motion and apply it to other objects in your

Flash project. If you prefer shape tween animations

(also known as morphing), there’s something for you

in this chapter as well. In this chapter, we show you some

advanced animation techniques and show you how to edit your

animations.

Using Motion Presets
The Motion Presets panel is a welcome new addition to Flash CS4. If you’re

not the best animator in the world, you can apply a preset from the Motion

Presets panel to an object in the workspace and — quicker than you can

21_385395-bk03ch04.indd 24121_385395-bk03ch04.indd 241 10/28/08 8:24:44 PM10/28/08 8:24:44 PM

242 Using Motion Presets

blink an eye — Flash does all the heavy lifting. If you’re a good animator, or

maybe even an expert one, you can use one of the presets as a starting point

for your own animation. To use a motion preset, follow these steps:

 1. Create an object on the Stage.

 Use your favorite drawing tool to create the object. You don’t have to

convert it to a symbol; Flash does that for you. Alternatively, you can

use a symbol from the document library.

 2. Choose Window➪Motion Presets.

 The Motion Presets panel appears. At this stage, it’s ho-hum. In fact, you

might say it’s boring. Read on.

 3. Click the Motion Presets folder.

 Yikes! — look at all those presets.

 4. Select a preset.

 A preview of the animation plays in

the panel (see Figure 4-1).

 5. When you find an animation you

like, right-click (Windows) or

Ctrl+click (Mac) and choose an

option from the context menu.

 Choose Apply at Current Location

to apply the motion preset from

the selected keyframe forward, or

choose End at Current Location to

create the last frame of the anima-

tion at the current keyframe.

 6. Press Ctrl+Enter (Windows) or

Ô+Enter (Mac).

 Your animation plays in another

window.

Creating a motion preset
When you create a cool animation, one

that you want to use on other projects

or share with or sell to other Flash

users, you can easily do so. To create a

motion preset, follow these steps:

 1. Select the frame span that contains the animation you want to save as

a preset.

Figure 4-1: Follow the bouncing ball.

21_385395-bk03ch04.indd 24221_385395-bk03ch04.indd 242 10/28/08 8:24:45 PM10/28/08 8:24:45 PM

243

Book III
Chapter 4

Advanced Anim
ation

Techniques
Using Motion Presets

 2. Right-click (Windows) or Ctrl+click (Mac) and choose Save as Motion

Preset.

 The Save as Preset dialog box appears.

 3. Enter a name for the preset and click OK.

 Make sure that you give the preset a meaningful name that reflects what

the animation does to an object; for example, Exit Stage Left. After you

save the preset, it appears in the Custom Presets folder of the Motion

Presets panel.

Managing motion presets
You’ve got presets; lots of presets. As you gain experience as a Flash ani-

mator, you may find that some of the old presets you created are lame and

should be evicted from the Motion Presets panel. You may also find that the

name you gave to the animation isn’t useful and should be changed. Or, you

may find that you’re scrolling through way too many presets to find the one

you want and you need to use feng shui on the panel or call in a professional

organizer. We’re pleased to inform you that it’s not nearly that difficult if you

follow these steps:

 1. Choose Window➪Motion Presets.

 The Motion Presets panel opens.

 2. Open the Motion Presets Options menu by clicking the icon in the

upper-right corner of the panel, and choose one of the following

commands:

 • Import: Imports a Motion Preset File in the XML format. You use this

command to import a motion preset that a fellow Flash user has

exported.

 • Export: Exports a selected preset as a motion preset file in the XML

format. You use this command to share a motion preset with a fellow

Flash user who can then use the Import command mentioned in the

preceding bullet to import the preset into her Motion Presets panel.

 • Rename: Renames a custom preset. You cannot rename one of the

default Flash motion presets.

 • New Folder: Creates a new folder in the Motion Presets panel. This

option comes in handy when the panel overfloweth or you’re using

this copy of Flash with another user and you want to keep matching

(or even his and hers) preset folders.

 • Remove: Removes a custom preset from the Motion Presets panel.

You cannot remove a default Flash preset.

 • Save: Saves the selected frame span as a custom motion preset.

21_385395-bk03ch04.indd 24321_385395-bk03ch04.indd 243 10/28/08 8:24:45 PM10/28/08 8:24:45 PM

244 Manually Editing a Motion Path

Manually Editing a Motion Path
When you create a motion tween animation, you can bend the path with the

Selection tool, as noted in Chapter 2 of this minibook. Because a motion path

has a point for each keyframe, you can manually edit the points with the

Subselection tool. To edit a motion path manually, follow these steps:

 1. Select the Subselection tool.

 It’s the second tool on the toolbar.

 2. Click a point on the path.

 The Bezier handles for all points are displayed (see Figure 4-2).

 3. Drag the Bezier handles to change the motion path.

 Selecting a Bezier handle can be tricky. When the cursor for the

Subselection tool becomes a solid arrow with no tail, you can click

and drag one tangent handle to reshape the curve. If you Alt+click

(Windows) or Option+click (Mac), the tool affects only the selected tan-

gent handle. You can move a handle up and down to reshape the curve

or the path, to the right to increase the length of the handle (which cre-

ates a gently flowing curve), or to the left to decrease the length of the

handle (which creates a sharp curve).

 4. Move the tool toward a point.

 When an unfilled square appears below the tool, click and drag the point

to a different position.

Figure 4-2: Manually editing a motion path.

21_385395-bk03ch04.indd 24421_385395-bk03ch04.indd 244 10/28/08 8:24:45 PM10/28/08 8:24:45 PM

245

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Motion Tween Animations

 5. Move the tool toward the path.

 When you see a filled square beneath the tool, click and drag to move

the path to a different location.

You can also select a path with the Selection tool and then drag it to a differ-

ent location.

Editing Motion Tween Animations
Motion tween animations may not be the greatest thing since sliced bread,

but they certainly beat creating animations frame-by-frame. After creating

a motion tween animation, you can edit the animation to perfection. In the

following sections, we show you techniques you can use to create the anima-

tion exactly the way you want it.

Fine-tuning the animation
Sometimes you create an animation, but it’s too slow or too fast. And then at

other times, you want the animation to start slowly and end quickly. Perhaps

you even want the object to rotate a time or two during the course of the

animation. The following subsections show you how to change the timing of

the animation and edit the animation in the Property inspector.

Changing the timing of an animation
Does your animation fly by like a Jumpin’ Jack Flash, or is it as slow as

molasses flowing uphill? If your animation has either problem, you can

change the timing of an animation by doing one of the following:

 ✓ Move the cursor toward the last frame in the animation. When it

becomes a line with two arrows, click and drag to the right to increase

the duration of the animation, or drag to the left to decrease it.

 ✓ Ctrl+click (Windows) or Ô+click (Mac) a frame between keyframes,

and then press F5 to add a frame. This action increases the duration

of the animation. Press Shift+F5 to remove a frame, thereby decreasing

the duration of the animation. You can also use the keyboard shortcut

to select a single frame and then drag to select additional frames. Press

F5 to add the same number of frames you selected, or press Shift+F5 to

remove the same amount of frames you selected.

Editing an animation in the Property inspector
The new motion tween animation truly simplifies your life as a Flash anima-

tor. After you create the animation on the Stage, you can do several things

to fine-tune it in the Property inspector. After creating an animation, follow

these steps:

21_385395-bk03ch04.indd 24521_385395-bk03ch04.indd 245 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

246 Editing Motion Tween Animations

 1. Select the object you’re

animating.

 2. Click Properties in the panel

dock to open the Property

inspector.

 If you modified the work-

space or are using a work-

space that doesn’t display the

Property inspector, choose

Window➪Properties. Figure 4-3

shows the Property inspector

after selecting the path for a

motion tween.

 3. In the Ease section, drag the

scrubby slider to set a value.

 Drag the slider to the left

to specify a negative value.

Negative values cause the ani-

mation to start slowly and end

quickly. It’s the equivalent of

a car accelerating from a dead

stop. Drag the slider to the right

to specify a positive value. This

action causes the animation to start quickly and end slowly, like a car

stopping for a light. The default value of 0 gives you constant speed

throughout the animation.

 4. (Optional) Drag the Rotation scrubby slider.

 If you enable this option, the object rotates along the path. Rather than drag

the scrubby slider, you can click inside the field and enter a value.

 5. To add rotation to the object, drag the plus sign (+) scrubby slider.

 This step specifies the number of degrees to be added to the object’s

rotation. In other words, if you specify 1 for the number of times the

object rotates and specify 90 for this value, the object makes one com-

plete rotation plus 90 degrees.

 6. If you enabled rotation, choose an option from the Direction drop-

down menu.

 This step is easy. The animated object can either rotate clockwise (CW)

or counterclockwise (CCW). If you choose None, the object doesn’t

rotate and the value you specified in the Rotation section reverts to the

default value of 0 (zero).

Figure 4-3: A motion path has properties you
can modify.

21_385395-bk03ch04.indd 24621_385395-bk03ch04.indd 246 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

247

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Motion Tween Animations

 7. Select the Orient to Path option if you haven’t enabled rotation.

 When you choose this option and you have a curved motion path, Flash

aligns the object to the path. When the animation plays, the object

rotates to maintain its original orientation to the path.

 8. In the Path section, use the scrubby sliders to change the X and Y

values.

 This step moves the motion path. Changing the X value moves the path

horizontally, and changing the Y

value moves the path vertically.

 9. In the Path section, use the

scrubby sliders to change the W

and H values.

 This step changes the width and

height of the motion path. The

path is resized proportionately

by default. Click the chain icon to

change the icon to a broken link,

and you can then resize each value

independently of the other.

 10. In the Options section, accept the

Sync Graphic Symbols option or

select the check box to disable it.

 This option synchronizes the

timeline of a symbol with the main

Timeline.

This set of steps shows you the

options you have for the path, but

there’s much more you can do to a

motion tween animation. Select the

object you’re tweening, and a different

set of options appear in the Property

inspector. The following steps show

you how to modify the object:

 1. Select the object you’re

animating.

 The Property inspector dons

another mask, showing you the

options available for modifying the

object that’s being animated (see

Figure 4-4).

Figure 4-4: And now you get to modify the
object you’re animating.

21_385395-bk03ch04.indd 24721_385395-bk03ch04.indd 247 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

248 Editing Motion Tween Animations

 2. Drag the playhead to navigate to the point in the animation where you

want a change to occur.

 3. In the Position and Size section, drag the scrubby sliders to modify

the X and Y values.

 These values determine where the object is at this point in the anima-

tion. The X value determines where the center of the object is along

the horizontal axis, and the Y value determines where the center of the

object is along the vertical axis. Remember that the X and Y values for

the upper-left corner of the Stage are 0 (zero).

 4. Use the scrubby sliders to modify the W and H values.

 These values determine the width and height of the object at this point

in the animation. The object is resized proportionately by default. Click

the chain icon to change it to a broken link, and you can then resize

each value independently of the other.

 5. In the 3D Position and View section, drag the scrubby sliders to

change the X, Y, and Z values.

 The X value determines the position of the object from left to right, the

Y value determines the position from top to bottom, and the Z value

determines the value from front to back. In essence, these values mimic

a 3D animation. The Z value varies the size of the object to make it

appear as though it’s closer to or farther from the viewer at this point in

the animation.

 Flash CS4 doesn’t create keyframes when you change a property. You

do, however, see a diamond icon on the Timeline when you change a

property on a frame.

 6. Drag the scrubby slider to modify the perspective angle.

 This value changes the apparent perspective of the object for the entire

animation. Higher values severely distort the perspective of the object

and can lead to some unpredictable results. Experiment with this value

until you see something you like.

 7. Drag the scrubby sliders to change the X and Y vanishing point

values.

 These values stay constant for the entire animation. The X value deter-

mines the vanishing point relative to the horizontal axis, and the Y value

determines the vanishing point relative to the vertical axis.

 8. Choose an option from the Color Effect drop-down menu.

 This option applies a color effect at this point in the animation. You can

create an interesting animation by applying a color effect, such as Alpha

at the start of your animation. Set the Alpha value to 0 at the start of the

animation and 100 at the end of the animation. The object looks like it’s

appearing out of thin air.

21_385395-bk03ch04.indd 24821_385395-bk03ch04.indd 248 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

249

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Motion Tween Animations

Introducing the Motion Editor
In Flash CS3, you had the option to create a custom ease. In Flash CS4,

you have more control over your animations, thanks to the addition of the

Motion Editor. If you’ve used Adobe After Effects, the Motion Editor should

look familiar to you. In a nutshell, it enables you to control every facet of

your animation, including applying a custom tween. We show you how to

use the animation powerhouse now:

 1. Create a motion tween animation.

 We go out on a limb here and assume that, because you’re reading this

section, you know how to create a motion tween animation. If not, check

out Chapter 2 of this minibook, where we cover motion tweens, shape

tweens, and all tweens in between.

 2. Open the Motion Editor.

 The Motion Editor’s default spot in the workspace is at the bottom of

the workspace, next to the Timeline. Click its title to open it. If you’re

working in a different workspace or have created a custom one that

doesn’t display the Motion Editor by default, choose Window➪Motion

Editor. The Motion Editor in all its glory is shown in Figure 4-5. Notice

that there’s a section for each motion parameter you can modify. Drag

the scrollbar to navigate to the hidden ones.

Figure 4-5: Yikes — the Motion Editor is a busy place.

 3. At the bottom of the interface, you find three icons. You use them to

change the motion editor:

 • Graph Size: Drag the scrubby slider to change the height of each

graph. The option to increase graph height comes in handy when

you’re editing a complex animation with lots of changes on the

Timeline.

21_385395-bk03ch04.indd 24921_385395-bk03ch04.indd 249 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

250 Editing Motion Tween Animations

 • Expanded Graph Size: Drag the scrubby slider to set the height of the

graph from the default graph size value explained in the preceding

bullet. After changing this option, when you select a parameter such

as X or Y in the Basic Motion section, the graph for that parameter

expands to this value. You can use a relatively large value to gain

better control when editing the Timeline for that parameter.

 • Viewable Frames: Drag the scrubby slider to change the number of

frames displayed in the Motion Editor.

 4. Navigate to the section you want to modify.

 You can modify these sections:

 • Basic Motion: Change motion on the X and Y axes and rotate the

object on the Z axis.

 • Transformation: Skew the object along the X and Y axes and scale the

width (Scale X) and Height (Scale Y); change a color effect; change

filters that have been applied to the object; and specify which ease

options are available for the parameters that are animated. Note

that each parameter has a check box that gives you the option of

enabling or disabling animation for that parameter.

 5. In the Basic Motion and Transformation sections, you can click the

curved arrow to the right of the section to reset values.

 When you reset values for a section, any changes that have been applied

to the Timelines in that section are removed.

 6. Choose an easing option from a parameter’s easing drop-down menu,

to the right of the check mark.

 You can add easing options to the menu, as we explain in this step list.

 7. Drag the playhead to a frame on the Timeline where you want to

change a parameter.

 The playhead is identical to the one on the main Flash Timeline.

 8. To add a keyframe for a parameter, right-click (Windows) or Ctrl+click

(Mac) and choose Add Keyframe from the context menu.

 A keyframe on the Motion Editor Timeline is signified by a filled square.

 9. Change the value of the parameter.

 You can change the parameter by dragging the keyframe up or down. We

prefer using the scrubby slider next to the current value or clicking the

current value and manually entering the value because it’s more accurate.

21_385395-bk03ch04.indd 25021_385395-bk03ch04.indd 250 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

251

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Motion Tween Animations

 10. Add additional keyframes as needed.

 When you have multiple keyframes on a Timeline, the arrow keys to the

right of the Ease drop-down menu can be used. These arrows enable you

to navigate to the next or previous keyframe. If you navigate to a frame

on which there’s no keyframe, click the spot between the arrows to

add a keyframe. If you navigate to a frame on which there’s a keyframe,

a beige diamond appears between the arrows. Click the diamond to

remove the keyframes for the parameter you’re editing from the frame

on which you parked the playhead.

 11. To add a color effect to the animation, click the plus sign (+) icon to

the right of the Color Effect section.

 When you add a color effect to the animation, you can set the value on

the first keyframe and it remains constant throughout the course of the

animation, or you can create a keyframe further into the animation and

specify the value at that point. When you choose the latter method, the

default value is applied to the first frame. After choosing a color effect,

add keyframes and modify the values at each keyframe.

 12. To add a filter to the animation, click the plus sign (+) icon to the right

of the Filter title.

 You can apply multiple filters to an animation. After choosing filters, add

keyframes and modify the values at each keyframe and then choose a

filter from the drop-down menu.

 13. To remove a filter or color effect from the animation, click the minus

sign (–) icon to the right of the Color Effect or Filters section.

 After you click the minus sign, a menu appears, showing the color effect

or filters that have been applied to the animation. Select the filter or

color effect you want to remove.

 14. To add more eases to the animation, click the plus sign (+) to the right

of the Eases title and choose an ease method from the drop-down menu.

 When you select an ease, a graphical representation of the ease appears

to the right of its name. As they say, a picture is worth a thousand

words, so we save several thousand and let the graphs do what the

designers of Flash intended — show you what the ease looks like.

 15. Modify the number of iterations of the ease.

 If you choose an ease, such as Bounce or Sawtooth Wave, a value

appears to the right of the name. For example, the default option for the

Bounce ease causes the object to bounce four times. Use the scrubby

slider to change the value, or click the current value and enter your own.

21_385395-bk03ch04.indd 25121_385395-bk03ch04.indd 251 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

252 Editing Motion Tween Animations

 Figure 4-6 shows the Motion Editor after several parameters have been

modified and three eases have been selected. Notice the Bezier handles

on the Sawtooth Timeline. You can use these handles to modify the way

the transition eases from one keyframe to the next. Each keyframe also

has a context menu, which is also displayed in Figure 4-6. For the pur-

pose of this animation, the Motion Editor has been undocked from the

Timeline, which isn’t a bad idea if you have a busy animation and have

enough monitor real estate to view the Motion Editor and the Stage at

the same time.

You can create a custom ease by choosing Custom from the Eases menu.

Add keyframes to the Timeline to specify where the motion change takes

place. Each keyframe has a Bezier point with handles. The first and last key-

frame have one tangent handle. Drag the handles for each keyframe to define

the custom ease, and then choose the parameters to which it will be applied.

If you’re editing a motion tween animation and you decide that you want

to animate a different symbol, select the first keyframe of the animation

and drop a symbol from the document library onto the symbol you want to

replace. Flash displays a dialog box asking whether you want to replace the

symbol. Click Next to complete the swap.

Figure 4-6: The Motion Editor is an animator’s best friend.

21_385395-bk03ch04.indd 25221_385395-bk03ch04.indd 252 10/28/08 8:24:46 PM10/28/08 8:24:46 PM

253

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Motion Tween Animations

Understanding nonroving and roving keyframes
When you create a motion tween animation and change an object’s position

on a specific keyframe, Flash applies the change at that keyframe. For exam-

ple, if you create a 12-frame animation and on the eighth frame move the

object, Flash adds a keyframe to the Timeline to note the change. When the

animation plays, the object travels from Point A to Point B in 8 frames and

then travels from Point B to Point C in 4 frames. If the distance from Point A

to Point B is long and the distance from Point B to Point C is short, the first

part of the animation proceeds slowly and then speeds up. When this sce-

nario occurs, the object moves from Point A to Point B in a linear fashion,

and then from Point B to Point C in a linear fashion. This process is known

as an animation with nonroving keyframes (see Figure 4-7). Notice how much

closer the points are on the final curve of the animation.

Figure 4-7: A motion tween animation with nonroving frames.

If you prefer to have a linear animation, you can do so if you switch the ani-

mation to roving frames. When you create a motion tween animation with

roving keyframes and change the duration of the animation, the keyframes

rove the motion path to create an animation that’s perfectly linear from

beginning to end. To change to roving keyframes, right-click (Windows)

or Ctrl+click (Mac) the motion path and choose Motion Path➪Switch

Keyframes to Roving. Figure 4-8 shows the same motion path as in Figure

4-7 with roving keyframes. Notice that the dots that signify the in-between

frames are evenly spaced. In fact, there isn’t an in-between frame when the

object changes direction. If, after previewing the animation, you decide to

switch back, right-click (Windows) or Ctrl+click (Mac) the motion path and

choose Motion Path➪Switch Keyframes to Non-roving.

21_385395-bk03ch04.indd 25321_385395-bk03ch04.indd 253 10/28/08 8:24:47 PM10/28/08 8:24:47 PM

254 Copying Motion

Figure 4-8: These frames were made for roving, and that’s just what they’ll do.

Copying Motion
Animation is fun. If you create a complex animation, though, with lots of key-

frames and lots of changes in the Motion Editor, the chances of your dupli-

cating the animation are nil unless you created the animation in a Movie

Clip symbol. But if you didn’t and you decide that what’s cool for one object

is cool for several more, you can replicate the animation blow by blow,

keyframe by keyframe. You can do this by using a command or by using

ActionScript as discussed in the following sections.

Using the Copy Motion command
It’s Friday afternoon and you’re thinking about a wonderful weekend not

spent in front of a computer monitor when your favorite client (the one you

nicknamed PITA) calls and tells you that the roller-coaster text animation

you created for a word needs to be duplicated for two other words. In other

words, the second word slides down the slippery slope a second or so after

the first, and then the third follows the second. And you think “Yikes. No

way.” But there is a way. Follow these steps:

 1. Select the first keyframe of the animation you want to duplicate, and

in the Property inspector, note the X and Y coordinates of the object.

 This step is necessary only if you want the duplicated animation to start

from the same spot.

 2. Right-click (Windows) or Ctrl+click (Mac) the first layer, and choose

Insert Layer from the context menu.

 Flash creates a new layer.

21_385395-bk03ch04.indd 25421_385395-bk03ch04.indd 254 10/28/08 8:24:47 PM10/28/08 8:24:47 PM

255

Book III
Chapter 4

Advanced Anim
ation

Techniques
Copying Motion

 3. Select the frame where you want the second animation to start and

then press F6.

 A keyframe is born.

 4. Create the object that you want to follow the first.

 If you want the object to begin moving from exactly the same point,

open the Property inspector and change the object’s X and Y values to

the same values you noted in Step 1. If you don’t do this, the object has

an identical motion path but starts from a different position. Sometimes

that’s just what you need, but in this scenario, you want the objects

starting from the same place.

 5. In the first layer, right-click (Windows) or Ctrl+click (Mac) the motion

path and choose Copy Motion from the context menu.

 6. In the second layer, right-click (Windows) or Ctrl+click (Mac) the

object and then choose Paste Motion from the context menu.

 Like magic, a motion path is attached to the object.

 7. Repeat Steps 2 through 7 for other objects to which you want to apply

the same animation.

 Figure 4-9 shows three words that follow the same path, thanks to the

Copy Motion command.

Figure 4-9: Follow the leader.

Copying motion using ActionScript
What happens when you create a cool animation and you want to use it with

several instances of an object already on the Stage and on the same layer?

21_385395-bk03ch04.indd 25521_385395-bk03ch04.indd 255 10/28/08 8:24:47 PM10/28/08 8:24:47 PM

256 Copying Motion

It’s child’s play — ActionScript to the rescue. We know what you’re thinking:

The ActionScript chapter hasn’t happened yet. But you don’t need to know

much about ActionScript. All you need to do is name your symbol instances,

use a command, and Flash does the rest. Follow these steps:

 1. Select a symbol instance that you want to animate with ActionScript.

 2. Open the Property inspector.

 3. In the Property inspector, give the symbol instance a name.

 If the symbol instance is a graphic, choose Movie Clip from the Type

drop-down menu to convert the symbol from a graphic to a movie clip.

You can give a symbol instance any name you want, but don’t use any

special characters or spaces. For more information on naming symbol

instances, see Book V.

 4. Choose Window➪Actions.

 The Actions panel appears.

 5. Click the keyframe where you want the animation to start.

 Alternatively, create a new keyframe where you want the animation to

start.

 6. In the Actions panel, right-click (Windows) or Ctrl+click (Mac) and

choose Paste from the context menu.

 The Actions panel is filled with copious amounts of ActionScript that

only a geek can understand (see Figure 4-10).

Figure 4-10: Do what?

21_385395-bk03ch04.indd 25621_385395-bk03ch04.indd 256 10/28/08 8:24:48 PM10/28/08 8:24:48 PM

257

Book III
Chapter 4

Advanced Anim
ation

Techniques
Copying Motion

 7. Scroll to the next-to-the-last line of ActionScript.

 The number of lines varies depending on the complexity of your anima-

tion. If you have lots of changes in your animation, you have a lot of

code. The last line of code in this case is a curly brace. You’re modifying

the line of code before that.

 8. Delete the two forward slashes at the start of the line.

 Forward slashes indicate that the code is a comment. Some developers,

including the fine folks at Adobe, comment a line of code that will turn

into instructions when the forward slashes are deleted.

 9. Select the text <instance name goes here> and replace it with the

instance name you created in Step 3.

 Figure 4-11 shows the modified ActionScript.

Figure 4-11: Cut and paste is simply mah-velous, dahlink.

 10. Press Ctrl+Enter (Windows) or Ô+Enter (Mac).

 The ActionScript you pasted into the frame has the symbol instance

jumping through hoops.

21_385395-bk03ch04.indd 25721_385395-bk03ch04.indd 257 10/28/08 8:24:48 PM10/28/08 8:24:48 PM

258 Editing a Shape Tween Animation

Editing a Shape Tween Animation
If you up the ante on a shape tween animation and have the sublime morph

into the cor blimey, you may have a problem on your hands. If the shapes

aren’t simple, Flash may have a tough time doing the math, and Zippy the

Wonder Rectangle doesn’t morph into Zippy the Wonder Star in a predict-

able manner. When you create a shape tween animation, your audience

should have a clue what the final shape will look like during the transition

period from one keyframe to the next. If the in-between frames look like

Heinz 57 pixels, you have to lend Flash a helping hand in the way of shape

hints. To find out all about them, follow these steps:

 1. Create a shape tween animation.

 2. Drag the playhead across the frames of the animation.

 Pay special attention to the shapes on the in-between frames. Figure 4-12

shows a blob of pixels that’s supposed to be a 5-pointed star morphing

into a triangle. This shape is difficult for Flash to calculate because of

the difference in the number of sides for each shape. When you have

a difficult shape tween, look for common elements between the two

shapes. In our scenario, the triangle has three points. Look for three

points on the star that form a similar shape.

Figure 4-12: Say what?

21_385395-bk03ch04.indd 25821_385395-bk03ch04.indd 258 10/28/08 8:24:48 PM10/28/08 8:24:48 PM

259

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing a Shape Tween Animation

 3. Select the first keyframe in your animation, select the object, and then

choose Modify➪Shape➪Add Shape Hint.

 Flash places in the middle of the shape a small red dot with a lowercase

letter a in its center. You can’t see it, but a red dot with a lowercase a in

its center has been placed in the center of the second object. You use the

letters as a guideline when placing shape hints on each object. Shape Hint

a on the first object morphs into Shape Hint a on the second object.

 4. Drag the shape hint to the location you want.

 If you examine both objects for similarities, you know where to place the

shape hint. You should place it on something that Flash can recognize,

such as the point where two lines intersect.

 5. Choose Modify➪Shape➪Add Shape Hint.

 Flash places in the center of the first object a small red dot with a lower-

case b and in the center of the second object.

 6. Drag the second shape hint to the location you want.

 Shape hints work best when you arrange them in counterclockwise order.

 7. Continue adding shape hints as needed.

 At the risk of being redundant, let us say that you’ll know how many shape

hints you need after examining the shapes for similarities and examining

the animation on the in-between frames before adding shape hints.

 8. Click the last keyframe in the animation.

 In the center of the shape, you find a pile of shape hints; the same as the

number of shape hints in the first object. The last shape hint is on top.

 9. Arrange the shape hints on the second shape.

 Remember to arrange the shape hints in counterclockwise order. As you

move the shape hints to their respective points on the second object,

they turn green, and the shape hints on the first object turn orange, which

is Flash telling you that it can create a decent shape tween animation.

Figure 4-13 shows the triangle in the animation with shape hints applied.

 10. Drag the playhead to preview the shapes on the in-between frames.

 Figure 4-14 shows the in-between frames for the shape tween animation

of a star morphing into a triangle. The viewer has a good idea of the

shape that will appear at the end of the animation. Compare this object

to the gnarly-looking one shown in Figure 4-11.

21_385395-bk03ch04.indd 25921_385395-bk03ch04.indd 259 10/28/08 8:24:49 PM10/28/08 8:24:49 PM

260 Editing a Shape Tween Animation

Figure 4-13: We’re here to give Flash a helping hand. That’s our
lot in life.

Figure 4-14: Shape hints come to the rescue again.

21_385395-bk03ch04.indd 26021_385395-bk03ch04.indd 260 10/28/08 8:24:49 PM10/28/08 8:24:49 PM

261

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Multiple Frames and Other Delights

Editing Multiple Frames and Other Delights
When you’re working with a frame-by-frame animation, the option to edit

multiple frames can save you a lot of time. At other times, you might want

to see what’s happening on the other frames in your animation. That’s when

you call in the onion skins. Sometimes you need both features at the same

time. If we’ve piqued your curiosity, please read on.

Using onion skins
Onion skins make it possible for you to see what your animation looks like

on other frames. When you enable the Onion Skins option, Flash displays a

lower-opacity version of the shapes on the in-between frames of a motion

tween or shape tween, which shows you how the shapes on the in-between

frames will be drawn and where they appear on the Stage. If you don’t like

what you see on a motion tween, you can modify the motion path and imme-

diately see the results. If you’re editing a shape tween animation, the onion

skins on the in-between frames show you how the object morphs from Shape

A to Shape B. You can view onion skins as outlines or as lower-opacity rendi-

tions of the shape as it appears on that frame. To enable onion skins, click

the second icon on the bottom of the Timeline panel. To enable onion skin

outlines, click the third icon at the bottom of the Timeline panel.

Figure 4-15 shows an animation after onion skins have been enabled. The

default option shows only two frames on either side of the selected frames.

You can change this option by dragging the hollow dots at the end of the

onion skin markers that look like black braces at the end of the onion skin

frame span, which is designated in dark gray on the Timeline.

You can change the manner in which onion skins are displayed by clicking

the Modify Onion Markers icon at the bottom of the Timeline panel. This

action opens a menu that gives you the option to display onion skin mark-

ers, anchor the onion skins to the selected frame, and specify the number of

frames to which onion skins are applied.

Editing multiple frames
The option to edit multiple frames comes in handy when you need to fine-

tune a classic motion tween or classic shape tween animation. When you

enable the editing of multiple frames, you can select an object on any key-

frame and change its position or size, for example. Used in conjunction

with onion skins, it’s a powerful one-touch punch that helps you finish your

editing in record time. To enable the editing of multiple frames, click the

21_385395-bk03ch04.indd 26121_385395-bk03ch04.indd 261 10/28/08 8:24:49 PM10/28/08 8:24:49 PM

262 Editing Multiple Frames and Other Delights

Edit Multiple Frames icon at the bottom of the Timeline. Figure 4-16 shows a

shape tween animation with the Edit Multiple Frames option enabled. Notice

that both shapes are displayed as though they were on the same frame even

though the playhead is parked on an in-between frame. Each shape can be

edited from this frame or from any frame in the marked span.

 Onion Skin Outlines

Modify Onion MarkersOnion Skin

Figure 4-15: Use onion skins when your animation drives you to tears.

When you work with a shape or motion tween animation created with the

new paradigm, viewing multiple frames is useful. However, you can edit only

the object on the first keyframe in a motion tween animation and then edit

the path. Using the new method of creating a shape tween, you can edit the

object on the first and last keyframe.

21_385395-bk03ch04.indd 26221_385395-bk03ch04.indd 262 10/28/08 8:24:49 PM10/28/08 8:24:49 PM

263

Book III
Chapter 4

Advanced Anim
ation

Techniques
Editing Multiple Frames and Other Delights

 Edit Multiple Frames

Figure 4-16: Editing multiple frames is a powerful option.

21_385395-bk03ch04.indd 26321_385395-bk03ch04.indd 263 10/28/08 8:24:49 PM10/28/08 8:24:49 PM

264 Book III: Animating Graphics

21_385395-bk03ch04.indd 26421_385395-bk03ch04.indd 264 10/28/08 8:24:49 PM10/28/08 8:24:49 PM

Book IV
Adding

ActionScript 3.0
Magic

22_385395-pt04.indd 26522_385395-pt04.indd 265 10/28/08 8:25:43 PM10/28/08 8:25:43 PM

ActionScript 3.0 gives you total control over

what you want to happen on the stage. Long

gone are the days when all ActionScript could do

was start and stop an animation. You can now do

everything from create shapes dynamically to

load animated movie clips on the fly.

Book IV shows you how to harness the power of

ActionScript 3.0 using both the Timeline and the

external ActionScript files. You can drag images

across the stage, dynamically use text to respond

to user actions, use the new Vector class to draw

images and store and retrieve data, and much,

much more. This is Flash with a power boost!

22_385395-pt04.indd 26622_385395-pt04.indd 266 10/28/08 8:25:44 PM10/28/08 8:25:44 PM

Chapter 1: Who’s Afraid of the
Big Bad ActionScript 3.0?

In This Chapter
✓ Understanding old and new ActionScript

✓ Working on the Timeline

✓ Writing scripts

✓ Using event listeners

✓ Capturing mouse events

✓ Creating functions for buttons

✓ Controlling movie clips

ActionScript in Flash began as a way to control the

Timeline of a Flash movie. Buttons, movie clips,

and keyframes could all contain little bits of script.

For example, you could assign a gotoAndStop(12)

statement to a button so that when that button is

pressed, the playhead would move to Frame 12

and stop. Usually, the targets of the script were

keyframes where new content would appear.

The downside of this method is that each button

required its own script, and as application sizes

grew, so too did the complexity of working with

all those little scripts.

With each new version of Flash, ActionScript

improved, but nowhere near as dramatically as with

ActionScript 3.0, where the language has been revised

from top to bottom.

So that you can write more powerful ActionScript, Adobe modeled the latest

release of ActionScript similar to other programming languages. Yes, we

said the ugly word: programming. But before you run off and jump into caul-

dron of boiling oil as a pleasant alternative to programming, in this chapter

we show what you can do with ActionScript 3.0 and (we hope!) convince

you to give the latest version a try.

23_385395-bk04ch01.indd 26723_385395-bk04ch01.indd 267 10/28/08 8:26:31 PM10/28/08 8:26:31 PM

268 Vive la Différence: New versus Old ActionScript

Vive la Différence: New versus Old ActionScript
The new ActionScript 3.0 is based on a standard with the rather drab moni-

ker ECMAScript Revision 4.

Standardizing the language increases both stability and familiarity, so you

don’t have to learn the language all over again each time a new version of

Flash is released. The following sections give you the lowdown on some

of the basic features of the new, improved ActionScript and how they’ve

changed from previous versions.

Button scripts
ActionScript 3.0 can be used in conjunction with buttons and movement

on the Timeline, but things are done differently. If you’re an old hand with

ActionScript, it might help to review some of the differences. If you’re new

to Flash and ActionScript, ignore the old way of using ActionScript and just

concentrate on the new way.

The old way of working with buttons and ActionScript was to select a button

and in the Actions Panel write something like the following:

on(release) {
 gotoAndStop(5);
}

Because the ActionScript was written on the button, you didn’t have to

reference the button name. It was simple, but with several buttons spread

throughout an application at different levels and positions on the Timeline,

debugging each individual button could quickly become a nightmare.

With ActionScript 3.0, the reference to a button is to the button instance

name, where an instance is just the name you give to a button. For example,

the name myButton uniquely identifies a button and differentiates it from

every other button instance.

All button instance names must be unique so that you can tell one from the

other.

You give a button an instance name by selecting the button and typing the

name of the button in the Properties panel. (Figure 1-1, a little later in this

chapter, shows the instance name of the button in the Properties panel.)

Mouse events
When you want a button to do something, first you assign it an event han-
dler, which for a button can be several different actions, just as with the

old ActionScript. However, because the events are actions taken using the

23_385395-bk04ch01.indd 26823_385395-bk04ch01.indd 268 10/28/08 8:26:32 PM10/28/08 8:26:32 PM

269

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Vive la Différence: New versus Old ActionScript

mouse, the event handler is some kind of MouseEvent. The following mouse

events are available:

CLICK

DOUBLE_CLICK

MOUSE_DOWN

MOUSE_MOVE

MOUSE_OUT

MOUSE_OVER

MOUSE_UP

MOUSE_WHEEL

ROLL_OUT

ROLL_OVER

As you can see, they’re expressed in ALL CAPS; this is because they’re con-

stants that don’t change in value. So, a CLICK is always a mouse click by the

user and nothing else. Just say “Play it again, Sam:” A CLICK is just a CLICK,

a mouse is just a mouse. These fundamental concepts apply as the Timeline

goes by.

Also, MouseEvent constants are fairly self-explanatory. For example, a

DOUBLE-CLICK means that the button is double-clicked, and a ROLL_OVER

occurs when the mouse is rolled over the button.

Listen up! Adding event listeners to buttons
We human beings listen for all kinds of events every day, practically all day.

You listen for your cell phone or doorbell to ring or for the dog to bark or a

baby to cry. With ActionScript 3.0, you do the same thing. When this event
occurs, the event listener is basically telling the rest of the code, “Listen up!

do something!” The generic format for writing an event listener is

myButton.addEventListener(MouseEvent.EVENT, function);

This line of code needs one of the ten mouse events listed in the previous

section. Likewise, the function that it calls can be any kind of function allow-

able in ActionScript 3.0; for example:

btnTxt.addEventListener(MouseEvent.CLICK, launchShip);

Imagine that a doorbell is the button, the wiring of the doorbell to the

chimes adds the event listener, the particular sound made by the chimes is

the event (“ding, dong!”), and the function (answering the door) is the action

taken when the doorbell rings. Figure 1-1 illustrates this relationship.

23_385395-bk04ch01.indd 26923_385395-bk04ch01.indd 269 10/28/08 8:26:32 PM10/28/08 8:26:32 PM

270 Vive la Différence: New versus Old ActionScript

Button

Wire doorbell to chimes

Possible sounds

Specific event

Action to take

doorBell.addEventListener(Chimes.DINGDONG, answerDoor)

 Figure 1-1: The relationship between the even listener, event, and action.

Functions for buttons
You need to add a function in order to do something. Further details

about ActionScript 3.0 functions are discussed in Chapters 2 and 5 of this

minibook, but for now, we describe a simple one just to get you started.

An ActionScript 3.0 function is made up of the word function; a function

name; parameters, if any; and statements telling the application what to do.

Functions also have a return type, consisting of either the data type returned

or void, which means that nothing is returned. (Think of a return as a value

that the function generates, just like a value in a variable.) Sometimes when

the function returns nothing, the return type is omitted. With buttons, you

always need an event parameter that provides a variable with the event

type. For example, the following code shows a function that tells the applica-

tion to go to Frame 10 and stop:

function launchShip(e:MouseEvent):void
{
 gotoAndStop(10);
}

Figure 1-2 shows all the different parts of the function used by the button.

Function

Function name

Parameter name

Parameter type

Statement

function goFrame10(e:MouseEvent)
{
 gotoAndStop(10);
}

Figure 1-2: The parts of a function.

23_385395-bk04ch01.indd 27023_385395-bk04ch01.indd 270 10/28/08 8:26:32 PM10/28/08 8:26:32 PM

271

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Vive la Différence: New versus Old ActionScript

In looking at the parts of a function, they’re pretty simple. You might think of

them as instructions you give to a small child. You lay out the instructions in

detail. First, you tell the child that you’re giving him an instruction (function)

and the name of the task (coming to dinner.) The parameters represent the

event that initiates the action (immediately), and the statements are further

instructions (sit down, don’t play with your food, and eat your vegetables).

It might look like this:

function comeToDinner(yell:MomInstruction)
{
 sit down;
 don’t play with your food;
 eat your vegetables;
}

The extent to which you imagine functions as a set of instructions — an

instruction package — the more sense they make.

Bossing around movie clip scripts
As you may know from working with Flash movies, the main stage or

Timeline is just one big movie clip. So writing movie clip scripts is just a

matter of selecting keyframes on a movie clip’s Timeline and adding code in

the Actions panel. However, we don’t have you write much code on movie

clips’ Timelines because it’s not only an easy way to get tangled up and

make a mess but also bad form. That’s because it hides the code from the

main program, and you’ll play Where’s Waldo trying to find out which movie

clips have embedded code. Essentially, you need a way to order movie

clips around. With buttons as a user interface, the code needs to indicate

which movie clip is being sent an instruction. Keeping all your code in one

place makes life a lot easier, and the only code that’s in the movie clips is a

stop() statement in the first frame.

You might be thinking, if you build a sophisticated movie clip with lots of dif-

ferent places to stop, that you need lots of stop() statements in the movie

clips. It isn’t true. Suppose that your movie clip has 50 places with 50 differ-

ent keyframes where the user should be able to stop. The magic method is

gotoAndStop(n);

You can not only direct a movie clip’s Timeline to stop at a keyframe (n)

but also have it stop at any frame. All you need is to address the movie clip’s

instance name and use the magic method. For example,

froggy.gotoAndStop(23);

instructs a movie clip with the instance name froggy to hop over to Frame

23 and stop.

23_385395-bk04ch01.indd 27123_385395-bk04ch01.indd 271 10/28/08 8:26:32 PM10/28/08 8:26:32 PM

272 Vive la Différence: New versus Old ActionScript

You’re not confined to using Timeline commands. You can use any of the

MovieClip class methods or properties that you want. Figure 1-3 gives you an

idea of the large number of methods that are available. Just select the MovieClip

class in the Actions panel and click the Methods or Properties directory.

Figure 1-3: The Actions panel displaying a
MovieClip’s methods.

To find the MovieClip class, you need to first locate the directory (or pack-

age) it’s in. Take a look in the flash.display directory.

Experiment with some of the different methods besides gotoAndStop(),

and notice that you already used addEventListener(),another MovieClip

method. After you experiment with several methods, open the Properties

directory and see what trouble you can cause. (Just kidding.) For example,

the following examples show the use of different MovieClip properties with a

movie clip instance, myClip:

myClip.x=200; // Horizontal position on screen
myClip.y=150; // Vertical position on screen
myClip.rotation=33; // Tilt to 33 degree angle

Go ahead and experiment with different properties until you get the hang of it.

23_385395-bk04ch01.indd 27223_385395-bk04ch01.indd 272 10/28/08 8:26:32 PM10/28/08 8:26:32 PM

273

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Movin’ On the Timeline

Movin’ On the Timeline
After you have an idea of what you can do, we show you how to use that

knowledge to put together something practical; for example, an application

that lets the user control the Timeline.

The following steps walk you through the project using buttons, keyframes,

simple graphics and ActionScript 3.0 that holds the whole thing together:

 1. Open a new Flash file (ActionScript 3.0), give the file a name, name

the layer, and then save the file.

 Our example uses three different pages located on three different key-

frames. The ones we use in this example are just big circles, but they

could be different product or services descriptions, steps in a project,

descriptions of different people in a company, or any other endless

number of possibilities.

 In the example, we saved it as TimeLine.fla and named the layer

actions.

 2. Click on a frame and press the F5 key.

 We clicked on Frame 30 and pressed F5, which creates 30 frames.

 3. Create two more layers and position them below the Actions layer.

 We named the layers Controls and Timeline, as shown in Figure 1-4.

 4. Select the Timeline layer and add the keyframes you want by selecting

each frame you want to add content to individually and pressing F6.

 We added keyframes at Frames 15 and 30.

 5. Click on the first frame of the Timeline layer and add whatever con-

tent you want to the frames.

 We drew a circle and, in the middle of the circle, typed Frame 1 using

the Text tool set to Static Text. We did the same thing in Frames 15 and

30, typing the names Frame 15 and Frame 30, respectively. Figure 1-4

shows how Frame 30 looks.

 6. Lock the layer.

 7. To create a button, click on a frame and add an image to it, if it

doesn’t already have one.

 This image is the visual button that users expect to click. We clicked the

first frame of the Controls layer and drew a circle with the dimensions

(W=32.5 and H=32.5). The numbers represent the number of pixels, but

all you see in the Properties panel are the numbers associated with W

and H — W(idth) and H(eight).

23_385395-bk04ch01.indd 27323_385395-bk04ch01.indd 273 10/28/08 8:26:33 PM10/28/08 8:26:33 PM

274 Movin’ On the Timeline

Figure 1-4: An instance name of a selected button being added in Properties panel.

 8. Select the image and press F8.

 The Convert to Symbol dialog box appears.

 We selected the circle (including the stroke line) and pressed F8 to

create a symbol.

 9. Select Button as the type, type a name for the button, and then click OK.

 We named ours Btn.

 10. Make as many buttons as you want and click a button.

 The Properties panel appears.

 For this example, we made two copies of the button, lined them up verti-

cally (as shown earlier, in Figure 1-1), and selected the top button.

 11. Type a name for the button’s instance name and do the same for any

other buttons, if you have more than one.

 We named our buttons not very imaginatively but short, sweet, and

obvious: btn1, btn2 (refer to Figure 1-4), and btn3.

 12. Add content to the frames that the buttons will target and then lock

the layer.

23_385395-bk04ch01.indd 27423_385395-bk04ch01.indd 274 10/28/08 8:26:33 PM10/28/08 8:26:33 PM

275

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Movin’ On the Timeline

 We used the Text tool set to Static Text and then typed Frame 1 next to

the first button and Frame 15 and Frame 30 next to the second and third

buttons, respectively (refer to Figure 1-4).

 13. Click the first frame of the Actions layer, open the Actions panel, and

add a script similar to the following. Change the italicized text and

add or delete lines as necessary, depending on the number of buttons

you have, their names, and which frames you used:

stop();

//Add event listeners to buttons
btn1.addEventListener(MouseEvent.CLICK,go01);
btn2.addEventListener(MouseEvent.CLICK,go15);
btn3.addEventListener(MouseEvent.CLICK,go30);

//Functions for buttons
function go01(e:MouseEvent):void
{
 gotoAndStop(1);
}
function go15(e:MouseEvent):void
{
 gotoAndStop(15);
}
function go30(e:MouseEvent):void
{
 gotoAndStop(30);
}

 You might be wondering what :void means in the functions. That term

tells the compiler not to expect anything to be returned. If you want a

value returned, you enter the type (such as String or Number) rather

than void.

 14. After you complete the script, lock the layer and test the movie by

pressing Ctrl+Enter (or Ô+Return on the Mac).

 If everything is working correctly, your movie plays.

 If you followed our example (download it at www.dummies.com/
flashallinone), you see that as you press each button, a different

circle appears, indicating the appropriate frame. You have total control

over the Timeline, and users can select where on the Timeline to posi-

tion the playhead. Of course, users never see the playhead. All they see

is different information arranged so that it’s easy to find, and you man-

aged to create three pages from a single page.

If you use the Timeline as a means of moving to different sets of information in

your application, your application can accumulate a large number of bytes

in the size of the SWF file. For smaller projects with just a few images or a

little text, it works fine. In Chapter 2 of this minibook, you see an alternative

to using the Timeline. Rather than create giant SWF files, you just bring in

what you need, when you need it, and still just use one page.

23_385395-bk04ch01.indd 27523_385395-bk04ch01.indd 275 10/28/08 8:26:33 PM10/28/08 8:26:33 PM

276 Controlling Movie Clip Timelines

Controlling Movie Clip Timelines
After you know how to control a Timeline using ActionScript 3.0, you can

see how to control another movie clip’s Timeline. Keep in mind that the task

we show you in the preceding section only moves the playhead on the main

Timeline, What you do in this section is move the playhead on a different

movie clip’s Timeline.

Suppose that you have created an animation that you want to execute only

when directed to do so by the user. You can have bouncing balls, danc-

ing bears, and juggling jugglers if you want, all animated and ready to go.

However, you only want the balls to bounce, bears to dance, and jugglers to

juggle when the user so directs. You can add a lot of stop() statements to

different positions on a Timeline of a movie clip to help to control the flow,

but to do so adds an unacceptable level of clutter.

Clutter in an application is a slippery slope to chaos, wringing of hands,

and gnashing of teeth. The bigger the application, the more problems you

encounter. Therefore, the only ActionScript in the movie clip is a single

stop() statement in the first frame of the Timeline.

Now we show you how to do something interesting with a movie clip and

ActionScript.

The following application uses three instances of a single movie clip. The

movie clip represents a glass that fills up using a shape tween. Four buttons

control the glasses and the tween in the movie clip. The following instruc-

tions step you through the process:

 1. Open a new Flash file (ActionScript 3.0), name it, save it under the

name you want, and then name the layer.

 We saved our file as McTimeLine.fla and named the layer actions.

 2. Choose Insert➪New Symbol.

 The Create New Symbol dialog box appears.

 3. Type the name for the symbol, select Movie Clip for the type of

symbol, and then click OK.

 The Symbol Editor appears, where you can create your movie clip as

though you’re working on the main Timeline.

 We typed Cup for the name.

 4. In Symbol Editor mode, name the layer and type the stop(); statement

in the Actions panel (as shown in Figure 1-5).

 We named the layer action.

23_385395-bk04ch01.indd 27623_385395-bk04ch01.indd 276 10/28/08 8:26:34 PM10/28/08 8:26:34 PM

277

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Controlling Movie Clip Timelines

Figure 1-5: The Timeline in the Symbol Editor shows the shape tween in the midway position.

 5. Click on a frame and press the F5 key to add frames from Frame 1 all

the way out to your chosen frame. Then lock the action layer.

 We chose to add frames out to Frame 30 and then locked our action

layer.

 6. Add at least one more layer beneath the action layer, name the new

layers, and lock them.

 Our example adds two more layers beneath the actions layer and

names them glass and wine, respectively (refer to Figure 1-5); we

locked only the wine layer.

 7. Select a layer where you want your image and draw or paste an image

on the Stage.

 We selected the glass layer and pasted an image of a glass on the Stage.

We used a large (roughly 70 x 400) image to make it easier to create a

shape tween of liquid being added in the next step. After we finished, we

locked the glass layer.

23_385395-bk04ch01.indd 27723_385395-bk04ch01.indd 277 10/28/08 8:26:34 PM10/28/08 8:26:34 PM

278 Controlling Movie Clip Timelines

 8. Unlock the layer you plan to use, select it, and use the Paint tool to

add drawings to be tweened.

 We unlocked the wine layer, and using the Paint tool, brushed a small

burgundy-colored (#8E3557) dab at the bottom of the glass. This makes

it look as though just a small bit of wine remains.

 9. Click on the frame where you want the tween to end and press the F6

key to add a keyframe. Expand the painted image to the size you want

at the end of the tween.

 We selected Frame 30 on the wine layer to add a keyframe. Using the

Paint tool, we filled in the area so that the entire glass is burgundy col-

ored. You can expand the initial paint dab using one of the selection tools

or just paint using the Paint tool to fill it up. The largest glass in Figure 1-7

(later in the chapter) shows what the filled glass should look like.

 10. Click on the first frame of the current layer and right+click the mouse

(or Ctrl+click on the Mac) to open the context menu. When the context

menu opens select Create Shape Tween. To check whether the tween

is working as intended, drag the playhead back and forth on the

Timeline.

 We selected the wine layer. The arrow with a green background on the

wine layer told us that we had successfully created a shape tween. If

everything is working correctly, save all files and then click the Scene 1

icon to close the Symbol Editor and open the main Timeline.

 11. In the main Timeline, add three layers and provide names for them.

 We named the layers buttons, glasses, and table, placing them

below the actions layer, as shown in Figure 1-6. Then we locked all

layers except the table layer. In the upper-right corner, we added a

rectangle that serves as a “table” on which to place the wine glasses.

After it was completed, we locked the table layer.

 12. Prepare to add your movie clips above the background layer by

unlocking the layer and locking the others. Drag your movie clips

from the Library panel to the Stage and use the tools to modify them.

 We selected the glasses layer and dragged three instances of the Cup

movie clip from the Library panel to the table area, as shown in Figure

1-6. We resized the Cup instances using the Free Transform tool.

 13. Select each movie clips object, and in the Properties panel, provide

each one with a unique instance name in the Instance window.

 We selected each of the Cup instances and in the Instance name window

in the Properties panel, named them glass1, glass2, and glass3. This

step is crucial because ActionScript uses those names to reference each

instance. We locked the glass layer when we finished.

23_385395-bk04ch01.indd 27823_385395-bk04ch01.indd 278 10/28/08 8:26:35 PM10/28/08 8:26:35 PM

279

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Controlling Movie Clip Timelines

 14. Unlock and select the layer where you plan to place your buttons. Use

the Oval tool to draw an image on the Stage that you will transform

into a button. Then select the image and press F8 to open the Convert

to Symbol dialog box and select Button as the type. Finally, provide a

name for the symbol and click OK.

 We used the buttons layer (no surprise there). Using the Oval tool, we

drew a simple circle for our button shape and named it fill. When you

click one of these buttons, it fills the glass — we probably could have

named it Phil.

 15. Drag button instances from the Library panel to the Stage and arrange

them as you want them to appear. Then select each button and pro-

vide each one with a unique instance name in the Properties panel.

 We made a total of four buttons and arranged them vertically, as shown

in Figure 1-6. Then, in a fit of creativity, we named the buttons btn1,

btn2, btn3, and btn4, respectively, from top to bottom.

 16. Add static text labels to the buttons. Then lock the layer when you’re

finished.

 Figure 1-6 shows the labels we used for the buttons, ordering from top

to bottom, Full, Half, Third, and Down the Hatch.

 17. Click the first frame of the actions layer, open the Actions panel and

add the ActionScript. Then save the file.

 We used the following code:

//Buttons
btn1.addEventListener(MouseEvent.CLICK,full);
btn2.addEventListener(MouseEvent.CLICK,half);
btn3.addEventListener(MouseEvent.CLICK,third);
btn4.addEventListener(MouseEvent.CLICK,empty);
//Button Functions
function full(e:MouseEvent):void
{
 glass1.gotoAndStop(30);
}

function half(e:MouseEvent):void
{
 glass2.gotoAndStop(15);
}

function third(e:MouseEvent):void
{
 glass3.gotoAndStop(10);
}

function empty(e:MouseEvent):void

23_385395-bk04ch01.indd 27923_385395-bk04ch01.indd 279 10/28/08 8:26:35 PM10/28/08 8:26:35 PM

280 Controlling Movie Clip Timelines

{
 glass1.gotoAndStop(1);
 glass1.rotation=90;
 glass1.x=450,glass1.y=200;
 glass2.gotoAndStop(1);
 glass3.gotoAndStop(1);
\}

Figure 1-6: Adding movie clip and button instances to the Stage.

 18. Test the application by pressing Ctrl+Enter (or Ô+Return on the Mac).

 After the application has launched, click the different buttons. You see

the glasses filled at different levels after clicking the top three buttons,

as shown in Figure 1-7.

23_385395-bk04ch01.indd 28023_385395-bk04ch01.indd 280 10/28/08 8:26:35 PM10/28/08 8:26:35 PM

281

Book IV
Chapter 1

W
ho’s Afraid

of the Big Bad
ActionScript 3.0?

Controlling Movie Clip Timelines

Figure 1-7: ActionScript controls the tweens in the movie clips.

When you press the Down the Hatch button, all glasses are emptied, and one

falls on its side. They’re emptied by moving the playhead to the first frame,

and the glass tipped over had its rotation changed.

23_385395-bk04ch01.indd 28123_385395-bk04ch01.indd 281 10/28/08 8:26:35 PM10/28/08 8:26:35 PM

282 Book IV: Adding ActionScript 3.0 Magic

23_385395-bk04ch01.indd 28223_385395-bk04ch01.indd 282 10/28/08 8:26:35 PM10/28/08 8:26:35 PM

Chapter 2: Working Off the
Timeline with Symbol and
Component Classes

In This Chapter
✓ Working off the Timeline

✓ Writing programs in ActionScript files

✓ Inserting comments in code

✓ Using clip code

✓ Creating a class

✓ Using a symbol button in a class

✓ Addressing classes and instances on the Stage

✓ Using user interface (UI) component classes

✓ Constructing list events

Designers and developers have long been

accustomed to the idea of using clip art in

their work. Clip art includes ready-made draw-

ings and photographs that can be used copy-

right-free in everything from printed flyers to

images used in Flash applications.

You don’t have to be an artist or a designer to

use clip art, but you have to have a sense of design

in terms of where to place it. (Yes, you can create

ugly designs if you put clip art in the wrong surround-

ings!) Likewise, using code, you can cut and paste chunks

of ActionScript code like clip art, but rather than artwork, it’s

just code. That’s all we mean by clip code — it’s just a chunk of code that

you can cut and paste and that does something. To get started working

with ActionScript 3.0 off the Timeline, you may have to think of some of

the codes as clip code: You may not understand all of it at first, but if you

know where to put it, it can accomplish just what you want. Coding “off the

Timeline” means that you write ActionScript in separate (ActionScript) files

rather than in the Actions panel associated with a keyframe on the Timeline.

24_385395-bk04ch02.indd 28324_385395-bk04ch02.indd 283 10/28/08 8:27:23 PM10/28/08 8:27:23 PM

284 Breaking the Timeline Habit

Breaking the Timeline Habit
Having code scattered throughout keyframes in a Flash application multiplies

exponentially the chance of experiencing a disaster every time you add a new

keyframe with code attached. Changing code makes an even bigger mess, so

we show you how to use the available tools in Flash CS4 and ActionScript 3.0

to start working without having to rely on code embedded in the Timeline.

Forming a tag team with ActionScript
and a Flash file
Before you begin creating applications with ActionScript 3.0, you must to con-

sider two basic concepts: class and object. An easy way to think of these two

concepts is in terms of a template for a class and an actual use of the template

for an object. For example, Flash CS4 lets you open the Advertising template

named Banner. That template is similar to a class — it’s the general outline.

Some templates are rich and complex, and others, like the Banner template, are

quite simple. When you use the banner template to create a banner for your

company, Acme Flash Developers, for example, that’s analogous to an object.

Rather than have you develop programs using the Actions panel, we show

you how to use another method that doesn’t use the Timeline. Flash files are

used in conjunction with ActionScript files. The Flash file provides the Stage

for any graphics and symbols you want to create and access ActionScript

by a reference to a class name. That class name is embedded in the

ActionScript file. Figure 2-1 illustrates this method of working with dual files.

With a Flash file open, you just type the class name in the Properties panel.

Then you use that name for the class you create in the ActionScript file.

Most classes begin with these lines:

package
{
 class ClassName
 {
 function ClassName()
 {

The package statement may be followed by the name of a folder where you

have stored other classes. No matter what, you start your class definition

with package. Following a curly brace ({), type the class statement fol-

lowed by the name of the class and another curly brace ({). After the second

curly brace ({), add a constructor function, which typically has the same

name as the class. The constructor function contains the main statements

that can call other functions (methods) in the class and construct objects

from other classes or assign values to properties.

24_385395-bk04ch02.indd 28424_385395-bk04ch02.indd 284 10/28/08 8:27:24 PM10/28/08 8:27:24 PM

285

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Breaking the Timeline Habit

Figure 2-1: A Flash file and an ActionScript file with class.

When you create a class in ActionScript 3.0, your class generally inherits from

another class that has all the necessary methods, events, and properties you

need in order to display objects on the Stage. More likely than not, you use

the Sprite or MovieClip class as a basis for your new class. We prefer using

the Sprite class because we don’t need the Timeline for most projects, and the

files are a bit smaller. To inherit a class, ActionScript 3.0 uses the extends

statement. Furthermore, to use the Sprite class in addition to most other

classes, the other classes need to be imported from the appropriate package.

For example, the Sprite class is imported using the following line:

import flash.display.Sprite;

All imports generally begin with either flash or fl. The flash packages

contain the bulk of ActionScript classes, and fl packages contain compo-

nents such as buttons and lists. As you can see in Book VII, Chapter 2, com-

ponents are treated just like classes in that they have properties, methods,

and events that you can address with code.

24_385395-bk04ch02.indd 28524_385395-bk04ch02.indd 285 10/28/08 8:27:24 PM10/28/08 8:27:24 PM

286 Breaking the Timeline Habit

Comments and clip code
In a computer program, comments are lines of code that are used to remind

the developer what the code is used for or to suggest alternatives. You usu-

ally see comments embedded within lines of code. A single comment is pref-

aced by double slashes (//). In our example, the following line reminds the

developer that the color red is used:

//0xcc0000 is a medium dark red

Sometimes, comments are used to add a title or description at the beginning

of a code set. At other times, comments are quite long, and rather than place

double slashes at the beginning of every line, the developer uses /* to begin a

block of comments and */ to end the block. For example, the following block

reminds the developer that different options are available for text styling:

/* Instead of using the default serif
font, try a sans serif font, such as
Arial or Verdana. Also, consider
changing the background color to make
it stand out more.
*/

Comments are important for making code easier to understand for develop-

ers — and for the people they work with. Comments help explain what’s

going on in a program. In this book, you see some comments, but because

most of the code is described in the text, comments in the code are minimal.

Seeing the flow of the code is important, and sometimes comments can get

in the way of seeing that flow. So, because you’re finding out how to use

ActionScript 3.0, we decided not to put too many comments in the code.

The first piece of clip code is something you can cut and paste into most of

your classes. It’s a class template that you see repeatedly in this book. You

can save the template in an ActionScript file named ClassStarter and just

load it up and then use the Save As command to save it as the name of the

current class:

//Class Starter
package
{
 import flash.display.Sprite
 /*Declare private variables
 here */
 public class ClassName extends Sprite
 {
 public function ClassName()
 {
 //Add statements here
 }
 }}

24_385395-bk04ch02.indd 28624_385395-bk04ch02.indd 286 10/28/08 8:27:24 PM10/28/08 8:27:24 PM

287

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Breaking the Timeline Habit

The world’s simplest class
In this section, we show you a simple class, and then we show you how to

build a class that displays text in the Output panel using the trace() state-

ment. Follow these steps:

 1. Open a new Flash (ActionScript 3.0) file, and in the Properties panel,

type a name for the class in the Class window and then save the file.

 You see a warning message that the file wasn’t found, but don’t worry

about that. The next step creates the necessary file.

 We named our class SimpleClass, as shown in Figure 2-2. We then

saved the file as SimpleClass.fla.

Figure 2-2: Setting the Document class in a Flash file.

 2. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named our file SimpleClass.as and saved it in the same folder as

SimpleClass.fla.

 3. Open the ClassStarter clip code file and copy the contents to the

Clipboard.

 You can download ClassStarter from this book’s companion Web site at

www.dummies.com/go/flashallinone.

24_385395-bk04ch02.indd 28724_385395-bk04ch02.indd 287 10/28/08 8:27:24 PM10/28/08 8:27:24 PM

288 Breaking the Timeline Habit

 You can copy by choosing Edit➪Select All and then Edit➪Copy or by

pressing Ctrl+A (Windows) or Ô+A (Mac) to select all the code and then

Ctrl+C (Windows) or Ô+C (Mac) to copy it.

 4. Open the file you created in Step 1 (again, we named ours

SimpleClass.as) and paste the ClassStarter code into the file.

 You can paste by choosing Edit➪Paste or by pressing Ctrl+V (Windows)

or Ô+V (Mac).

 5. Edit the code so that it appears as the following and then save the file:

//Simple class
package
{
 import flash.display.Sprite

 public class SimpleClass extends Sprite
 {
 public function SimpleClass()
 {
 trace(“Simple class--hello world”);
 }
 }
}

 As you can see, all you had to change was the name of the class from

ClassName to SimpleClass (or whatever name you chose) and add the

trace statement. (The changes are highlighted in bold.)

 6. Test the application as you would test any Flash file by pressing

Ctrl+Enter (Windows) or Ô+Return (Mac).

 If all the code is entered correctly in the Output panel, you see the text

Simple class--hello world (refer to the bottom of Figure 2-2).

Making a MovieClip class in Flash
During all the time you’re creating movie clips, you’re creating new classes.
Each movie clip can be treated as a class by simply opening the Symbol

Properties dialog box and selecting the Export for ActionScript check box, as

shown in Figure 2-3.

In this application, you don’t place any items on the Stage in the Flash (FLA)

file. Instead, you use the code in the ActionScript file to do it for you. To use

code to place the movie clip on the Stage, you use a display list, which lists

everything displayed on the Stage. You don’t see the list, but ActionScript

keeps it for you. Using the statement addChild(objName), you add

objects to the Stage (and the display list). Using the x and y properties of

the MovieClip class, you can put the movie clip object anywhere you want

24_385395-bk04ch02.indd 28824_385395-bk04ch02.indd 288 10/28/08 8:27:25 PM10/28/08 8:27:25 PM

289

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Breaking the Timeline Habit

on the Stage. The most recently added objects overlap the earlier objects.

However, using addChildAt(objName, index), you can specify the

index level. Higher index values overlap lower index values. Likewise, using

the rotation property, you can angle it any way you want.

Figure 2-3: Exporting a movie clip class for ActionScript.

The next project shows you how easily you can create a class just by work-

ing on a movie clip on the Stage. (And you didn’t think you could make a

class!) Follow these steps:

 1. Open a new Flash (ActionScript 3.0) file, add a class name for the

application in the Class window in the Properties panel and save it.

 You see that pesky alert box telling you that the class doesn’t exist; just

ignore it.

 We named our class MCaction and named the file MCaction.fla.

 2. Choose Insert➪New Symbol to open the Symbol Editor.

 3. When the Create New Symbol box appears, type a name for the

symbol, select MovieClip for the type, and select the Export for

ActionScript check box. Click OK when you’re finished.

24_385395-bk04ch02.indd 28924_385395-bk04ch02.indd 289 10/28/08 8:27:25 PM10/28/08 8:27:25 PM

290 Breaking the Timeline Habit

 We named our symbol ActionBox.

 The Export in Frame 1 check box is automatically selected. (In case you

don’t see it, click the Advanced button to display the advanced options.)

 4. Draw a 150 x 100 rectangle using the Rectangle tool at the 0,0 point in

the Symbol Editor.

 The 0,0 point represents the little crosshair (+) that appears when you

open the Symbol Editor.

 5. (Optional) You can add tweens, inverse kinematics (IK), additional

frames, or anything else that you would add to any other movie clip.

 Figure 2-4 shows a movie clip that’s loaded, containing an IK and some

shape tweens that reverse the rectangle’s fill and stroke colors.

Figure 2-4: Constructing a standard movie clip in the Symbol Editor.

 6. After you finish the movie clip, click Scene 1 and save the FLA file

again.

 Do not place a copy of the movie clip on the Stage. The Stage should

be blank, and the movie clip should be visible in the Library panel.

All the placement is done by ActionScript, and if you leave any movie

24_385395-bk04ch02.indd 29024_385395-bk04ch02.indd 290 10/28/08 8:27:25 PM10/28/08 8:27:25 PM

291

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Breaking the Timeline Habit

clips on the Stage, they may overlap the ones created dynamically by

ActionScript.

 7. Open a new ActionScript file and save it in the same folder as the file

you created back in Step 1.

 We named ours MCaction.as and saved it in the same folder as the

MCaction.fla file.

 8. Add the following script to the ActionScript file and then save the file:

package
{
 import flash.display.MovieClip;

 public class MCaction extends MovieClip
 {
 private var ab1:ActionBox;
 private var ab2:ActionBox;

 public function MCaction()
 {
 ab1=new ActionBox();
 addChild(ab1);
 ab1.x=150, ab1.y=150;
 ab1.rotation=33;

 ab2=new ActionBox();
 addChild(ab2);
 ab2.x=200, ab2.y=165;
 ab2.rotation=-30;
 }
 }
}

 The public and private statements are access statements. If a vari-

able is defined using a private access statement, it can be used only

by elements in the same class. The public access statements are the

default option, but adding them helps to remind you that they’re public.

 9. Save the file and then test the application by pressing Ctrl+Enter

(Windows) or Ô+Return (Mac).

 You see the two movie clips on the Stage, one slightly overlapping the

other, as shown in Figure 2-5. They’re two instances (objects) of the

ActionBox() class. Because a movie clip is involved, the class inherits

(extends) from the MovieClip class rather than from the Sprite class.

24_385395-bk04ch02.indd 29124_385395-bk04ch02.indd 291 10/28/08 8:27:26 PM10/28/08 8:27:26 PM

292 Breaking the Timeline Habit

Figure 2-5: Movie clips sent to the Stage.

Buttons and text fields: A tale of two objects
After you realize that you can treat a movie clip symbol as a class, why

not treat a button symbol and a text field in the same way? You can make

a button symbol and export it for ActionScript, just as you can do with a

movie clip. The button symbol is based on the SimpleButton class. However,

a text field has a different story. A text field, as you might recall, isn’t one of

the symbol options. You create it by using the Text tool. Then you decide

whether the text is Input, Dynamic, or Static, depending on the task. (The dif-

ferent types of text fields are introduced in Book II, Chapter 3.) Nevertheless,

ActionScript has a TextField class that you can dynamically create.

Follow these steps to create a button class by using standard drawing tools

and to create different kinds of text fields using only code:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We saved ours as TextMove.fla.

 2. Open the Properties panel, and in the Class window, type TextMove.

 3. Create a few layers, name them, and save the file.

 We created three layers with the names Labels, Oval, and Lines, from

top to bottom, respectively.

 Add a dark background or use the one shown in Figure 2-6 so that the

light-colored text used by the dynamically created output text field is

visible.

24_385395-bk04ch02.indd 29224_385395-bk04ch02.indd 292 10/28/08 8:27:26 PM10/28/08 8:27:26 PM

293

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Breaking the Timeline Habit

Figure 2-6: The label position on the Stage in the Properties panel.

 4. Choose Insert➪New Symbol to open the Symbol Editor.

 The Create New Symbol box appears.

 5. Type a name for the symbol, select Button for the type, and select the

Export for ActionScript check box.

 We named our symbol Btn.

 The Export in Frame 1 check box is automatically selected. If you

don’t see the check box, click on the Advanced button to display the

advanced options.

 6. Draw a circle that has a 29-point diameter (W=29, H=29) using the

Oval tool at the 0,0 point in the Symbol Editor.

 The 0,0 point is represented by the little crosshair (+), in the middle of

the page, that appears when you open the Symbol Editor.

 7. (Optional) Add varying state conditions in the special Button Timeline

by adding keyframes and different shapes or colors to the button

object; when you’re finished, click on the Scene 1 icon to close the

Symbol Editor.

24_385395-bk04ch02.indd 29324_385395-bk04ch02.indd 293 10/28/08 8:27:27 PM10/28/08 8:27:27 PM

294 Breaking the Timeline Habit

 8. Back on the main Timeline, add the following text to the Labels

layer by using the Text tool set to Static Text. (See Book II, Chapter 3

for a refresher on how to add static text with the Text tool.) Use the

Properties panel to create the precise x and y values.

 • Input Text: x=223, y=97

 • Output Text: x=223, y=161

 • Click to transfer text: x=260, y=219

 Figure 2-6 shows the first label’s information in the Properties window.

 9. Save the file.

 If you’re a designer, add the text where you think it looks best and make

a note of the x and y positions by selecting the objects and checking the

Properties panel. Likewise, you can add Input and Dynamic text fields

and align them with the labels. Make a note of the Input and Dynamic

text fields and remove them from the Stage. Then when you’re entering

the code that includes the x and y positions of the Input and Dynamic

text fields, everything looks the way you intended.

 10. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We saved our file as TextMove.as in the same folder as the TextMove.
fla file.

 11. Add the following script to the ActionScript file:

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.text.TextField;
 import flash.text.TextFieldType;

 public class TextMove extends Sprite
 {
 private var btn:Btn;
 private var inputTxt:TextField;
 private var outputTxt:TextField;

 public function TextMove()
 {
 //Button
 btn=new Btn();
 addChild(btn);
 btn.x=216,btn.y=220;
 btn.addEventListener(MouseEvent.CLICK, moveText);
 //Input Text Field
 inputTxt=new TextField();
 inputTxt.width=86,inputTxt.height=18;
 inputTxt.x=223,inputTxt.y=66;
 inputTxt.background=true;
 inputTxt.border=true;
 inputTxt.type=TextFieldType.INPUT;
 addChild(inputTxt);

24_385395-bk04ch02.indd 29424_385395-bk04ch02.indd 294 10/28/08 8:27:28 PM10/28/08 8:27:28 PM

295

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Code and Design Made Easy

 //Dynamic Text Field
 outputTxt=new TextField ();
 outputTxt.textColor=0xDDDCC5;
 outputTxt.type=TextFieldType.DYNAMIC;
 outputTxt.x=223,outputTxt.y=128;
 addChild(outputTxt);
 }
 private function moveText(e:MouseEvent):void
 {
 outputTxt.text=”Hi, “+inputTxt.text+”!”;
 }
 }
}

 12. Save the file and test it by pressing Ctrl+Enter (Windows) or Ô+Return

(Mac).

 Figure 2-7 shows that All in One has been entered in the Input text

field and that Hi, All in One! now appears in the Output text field.

Figure 2-7: Sending text and a greeting to a dynamic text box.

Code and Design Made Easy
In case the idea of creating all your class-based objects in code is just too

much for you, you can mix code with objects you place on the Stage. You

may already know this if you read Chapter 1, but in that chapter, we use the

Actions panel and not classes. In this section, we show you what you need to

do to write classes that can reference an object on the Stage.

24_385395-bk04ch02.indd 29524_385395-bk04ch02.indd 295 10/28/08 8:27:28 PM10/28/08 8:27:28 PM

296 Code and Design Made Easy

Going back to instance names
The good news about using objects created on the Stage is that you simply

give the object an instance name, as we mention in Chapter 1. The display

list holds the order that you put objects on the Stage and not the order

that you instantiate them in code. You don’t have to declare or instantiate

objects in code that you place on the Stage, but you do have to give each

one an instance name. Furthermore, because you’re using symbols, you

need not select the Export for ActionScript check box.

This process sounds easy if you’re used to working on the Stage. The only

drawback is that you cannot see the instance names of the objects unless

they’re selected and the Properties panel is open. So, when you’re writing

your code, you need to remember the instances names.

If you choose to give objects instance names on the Stage, you might want

to add the instance names in sections of your program that are commented
out — they’re nonrunning sections of code in comment lines or tags.

(Nonrunning code refers to comments in the code that are not executed when

the program runs.)That way, you can have the instance (object) names right

in front of you while you’re entering ActionScript.

Easy application and easy objects
To see how the mixed-code-and-symbol approach works, we devised a

simple application that sends different text to two dynamic text boxes. Using

two buttons that you create on the Stage, along with the two text fields, also

created on the Stage, you use the instance names to send each text box a

message. The following steps show you how:

 1. Open a new Flash (ActionScript 3.0) file and open the Properties panel

from the dock or from the Windows menu. Type a class name in the

Class window and save the file.

 We named our class OnStage and saved the file as OnStage.fla.

 2. Draw a circle, select it, choose Modify➪Convert to Symbol (press F8)

to open the Convert to Symbol dialog box, select Button as the type,

type a name for the symbol, and click OK.

 We typed Btn for the symbol name.

 3. Make a copy of the button symbol and place it on the Stage.

 You now have two buttons on the Stage.

 4. Select the first button and open the Properties panel from the dock or

by choosing Windows➪Properties from the menu bar. Give the button

an instance name, and then do the same for the second button.

 We named our buttons btn1 and btn2.

24_385395-bk04ch02.indd 29624_385395-bk04ch02.indd 296 10/28/08 8:27:28 PM10/28/08 8:27:28 PM

297

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

Code and Design Made Easy

 5. Select the Text tool and click on the Stage.

 6. In the Properties panel, select the font you want and set the Text type

to Dynamic in the pop-up menu at the top of the Properties panel.

 7. Give the text field an instance name, copy the text field on the Stage,

and give it a different instance name.

 We named our instances txt1 and txt2, respectively.

 Use a different size, color, and font type for the two different text fields so

that you can see the difference in the text when you launch the program.

 8. Save the file.

 Figure 2-8 shows an example of two text fields and buttons on the Stage.

Figure 2-8: Two button instances and two text field instances on the Stage.

 9. Open a new ActionScript file, name it, and save it in the same folder

in which you saved the file you created in Step 1.

 We named our file OnStage.as and saved it in the same folder as

OnStage.fla.

24_385395-bk04ch02.indd 29724_385395-bk04ch02.indd 297 10/28/08 8:27:28 PM10/28/08 8:27:28 PM

298 Code and Design Made Easy

 Add the following script to the ActionScript file:

package
{
 import flash.events.MouseEvent;
 import flash.display.Sprite;
 {
 public class OnStage extends Sprite
 {
 public function OnStage()
 {
 btn1.addEventListener(MouseEvent.CLICK, showTxt1);
 btn2.addEventListener(MouseEvent.CLICK, showTxt2);
 }
 private function showTxt1(e:MouseEvent)
 {
 txt1.text=”This is txt1”;
 }
 private function showTxt2(e:MouseEvent)
 {
 txt2.text=”This is txt2”;
 }
 }
 }
}

 10. Save the file and test it by pressing Ctrl+Enter (Windows) or Ô+

Return (Mac).

 You should see the text moving directly into the designated text field

when the buttons are clicked, as shown in Figure 2-9.

Figure 2-9: ActionScript content in two text fields.

24_385395-bk04ch02.indd 29824_385395-bk04ch02.indd 298 10/28/08 8:27:29 PM10/28/08 8:27:29 PM

299

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

The Simple Power of User Interface (UI) Component Classes

The Simple Power of User Interface (UI)
Component Classes

For the most part, a component is nothing more (or less) than a fancy movie

clip. You know that you can work with movie clips, so it follows that you

should be able to work with components. Elementary, my dear Watson!

After you exhaust the logical deductions we tackle in this book, consider

the advantages you have in using components. In Book VI, you see plenty of

examples of using video components, so in this section, we focus only on UI

components.

For the most part, components have more properties and methods than

noncomponent symbols, such as the movie clips and buttons, which means

that it’s easier to add content to a UI component. For example, if you create

a button, you cannot dynamically label it (without a lot of extra work), nor

can you easily change its other properties. With the Component button, you

can easily label it or change it.

Choosing from a list
A handy user interface in most applications is a list. Users can see the selec-

tions in the List component and choose what they want by simply clicking

the appropriate choice. To illustrate how a list might be used and indicate

which ActionScript to use with it, this next Flash application uses both a list

and some TextArea components. After a user selects a name from the List

UI, a quote from that name appears in the TextArea.

List events
In the next Flash application, you let the user click a name in the List com-

ponent, and a quote from that person then appears in the TextArea compo-

nent. So you have to listen for a click on a list item — one of the selections in

the list. The particular event handler looks like this:

list.addEventListener(ListEvent.ITEM_CLICK,handler);

The preceding line shows essentially the same kind of listener you see on

buttons. However, rather than a MouseEvent, it’s a ListEvent. The event is

an ITEM_CLICK rather than a CLICK. Otherwise, though, it uses exactly the

same logic.

24_385395-bk04ch02.indd 29924_385395-bk04ch02.indd 299 10/28/08 8:27:29 PM10/28/08 8:27:29 PM

300 The Simple Power of User Interface (UI) Component Classes

List data
To be able to select from a List component, you need to put something in

the List. Using the Component inspector, you add both a label and some

data. The label becomes what you see, and the data is a value (numeric

or string) associated with the label. All you need is some kind of abbrevi-

ated code — initials, for example — to determine which quote to display.

For example, for Dorothy Parker, you can use dp. However, for Homer, you

can use hom (because, like Madonna and Cher, Homer has only one name).

Figure 2-10 shows the names in the label and the data. (Whatever value you

place in the label row becomes the name that appears in the selected row.)

Figure 2-10: Adding content to the List component.

To get the data out of the list box, you must capture the event property.

The ListEvent class has item.label and item.data properties. Using the

item.data properties, you use a switch statement to determine which

item has been clicked. (The switch statement is explained in detail in

Chapter 4 of this minibook.) Here, switch is a clip code that you can cut,

paste, and edit, and it determines which of several choices have been made:

24_385395-bk04ch02.indd 30024_385395-bk04ch02.indd 300 10/28/08 8:27:29 PM10/28/08 8:27:29 PM

301

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

The Simple Power of User Interface (UI) Component Classes

private var choice:String;
private var choiceNum:Number;
. . .
choice=”choiceB”;
switch(choice)
{
 case “choiceA” :
 //Do A;
 break;

 case “choiceB” :
 //Do B;
 break;

 case “choiceC” :
 //Do C;
 break;
}

The switch clip code can be expanded (to the limit of the computer and the

language) to add as many choices as you want. The choice variable can be

a string or a number. The numeric variable choiceNum in the clip code is

used where the data is numeric.

Don’t quote me!
The application in this section shows how to use components on the Stage

with class references through an ActionScript 3.0 user class. Creating the

application in the following steps requires only two components on the Stage:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We saved ours as AutoQuote.fla.

 2. Open the Properties panel from the dock or by choosing

Windows➪Properties from the menu bar. In the Property panel’s

Class window, type AutoQuote and save the file.

 Ignore the error message that informs you that no such class exists.

 3. Open the Components panel from the dock or by choosing

Windows➪Components from the menu bar. Drag some components

from the Components panel to the Stage or double-click the compo-

nents for them to jump to the Stage. Position the components on the

Stage by dragging them. Select the components you want to change

and make the changes in the Properties panel.

 We dragged one List and one TextArea component to the Stage, placing

the List component directly above the TextArea component. (Figure 2-11

shows where we placed them.) We changed the size of the List compo-

nent to 150 x 100 and the TextArea to 300 x 150 by using the Properties

panel. The two components were then center-aligned to the Stage using

the Align panel.

24_385395-bk04ch02.indd 30124_385395-bk04ch02.indd 301 10/28/08 8:27:30 PM10/28/08 8:27:30 PM

302 The Simple Power of User Interface (UI) Component Classes

Figure 2-11: Displaying a quote from the selected item in the List component.

 4. Select each component, and in the Properties panel enter the instance

name for the component.

 We named the List component list and the TextArea component

output.

 5. Open the Component inspector and click on the dataProvider magni-

fying glass icon.

 This step opens a box named Dialog, where you can enter the informa-

tion for the list box.

 6. Click on the plus sign icon (+) and enter the label and data information.

 Here’s our example:

 • Label: Dorothy Parker: Data: dp

 • Label: Groucho Marx: Data: gm

 • Label: Homer: Data: hom

 • Label: Shakespeare: Data: ws

 • Label: Beryl Markham: Data: bm

 When you finish, you should see the label names you entered in your

List component on the Stage. Save the file.

 7. Open a new ActionScript file and save it.

 We saved ours as AutoQuote.as.

24_385395-bk04ch02.indd 30224_385395-bk04ch02.indd 302 10/28/08 8:27:30 PM10/28/08 8:27:30 PM

303

Book IV
Chapter 2

W
orking O

ff
 the Tim

eline w
ith

Sym
bol and

Com
ponent Classes

The Simple Power of User Interface (UI) Component Classes

 Add the following code in the file and save the file again:

package
{
 import flash.display.Sprite;
 import fl.events.ListEvent;

 public class AutoQuote extends Sprite
 {
 private var choice:String;
 private var dorothy:String;
 private var groucho:String;
 private var homer:String;
 private var shake:String;
 private var beryl:String;

 public function AutoQuote()
 {
 //Quotes
 dorothy=”Take care of luxuries and “;
 dorothy+=”the necessities will take “;
 dorothy+=”care of themselves.”;
 //
 groucho=”Those are my principles, “;
 groucho+=”and if you don’t like them”;
 groucho+=”... well, I have others.”;
 //
 homer=”A generation of men is like “;
 homer+=”a generation of leaves; “;
 homer+=”the wind scatters some leaves “;
 homer+=”upon the ground, while others “;
 homer+=”the burgeoning wood brings forth”;
 homer+=”--and the season of spring comes on.”;

 homer+=”So of men one generation springs”;
 homer+=”forth and another ceases.”;
 //
 shake=”For I have neither wit, “;
 shake+=”nor words, nor worth,”;
 shake+=”\nAction, nor utterance, “;
 shake+=”nor the power of speech,”;
 shake+=”\nTo stir men’s blood: “;
 shake+=”I only speak right on;”;
 shake+=”\nI tell you that which “;
 shake+=”you yourselves do know;”;
 //
 beryl=”You can live a lifetime “;
 beryl+=”and, at the end of it,”;
 beryl+=” know more about other people “;
 beryl+=”than you know about yourself”;

 list.addEventListener(ListEvent.ITEM_CLICK, sendSelect);
 }
 private function sendSelect(e:ListEvent)
 {
 choice=e.item.data;
 switch (choice)
 {
 case “dp” :
 output.text=dorothy;
 break;

24_385395-bk04ch02.indd 30324_385395-bk04ch02.indd 303 10/28/08 8:27:30 PM10/28/08 8:27:30 PM

304 The Simple Power of User Interface (UI) Component Classes

 case “gm” :
 output.text=groucho;
 break;

 case “hom” :
 output.text=homer;
 break;

 case “ws” :
 output.text=shake;
 break;

 case “bm” :
 output.text=beryl;
 break;
 }
 }
 }
}

It’s easier to read the code in a long string if you use the += compound oper-

ator. It adds each new part of the string to the whole while letting you see

what you’re writing.

Wherever you want a line break in a string of text, use the \n character.

When you test the application, you can click any of the names in the list and

display the associated quote in the TextArea component. If your text is a

long quote that’s overruns the space provided, a scroll bar appears auto-

matically so that you can scroll and read the entire text. Figure 2-11 shows

an example of what you see.

24_385395-bk04ch02.indd 30424_385395-bk04ch02.indd 304 10/28/08 8:27:30 PM10/28/08 8:27:30 PM

Chapter 3: Formal Features
and Structures

In This Chapter
✓ Checking out basic ActionScript 3.0 structure

✓ Typing data

✓ Adding instance names for stage objects

✓ Using components in the Library panel

✓ Ogling variables, constants, and objects

✓ Importing packages

✓ Setting access

✓ Working with operators

✓ Commenting and uncommenting code

✓ Understanding logical operations

Up to this point in this book we really

haven’t discussed the general features of

ActionScript 3.0. Usually, discussions of the new

ActionScript begin with explanations of all of the

different parts and structures. Thus far we’ve

decided to choose the road less traveled and

discussed several key features and structures

and asked you to use clip code with the promise

that everything will be explained in good time. Well,

now is that good time, and so in this chapter we’ll

explore the groundwork for the code we’ve been using

in earlier chapters. By understanding the structures and

features, you will become less dependent on clip code and can

start developing your own code to create whatever you want.

25_385395-bk04ch03.indd 30525_385395-bk04ch03.indd 305 10/28/08 8:28:21 PM10/28/08 8:28:21 PM

306 Checkin’ Out the Basics: “My, My, I Declare!”

Checkin’ Out the Basics: “My, My, I Declare!”
One of the most important basic structures in ActionScript is the variable,

which is simply a temporary storage place where you can put data. To make

life interesting, the data within a variable can change. For example, suppose

you have a variable that stores the current temperature — tempNow. As the

day passes, the temperature might be hot and then later cool off, and the

temperature changes. So, the first time we look, tempNow might be 95, and

at another time it might be 68. In this case, the variable’s value has changed

(from 95 to 68) but we’re still using the same variable.

Often, we will use different properties of a class to store information that

changes, and so you can think of class properties as variables that belong to

the class.

You are soooo not my type!
In early versions of ActionScript, the variables were sometimes considered

smart, which meant that you could put any kind of data you wanted into a

variable. For example, a variable smartyPants could have number or string

values (as defined in the next section) and so the following sequence was

perfectly acceptable:

smartyPants = 55;
trace(smartyPants);
smartyPants = “fifty-five”;
trace(smartyPants);

You cannot do this in ActionScript 3.0. To make the code run better and

faster, every variable now has a type. When you declare a variable, you enter

a type to indicate what kind of data it can hold. Depending on what you want

to do and which type (or types) you use. Think of String types as text and

Number types as plain old numbers. For example, if you want to keep track

of purchases and add them up, you would want a Number type; however, if

you want to store the names of your friends, you would use a String type.

Figure 3-1 shows the basic structure of a command that declares a variable

and assigns it a value.

You do not need to assign a value to a variable when you declare it. All you

need to declare a variable is indicate that it is a variable with var, give it a

name (such as myVar) and indicate the variable type by placing a colon (:)

followed by the data type (type). The following examples show some differ-

ent types of variables you may declare and assign values:

25_385395-bk04ch03.indd 30625_385395-bk04ch03.indd 306 10/28/08 8:28:22 PM10/28/08 8:28:22 PM

307

Book IV
Chapter 3

Form
al Features

and Structures
Checkin’ Out the Basics: “My, My, I Declare!”

Name of variable

Indicates a variable Data type

Must be consistent with type

var myVar:Type = value;

Figure 3-1: Declaring a variable and assigning a value.

var bestFriend:String;
var crowdSize:int;
var averageWeight:Number;
var favColor:uint;

All of the above variables have fairly general types:

 ✓ A string is any kind of expression enclosed in quotation marks

(“string”). Usually, a string is used where the variable stores a

description or label. For example, the address 123 Elm Street is a

string even though it contains numbers.

 The numbers in an address or a phone number are really identifiers and

cannot perform like numbers. If you add two addresses, you’ll find that

you do not get the sum of the two!

 When working with strings, be careful if you copy and paste a program

from a word processor or PDF file. Sometimes, smart quotes are used.

Smart quotes are either opening (“) or closing (”) quotes and are not

recognized by ActionScript. You need the straight quotes (“ “) that are

identical for opening and closing a string.

 ✓ Numbers, even simple ones, are a little trickier. Three different numeric

types are used: int (integer), uint (unsigned integer), and Number

(real number.) An integer is any whole number, be it positive or nega-

tive. If your integers are all positive, use unsigned integers. Finally, real

numbers are floating point numbers that can have fractions. They’re

called real because they can have fractions, and floating point because

the decimal point can change places (float). (Unreal numbers are what

you put on your expense account!)

We will be using type differently than usual. Expressions such as typing a
variable or an object has been typed as a Button aren’t talking about someone

pounding away on a keyboard; rather, typed refers to what type a variable or

object has been declared.

25_385395-bk04ch03.indd 30725_385395-bk04ch03.indd 307 10/28/08 8:28:22 PM10/28/08 8:28:22 PM

308 Checkin’ Out the Basics: “My, My, I Declare!”

Typing on the Stage
So far in this minibook, you’ve created instances () of Buttons and

MovieClips on the Stage using the tools available in Flash CS4 for drawing.

When you use Flash tools to create objects on the stage and provide them

instance names in the Properties panel, you are, in effect, declaring and

typing them. Therefore, you don’t have to do it again, nor do you need to

import Button or MovieClip objects when created on the stage — it’s done

automatically. Likewise, when using the different UI components, once they

have been declared on the stage using the Properties panel, you need not

type them or import their base class. That’s also done automatically when

you put an instance name in the Properties panel.

Using components in the Library
Say you want to dynamically create user interface (UI) buttons on the stage

with different buttons being available in different contexts: In one context,

you want five buttons, and in another you only want three. If you create

five buttons on the stage, you can reduce the number from five to three by

making two of them invisible. However, doing so will force you to rename

labels and perform other chores that may be more trouble than using

ActionScript.

To make objects more flexible when you create them on the stage, place

them in the Library panel. For example, if you place a Button component in

the Library but do not have it on the stage, you can access it by code. You

have to import the Button class and place a UI button in the Library panel.

Here’s an outline of the procedure:

 1. Place a UI in the library.

 2. Import the UI object in the code.

 3. Declare an instance.

 4. Instantiate an instance.

 5. Add the instance to the display.

As an example, the following code shows Steps 2 through 5. (We assume that

the UI component has already been placed in the Library, as mentioned in

Step 1.) Note that the lines in boldface correspond with Steps 2 through 5 in

the preceding list, respectively:

25_385395-bk04ch03.indd 30825_385395-bk04ch03.indd 308 10/28/08 8:28:22 PM10/28/08 8:28:22 PM

309

Book IV
Chapter 3

Form
al Features

and Structures
Checkin’ Out the Basics: “My, My, I Declare!”

package
{
 import flash.display.Sprite;
 import fl.controls.Button; //Import

 public class TestBench extends Sprite
 {
 private var btnUI:Button; //Declare

 public function TestBench()
 {
 btnUI=new Button(); //Instantiate
 btnUI.label=”UI for You!”;
 btnUI.x=150, btnUI.y=200;
 addChild(btnUI); //Add to display list
 }
 }
}

If you make any changes to the UI component, such as color, shape, or size,

those changes will be seen when the component is placed on the stage. You

can also use ActionScript to make changes.

Even though a component is in the library, you need to provide a way to

reference each instance of the component. You cannot use the Properties

panel, because the component needs to be on the Stage. All you have to do

is to use a name when you declare it so that the instance name will be cre-

ated just as any other variable would be.

Variables, constants, and objects
When creating a variable or object, use the var statement.

When you create a constant (a value that does not change), you use the

const statement. Because both variables and objects have been discussed,

let’s look at constants.

Like the name implies, constants do not vary. Certain things are immutable

such as the value of pi, the freezing point of water (32 °F/0 °C) and water’s

boiling point (212 °F/100 °C). Once you assign a value to a constant, you

cannot change it. Also, by convention, constants are written in ALL CAPS to

help you remember they’re constants and not variables.

In the following code, you’ll see how constants differ from variables and

object properties. Once you declare and assign a value to a constant, any re-

assignment of a value results in an error.

25_385395-bk04ch03.indd 30925_385395-bk04ch03.indd 309 10/28/08 8:28:22 PM10/28/08 8:28:22 PM

310 Checkin’ Out the Basics: “My, My, I Declare!”

const FREEZE:uint= 32;
trace(FREEZE);
FREEZE= 55; // causes error
trace(FREEZE);

You’ll get the following error message:

1049: Illegal assignment to a variable specified as constant.

That’s exactly what you want to happen with a constant. Any change in the

constant’s value means it is varying (like a variable) and it’s not supposed to

do that.

Types that need importing
One of the ongoing learning experiences in ActionScript 3.0 is knowing when

to load a class you want to use. Rather than learning all of the classes that

require you to load a package that includes the class, it’s easier to just learn

what classes you do not need to import. These are the top-level classes that

are packaged with Flash CS4 ActionScript 3.0.

If you don’t see the object class you wish to import in Table 3-1, plan on

using the import statement.

Table 3-1 Top-Level Classes
ArgumentError arguments Array

Boolean Class Date

DefinitionError Error EvalError

Function int Math

Namespace Number Object

QName RangeError ReferenceError

RegExp SecurityError String

SyntaxError TypeError uint

URIError Vector VerifyError

XML XMLList

The import statement itself is similar whether you’re importing classes

or components. (Okay, okay, components are classes, but it helps to

differentiate them for now.) Figure 3-2 shows the format for importing

classes and components.

25_385395-bk04ch03.indd 31025_385395-bk04ch03.indd 310 10/28/08 8:28:22 PM10/28/08 8:28:22 PM

311

Book IV
Chapter 3

Form
al Features

and Structures
Checkin’ Out the Basics: “My, My, I Declare!”

Components

Import statement Name of package Class/component name

import flash.package.Class

import fl.package.Component

Non-components

Figure 3-2: Importing classes and components.

As a rule, components are in the fl.* packages and the non-components

are in the flash.* packages. However, to make your life more interesting,

Adobe also includes in the fl.* package, a class for Multilanguage text

(fl.lang), ActionScript 3.0 Motion classes (fl.motion), and one for

Tween and Transition classes (fl.transitions).

Use the asterisk (*) as a wildcard character to allow you to quickly download

multiple files with names that begin identically and end differently. So a refer-

ence to flash.media.* means that everything in the flash.media package

that begins with flash.media.* will be either imported or referenced.

Don’t use the asterisk (*) wildcard for importing a package unless you know

you will be using everything (or almost everything) in the package. If you only

need the Video class in the flash.media package, for example, using the

wildcard would load up nine unnecessary classes, adding unnecessary size

(bulk!) to the file and giving the loading and processing more work to do.

To know which class belongs to which package, say that you have flash.
display, flash.text, flash.net, and other flash.this-and-that

packages. If you want to create a MovieClip object, you should first know

the correct package to import, but none of the flash.* package names

seem to have anything to do with the MovieClip class based on the package

name.

25_385395-bk04ch03.indd 31125_385395-bk04ch03.indd 311 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

312 Checkin’ Out the Basics: “My, My, I Declare!”

Rather than trying to memorize all the classes in all the packages in the

ActionScript 3.0 Language and Components Reference (which comes with

Flash CS4), start with just a few and then learn the rest later as you use

them. The following packages have most of what you need:

 ✓ flash.display: In this package you will find most of the classes that are

commonly used in Flash. Included are the MovieClip, SimpleButton,

Sprite, Loader and many of the graphic classes.

 ✓ flash.text: As the name implies, this package holds classes for text, fonts

and types of text fields.

 ✓ flash.media: When working with sound and video, this package has the

classes you need.

 ✓ flash.net: While you will find expected classes like NetConnection and

NetStream in this package, you will also find the classes you need to link

to other Web pages.

 ✓ flash.events: You may overlook this package, but this is where you

will find the events you need for a wide assortment of classes that use

events to trigger methods. The MouseEvent class is one widely used

example.

 ✓ fl.controls: The UI components can be found in this package.

Forget memorizing all of this. Don’t

waste your time! As soon as you type

the import flash statement and

add a period, a pop-up menu appears

and shows you the available options.

(This is code hinting! Hint, hint.)

Likewise, when you select an avail-

able package from the list and add a

period, the next level appears with

the classes contained therein. So,

instead of trying to memorize every-

thing, just start using the packages

and classes that you know, and with use you’ll learn the others. Figure 3-3

shows some of the classes found in the flash.display package.

Access denied! Setting access
Anouther statement type that you will see is an access modifier. Access modi-

fiers determine what other objects can access variables, constants, and func-

tions (methods). Unless otherwise stated, constants, variables and methods

are available to other classes — public access, meaning that any other class

can use the element. The problem with such open access is that the same vari-

able may be given conflicting values. Likewise, different parameters may be

assigned to a method when that’s not really what you want.

Figure 3-3: Using pop-up menus to find which
class you need.

25_385395-bk04ch03.indd 31225_385395-bk04ch03.indd 312 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

313

Book IV
Chapter 3

Form
al Features

and Structures
Checkin’ Out the Basics: “My, My, I Declare!”

If you ever find yourself at a gathering where programmers are serious about

their craft (also know as a flock of geeks . . . or would that be a gaggle?), you

will hear the term encapsulation, one of the foundations of object oriented

programming (OOP). You definitely should understand what it means. When

programming with objects, you can think in terms of larger parts that can

have several variables (properties) and functions (methods).

Think of your automobile as an object with lots of parts (properties and meth-

ods) that make up the car. You have control over access to your car because

it is encapsulated — self-contained. If your car were not private — that is, if it

had no locks and key — anyone could use it. In programming, the same is true.

An encapsulated object restricts access to its properties and methods just like

you restrict access to your car. In the same way that you can own your car,

and the car “owns” its various parts, encapsulated elements in your class help

to maintain the object character of your program. (Think of an object character

as an object in its own right instead of a collection of parts.)

The following list briefly describes the main access modifiers:

 ✓ public: Any other class can access and use the object. For the most part,

you want your classes and construction functions to be public. Also, if

you have methods you want to be able to be used when implemented by

another class, the methods should be given public access.

 ✓ private: Only members of the same class can access this object.

(Remember your car!)

 ✓ protected: Only members of the same class or inherited from the same

class can use the method or property.

To demonstrate how to use these access modifiers, check out the following

two classes. The first class, TestBench, has three different methods, one

each for private, protected, and public access modifiers. Both the private

and protected methods can be called from the TestBench class. All pri-

vate, protected, and public methods can be called from the class of origin.

However, only the public methods can be called from an outside class. So, in

the TestBench class, we called the private and protected method. The fol-

lowing listing shows this. (You can create this listing in an ActionScript file

saved as something like TestBench.as.)

package
{
 import flash.display.Sprite;

 public class TestBench extends Sprite
 {
 private var privMsg:String;
 private var protecMsg:String;

 public function TestBench()

25_385395-bk04ch03.indd 31325_385395-bk04ch03.indd 313 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

314 Checkin’ Out the Basics: “My, My, I Declare!”

 {
 privMsg=”This is exclusive...”;
 priv(privMsg);

 protecMsg=”This ‘s extended to children...”;
 protec(protecMsg);
 }
 private function priv(msg:String):void
 {
 trace(msg);
 }
 public function pub(msg:String):void
 {
 trace(msg);
 }
 protected function protec(msg:String):void
 {
 trace(msg);
 }
 }
}

To call the public method and illustrate how it can be used, we created

a second class, PubPriv. All this class does is create (programmers say

instantiate) an instance of the TestBench class and invoke the pub()

method. The following listing shows the code for this simple chore. (Create

this listing in an ActionScript file saved as PubPriv.as.)

package
{
 import flash.display.Sprite;

 public class PubPriv extends Sprite
 {
 private var tb:TestBench;
 private var outMsg:String;

 public function PubPriv()
 {
 tb=new TestBench();
 outMsg=”Greetings from another class!”
 tb.pub(outMsg);
 //tb.priv(“private”);
 //tb.protec(“protected”);
 }
 }
}

25_385395-bk04ch03.indd 31425_385395-bk04ch03.indd 314 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

315

Book IV
Chapter 3

Form
al Features

and Structures
Operators: Assign, Compare, and Do the Math

To test these two classes, you can create a PubPriv.fla file using the

PubPriv as a class reference in the Properties panel. Save it in the same

folder as the TestBench.as file.

You do not need a TestBench.fla file because you can use any FLA file to

contain the name of the class you will be using.

Be sure to place all the files in the same folder and then load PubPriv.fla

and test it. You see the following lines in the Output panel:

This is exclusive...
This is extended to children...
Greetings from another class!

The first two lines are generated by the TestBench class because it’s the

only one with access to the private and protected methods. The third line is

generated by the PubPriv class. It uses the pub() method, adding a string

literal (actual text, like “hello!”) in the parameters.

Note that two lines in the PubPriv class have been commented out.

//tb.priv(“private”);
//tb.protec(“protected”);

After testing the application, uncomment the lines (that is, remove the

slashes //), save it, and try it again. You’ll get error messages because you

attempted to launch functions with limited access (private and protected.)

Because the PubPriv class is a different one than the one where the meth-

ods are created (TestBench) and it is not derived from (that is, it does not

extend) TestBench, it has access to neither private nor protected methods

in that class.

Operators: Assign, Compare, and Do the Math
ActionScript 3.0 has a wide range of operators, some of which we’ve used.

For example, we’ve used the equal sign (=) operator to assign values to vari-

ables and we’ve used the plus sign (+) to perform addition as well as concat-
enate (combine) strings. Some operators have been compound, such as the

plus equal (+=) used to add the existing string with a newly added one.

Operator? Operator?
Now it’s time for a general overview of three types of operators we’ll be

using. Table 3-2 shows the main operators used in math, comparison,

logical, and assignment operations.

25_385395-bk04ch03.indd 31525_385395-bk04ch03.indd 315 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

316 Operators: Assign, Compare, and Do the Math

Table 3-2 Operators
Symbol Name Action

+ Addition Adds numbers

-- Decrement Subtracts 1 from current value

/ Division Divides one number by another

++ Increment Adds 1 to current value

% Modulo Returns remainder in division

* Multiplication Multiplies numbers

- Subtraction Subtracts numbers

+= Add/assign Adds current value to new value

/= Divide/assign Divides current value by second value

%= Modulo/assign Shows modulo of current value divided
by second value

*= Multiply/assign Shows product of current value multi-
plied by second

-= Subtract/assign Shows result of current value minus
second value

Assignment

= Assignment Assigns value to object property,
variable, or array element

Comment
Operators

// Comment Sets line to a comment

/* */ Block comment Provides block for comments

Comparison
Operators

== Equality Tests for expression equality

> Greater than Tests for left expression being greater
than right expression

>= Greater than or
equal to

Tests for left expression being greater
than or equal to right expression

!= Inequality Tests for inequality to right expression

<= Less than or equal
to

Tests for left expression being less than
or equal to right expression

=== Strict equality Tests for left expression being equal to
right expression and the same data type

!== Strict inequality Tests for left expression being unequal to
right expression and a different data type

25_385395-bk04ch03.indd 31625_385395-bk04ch03.indd 316 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

317

Book IV
Chapter 3

Form
al Features

and Structures
Operators: Assign, Compare, and Do the Math

Symbol Name Action

Logical

&& Logical AND Returns true if values for left and right
expressions are both true. Otherwise
returns false.

&&= Logical AND
assignment

Assigns true if values for left and right
expressions are both true. Otherwise
assigns false.

! Logical NOT Tests for expression false. If it is NOT
true, it returns a true.

|| Logical OR Returns true if either value for left or
right expressions are true. Otherwise
returns false.

||= Logical OR assign-
ment

Assigns true if either value for left or
right expressions are true. Otherwise
assigns false.

As you can see, we’ve already used a number of the operators. In Chapter

4 of this minibook, we examine the basic structures of ActionScript 3.0 and

more of its operators.

A Sheffer stroke or vertical bar symbol (|) is often called a pipe, and the two

vertical bars comprise a double pipe. We’ll use the term pipe because it

sounds cooler than a Sheffer stroke or vertical bar symbol.

Elementary logic, my dear Watson
In this section, we give you examples of comparison and logical operators.

Comparison operators compare two values and decide if they’re different or

the same. Logical operators examine expressions (code with operators) to

see if they are true or false. The results of the comparison are (evaluate to)

either true or false.

This next little program does a number of logical comparisons (compares

expressions to see if they’re true or false) so that you can get an idea of how

they work. Because the outcomes can only be true or false, we use a Boolean

type. In this application, one Boolean variable name logicalResult will always

be true or false. All you have to do is to compare two expressions and evalu-

ate their outcomes. This sample application is designed for you to use as

a logical test bench. Go ahead and try out different combinations of logical

expressions and see if you can get to the point where you are no longer sur-

prised by the outcome. You’ll be using them a good deal in the next chapter.

25_385395-bk04ch03.indd 31725_385395-bk04ch03.indd 317 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

318 Operators: Assign, Compare, and Do the Math

The following steps show how to create the application:

 1. Open a new Flash (ActionScript 3.0) file, name it, and save it (we

saved it as Logic.fla).

 2. Open the Properties panel by selecting Window➪Properties from the

menu bar (Ctrl+F3 in Windows or Ô+F3 on the Mac) and enter the

class name (we used Logic).

 Everyone knows that when you start thinking logically, the gears begin

to spin. Well, you can add spinning gears to the application for an added

flair. Follow these steps to do so:

 a. Add some frames to the existing layer, name it Label, and add a

static text label.

 We added 40 frames to have some room to work with and named it

Logical Operations.

 b. Add one or more layers depending on how many gears you want.

 We created three and named them Gear1, Gear2, and Gear3.

 c. In each layer, add a movie clip shaped like a gear.

 See Figure 3-4 to give you an idea.

Figure 3-4: Add a movie clip shaped like a gear.

 d. Select the first frame of one of the layers, right-click it (or

Ctrl+click on the Mac), and choose Create Motion Tween.

 e. Then click into your last frame (ours is Frame 40) and choose

Insert➪Timeline➪Keyframe (or press F6) to add a keyframe.

25_385395-bk04ch03.indd 31825_385395-bk04ch03.indd 318 10/28/08 8:28:23 PM10/28/08 8:28:23 PM

319

Book IV
Chapter 3

Form
al Features

and Structures
Operators: Assign, Compare, and Do the Math

 f. With the keyframe in Frame 40 selected, open the Motion Editor

by choosing Window➪Motion Editor, and open the Basic motion

selection by clicking the little arrow.

 g. Set the Rotation Z value to between ± 0 to 360.

 A negative value rotates to the left and a positive value rotates to the

right. Higher values make the rotation faster.

 h. Repeat the process for the layers with gears in them (in this case,

the Gear2 and Gear3 layers) and save the file.

 3. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named ours Logic.as and saved it in the same folder as we saved

the Logic.fla file back in Step 1.

 4. Add the following script and save it again.

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFormat;

 public class Logic extends Sprite
 {
 private var outcome:TextField;
 private var textFormat:TextFormat;
 private var exp1:String;
 private var exp2:String;
 private var logicalResult:Boolean;

 public function Logic()
 {
 exp1=”up”;
 exp2=”down”;
 //Logical expressions
 logicalResult= !(exp1==exp2);
 //logicalResult=(exp1==”up” && exp2==”up”);
 //logicalResult=(exp1==”up” || exp2==”up”);
 //logicalResult=(exp1==”up” && exp2==”down”);
 //logicalResult= !(exp1!=exp2);
 //logicalResult=(exp1===exp2);

 doFormat(“Verdana”);
 doTextField();
 }
 private function doFormat(txFont:String)
 {
 textFormat=new TextFormat();
 textFormat.bold=true;
 textFormat.font=txFont;
 textFormat.size=24;
 }

25_385395-bk04ch03.indd 31925_385395-bk04ch03.indd 319 10/28/08 8:28:24 PM10/28/08 8:28:24 PM

320 Operators: Assign, Compare, and Do the Math

 private function doTextField()
 {
 outcome=new TextField ();
 outcome.x=145,outcome.y=230;
 outcome.defaultTextFormat=textFormat;
 outcome.text=logicalResult.toString();
 addChild(outcome);
 }
 }
}

 5. Remove comment operators from the different values assigned the

Boolean variable logicalResult and save it again.

 Whenever you un-comment one of the lines, add the comment operators

to all others.

 6. Choose Control➪Play (press Ctrl+Enter in Windows or Ô+Return on

the Mac) to test the program by trying out the different logicalResult

values.

If you recall in English class where you were warned never to use double

negatives, you’ll understand better what’s going on in the logic. The negative

operator (!) can be used with other results with the consequence that you

will end up with an unexpected true or false. If you say (or think), “Hmmm,

the two expressions are not equal, and if I say that they are not not equal,

that would be false.” For the most part, it’s a good idea to avoid double

negatives in your logical operations to reduce confusion. However, unlike

your English teacher, ActionScript 3.0 is perfectly willing to accept double

negatives and generate results reflecting their logic.

Experiment with the program with logical operators to see the different

results. Such experimentation will help you understand how they work and

give you some ideas for using them.

25_385395-bk04ch03.indd 32025_385395-bk04ch03.indd 320 10/28/08 8:28:24 PM10/28/08 8:28:24 PM

Chapter 4: Making Decisions . . .
and Repeating Yourself

In This Chapter
✓ Ogling conditional statements

✓ Making decisions with the if statement

✓ Checking out the else clause

✓ Structuring the switch statement

✓ Setting up the for loop

✓ Finding unknown elements with the for..in loop

✓ Extracting properties with the for each..in loop

✓ Iterating through a while loop

✓ Getting loopy the do..while loop

Computer programs can make decisions by com-

paring different sets of information. In Flash

CS4, this can be important for applications where

more than one alternative is available to the user.

Likewise, your computer can process repeated

chores so that you only have to write a little code

and you can repeat it using loop structures.

In this chapter, we explore the main applied struc-

tures of ActionScript 3.0 and also a special kind

of object called an array, in which you can store all

kinds of elements in a single object. You can use these

structures with different functions you can create. Some

of the features in this chapter may be familiar from other

chapters, but in this chapter we go into more depth.

26_385395-bk04ch04.indd 32126_385395-bk04ch04.indd 321 10/28/08 8:29:16 PM10/28/08 8:29:16 PM

322 On One Condition! (Or, Maybe More than One): Conditional Statements

On One Condition! (Or, Maybe More than One):
Conditional Statements

At its base, the conditional statement in ActionScript 3.0 works very much

like everyday decisions, such as what to wear, what to read, where to go,

and what to do. In all these decisions are conditions. For example, in decid-

ing what to wear, you may have a situation where you don’t know whether it

is going to rain or not rain. So, you may have the following decision:

If it’s going to rain, I’ll wear my raincoat. Otherwise, I’ll wear a light
windbreaker.

The two conditions are rain and no rain, and depending on which of those

conditions occurs, you make one choice or the other. So, when considering

conditional statements in ActionScript 3.0, keep in mind that they work just

like you think they do.

The if statement
The most basic conditional statement is the if statement. If you’re making

a game, for example, you may need to check to see whether the player has

met whichever condition ends the game. Also, if the game is over, you need

to find out whether the player won or lost. If the player won, she sees a

banner declaring “You won!,” but if she lost, she sees a different banner,

“Better luck next time.” Figure 4-1 shows the structure of an if statement.

In Chapter 3 of this minibook, we discuss

Boolean variables, which can have only

the values true or false. As you can

see in Figure 4-1, the condition x > 50

has a Boolean result. Either x is going

to be greater than 50 or it is not. If x is

greater than 50, the result is true; other-

wise, the result is false.

To help you visualize the concept, sup-

pose you are pre-screening candidates for

a job. You want to select a candidate who

knows either ActionScript 3.0 or object

oriented programming. You could write a

statement such as

if(candQ1 == knowsAS3 || candQ2 == knowsOOP)
{
 hire();
}

Structure

Example

if(condition == true)
{
 //statements
}

if(x > 50)
{
 output.text=”Winner!”;
}

Figure 4-1: The structure of an if
statement.

26_385395-bk04ch04.indd 32226_385395-bk04ch04.indd 322 10/28/08 8:29:16 PM10/28/08 8:29:16 PM

323

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself
On One Condition! (Or, Maybe More than One): Conditional Statements

Now suppose you have a deep and talented candidate pool and decide that

you want someone who knows ActionScript 3.0 and knows how to design

sites in Flash. Such a person would be an even better candidate:

if(candQ1 == knowsAS3 && candQ3 == knowsDesign)
{
 hire();
}

In the first conditional statement, if either condition is true, the result is

true. However, in the second condition, both conditions in the expression

must be true to result in true. Otherwise, the result is false.

When using logical operators for AND (&&) and OR (||), remember that you

must have two complete expressions separated by a logical operator. If you

type if(depth > 6 && < 20), you’ll encounter an error. The variable

depth must be restated after the && operator. Typing if(depth > 6 &&
depth < 20) instead correctly lists both conditions.

The else clause
The else clause in an if statement allows you to have

more than one option. In other words, “if X is true, do Y,

else, do Z.” Figure 4-2 shows the basic structure in the

context of an if statement.

Using the if statement together with the else clause, you

have more options. To get a grip on what you can do with

the if..else statement, this next application is a simple

interaction that keeps looking to see if the game is over. If

the game is not over, it outputs the number of times you

have clicked the button. When you get to 10, it tells you

that the game is over and disables the button. The follow-

ing steps show you how to get it up and running:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We saved ours as SimpleIf.fla.

 2. In the Property inspector, enter the name for the class and save the

file again.

 We named ours SimpleIf.

 You can open the Property inspector by choosing Window➪Properties

(or pressing Ctrl+F3 in Windows or Ô+F3 on the Mac).

Optionally, you can decorate the Stage as shown in Figure 4-3. The

button and text output fields are dynamically added by the code, so

don’t add them on the Stage using Flash tools. If you do so, save the file

when you’re done.

The else clause
if(condition)
{
 //Do this
}
else
{
 //Do that
}

Figure 4-2: The
structure of the
else clause.

26_385395-bk04ch04.indd 32326_385395-bk04ch04.indd 323 10/28/08 8:29:16 PM10/28/08 8:29:16 PM

324 On One Condition! (Or, Maybe More than One): Conditional Statements

Figure 4-3: Using the if..else statement to determine the end of the game.

 3. Open the Components panel by choosing Window➪Components (or

pressing Ctrl+F7 in Windows or Ô+F7 on the Mac). Drag a Button com-

ponent to the Stage and delete it.

 You now have a Button component stored in the library.

 4. Open a new ActionScript file and save it in the same folder as the

Simple.fla file.

 We named ours SimpleIf.as and saved it in the same folder as the

Simple.fla file.

 5. Add the following code and save the file again:

package
{
 import fl.controls.Button;
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.events.MouseEvent;

 public class SimpleIf extends Sprite
 {
 private var btn:Button;
 private var scoreBoard:TextField;
 private var styleBoard:TextFormat;
 private var addClick:uint;

 public function SimpleIf()
 {
 btn=new Button ();
 btn.addEventListener(MouseEvent.CLICK,addScore);
 btn.x=200;btn.y=150;
 btn.label=”Click to Play”;
 addChild(btn);
 //Add text field
 scoreBoard=new TextField();

26_385395-bk04ch04.indd 32426_385395-bk04ch04.indd 324 10/28/08 8:29:16 PM10/28/08 8:29:16 PM

325

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself
On One Condition! (Or, Maybe More than One): Conditional Statements

 scoreBoard.x=200;
 scoreBoard.y=180;
 addChild(scoreBoard);
 //Add text format class
 styleBoard=new TextFormat();
 styleBoard.font=”Arial Black”;
 scoreBoard.defaultTextFormat=styleBoard;
 }
 private function addScore(e:MouseEvent):void
 {
 addClick++;
 if (addClick>=10)
 {
 scoreBoard.text=”Game over”;
 btn.label=”Disabled Button”;
 btn.enabled=false;
 }
 else
 {
 scoreBoard.text=”Clicks =”+addClick;
 }
 }
 }
}

 6. Test the application by choosing Control➪Test (or pressing Ctrl+Enter

in Windows or Ô+Return on the Mac).

 You will see that the program adds new values to the output each time

you click the button. When you click it for the tenth time, the button is

disabled and the Game Over sign appears. Figure 4-3 shows what you’ll

see before the count reaches 10; on the left, you can see what it looks

like after the count has reached 10. By disabling the button, the user

cannot add more values than the game allows.

 The addClick in the preceding variable is an unsigned integer (uint).

Notice that while it is declared, it is created (instantiated) by the add-assign

(++) compound operator, which is perfectly legal because it adds a value of

one to a value of undefined. With each click, the add-assign operator adds

one to its value to be evaluated by the conditional statement.

Let’s do the switch!
With one or two outcomes, the if statement with the else clause works

fine. However, when you have several different conditions and need to deal

with several outcomes, you need to be able to handle them all. Thanks to the

switch statement, you can use several different condition states and deal

with each case appropriately.

Although we first mentioned the switch statement in Chapter 2 of this mini-

book, Figure 4-4 shows the structure of the switch statement in a bit more

detail.

26_385395-bk04ch04.indd 32526_385395-bk04ch04.indd 325 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

326 On One Condition! (Or, Maybe More than One): Conditional Statements

Compares test variable
with each case outcome

Colon as case delimiter

Exit switch statement

If none of the outcomes are
the same as the value of the
test variable, the default
statements are invoked (Optional)

switch (test)
{
 case outcome1:
 //statements
 break;

 case outcome2:
 //statements
 break;

 default:
 //statements
}

Figure 4-4: The structure of the switch statement.

The logic of the switch statement is different from the if statement. With

the if statement, you use a Boolean (true or false) condition. With the

switch statement, a test value is compared with several different case

values. If the values are equal, the statements in the case are invoked. Using

the break statement (after the other case statements are launched) moves

the program to the next statement.

In this next example, we’ll create a program with three choices in three dif-

ferent buttons — Larry, Curley, and Mo. With a few exceptions, when we’ve

assigned an event listener to a button, we’ve used different functions for

each button. However, in this application all of the listeners call the same

function. By using the target and label information passed when the

button is clicked, we can store that information in a variable and then use

that variable as the test variable in the switch statement. The following line

uses a string variable named decide to store the target (instance name):

decide=e.target.label;

The e is the instance name of the mouse event passed in a parameter in this

line:

private function choose(e:MouseEvent)

So, if you’ve been wondering what the event parameter is, now you know!

The following steps show how to create the full application:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We named ours Switch.fla.

26_385395-bk04ch04.indd 32626_385395-bk04ch04.indd 326 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

327

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself
On One Condition! (Or, Maybe More than One): Conditional Statements

 2. In the Property inspector, enter the name for the class.

 We named ours Switch.

 You can open the Property inspector by choosing Window➪Properties

(or pressing Ctrl+F3 in Windows or Ô+F3 on the Mac).

 3. Place a Button and TextArea component in the Library that will

instantiate with code and save the file again.

 You can place a component on the stage and then delete it to automati-

cally place it in the library. However, don’t leave the components on the

Stage, or else they will conflict with the components being placed on the

Stage by the program. If you want, you can decorate the Stage, as shown

in Figure 4-5, or use your own design.

Figure 4-5: Using button information and the switch statement.

 4. Open a new ActionScript file and save it as in the same folder as the

file you created in Step 1.

 We named our file Switch.as and saved it in the same folder as we

saved the Switch.fla file.

 5. Add the following code and save the file again:

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import fl.controls.Button;
 import fl.controls.TextArea;

26_385395-bk04ch04.indd 32726_385395-bk04ch04.indd 327 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

328 On One Condition! (Or, Maybe More than One): Conditional Statements

 public class Switch extends Sprite
 {
 private var larry:Button;
 private var curley:Button;
 private var mo:Button;
 private var showMe:TextArea;
 private var decide:String;

 public function Switch()
 {
 larry=new Button ();
 larry.x=245,larry.y=180;
 larry.label=”Larry”;
 larry.addEventListener(MouseEvent.CLICK,choose);
 larry.width=60;
 addChild(larry);
 curley=new Button ();
 curley.x=245,curley.y=205;
 curley.label=”Curley”;
 curley.addEventListener(MouseEvent.CLICK,choose);
 curley.width=60;
 addChild(curley);
 mo=new Button ();
 mo.x=245,mo.y=230;
 mo.label=”Mo”;
 mo.addEventListener(MouseEvent.CLICK,choose);
 mo.width=60;
 addChild(mo);
 showMe=new TextArea ();
 showMe.x=225,showMe.y=260;
 addChild(showMe);
 }

 private function choose(e:MouseEvent)
 {
 decide=e.target.label;
 switch(decide)
 {
 case “Larry” :
 showMe.text=”Hi Mo and Curley”;
 break;

 case “Curley” :
 showMe.text=”Hi Mo and Larry”;
 break;

 case “Mo” :
 showMe.text=”Hi Larry and Curley”;
 break;
 }
 }
 }

}

 6. Test the application by choosing Control➪Test (or pressing Ctrl+Enter

in Windows or Ô+Return on the Mac).

 You will see that as you click on each name, a greeting to the other two

characters appears in the TextArea component. Figure 4-5 shows what

you can expect to see.

26_385395-bk04ch04.indd 32826_385395-bk04ch04.indd 328 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

329

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself
Let the Looping Computer Do the Work

 As you can see when you test the application, all of the responses are

from the single choose() method (function). This should give you some

ideas for using the switch statement when you have several buttons

but only want to use a single method for an event handler.

Let the Looping Computer Do the Work
When you have a repeated set of tasks, instead of writing multiple state-

ments to handle the same task, ActionScript 3.0 allows you to write a single

loop statement with the task inside the loop and repeat the same task again

and again. ActionScript 3.0 has the following types of loops:

 ✓ for

 ✓ for..in

 ✓ for each..in

 ✓ while

 ✓ do..while

Each of these loops has a different purpose. In the following sections, we

show you each one in turn and provide a small example of using each. A bit

later on in the section on arrays, we show you more uses for loops.

The for loop
The for loop is the most common loop. With it, you can specify a starting

point, an end condition (what will make it stop), and an increment (increase

value) or decrement (decrease value). The basic structure is

for(begin , end_condition, value_change)

For example, the following loop begins at 0, ends if the value is less than 10,

and increments by 1 with each iteration through the loop:

for(var lv:uint = 0; lv < 10; lv++)

The loop variable (lv) has a value of 0 the first time through the loop, a

value of 1 the second time, 2 the third time, and so forth until it reaches 10

and stops the iterations. You will often see the term iterate when dealing

with loops of all types; an iteration refers to a single time through the loop.

The following example shows the value of the loop variable (ele) incre-

mented as it goes through the loop. Follow these steps to set it up:

26_385395-bk04ch04.indd 32926_385395-bk04ch04.indd 329 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

330 Let the Looping Computer Do the Work

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We saved ours as Loopy.fla.

 2. In the Property inspector, enter the name for the class.

 We named our class Loopy.

 You can open the Property inspector by choosing Window➪Properties.

 3. Choose Window➪Components to open the Components panel and

drag a TextArea component to the Stage. Then save the file.

 This action automatically places the component and supporting files in

the library that you will instantiate with code.

 Delete the component from the Stage so that it does not conflict with the

components placed on the Stage dynamically with ActionScript.

 4. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named our file Loopy.as and saved it in the same folder as the

Loopy.fla file.

 5. Add the following code and save the file again:

package
{
 import flash.display.Sprite;
 import fl.controls.TextArea;

 public class Loopy extends Sprite
 {
 private var showLoop:TextArea;

 public function Loopy()
 {
 showLoop=new TextArea();
 showLoop.x=150,showLoop.y=100;
 showLoop.height=150;
 showLoop.width=50;
 addChild(showLoop);

 for (var ele:uint =1; ele < 11; ele++)
 {
 showLoop.appendText(ele.toString()+”\n”);
 }
 }
 }
}

 6. Test the program.

 When you test it, you will see the output neatly presented in the elon-

gated TextArea component.

Keep this loop in mind whenever you encounter a situation where you

need to repeat a task a given number of times.

26_385395-bk04ch04.indd 33026_385395-bk04ch04.indd 330 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

331

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself
Let the Looping Computer Do the Work

The foreign . . . er, for..in loop
Sometimes you have no idea how many times you have to loop through an

object or list to get everything out that’s in the object. In these cases, the

simple for loop isn’t much help, in which case you use the for..in loop,

which keeps iterating until all elements in the object are accounted for. The

for..in loop has the following structure:

for(var property in object)

When dealing with objects, you can add just about anything as a property.

Suppose that you’re making a Flash site for a musical trio made up of a bass,

guitar, and piano. You want the group to be flexible so that if a player is

out sick or out of town, you can add another player. Also, you don’t know

whether the trio might decide to become a quartet or a duo. In this case,

here comes the for..in loop to the rescue. The following steps show how:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We saved ours as Loopy2.fla.

 All the loop examples use the same component: TextArea. You can save

time if you use Save As and just save the files with a different name and

Document name. For example, you could save Loopy.fla and Loopy.
as as Loopy2.fla and Loopy2.as. Then just use the different code

for each example and be sure to change the class name in the Property

inspector.

 2. In the Property inspector, enter the name for the class.

 We named our class Loopy2.

 To open the Property inspector, choose Window➪Properties.

 3. Choose Window➪Components to open the Components panel and

drag a TextArea component to the Stage. Then save the file.

 This action automatically places in the library the component and

supporting files that you will instantiate with code.

 Delete the component from the Stage so that it does not conflict with the

components placed on the Stage dynamically with ActionScript.

 4. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named ours Loopy2.as and saved it in the same folder as the

Loopy2.fla file.

 5. Add the following code and save the file again:

package
{
 import flash.display.Sprite;
 import fl.controls.TextArea;

26_385395-bk04ch04.indd 33126_385395-bk04ch04.indd 331 10/28/08 8:29:17 PM10/28/08 8:29:17 PM

Let the Looping Computer Do the Work332

 public class Loopy2 extends Sprite
 {
 private var showLoop:TextArea;
 private var obj:Object;

 public function Loopy2()
 {
 obj=new Object();
 obj={Bass:”Joe”,Piano:”Sheila”,Guitar:”Harry”};
 showLoop=new TextArea ();
 showLoop.x=150,showLoop.y=100;
 showLoop.height=100;
 showLoop.width=150;
 addChild(showLoop);
 showLoop.text=”The Loopy Trio\n”;
 showLoop.appendText(“------------------\n”);
 for (var prop in obj)
 {
showLoop.appendText(obj[prop]+” playing “+prop+”\n”);
 }
 }
 }
}

 This example shows that you get both the static (unchanging) property

(an instrument) and the dynamic (changing) property of the static prop-

erty (one of the musicians). So, the piano can be played by Sheila one

day and by Joe the next day — same piano, different players.

The for each..in loop
The for each..in loop was developed primarily for XML files with E4X.

E4X is language support that allows access to XML from ECMAScript lan-

guages like ActionScript 3.0. If you’re not familiar with XML, don’t worry

about it. The loop iterates through an object and targets only the dynamic

elements of an object, including an XML object. It has the following format:

for each(var ele in object)

The each keyword simply tells the loop that only dynamic elements are to

be brought out and all the static properties are ignored. This approach is

probably more realistic because you’re usually interested in the dynamic

values anyway.

Because the loop was developed for XML, we’ll loop through an XML object.

The following steps show you how:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We named ours Loopy3.fla.

 2. In the Property inspector, enter the name for the class.

 3. In the Component panel, drag a TextArea component to the stage and

delete it.

26_385395-bk04ch04.indd 33226_385395-bk04ch04.indd 332 10/28/08 8:29:18 PM10/28/08 8:29:18 PM

Let the Looping Computer Do the Work 333

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself

 This action places a component in the library, where ActionScript 3.0

can access it.

 4. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named ours Loopy3.as and saved it in the same folder as the

Loopy3.fla file.

 5. Add the following code and save the file again:

package
{
 import flash.display.Sprite;
 import fl.controls.TextArea;

 public class Loopy3 extends Sprite
 {
 private var showLoop:TextArea;
 private var xmlFun:XML;

 public function Loopy3()
 {
 xmlFun=new XML();
 xmlFun=
 <dogs>
 <breed>Sheep Dog </breed>
 <breed>Swiss Mountain Dog </breed>
 <breed>Basset Hound </breed>
 <breed>English Springer Spaniel</breed>
 </dogs>;

 showLoop=new TextArea ();
 showLoop.x=150,showLoop.y=100;
 showLoop.height=100;
 showLoop.width=180;
 addChild(showLoop);
 showLoop.text=”Dogs I know\n”;
 showLoop.appendText(“---------------\n”);

 for each (var doggy in xmlFun.breed)
 {
 showLoop.appendText(doggy+”\n”);
 }
 }
 }
}

 6. Test the program by choosing Control➪Test

(or pressing Ctrl+Enter in Windows or

Ô+Return on the Mac).

 Figure 4-6 shows what you can expect to see.

 The for each..in loop was successful in

extracting just the information that you want.

If you decided to add more dog breeds to

the XML file, the for each..in loop would

get the additional information out for you.

Figure 4-6: Output of the for
each..in loop to extract
data from an XML file.

26_385395-bk04ch04.indd 33326_385395-bk04ch04.indd 333 10/28/08 8:29:18 PM10/28/08 8:29:18 PM

Let the Looping Computer Do the Work334

(Go ahead and add a Chihuahua to the XML breed list and watch him get

extracted and displayed on the screen.)

The while and do..while loops
A while loop keeps looping until a certain condi-

tion is met. (You keep doing this until you get it

right! Now do it again!) You need to know that the

condition can be met; otherwise, you can get into an

infinite loop that locks up the program. Figure 4-7

shows the general format for both types of loops.

The only difference between these two types of

loops is that the do..while loop always iterates

at least once, and the while loop stops before

any iteration of the condition is met. The following

example shows how each is set up and the identical

outcomes they generate in the case where the first

time through the loop, the stop condition is not met:

 1. Open a new Flash (ActionScript 3.0) file and

save it.

 We saved ours as Loopy4.fla.

 2. Choose Window➪Properties to open the Property inspector. In the

Property inspector, enter the name for the class.

 We named ours Loopy4.

 3. Choose Window➪Components to open the Components panel and

drag a TextArea component to the Stage.

 This action places a component in the library, where ActionScript 3.0

can access it.

 4. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named ours Loopy4.as and saved it in the same folder as the

Loopy4.fla file.

 5. Add the following code and save the file again:

package
{
 import flash.display.Sprite;
 import fl.controls.TextArea;

 public class Loopy4 extends Sprite
 {
 private var showLoop:TextArea;
 private var endItAll:uint;
 private var iter:String;

while loop

do..while loop

while(condition)
{
 //statements
}

do
{
 //statements
}
while (condition)

Figure 4-7: The structure of
while and do..while
loops.

26_385395-bk04ch04.indd 33426_385395-bk04ch04.indd 334 10/28/08 8:29:18 PM10/28/08 8:29:18 PM

Let the Looping Computer Do the Work 335

Book IV
Chapter 4

M
aking Decisions . . .

and Repeating Yourself

 public function Loopy4()
 {
 showLoop=new TextArea ();
 showLoop.x=150,showLoop.y=50;
 showLoop.height=265;
 showLoop.width=120;
 addChild(showLoop);
 showLoop.text=”A Tale of Two Loops\n”;
 showLoop.appendText(“---------------\n”);
 showLoop.appendText(“The while loop\n”);
 endItAll=6;
 iter=”Iteration=”;

 while (endItAll !=0)
 {
 showLoop.appendText(iter+endItAll+”\n”);
 endItAll--;
 }
 showLoop.appendText(“\n”);

 endItAll=6;
 showLoop.appendText(“The do..while loop\n”);
 do
 {
 showLoop.appendText(iter+endItAll+”\n”);
 endItAll--;
 } while (endItAll !=0);
 }
 }
}

 6. Choose Control➪Test to test the application.

 The outcomes should be identical to what you see in the figure on the

left in Figure 4-8.

 However if you change the loops to the following segment, the outcome

will instead look like the right panel of Figure 4-8:

endItAll=20;
iter=”Iteration=”;

while (endItAll !=20)
{
 showLoop.appendText(iter+endItAll+”\n”);
 //endItAll--;
}
showLoop.appendText(“\n”);

endItAll=20;
showLoop.appendText(“The do..while loop\n”);
do
{
 showLoop.appendText(iter+endItAll+”\n”);
 //endItAll--;
} while (endItAll !=20)

26_385395-bk04ch04.indd 33526_385395-bk04ch04.indd 335 10/28/08 8:29:18 PM10/28/08 8:29:18 PM

Let the Looping Computer Do the Work336

Figure 4-8: The do..while loop always has at least one iteration.

 Instead of both loops generating the same values, the do..while loop

has the condition at the bottom, so it generates a single iteration and

the while loop generates nothing.

With the basic conditional and loop structures at your service, you have

most of the structures you need to create programs that can make decisions

and repeat processes without having to rewrite the same code repeatedly.

26_385395-bk04ch04.indd 33626_385395-bk04ch04.indd 336 10/28/08 8:29:18 PM10/28/08 8:29:18 PM

Chapter 5: Harnessing the
Power of ActionScript 3.0

In This Chapter
✓ Creating arrays

✓ Pushing data to arrays

✓ Retrieving array elements with Pop

✓ Sorting arrays

✓ Introducing the Vector class

✓ Using string identifiers in Vector elements

✓ Incorporating the Vector.forEach() method

✓ Starting and stopping drag operations

✓ Drawing with ActionScript 3.0

✓ Creating triangles with vertices and indices

Too often, we hear Web designers and devel-

opers pine for the “good old days” when

ActionScript consisted of just a few lines of code

spread all over the place. Well, we disagree.

ActionScript 3.0 has a learning curve for people

accustomed to using previous versions, but the

good thing about ActionScript 3.0 is that now that

it has been retooled into a standardized, more

efficient form, it will be around for a while, and,

even though some changes will inevitably be made

in future versions, you don’t have to figure out how to

use it from scratch every time a new version is released

and you want to sit down to make the world’s greatest Flash

application.

In this chapter, we show you how to use grouping structures that corral

more than a single element and give each one a unique value, and we

tell you about arrays that have been included in several generations of

ActionScript. Using arrays, you can easily have several values different

types of data stored in the same place for ease of access. In addition, you

see vectors, the brand-new type of grouping structure. As you will see, vec-

tors are much like arrays, although they can be of different types, just like

variables.

27_385395-bk04ch05.indd 33727_385395-bk04ch05.indd 337 10/28/08 8:30:16 PM10/28/08 8:30:16 PM

338 Meet the Gang: Arrays

In this and the preceding chapters in this minibook, we only scratch the sur-

face of ActionScript 3.0. In Book VI, you see lots more ActionScript 3.0 used

with video.

All the code listings in this chapter are available for downloading from this

book’s companion Web site at www.dummies.com/go/flashallinone.

Some code listings are long, so you may want to download the code to avoid

making typing errors. Then you can make changes to create your own appli-

cations with the same structures.

Meet the Gang: Arrays
When you have several different elements organized in groups, you may

need an array. In some respects, an array is just any other object with differ-

ent properties. As you’ve seen, object properties can be numeric, Boolean,

or character strings. The same is true with arrays.

Unlike a variable, an array isn’t assigned a type. In programmer lingo, you

would say instead that an array isn’t typed; rather, an array is a type. When

you create a variable, you include the data type. So, variable xray might be

a string and variable stack might be a number. When you create an array,

you add elements of any type you want — or you can just use literals. An

element in an array is a unique member of the array — sort of like a member

of a club with the array as the club. Each element can have its own value. A

literal is an actual value, such as the number 2 or the string “hello”.

Creating an array
When you create an array, you use the following format:

var myArray:Array;
myArray=new Array();

At the same time you create the array, you can include data within the

parameters. For example, this line:

myArray=new Array(7, 30, “San Francisco”);

creates an array with three elements: two numbers and a string. These are

stored in elements with a zero-base numbering system using the following

format:

myArray[0];
myArray[1];
myArray[2];

27_385395-bk04ch05.indd 33827_385395-bk04ch05.indd 338 10/28/08 8:30:16 PM10/28/08 8:30:16 PM

339

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

Meet the Gang: Arrays

For example, the value of myArray[1] is 30. You can pass that value to a

variable or do whatever else you want do with it as you would a variable or

literal. For example, the following chunk of code passes the third element to

a string:

var song:String = “I left my heart in “;
song += myArray[2];
//song value = I left my heart in San Francisco

The important difference between strings and arrays is that both numbers

and strings are added to the array. Variables can accept only a certain data

type that is made when the variable is declared.

Getting pushy: Adding data to an array
Besides adding data to an array when you instantiate (create an instance of)

the array, you can do it in other ways too. The easiest is just to keep adding

elements with different numbers. For example, to add more elements to an

array with three elements in it already, you could do the following:

myArray[3]=”New York”;
myArray[4]=22;
myArray[5]=false;

Keeping in mind that the array is zero-based, the three added elements give

the array a new total of six elements.

In addition to assigning values to array elements (just like assigning values

to variables), you can use the push() method. When you add elements to

an array using the push statement, you place the most recent element on

the top of the stack. For example, the following would add three elements

to the array numbered 6,7,8 from left to right if added to the existing ele-

ments already in the array:

group.push(“Apple”,4,Math.PI);

Keep in mind that the push() method adds elements to the top of the array.

Imagine one of those spring-load cafeteria tray containers, and that each

tray is an array element. As you add more elements, they’re simply added to

the top.

pop() goes the element! Retrieving
data from an array
Getting elements out of an array has several advantages over using variables

to store data, the most important being that you can use a loop to numerically

iterate through the array to extract all the values. Consider the difference

27_385395-bk04ch05.indd 33927_385395-bk04ch05.indd 339 10/28/08 8:30:17 PM10/28/08 8:30:17 PM

340 Meet the Gang: Arrays

between using an array with 100 elements and 100 variables that you’re put-

ting into a TextArea for output. First, in looking at variables, you would have

to do something like the following:

myTA.appendText(wheels + “\n”);
myTA.appendText(door + “\n”);
myTA.appendText(radiator + “\n”);
...
//On to the 100th variable
myTA.appendText(tailPipe + “\n”);

You can imagine the amount of coding you would have to do for a quick vari-

able inventory. With an array, all you need to do is to loop through the array

and extract each element in turn using the following code:

for (var myEle in myArray)
{
 textArea.appendText(myArray[myEle]+”\n”);
}

The for..in loop keeps on extracting element values until the array is

empty. You can easily add or reduce the number of elements, but you need

not change any code to send the code to an output.

Rather than iterate through a loop and selecting each element by a reference

to the element number, you can also use the pop() method. The pop()

method takes the top element off the array, makes it available, and then

discards it. For example, this statement:

myVar = myArray.pop();

passes the value of the last element on the array to myVar. After the value is

passed to the variable, the size of the array is reduced by 1.

You must remember that the pop() operation uses and removes the last
element. So, if you want the first element, you’re better off using array[0]

rather than pop().

You may be scratching your head wondering, “What would I ever do with an

array using pop()?” If you have a large number of values you want to pass

using an array, using the pop() method gets rid of the content as soon as

you’re finished using the information, which can help free up memory.

In case you’re thinking of creating games with Flash CS4, you can keep a

game crisp (running without delays) by keeping memory free.

27_385395-bk04ch05.indd 34027_385395-bk04ch05.indd 340 10/28/08 8:30:17 PM10/28/08 8:30:17 PM

341

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

Meet the Gang: Arrays

Sorting with an array
The final topic we cover with arrays is the sort() method. By adding it

with an array instance, you can sort (surprise!) all elements in the array. For

example, this line:

myArray.sort();

sorts all contents in ascending order (from lowest to highest). To sort in

descending order, all you have to do is to use the number 2 as a param-

eter. So, this line:

myArray.sort(2);

would begin with the highest value and go to the lowest. Using the ten most

common American surnames (last names), let’s take a look using the follow-

ing chunk of code:

var myArray:Array;
myArray=new Array(“Smith”,”Johnson”,”Williams”);
myArray.push(“Jones”,”Brown”,”Davis”,”Miller”);
myArray.push(“Wilson”,”Moore”,”Taylor”);
myArray.sort();
for (var ww in myArray)
{
 trace(myArray[ww]);
}

The preceding code sorts the names alphabetically. If you change the line

with the sort() method to the following:

myArray.sort(2);

all the names are instead listed in reverse alphabetical order.

Strings are case sensitive when it comes to sorting and capital letters come

before lowercase letters. For example, if you change Davis to davis, it’s

sorted last using ascending order.

Array practice
Now that you have an idea of what you can do with arrays, this next applica-

tion employs different kinds of content in addition to input and output. The

following steps guide you through creating it:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We named ours ArraySample.fla.

27_385395-bk04ch05.indd 34127_385395-bk04ch05.indd 341 10/28/08 8:30:17 PM10/28/08 8:30:17 PM

342 Meet the Gang: Arrays

 2. In the Class box in the Properties panel, enter the class name.

 We named ours ArraySample.

 You can open the Property inspector by choosing Window➪Properties

(or pressing Ctrl+F3 in Windows or Ô+F3 on the Mac).

 3. Using the Text tool, position a static TextField on the Stage and add

some content.

 We positioned ours at X=100, Y=42, and using a 32-point graphic font,

typed Array Machine and saved the file.

 4. Create a small shape to become a button and Choose Modify➪Convert

to Symbol from the menu bar (or press F8) to open the Convert to

Symbol dialog box.

 We drew a circle with the Oval tool with a diameter of 32 (H=32, W=32).

 5. In the Convert to Symbol dialog box, select Button as the type and

type a name for the button (we named ours Btn). Click the Export for

ActionScript check box and click OK.

 6. Select the button and press the Delete key to remove it from the Stage.

 The button is preserved in the library.

 7. Drag a Label and TextArea component to the library.

 Alternatively, you can drag the Label and TextArea components to the

Stage and then delete them. This action places the components in the

library.

Depending on how you have your panels docked, it might be easier

to drag components from the component panel to the Stage and then

delete them. As soon as a component or symbol is placed on the Stage,

one is automatically placed in the library.

 8. Open a new ActionScript file and save it in the same folder with the

file you created in Step 1.

 We named ours ArraySample.as and saved it in the same folder as the

ArraySample.fla file.

 9. Add the following code and save the file again:

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import fl.controls.Label;
 import fl.controls.TextArea;

 {

27_385395-bk04ch05.indd 34227_385395-bk04ch05.indd 342 10/28/08 8:30:17 PM10/28/08 8:30:17 PM

343

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

Meet the Gang: Arrays

 public class ArraySample extends Sprite
 {
 private var group:Array;
 private var size:String;
 private var msg:String;
 private var btn:Btn; //From Library
 private var label:Label;//From Library
 private var textArea:TextArea; //From Library
 {
 public function ArraySample()
 {
 group=new Array(1,true,”Cow”,66);
 group.push(“Apple”,4,Math.PI);

 label=new Label();
 label.x=100,label.y=80;
 label.width=250;
 msg=”Press button to “;
 msg+=”see array contents:”;
 label.text=msg;
 addChild(label);

 textArea=new TextArea();
 textArea.width=150,textArea.height=200;
 textArea.x=100,textArea.y=140;
 addChild(textArea);

 btn=new Btn();
 btn.x=100,btn.y=100;
 btn.addEventListener(MouseEvent.CLICK,unpeel);
 addChild(btn);
 }

 private function unpeel(e:MouseEvent)
 {
 //group.sort();
 //for(var stuff:uint =0; stuff<7;stuff++)
 for (var stuff in group)
 {
 textArea.appendText(group[stuff]+”\n”);
 //textArea.appendText(group.pop()+”\n”);
 }

 size=”This array has “+group.length +” elements.”
 textArea.appendText(size);
 }
 }
 }
 }
}

 10. Test the file by choosing Control➪Test (or pressing Ctrl+Enter in

Windows or Ô+Return on the Mac).

 Figure 5-1 shows what you can expect to see the first time you test it,

assuming that you used our examples to the letter.

27_385395-bk04ch05.indd 34327_385395-bk04ch05.indd 343 10/28/08 8:30:17 PM10/28/08 8:30:17 PM

344 Meet the Gang: Arrays

Figure 5-1: TextArea component displaying contents of array.

The lines in the unpeel function that are commented out are for testing the

application using different methods. Begin by un-commenting (taking out

// characters) the statement, group.sort(). Test it and see what you get.

Next, change it to read, group.sort(2). As you can see, numbers have

lower values than strings, so 20000 always comes before Aardvark in an

ascending sort. However, the opposite is true in a descending sort.

Next, change the unpeel function to the following:

private function unpeel(e:MouseEvent)
{
 for(var stuff:uint =0; stuff<7;stuff++)
 {
 textArea.appendText(group.pop()+”\n”);
 }
 size=”This array has “;
 size+=group.length +” elements.”;
 textArea.appendText(size);
}

Because you used the pop() method, the order is reversed and the size of

the array is down to zero. The for loop was used to iterate through all the

elements rather than the for..in loop because of the shrinking size of the

array. With each iteration, the loop size changes and because the for..in

loop uses the array size, some elements are always left out.

27_385395-bk04ch05.indd 34427_385395-bk04ch05.indd 344 10/28/08 8:30:17 PM10/28/08 8:30:17 PM

345

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

New in Flash CS4: Vectors

New in Flash CS4: Vectors
Vectors are close cousins to arrays and are newly introduced in ActionScript

3.0 with Flash CS4. A vector is something like an array, and most of the meth-

ods used with arrays are also available for vectors.

The main difference between the two is that vectors are typed and all items

in a vector must be of a single declared type. The result is that vectors are

much faster and more efficient than arrays. Adobe recommends that vectors

be used rather than arrays wherever you’re storing data of the same type in

a single object.

To see how each one is set up, Figure

5-2 shows their structures along with an

example (in blue) so that you can see

the difference. You cannot add data to a

vector when you instantiate it as you can

with an array, and so in Figure 5-2, the

opt1 and opt2 elements indicate the

option of declaring an array and adding

data at the same time and of different

types.

One feature about vectors that you will

find new is the use of arrow brackets

(<>) for typing vectors. The <T> is a generic symbol used for type, and the

type can be any ActionScript 3.0 type. So you might see <String>, <int>,

<Number>, or any other type. Also, note that a dot (.) appears between

Vector and the type (Vector.<String>).

Checking out non-numeric ID for vector elements
The first example shows how to set up a vector and to use string names as

element identifiers. This means that you can name an element anything you

want using quotes around a label, such as

myVector[“alpha”]=”A perfect day!”;
myVector[“beta”]=”A beautiful night!”;

You can do the same thing with arrays but Adobe recommends that you use

an Object instance rather than an array. Doing so allows you to initialize

your array with an object literal.

A vector is another alternative for creating groups of elements using string

literals rather than numbers to identify the items in the vector. This next

example provides a simple example:

Figure 5-2: Arrays and vectors.

27_385395-bk04ch05.indd 34527_385395-bk04ch05.indd 345 10/28/08 8:30:18 PM10/28/08 8:30:18 PM

346 New in Flash CS4: Vectors

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We named ours VectorWork.fla.

 2. In the Class box in the Properties panel, enter the class name and save

the file again.

 We used VectorWork as the class name.

 3. Drag a TextArea component into the library.

 We told you it’s in the library!

 4. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named ours VectorWork.fla and saved it in the same folder as

VectorWork.as.

 5. Add the following script and save the file again:

package
{
 import fl.controls.TextArea;
 import flash.display.Sprite;
 import fl.controls.ScrollPolicy;

 public class VectorWork extends Sprite
 {
 private var myAA: Vector.<String>;
 private var textArea:TextArea;
 private var cr:String;

 public function VectorWork()
 {
 myAA=new Vector.<String>(6,true);
 myAA[“President”]=”Pres-Joe Smith”;
 myAA[“VPm”]=”Marketing-Brenda Jones”;
 myAA[“VPd”]=”Development-Lee Pierce”;
 myAA[“VPf”]=”Finance-Gideon Thomas”;
 myAA[“VPp”]=”Production-Jesse Fernandez”;
 myAA[“VPs”]=”Sales-Nancy Huang”;

 textArea=new TextArea ();
 textArea.x=188,textArea.y=160;
 textArea.width=175;
 textArea.height=130;
 textArea.verticalScrollPolicy=ScrollPolicy.OFF;
 addChild(textArea);
 putOut();
 }
 private function putOut()
 {
 cr=”\n”;
 textArea.appendText(myAA[“President”] + cr);
 textArea.appendText(myAA[“VPm”] + cr);
 textArea.appendText(myAA[“VPd”] + cr);
 textArea.appendText(myAA[“VPf”] + cr);
 textArea.appendText(myAA[“VPp”] + cr);
 textArea.appendText(myAA[“VPs”] + cr);
 }
 }
}

27_385395-bk04ch05.indd 34627_385395-bk04ch05.indd 346 10/28/08 8:30:18 PM10/28/08 8:30:18 PM

347

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

New in Flash CS4: Vectors

Note how the vector items were addressed. Each element is addressed

by the element name and not by a number. For example, the vice presi-

dent of finance has the item identifier “VPf” rather than any numeric

value. If you attempt to use a number as an index to one of the elements,

you find a return value of undefined.

 6. Choose Control➪Test from the menu bar (Ctrl+Enter in Windows or

Ô+Return on the Mac) to test the application.

Sometimes you do not want the scrollbar to appear — ever. Using the

ScrollPolicy class, you can set it to OFF. Assign ScrollPolicy.
OFF to the verticalScrollPolicy or horizontalScrollPolicy

method to hide the scroll bar. (Alternatively, you can set it to ON or

AUTO.)

 Figure 5-3 shows the output you can expect to see when you test the

application.

Figure 5-3: Output sent to TextArea from the Vector instance.

Using the forEach() method
Another unique feature of vectors is the forEach() method. From Chapter 4,

you’re familiar with the for..each loop, but the Vector class has a method

that includes a loop! Figure 5-4 shows how to set up and use the special func-

tion used by the forEach() loop method. (Arrays also have a forEach()

method.)

27_385395-bk04ch05.indd 34727_385395-bk04ch05.indd 347 10/28/08 8:30:18 PM10/28/08 8:30:18 PM

348 New in Flash CS4: Vectors

myVec.forEach(fName, vecObj);
. . .
function fName(item:T, indent:int, vec:Vector.<T>):void
{
 //Statements
}
veck.foreach(puller,null);
. . .
function puller(item:String index:int vect:Vector.<String>):void
{
 trace(item);
}

Vector identifier
Function called

Any object(default=null)

Data type
Data type

Figure 5-4: Using Vector.forEach().

You do not need to know the name of vector elements using for each. All you

need to do is provide the name of the first parameter set up in the function.

(In the example, ‘item’ is the term used, but it could be any label.)

With this valuable new knowledge, let’s see an example using the

forNext() method. The following steps show you how:

 1. Choose New➪Flash File (ActionScript 3.0) from the menu bar to open

a new Flash (ActionScript 3.0) file and save it.

 We saved ours as EachVector.fla.

 2. In the Class box in the Properties panel, enter a class name and save

the file again.

 We chose EachVector as the class name.

You can decorate the Stage any way you want. Figure 5-5 shows a simple

design using a dynamically created TextArea component.

 3. Drag a TextArea component into the library.

 4. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 5. Add the script in the following listing and save the file again:

package
{
 import flash.display.Sprite;
 import fl.controls.TextArea;

 public class EachVector extends Sprite
 {
 private var myVec:Vector.<String>;
 private var textArea:TextArea;

 public function EachVector()
 {
 textArea=new TextArea();
 textArea.x=210,textArea.y=150;

27_385395-bk04ch05.indd 34827_385395-bk04ch05.indd 348 11/5/08 7:14:24 PM11/5/08 7:14:24 PM

349

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

New in Flash CS4: Vectors

 textArea.width=130;
 textArea.height=100;
 addChild(textArea);

 myVec = new Vector.<String>;
 myVec.push(“Sale Items\n”,
 “--------------\n”,
 “Flash Drives\n”,
 “External Hard Drives\n”,
 “DVD Drives\n”,
 “Optical Drives”);
 myVec.forEach(displayItems, null);
 }
 private function displayItems(item:String, index:uint,
 vec:Vector.<String>):void
 {
 textArea.appendText(item);
 }
 }
}

The forEach() method depends on the function that it calls having all the

right parameters — an element type (item), a typed index (index:uint)

and a vector type (String). Within that function, just type your statements in

the ActionScript file. Note that in the example, the item is each and every ele-

ment in the vector. We could have written the line as

textArea.appendText(myVec[index]);

and you would have had the same results. Figure 5-5 shows what you can

expect to see.

Figure 5-5: TextArea populated using forEach() method.

27_385395-bk04ch05.indd 34927_385395-bk04ch05.indd 349 10/28/08 8:30:19 PM10/28/08 8:30:19 PM

350 New in Flash CS4: Vectors

Look what the cat dragged in!
One fun feature for any Web page is a an object you can drag. Well, you can

drag any movie clip or sprite you want by writing a little ActionScript. All

you need to make a movie clip or sprite draggable is the startDrag() and

stopDrag() methods. Follow these steps:

 1. Choose New➪Flash File (ActionScript 3.0) from the menu bar to create

a new FLA file.

 2. Draw a shape to drag by using the Text tools and choose Modify➪
Convert to Symbol from the menu bar (or press F8) to open the

Convert to Symbol dialog box.

 We made ours from a dark red rectangle and a static text label of “Drag Me!”

 3. Select Convert to a MovieClip, select the Export for ActionScript check

box, and click OK.

 We saved ours with the name DragRat.

 4. Delete copies of the movie clip from the Stage by selecting them and

pressing the Delete key.

 The movie clip is still in the library, however.

 5. In the Properties panel, type the class name and save the file.

 We saved our file as Drag.fla.

 6. Create an ActionScript file and save it in the same folder as the file

you created in Step 1.

 We saved our file as Drag.as and saved it in the same folder as the

Drag.fla file.

 7. Add the following code save the file again.

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class Drag extends Sprite
 {
 private var dragRat:DragRat;

 public function Drag()
 {
 dragRat=new DragRat();
 dragRat.x=200,dragRat.y=150;
 dragRat.addEventListener(MouseEvent.MOUSE_DOWN,
 ratDrag);
 dragRat.addEventListener(MouseEvent.MOUSE_UP, ratFree);
 addChild(dragRat);
 }

27_385395-bk04ch05.indd 35027_385395-bk04ch05.indd 350 10/28/08 8:30:19 PM10/28/08 8:30:19 PM

351

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

An Introduction to ActionScript Graphic Programming

 private function ratDrag(e:MouseEvent):void
 {
 dragRat.startDrag();
 }

 private function ratFree(e:MouseEvent):void
 {
 dragRat.stopDrag();
 }
 }
}

 8. Test the program by choosing Control➪Test (or pressing Ctrl+Enter in

Windows or Ô+Return on the Mac).

 9. If you used our files, place the mouse on the red rectangle and drag

it around the Stage. Otherwise, test your application to see whether it

does what you expected it to do.

You can add the preceding code to any Sprite or MovieClip object that

you want to be draggable. By copying and pasting the code to your own

application, you don’t have to reinvent the wheel every time you sit

down to create an application that has draggable objects.

An Introduction to ActionScript Graphic Programming
Although most of your graphics work may be done with graphic tools in

Flash, you can also program Flash graphics for dynamic rendering and total

flexibility in your design. In this section, we get you started, but it’s only the

first step in a 1,000-mile trip!

Get in Shape!
The first class you need to consider is Shape. Along with Shape is the

Graphics class. In fact, just about everything that Shape does with graphics

is through the Shape.graphics property. Although a bit different from

most implementations, the graphics property provides a Graphics object to

be used as part of the Shape object. It makes all the drawing methods avail-

able to the Shape object. As a result, whenever you see Shape imported, you

also see Graphics imported. The statements

var myShape:Shape=new Shape();
myShape.graphics.beginFill(0xaabbcc);

show how an instantiated Shape object works with the Graphics class

through the graphics property and not a direct instance of the Graphics

class. Don’t lose any sleep over this structure; just remember that when you

want a Shape, you need Graphics. (Or vice versa — take your choice.)

27_385395-bk04ch05.indd 35127_385395-bk04ch05.indd 351 10/28/08 8:30:19 PM10/28/08 8:30:19 PM

352 An Introduction to ActionScript Graphic Programming

Simple rectangle
Let’s start with a simple rectangle drawing. Here’s what you need in any rect-

angle (pretend that you’re using the Drawing tool):

 ✓ Fill color: beginFill(0xaabbcc);

 ✓ Border stroke size and color: lineStyle(3, 0xccbbaa);

 ✓ X and Y & W and H: drawRect(30, 30, 160, 120);

You need exactly the same elements with ActionScript 3.0 code. Beginning

with a Shape object, you then use the graphics property to provide all the

methods you need. The following example shows you how:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We named ours Rectangle.fla.

 In the Class box in the Properties panel, enter the class name and save

the file.

 We chose Rectangle as the class name.

 2. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We saved ours as Rectangle.as in the same folder as the Rectangle.
fla file.

 3. Add the following script and save the file again.

package
{
 import flash.display.Sprite;
 import flash.display.Graphics;
 import flash.display.Shape;

 public class Rectangle extends Sprite
 {
 private var rec:Shape;

 public function Rectangle()
 {
 rec = new Shape();
 rec.graphics.beginFill(0x880000);
 rec.graphics.lineStyle(3, 0x008800);
 rec.graphics.drawRect(30, 30, 160, 120);
 rec.graphics.endFill();
 addChild(rec);
 }
 }
}

 4. Test the application.

 You see a red rectangle with a green border in the upper-right portion

of the Stage. So, really, all you’re doing is drawing with code. Simple

shapes are easy to create with code.

27_385395-bk04ch05.indd 35227_385395-bk04ch05.indd 352 10/28/08 8:30:19 PM10/28/08 8:30:19 PM

353

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

An Introduction to ActionScript Graphic Programming

The image maker

To make image creation easier, you can create a class that can make circles,

ellipses, rounded rectangles, and triangles. (The createTriangles()

method is a new one that is a bit different, and we look at it a bit more later.)

The class has methods that you can invoke from another class, and that’s

exactly what we plan to do. First, though, put GraphicPlay class together

with the following steps:

 1. Open a new ActionScript file and save it.

 We saved ours as GraphicPlay.as.

 2. Add the following script and save the file again.

package
{
 import flash.display.Sprite;
 import flash.display.Graphics;
 import flash.display.Shape;

 public class GraphicPlay extends Sprite
 {
 private var circle:Shape;
 private var rndRec:Shape;
 private var elip:Shape;

 public function GraphicPlay()
 {
 //Constructor
 }
 public function doOval(
 fill:uint,borW:Number,borC:uint,
 px:Number,py:Number,r:Number):void
 {
 circle = new Shape();
 circle.graphics.beginFill(fill);
 circle.graphics.lineStyle(borW,borC);
 circle.graphics.drawCircle(px,py,r);
 circle.graphics.endFill();
 addChild(circle);
 }
 public function doRnd(
 fill:uint,borW:Number,borC:uint,
 px:Number,py:Number,rw:Number,rh:Number,
 ew:Number):void
 {
 rndRec = new Shape();
 rndRec.graphics.beginFill(fill);
 rndRec.graphics.lineStyle(borW,borC);
 rndRec.graphics.drawRoundRect(px, py, rw,rh,ew);
 rndRec.graphics.endFill();
 addChild(rndRec);
 }
 public function doLips(
 fill:uint,borW:Number,borC:uint,
 px:Number,py:Number,rw:Number,
 rh:Number):void
 {

27_385395-bk04ch05.indd 35327_385395-bk04ch05.indd 353 10/28/08 8:30:20 PM10/28/08 8:30:20 PM

354 An Introduction to ActionScript Graphic Programming

 elip = new Shape();
 elip.graphics.beginFill(fill);
 elip.graphics.lineStyle(borW, borC);
 elip.graphics.drawEllipse(px, py, rw, rh);
 elip.graphics.endFill();
 addChild(elip);
 }
 public function doTri(fill:uint,v1:Number,v2:Number,
 v3:Number,v4:Number,
 v5:Number,v6:Number):void
 {
 graphics.beginFill(fill);
 graphics.drawTriangles(Vector.<Number>
 ([v1,v2,v3,v4,v5,v6]));

 }
 }
}

 3. Open a new Flash (ActionScript 3.0) file and save it in the same folder

as the file you created in Step 1.

 We named our file UseGraphics.fla and saved it in the same folder as

GraphicPlay.as.

 4. In the Class box in the Properties panel, enter the class name.

 We typed UseGraphics as the class name.

 5. Also in the Properties panel, provide a light gray background and

save the file again.

 6. Open a new ActionScript file and save it in the same folder as the file

you created in Steps 1 and 3.

 We named ours UseGraphics.as and saved it in the same folder as the

GraphicPlay.as and UseGraphics.fla files.

 7. Add the following script and save the file again:

package
{
 import flash.display.Sprite;

 public class UseGraphics extends Sprite
 {
 private var graphicPlay:GraphicPlay;

 public function UseGraphics()
 {
 graphicPlay=new GraphicPlay();
 addChild(graphicPlay);
 graphicPlay.doOval(0x800000,3,0x008000,150,100,20);
 graphicPlay.doRnd(0xffff00,3,0x000000,130,220,60,70,30);
 graphicPlay.doTri(0x000080,300,300,410,200,410,300);
 graphicPlay.doLips(0x008800,3,0x990099,280,80,130,88);
 }
 }
}

27_385395-bk04ch05.indd 35427_385395-bk04ch05.indd 354 10/28/08 8:30:20 PM10/28/08 8:30:20 PM

355

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

An Introduction to ActionScript Graphic Programming

 8. Select the tab containing the FLA file and test the application.

 Figure 5-6 shows what you can expect to see when you test the

application.

Figure 5-6: Dynamically created graphics.

 Try changing the values in the parameters of the methods used in the

UseGraphics application. In this way, you see that you have complete

control over the graphics.

The triangle and the vector
The triangle represents a whole new way of dealing with graphics. It uses

our friends the Vector and Graphics classes, but they’re built-in so that you

can use them without either the Shape class or the addChild() method to

place graphics on the page.

Two kinds of vector parameters are used — vertices and indices. The

drawTriangles() method expects the first set of numbers to be coordinates

on the Stage and the second set to be indices referencing the coordinates. The

indices are zero-based, just like you would expect in a Vector — the first coor-

dinates are 0; the second, 1; and so on.

27_385395-bk04ch05.indd 35527_385395-bk04ch05.indd 355 10/28/08 8:30:20 PM10/28/08 8:30:20 PM

356 An Introduction to ActionScript Graphic Programming

In thinking about the drawTriangles() method, first consider it to be a

simple statement with two parameters:

graphics.drawTriangles(vertices, indices);

The vertices are coordinate pairs made of an x and a y position (such as

20,30). Each triangle needs at least three coordinates. So, at a minimum,

the vertices are made up of six values representing three pairs of coordi-

nates. The vertices are stored in a vector typed as a number. For example,

the following vertices parameter shows three sets of coordinates:

Vector.<Number>([60,60, 160,60, 60,160])

You can create a simple triangle using just the vertices, but finding out how

to use the vertices and indices together gives you a better idea of how to use

this powerful new tool that will be the basis of 3D graphics in Flash.

Indices are integers pointing to the different coordinates. The first vector

item in the indices points to the first pair. Being zero-based, the first index is

0. For example, if the first coordinate pair in the vertices list is 20,30, then 0

would point to the coordinate 20,30. The following line shows what you can

expect to see in the second parameter in the drawTriangles() method:

Vector.<int>([0,2,1])

Essentially, that parameter tells the program to draw a triangle starting at

coordinate 0, and then proceed to coordinate 2, and then to coordinate 1.

When you put it all together, you get the full statement:

graphics.drawTriangles(
Vector.<Number>([60,60, 160,60, 60,160]),
Vector.<int>([0,2,1]));

At first glance, you might be thinking that the preceding looks a bit redun-

dant, given that the first set of numbers does a dandy job of defining the

coordinates. So why the second set? The reason for that is to reduce the

number of references. Because you have only three coordinates, you’re

going to get the same triangle no matter what you do. However, if you add a

fourth set of coordinates, you can draw a far wider range of triangles using

only three indices for each triangle rather than six numbers. Figure 5-7

shows the relationship between vertices and indices.

In looking at Figure 5-7, you can see a green and red triangle overlapping one

another. The indices 0,1, and 3 define the green triangle and the indices 1, 3,

and 2 define the red triangle. If you trace those values with your finger, you

can see how each comes to create a different triangle.

27_385395-bk04ch05.indd 35627_385395-bk04ch05.indd 356 10/28/08 8:30:20 PM10/28/08 8:30:20 PM

357

Book IV
Chapter 5

Harnessing
the Pow

er of
ActionScript 3.0

An Introduction to ActionScript Graphic Programming

Figure 5-7: Vertices and indices define triangle paths.

Now, all that’s left is to create an example that brings everything together.

Follow these steps:

 1. Open a new Flash (ActionScript 3.0) file and save it.

 We named ours Triangle.fla.

 2. In the Class box in the Properties panel, enter the class name and save

the file again.

 We used Triangle as the class name.

 3. Open a new ActionScript file and save it in the same folder as the file

you created in Step 1.

 We named ours Triangle.as and saved it in the same folder as the

Triangle.fla file.

 4. Add the following script and save the file again:

package
{
 import flash.display.Sprite;
 import flash.display.Graphics;

 public class Triangle extends Sprite
 {
 public function Triangle()
 {
 graphics.beginFill(0x800000);
 graphics.drawTriangles(
 Vector.<Number>([60,60, 160,60, 60,160, 160,160]),
 Vector.<int>([0,1,3, 1,3,2]));
 }
 }
}

27_385395-bk04ch05.indd 35727_385395-bk04ch05.indd 357 10/28/08 8:30:20 PM10/28/08 8:30:20 PM

358 An Introduction to ActionScript Graphic Programming

Notice that the code has no Shape

instances and doesn’t require the

addChild() method to place the

images on the Stage. Figure 5-8

shows the hourglass image that

you get. That’s because nothing

appears where the two triangles

overlap. If you remove the first

three or last three numbers in the

indices parameter, you can see the

single triangle for each.

Figure 5-8: An hourglass created by using
triangles.

27_385395-bk04ch05.indd 35827_385395-bk04ch05.indd 358 10/28/08 8:30:21 PM10/28/08 8:30:21 PM

Book V
Working with
Flash Audio

28_385395-pt05.indd 35928_385395-pt05.indd 359 10/28/08 8:30:53 PM10/28/08 8:30:53 PM

When you visit a full-fl edged Flash Web site,

sound is almost always present. Some

sites greet you with background music, and other

sites have buttons that make noises when you

click them. Sound used with discretion is a useful

addition to any Flash project. In this minibook, we

show you how to incorporate sound into your

projects. We discuss the supported sound formats

and then show you how to sync sound to your

projects and create noisy buttons to optimize

your joyful noises for Flash. We also show you

how to use ActionScript to load external sound

fi les into a project.

28_385395-pt05.indd 36028_385395-pt05.indd 360 10/28/08 8:30:55 PM10/28/08 8:30:55 PM

Chapter 1: Understanding
Web Audio

In This Chapter
✓ About Internet audio files

✓ Deciphering bit depth and data rate

✓ Audio hardware and software

Sound is everywhere on the Internet, and you can include sound in your

Flash projects. If you’re creating a Flash Web site for a music group, you

can include background music or an audio player, for example, and add sounds

to buttons. For example, if you’re creating a Web site for a photographer, you

can have a shutter-click sound play when a button is clicked. In this chapter,

we discuss the sound file formats supported by Flash and introduce you to a

couple of important concepts about sound. In case you will be

recording your own material or editing material supplied

by clients, we show you some hardware and software

solutions.

Exploring Flash-Sanctioned
Audio Formats

Flash supports many different sound formats.

We don’t profess to be experts when it comes to

sound, but we do know enough to be dangerous,

and more than enough to know the lowdown on

sound for Flash. Do you need to be a sound expert to

incorporate sound in your Flash movies? No. But it does

help to know something about the different file formats, espe-

cially if you’re dealing with clients who ask you to add sound to

their Flash projects. When they do, you tell them which format you need it in.

The following list briefly describes the sound formats supported by Flash:

 ✓ WAV (*.wav): A format that’s compatible on the Windows and

Macintosh operating platforms. (WAV is an abbreviation of WAVeform.)

As a rule, sound in this format isn’t compressed and is encoded with

PCM (pulse-code-modulation). If you use a WAV file in a Flash project,

you start with high-quality sound. This format is ideal if you’re including

background music that must be of high quality.

29_385395-bk05ch01.indd 36129_385395-bk05ch01.indd 361 10/28/08 8:31:34 PM10/28/08 8:31:34 PM

362 Understanding Bit Depths, Data Rates, and Sample Rates

 ✓ AIFF Sound (*.aif, *.aiff): A format that can be used on both Windows

and Mac operating systems. This sound file format (another one that

usually isn’t compressed) offers CD sound quality and is another good

option for high-quality background music. (AIFF is an acronym for Audio

Interchange File Format.)

 ✓ Adobe Sound Document (*.asnd): A file created by using the Adobe

Soundbooth software. The user can specify the data rate and bit

rate for the file. Flash CS4 has an option to edit a sound file in Adobe

Soundbooth.

 ✓ MP3 (*.mp3): Officially known as MPEG-1 Level 3 but more commonly

referred to as MP3. This sound format is commonly used for Internet

sound and portable audio players. Sound in this format is compressed.

The amount of compression (the data rate) determines the quality of

the sound. This format is acceptable for a music background with a data

rate of 128 Kbps and also works well for the spoken word. You can get

good results with an MP3 recording of the spoken word with a data rate

of 16 Kbps.

If you have QuickTime 4 or later installed, you can also import the following

file formats into Flash:

 ✓ Sound Designer 2 (*.sd2, Macintosh only): A sound format developed

for recording audio on Macintosh-based computers. This high-quality

sound format is capable of recording CD-quality sound.

 ✓ Sun Audio (*.au): A sound format created by Sun Microsystems for

Internet use. The file format is suitable for simple sounds and the

spoken word, but not for music.

 ✓ System 7 Sounds (Macintosh only): Associated with the Mac OS7 oper-

ating system.

Understanding Bit Depths, Data Rates,
and Sample Rates

Whenever sound is recorded, a bit depth and sample rate are chosen. When

sound is compressed for playback, a bit depth and sample rate are also

chosen. These factors determine the quality of the sound, and the resulting

file size.

29_385395-bk05ch01.indd 36229_385395-bk05ch01.indd 362 10/28/08 8:31:35 PM10/28/08 8:31:35 PM

363

Book V
Chapter 1

Understanding
W

eb Audio
Understanding Bit Depths, Data Rates, and Sample Rates

Bit depth determines the dynamic range and signal-to-noise ratio of a digital

audio file. The dynamic range is the sound range in decibels that can be

reproduced when the sound is played back. The human hearing range is

approximately 100 decibels (dB). A 16-bit recording has a dynamic range of

approximately 98 dB. The signal-to-noise ratio is the amount of noise that

can be heard in soft passages. When you import a sound into Flash that has

a high bit depth, you end up with a sound that has a wide dynamic range and

a low signal-to-noise ratio.

Frequency, measured in hertz (Hz), is the number of cycles a waveform com-

pletes in one second. A frequency of I Hz plays 1 sound wave or cycle per

second. The human range of hearing is from approximately 20 Hz to 20 kHz

(20,000 Hz). A fellow named Harry Nyquist came up with the theory that the

frequency needed to cover the range of human hearing is exactly double that

range. A fudge factor of 10 percent was added, which brings the frequency

to 44.1 kHz, the frequency commonly used to record CD-quality sound. TV

audio is 48 kHz, and DVD-quality audio has a frequency of 96 kHz.

When you’re choosing an audio file for a Flash project, the bit depth and fre-

quency are quite important. If you’re importing a sound file for background

music, choose a 16-bit file with a 44.1 kHz frequency. If you’re importing a

simple sound for a button, you can get by with an 8-bit file with an 11 kHz

frequency. For more complex sounds or a recording of the spoken voice, use

an 8-bit file with a 22.5 kHz frequency. For music, use a 16-bit file with a 44.1

kHz frequency.

Data rate is a factor when a file is compressed into a format such as MP3.

The data rate, also known as the bit rate, is the number of bits played back

per second. A low bit rate produces a small file size at the expense of sound

quality. For the spoken voice with no background music, a bit rate of 16

Kbps is acceptable, unless the person has a deep voice. FM radio quality is

96 Kbps, and near CD quality is 320 Kbps.

Stereo is something else to consider. Stereophonic sound consists of two

channels, which plays back in the left and right speakers of a stereo sound

system or a computer with a sound card that supports stereo. A stereo file is

twice as large as a monophonic (one channel of sound) sound file.

If you’re not sure about the frequency and bit depth of a sound file, launch

Flash and choose File➪Import to Library. After the file is imported to

the document Library, select it, right-click (Windows) or Control+click

(Macintosh), and then choose Properties. The properties of the sound file

appear to the right of the waveform (see Figure 1-1).

29_385395-bk05ch01.indd 36329_385395-bk05ch01.indd 363 10/28/08 8:31:35 PM10/28/08 8:31:35 PM

364 Recording Hardware

Figure 1-1: This sound file has properties.

Recording Hardware
If you record sound for your Flash productions or are considering recording

sounds for your Flash production, you should buy the best microphone you

can afford. Several microphone models operate from one of your computer’s

USB ports. This section presents a couple of solutions that will give you

good sound quality without breaking the bank.

Zoom H2
The Zoom H2 (type H2 in the Search box at www.samsontech.com) is a

handheld recording powerhouse with four microphones in an incredibly

small package. The device can record 16- or 24-bit sound files with a fre-

quency of 96/48/44.1 kHz uncompressed in the WAV format or in the MP3

format with a sample rate of up to 320 Kbps. Users can change the sound

format, frequency, and sample rate by using menu commands. Buttons on

the front of the recorder enable users to switch microphone configurations.

The unit can record a 90-degree pattern using two microphones from the

front of the unit, which is ideal for recording your own voice; a 120-degree

pattern using two microphones from the rear of the unit, ideal for recording

a group of people; or four microphones for 360-degree surround sound. The

sound quality is incredible.

29_385395-bk05ch01.indd 36429_385395-bk05ch01.indd 364 10/28/08 8:31:35 PM10/28/08 8:31:35 PM

365

Book V
Chapter 1

Understanding
W

eb Audio
Recording Hardware

The Zoom H2 also doubles as a USB microphone. Simply plug in the supplied

USB cable to the microphone and use a menu command to connect the H2 as

an audio input device, and you can use your computer recording software to

record your voice or sounds. In fact, Doug has used the Zoom H2 to record

podcasts. For field recordings, the unit uses SD (Secure Digital) memory

cards. The unit ships with a 512MB SD card, earbuds, a small tripod, a wind-

screen, a USB cable, a power adapter, and a handle that can be used to con-

nect the device to a microphone stand. As of this writing, the list price of the

Zoom H2 (see Figure 1-2) is $199.

Figure 1-2: The Zoom H2 can be used for field and computer recordings.

Blue Snowball
Professional podcasters and radio personalities use condenser microphones

to produce sweet, rich vocals. Most condenser microphones need phantom

power to work. Blue Microphone’s Snowball (see Figure 1-3) is white and

round — just like a snowball — and is powered by your computer’s USB

port. The Snowball (click the Snowball link at the top of the page at www.
bluemic.com) is a professional-quality condenser microphone.

29_385395-bk05ch01.indd 36529_385395-bk05ch01.indd 365 10/28/08 8:31:35 PM10/28/08 8:31:35 PM

366 Recording Hardware

It has two polar patterns — omnidi-

rectional (360 degree) and cardioid —

which records sound from the front of

the microphone. The cardioid pattern

is ideal if you’re recording in an envi-

ronment with background noise such

as computer fans. There is also a car-

dioid pattern with a –10 dB attenuator

if you’re recording in a noisy environ-

ment. The microphone records 16-bit

sound with a sample rate of 44.1 kHz.

The microphone needs no drivers.

Connect the Snowball to a micro-

phone stand using the thread mount

at the bottom of the unit, connect

the USB cord to the microphone,

and then to your computer. It’s as

simple as that. The Snowball works

with a Macintosh (OS X; USB 1.0 or

2.0; with a minimum of 64MB RAM)

or on Windows (XP Home Edition or

XP Professional; USB 1.0 or 2.0; with

a minimum of 64MB RAM). The initial

USB drivers for Windows Vista caused

some problems with this microphone.

If you perform a Windows update, the microphone will work just fine. Doug

uses the microphone with Vista to record his podcast. As of this writing, the

Blue Snowball has a list price of $159.

Blue Snowflake
Blue Microphone’s Snowflake is an ideal recording solution for road war-

riors. The Snowflake is small — toss it in your laptop case and it’s readily

available when you need to record on the road. The device can be placed

flat on a desktop or clipped to most laptop computers. The Snowflake is a

professional-quality condenser microphone in an incredibly small package.

The microphone has a cardioid pattern, which means that the device picks

up sound in front of the microphone. The Snowflake records 16-bit sound

with a sample rate of 44.1 kHz and needs no drivers. Connect the USB cable

to the microphone and then to your computer, and you’re ready to record.

When you need to pack the microphone away, coil the USB cord, place it in

the base, and close it. You can also separate the base and attach the micro-

phone to a laptop computer (see Figure 1-4). This handy microphone is

about the same size as a classic iPod and works with a Macintosh (OS X;

Figure 1-3: The Snowball condenser
microphone is ideally suited for computer
recording.

29_385395-bk05ch01.indd 36629_385395-bk05ch01.indd 366 10/28/08 8:31:36 PM10/28/08 8:31:36 PM

367

Book V
Chapter 1

Understanding
W

eb Audio
Sound-Editing Software

USB 1.0 or 2.0; with a minimum of 64MB RAM) or on Windows (Vista,

XP Home Edition, or XP Professional; USB 1.0 or 2.0; with a minimum of

64MB RAM). For more information, visit www.bluemic.com and click the

Snowflake link at the top of the page. As of this writing, the Blue Snowflake

has a list price of $79.

Figure 1-4: The Snowflake, a road warrior’s best friend.

Sound-Editing Software
After picking up a good microphone, you need software to capture your

words of wisdom and the sounds you record. Sound-editing software is also

useful when you need to edit files supplied by a client. In this section, we

show you three applications we use: Adobe Audition, Sony Sound Forge, and

Acid Music.

Adobe Audition
Adobe Audition (www.adobe.com/products/audition) is a full-featured

professional recording and sound-editing application. You can record

multiple tracks with the application, clean up existing audio, and edit your

projects. The software features several options. You can work in multitrack

mode or edit an individual track. The software has tools you use to analyze

a sound and much more. You can also restore noisy and clipped files. Doug

uses Audition to record and edit his podcast (www.pixelicious.info).

The workspace (see Figure 1-5) is fairly intuitive if you’ve edited sound

before. As of this writing, Adobe Audition lists for $349.

29_385395-bk05ch01.indd 36729_385395-bk05ch01.indd 367 10/28/08 8:31:37 PM10/28/08 8:31:37 PM

368 Sound-Editing Software

Figure 1-5: Edit and record sound with Adobe Audition.

Adobe Audition may be overkill for your needs. Adobe has another applica-

tion, Sound Booth, that’s targeted toward developers and designers with

little or no experience in sound editing. The application is tailored for work-

ing with Flash and other Adobe applications. As of this writing, the applica-

tion lists for $199.

When you record, make sure to use the VU meters that are available in most

applications. When you record, make sure that the VU meters don’t reach

the red zone. If you do, the peak of the waveform is flat, which means that

the sound is clipped and distorted.

Sony Sound Forge
Sony Sound Forge is another powerful sound-editing application. Sony Sound

 Forge 9.0 (www.sonycreativesoftware.com/soundforge) features multi-

track editing. You can record, edit, restore old recordings, and do much

29_385395-bk05ch01.indd 36829_385395-bk05ch01.indd 368 10/28/08 8:31:37 PM10/28/08 8:31:37 PM

369

Book V
Chapter 1

Understanding
W

eb Audio
Sound-Editing Software

more. As of this writing, Sony Sound Forge 9.0 retails for $299. If you don’t

need the option to record multiple tracks, Sony Sound Forge Audio Studio

(www.sonycreativesoftware.com/audiostudio) may be the solution

for you. As of this writing, the application sells for $54.95. Figure 1-6 shows

the workspace for Sony Sound Forge 7.0.

Figure 1-6: You can record, edit, and repair sound files with Sony Sound Forge.

Sony ACID Music Studio (Windows only)
The Sony ACID Music Studio (www.sonycreativesoftware.com/music
studio) application enables you to create soundtracks using music sample

loops. The application supports multiple tracks and recording. When you

assemble a song in ACID, the loops seamlessly mix to create your sound-

track. If you have clients who can’t create their own soundtracks and you

have an ear for music, consider purchasing a copy of ACID Music Studio.

The application ships with 3,000 sound loops that you can mix and match to

create your own unique soundtracks. Doug uses Sony ACID to record back-

ground music for his podcast and Flash projects. Bill uses the Macintosh

equivalent: GarageBand (www.apple.com/ilife/garageband/). As of

29_385395-bk05ch01.indd 36929_385395-bk05ch01.indd 369 10/28/08 8:31:38 PM10/28/08 8:31:38 PM

370 Sound-Editing Software

this writing, Sony ACID Music Studio sells for $54.95. You can purchase addi-

tional loops for most musical instruments in a wide variety of genres from

the Sony Web site (www.sony
creativesoftware.com/loops).

If you’re on a budget, check out a cross-platform application called Audacity

(http://audacity.sourceforge.net). It’s not the prettiest interface on

the planet, but it does support multiple tracks and editing. There are also

plug-ins that enable you to export the sound in the MP3 format (http://
audacity.sourceforge.net/download/lame).

29_385395-bk05ch01.indd 37029_385395-bk05ch01.indd 370 10/28/08 8:31:39 PM10/28/08 8:31:39 PM

Chapter 2: Adding Sound
to a Flash Production

In This Chapter
✓ Importing audio to your projects

✓ Adding sound to your projects

✓ Adding sound to buttons

✓ Using ActionScript to load an external sound file or a soundtrack

It seems like every Flash movie has sound in it. Flash sites have back-

ground music playing, and buttons make noise when they’re clicked, for

example. If you want sound in your Flash projects, you’ve come to the right

place. In this chapter, we show you how to import audio, add audio to

keyframes, and add audio to buttons. Last but not least, we show

you how to use ActionScript to load a music soundtrack.

Importing Audio
If you want music in a Flash project, you have to

import it — it’s a Flash law. When you import

music to a project, you can import it to the Stage

or to the document library.

To import a sound to the document library:

 1. Choose File➪Import➪Import to Library.

 The Import to Library dialog box appears

(see Figure 2-1).

 2. Select the file you want to import.

 You can import any sound file format supported by Flash. If you don’t

have your sound assets organized in their own folder, you can save time

by choosing All Sound Formats from the Files of Type drop-down menu.

30_385395-bk05ch02.indd 37130_385395-bk05ch02.indd 371 10/28/08 8:32:21 PM10/28/08 8:32:21 PM

372 Importing Audio

When you choose this option, only supported sound files are displayed

in the dialog box. Alternatively, you can select a file format type from

the Files of Type drop-down menu to display only those files.

 3. Select a file and then click OK.

 The sound file is added to the document library.

Figure 2-1: Importing a sound file to the document library.

To add a sound to the Stage, follow these steps:

 1. Select the keyframe where you want the sound to appear.

 You can select a keyframe on the main Timeline, a Timeline for a movie

clip you’re creating, or the keyframe for a button you’re creating. If you

select a frame, Flash adds the sound to the previous keyframe.

 2. Choose File➪Import➪Import to Stage.

 The Import dialog box appears (see Figure 2-2).

 3. Select the file you want to import.

 You can import any sound file format supported by Flash.

 4. Select a file and then click OK.

 The file is imported to your project, and a waveform appears in the key-

frame (see Figure 2-3).

30_385395-bk05ch02.indd 37230_385395-bk05ch02.indd 372 10/28/08 8:32:21 PM10/28/08 8:32:21 PM

373

Book V
Chapter 2

Adding Sound to a
Flash Production

Using Sound in a Project

Figure 2-2: Importing a sound to the Stage.

Figure 2-3: A sound imported to a keyframe.

Using Sound in a Project
After you add some sound files to the document library, it’s time to put them

to work. You may think that you can just plop a sound file on the Timeline

and be done with it. But no, you have to tell Flash how to synch the sound

to the Timeline. Then you decide whether you want the sound to play more

than once or when you want it to stop, for example. It’s not rocket science,

but if you’ve never done it, you’ve come to the right section of the book. In

the following sections, we show you how to use sound from the document

library, choose the proper method of synching the sound, and add sound

effects if you want them.

30_385395-bk05ch02.indd 37330_385395-bk05ch02.indd 373 10/28/08 8:32:22 PM10/28/08 8:32:22 PM

374 Using Sound in a Project

Adding a sound from the document library
Unless we’re using ActionScript to load a sound file, we always add our

sounds to the document library and then add them to the project. We

find this method to be a better way to work than importing sounds to the

Timeline when you suddenly remember that a sound is supposed to play

on Keyframe 6. To add a sound from the document library to your project,

follow these steps:

 1. Select the keyframe where you

want the sound to appear.

 You can select a keyframe on the

main Timeline, on a Movie Clip

symbol you’re creating, or on

a keyframe for a button you’re

creating. If you select a frame by

mistake, Flash adds the sound to

the previous keyframe.

 2. Open the Property inspector.

 If the Property inspector isn’t

visible in the workspace, choose

Window➪Properties (see

Figure 2-4).

 3. In the Sound section, select a

file from the Name drop-down

menu.

 On this menu, you find a list of

all sounds you’ve imported to the

document library.

 4. Select an option from the Effect menu.

 We cover effects in the “Adding Sound Effects” section of this chapter.

 5. Select an option from the Sync menu.

 We cover these options in the “Synching sound” section, later in this

chapter. After you add a sound to a keyframe, the sound’s waveform

appears on the Timeline.

Synching sound
After you add a sound to your project, you have to determine how Flash

synchronizes the sound to the Timeline. You have several different options

to consider. These options determine how the sound file plays in relation to

your movie. To synchronize a sound, follow these steps:

Figure 2-4: Adding a sound from the
document library.

30_385395-bk05ch02.indd 37430_385395-bk05ch02.indd 374 10/28/08 8:32:22 PM10/28/08 8:32:22 PM

375

Book V
Chapter 2

Adding Sound to a
Flash Production

Using Sound in a Project

 1. Add a sound to the Timeline from the document library or by import-

ing a sound to the Stage.

 If you jumped to this part of the chapter before reading anything else

and you don’t know how to add a sound to the Timeline, put on the

brakes and read the earlier sections “Importing Audio” or “Adding a

Sound from the document library.”

 2. Choose one of the following options from the Sync drop-down menu:

 • Event: Plays the sound when the keyframe is reached and plays the

sound in its entirety. The sound plays again when the keyframe is

triggered. This may cause a problem if you add the sound to the

Timeline of a looping animation and the duration of the sound is

longer than the duration of the animation. The sound plays again,

even though the first instance of the sound hasn’t stopped playing.

This sync method is best suited for sounds that have a short dura-

tion, such as the sound you add to button keyframes.

 • Start: Starts the sound when the keyframe is reached. However, it

doesn’t play again if the keyframe is reached before the sound stops

playing.

 • Stop: Stops the sound when the keyframe is reached. This option

works well when you want a sound to stop on a given frame.

 • Stream: Starts playing the sound as soon as enough frames have

downloaded into the viewer’s Flash Player. This option causes the

Flash Player to skip frames if the animation cannot keep up with the

streaming sound. If an animation in the movie stops while the sound

is playing, the sound stops too. A streaming sound stops playing if its

duration exceeds the number of frames in the movie.

 3. Choose an option from the Sound Loop drop-down menu that’s right

below the Sync menu.

 The default option, Repeat, enables you to determine how many times

the sound plays. After choosing this option, drag the scrubby slider to

determine how many times the sound plays, or click the current value

and enter a different one. Alternatively, you can choose Loop from the

menu and the sound loops infinitely. Looping isn’t recommended for

streaming sounds because it adds frames to the file to play the sound

for the number of times you specify, which can significantly increase the

file size.

Adding sound effects
By default, the sound plays out of both speakers. Can you say stereo? We

knew you could. However, by adding a sound effect, you can have the sound

play in the left channel or right channel, or cross the great divide from right

to left, or vice versa. Intrigued? Follow these steps:

30_385395-bk05ch02.indd 37530_385395-bk05ch02.indd 375 10/28/08 8:32:22 PM10/28/08 8:32:22 PM

376 Adding Sound to Buttons

 1. Add a sound to the Timeline from the document library, or by import-

ing a sound to the Stage.

 If you don’t know how to add a sound to the Timeline, read the earlier

sections “Importing Audio” or “Adding a sound from the document

library.”

 2. Choose one of the following options from the Effect menu:

 • None: The default option; applies no effect to the sound

 • Left Channel: Plays the sound in the left speaker of the host computer

 • Right Channel: Plays the sound in the right speaker of the host

computer

 • Fade to Right: Gradually fades the sound to the right speaker of the

host computer

 • Fade to Left: Gradually fades the sound to the left speaker of the host

computer

 • Fade In: Gradually increases the volume of the sound through its

duration

 • Fade Out: Gradually decreases the volume of the sound through its

duration

 • Custom: Lets you tweak the sound to your liking. If you’re a custom

kind of person, check out Chapter 3 of this minibook.

Adding Sound to Buttons
Button sounds are quite common in Flash movies. You can have a sound

play when a user pauses the cursor over the button or clicks the button. To

add a sound to a button, follow these steps:

 1. Create a button.

 We know — we haven’t covered buttons yet. If you don’t know how to

create a button, please bookmark this page and check out the section in

Book VII, Chapter 1, about creating buttons.

 2. Right-click (Windows) or Ctrl+click (Mac) and choose Add Layer from

the context menu.

 Flash creates a new layer. While you’re at it, be neat and tidy. Double-

click the current layer name to select it, and then enter Sound. Even on

a simple two-layer Timeline, it pays to be tidy and label your layers.

 3. Select the Over keyframe if you want a sound to play whenever a user

pauses the cursor over the button; or select the Down frame if you

want a sound to play when the button is clicked.

30_385395-bk05ch02.indd 37630_385395-bk05ch02.indd 376 10/28/08 8:32:22 PM10/28/08 8:32:22 PM

377

Book V
Chapter 2

Adding Sound to a
Flash Production

Using the Flash Sounds Library

 4. Press F6 to create a keyframe.

 You can have a sound play for both states. Just make sure that the

sounds are short in duration.

 5. Open the Property inspector.

 6. In the Sound section, choose a sound from the Name drop-down

menu.

 This menu shows every sound you imported into the document library.

If you haven’t imported any sounds, choose File➪Import to Stage and

follow the prompts to select the file and open it.

 7. Accept the default Event option from the Sync menu.

 Figure 2-5 shows the Timeline of a button to which a sound has been

added to the Over state.

Figure 2-5: Adding a sound to a button’s Over state.

 8. Press Ctrl+Enter (Windows) or Ô+Return (Macintosh).

 Flash publishes the movie and displays it in another window.

 9. Pause the cursor over the button.

 The sound plays. Of course there’s more to a button than just graphics

and sound. In Book VII, Chapter 1, we show you how to create a button

and how to create the ActionScript code that makes the button functional.

Using the Flash Sounds Library
Flash CS4 ships with an impressive library of sounds. When you need to

find a sound for a button or an animation you need, look no further than the

sounds library. To use a sound from the sounds library, follow these steps:

30_385395-bk05ch02.indd 37730_385395-bk05ch02.indd 377 10/28/08 8:32:22 PM10/28/08 8:32:22 PM

378 Use ActionScript to Load an External Sound File

 1. Choose Window➪Common

Libraries➪Sounds.

 The sounds library appears (see

Figure 2-6).

 2. Select a sound and then click

the Play button to preview the

sound.

 You hear the sound unless your

speakers are muted.

 3. Drag the sound to the document

library.

 The sound is added to the docu-

ment library.

 4. Drag the sound to a keyframe.

 After adding the sound to

your project, choose a Sync

option and an effect. For more

information about synchroniz-

ing sounds, see the “Synching

sound” section, earlier in this

chapter. For more information

about sound events, see the

Adding Sound Effects section of

this chapter.

Use ActionScript to Load
an External Sound File

The ActionScript sound classes make it possible for you to load an external

sound file into Flash, which enables you to keep the file size of your movie

relatively small. In this section, we show you the code needed to load the

sound file and to start and stop the movie. The ActionScript is loaded from

external ActionScript files. We make the ActionScript files (AS3_Sound.zip)

available from this book’s companion Web site at www.dummies.com/go/
flashallinone.

To load an external sound file using ActionScript, follow these steps:

 1. Choose File➪New.

 The New Document dialog box appears.

 2. Accept the default ActionScript 3.0 file type and click OK.

 Flash creates a new document.

Figure 2-6: A library with sounds? Isn’t that an
oxymoron?

30_385395-bk05ch02.indd 37830_385395-bk05ch02.indd 378 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

379

Book V
Chapter 2

Adding Sound to a
Flash Production

Use ActionScript to Load an External Sound File

 3. Add two buttons to the document.

 For the purpose of this example, choose Window➪Common

Libraries➪Buttons. Choose a Play and Stop button from the Playback

Flat group on the Stage.

 4. Select the Play button and then open the Property inspector.

 5. Name the button instance start.

 This is the name of the button instance as it will be addressed from the

external ActionScript files.

 6. Select the Stop button, and in the Property inspector, name the button

halt.

 It’s a rather logical name for a button that stops a sound file.

 7. Save the file.

 When you save the file, name the file DoSound. Leave the document

open.

 8. Choose File➪New and choose ActionScript File from the Type menu.

 A file named Script-1 appears, and the Actions panel occupies the work-

space.

 9. Enter the code from Listing 2-1 in the Actions panel.

 If you downloaded the ActionScript files, you can copy and paste the

code from SoundPlayer.as into the Actions panel. Alternatively, you

can open the file in Flash.

Listing 2-1: The SoundPlayer ActionScript Code
package
{
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;

 public class SoundPlayer extends Sprite
 {
 private var soundCh:SoundChannel;
 private var soundReq:URLRequest;
 private var soundSource:Sound;

 public function SoundPlayer(url:String)
 {
 soundReq=new URLRequest(url);
 soundSource = new Sound();
 soundSource.load(soundReq);
 }

(continued)

30_385395-bk05ch02.indd 37930_385395-bk05ch02.indd 379 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

380 Use ActionScript to Load an External Sound File

Listing 2-1: (continued)
 public function playSound():void
 {
 soundCh=soundSource.play();
 }

 public function stopSound():void
 {
 soundCh.stop();
 }
 }
}

 10. Save the file.

 Name the file SoundPlayer. Flash automatically supplies the .as

extension.

 11. Choose File➪New and choose ActionScript File from the Type menu.

 A file named Script-2 appears, and the Actions panel occupies the

workspace.

 12. Enter the code from Listing 2-2 in the Actions panel.

 This bit of code plays and stops the music file when the appropriate

button is clicked. Alternatively, you can cut and paste the code from the

DoSound.as file you downloaded.

Listing 2-2: The DoSound ActionScript Code
package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DoSound extends Sprite
 {
 private var soundNow:SoundPlayer;

 public function DoSound()
 {
 start.addEventListener(MouseEvent.CLICK, turnOn)
 halt.addEventListener(MouseEvent.CLICK, turnOff)
 soundNow=new SoundPlayer(“mySoundFile.mp3”);
 }
 private function turnOn(e:MouseEvent):void
 {
 soundNow.playSound();
 }
 private function turnOff(e:MouseEvent):void
 {
 soundNow.stopSound();
 }
 }
}

30_385395-bk05ch02.indd 38030_385395-bk05ch02.indd 380 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

381

Book V
Chapter 2

Adding Sound to a
Flash Production

Using ActionScript to Load a Soundtrack

 13. In the line that starts with soundNow=new SoundPlayer, select

mySoundFile.mp3, and replace the text with the name of your sound

file.

 Make sure to include the extension in the filename. Also make sure that

the file is in the same folder as the ActionScript files and the DoSound.
fla document.

 14. Save the file.

 Name the file DoSound. Flash automatically supplies the .as extension.

 15. Select the DoSound.fla title.

 If you closed the document, choose File➪Open, navigate to the file, and

then open it.

 16. Press Ctrl+Enter (Windows) or Ô+Return (Macintosh).

 Flash publishes the file and opens the movie in a new window.

 17. Click the buttons to start and stop the music.

Using ActionScript to Load a Soundtrack
Back in the Jurassic period of Flash, you created a movie with nothing but

a soundtrack and then loaded that soundtrack movie into a target movie

clip in your main movie. However, with a bit of ActionScript, you can load a

soundtrack into another file. This is an excellent option if you don’t own a

sound editing application. You can optimize the sound in Flash as outlined in

Chapter 3 of this minibook. Whenever you load content from an external file,

the main file is as small as possible, which means that it loads quickly. To

load a soundtrack from an external source, follow these steps:

 1. Create a new Flash document.

 2. Open the Property inspector.

 3. Change the background color to the same color as the document in

which the sound file will play.

 4. Change the W and H values to 1.

 You’re creating a 1-by-1-pixel file that will nestle in a corner of your main

Flash movie.

 5. Select the first keyframe and choose File➪Import➪Import to Stage.

 In the Open dialog box, navigate to a sound file and then open it.

30_385395-bk05ch02.indd 38130_385395-bk05ch02.indd 381 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

382 Using ActionScript to Load a Soundtrack

 6. In the Property inspector, accept the default Event Synch method, and

choose Loop from the Sound Loop menu.

 7. Select the sound in the document Library, right-click (Windows) or

Ctrl-click (Mac) and choose Properties.

 This opens the Sound Properties dialog box.

 8. Accept the default compression option, or choose a different option

from the Compression drop-down menu.

 To find out everything you ever wanted to know about optimizing a

sound in Flash, check out Chapter 3 of this minibook.

 9. Name the document and save it.

 We prefer using short names, like sndTrk. Remember that you’ll end up

writing ActionScript to load the file. Why work harder?

 10. Choose File➪Publish.

 Flash publishes an HTML file and an SWF file with the name you specify

in Step 7.

 11. Create a new Flash document.

 Alternatively, open another Flash file in which you want to play a back-

ground sound.

 12. Select the first keyframe.

 Typically, you want the sound to load as soon as the file opens in the

user’s Flash Player.

 13. Choose Window➪Actions.

 The Actions panel opens.

 14. Copy the code from Listing 2-3 into the Actions panel.

 15. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 The soundtrack loads and plays.

Listing 2-3: Loading an External Movie with a Sound File
var sound:Loader;
var url:URLRequest;
 sound=new Loader();
 url=new URLRequest(“pixelicious.swf”);
 sound.load(url);
 sound.x=0, sound.y=0;
 addChild (sound);

30_385395-bk05ch02.indd 38230_385395-bk05ch02.indd 382 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

383

Book V
Chapter 2

Adding Sound to a
Flash Production

Using ActionScript to Load a Soundtrack

 16. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 The soundtrack loads and plays. But you need some way to turn off the

sound for those who think that silence is golden.

 17. Choose Window➪Common Libraries➪Buttons.

 The Buttons library appears.

 18. Select a button and drag it on stage.

 For the purpose of this example, choose any button. If you do this tech-

nique for your own Flash movies, you can create a spiffy button.

 19. In the Property inspector, name the button instance btn.

 ActionScript needs to address the button by name.

 20. Select the first frame on the timeline.

 If you’ve followed the steps so far, this is where your ActionScript

resides.

 21. Add the code in Listing 2-4.

 This code causes the sound to unload when clicked.

Listing 2-4: Silencing the Sound
btn.addEventListener (MouseEvent.CLICK,removeSound):
Function removeSound (e:MouseEvent);void
{
 Soujnd.unloadAndStop ();
}

 22. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 The sound loads and plays.

 23. Click the button.

 Ah. Peace and quiet.

30_385395-bk05ch02.indd 38330_385395-bk05ch02.indd 383 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

384 Book V: Working with Flash Audio

30_385395-bk05ch02.indd 38430_385395-bk05ch02.indd 384 10/28/08 8:32:23 PM10/28/08 8:32:23 PM

Chapter 3: Editing Sound Files

In This Chapter
✓ Optimizing sound in Flash

✓ Editing sound files in Flash

If you don’t have sound editing software, you can still do a lot of work

in Flash. All you need to do is change some properties in the document

library and you can tweak the sound file to sound its best, while also creat-

ing a relatively svelte Flash file. The compression method and sampling rate

affect the file size of the published SWF file. Tweaking the properties of indi-

vidual sounds results in files that sound good and are as small as possible.

You can also modify effects you apply to sounds, such as the duration of a

fade-in or fade-out or panning from one speaker to the next.

Optimizing Sound for Your Project
If you don’t have sound editing software, you can

accomplish quite a bit in Flash. You can’t eliminate

background hiss, or slice and dice a sound file to

cut out the bits that don’t sound good, but you

can find the optimal compression method and set-

tings. You can optimize sound globally when you

publish a file. (We cover optimizing sound when

publishing a document in Book VIII, Chapter 4.)

You can also optimize individual sounds by modi-

fying their properties in the document library.

When you modify a sound’s properties there, the

published sound settings aren’t applied. To opti-

mize an individual sound file, follow these steps:

 1. Choose Window➪Library.

 The document library opens.

 2. Select the sound you want to edit, right-click (Windows) or

Control+click (Macintosh), and then choose Properties from the

context menu.

 The Sound Properties dialog box appears (see Figure 3-1).

31_385395-bk05ch03.indd 38531_385395-bk05ch03.indd 385 10/28/08 8:32:58 PM10/28/08 8:32:58 PM

386 Optimizing Sound for Your Project

Figure 3-1: Modifying the properties of a sound.

 3. Choose one of the following options from the Compression drop-down

menu:

 • Default: Uses the settings specified in the Publish Settings dialog box

to compress the sound file on export.

 • ADPCM: The option to use when optimizing button and small event

sounds.

 • MP3: The option to use when optimizing background music.

 • Raw: Uses the compression settings from the raw data of the

imported files. You can apply compression settings by modifying

the sample rate. The sound quality is similar to MP3, but results in a

larger file size.

 • Speech: Uses settings appropriate for a sound file of a speaker with

no background sound.

 4. If the default option is available, accept it to convert stereo to mono.

 This option decreases the file size because you’re not exporting data

for two sound channels. Deselect this option if you’re creating a Flash

movie for a musician’s Web site or for another site where stereo sound

is important.

 5. Choose settings in the Preprocessing section of the dialog box.

 The available settings differ depending on the compression setting you

choose. The following list offers some guidelines for the compression

options that have preprocess setting options:

31_385395-bk05ch03.indd 38631_385395-bk05ch03.indd 386 10/28/08 8:32:59 PM10/28/08 8:32:59 PM

387

Book V
Chapter 3

Editing Sound Files

Optimizing Sound for Your Project

 • ADPCM: Choose an option from the Sample Rate drop-down menu.

For this format, you can choose a setting from 5 kHz (poor sound

quality, smallest file size) to 44 kHz (best sound quality, largest file

size). You can also choose an option from the ADPCM Bits drop-

down menu. Choose from 2 bits (poor sound quality, smallest file

size) to 5 bits (best sound quality, largest file size). These two

options determine the data rate of the sound.

 • MP3: Choose an option from the Bit Rate drop-down menu. You can

choose an option from 8 Kbps (poor sound quality, smallest file size)

to 160 Kbps (best sound quality, largest file size). You can also choose

an option from the Quality menu: Fast, Medium, or Slow. This option

determines how long Flash takes to compress the file. Slow takes the

longest time to process, but produces the best sound fidelity.

When you initially apply com-

pression settings to an MP3 file,

choose the Fast Quality option,

as shown in Figure 3-2. It speeds

up publishing the file when

you’re testing your Flash project.

When you’re satisfied with the

file and ready to publish, open

the Sound Properties dialog box

for the sound and change the

Quality setting to Best.

 • Raw: Choose an option from

the Sample Rate drop-down

menu. You can choose from

5 kHz (poor sound quality,

smallest file size) to 44 kHz (best sound quality, largest file size).

 • Speech: Choose an option from the Sample Rate drop-down menu.

Your options are from 5 kHz (poor sound quality, smallest file size)

to 44 kHz (best sound quality, largest file size).

 6. Click Test.

 Flash applies the compression settings to the sound file and plays it. At this

stage, we experiment with different settings. When you’re applying com-

pression settings for an individual sound, remember the reason that you’re

using the file in your project. If it’s a simple sound, like a button click, you

can apply more compression. If you’re creating a site for a public speaker or

a musician, applying too much compression results in poor sound quality

and doesn’t showcase your client’s talents. If you’re optimizing a long sound

file, click Stop when you’ve heard enough to determine whether the settings

are optimal for the file. Figure 3-2 shows a sound file being optimized using

the MP3 compression option. Notice the new file size as compared with the

original, which is displayed below the Quality setting. This information is in

the same spot in the dialog box for the other compression options.

Figure 3-2: Optimize me, baby.

31_385395-bk05ch03.indd 38731_385395-bk05ch03.indd 387 10/28/08 8:32:59 PM10/28/08 8:32:59 PM

388 Editing Your Sound Files

Editing Your Sound Files
When you import a sound file into Flash, you still have the option to edit the

file. When you add the sound to the Timeline, you have the option to apply

an effect to the sound. You can edit the manner in which the effect is applied

or choose the Custom option and then edit the file. If you have sound editing

software on your computer, you can make a round trip to the sound editor

from Flash.

Editing sound in Flash
When you add sound to a keyframe, you can apply an effect to the sound in

the Property inspector, as we outline in Chapter 2 of this minibook. You can

also edit the effect that’s applied to a sound:

 1. Select the keyframe to which you applied the sound.

 2. Open the Property inspector.

 Click Properties to open the Property inspector. If you customized the

workspace or are working with a workspace that doesn’t display the

Property inspector, choose Window➪Properties.

 3. Click the Edit button that looks like a pencil.

 The Edit Envelope appears. If you already applied an effect to a sound,

it’s listed in the Effect field. If the effect changes the volume of the sound

as it plays, you see points. Figure 3-3 shows the dialog box with no effect

applied. Notice the hollow square at the start of each Timeline. It signi-

fies that the sound plays at full volume in each speaker.

 4. Change the view of the waveform.

 Click the icon with the magnifying glass and the plus sign to zoom in, or

click the icon with the magnifying glass and the minus sign to zoom out.

 5. Change the manner in which the Timeline is displayed.

 The default option displays the Timeline in seconds. If the sound spans

multiple frames and you want to synchronize an edit with a frame, click

the Frames icon to display the Timeline as frames. Personally, we found

the frames option difficult to use, but try it — you might like it.

 6. Click the Timeline at the point where you want to make a change.

 This step adds a hollow square to each Timeline.

 7. Drag a point to modify the amplitude (volume) of the sound at that

point in its duration.

 You can edit the left and right speaker Timelines independently. This

gives you the option to pan from the left to right speaker or vice versa.

31_385395-bk05ch03.indd 38831_385395-bk05ch03.indd 388 10/28/08 8:33:00 PM10/28/08 8:33:00 PM

389

Book V
Chapter 3

Editing Sound Files

Editing Your Sound Files

Zoom Out Frames

SecondsZoom In

Play

Stop

Figure 3-3: Editing a sound in Flash.

 8. Add points to the Timeline and modify them as desired.

 If you added a point in error, click it and then drag it off the Timeline.

You can add as many points as you need to get the job done.

 9. Click the Play button to preview

your handiwork.

 The sound starts playing. You can

stop the preview by clicking the

Stop button. Figure 3-4 shows a

sound that pans between speakers,

plays in both speakers, and then

fades out evenly from both speak-

ers. Notice that we zoomed out

on the waveform to view it in its

entirety.

If you don’t have a sound editing appli-

cation installed on your computer and

you like sound, we urge you to experiment with the different effects you can

produce by using the Edit Envelope dialog box.

Figure 3-4: A sound that has been edited
in Flash.

31_385395-bk05ch03.indd 38931_385395-bk05ch03.indd 389 10/28/08 8:33:00 PM10/28/08 8:33:00 PM

390 Editing Your Sound Files

Editing in an external editor
If you have Adobe Soundbooth installed on your computer, you can access

the application by selecting a sound file the document library and then

choosing Edit with Soundbooth. You can also edit a sound in an external

sound editor by following these steps:

 1. Select the sound in the document library.

 2. Right-click (Windows) or Control+click (Macintosh) and choose Edit

With from the context menu.

 The Select External Editor dialog box appears.

 3. Navigate to the executable (.exe) file that launches the external

editor you want to use.

 For example, if you have Adobe Audition installed on your computer, the

executable file that launches the application is Audition.exe.

 4. After selecting the executable file, click Open.

 The external sound-editing application launches.

 5. Perform any edits you want, and then save the file.

 After you save the file and return to the Flash document library, the

sound is updated to reflect your changes.

When you edit a sound in an external sound-editing application, you’re

modifying the original file. Make sure that you have a copy of the original file

saved in a different folder.

31_385395-bk05ch03.indd 39031_385395-bk05ch03.indd 390 10/28/08 8:33:00 PM10/28/08 8:33:00 PM

Book VI
Working with
Flash Video

32_385395-pt06.indd 39132_385395-pt06.indd 391 10/28/08 8:33:37 PM10/28/08 8:33:37 PM

Flash works with video on many different

levels. You can embed videos directly into a

Flash application, progressively download a Flash

Video File (FLV) from a Web server, or stream an

FLV file from Flash Media Server. The ability to

work with video on the Web is a major capability

for Flash and anyone developing for the Web.

Book VI shows you how to convert video files

from different video formats into both VP6 FLV

and H.264 F4V files by using Adobe Media Encoder

(included with Flash CS4). You also find out how

to play those videos using a video player compo-

nent or a player you create yourself in a Flash

application or with the new Adobe Media Player.

We show you how to add cue points and captions

to your video for special effects. You even dis-

cover how to broadcast a live video and make an

audio/video receiver to view the broadcast.

32_385395-pt06.indd 39232_385395-pt06.indd 392 10/28/08 8:33:37 PM10/28/08 8:33:37 PM

Chapter 1: Playing Video with
Flash: The Producer’s Chair

In This Chapter
✓ Working with Web video

✓ Embedding video in Flash

✓ Understanding progressive download

✓ Becoming familiar with streaming video

Of all the revolutionary technologies now available with Adobe Flash

CS4, the most dramatic is the ability to send video over the Web.

Although Web video has been available for a few years, creating Web sites

with high-quality display, including high-definition (HD) video, is just now

coming to the forefront. You can create videos that use H.264

(MPEG-4, among others) format for spectacular results at a

reasonable bandwidth. Using the built-in FLVPlayer com-

ponent and other tools available in Flash CS4, you can

create a Web site that sends video to the viewer just

like Flash has delivered animation, text, sound, and

graphics. The big difference is that all these ele-

ments are combined into a single audio/video file

that can be sent smoothly over the Web.

What Is Web Video?
If you’ve visited YouTube (www.youtube.com),

you’ve seen Web video. In fact, if you’ve gone to a site

such as http://movies.com, you’ve seen movie trail-

ers done with streaming video. Even some business sites,

such as www.sandlight.com, feature streaming video presen-

tations.

If you want to know whether Flash was used to create a Web video, visit

YouTube or a favorite site that has movie trailers you can watch online, and

right-click a video (Windows) or Option+click it (Mac). If Flash was used to

create it, you see About Adobe Flash Player at the bottom of the shortcut

menu, as shown in Figure 1-1.

33_385395-bk06ch01.indd 39333_385395-bk06ch01.indd 393 10/28/08 8:34:38 PM10/28/08 8:34:38 PM

394 Embedded Video in Flash: Old School

You may have several kinds of expe-

riences with Web video, such as the

following:

 ✓ Download an entire movie file

to your computer and play that

movie in a player that recognizes

the file type.

 Windows Media Player (which

you can also download and use

on a Mac) allows you to view

files with the extension .wmv,

for example. You can also use

QuickTime Player (which comes

with most Macs and is also avail-

able for Windows) to play files

with the .mov extension.

 ✓ View a podcast in iTunes.

 ✓ Click a button to play a movie embedded in a Web page that eventually

plays on your computer.

If your experience has been primarily with downloaded files, some of which

you may have received through e-mail, you’re aware that video can be sent

over the Internet. But that isn’t the kind of video we’re talking about in this

minibook. Instead, we mean the video that plays as soon as you open the

page (or when you click the Play button on the page).

In this chapter, we look at different ways to send video over the Web with

Flash CS4.

Embedded Video in Flash: Old School
For as long as we can remember, certain types of video files have been

embedded in Flash. Flash treated each frame as a JPEG file and ran through

the JPEG files just like frames of a regular movie, with fairly good results.

The consequence, however, was that an SWF file with embedded video was

huge. Viewers were forced to wait patiently until the giant file loaded, and as

often as not, they probably hit the Back button in their browsers and left the

file for more patient souls to view.

If you have a short video, however — perhaps a welcome message or a loop

of a dumb dog trick — you may be able to include it in a Flash file. This is a

quick solution for a specific purpose, however; for the most part, you don’t

want to embed video in Flash.

Figure 1-1: Find Flash information on a video’s
shortcut menu.

33_385395-bk06ch01.indd 39433_385395-bk06ch01.indd 394 10/28/08 8:34:38 PM10/28/08 8:34:38 PM

395

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Embedded Video in Flash: Old School

Converting a video file for use in Flash
To start, you need a video file. Flash CS4 uses FLV and F4V files — highly com-

pressed file types that take up little space on the server. Chapters 2 and 3 of

this minibook provide information about converting different video file types

to FLV or F4V.

Figure 1-2 shows a sample AVI file that was recorded on a Webcam, with

a background added in Adobe Ultra. The AVI file was shortened and then

exported as a small FLV file because only small files in FLV format work for

embedded video. (You can download this AVI file from the book’s compan-

ion Web site at www.dummies.com/go/flashallinone.)

Figure 1-2: To work as an embedded video, your original video
has to be shortened significantly when it’s converted to a FLV file.

The AVI file was shortened and then exported as a small FLV file for this

demonstration. Only small files and ones set to FLV format work with

embedded video.

Embedding the video in a Flash file
To embed the video in a Flash file, follow these steps:

 1. Open a new Flash file.

 2. Add a graphic background for your movie (see Book I, Chapter 2).

 Figure 1-3 shows a sample background.

33_385395-bk06ch01.indd 39533_385395-bk06ch01.indd 395 10/28/08 8:34:38 PM10/28/08 8:34:38 PM

396 Embedded Video in Flash: Old School

Figure 1-3: A backdrop helps you visualize where the video will appear.

 3. Choose File➪Import➪Import

Video (see Figure 1-4).

 The Import Video dialog box

opens, displaying the Select

Video page.

 4. Choose the Embed FLV in SWF

and Play in Timeline radio

button (see Figure 1-5), and

then click the Browse button to

locate the FLV file to embed.

The warning message in the

Select Video page tells you that

an embedded video is likely to

cause audio synchronization

issues, so keep audio short or

leave it out when you’re embed-

ding a video.
Figure 1-4: Start the video import process.

33_385395-bk06ch01.indd 39633_385395-bk06ch01.indd 396 10/28/08 8:34:39 PM10/28/08 8:34:39 PM

397

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Embedded Video in Flash: Old School

Figure 1-5: Setting the Embed option in the Import Video dialog box.

 5. After you select your video, click the Continue button.

 The Embedding page opens. By default, the Symbol Type pull-down

menu is set to Embedded, and both check boxes — Place Instance on

Stage and Expand Timeline If Needed — are selected.

 6. To accept these default settings, click the Continue button.

 The Finish Video Import page opens (see Figure 1-6).

 7. If the selected video is the one you want, click the Finish button; oth-

erwise, click the Back button (Windows) or the Go Back button (Mac)

and load the correct files, as shown in Step 3.

 8. When you see the video on the Stage, adjust its placement by dragging

it or using the Align panel.

 Figure 1-7 shows an example of what you may see. Notice that the

piece of video you see is considerably smaller than the video shown in

Figure 1-2, earlier in this chapter.

33_385395-bk06ch01.indd 39733_385395-bk06ch01.indd 397 10/28/08 8:34:39 PM10/28/08 8:34:39 PM

398 Embedded Video in Flash: Old School

Figure 1-6: The final page before video is embedded.

Figure 1-7: The first frame of the video appears on the Stage.

33_385395-bk06ch01.indd 39833_385395-bk06ch01.indd 398 10/28/08 8:34:40 PM10/28/08 8:34:40 PM

399

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Progressive Downloading: Almost Streaming from a Web Server

Essentially, this process cuts the video into separate frames and displays

them in a fashion similar to setting a separate JPEG files in each frame. This

video can be looped just like any other movie, or it can be stopped and

started with ActionScript 3.0.

After you test your Flash application, see how big your SWF file is. In our

test of the example embedded video used in this section, the file is 205KB.

Considering that the video is only a few seconds long, that file is a large

one. Users with slow Internet connections may become impatient as this file

loads. Before you decide to use this method for even a small movie, look at

the next section for a much smarter alternative.

Progressive Downloading: Almost Streaming
from a Web Server

As we note earlier in this chapter, using embedded video is appropriate in

only a few situations. In fact, any video more than a few seconds long may be

automatically blocked by Flash when you attempt to embed it in Flash CS4.

An alternative method for displaying video on a Web site — progressive
downloading — is just as easy and generates a much smaller SWF file. In fact,

a 10-minute video using progressive download generates the same-size SWF

file as a 5-second video, and the size of the video played doesn’t affect the

size of the player.

Understanding progressive downloading
Progressive downloading uses a Web server, just as a regular HTML or SWF

file does. The FLV or F4V file is downloaded in packets, and as the client

(browser) begins receiving those packets, the content is displayed in the

video player.

Imagine that the FLV file is like a big stack of pancakes. Instead of delivering

all the pancakes in one big stack, in progressive downloading, the server

delivers the pancakes one at a time. After a few pancakes are delivered, the

server begins to display the pancakes until the whole stack is visible. The

video appears to show a growing stack of pancakes, but in fact, the pancakes

are graphic images shown in sequence to give the illusion of movement.

Progressive downloading is often confused with video streaming or even

called HTTP streaming. Progressive downloading is not streaming, however.

When you use progressive downloading, the video file is actually down-

loaded to your computer and can be extracted from the browser’s tempo-

rary cache storage. In actual use, you may not be able to tell the difference,

especially in short videos, but the difference is real — as you see in the sec-

tion “Streaming Video: Leaving the Socket Wide Open,” later in this chapter.

33_385395-bk06ch01.indd 39933_385395-bk06ch01.indd 399 10/28/08 8:34:41 PM10/28/08 8:34:41 PM

400 Progressive Downloading: Almost Streaming from a Web Server

Creating a progressive download
Creating a progressive download in Flash CS4 is as easy as pie; so get out

your director’s chair and get ready to produce your first Web-length feature.

Preparing the folder and files
To start creating your progressive download, follow these steps:

 1. Create a new folder.

 You use this folder to save the FLA and SWF files for this application.

 2. Locate the F4V file you want to use.

For this example, we used the file named blackBill.f4v. (It’s avail-

able for downloading from this book’s companion Web site.)

 3. Open a new Flash file and create a background to your taste, leaving

an area in the center (approximately 330 by 270 pixels) for the video

player.

 Figure 1-8 shows an example using an art deco theater motif. (The color

scheme is a retro one from Kuler.)

 4. Save the file in the same folder as the F4V file.

 For the example, save the file as PlayVideo1.fla.

Figure 1-8: Base stage ready for FLVPlayer component.

33_385395-bk06ch01.indd 40033_385395-bk06ch01.indd 400 10/28/08 8:34:41 PM10/28/08 8:34:41 PM

401

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Progressive Downloading: Almost Streaming from a Web Server

Importing and customizing your video
Next, you import the video and apply a skin and color scheme to it. Follow

these steps:

 1. Choose File➪Import➪Import Video.

 The Import Video dialog box opens, displaying the Select Video page.

 2. Select the Load External Video with Playback Component radio

button, and click the Browse button.

 3. Select the F4V file in the browser window and click Open.

 Figure 1-9 shows an example. (Notice that the FLA and SWF files are in

the same folder.)

 4. Click Continue in the Import Video window.

 The Skinning page opens.

Figure 1-9: Select the F4V file to play.

 5. From the Skin pull-down menu, choose a skin that has the player con-

trols you want.

33_385395-bk06ch01.indd 40133_385395-bk06ch01.indd 401 10/28/08 8:34:41 PM10/28/08 8:34:41 PM

402 Progressive Downloading: Almost Streaming from a Web Server

 If you select a skin with the word Under in its filename, all the controls

are below the video. If the word Under isn’t in the filename, the player

controls are superimposed on the bottom portion of the video. (If you

prefer to display the entire video, choose an Under skin to place the con-

trols below it.)

In some cases, you may not even want any play controls. Select None

in the Skin pop-up menu in the Skinning selections in the Import Video

Window. In such cases, the video plays once and leaves the last frame

displayed on-screen. If you omit the play controls, make sure that you

don’t allow the video to loop and drive the viewer to distraction!

 6. Select a color.

 In the example shown in Figure 1-10, the colors from the Swatches panel

open when you select a color for the skin. If you have a color scheme

that you’re using for an entire page, you can select a color from the

same color scheme for your video skin so that your video player skin

blends in well with your page’s color scheme.

 7. Click Continue.

 The Finish page opens, displaying all the settings you chose.

Figure 1-10: Choosing a control skin and color.

33_385395-bk06ch01.indd 40233_385395-bk06ch01.indd 402 10/28/08 8:34:42 PM10/28/08 8:34:42 PM

403

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Progressive Downloading: Almost Streaming from a Web Server

 8. Click Finish.

 9. If you haven’t saved your FLA file, do so at the prompt.

 Remember to save it in the folder with the F4V file.

When you click Finish, you see a big black area where the video is set,

because the video is much larger than your default Stage. The selected F4V

file in Figure 1-11, for example, is 640 by 480 — way too big. In the following

section, you make some adjustments.

Figure 1-11: Video that’s too large for the Stage.

Resizing the video
To resize the video, follow these steps:

 1. Open the Properties panel and set the proportion lock icon to lock.

 2. Change the width to 320 and press Enter (Windows) or Return (Mac).

 You should see the values in the Properties panel change to 320 by 240

pixels, and your video and page controls should appear on the Stage.

Changing the width and height of the video window doesn’t affect the

length of the video.

 3. Center the video and the play controls, as shown in Figure 1-12.

33_385395-bk06ch01.indd 40333_385395-bk06ch01.indd 403 10/28/08 8:34:43 PM10/28/08 8:34:43 PM

404 Progressive Downloading: Almost Streaming from a Web Server

Figure 1-12: Video and play controls after resizing to fit the Stage.

 4. Save everything.

 5. Press Ctrl+Enter (Windows) or Ô+Return (Mac) to watch the video.

 Figure 1-13 shows an example of what you may see.

Figure 1-13: A progressive download playing.

33_385395-bk06ch01.indd 40433_385395-bk06ch01.indd 404 10/28/08 8:34:43 PM10/28/08 8:34:43 PM

405

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Progressive Downloading: Almost Streaming from a Web Server

Experimenting with the play controls
As a progressive download plays, try using the different play controls. You

can pause, rewind, and forward the video to the end, and you can use the

scrubber bar to move to different parts of the video.

The first time you run the video, you may have difficulty moving the video

ahead because it is still being downloaded. Testing it on your desktop isn’t

much of a problem, because the video is short and right on your computer.

If you place the files on a remote Web server (a host), however, it takes

longer for the video to get to your computer. As a result, not all parts of

the video are available. Scrubbing ahead may require you to play the whole

video once so that all of it is in the cache.

Storing your files

When you finish testing the movie, you see a skin SWF file stored with

the FLA file. It’s automatically added when you finish importing the

video. Depending on the name of the skin you select, you find a differ-

ent filename describing the skin. (For example, you might find one named

SkinUnderAll.swf.) If you transfer your application to a Web host, be

sure to include the special skin SWF file or else your movie won’t work

correctly.

Changing videos
After you create an application to play a progressive download, you may

want to play a different video. Rather than create a whole new application,

you can easily change the FLV or F4V video to be played. The following steps

show you how, using the PlayVideo1.fla you created in the preceding

sections:

 1. Place the new video you want to play in the same folder as the

PlayVideo1.fla file.

For this example, we use the file named marketing.flv. This file as

well as PlayVideo.fla are available for downloading from this book’s

companion Web site.

 2. Open PlayVideo1.fla and click the FLVPlayer component to select it.

 3. Choose Window➪Component Inspector to open the Component

Inspector panel.

33_385395-bk06ch01.indd 40533_385395-bk06ch01.indd 405 10/28/08 8:34:44 PM10/28/08 8:34:44 PM

406

 4. Click the Parameters tab and locate the

source parameter (see Figure 1-14).

When you’re working with the FLVPlayer

component, place the Component

Inspector panel in the dock to ease

the workflow. Think of the Component

Inspector as your assistant

producer.

 5. Click the magnifying glass icon to the

right of the source parameter (refer to

Figure 1-15).

 The Content Path dialog box opens.

 6. Type the path to the FLV or F4V file you

want to stream, as shown in Figure 1-15,

and click OK.

Figure 1-15: Specify the FLV or F4V source file.

If you click the Browse folder icon in the Component Inspector to

locate your video file on your system, you assign an absolute address

to your video file. When you place your files that play the video on a

Web server, the server tries to find that absolute address and fails. The

safest approach is to place all the FLV and F4V files you plan to play in

the same folder as your SWF file that plays the video, and type the name

of the video you want to play in the Component Inspector’s source

window. You can organize your videos in a separate folder and use a rel-

ative address, such as videos/marketing.flv, but don’t use absolute

addressing to your video files that target your computer.

 7. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 You see the new video, as shown in Figure 1-16.

Progressive Downloading: Almost Streaming from a Web Server

Figure 1-14: The Component
Inspector panel showing FLVPlayer
parameters.

33_385395-bk06ch01.indd 40633_385395-bk06ch01.indd 406 10/28/08 8:34:44 PM10/28/08 8:34:44 PM

Progressive Downloading: Almost Streaming from a Web Server 407

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Figure 1-16: Playing a different video in the same application.

Changing the appearance of the play controls
When you change a video, you may want to change other features as well,

such as how the play controls look. In fact, you can use different play con-

trols without having to change the whole page. Follow these steps:

 1. Open PlayVideo1.fla and save it as PlayVideo2.fla in the same

folder as PlayVideo1.fla.

 This step gives you access to the FLV and F4V files without having to

start over.

 2. Click the video icon representing the FLVPlayer component.

 3. Choose Window➪Component Inspector to open the Component

Inspector panel.

 4. If it isn’t already selected, click the Parameters tab of the Component

Inspector (refer to Figure 1-14).

 5. Click the skin parameter.

 A magnifying glass icon appears in the second column.

 6. Click the magnifying glass icon to open the Select Skin dialog box (see

Figure 1-17).

33_385395-bk06ch01.indd 40733_385395-bk06ch01.indd 407 10/28/08 8:34:45 PM10/28/08 8:34:45 PM

Progressive Downloading: Almost Streaming from a Web Server408

Figure 1-17: The Select Skin dialog box.

 7. Choose an option from the Skin pull-down menu.

 For this example, we chose SkinUnderPlaySeekMute.swf.

 8. Click the Color box to open the color swatches and then choose a

color.

 For this example, we chose dark brown, as shown in Figure 1-18.

 Your color choices come from the color palette used for this design.

In this way, you can change the play controls yet stay within the color

scheme. (Go nuts, if you want, and make your own color scheme to

choose colors from.)

 9. Click OK to close the Select Skin dialog box.

 10. Test your movie by choosing Control➪Test from the menu bar (or by

pressing Ctrl+Enter [Windows] or Ô+Return [Mac]).

 Voilà! The new play controls are different but still fit the overall look, as

shown in Figure 1-18.

33_385395-bk06ch01.indd 40833_385395-bk06ch01.indd 408 10/28/08 8:34:46 PM10/28/08 8:34:46 PM

Streaming Video: Leaving the Socket Wide Open 409

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Figure 1-18: Player with new skin.

Streaming Video: Leaving the Socket Wide Open
The best way to deliver video on the Web is with streaming video. When

you use the Web, as soon as the Web page you’ve requested has arrived,

the Web connection between your browser and server is closed. Even with

sophisticated animation and pages that appear to be interactive, chances

are that you no longer have a Web connection.

Rather than deliver sound and video by opening and closing the connection

to the server, you can send streaming data by using open socket technology.
When you use this technology, after a connection is established, that con-

nection is maintained until the connection is closed by the client or is auto-

matically closed by an event, such as a recorded video coming to an end.

(For more on this topic, see Chapter 5 of this minibook.)

The following advantages of streaming technology make it quite popular:

 ✓ The stream begins playing almost immediately.

 ✓ Recorded video can be scrubbed ahead as soon as the video begins

playing.

 ✓ Streaming video provides smoother transmission of video and sound.

 ✓ Audio (voice, music, sound effects, and so on) can be streamed without

video.

 ✓ Other types of media, such as text, can be streamed as well.

 ✓ Streaming allows for live interaction over the Internet. (Your mother-in-

law gets to visit remotely!)

33_385395-bk06ch01.indd 40933_385395-bk06ch01.indd 409 10/28/08 8:34:46 PM10/28/08 8:34:46 PM

Streaming Video: Leaving the Socket Wide Open410

HTTP and RTMP: A tale of two protocols
For the Internet to work, a protocol has to be in place so that a client (a com-

puter hooked up to the Internet) can get stuff from a Web server (a remote

system with lots of stuff on it). The general protocol for this purpose is

HTTP (Hypertext Transfer Protocol). A request from the client is sent to the

server, creating a connection between the server and client. After everything

is delivered to the client computer, the connection is closed. That system

makes a lot of sense; the alternative would be keeping all connections open,

which would mean that only a few people could use the Internet at the same

time.

But what happens when you need a continuous stream of data moving over

the Internet, as in a two-way videoconference? If the connection is going to

have to be open and closed while the conference is in session, the results

are jerky and unintelligible. So Macromedia (now Adobe) came up with

RTMP (Real Time Messaging Protocol), which uses the open socket tech-

nology mentioned in the preceding section. When the connection between

the streaming server and the client is kept open, streaming media over the

Internet is much smoother. For this reason, most companies that have media

to stream (such as movie studios) use RTMP for streaming instead of HTTP.

A machine that’s dedicated to server software is what most people

imagine when they think about a server. Actually, servers can be hardware

or software — or both.

If you have a Macintosh computer, you have Apache Web Server built

in. Likewise, in certain Windows configurations, you can enable Internet

Information Services (IIS), which is also a Web server.

In the next section, you see how your computer can be a client, a Web

server, and a streaming server at the same time. (Your computer can do

more multitasking than a soccer mom.)

Enter Flash Media Server
In Chapter 5, you create an actual streaming-video project by using Flash

Media Server. For now, we just provide a brief overview of how the program

works. Fortunately, a good deal of what you may already know from reading

this book applies to streaming video.

First, look at Figure 1-19, which illustrates the streaming-media process.

33_385395-bk06ch01.indd 41033_385395-bk06ch01.indd 410 10/28/08 8:34:47 PM10/28/08 8:34:47 PM

Streaming Video: Leaving the Socket Wide Open 411

Book VI
Chapter 1

Playing Video
w

ith Flash: The
Producer’s Chair

Step 1: Web server sends
SWF (compiled Flash) to
the client

Web Server

Flash Media Server

Client receives video
stream from recording
or live stream

Client sends video
stream from camera

Webcam

Step 2: Client plays SWF
using Flash Player
(browser plug-in)

Step 3: FMS sends
and receives data
stream

Client
Computer

RTMP

HTTP

Figure 1-19: HTTP and RTMP data transfer.

The process begins with an SWF file sent from the Web server to the client. The

client plays the SWF file on a browser with a Flash Player plug-in. Then the SWF

file contacts Flash Media Server and makes a connection that allows streaming.

As you see in the illustration, the client is streaming back and forth between

the media server, not the Web server. It sends out an audio/video stream

from its own camera and microphone, and receives the same back from the

media server. All the while, the connection between the media server and

the client remains open.

This chapter is an orientation to video and Flash that gets you started and

shows different ways to display video with Flash. But as they say in the

movies, “You ain’t seen nothin’ yet!”

33_385395-bk06ch01.indd 41133_385395-bk06ch01.indd 411 10/28/08 8:34:47 PM10/28/08 8:34:47 PM

Book VI: Working with Flash Video412

33_385395-bk06ch01.indd 41233_385395-bk06ch01.indd 412 10/28/08 8:34:47 PM10/28/08 8:34:47 PM

Chapter 2: From Camera to
Desktop: Getting Video
Ready for Prime Time

In This Chapter
✓ Choosing the right Webcam or digital video camera

✓ Finding free video-recording resources

✓ Seeing how to use some popular video programs

If you’ve worked with just about any kind of graphics on computers,

you’re aware that images can be saved in JPEG, PNG, or GIF format for

use on the Web. The same is true of video files that contain both audio and

video (A/V) elements; these files are saved in such formats as

WMV, MOV, AIFF, and AVI. As you see in Chapter 1 of this

minibook, the formats that Flash video uses for progres-

sive downloads and streaming are FLV and F4V.

In this chapter, you see some fundamental ways to

generate different kinds of video files for the Web.

Additionally, you see several kinds of cameras and

microphones that you can use to make videos.

Whatcha Gonna Do? Video
Camera or Webcam

The first question you have to ask yourself is what you

plan to do with video on the Web. If your goal is to have

video chats or to make fun little videos to share with your

friends, all you need is a Webcam. The quality of Webcams varies

significantly, but even the least expensive can get the job done for simple

video projects.

If you plan to be the next Steven Spielberg, producing everything from movie

trailers to your own dramas (or to become a YouTube star), you need a video

camera. Video cameras typically have better lenses, more flexibility, and

better control options than Webcams. Digital video cameras are relatively

inexpensive, but you can get professional-level, high-definition (HD) digital

34_385395-bk06ch02.indd 41334_385395-bk06ch02.indd 413 10/28/08 8:35:45 PM10/28/08 8:35:45 PM

Whatcha Gonna Do? Video Camera or Webcam414

video cameras to get top-quality results. The sky’s the limit when it comes to

the price of video cameras. (Lucky you!)

If you plan to do a lot of A/V chatting and you want to make videos in loca-

tions away from your computer, you’re well advised to get both a Webcam

and a digital video camera. You can use digital video cameras for video

chats, but they don’t work very well for this purpose because they gobble up

a lot of bandwidth.

Choosing a Webcam

Before you go out and buy a Webcam, check your computer; it may have a

built-in Webcam already. Many recent laptop and iMac computers do. Check

to see whether the top of your screen has a little square window with a small

lens inside. Both the Dell laptop and the iMac we use have built-in Webcams,

and if we hadn’t known where to look, we might have overlooked the cam-

eras. (They’ve been watching us!)

The decision about which Webcam to buy is based on a few key factors:

 ✓ Resolution: The camera’s resolution refers to the size of the screen (in

pixels) that the camera can handle. For video chats, 320 x 240 resolution

generally is all you need, but you can find Webcams with resolution up

to 1600 x 1200 pixels. Also look for the number of megapixels that the

camera handles (generally, between 1.2 and 2).

 You have to be careful in comparison shopping, because cameras

often have two ratings: one for still photos and another for video. The

Creative Live! Cam Optia AF, for example, has a rating of 8 megapixels

for still images and 2 megapixels for video.

 ✓ Lens: You need to consider factors including focal length, iris, and lens

construction. Price also is a factor: Cheaper lenses generally result in

lower quality.

 One of the best lenses we found is the Carl Zeiss Tessar optical system

used in the Logitech QuickCam Pro 9000 camera (see Figure 2-1).

 ✓ Light sensitivity: The more light a camera requires, the less light sensi-

tivity it has. This fact is a two-edged sword. If you have bad lighting in

your environment, light sensitivity is important, but often, good light

sensitivity results in a lower-quality picture. It’s better to improve your

lighting than the lighting sensitivity of your camera. (Well, if you live in a

bat cave, you may need good light sensitivity.)

 ✓ Autofocus: This feature automatically keeps the focus on the central

figure in the video — generally, you. This important feature is built into

the Apple iSight, Logitech QuickCam Pro 9000, and Creative Live! Cam

Optia AF cameras, among others.

34_385395-bk06ch02.indd 41434_385395-bk06ch02.indd 414 10/28/08 8:35:46 PM10/28/08 8:35:46 PM

Whatcha Gonna Do? Video Camera or Webcam 415

Book VI
Chapter 2

Getting Video Ready
for Prim

e Tim
e

 Figure 2-1: Logitech 9000 Webcam.

 Autofocus is very handy, but face-following is not. Face-following means

that the camera follows you as you move around. The results aren’t

always what you expect. Sometimes, the camera chooses to follow an

unintended object or to overtrack (track beyond the point where you

stop). On the other hand, zooming and panning features are very handy

for framing a shot just the way you want.

 ✓ Frames per second (fps): Generally, you should look for a camera that

operates at 15 or 30 fps. Higher resolutions tend to get lower fps. The

same camera can have 30 fps at 320 x 240 resolution but only 15 fps at

640 x 480, for example.

 ✓ Bandwidth use: This information is difficult to find, because it generally

isn’t published. Creative Labs has an excellent reputation for producing

Webcams that sip bandwidth, but at the cost of some picture quality.

 ✓ Built-in microphone: This feature can be handy — and also a problem.

Depending on how far the camera is from your mouth, you need to con-

sider whether you’d rather have a remote mike.

 ✓ Software: Some cameras come with software that you can use to create

videos and special effects.

 ✓ Driver compatibility: You can find yourself in a real nightmare if your

camera is incompatible with your computer. You need software drivers

that work with your operating system; they may work with Windows XP

but not Windows Vista, for example, and may not work with a Macintosh

at all. Also check the manufacturer’s Web site for the most recent driver

updates.

34_385395-bk06ch02.indd 41534_385395-bk06ch02.indd 415 10/28/08 8:35:46 PM10/28/08 8:35:46 PM

Free Resources for Creating Videos416

Choosing a video camera
From the get-go, you should know that a digital video camera is going to use

more bandwidth than a Webcam. You’re not likely to be using the camera for

chat sessions, though, so you shouldn’t have to worry about it.

Choosing a digital video camera involves all the same considerations as

choosing a Webcam (see the preceding section), as well as the following key

factors:

 ✓ Compatibility: Most older digital video cameras that you can purchase

inexpensively at places like eBay are strictly IEEE 1394. Be sure that your

computer has an IEEE 1394 port (called a FireWire port on a Macintosh).

Newer digital video cameras have both USB 2 and IEEE 1394 connec-

tions. Also make sure that the camera has compatible software (see the

nearby sidebar “IEEE versus USB” for details).

 ✓ High definition: Now that Flash can convert your video to H.264 format,

you can stream HD video in F4V files. If you need HD for your video proj-

ects, you pay more for the camera, but you get high quality.

You can get an inexpensive digital video camera or a professional-level one.

The process for getting video files from the camera to your computer is the

same for all digital video cameras.

Free Resources for Creating Videos
When you buy almost any new computer these days, you find some kind of

video recording program included. Computers that use the Windows oper-

ating system (both Windows XP and Windows Vista) have Windows Movie

Maker, and Apple Macintosh computers that run Mac OS X include iMovie.

In addition to the free software included with your computer, you can use

free software from Adobe to create videos right on your desktop. Adobe

IEEE versus USB
When IEEE 1394 Webcams came out, they were
the best ones available. Nowadays, almost all
new Webcams use USB instead, so we don’t
cover IEEE 1394 cameras in this chapter.

If you dig up one of these cameras online, how-
ever, and expect it to work because you have

an IEEE 1394 port on your computer, be aware
that it probably doesn’t have software that’s
compatible with your computer — especially
if you have a newer operating system, such as
Windows Vista or Mac OS X Leopard.

34_385395-bk06ch02.indd 41634_385395-bk06ch02.indd 416 10/28/08 8:35:47 PM10/28/08 8:35:47 PM

Free Resources for Creating Videos 417

Book VI
Chapter 2

Getting Video Ready
for Prim

e Tim
e

Flash Media Live Encoder 2.5 takes any video source from a Windows com-

puter and converts it to FLV or F4V files; download it at www.adobe.com/
products/flashmediaserver/flashmediaencoder. For playing back

FLV and F4V files, you can get Adobe Media Player for both Windows and

Macintosh at www.adobe.com/products/mediaplayer.

A final source of free software for creating video files is the software that

comes with certain Webcams. Logitech, for example, supplies software for

creating, editing, and adding special effects to videos created with its cam-

eras. Likewise, Creative Labs provides software that you can use to create

and edit videos.

The following sections discuss a few of these resources in more detail.

Windows Movie Maker
If you have a Windows computer and a digital video camera, get out your

director’s chair and listen up. Windows Movie Maker works only with a digi-

tal video camera, so if you have a built-in or external Webcam but no digital

video camera, skip this section.

Windows Movie Maker is a simple-to-use program that captures video

directly from your digital video camera or from a storage device in your

camera (a digital tape, card, or minidisc) and then stores that video in a

WMV file where you specify. To use the program, follow these steps:

 1. Connect your digital video camera to your computer, turn it on, and

prepare it to record.

 Don’t forget to remove the lens cap. If you see a dark space where your

smiling face should be, check the lens cap first. Also make sure that your

camera isn’t set for playback.

 2. Launch Windows Movie Maker and click Capture from Video Device.

 The Video Capture Wizard opens, and you should see the name of your

digital video camera (Canon DV Device, Sony DV Device, or a similar

name).

 3. Select the icon for your camera and click Next.

 4. Enter a filename, select a place to save your captured video, and click

Next.

 For this example, we chose to name the file megahit.

 You can accept the default storage folder (My Videos) or browse to

another folder where you want to store files for later conversion to FLV

or F4V format.

 5. Select Best Quality for Playback on My Computer (Recommended),

and click Next.

34_385395-bk06ch02.indd 41734_385395-bk06ch02.indd 417 10/28/08 8:35:47 PM10/28/08 8:35:47 PM

Free Resources for Creating Videos418

 The wizard’s Capture Video page opens. You should see your face (or

whatever the camera is pointing at) in the Preview window, as shown in

Figure 2-2.

 Figure 2-2: Previewing a camera setup in Windows Movie Maker.

 6. Click the Start Capture button; then recite a poem, greet a friend, or

say something clever.

 As you record, the Capture Video page provides two vital pieces of infor-

mation: the amount of space the video is consuming per minute (about

14MB) and the amount of space left on your hard drive to store it. These

displays are subtle reminders that videos take lots of memory and can

quickly eat up the remaining space on your hard drive.

 7. After no more than a minute, click the Stop Capture button.

 The recording stops.

 8. Click the Finish button.

 A little window displays a progress bar, and then you see a video icon

with the name of your movie. To close the wizard and exit Windows

Moviemaker, just click the X in the upper-right corner of the screen.

At this point, you’ve created a video file. You should be able to find it

wherever you chose to store it in Step 4. Double-click its icon to play it in

Windows Media Player.

In Chapter 3, you see how to use Flash to convert this file to play on the Web.

34_385395-bk06ch02.indd 41834_385395-bk06ch02.indd 418 10/28/08 8:35:47 PM10/28/08 8:35:47 PM

Free Resources for Creating Videos 419

Book VI
Chapter 2

Getting Video Ready
for Prim

e Tim
e

Adobe Flash Media Live Encoder (Windows)
If you have a Windows computer, you can download Adobe Flash Media Live

Encoder and use it with any camera you have connected to your system,

including your built-in Webcam. (Get Adobe Flash Media Live Encoder 2.5 or

later for the examples in this book.) This program may seem a bit technical

when you first open it, but it’s easy to use.

Thanks to confusing naming policies, the Adobe Media Encoder CS4 that

comes with Flash CS4 is not the same thing as (or even similar to) Adobe Flash

Media Live Encoder. The former — which is intended solely for converting

non-FLV or non-F4V files to FLV or F4V files — is covered in Chapter 3.

Take a quick look at Figure 2-3. Notice that the picture isn’t as good as the

one shown in Figure 2-2, earlier in this chapter. That’s because it was shot

on an inexpensive built-in Webcam instead of a digital video camera. Adobe

Flash Media Live Encoder does many things (some of which we discuss in

detail in Chapter 4), but for now, all you want to do is create a simple video

saved in either FLV or F4V format, using either a Webcam or a video camera.

Figure 2-3: A Webcam recording in Adobe Flash Media Live Encoder.

34_385395-bk06ch02.indd 41934_385395-bk06ch02.indd 419 10/28/08 8:35:47 PM10/28/08 8:35:47 PM

Free Resources for Creating Videos420

To use Adobe Flash Media Live Encoder for recording, follow these steps:

 1. Connect your camera to your computer, turn it on, and prepare it to

record.

 2. Launch Adobe Flash Media Live Encoder.

 3. In the lower-left pane of the encoder window, choose your camera

from the Device pull-down menu.

 In Figure 2-3, for example, the selected camera is Laptop Integrated

Webcam.

 4. Choose H.264 from the Format pull-down menu.

 5. Choose 320x240 from the Size pull-down menu.

 6. In the lower-right pane of the encoder window, select the Save to File

check box.

 7. In the Save to File text box, type a filename.

 For this example, we named the file portableBuilt_in.f4v.

 Whenever you choose the H.264 format, the file extension is .f4v; any

other format uses the .flv extension.

 At this point, you needn’t worry about any of the other settings in the

encoder window.

 8. Click the green Start button to begin recording.

 9. When you’re finished, click the red Stop button.

 10. Retrieve the F4V file and play it in Adobe Media Player, as shown in

Figure 2-4.

 Figure 2-4: Playing an F4V file in Adobe Media Player.

34_385395-bk06ch02.indd 42034_385395-bk06ch02.indd 420 10/28/08 8:35:48 PM10/28/08 8:35:48 PM

Free Resources for Creating Videos 421

Book VI
Chapter 2

Getting Video Ready
for Prim

e Tim
e

The best feature of Adobe Flash Media Live Encoder is that it saves your file

in a format that Flash can read for progressive download or streaming video.

(For details on both progressive download and streaming video, see Chapter

1 and Chapter 5 of this minibook.)

Webcam software
To give you an idea of the software that comes with a Webcam, this sec-

tion looks at Logitech’s QuickCapture. The camera in question, a Logitech

Orbit, has a zoom-and-pan feature so that you can center the subject without

having to move either the camera or the computer. The files are saved in

Windows Media Video format (.wmv), and all you need to do to create them

is plug in the camera and click the Record button.

Use the Webcam Settings window to set the pan, tilt, zoom, brightness, con-

trast, color intensity, and white balance, as shown in Figure 2-5.

Figure 2-5: Recording with Logitech QuickCapture.

You can also choose Low Light Boost and Color Boost options. A Face

Tracking (face-following) option is available as well, but as we note earlier in

this chapter, we tend to keep this feature turned off because it causes more

34_385395-bk06ch02.indd 42134_385395-bk06ch02.indd 421 10/28/08 8:35:48 PM10/28/08 8:35:48 PM

Free Resources for Creating Videos422

problems than it solves. Even on the best Webcams, the feature never seems

to work as intended.

Finally, compare the images shown in Figure 2-4 and Figure 2-5. You can see

the differences in quality. Both images were taken with a Webcam, but the

details and quality of the image shown in Figure 2-5 are much better. These

examples give you an idea of the quality range available in Webcams.

You can take advantage of the zoom, pan, and tilt features of the QuickCapture

software and at the same time save your files in FLV or F4V format. First,

open the software, and set the zoom, pan, and tilt just the way you want.

Then close the software, open Adobe Flash Media Live Encoder, and record

in the format you want to use.

iMovie (Macintosh)
If you have a recent Macintosh running Mac OS X, you’re blessed with an

excellent yet simple tool for making all the videos you want: iMovie. You can

record using either a Webcam (most likely, a built-in iSight) or a digital video

camera. The iSight has excellent quality and autofocus capability, whether

it’s the built-in version at the top of the screen or the external version con-

nected by a cable.

Recording a video
To record a video in iMovie, follow these steps:

 1. If you’re using an external Webcam, connect it to your computer; turn

it on; and prepare it for shooting video.

 If you have a built-in iSight Webcam, the camera is ready to go when you

need it; you don’t need to connect it.

 2. Launch iMovie (or iMovie HD).

 3. Choose Create New Project.

 The Create Project dialog box opens.

 4. Type a filename in the Project text box.

 For this example, we used MacMovie.

 5. From the Where pull-down menu, choose where you want to save the

project.

 For this exercise, we chose Movies to save to the Movies folder.

 6. Choose a format from the Video Format pull-down menu.

 If you’re using an iSight camera, choose iSight; if not, choose the format

that applies to your camera.

34_385395-bk06ch02.indd 42234_385395-bk06ch02.indd 422 10/28/08 8:35:49 PM10/28/08 8:35:49 PM

Free Resources for Creating Videos 423

Book VI
Chapter 2

Getting Video Ready
for Prim

e Tim
e

 7. Click OK.

 The project window opens. Centered below the video window are the

play controls; to the left of the play controls, you see a selector switch

between a camera icon (Camera mode) and a scissors icon (Edit mode)

(see Figure 2-6).

Selector switch

EditCamera

Figure 2-6: Recording with iMovie.

 8. Drag the selector switch left, to the camera icon.

 At this point, you should see the camera feed from either your external

camera or your iSight camera in the video window. A Record button is

superimposed on the image at the bottom-center of the video window

pointed out in Figure 2-6.

 9. Click the Record button to begin recording.

 As soon as you click the button, you see a thumbnail image (a clip) in

one of the cells to the right of the video window. Here’s another chance

to make a screen test for YouTube, so get your groove on.

34_385395-bk06ch02.indd 42334_385395-bk06ch02.indd 423 10/28/08 8:35:49 PM10/28/08 8:35:49 PM

Free Resources for Creating Videos424

 10. After about 30 seconds, click the Record button again to stop

recording.

 You can record longer, if you like, but even a short recording takes up a

lot of hard disk space.

 11. Drag the selector switch to the scissors icon (Edit mode). (See

Figure 2-6.)

 Just to the left of the camera and scissors icons are two other icons: a

frame of film (Clip Viewer) and a clock (Timeline Viewer). In Figure 2-6,

the clock icon is selected.

 12. Click the film frame icon to open Clip Viewer.

 13. Drag the movie clip from Step 9 to the area at the bottom of the

window that reads Drag clips here to build your project,
as shown in Figure 2-6.

 You see the thumbnail of your video in the Clip Viewer, as shown in

Figure 2-7, when the move is completed.

Timeline

Clip dragged to Timeline

Selector in Edit mode

Playhead

Figure 2-7: Playing a recorded movie.

34_385395-bk06ch02.indd 42434_385395-bk06ch02.indd 424 10/28/08 8:35:49 PM10/28/08 8:35:49 PM

Free Resources for Creating Videos 425

Book VI
Chapter 2

Getting Video Ready
for Prim

e Tim
e

 14. Click the clock icon to open the Timeline Viewer.

 You see the video timeline at the bottom of the project window, as

shown in Figure 2-7.

 15. Choose File➪Save Project (or press Ô+S).

 16. Choose File➪Export.

 The Export dialog box opens.

 17. Choose Full Quality from the Compress Movie pull-down menu, and

click the Share button.

Testing your video
To test your video file, navigate to the folder where you saved it in Step 5 in

the preceding section (the file has a .mov extension), and double-click the

file to play it in QuickTime Player. You should get excellent results.

The big guns: Truly powerful video editors
If you want to create some memorable videos
using complex editing, special effects, and any-
thing else George Lucas or Steven Spielberg
could dream up, you have lots of choices. Three
of our favorites are the following:

 ✓ Adobe Premiere Pro (Windows and
Macintosh): With Adobe Premiere Pro (www.
adobe.com), you can work with most
video formats, including HD format. The
program offers a wide variety of special
effects, titles, transitions, and up to 4000
x 4000 resolution. Premiere Pro integrates
easily with three other Adobe products:
After Effects, Photoshop, and Soundbooth.
The latest version features Ultra 2 chroma
keying. Premiere Elements (Windows only)
is a scaled-down version, available at a
considerable saving.

 ✓ Final Cut Pro (Mac OS X): If you have your
heart set on entering a film in the Sundance
Film Festival, you may want to take a look

at Final Cut Pro (www.apple.com). Used
by many independent filmmakers, this video
editor can edit a wide range of video for-
mats, including HD, and has its own spe-
cial effects, transitions, and other editing
essentials. It integrates well with Apple’s
Soundtrack and LiveType software. To use
all its features, be prepared to spend some
time learning how to use it. If your budget is
limited, try Final Cut Express HD for consid-
erably less money.

 ✓ Vegas Pro (Windows): Sony’s Vegas Pro
(www.sonycreativesoftware.com/
products/vegasfamily.asp) also
has a large following. It’s best known for its
intuitive interface and ability to handle up to
64-bit channels. Like the other professional
editing programs in this list, it can integrate
multiple channels of video and audio to
create professionally produced and scored
digital videos.

34_385395-bk06ch02.indd 42534_385395-bk06ch02.indd 425 10/28/08 8:35:50 PM10/28/08 8:35:50 PM

Free Resources for Creating Videos426

For the test file in Figure 2-6, earlier in this chapter, we used a Canon G2 DV

camera, which approaches professional quality. But you can get excellent

results from an iSight Webcam too.

Now that you know several ways to capture video as digital files, the next

step is modifying those files so that they can be played on the Web — and

in such a way that the viewer’s experience is the one you want. Chapter 3 in

this minibook provides the details.

34_385395-bk06ch02.indd 42634_385395-bk06ch02.indd 426 10/28/08 8:35:50 PM10/28/08 8:35:50 PM

Chapter 3: Getting Video
Files Ready for Flash

In This Chapter
✓ Completing preproduction

✓ Knowing what can be converted

✓ Converting files with Adobe Media Encoder CS4

✓ Cropping videos

✓ Adjusting file settings

✓ Cueing videos

Before you can play a video with Flash CS4, you need to convert all

those MOV, WMV, AVI, and other non-Flash-formatted files

to FLV or F4V files. The FLV files are standard Flash video

files using the VP6 compression format. The new F4V

files are based on a standard with a better video qual-

ity: H.264. Included with Flash CS4 is Adobe Media

Encoder CS4, with which you can easily convert

video files to FLV or F4V file format. The encoder

also allows you to set different parameters and

even crop the video, so you can do a little last-

minute editing with it.

In this chapter, we look at the different things

you can do before you convert your video file into

an FLV or F4V file. We take a look at how the file

conversion process works, how to select a video file

type, and how to determine which options you have.

Films have to be edited, special effects added, and boo-

boos removed. You might want to make your video just a little

longer or shorter as well. These processes need to be handled before

conversion to FLV or F4V files because the main tools for editing such as

Adobe Premiere, Adobe After Effects, Apple Final Cut, and even Microsoft

Movie Maker cannot edit files converted for running in Flash CS4. So before

you get to the point where you cannot edit your FLV or F4V file, you need to

do your preconversion work.

35_385395-bk06ch03.indd 42735_385395-bk06ch03.indd 427 10/28/08 8:36:49 PM10/28/08 8:36:49 PM

Managing Postproduction before Conversion428

Managing Postproduction before Conversion
In show biz, the term postproduction refers to everything you do to a video

after you have it in the can (the can being an old-fashioned reference to

those metal cases that hold film). Included in postproduction are simple

steps like cutting out those parts of your video that you don’t like. You can

easily do this kind of simple editing with an application such as Windows

Movie Maker or iMovie. More complex editing includes chroma keying

(electronically cutting out a key color and replacing it with a different back-

ground), using a high-end editing program like Adobe Premiere Pro or Final

Cut Pro.

Figure 3-1 shows a video in Premiere Pro, with the image on the left featuring

a blue chroma screen in the background and the image on the right show-

ing a studio background. The video is the same, but postproduction work

changes the image significantly.

Figure 3-1: Complete all preproduction tasks, such as changing a background, before converting a file.

35_385395-bk06ch03.indd 42835_385395-bk06ch03.indd 428 10/28/08 8:36:49 PM10/28/08 8:36:49 PM

Converting Files with Default Options 429

Book VI
Chapter 3

Getting Video Files
Ready for Flash

You can’t do this kind of editing during or after the conversion process. You

must do all your postproduction work before using Adobe Media Encoder to

convert the video to a Flash file.

Choosing File Types for Conversion
The number of video file formats seems to grow every day, with new ones

being developed or old ones being discovered. We have personally tested

the following file types by successfully converting them into FLV or F4V files

and running them in a Flash application:

 ✓ MPEG-4

 ✓ MOV

 ✓ AVI

 ✓ WMV

 ✓ DV

You’re likely to find more formats that work and others that don’t. The basic

test of a file format you can convert is to try dragging a file in that format

into Adobe Media Encoder. If the process doesn’t work, you see a message

such as the one shown in Figure 3-2.

Figure 3-2: Video file refused by Adobe Media Encoder.

If you look carefully at the figure, you see that a WMV file is being refused.

Although Adobe Media Encoder accepts WMV files, sometimes, an individual

file that you try to encode has been corrupted. Being corrupted does not mean

that the file received a bribe, but that something wrong with it disallows

encoding — missing or added code, for example. Also, the Mac version of

Adobe Media Encoder doesn’t convert WMV files under any circumstances.

Converting Files with Default Options
After your video file is all edited and ready to go, you’re ready to convert

it. In this section, we show you how to convert files with standard output

35_385395-bk06ch03.indd 42935_385395-bk06ch03.indd 429 10/28/08 8:36:50 PM10/28/08 8:36:50 PM

Converting Files with Default Options430

options; later in this chapter, in the section “Customizing Conversions,” we

show you how to customize your output.

The companion Web site provides two very big AVI video files (each larger

than 100MB): movU.avi and movUF.avi. They are from the same source,

but one has been changed so that it has a different background. You can use

them to complete the following exercise, if you want.

To convert AVI files to F4V files, follow these steps:

 1. Place the AVI files on the desktop.

 This step makes them handy for dragging into the converter.

 2. Open Adobe Media Encoder CS4 by double-clicking on the icon.

 A big gray window opens on-screen.

 3. Drag the two AVI files into the encoder window.

 You have to wait a few seconds for the files to show up on-screen. When

they’re ready, you see their names and locations in the Source Name

column of the encoder window, as in the example shown in Figure 3-3.

Figure 3-3: Two AVI files loaded in Adobe Media Encoder.

 If you have your video files scattered hither and yon on your computer,

you can click the Add button in the encoder and browse for the files

instead of using the drag-and-drop technique.

 4. From the Preset pull-down menu, choose F4V – Same As Source (Flash

9.2 and Higher).

 Figure 3-4 shows the selection being made.

 Because Flash Player is free, most users update to the latest version.

Some users, however, simply keep their old players. How can you tell

whether viewers have older players? You receive e-mail complaining

that they can’t see your movie! (This technique is adopted from the

method of locating land mines by stomping on the ground.) If your pri-

mary audience is likely to have older versions of Adobe Flash Player,

choose one of the formats for older Flash players: FLV – Same As Source

35_385395-bk06ch03.indd 43035_385395-bk06ch03.indd 430 10/28/08 8:36:50 PM10/28/08 8:36:50 PM

Converting Files with Default Options 431

Book VI
Chapter 3

Getting Video Files
Ready for Flash

(Flash 7 and Higher), for example, accommodates any player from ver-

sion 7 to version 10.

 Figure 3-4: Setting the compression type.

 5. Click the Start Queue button and wait while both files are compressed.

 As the conversion process is taking place, the lower-right corner of the

encoder window shows the part of the video that is being compressed.

 When the compression process is complete, a green check appears in

the file’s Status column.

 In the example shown in Figure 3-5, you see that the first of the two files

is finished, but the second one is still in progress.

 Notice what happened to the size of the video file. Right-click the F4V

file icon and choose Properties from the shortcut menu (Windows) or

Ctrl+click the icon and choose Get Info from the shortcut menu (Mac).

You see that the new video is highly compressed. If the original AVI files

were 102MB, for example, the F4V files are about 3.8MB. (That would

be similar to a 200-pound person going on a diet and weighing only 7.6

pounds when he finished!)

 6. Test the file in Adobe Media Player.

 You shouldn’t see any difference between running it as an F4V file and

running it as an AVI file.

Figure 3-6 shows an F4V file playing in Adobe Media Player. This video is

ready to be sent over the Internet as a progressive download or streamed.

35_385395-bk06ch03.indd 43135_385395-bk06ch03.indd 431 10/28/08 8:36:51 PM10/28/08 8:36:51 PM

Converting Files with Default Options432

Figure 3-5: File conversion in Adobe Media Encoder.

Figure 3-6: An AVI video playing in F4V format.

35_385395-bk06ch03.indd 43235_385395-bk06ch03.indd 432 10/28/08 8:36:51 PM10/28/08 8:36:51 PM

Customizing Conversions 433

Book VI
Chapter 3

Getting Video Files
Ready for Flash

Customizing Conversions
When you pull a file into Adobe Media Encoder for conversion, you can

make choices from the Format and Preset pull-down menus to customize

the process:

 ✓ Format: The Format pull-down menu provides two choices: FLV | F4V

(H.264) and H.264. We don’t deal with the H.264 format outside the F4V

format, so for the rest of this minibook, you can leave the Format menu

set to FLV | F4V (H.264).

 ✓ Preset: In general, when dealing with FLV/F4V files, you can simply make

any choice from the Preset pull-down menu. In this minibook, for the

most part, we discuss presets for Flash Player 9.2 or later.

Choosing a compression codec
Each of the three main FLV formats uses one of three codecs. A codec (short

for coder–decoder) is the compression format used to shrink your file. In the

section “Converting Files with Default Options,” earlier in this chapter, a

codec reduces an AVI file to about 4 percent of its original size.

In addition to compressing a file, a good codec optimizes the file’s quality —

both video and audio.

Flash has had three different codecs since the introduction of streaming

video, and you can choose any of them from the Preset pull-down menu in

Adobe Media Encoder:

 ✓ FLV (Sorenson Spark): Used in Flash 7 presets

 ✓ FLV (On2 VP6): Used in Flash 8 presets

 ✓ F4V (MainConcept H.264 Video): Used in Flash 9.2 presets

As a rule of thumb, use the newest format because of the increasing quality

of audio and video. With larger video formats, you see the greatest differ-

ence in quality.

Managing bandwidth
Each preset has several options, and in preparing videos for the Web, you

need to consider bandwidth above all else when deciding which option to

choose. Bandwidth is the amount of stuff you have to port over the Internet

to display your video.

Larger formats have more content; smaller ones have less. If your video uses

too much bandwidth, you can run into nasty problems because your video

can freeze, lose frames, or seemingly become separated from the audio.

35_385395-bk06ch03.indd 43335_385395-bk06ch03.indd 433 10/28/08 8:36:52 PM10/28/08 8:36:52 PM

Trimming Your Video: A Little Nip and Tuck434

The presets are not necessarily set up to optimize bandwidth, so in looking

closely at the settings, you need to ask, “How will this affect the amount of

bandwidth required and the experience the user has?”

Your original video file is preserved so that you can use it often to try out

different settings when you convert it to a FLV or F4V file. You can save

bandwidth by using mono audio rather than stereo, lowering the audio qual-

ity (lower kHz values), reducing the video window size, and adjusting several

other settings discussed later in this chapter. As a rule of thumb, lower qual-

ity and smaller size take up less bandwidth.

Trimming Your Video: A Little Nip and Tuck
When you make a video, the ideal is to do as much editing in the camera as

possible, which means that you should plan all your shots so that you don’t

have to do too many cut-and-paste operations in the editing stages. When

you’re preparing a video for conversion to FLV or F4V format, you should do

your editing first, but Adobe Media Encoder allows you to do a little editing

in the encoder window.

To trim a bit off the end of a video in the encoder, follow these steps:

 1. Open Adobe Media Encoder by double-clicking its icon.

 2. Drag a video into the encoder window.

 We chose movUF.avi in the example.

 3. Make a choice from the Preset pull-down menu.

 We chose F4V – Same As Source (Flash 9.0.r115 and Higher).

 4. Double-click the name in the Preset column.

 The Export Settings window opens, as shown in Figure 3-7.

 As an alternative to Steps 3 and 4, choose Edit➪Export Settings or

choose Export Settings from the Preset pull-down menu.

 In the left panel of the Export Settings window, you see an image from

your video. If you drag the playhead left and right, you can see the entire

video.

 5. Drag the playhead to the right on the scrubber bar to the spot where

you want the video to end, as shown in Figure 3-8.

 6. Drag the Set Out Point button so that it aligns with the playhead.

 Figure 3-8 shows the playhead and Set Out Point aligned. At this point,

everything is ready for conversion.

35_385395-bk06ch03.indd 43435_385395-bk06ch03.indd 434 10/28/08 8:36:52 PM10/28/08 8:36:52 PM

Fine-Tuning Your Settings 435

Book VI
Chapter 3

Getting Video Files
Ready for Flash

Figure 3-7: Editing options in Adobe Media Encoder.

\ 7. Click the Start Queue button.

 The file is converted to FLV or

F4V format as usual; the only dif-

ference is that the converted file

will have some of its end cut off.

Fine-Tuning Your Settings
If your converted video doesn’t look

or work as you expected it to, you

may be able to make a few changes in Adobe Media Encoder. Suppose that your

video is a simple explanation of how to lay tile. You don’t need stereo audio set

at 96 KHz; a mono audio setting at 48 KHz will do fine, and you won’t have as

much to port across the Internet. Editing the preset can fix that problem.

Don’t depend on Adobe Media Encoder for extensive editing, however. If you

don’t edit your video before you put it in the encoder, you’ll likely regret it.

The following sections show you how to adjust and create presets in various

tabs of the Export Settings window. (For details on opening this window, refer to

“Trimming Your Video: A Little Nip and Tuck,” earlier in this chapter.)

Playhead

Set Out Point

Figure 3-8: Preparing to crop the duration of
a video.

35_385395-bk06ch03.indd 43535_385395-bk06ch03.indd 435 10/28/08 8:36:52 PM10/28/08 8:36:52 PM

Fine-Tuning Your Settings436

Filters
Back in the old days of moviemaking, technicians rubbed petroleum jelly on

camera lenses to blur close-ups of aging beauties. You can create the same

kind of effect digitally by using a filter known as a Gaussian blur. You can

add as much or as little blur to your video as you want; you can also flatten

the depth of field to add different moods or focus on certain elements in the

frame or to make it look like a foggy night in London.

To add a blur filter to your video, follow these steps:

 1. Click the Output tab in the upper-left corner of the Export Settings

window.

 2. In the right panel of the Export Settings window, click the Filters tab.

 3. Select the Gaussian Blur box.

 4. In the Blurriness text box, change the value to something other than

the default (0).

 When you change the Blurriness value, you see its effect in the Output

tab, as shown in Figure 3-9.

Figure 3-9: Previewing a Gaussian blur.

35_385395-bk06ch03.indd 43635_385395-bk06ch03.indd 436 10/28/08 8:36:53 PM10/28/08 8:36:53 PM

Fine-Tuning Your Settings 437

Book VI
Chapter 3

Getting Video Files
Ready for Flash

 5. From the Blur Dimension pull-down menu, choose the dimension you

want to blur: Horizontal, Vertical, or Horizontal and Vertical.

 As soon as you choose a dimension, you see its effect in the left panel,

so try different settings to decide which effect you want.

 6. Click OK to apply your settings.

 7. Convert the video by clicking on the Start Queue button.

 The output FLV/F4V file shows the blur.

Format
This setting is easy to change from FLV to F4V and vice versa. Follow these

steps:

 1. In the Export Settings window, click the Format tab.

 Even though your video is already set to either FLV or F4V, you again

have the choice of FLV or F4V.

 2. Click either FLV or F4V if you want to change your choice.

Video
When you change the video settings from the default, you can significantly

change what the viewer will see. As a rule of thumb, the better the quality of

your video, the more bandwidth it will take.

Whenever you work with video editing, be sure to select the Output tab so

that you can see a preview of the changes you are making.

In the upper-left corner of the Export Settings window, when the Output tab

is selected, you see Deinterlace as the default setting. You should almost

always deinterlace your video to reduce moiré patterns that can appear.

Resize Video
The Resize Video check box in the Export Settings window with the Video

tab selected allows you to change the size of the video. In Figure 3-10, the

size has been changed from 720 x 480 pixels to 320 x 213 pixels.

Generally, making a video file smaller doesn’t adversely affect its appear-

ance. If you make the file larger, however, it may look pixelated. (Pixels

become visible, and the image is blurry and unfocused.)

In the Basic Video Settings section of the Video tab are several pull-down

menus, each of which changes some aspect of the video:

35_385395-bk06ch03.indd 43735_385395-bk06ch03.indd 437 10/28/08 8:36:54 PM10/28/08 8:36:54 PM

Fine-Tuning Your Settings438

Figure 3-10: Changing the size of a video file.

 ✓ Frame Rate (frames per second [fps]): If you want to reduce the amount

of bandwidth, choose a lower frame rate. The quality will be lower as

well, but if your video has little movement, the change will not be as

noticeable as in a video that has a good deal of movement.

 ✓ Field Order: The Field Order option affects two video fields — upper

and lower. For a standard-definition format such as DV NTSC, choose

Lower; for a high-definition (HD) format, choose Upper. Generally, the

default (None – Progressive) setting works well for videos streamed over

the Web. For HD video, however, try choosing Upper to see whether it

improves output. Upper and lower refer to odd (upper) and even (lower)

fields in a video frame.

 ✓ Pixel Aspect Ratio: If you change the aspect ratio (ratio of width to

height), choose Square Pixels. In general, we try to maintain the aspect

ratio of the original video, but that isn’t always possible or desirable.

In Figure 3-10, you see that the original aspect ratio of 4.5:3 in 720 x 480

format is maintained in the reduced format of 320 x 213.

 ✓ Profile: Use the Baseline profile for minimum use of bandwidth — for

mobile applications, perhaps, or for users who have limited process-

ing capacity. Use the Main and High profiles when you want to optimize

35_385395-bk06ch03.indd 43835_385395-bk06ch03.indd 438 10/28/08 8:36:54 PM10/28/08 8:36:54 PM

Fine-Tuning Your Settings 439

Book VI
Chapter 3

Getting Video Files
Ready for Flash

quality for users who have lots of processing power and bandwidth. In

Figure 3-10, the High profile has been selected to produce the best qual-

ity possible.

 ✓ Level: The Level setting determines the degree of definition. The higher

the value, the higher the definition and format. The level set in Figure

3-10 is very high, capable of handling 1280 x 720 resolution at 30 fps. At

a lower resolution of 320 x 240, a Level setting of 1.3 would be plenty. As

you see in the figure, the level is far greater than required.

After you square away your settings, save them as a preset. Click the disk

icon next to the Preset pull-down menu, and provide a name for the settings

you used. (In Figure 3-11, the preset name is TwoPass320.) If you decide to

improve the settings later, you can overwrite an existing preset with the

same name.

Bitrate Settings
Figure 3-11 shows the areas of the Export Settings window where you set bit

rates and advanced options. This section covers the Bitrate Settings options;

the following section discusses the Advanced Settings options.

Figure 3-11: Bitrate Settings and Advanced Settings.

The Target Bitrate [Mbps] slider sets the ideal (often, the minimum) amount

of bandwidth you want to use. The Maximum Bitrate [Mbps] slider lets users

with very-high-speed processors and connections optimize what they can

view. The effects of these options are relatively close, but experiment with

the sliders to see the range of effects.

35_385395-bk06ch03.indd 43935_385395-bk06ch03.indd 439 10/28/08 8:36:55 PM10/28/08 8:36:55 PM

Fine-Tuning Your Settings440

A .56 setting doesn’t mean 56KB; instead, it means 0.56 of 1MB, or 560KB.

Assume that users with dial-up modems are not going to have a very good

video experience. Those who have Digital Subscriber Lines (DSL) with low

connection rates — less than 1Mbps — will have a good experience if you

consider the amount of bandwidth that their connections can handle.

One of the easiest ways to improve the quality of your video and reduce

bandwidth is to choose the VBR, 2-Pass option from the Bitrate Encoding

pull-down menu. This option sets a two-pass variable bit rate. On the first

pass, the program looks for the best settings and then on the second pass,

makes those settings. You save, roughly, two-thirds (67 percent) in band-

width with two-pass compression, which is similar to getting a $100 shirt for

only $67 — bandwidth at a discount!

Click OK when you’re done with your settings, or go on to make the changes

discussed in the following section.

Advanced Settings
When you set the Key Frame Distance options (refer to Figure 3-11), remem-

ber that less is more. In video, each keyframe is a set image; think of it as a

clear snapshot. The frames between the keyframes are filled in by an algo-

rithm, somewhat like tweens. So if you set a low keyframe distance (such

as 10; refer to Figure 3-11), the quality is higher but you increase the work

required of the processor and the amount of bandwidth. This option is one

that you need to tweak and test to your own satisfaction.

Click OK when you’re satisfied with your settings.

Audio
Figure 3-12 shows the Audio tab of the Export Settings window.

The Codec pull-down menu allows you to choose one of three flavors of AAC

(Advanced Audio Encoding). AAC + Version 1 and AAC + Version 2 allow for

more channels and metadata embedded in the sound. For most applications,

including music, the default AAC setting is fine.

Of all the settings in this tab, one of the most important — but easiest to

overlook — is Output Channels. Mono or Stereo. If your video is simply a

talking head, you can halve the amount of audio quality required by select-

ing the Mono radio button instead of Stereo. For music, however, you most

likely want to select Stereo.

35_385395-bk06ch03.indd 44035_385395-bk06ch03.indd 440 10/28/08 8:36:55 PM10/28/08 8:36:55 PM

Fine-Tuning Your Settings 441

Book VI
Chapter 3

Getting Video Files
Ready for FlashFigure 3-12: The Audio tab.

The Frequency setting is important if you find any latency — disconnect

between the audio and video. (You can see latency in old-time kung-fu

movies in which the actors’ mouths move at different rates from the sound.)

The higher the Frequency setting, the more bandwidth you use, but any

latency is reduced. Audio quality doesn’t affect latency.

If you have a high-quality recording with your video, you can lower the

Audio Quality setting and get good-quality audio at a lower bandwidth. Use

the best microphone and sound card you can afford, and set the Audio

Quality pull-down menu to a lower setting.

Finally, the Bitrate Settings pull-down menu contains options that are simi-

lar to those in the Video tab, except that they’re not continuous. You can

therefore set them to values only at certain intervals. That is, you can’t set

them to any value you want, but like frequency, they have certain settings at

specified intervals. Yet again, higher settings deliver more quality, but at a

higher bandwidth cost.

Others
The Others tab is really an FTP (File Transfer Protocol) tab. (I would have

called it the FTP tab, but would Adobe listen to me? Nooooo. . . .) In this tab,

you set the FTP address of a nonsecure host folder. Fill in the Server Name,

Port, Remote Directory (optional), User Login, and Password boxes, and

then Adobe Media Encoder automatically sends the FLV or F4V file to your

server. When you have provided the requested information, click the Test

35_385395-bk06ch03.indd 44135_385395-bk06ch03.indd 441 10/28/08 8:36:55 PM10/28/08 8:36:55 PM

Adding Cue Points442

button to verify the connection. If the test fails, review your settings and try

again until the test indicates a connection. Then when everything is working

correctly, click the OK button.

If you save your settings in a custom preset, every time you convert a file,

it’s sent to the FTP folder you specify here. Optionally, you can have the

encoder send the local file to the trash.

To make sure that the connection works, click the Test button. Figure 3-13

shows a typical setup and verification of a good connection.

Figure 3-13: Testing FTP settings.

Adding Cue Points
Cue points are like little triggers in a video. You can use them to bring in

data and links, but in this section, we show you how to use them to bring up

events and labels associated with those events.

Adding cue points to a video allows you to have various things happen at

predetermined points. Suppose that you’re creating a video about how to lay

35_385395-bk06ch03.indd 44235_385395-bk06ch03.indd 442 10/28/08 8:36:55 PM10/28/08 8:36:55 PM

Adding Cue Points 443

Book VI
Chapter 3

Getting Video Files
Ready for Flash

kitchen tile. As you’re explaining how to lay the tile, you want to show view-

ers different still shots of what the tile looks like at different stages. You can

set a cue point so that when you say, “Place the spacers between the tiles,” a

picture of the tiles pops up with spacers added.

To fill a FLV or F4V file with cue points, follow these steps:

 1. Open Adobe Media Encoder by double-clicking the application icon.

 2. Drag the video file into the encoder window.

You can download the little counting video cuePoints.mov from

this book’s companion Web site at www.dummies.com/go/
flashallinone.

 3. Choose any preset you want to use.

 4. Double-click the name in the Preset column to open the Export

Settings window.

 The window opens with two panels: one on the left and one on the right.

You can expand it into a single left window by clicking the little arrow

in the middle of the dividing border. Figure 3-14 shows a single window

open.

 Figure 3-14: Adding a cue point.

 5. Drag the playhead to the place in the video where you want to add a

cue point, and click the plus (+) icon.

 6. In the Cue Point Name column, enter a name for the cue point.

35_385395-bk06ch03.indd 44335_385395-bk06ch03.indd 443 10/28/08 8:36:56 PM10/28/08 8:36:56 PM

Adding Cue Points444

 7. Repeat Steps 5 and 6 to add as many cue points as you want.

 Figure 3-14 shows a third cue point being added.

 8. After you add all your cue points, return to two-column view by click-

ing the arrow on the right border; then click OK.

When you convert the video to FLV or F4V format, you won’t see anything

different, but your cue points will be hidden inside the video.

In Chapter 4 of this minibook, you see how to unleash the cue points in a

Flash application by using ActionScript.

35_385395-bk06ch03.indd 44435_385395-bk06ch03.indd 444 10/28/08 8:36:56 PM10/28/08 8:36:56 PM

Chapter 4: Getting
Fancy with Video

In This Chapter
✓ Creating your own video player with ActionScript

✓ Using embedded cue points

✓ Working with metadata

✓ Using ActionScript cue points

✓ Adding captions to a video

Now that you can convert different kinds of video files to FLV and F4V

files, you’re ready to use the different kinds of information embed-

ded in videos. In Chapter 3, you see how to embed cue points into

a video during the conversion process. In this chapter, you

get the cue points from a NetStream that plays your

video; then you get more information that’s hidden in

the video — the metadata — by using the NetStream

class. To do all this, you build a simple player with

ActionScript 3.0.

You also see how to add cue points to a video

that has no embedded cue points, using both the

FLVPlayer component and the friendly, incred-

ibly powerful ActionScript 3.0. Then you wrap up

the chapter by tweaking some of the controls in

the playback process.

Making Your Own Video Player
When you embed cue points in a video, you need to use

the NetStream class to get them out. To use NetStream, you need a

NetConnection instance, and if you want to see what you’re streaming, you

need a Video instance as well. That’s it!

Understanding the process
Before you start getting those cue points, take a look at what you do to

create the simplest video player in the universe:

36_385395-bk06ch04.indd 44536_385395-bk06ch04.indd 445 10/28/08 8:37:50 PM10/28/08 8:37:50 PM

Making Your Own Video Player446

 1. Create a NetConnection instance.

 2. Create a NetConnection connection.

 Because this connection uses a progressive download, you more or less

plug it into a dead socket; the connection is null. A progressive down-

load doesn’t use an open socket server but, rather, uses a regular Web

server. As each piece of the file downloads, it’s displayed until the entire

file is downloaded. (See Book VI, Chapter 5 for streaming video.)

 3. Create a NetStream with the NetConnection as a parameter value.

 This procedure — first making a null connection with the NetConnection

instance and then passing it as a parameter to NetStream — may seem a

little strange. But it’s what you do when the video will work with a Web

server rather than a streaming server.

 4. When you have your NetStream instance, you use its play() method to

play the video.

 5. Finally, you create a Video instance and attach the NetStream playing

the video to the Video instance.

Creating a video player
Now you’re all set to make your first video player. Follow these steps:

 1. Choose Window➪File➪New➪Flash File (ActionScript 3.0) to open a

new Flash file.

 2. Choose Window➪Properties (or press Ctrl+F3 [Windows] or Ô+F3

[Mac] to open the Properties panel, and in the Publish section of the

Class window, type EasyPlayer.

 3. Save the file as EasyPlayer.fla on the desktop or in a folder of your

choice.

 4. Choose Window➪File➪New➪ActionScript File to open a new

ActionScript file, and save it in the same folder as you saved the Flash

file.

 We saved it as EasyPlayer.as in the same folder with EasyPlayer.fla.

 5. Add the following code to the EasyPlayer.as file:

package
{
 import flash.display.Sprite;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;

 public class EasyPlayer extends Sprite
 {
 private var nc:NetConnection;

36_385395-bk06ch04.indd 44636_385395-bk06ch04.indd 446 10/28/08 8:37:51 PM10/28/08 8:37:51 PM

Making Your Own Video Player 447

Book VI
Chapter 4

Getting Fancy
w

ith Video

 private var ns:NetStream;
 private var vid:Video;

 public function EasyPlayer ():void
 {
 nc=new NetConnection ();
 nc.connect (null);
 ns=new NetStream(nc);
 vid=new Video(320,240);
 ns.play (“myVideo.f4v”);
 vid.attachNetStream (ns);
 vid.x=115;
 vid.y=80;
 addChild (vid);
 }
 }
}

 6. Save the EasyPlayer.as file where you saved the EasyPlayer.fla

file.

 In the listing, be sure to substitute the name of your FLV or F4V video in

the line ns.play (“myVideo.f4v”).

 7. Choose Control➪Test (or press Ctrl+Enter [Windows] or Ô+Return

[Mac]) to test the application.

 You should see a 320 x 240 video in the center of the Stage. The Output

panel shows an error because the metadata wasn’t handled properly,

although that shouldn’t have affected the video.

Figure 4-1 shows an example of what you should see when you test the video.

Figure 4-1: Playing video.

36_385395-bk06ch04.indd 44736_385395-bk06ch04.indd 447 10/28/08 8:37:51 PM10/28/08 8:37:51 PM

Getting to the Cue Points448

That process was easy, and it didn’t take much code. The best part, though,

is that it gives you access to the classes that control the embedded cue

points and metadata.

Getting to the Cue Points
Getting cue points out of a NetStream instance looks a little different from

most of the event handling you’ve done. The cue point event is accessed

from an Object instance, not directly from NetStream. First you create an

object; then you create a NetStream property called client to which you

assign the object. (This procedure should be clearer when you see the

ActionScript.)

The basic code looks like this:

checkMeta = new Object();
ns.client=checkMeta;
checkMeta.onCuePoint=cueNow;

The reference to cueNow is a call to a function that handles the cue-point

event — an easy way to deal with NetStream.client.

Many developers prefer to write a small client class to handle events. You

can write a separate class in the same AS file as the rest of your code or

write a separate file. The methods in this class are the event handlers.

Extracting and displaying cue points
In this section, you create an application to extract and display cue points.

The application also includes a function that handles metadata (discussed in

the section “Managing Metadata,” later in this chapter).

To build the application, follow these steps:

 1. Open a new ActionScript 3.0 file, and in the Class text box of the

Properties panel, enter CueOn.

 2. Add a background that suits your taste to act as a “theater” for the

video you play.

 Figure 4-2, later in this section, shows an example.

 3. Save the file as CueOn.fla on the desktop or a separate folder.

 4. Open a new ActionScript file, and save it as CueOn.as in the same

folder as CueOn.fla.

 5. Enter the following code in the CueOn.as file:

36_385395-bk06ch04.indd 44836_385395-bk06ch04.indd 448 10/28/08 8:37:51 PM10/28/08 8:37:51 PM

Getting to the Cue Points 449

Book VI
Chapter 4

Getting Fancy
w

ith Video

package
{
 import flash.display.Sprite;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;

 public class CueOn extends Sprite
 {
 private var nc:NetConnection;
 private var ns:NetStream;
 private var vid:Video;
 private var flv:String;
 private var checkMeta:Object;

 public function CueOn ():void
 {
 flv=”cuePoints.flv”;
 nc = new NetConnection();
 nc.connect (null);
 ns=new NetStream(nc);
 vid=new Video(320,240);
 vid.attachNetStream (ns);
 ns.play (flv);
 addChild (vid);
 vid.x=115, vid.y=92;

 checkMeta = new Object();
 ns.client=checkMeta;
 checkMeta.onMetaData=metaNow;
 checkMeta.onCuePoint=cueNow;
 }

 private function metaNow (mData:Object):void
 {
 trace (mData.duration);
 }

 private function cueNow (cueData:Object):void
 {
 trace (cueData.name);
 }
 }
}

 In the listing, be sure to substitute the name of your video file in the line

flv=”cuePoints.flv”.

 6. Save CueOn.as again.

 7. Test the application.

The example in Figure 4-2 shows both the video and the cue point names. The

first number in the Output panel is the length of the video provided by access-

ing the metadata. (You find out more about metadata in the next section.)

36_385395-bk06ch04.indd 44936_385395-bk06ch04.indd 449 10/28/08 8:37:52 PM10/28/08 8:37:52 PM

Getting to the Cue Points450

Figure 4-2: Displaying cue points.

Working with cue point properties
Cue points have three properties:

 ✓ name: Whatever name you provide

 ✓ time: The position in the video, returned as a time in the format

00:00:00:00

 ✓ type: Event or navigation

Generally, you can use the cue point name to direct the associated event

handler (function) to carry out whatever you want done when a given cue

point fires. Often, you find switch statements working out the appropriate

set of actions. Alternatively, you can use the names themselves to load a file

with the same name plus an extension. You can load text files with cue point

names and the .txt extension, for example.

As you see in Book VI, Chapter 3, placing cue points to match the action

in the video is simple if you have visual clues. Sometimes, you don’t have

visual clues — only audio ones. To get your cue point times right, jot down

the cue points you want to add by looking at the counter in the player of the

original video or by doing the same thing in Adobe Media Player.

36_385395-bk06ch04.indd 45036_385395-bk06ch04.indd 450 10/28/08 8:37:52 PM10/28/08 8:37:52 PM

Managing Metadata 451

Book VI
Chapter 4

Getting Fancy
w

ith Video

Managing Metadata
If you don’t place some kind of handler for metadata when you play a video,

the Output panel displays an error. Even though your video works fine, it’s a

good idea to have some kind of handler, even if you don’t use the metadata.

What kind of metadata your video contains depends a good deal on the

kind of conversion tool you use. Adobe Media Encoder CS4 provides several

kinds of metadata. You don’t have to use the metadata, but in case you do,

you need to know what’s in the data and how to get it.

In the preceding section, you see that cue points have only three properties.

Metadata, however, has as many or as few as the conversion application’s

developers decide to add. Because the metadata is stored in an object, you

can iterate through the object by using a for..in loop and get all the avail-

able information about a video.

In the next example application, everything you see should be familiar

from previous examples in this chapter. Rather than output the data with a

trace() statement, however, this application places the data in a TextArea

component that you can see on the Stage. The program allows you to see the

metadata in the video file.

To create an application that finds the metadata in your video, follow these

steps:

 1. Open a new ActionScript 3.0 file, and in the Class text box of the

Properties panel, enter MetaViewer.

 2. Open the Components and Library panels, and drag an instance of a

TextArea component into the Library panel.

 When the TextArea component is dropped into the Library panel, all the

supporting materials also appear in that panel.

 3. Save the file to the desktop or a folder.

 We saved it as MetaViewer.fla.

 4. Open a new ActionScript file, and save it as la in the same location as

the Flash (FLA) file.

 We saved it as MetaViewer.as in the same place as MetaViewer.fla.

 You can use your own FLV or F4V file with metadata or download from

this book’s Web site a file named metaSlave.f4v and place it in the

same folder as MetaViewer.fla.

 5. Enter the following code and save the AS file again in the same loca-

tion as the Flash (FLA) file.

36_385395-bk06ch04.indd 45136_385395-bk06ch04.indd 451 10/28/08 8:37:53 PM10/28/08 8:37:53 PM

Managing Metadata452

 Use the name MetaViewer.as because that’s the name of the class and

its constructor function.

package
{
 import flash.display.Sprite;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import fl.controls.TextArea;

 public class MetaViewer extends Sprite
 {
 private var nc:NetConnection;
 private var ns:NetStream;
 private var vid:Video;
 private var checkMeta:Object;
 private var showMD:TextArea;

 public function MetaViewer():void
 {
 nc=new NetConnection();
 nc.connect (null);
 ns=new NetStream(nc);
 vid=new Video(320,240);
 ns.play (“metaSlave.f4v”);
 vid.attachNetStream(ns);
 vid.x=15;
 vid.y=80;
 addChild (vid);

 showMD=new TextArea();
 addChild (showMD);
 showMD.width=180;
 showMD.height=350;
 showMD.x=350;
 showMD.y=10;

 checkMeta = new Object();
 ns.client=checkMeta;
 checkMeta.onMetaData=metaNow;
 }
 private function metaNow (meta:Object):void
 {
 for (var stuff:String in meta)
 {
 if (stuff!=”trackinfo”&&stuff!=”seekpoints”)
 {
 showMD.appendText (stuff + “: = “+meta[stuff]+”\n”);
 }
 }
 }
 }
}

 In the line ns.play (“metaSlave.f4v”), be sure to use the filename

of your own FLV or F4V file.

 6. To test the application, choose Control➪Test (or press Ctrl+Enter

[Windows] or Ô+Return [Mac]).

36_385395-bk06ch04.indd 45236_385395-bk06ch04.indd 452 10/28/08 8:37:53 PM10/28/08 8:37:53 PM

Putting on a Show with ActionScript Cue Points 453

Book VI
Chapter 4

Getting Fancy
w

ith Video

 When you test this movie, you should see all the metadata except track-

info and seekpoints. These properties weren’t used, so the output isn’t

helpful. (All you see are a bunch of Object strings.)

Figure 4-3 shows an example of what your output should look like. Your

values will be different, however, and if you used something other than

Adobe Media Encoder CS4, you get a different set of metadata properties.

Figure 4-3: Metadata properties.

Depending on what you plan to do with your video, you may find use for the

metadata properties. If you decide to make your own scrubber, for example,

you need the duration value. Likewise, if you decide that you want to make

the video half its original size, you can use the metadata that shows its width

and height.

Putting on a Show with ActionScript Cue Points
One aspect of cue points that we haven’t discussed much yet are those that

you can add by using the FLVPlayer component. Not only can you add cue

points after the video has been converted to a FLV or F4V file, but also, you

can code in cue points dynamically. Even more important, you can do some-

thing more with cue points than just watch them pop up in the Output panel.

In Book VII, Chapter 2, you see how to use the Loader class to load movie clips

in the form of SWF files. The movie clips can contain anything from a simple

graphic to a full-blown animated feature. Anything that can go into a Flash

movie can go into an SWF file, so when you have the capability of loading an

36_385395-bk06ch04.indd 45336_385395-bk06ch04.indd 453 10/28/08 8:37:53 PM10/28/08 8:37:53 PM

Putting on a Show with ActionScript Cue Points454

SWF file, you’re actually loading a Flash movie. The point is simply to show

how to coordinate the actions you see in a video with something else that’s

going on in the Flash movie.

For this next project, you take a fancy graphic standing cap (a big capital

letter) and use the graphic letters to spell out numbers. The video shows

each number voiced and shown in hand numbers, and a coordinated SWF

file is loaded with the same number shown to the right of the video.

Download a file from the book’s Web site named Count.mov and convert it

into an F4V file. Do not add any cue points to the movie. Place the converted

video Count.f4v in the same folder as CueThis.fla that you will create in

the project in this section. Optionally, you can download the files one.swf,
two.swf, three.swf, four.swf, and five.swf. The project shows you

how to make these files, but you might want to download them to save time.

This next project requires several different files that must be placed into the

same folder. Before starting, create a folder named PlayerCuePoint. Place

into that folder every single file you will create or use from the Web down-

load. Now you’re ready to start following these steps:

 1. Open a new Flash File (ActionScript 3.0) and enter the class name in

the Class text box in the Properties panel. Save the file.

 We saved the file as CueThis.fla.

 2. Choose File➪Import➪Import Video to open the Import Video window.

 Use the default choices to import a video with the playback component.

Select Count.f4v as the import file and the SkinUnderPlaySeekMute

style for the player controls in color of your choice. Save the file.

 3. Click on the black video block of the player on the Stage and choose

Window➪Properties (or press Ctrl+F3 [Windows] or Ô+F3 [Mac]) to

open the Properties panel. In the Instance Name window, type the

name playBack, as shown in Figure 4-4.

 You use that name to address the player component in the program you

write later on in this project. Save the file.

 4. Select the FLVPlayer on the Stage and open the Component Inspector

panel. Click the cuePoints row and then click on the magnifying glass

icon that appears.

 You now see the Cue Points window open. Add cue points by clicking

on the Plus (+) icon. Add a name and a time (in seconds and fractions of

seconds), as shown in Figure 4-5, for each cue point. Save the file.

36_385395-bk06ch04.indd 45436_385395-bk06ch04.indd 454 10/28/08 8:37:53 PM10/28/08 8:37:53 PM

Putting on a Show with ActionScript Cue Points 455

Book VI
Chapter 4

Getting Fancy
w

ith Video

Figure 4-4: Assigning an instance name to the FLVPlayback component.

 You can determine what to place in the Time column by watching the

video in the Adobe Media Player. Write down the time you want to enter

a cue point. After you complete the project, you can go back and change

the values in the Time column to more accurately call the cue point

events after watching the video. You cannot do that with cue points

embedded in a video.

 5. (Optional if you didn’t download the numbered SWF files) Open a new

Flash File (ActionScript 3.0) and set the Stage size to 400 x 400. Save

the file as one.fla.

 6. (Optional if you didn’t download the numbered SWF files) Use or

create a large standing cap and spell out the word One.

 The work should fill up most of the Stage. Save and test the file. When

you test the file, you automatically create a file, one.swf. Repeat Steps

5 and 6 saving the files from one.fla through five.fla. Figure 4-6

shows the fourth file being created. All these SWF files must be saved in

the PlayerCuePoint folder. Be sure to save and test all five files so that

you have the SWF version of the files.

36_385395-bk06ch04.indd 45536_385395-bk06ch04.indd 455 10/28/08 8:37:53 PM10/28/08 8:37:53 PM

Putting on a Show with ActionScript Cue Points456

Figure 4-5: Adding ActionScript cue points.

 Figure 4-6: Creating number files.

 7. Open a new ActionScript file and save it as CueMe.as in the

PlayerCuePoint folder. Add the following script and save the file

again.

36_385395-bk06ch04.indd 45636_385395-bk06ch04.indd 456 10/28/08 8:37:54 PM10/28/08 8:37:54 PM

Putting on a Show with ActionScript Cue Points 457

Book VI
Chapter 4

Getting Fancy
w

ith Video

package
{
 import fl.video.MetadataEvent;
 import flash.display.Sprite;
 import flash.display.Loader;
 import flash.net.URLRequest;

 public class CueThis extends Sprite
 {
 private var flv:String = “Count.f4v”;
 private var loader:Loader;
 private var url:URLRequest;

 public function CueThis ()
 {
 playBack.source = flv;
 playBack.addEventListener (MetadataEvent.CUE_POINT,onCue);
 loader=new Loader()
 }

 private function onCue (cp:MetadataEvent)
 {
 loader.unload();
 url=new URLRequest(cp.info.name + “.swf”)
 loader.load(url);
 addChild(loader);
 loader.x=350;loader.y=3;
 }

 }
}

About the only thing new about that program is the line

playBack.addEventListener (MetadataEvent.CUE_POINT,onCue);

which is an event listener for ActionScript cue points. It’s the preferred

event handling procedure with ActionScript 3.0 rather than onCuePoint, as is

the case with NetStream objects and cue points embedded in the video.

The cue point triggers the onCue() method, which passes the name value

of the cue point name property. All that’s left to do is invoke the loader.

Presto, change-o! Up jumps the SWF file showing the number of the current

cue point. Rather than have simple numbers reflect the number spoken and

shown in the video, you can have any Flash CS4 movie clip you want appear.

Figure 4-7 shows an example of what you may see.

We start with a tag you may know from HTML: the <p> tag. As you may

remember, p is for paragraph, and everything between the opening <p>

and the closing </p> is formatted with the paragraph’s formatting attri-

butes. You don’t have to worry about formatting for this example, however,

because it doesn’t use any.

Think of it as you would a PowerPoint presentation — a person talks and

illustrates the presentation using graphics and even animation. Using this

technique, you can make presentations anywhere in the world over the Web.

36_385395-bk06ch04.indd 45736_385395-bk06ch04.indd 457 10/28/08 8:37:55 PM10/28/08 8:37:55 PM

Captioning a Video458

Figure 4-7: An SWF file loading in response to a cue point.

Captioning a Video
Adding captions to a video can be both fun and useful. You can make an old-

fashioned silent movie and have the captions show what people are saying,

or you can add captions for the hearing-impaired to a video that has sound.

You can even add foreign-language captions to your video masterpiece.

(¿Porque no?)

Flash CS4 has a special component, FLVPlaybackCaptioning, that helps you

set up captions for a video used with the FLVPlayback component. Before

getting started, however, you need to look at a unique timing control.

Using timed text in an XML file
If you have never worked with XML files, rest assured that they’re easier

than you imagine. Essentially, XML is a tag language like HTML. One of the

most interesting applications of these versatile files is that they can be used

to provide text on a timer. The plan is to work out the timing for a video and

insert text that is displayed in caption format over a video.

For timing, the <p> tag uses the following format:

<p begin = “00:00:00” > Message </p>

The begin attribute tells when to begin the caption. So if you want the first

caption to appear 15 seconds into the video, for example, you write this:

36_385395-bk06ch04.indd 45836_385395-bk06ch04.indd 458 10/28/08 8:37:55 PM10/28/08 8:37:55 PM

Captioning a Video 459

Book VI
Chapter 4

Getting Fancy
w

ith Video

<p begin = “00:00:15” > Message </p>

As soon as the video reaches 15 seconds, the caption is placed over the

video in exactly the same way that you may have seen English translation

superimposed on a foreign film. The caption stays in place until the next

timed caption is ready to begin. The following tag clears the caption that

appears at the 15-second mark and replaces with a different caption at the

18-second mark:

<p begin = “00:00:18” > New message </p>

The logic is simple. Just because it’s an XML file, don’t think that it’s diffi-

cult. It’s not.

How do you create XML files? If you can use a text editor such as Notepad

(Windows) or TextEdit (Mac), you can create an XML file. Like HTML files,

XML files can be saved as plain text with the .xml extension to indicate that

they are to be treated as XML files. It’s that easy.

Download from this book’s Web site a file named rightOn.f4v for use with

this project. All the timing in the XML Timed Text file is based on that video.

Copy the following XML file in your favorite text editor and save it as

mark.xml. (The captions are from a speech by Mark Antony in William

Shakespeare’s Julius Caesar.)

<?xml version=”1.0” encoding=”UTF-8”?>
 <tt xml:lang=”en” xmlns=”http://www.w3.org/2006/04/ttaf1”>
 <body>
 <div xml:lang=”en”>
 <p begin=”00:00:12.50”>For I have neither wit, nor words, nor
 worth,</p>
 <p begin=”00:00:16”>Action, nor utterance, nor the power of speech,</p>
 <p begin=”00:00:18”>To stir men’s blood: I only speak right on;</p>
 <p begin=”00:00:21.30” >I tell you that which you yourselves do
 know;</p>
 </div>
 </body>
 </tt>

The first line just establishes the XML file as XML format. The second line

is the <tt> tag that encompasses the other tags and holds a reference to

the Timed Text standard. The rest of the script has the familiar <body> and

<div> tags that you probably know from HTML. The <div> tag in this case

establishes the language as English (“en”), and the rest is made up of the <p>

tags with the timing values and caption text.

Launching the captions
After you have the XML file set up, you can create the Flash CS4 application

that runs the video in the FLVPlayback component and displays the captions

36_385395-bk06ch04.indd 45936_385395-bk06ch04.indd 459 10/28/08 8:37:55 PM10/28/08 8:37:55 PM

Captioning a Video460

with the FLVPlaybackCaptioning component. Before you get started, place

the following files in a folder named CaptionWork:

 ✓ mark.xml

 ✓ rightOn.f4v

Use the following steps to create a video with captions to accompany the

video:

 1. Open a new Flash File (ActionScript 3.0) and enter CaptionVid in the

Class text box in the Properties panel.

 Save the file as CaptionVid.fla in the CaptionWork folder.

 2. Drag a FLVPlayback and FLVPlaybackCaptioning component to the

Stage, as shown in Figure 4-8.

 Position the FLVPlayback component in the center below the top and

position the FLVPlaybackCaptioning anywhere you want. Because

the position of the caption is in the same place over the video, it doesn’t

matter where you put the component on the Stage. In the example, it’s

centered beneath the video player.

Figure 4-8: FLVPlayback and FLVPlaybackCaptioning components.

36_385395-bk06ch04.indd 46036_385395-bk06ch04.indd 460 10/28/08 8:37:55 PM10/28/08 8:37:55 PM

Captioning a Video 461

Book VI
Chapter 4

Getting Fancy
w

ith Video

 3. Click on the icon on the FLVPlayback component, and in the

Properties panel, add the instance name playMachine.

 Similarly click on the FLVPlaybackCaptioning icon and place the name

captionMachine in the instance name window in the Properties panel.

(Figure 4-8 shows the instance name in the Properties panel for the

FLVPlaybackCaptioning component being added.) Save the file.

 4. Open a new ActionScript file and save it as CaptionVid.as in the

CaptionWork folder. Add the following ActionScript and save the file

again.

package
{
 import fl.video.CaptionChangeEvent;
 import fl.video.FLVPlayback;
 import fl.video.FLVPlaybackCaptioning;
 import flash.display.Sprite;
 import flash.text.TextField;

 public class CaptionVid extends Sprite {

 private var vidNow:String = “rightOn.f4v”;
 private var captionSource:String = “mark.xml”;
 private var showCaption:TextField;

 public function CaptionVid() {
 playMachine.source = vidNow;

 captionMachine.flvPlayback = playMachine;
 captionMachine.source = captionSource;
 captionMachine.addEventListener(CaptionChangeEvent.CAPTION_CHANGE,
 getCaption);
 }

 private function getCaption(e:CaptionChangeEvent):void {
 showCaption = e.target.captionTarget;
 playMachine = e.target.flvPlayback;
 //To have the caption below the video
 //remove ‘//’ in following line
 //showCaption.y=300;
 }
 }
}

After you save all your files in the CaptionWork folder, test the movie. Figure

4-9 shows a caption appearing at the same time as the spoken version is

heard by the viewer.

36_385395-bk06ch04.indd 46136_385395-bk06ch04.indd 461 10/28/08 8:37:56 PM10/28/08 8:37:56 PM

Captioning a Video462

Figure 4-9: Caption appearing over video.

If you prefer not to have the caption appearing superimposed on the video,

you can move it by moving the showCaption object. If you change this line:

//showCaption.y=300;

to this:

showCaption.y=300;

the caption appears below the video.

36_385395-bk06ch04.indd 46236_385395-bk06ch04.indd 462 10/28/08 8:37:56 PM10/28/08 8:37:56 PM

Chapter 5: Live! From
Your Desktop!

In This Chapter
✓ Streaming media over the Web

✓ Installing and configuring Flash Media Server

✓ Creating a live viewing application

✓ Making a universal chat application

Flash CS4 and the new Adobe tools for video make recording and play-

ing video simple and practical. Even better would be sending live video.

Imagine having your own live video broadcasting station! Or what if you could

send live audio and video, and also receive it — an A/V chat! Well, using Adobe

Flash Media Server 3 and Flash CS4, you can not

only stream live video and audio, but also stream

data, recorded audio, and recorded A/V files. Hold

on to your hat: This operation is going live!

Understanding Streaming
versus Broadcasting

When video and audio and other media types

are streamed over the Web, they’re not really

broadcast in the same way that a television sta-

tion broadcasts TV programs. When you think

of a broadcast, the image of a pebble dropped in

the water may come to mind: A set of concentric

circles sends out waves to receivers.

Also, in a broadcast, it doesn’t matter whether the station has one viewer

or a million; the amount of power required to send out the broadcast is the

same.

With Flash Media Server, however, each connected receiver needs a unique

stream. So if 50 people are viewing, Flash Media Server must generate 50

separate streams. Rather than a pebble dropped in water, think of a wagon

wheel, with a spoke extending to each receiver.

37_385395-bk06ch05.indd 46337_385395-bk06ch05.indd 463 10/28/08 8:38:51 PM10/28/08 8:38:51 PM

Streaming Media with Flash Media Server464

Moreover, with Flash Media Server, each new connection requires a new

stream and added bandwidth. So the number of viewers watching your

media streams does affect the quality of the experience, because the more

viewers you have, the more connections the server has to provide.

Streaming media
What, then, is streaming media? Consider a regular Web page. No matter how

interactive a Web page is, after the page reaches your computer, the connec-

tion between your computer and the server on which that page resides is cut.

Finito! Adios! Kaput! It may not seem that way, especially with a Flash page

that contains dancing animation and interaction, but that’s the way it is.

To have real streaming — not progressive download, which looks a lot like

streaming — you need a server that keeps the connection with your com-

puter open, pushing the data toward you until you decide to cut the link.

Flash Media Server (FMS) uses open socket technology (see the following

section) to perform that task. A progressive download doesn’t use a media

server but, rather, a regular Web server. As each piece of the file downloads,

it’s displayed until the entire file is downloaded. So it’s not actual streaming.

Open socket technology

Open socket technology keeps the connection between your computer (the

client) and the Web server open so that a steady stream of data can flow

between server and client.

Using a protocol called Real Time Messaging Protocol (RTMP), Flash Media

Server allows you to connect to the server and keep an open connection as

the server streams media to you.

Streaming Media with Flash Media Server
Flash Media Server 3 is available in three flavors:

 ✓ Flash Media Interactive Server 3 ($4,500): Provides the full-range Flash

Media Server 3 functionality with an unlimited number of users.

 ✓ Flash Media Streaming Server 3 ($995): Streams video only to an unlim-

ited number of users.

 ✓ Flash Media Development Server 3 (free): Has exactly the same func-

tionality as the Flash Media Interactive Server 3 except that it only has

ten connections. It’s the perfect version of Flash Media Server 3 for

learning how to use and develop applications. (Did I mention that it’s

free?)

37_385395-bk06ch05.indd 46437_385395-bk06ch05.indd 464 10/28/08 8:38:51 PM10/28/08 8:38:51 PM

Streaming Media with Flash Media Server 465

Book VI
Chapter 5

Live! From

Your Desktop!

All the examples in this chapter use Flash Media Development Server 3,

which can handle ten consecutive connections. That feature means that you

and nine of your friends can connect to the same server at the same time.

Whichever version you use, Flash Media Server is available only for

Windows PC and Linux servers. (If you want to install Flash Media Server on

a Macintosh, check the following article: www.flashcomguru.com/index.
cfm/2007/7/12/edge-origin.)

Installing the server
Without further ado, you’re ready to download Flash Media Server and get it

installed. In this chapter, we assume that you’re installing the software on a

Windows system. If you have a Linux computer with Red Hat 4 or 5, you can

install the software on it as well; for details, check out www.adobe.com/
products/flashmediaserver.

To download and install the software, follow these steps:

 1. Download the application at www.adobe.com/products/
flashmediaserver.

 2. Decompress the software.

 To decompress it, use an unpacking program such as WinZip.

 3. Double-click FlashMediaServer3.exe, as shown in Figure 5-1.

 Note the Documentation and Sample Video folders. The

Documentation folder contains several PDF files with detailed docu-

mentation on working with the server. You can use the Sample Video

folder for testing applications, if you want.

Figure 5-1: Unpacked Flash Media Server 3 files.

37_385395-bk06ch05.indd 46537_385395-bk06ch05.indd 465 10/28/08 8:38:51 PM10/28/08 8:38:51 PM

Streaming Media with Flash Media Server466

 4. Double-click the FMS3 installer you just downloaded to start the instal-

lation process.

 The installer program leads you through a series of steps.

 5. For each step, accept the default settings and click Next.

 6. When you’re asked for a serial number, simply click the Next button.

 If you decide to purchase the software later, you can add the serial

number at that time.

 7. When you arrive at the page requesting an administration name and

password (see Figure 5-2), enter any name and password you want;

then click Next.

 Be sure to write down the name and password before you click the Next

button.

 You may want to record the username and password in Notepad and

store that file along with the other Flash Media Server files.

 Figure 5-2: Enter an administration username and password.

 8. In the Configure Flash Media Server ports page, accept or change the

default entries, and click Next.

 The page shows the recommended default ports, as shown in Figure 5-3:

1935 for Flash Media Server and 1111 for the administrative console. If

you use those values, viewers connecting to your applications are least

likely to run into connection problems. If you know that your system is

using Port 1935 for something else, however, use Port 80 or 443 instead.

37_385395-bk06ch05.indd 46637_385395-bk06ch05.indd 466 10/28/08 8:38:52 PM10/28/08 8:38:52 PM

Streaming Media with Flash Media Server 467

Book VI
Chapter 5

Live! From

Your Desktop!

 Figure 5-3: Port settings.

 If you do have an application using Port 1935 and can change it to some-

thing other than 1935, do so; then use Port 1935 for Flash Media Server.

 9. Check the summary page, which shows the settings you selected, and

click Install.

 If your installation is successful, you see a page that lists three check-

box options: View Readme.htm, Start Adobe Flash Media Server 3, and

Start Flash Media Server When the Computer Starts.

 10. Accept the default settings (noted in Step 9), and click the Finish button.

 If the server is running, it won’t seriously affect memory or processor

use unless you’re actually streaming something.

At this point, your computer is an open-socket server ready to stream media

all over the world. (If the lights dim in your neighborhood, don’t be alarmed;

it’s just the powerful server in your machine. Just kidding!)

Connecting to the server
Now that you have Flash Media Server up and running, you need to test the

connection. The easiest way is to use Adobe Flash Media Encoder 2.5 or

later. Follow these steps:

 1. Open Flash Media Encoder on the same computer where you installed

Flash Media Server.

 Book VI, Chapter 2 introduces this application, which you can download

at www.adobe.com/products/flashmediaserver/flashmedia
encoder.

37_385395-bk06ch05.indd 46737_385395-bk06ch05.indd 467 10/28/08 8:38:52 PM10/28/08 8:38:52 PM

Streaming Media with Flash Media Server468

 2. In the bottom-right pane of the encoder window, check the Stream to

Flash Media Server box and clear the Save to File box.

 You’re going to be streaming live video, so there’s no point in filling your

hard drive with video that you want just to stream out. (If you want to

stream and record at the same time, you can do so, but for now, don’t

save the video to your hard drive.)

 3. In the FMS URL text box, type rtmp://localhost/live.

 4. Leave the Backup URL text box blank.

 5. In the Stream text box, type livestream.

 Your settings should look like

the ones shown in Figure 5-4.

 6. Click the Connect button (and

hold your breath).

 If all is working well, the

Connect button changes to

Disconnect.

 If the connection to the server

can’t be made, you get an error

message (Problem with
Primary Server) in a pop-up

window. Double-check your

spelling of the URL you entered

in Step 3, and try again.

The default name for your local Internet host is localhost, but that name isn’t

necessarily the one configured into your system by whoever configured it

(including you). The IP address 127.0.0.1 is universal, however, so try enter-

ing rtmp://127.0.0.1/live if you can’t connect with the localhost URL. (Yes,

you can change the IP address as well, but that process is a little trickier.) If

you installed Flash Media Server on a remote server, use that server’s root

URL rather than localhost.

It’s easy to forget and enter http:// rather than rtmp://. All your con-

nections to Flash Media Server must use rtmp://, and connections to your

Web server must use http://.

At this point, you have a connection to the server. The next step is configur-

ing that connection.

Configuring your connection
After your connection is established, you need to check a few things so that

you can stream what you want. You can complete the following steps while

you’re connected to the server, even though normally, you would have taken

care of them before making the connection.

Figure 5-4: Stream settings.

37_385395-bk06ch05.indd 46837_385395-bk06ch05.indd 468 10/28/08 8:38:53 PM10/28/08 8:38:53 PM

Making a Live Audio/Video Receiver 469

Book VI
Chapter 5

Live! From

Your Desktop!

These steps assume that you have Flash Media Encoder up and running and

that you’ve tested your connection successfully.

To configure the connection, follow these steps:

 1. In the Encoding Options tab in the bottom-left pane of the Flash

Media Encoder window, set the Preset pull-down menu to Medium

Bandwidth (300 Kbps) – H.264.

 2. Check the Video box.

 3. Choose the correct camera from the Device pull-down menu directly

below the Video check box.

 (Actually, this menu shows the camera driver, not the camera itself.)

After you can see yourself, you know that you selected the correct

camera.

 4. Check the Audio box.

 5. Choose the correct microphone from the Device pull-down menu

directly below the Audio check box.

 You can choose a microphone in the camera or one that’s in or con-

nected to your computer.

 6. Check your computer to make sure that the audio feature in your com-

puter is on, has the correct volume settings, and is not muted.

 Audio never works well with a muted mic!

 7. Click the green Start button.

 You should see the red Stop button and the Encoding Log tab, as shown

in Figure 5-5.

 Also, in the Statistics pane in the bottom-right section of the window, you

should see continuously updated information about duration and both

current and average bit rates for video, audio, and both. In the example

shown in Figure 5-5, the current video bit rate is 220 kbps, the current

audio bit rate is 47 kbps, and the current total bit rate is 267 kbps.

Making a Live Audio/Video Receiver
Suppose that you have a TV station broadcasting media, but no one has a TV

set to receive the signal. Obviously, no one is going to see the broadcast pro-

gram. That’s what you’ve got now: a transmitting station with no receivers.

So you have to make a receiver for the live video being streamed.

Making your own live receiver really isn’t too difficult, but you have to use a

lot of ActionScript. To help you get a handle on what’s required, we start by

listing everything that you need; then we show you the actual steps to take.

37_385395-bk06ch05.indd 46937_385395-bk06ch05.indd 469 10/28/08 8:38:53 PM10/28/08 8:38:53 PM

Making a Live Audio/Video Receiver470

Figure 5-5: Streaming live video.

Making an inventory
Before you build a TV set, you have to make an inventory of the parts

required. The same concept applies to making a streaming media receiver.

Following are the parts you need to build (in ActionScript):

 ✓ Connection: You need some way to connect to Flash Media Server,

which requires a NetConnection object.

 ✓ Connection test: When the connection has been established, it causes a

NetStatus event to fire. An event handler tells you when the connection

is established.

 ✓ Stream: After a connection has been established, you need a stream to

carry the media being sent. For this task, you need a NetStream object.

 ✓ Video: So your viewers can see the stream, you need to include a Video

object.

 ✓ On/Off controls: You need controls to allow viewers to start and stop the

streamed video. A couple of Button-component instances can do the trick.

37_385395-bk06ch05.indd 47037_385395-bk06ch05.indd 470 10/28/08 8:38:53 PM10/28/08 8:38:53 PM

Making a Live Audio/Video Receiver 471

Book VI
Chapter 5

Live! From

Your Desktop!

 ✓ Tuner: To select the stream they want, viewers need a way to indicate

the desired stream. You can give them this capability with a TextInput

component.

 ✓ Stream data information: You really don’t need to see the information

associated with a live streaming video, but to see useful information

called metadata, include objects that capture any metadata sent to the

receiver.

The next several sections take you through creating the different parts of the

program. You start with an application named live that is installed automati-

cally when Flash Media Server is installed. Unlike other programs, this one is

identified by its folder name. Here’s the default location of the program:

C:\Program Files\Adobe\Flash Media Server 3\applications\live

When you attempt to launch a program by using the rtmp:// protocol, the

program automatically assumes that a reference to live is a reference to the

preceding address. When you type this line:

“rtmp://localhost/live”

the server assumes that you mean the entire path back to the root:

. . . /Flash Media Server 3/applications/live

Keep that fact in mind when you come to the part of the application where

the rtmp reference is defined (see the section “Creating the constructor

function,” later in this chapter).

Creating the receiver
In this section, you create the actual receiver for streaming media. We’ve

broken the section into several subsections to help you understand what’s

going on. Essentially, the steps mirror the bullet points in the preceding section.

The complete code listing for the following numbered steps is available for

downloading at the book’s companion Web site: www.dummies.com/go/
flashallinone.

Setting up the application
To begin setting up the application, follow these steps:

 1. Open a new ActionScript file and save it as H264Live.fla.

 2. In the Class window of the Properties panel, enter H264Live, and save

the file again.

 Optionally, you can add a backdrop to the video, as shown in Figure 5-6.

37_385395-bk06ch05.indd 47137_385395-bk06ch05.indd 471 10/28/08 8:38:54 PM10/28/08 8:38:54 PM

Making a Live Audio/Video Receiver472

 Figure 5-6: Video and controls backdrop.

 3. Drag a Button and TextInput component onto the Stage and then

delete both. Save the file.

 This action places both into the Library panel.

 4. Open another new ActionScript file, and save it as H264Live.as in the

same folder as H264Live.fla.

 5. Add the following code to the H264Live.as file to load the necessary

classes and components and to declare the class and key variables:

package
{
 import fl.controls.Button;
 import fl.controls.TextInput;
 import flash.display.Sprite;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.events.NetStatusEvent;
 import flash.events.MouseEvent;
 import flash.events.Event;
 import flash.media.Video;

 public class H264Live extends Sprite
 {

37_385395-bk06ch05.indd 47237_385395-bk06ch05.indd 472 10/28/08 8:38:54 PM10/28/08 8:38:54 PM

Making a Live Audio/Video Receiver 473

Book VI
Chapter 5

Live! From

Your Desktop!

 private var nc:NetConnection;
 private var ns:NetStream;
 private var rtmpNow:String;
 private var msg:Boolean;
 private var vid1:Video;
 private var playBtn:Button;
 private var stopBtn:Button;
 private var textInput:TextInput;
 private var metaSniffer:Object;
 private var serverSniffer:Object;

Note that all the imported namespaces and variables are among the ele-

ments listed in the section “Making an inventory,” earlier in this chapter.

The events are related to the different controls and actions generated by the

video.

Creating the constructor function
The constructor function helps you construct the core of the application.

In this case, you create the NetConnection to Flash Media Server and make

the connection by using the RTMP protocol. Notice that the function is

referencing localhost as the URL and the application live. Then it uses the

nc.connect() method to attempt to establish a connection.

 6. Add the following code to make the constructor function:

public function H264Live ()
{
 nc=new NetConnection ();
 nc.addEventListener (NetStatusEvent.NET_STATUS,checkConnect);

 rtmpNow=”rtmp://localhost/live”;
 nc.connect (rtmpNow);

 serverSniffer=new Object();
 nc.client=serverSniffer;
 serverSniffer.onBWDone=getDone;

 addMedia ();
 addUI ();

 playBtn.addEventListener (MouseEvent.CLICK,startPlay);
 stopBtn.addEventListener (MouseEvent.CLICK,stopPlay);
 }

After implementing the NetConnection in the variable nc, an event listener is

added to the instance to check on the connection status. Only when the con-

nection is verified can a NetStream be implemented.

The serverSniffer is used to respond to a server-side function in the live

application through the nc.client property. Farther on in the program,

you see another sniffer that collects information on the NetStream object.

37_385395-bk06ch05.indd 47337_385395-bk06ch05.indd 473 10/28/08 8:38:54 PM10/28/08 8:38:54 PM

Making a Live Audio/Video Receiver474

Adding the worker methods
Whenever you see a private function in a class, you can assume that it is a

method belonging to the class. These methods are used within the class to

accomplish different chores, but they cannot be accessed outside the class,

so they remain encapsulated and safe from unwanted outside influences.

The getDone function simply handles the data returned to the NetConnection.
client property. It’s really a dummy function — one that handles an event

so that it doesn’t throw an error (or a tizzy). (A dummy function has nothing

to do with the For Dummies series, just in case the lawyers are reading this

chapter!)

The real workers — the addMedia() and addUI() methods — add the

Video object, and create buttons and a text input for the control panel of the

live viewer.

 7. Add the following code to create the dummy handler and the worker

methods:

private function getDone ():void
 {
 trace(“BW eval is done”);
 }

 private function addMedia ():void
 {
 vid1=new Video(320,240);
 addChild (vid1);
 vid1.x=100;
 vid1.y=50;
 }

 private function addUI ():void
 {
 playBtn=new Button ();
 playBtn.label=”Play”;
 playBtn.x=100;
 playBtn.y=300;
 playBtn.width=60;
 addChild (playBtn);

 stopBtn=new Button ();
 stopBtn.label=”Stop Playing”;
 stopBtn.width=80;
 stopBtn.x=playBtn.x+180;
 stopBtn.y=playBtn.y;
 addChild (stopBtn);

 textInput=new TextInput ();
 textInput.x=playBtn.x;
 textInput.y=playBtn.y+30;

37_385395-bk06ch05.indd 47437_385395-bk06ch05.indd 474 10/28/08 8:38:54 PM10/28/08 8:38:54 PM

Making a Live Audio/Video Receiver 475

Book VI
Chapter 5

Live! From

Your Desktop!

 textInput.text=”livestream”;
 addChild (textInput);
 }

Catching the connection and metadata
One of the most important methods in this application is the one that estab-

lishes that a connection exists between the client (any computer attempt-

ing to connect) and the server. After the connection has been confirmed,

the program can create a new NetStream instance. When you’re creating a

NetStream object, the construction parameter is a connected NetConnection

instance. Thus, the statement

ns=new NetStream(nc);

needs to have a verified NetConnection. As a result, the checkConnect()

method checks that the NetStatusEvent is NetConnection.Connect.
Success. If it is, the method goes ahead and creates a NetStream instance, ns.

The other key function in the next segment is a method to read the metadata.

First, a new object is created in the checkConnect() method to read the

metadata in the NetStream. Then the handler, getMeta(), uses a for..in

loop to pull out all the information.

 8. Enter the following code to check the NetConnection, create a

NetStream object, and catch the metadata from the NetStream:

 private function checkConnect (e:NetStatusEvent):void
 {
 msg=(e.info.code==”NetConnection.Connect.Success”);

 if (msg)
 {
 ns=new NetStream(nc);
 metaSniffer=new Object ();
 ns.client=metaSniffer;
 metaSniffer.onMetaData=getMeta;
 }
 }

 private function getMeta (mdata:Object):void
 {
 for (var prop:Object in mdata)
 {
 trace (prop+” = “+mdata[prop]);
 }
}

Adding the player controls
The last step is adding actions for the buttons. The start button fires and

sets in motion a process that begins streaming the live video from Flash

Media Encoder. Then it attaches the NetStream instance to the Video object

and plays the live stream, getting the name of the stream from the TextInput

component.

37_385395-bk06ch05.indd 47537_385395-bk06ch05.indd 475 10/28/08 8:38:54 PM10/28/08 8:38:54 PM

Making a Live Audio/Video Receiver476

 9. Enter the following code and then save the ActionScript file:

 private function startPlay (e:Event):void
 {
 if (ns)
 {
 playBtn.label=”Playing”;
 vid1.attachNetStream (ns);
 ns.play (textInput.text);
 }
 }

 private function stopPlay (e:Event):void
 {
 playBtn.label=”Play”;
 ns.play (false);
 ns.close ();
 }
 }
}

Testing the player
When you finish and have everything saved, go ahead and test the applica-

tion with Flash Media Encoder running. You should have the same picture in

the H264Live application and in the video in Flash Media Encoder. Figure 5-7

shows that the material you see in the encoder window is the same as the

material being streamed. (Compare Figure 5-5 and Figure 5-7.)

Figure 5-7: Streaming video from a live stream.

Seeing yourself on the same computer as the one you’re broadcasting on

isn’t too exciting, but this capability shows that you can view live streams.

In the example shown in Figure 5-7, using a local area network (LAN), the

37_385395-bk06ch05.indd 47637_385395-bk06ch05.indd 476 10/28/08 8:38:54 PM10/28/08 8:38:54 PM

Creating a Universal Chat Application 477

Book VI
Chapter 5

Live! From

Your Desktop!

audio/video stream was transmitted from a Windows Vista computer and

displayed on a Macintosh computer. As long as your computer can run

Flash, you can view live streams generated with Flash Media Encoder or

another Flash program that streams audio and video.

Furthermore, if you test this program in Flash (press Ctrl+Enter in Windows

or Ô+Return on the Mac), you see the metadata generated by the stream. We

saw the following chunk of code in our test of the example in this section:

BW eval is done
author =
title =
audiodatarate = 48
avcprofile = 77
videocodecid = 7
audiodevice = Microphone Array (SigmaTel High)
audiocodecid = 2
keywords =
width = 320
videodatarate = 200
copyright =
audiochannels = 1
videodevice = Logitech QuickCam Orbit/Sphere
presetname = Medium Bandwidth (300 Kbps) - H.264
audiosamplerate = 22050
rating =
audioinputvolume = 75
creationdate = Thu Jun 05 08:50:29 2008
framerate = 20
description =
height = 240
avclevel = 21

Because you can capture the metadata values, you can use them to make

a more flexible receiver. Suppose that the video’s width and height are

unknown. Using the values in the stream’s metadata, you could reconfigure

the receiver dynamically to match the video’s dimensions.

Creating a Universal Chat Application
In the preceding section, you see that you can receive streamed audio and

video on either a Mac or Windows computer. In this section, you create a

chat application that streams out and in. That way, you can have audio and

visual communication with anyone in the world who has an Internet connec-

tion, a microphone, and a Webcam.

This application assumes that you have been following along with the exam-

ples in this chapter using NetConnection, NetStream, and the other video-

related ActionScript.

37_385395-bk06ch05.indd 47737_385395-bk06ch05.indd 477 10/28/08 8:38:55 PM10/28/08 8:38:55 PM

Creating a Universal Chat Application478

Sending video and audio
In an audio/visual context, you have two devices that can send something

from your computer: a camera and a microphone. Fortunately, Flash has

Camera and Microphone classes that you can use to send sound and images

over a NetStream. All you need to know is how to connect your camera and

microphone to a stream so that when someone plays the stream, they see

and hear your media.

Creating the camera object
When you create an instance of a class, you get to use all the methods of

that class. The Camera class is no different, but the way to instantiate a

camera object is a little different:

var myCamera:Camera = Camera.getCamera();

When you have your camera object (myCamera), you need to connect it

to a stream. To do that, use a NetStream object, which we’ll call ns for this

example:

ns.attachCamera(myCamera);

You have one more step to complete before you publish your video:

ns.publish(“myStream”);

If you use the camera’s default settings, that’s all you have to do. With your

camera attached to the NetStream, whatever the NetStream instance pub-

lishes is going to be what your camera is pointing to.

Changing basic camera settings
Even if you use the default camera settings, you should know how to set

three basic options: mode, quality, and keyframe interval.

Mode
The camera has three mode parameters: width, height, and fps (frames

per second). You want to match the mode settings with the Video object’s

width and height:

myCamera.setMode(width,height,fps);

Generally, fps is 15 or 30, but that value can be more or less, depending on

your camera. The following code shows a small format at 15 fps:

myCamera.setMode(160,120,15);

37_385395-bk06ch05.indd 47837_385395-bk06ch05.indd 478 10/28/08 8:38:55 PM10/28/08 8:38:55 PM

Creating a Universal Chat Application 479

Book VI
Chapter 5

Live! From

Your Desktop!

Smaller formats use less bandwidth but provide smaller images. Likewise,

lower fps reduces bandwidth, but the video quality is lower.

Quality
The camera quality is set in relationship to the bandwidth you want to

allocate. Values range from 1 to 100. A quality setting of 0 assumes that

the camera will generate the best quality for a set amount of bandwidth.

Likewise, a bandwidth setting of 0 assumes that the program will use enough

bandwidth to bring the quality level to the set amount. The following exam-

ple allocates enough bandwidth for a quality setting of 80:

myCamera.setQuality(0,80);

Likewise, this setting:

myCamera.setQuality(50000/8,0);

generates the best picture it can for 500 Kbps.

Although bandwidth is technically measured in bits, Flash sets them in bytes

so that by dividing the number of bytes by 8, you end up with bits. When

you see the abbreviation Kbps, it means kilobytes per second; kbps refers to

kilobits per second. If you’re really smart, you know that a kilobyte consists

of 1,024 bits; when measuring bandwidth, however, a kilobyte consists of

1,000 bits. That’s because bandwidth does not use real bits and bytes but,

rather, a measurement system based on marketing using units that people

understand: kilobits per second.

Keyframe interval
The final consideration is the interval between keyframes. The closer

together keyframes are, the better the quality is. So when you set the key-

frame intervals, closer keyframes (lower values) mean better quality, but at

the expense of higher bandwidth. Conversely, the higher the interval, the

less bandwidth is used. The following example sets the keyframe interval to

a value of 15:

myCamera.setKeyFrameInterval(15);

Setting the interval between keyframes may be counterintuitive: The lower
the value, the higher the quality.

Making the server-side application
Before you get started with your chat application, you need to set up the server-

side application: a single folder named uchat. All you have to do is create the

folder and place it in the Flash Media Server root. The typical path is

C:\Program Files\Adobe\Flash Media Server 3\applications\

37_385395-bk06ch05.indd 47937_385395-bk06ch05.indd 479 10/28/08 8:38:55 PM10/28/08 8:38:55 PM

Creating a Universal Chat Application480

Place the uchat folder in the applications folder on your server. The full

path is

C:\Program Files\Adobe\Flash Media Server 3\
applications\live\uchat

You don’t have to place any files in the uchat folder. (But you can tell your

gullible friends that you created a server-side application!)

Creating the chat application
To build your chat application, follow these steps:

 1. Open a new ActionScript file.

 2. In the Class window of the Properties panel, type UniversalChat, and

save the file as UniversalChat.fla.

 3. Drag a TextInput and a Button component into the Library panel.

 4. Add a backdrop for the video and controls, as shown in Figure 5-8,

and save the file.

Figure 5-8: Adding user-interface components and a backdrop.

37_385395-bk06ch05.indd 48037_385395-bk06ch05.indd 480 10/28/08 8:38:55 PM10/28/08 8:38:55 PM

Creating a Universal Chat Application 481

Book VI
Chapter 5

Live! From

Your Desktop!

 5. Open a new ActionScript file, and save it as UniversalChat.as in the

same folder as the UniversalChat.fla file.

 6. Add the following program to the UniversalChat.as file, and save

the file again:

package
{
 import flash.display.Sprite;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.events.MouseEvent;
 import flash.events.NetStatusEvent;
 import flash.media.Camera;
 import flash.media.Microphone;
 import flash.media.Video;
 import fl.controls.Button;
 import fl.controls.TextInput;
 import flash.display.Graphics;
 import flash.display.Shape;

 public class UniversalChat extends Sprite
 {
 private var nc:NetConnection;
 private var nsIn:NetStream;
 private var nsOut:NetStream;
 private var vidLocal:Video;
 private var vidRemote:Video;
 private var startStreamOut:Button;
 private var startStreamIn:Button;
 private var streamIn:TextInput;
 private var streamOut:TextInput;
 private var cam:Camera;
 private var mic:Microphone;
 private var rtmpNow:String;
 private var connectShape:Shape;

 public function UniversalChat()
 {
 nc=new NetConnection ;
 rtmpNow=”rtmp://your.server.com/uchat”;
 nc.connect(rtmpNow);
 nc.addEventListener(NetStatusEvent.NET_STATUS,checkConnect);
 vidLocal=new Video(160,120);
 vidRemote=new Video(160,120);
 //Camera
 cam=Camera.getCamera();
 cam.setMode(160,120,15);
 cam.setQuality(0,80);
 cam.setKeyFrameInterval(15);
 //Microphone
 mic=Microphone.getMicrophone();
 mic.setUseEchoSuppression(true);
 mic.setSilenceLevel(20,-1);
 mic.rate=11;
 //Video
 vidLocal=new Video(160,120);
 vidLocal.attachCamera(cam);
 vidLocal.x=64,vidLocal.y=111;
 addChild(vidLocal);
 vidRemote=new Video(160,120);
 vidRemote.x=323,vidRemote.y=111;

37_385395-bk06ch05.indd 48137_385395-bk06ch05.indd 481 10/28/08 8:38:56 PM10/28/08 8:38:56 PM

Creating a Universal Chat Application482

 addChild(vidRemote);
 //Input text components
 streamOut=new TextInput ;
 streamOut.x=96,streamOut.y=304;
 addChild(streamOut);
 streamIn=new TextInput ;
 streamIn.x=353,streamIn.y=304;
 addChild(streamIn);
 //Button components
 startStreamOut=new Button ;
 startStreamOut.label=”Stream Out”;
 startStreamOut.x=96,startStreamOut.y=272;
 startStreamOut.addEventListener(MouseEvent.CLICK,goOut);
 addChild(startStreamOut);
 startStreamIn=new Button ;
 startStreamIn.label=”Stream In”;
 startStreamIn.x=353,startStreamIn.y=272;
 addChild(startStreamIn);
 startStreamIn.addEventListener(MouseEvent.CLICK,comeIn);
 //Red light
 drawLight(0x8A0917);
 }
 private function drawLight(bg:uint):void
 {
 connectShape = new Shape();
 connectShape.graphics.beginFill(bg);
 connectShape.graphics.lineStyle(2, 0xffffff);
 connectShape.graphics.drawCircle(0, 0, 8);
 connectShape.graphics.endFill();
 addChild(connectShape);
 connectShape.x=(550/2),connectShape.y=100;
 }
 private function checkConnect(e:NetStatusEvent)
 {
 if (e.info.code==”NetConnection.Connect.Success”)
 {
 nsOut=new NetStream(nc);
 nsIn=new NetStream(nc);
 //Green light
 drawLight(0x595241);
 }
 }
 private function goOut(e:MouseEvent):void
 {
 if (streamOut.text!=””)
 {
 nsOut.attachAudio(mic);
 nsOut.attachCamera(cam);
 nsOut.publish(streamOut.text);
 }
 else
 {
 streamOut.text=”<add stream name>”;
 }
 }
 private function comeIn(e:MouseEvent):void
 {
 if (streamIn.text!=””)
 {

37_385395-bk06ch05.indd 48237_385395-bk06ch05.indd 482 10/28/08 8:38:56 PM10/28/08 8:38:56 PM

Creating a Universal Chat Application 483

Book VI
Chapter 5

Live! From

Your Desktop!

 nsIn.play(streamIn.text);
 vidRemote.attachNetStream(nsIn);
 }
 else
 {
 streamIn.text=”<add stream name>”;
 }
 }
 }
}

If you have a dedicated IP address on your computer, you can use its IP

for the URL. Otherwise, use the root address where you have Flash Media

Server.

Testing the application
Although it may look fairly involved, the program is quite simple. In one

window (the left), you see yourself. Add your name for the stream that

you want to send out — right below your picture — and click the Stream

Out button. In the right window, put the name of the stream that the other

person is using, and click the Stream In button.

Figure 5-9 shows a chat in progress. The other person uses the name guest,

so he typed guest and clicked Stream Out and then typed bill and clicked

Stream In. The application crisscrosses the streams so that the information

that one person sends out is the information that the other streams in.

Figure 5-9: Two-way audio/video chat.

37_385395-bk06ch05.indd 48337_385395-bk06ch05.indd 483 10/28/08 8:38:56 PM10/28/08 8:38:56 PM

Creating a Universal Chat Application484

None of the controls is shown in the FLA file, but they appear when the

application is tested. That’s because the controls were added by the code.

If the video doesn’t correspond with the backdrops, scoot the backdrops

around until they do. Alternatively, change the x and y values of the video

positions to align with your backdrops.

37_385395-bk06ch05.indd 48437_385395-bk06ch05.indd 484 10/28/08 8:38:56 PM10/28/08 8:38:56 PM

Chapter 6: Shooting a Video That
Looks Good on the Web

In This Chapter
✓ Mastering your camera controls

✓ Shooting with a tripod

✓ Composing a scene

✓ Creating a video

✓ Editing digital video

Digital video and camcorders are technological marvels. You grab your

handy camcorder, point and shoot, and then put your video on the

Web. Right? Wrong. If you want to put something

that looks like the video from your 5-year-old’s

birthday party that was captured on your Uncle

Frank’s and Aunt Mollie’s video camera that they

forgot to shut off half the time and recorded

several minutes of Uncle Frank’s wingtips and

Aunt Mollie’s flip-flops, have at it. We think that

you want to post something better on the Web,

though. When you create a video for the Web, you

must master your camera and think like a direc-

tor. Web surfers are a savvy lot. When it comes

to video, they’ve seen the good, the bad, and the

ugly. If they don’t like something, they click the

Back button or enter another URL faster than it

took to type this sentence. In this chapter, we

offer some common sense advice for creating

Web-worthy video.

Getting It Right in the Camera
When you shoot digital video and leave the camera to its own devices, you

can end up with some gnarly-looking video. Have you ever seen a video that

goes a little nuts when another object moves into the scene? The camera

is switching focus to the object that just entered the scene. For a second

or two, the camera may become confused and let the entire scene go out

of focus. Another common issue is when you’re panning a subject that’s

moving through different lighting conditions. If a bright light appears in back

38_385395-bk06ch06.indd 48538_385395-bk06ch06.indd 485 10/28/08 9:33:25 PM10/28/08 9:33:25 PM

Getting It Right in the Camera486

of your subject, the camera adjusts its exposure and your subject is backlit,

and you then see a silhouette of the subject and no details. That’s because

you let the camera automatically expose the scene. When you’re shooting a

video that needs to be pixel perfect, here are several things you should do:

 ✓ If you’re recording a stationary object, such as a speaker in a crowded

hall, switch the camera to manual focus and focus on your subject.

This strategy prevents the video from going out of focus when someone

in the audience raises her hand and the camera thinks it’s time to switch

focus.

 ✓ If you’re recording a speaker that will be moving, move far enough

away from the speaker to be able to switch to manual focus, focus on

infinity, and have the speaker remain in focus. This strategy keeps the

camera focused on the speaker and prevents it from going wonky when-

ever somebody from the audience stands up to leave.

 If you’re recording an event, arrive early so that you can get the lay of

the land. Ask the event coordinator to turn the house lights to the same

level as when the speaker takes the rostrum. Look for any distracting

light sources, such as a window behind the speaker. If curtains are in

front of the window, draw them so that the backlight isn’t an issue.

 ✓ Don’t rely on battery power unless it’s absolutely necessary. Recently,

we recorded a speaker at a conference. We arrived early and used one of

the conference center’s electrical outlets to power our equipment, but the

speaker preceding the client we were hired to record rambled on and on.

We kept the camera in Standby mode so that we would be ready to record

our client when she finally appeared. If we had relied on battery power, we

would have had to change batteries in the middle of our client’s speech,

which would have meant losing several seconds of video — not a good

thing.

 ✓ Compose the scene by using your camera’s LCD monitor. The monitor

gives you a better idea of what the scene looks like, and you can pan

with your subject. This strategy is also helpful if you’re using a tripod.

Bending over to compose your scene in the camera viewfinder grows

tiring after a while. If you’re relying solely on battery power, note that

your camera LCD monitor requires extra power.

 ✓ If you must rely on battery power, carry a spare with you. When you’re

recording in cold conditions, battery life is shorter. Keep the spare in

your pocket to keep it warm.

 ✓ Manually set the exposure for the scene. Most good camcorders have

an option to manually set the exposure. Some cameras have a built-in

spot meter that enables you to set the exposure for the spot you’re

recording. If you’re panning the camera from shadow to bright light and

back again, set the exposure to faithfully record the average brightness

of the scene. The brightest areas will be slightly overexposed, and the

shadows will be a little dark, but the resulting video looks more natu-

ral. If the camera is set to auto-expose the scene, the shadow areas will

38_385395-bk06ch06.indd 48638_385395-bk06ch06.indd 486 10/28/08 9:33:25 PM10/28/08 9:33:25 PM

Panning, Zooming, and Other Delights 487

Book VI
Chapter 6

Shooting a Video
That Looks Good

on the W
eb

be brighter than they should and the bright areas of the scene will be

darker than they should.

 ✓ If your camcorder has the option to manually set the volume, use it.

Cameras with this option have provisions for monitoring the sound

input. Even the least expensive camcorders generally have the option

for you to monitor the sound through a set of headphones.

 ✓ When you record a scene, start recording several seconds before the

action takes place. Having a couple of seconds of lead-in time is useful

when you’re editing the scene. Keep recording for a couple of seconds

after the action has stopped; giving yourself some lead-out time is also

useful when editing. If the resulting video uses other scenes, the lead-in

and lead-out periods are useful for providing a transition from one scene

to the next.

 ✓ If your camera has the provision to accept sound recording from an

external microphone, use it. If you’re recording a talking head for a

Web site, clip a lavalier microphone to her jacket, plug the mic into your

camera, and manually set the sound volume.

 ✓ If your camera has a hot shoe that accepts a microphone, don’t use it.

A sensitive microphone picks up the mechanical noise of your camcord-

er’s motor. If possible, run a cable from your camcorder to the micro-

phone, and place the microphone as close as possible to the sound

source.

 ✓ If sound fidelity is important, capture the sound from the event mixing

board, if it’s available. You can also use a portable recording device to

capture the audio and then synchronize it with the video in your video-

editing application.

You’re a Flash designer, not a videographer. But you have taken the plunge

and bought a decent camcorder. Rather than let it sit in the closet and col-

lect dust until your services as a videographer are required, take out the

camera occasionally and shoot some video with it. Experiment with the dif-

ferent controls so that you get to know them well. Then whenever a client

asks you if you can record the video for the Flash project you’re creating,

you can smile and answer “Yes” with confidence.

Panning, Zooming, and Other Delights
When you record a moving subject, you have to move the camcorder to

keep your subject in the frame. You may also choose to zoom in and out on

your subject. If you’re not familiar with panning and zooming, the resulting

video will be amateurish. The following sections offer some tips for panning

and zooming.

38_385395-bk06ch06.indd 48738_385395-bk06ch06.indd 487 10/28/08 9:33:25 PM10/28/08 9:33:25 PM

Panning, Zooming, and Other Delights488

To zoom or not to zoom?
I’m sure you watched the vacation video where the camera operator zoomed

in and out so much that you got a headache. And he zoomed so fast that

you felt slightly sick. When you’re recording an event, use the camera zoom

feature judiciously. If your subject is a speaker stressing an important point,

it may pay to zoom in to add emphasis to it. When you zoom, zoom slowly.

If your camera uses a rocker switch to zoom in and out, experiment with the

control to know its limits. When you zoom in and out, it also pays to manu-

ally focus your camera on your subject if it’s stationary.

Panning smoothly and at the right speed
Panning a camcorder is an art. When you pan to follow a subject in motion,

you need to pan at the same speed as your subject. If you’re recording an

event such as an automobile race or a marathon, get to the event early and

record the warm-up or practice sessions. You get a feel for the event and

know how your subjects move. When you record the event, you can then

pan smoothly and capture your subject in motion.

If you’re recording video of a building or landscape, you also pan to show

the entire scene to your audience. If you pan too slowly, your audience will

fall asleep. If you pan too quickly, your audience will click the Stop button

and look at something else. When you pan to capture a beautiful scene,

remember the National Geographic videos you’ve seen. The camera was

level, and the operator panned just fast enough to keep your interest but

slowly enough for you to see all the subtle details. When you record video of

a beautiful place, you can easily get caught up in the moment. Take a deep

breath, relax, and then record your video.

When you pan, plant your feet slightly apart. Cradle the camera with both

hands. Your right hand should be positioned so that you can reach the

Record button and zoom control easily. Move your elbows close to your

chest. This gives you a stable platform. Pivot from your midsection to aim

the camera at the point where your subject will enter your field of view.

When the subject arrives, press the Record button and pivot to keep the

subject within the viewfinder. Make sure that the camera is level at all

times; otherwise, it looks like your subject is moving up- or downhill. Follow

through after you push the Record button to stop recording. If you don’t,

your subject will be out of synch during the last second or two of your clip.

Remember to record a couple of seconds before and after for a lead-in and

lead-out.

Using a tripod
If you’re recording a long event, hand-holding the camera wears you out. The

resulting video looks like it was shot by an amateur. When you’re record-

ing a long event, such as a speech or a conference, a tripod is just what the

doctor ordered. When you shoot video with a tripod, the camera is stable at

38_385395-bk06ch06.indd 48838_385395-bk06ch06.indd 488 10/28/08 9:33:25 PM10/28/08 9:33:25 PM

Composing a Scene 489

Book VI
Chapter 6

Shooting a Video
That Looks Good

on the W
eb

all times. You use the controls to pan the camera with

your subject (see Figure 6-1). If you own a tripod, get

used to using it with your camcorder. Practice using

your camcorder while it’s mounted on a tripod. Each

tripod is different, but they all have similar controls:

 ✓ A spirit level (bubble level) in the base where

the head connects: Lets you level the legs on any

surface

 ✓ A level in the head: Enables you to level the

camera with the ground

 ✓ Retractable spikes in each leg: Used to plant the

tripod when you’re using it on surfaces such as

dirt or grass

 ✓ A fluid head (on tripods designed for video):

Enables you to pan smoothly

If you don’t own a tripod, you can probably rent one

from a camera store.

Composing a Scene
When you create video, you need to capture the

attention and imagination of your viewing audience.

Therefore you must compose the scene in a manner

that creates interesting video while drawing attention to your subject. When

you capture video of a person and wonder where the person should be in

the frame, the answer “dead center” is dead wrong. Watch your local news

and you’ll notice that the newscaster is to one side of the frame. This place-

ment not only creates visual interest but also provides room to display text

and other objects. We’re sure that you’ve seen a small version of a video

playing in another video.

If you capture video of a beautiful landscape, lead the viewer into the scene.

Imagine nine squares in your viewfinder divided by two equally spaced hori-

zontal lines and two equally spaced vertical lines. The area where the lines

intersect is a point of interest. If you can compose your scene in such a way

that your main subject intersects a point of interest, you have a more interest-

ing video as a result. This strategy is known as the rule of thirds. We know what

you’re thinking: Video is motion. However, if you start and end a scene with a

subject intersecting a point of interest, you create a more compelling video.

Placing the horizon is also important. If you place the horizon in the middle

of your scene, you end up with a boring video. However, if you place the

horizon line according to the rule of thirds, you create a more interesting

video. If the sky is predominant in the scene, place the horizon line in the

Figure 6-1: Use a tripod to
keep your video camera
stable.

38_385395-bk06ch06.indd 48938_385395-bk06ch06.indd 489 10/28/08 9:33:25 PM10/28/08 9:33:25 PM

Lights, Camera, Action!490

lower third of the image. If the main subject of interest is the ocean, for

example, place the horizon line on the upper third of the image.

Another factor to consider is your point of view. Do you place the camera

above and looking down at your subject, level with your subject, or below

and looking up at your subject? If you place the camera below the subject,

the subject looks taller than she really is; place the camera above the sub-

ject and she appears small and meek.

When you’re recording a person, how do you frame him? Do you shoot his

whole body from head to toe? Do you shoot his chest and head, or do you

zoom in close and crop off the top of his head — also known as an extreme
close-up. Your choice depends on what your subject is doing.

Lights, Camera, Action!
If you’re creating a video for the Web, you have to grab the bull by the horns

and be in charge. Whether you’re recording a talking head for a Web page

or a speaker at a conference, the only way you get decent results is to be in

charge. The following sections offer some suggestions for being in charge

when you’re creating a video production.

Being a director
When you’re capturing video of a person or an event, you have a good idea

what you want the result to look like. You also have a good idea of what limita-

tions your equipment imposes when recording a video. Therefore, you have to

be somewhat of a director. If you’re recording a talking head, you have to tell

your subject where to look. Many subjects look at the video operator rather

than at the camera lens. You may have to pose the subject as well.

If you’re a man working with a woman, always ask for permission before

touching her.

If you’re recording a scripted commercial for the Web, you have to tell your

subject the point from which she enters the scene and where she has to

stop, for example. You can place a piece of tape on the floor where you want

your subject to stop. You can also use hand signals. If you’re working with

people who haven’t been in front of a camera, you have to do a bit of hand-

holding and prepare yourself for several takes.

If you’re recording a speaker at a conference and the speaker wants you to

record the question-and-answer period, tell the speaker to repeat the ques-

tions before answering them. This strategy ensures that the viewers of your

video hear the question rather than the mumbles of the audience member.

38_385395-bk06ch06.indd 49038_385395-bk06ch06.indd 490 10/28/08 9:33:25 PM10/28/08 9:33:25 PM

Editing DV for the Web 491

Book VI
Chapter 6

Shooting a Video
That Looks Good

on the W
eb

Telling a story
When you capture a video of an event, you should tell a story. Your story

should have a beginning, a middle, and an end. If you’re creating a video of

a speaker at a conference, make sure that you record the introduction (the

beginning), the entire speech (the middle), and the audience applause (the

end). If you’re capturing video of a sporting event, record the athletes pre-

paring to do battle, the actual event, and the awards ceremony.

Conducting an interview
When you conduct an interview and capture the video of it, you play the

role of the news reporter. However, you still have to consider the limits of

your equipment. Set your camera on a tripod so that you don’t have to be a

videographer and an interviewer at the same time. Push the Record button,

wait a few seconds, and start the interview.

When you interview a person, send him a list of the questions ahead of time.

Your subject then has a chance to rehearse his answers. Never surprise your

subject unless he is a political person who practices what he preaches — most

of the time. When you set up your equipment for the interview, position

the sound recording equipment so that you get good audio of your subject.

If you’re using an on-camera microphone, manually adjust the volume to

acquire a clean recording of your subject. Have your subject repeat the

question after you ask it and then pause slightly before answering. When you

edit the video, you can re-record your audio of the question and cut out the

video of your subject repeating the question.

When you’re conducting an interview, don’t worry about long pauses; you can

edit them out. If you’re interviewing a subject that may provide short, one-line

answers, have some fallback questions that aren’t on the list you supplied to

your interviewee. Or, you can always ask “How do you mean that? or “Why is

that important to you?” or a similar question. Stay on your toes.

Editing DV for the Web
If you already read the other chapters of this minibook, you know that Flash

has some powerful tools for encoding video. But Flash has limited tools for

editing video. Therefore, you need a video-editing application to convert

your raw footage into a finished production. If you don’t do a lot of video

work, you may hesitate to invest in one of the applications mentioned in

Book VI, Chapter 2. The good news is that you don’t need to. If you own a

PC, you can use Windows Movie Maker to edit your video files. If you own an

Apple computer, you can use iMovie to edit your video.

38_385395-bk06ch06.indd 49138_385395-bk06ch06.indd 491 10/28/08 9:33:26 PM10/28/08 9:33:26 PM

Editing DV for the Web492

The cutting-room floor
After you capture video, it’s time to start editing. This process is the same

one that takes place in the revered cutting-room floor in Hollywood produc-

tion rooms, where you separate the wheat from the chaff. If you’re in control

of the entire process, be ruthless in your editing. Get rid of the footage where

the speaker slurped when she gulped her drink or crashed the microphone on

the podium. You should also delete the sections where you forgot to push the

Record button when you finished recording a scene and can hear several sec-

onds of your shuffling feet as you moved to the next point of interest.

Video editing applications give you a tool to split video clips and remove

unwanted segments. Depending on the sophistication of your application, you

may also have tools and menu commands to color-correct video, add contrast,

and create special effects, for example. Figure 6-2 shows a video of a speaker

being edited in Sony Vegas. Sony Vegas is a non-linear video editing application

used by professional and advanced amateur videographers.

Figure 6-2: Editing a video in Sony Vegas.

38_385395-bk06ch06.indd 49238_385395-bk06ch06.indd 492 10/28/08 9:33:26 PM10/28/08 9:33:26 PM

Editing DV for the Web 493

Book VI
Chapter 6

Shooting a Video
That Looks Good

on the W
eb

Sony also makes a consumer version of the application, which is known as

Vegas Movie Studio. For more information on the Vegas family of video editing

applications, visit www.sonycreativesoftware.com/products/vegas
family.asp.

Transitions, transitions
When one scene ends and another begins, what do you use to tell the viewer

that something new is happening? You add a transition between scenes.

Transitions can cause problems when compressed. The video transition

may look squeaky clean on your monitor when you’re editing the video.

However, when you use Adobe Media Encoder to compress the edited

video for the Web and then you choose a low data rate, the transition looks

bad. Therefore, whenever you’re editing video for the Web, don’t use the

extravagant video transitions that break the scene into a thousand pieces

and reassemble it in the next scene. Use a simple transition that pushes one

scene into the next. You’re dealing with straight lines rather than pixel magic

wherever you see part of one scene and part of the next. The straight line of

a transition that pushes a scene in from top to bottom or from left to right

renders correctly even when the video is heavily compressed for the Web.

When in doubt, the standard straight cut from one scene to another also

works well.

Beginning and ending credits
If you create a video for the Web, encode it as an FLV Flash video file, and

park it on the Web, your viewers may understand what it’s for. Then again,

they may not. Here’s where beginning and ending credits play a role. You

use beginning credits to tell your viewers what the video is about and, if

applicable, who the players are. You use ending credits to give credit where

credit is due; for example, by listing the name of the videographer, the name

of the editor, and the name of the person who made the Flash video. If that’s

you, list your name next to each role in the ending credits.

Hollywood goes all out when creating starting and ending credits for a

movie. You can create some cool beginning and ending credits in most video

editing applications. However, when compressed heavily for the Web, the

cool credit ends up looking like pixelated junk. When you create beginning

and ending credits for a Web video, refrain from using rolling or scrolling

credits. Use straight text and display it on-screen for as many seconds as

needed, and then create another text credit for the other information you

want to display at the beginning or end of your production. Figure 6-3 shows

the final frame of a credit for a Web video.

38_385395-bk06ch06.indd 49338_385395-bk06ch06.indd 493 10/28/08 9:33:26 PM10/28/08 9:33:26 PM

Editing DV for the Web494

Figure 6-3: Give credit where credit is due.

Rendering for the Web
After you go to all the trouble of recording, capturing, and then editing

video, you may think that you have to use some superduper technique for

rendering a video for the Web. This belief would be correct if you didn’t

have Adobe Media Encoder in your hip pocket. Video created for the Web is

generally short. Therefore, when you render it from your video editing appli-

cation, render it using the highest-quality settings available. (When Doug

renders a video for his podcast, he renders it as an uncompressed AVI file.)

If you compress a file when you render it from your video editing applica-

tion and then expect it to be squeaky clean when it pops out of Adobe Media

Encoder, you’re sadly mistaken. As good as the Adobe Media Encoder is, the

principle of garbage in, garbage out still applies.

38_385395-bk06ch06.indd 49438_385395-bk06ch06.indd 494 10/28/08 9:33:26 PM10/28/08 9:33:26 PM

Book VII
Getting Interactive

39_385395-pt07.indd 49539_385395-pt07.indd 495 10/28/08 9:34:15 PM10/28/08 9:34:15 PM

Users interact with Web sites by using the

tools the Flash designer and developer

make available to them. Starting with buttons,

Book VII guides you through the different compo-

nents that make up a user interface (UI). You find

out how to dynamically place information into the

components so that the users have the feeling of

interacting with a site that wants nothing more

than to serve their needs.

Book VII brings together all the UI tools, from

buttons to components, and the ActionScript 3.0

to drive them. You discover how to add style to

components and make the components do exactly

what you want. You find out, as an added attrac-

tion, how to use AIR with Flash so that all the

interaction that can be done over the Web is

possible on the desktop.

39_385395-pt07.indd 49639_385395-pt07.indd 496 10/28/08 9:34:16 PM10/28/08 9:34:16 PM

Chapter 1: Adding Buttons
to a Flash Project

In This Chapter
✓ Creating buttons

✓ Creating animated buttons

✓ Using the Button Library

✓ Bringing buttons to life with ActionScript

Buttons. You click them and something happens. The Web is full of but-

tons that link to all manner of interesting content. You can create but-

tons in Flash too. You can create buttons that do interesting things, buttons

that do stuff but aren’t seen, and buttons that move when you pause the

cursor over them. You can create interesting buttons in a flash in

Flash. But the buttons don’t do a darn thing except display

different graphics until you add ActionScript to them.

In this chapter, we show you how to create a button,

use the button library, and make a button functional

with ActionScript.

Creating Buttons
Buttons have timelines, and they also have

states. When you create a button, you work with

a four-frame timeline — one frame for each state.

You can create a simple button with one state or a

cool button with four states. When you put a graphic

in a state, something different happens in each one,

depending on user input. The states are New York, New —

just kidding. This list describes what the graphic in each state’s

frame does:

 ✓ Up: What the user sees when the frame on which the button resides is

first displayed.

 ✓ Over: What a user sees when the cursor pauses over a button.

 ✓ Down: What a user sees when clicking the button.

40_385395-bk07ch01.indd 49740_385395-bk07ch01.indd 497 10/28/08 8:41:02 PM10/28/08 8:41:02 PM

Creating Buttons498

 ✓ Hit: Not seen by the viewer, but it defines the target area for the button.

Using a graphic for this state’s frame is optional, but is handy when you

have a small button or a button with text only.

When you’re creating a project with lots of buttons, put them on their own

layer. After creating the layer, rename it Buttons so that you can identify it.

Remember not to put any other graphics on the layer. When all of your but-

tons are on a single layer, you can lock the other layers to make editing easier.

Creating a multistate button
A button is a symbol that resides in the document library. You create

instances of the button as needed on the Stage. When you create a button,

you can either create a sedate-looking, functional button or pull out all

the stops and create an all-singing, all-dancing button. To create a button

symbol, follow these steps:

 1. Choose Insert➪New Symbol.

 The Create New Symbol dialog

box appears (see Figure 1-1).

 2. Enter a name for the symbol.

 Choose a name that reflects

what the button does.

 3. Choose Button from the Type

drop-down menu and then

click OK.

 Flash enters symbol-editing mode, and a four-frame Timeline with one

layer appears (see Figure 1-2).

Figure 1-2: A button with four states — ve-e-ery interesting.

 4. Create a graphic for the first state.

 You can create a graphic (by using the drawing tools), import a graphic,

or import an image. There are no rules for your “just right” button. If all

Figure 1-1: Creating a new button.

40_385395-bk07ch01.indd 49840_385395-bk07ch01.indd 498 10/28/08 8:41:02 PM10/28/08 8:41:02 PM

Creating Buttons 499

Book VII
Chapter 1

Adding Buttons
to a Flash Project

you need is a simple button that does something when it’s clicked, you

can stop here and go to the later section “Making Buttons Functional

with ActionScript.” But we think that you’re cooler than that, so please

read on.

 5. Click the Over frame.

 You need a keyframe when you want something to change.

 6. Create a keyframe, or blank keyframe.

 Create a keyframe when you want to duplicate the graphic in the first

frame, and then modify it. Create a blank keyframe when you want to

use a different graphic in the Over frame. Press F6 to create a keyframe,

or press F7 to create a blank keyframe. Creating a keyframe copies the

graphic from the previous state. Use this option when you want to use

the same shape as in the Up frame, but with a different color or some

other subtle modification. Create a blank keyframe when you want a dif-

ferent graphic in this keyframe.

 7. Modify the existing graphic if you added a keyframe; create or import

a new graphic if you added a blank keyframe.

 Variety is the spice of life.

 8. Click the Down frame.

 Yup — you guessed it. This puppy needs a keyframe as well.

 9. Create a keyframe or a blank keyframe.

 Press F6 to add a keyframe, or press F7 to create a blank keyframe.

 10. Modify the graphic in the keyframe; create or import a graphic for the

blank keyframe.

 11. Click the Hit frame.

 This keyframe determines the target area for the button.

 12. Press F7 to create a blank keyframe.

 13. Create a rectangular shape slightly larger than the largest graphic in

any previous keyframe.

 This step is especially important if you have a small button or graphics

with irregular shapes.

 14. Click the Current Scene button or the Back button.

 The button is added to the document library.

Creating an invisible button
Invisible buttons can’t be seen, but if you add sound to them, they can be

heard. An invisible button is useful when you want an area of the document

to be a hotspot. Invisible buttons can be used in Flash games or when you

40_385395-bk07ch01.indd 49940_385395-bk07ch01.indd 499 10/28/08 8:41:02 PM10/28/08 8:41:02 PM

Creating Buttons500

want users to click a block of text after reading it to advance to another part

of the file. Invisible buttons are easy to make. Here’s how to do it:

 1. Choose Insert➪New Symbol.

 The New Symbol dialog box appears.

 2. Choose Button from the Type drop-down menu.

 3. Click OK.

 Flash enters symbol-editing mode.

 4. Click the Hit frame and then press F7.

 Flash creates a blank keyframe.

 5. Choose the drawing tool that’s best suited for the shape over which

you’re creating the invisible button.

 If you’re creating an invisible button over a block of text, choose the

Rectangle tool. If you’re creating an invisible button for an irregular

shape, use the Pen tool to create a path and then fill it.

 To create an invisible button for an irregular shape that you want to

closely match, create the button as outlined here and add a rectangle

or oval to the Hit frame. Press the Back button to leave symbol-editing

mode. Drag the button on the Stage and place it over the shape. Right-

click (Windows) or Control+click (Mac) and choose Edit in Place from

the context menu. Delete the rectangle in the Hit frame, and then use the

appropriate tool to create a shape that matches the object over which

you placed the invisible button but is slightly larger.

 6. Choose Window➪Align.

 The Align panel appears.

 7. Center the shape to the Stage vertically and horizontally.

 8. (Optional) Click the Over frame and press F6.

 If you want an alert, such as text to be displayed or a sound to play

when a user pauses the cursor over the button, add the keyframe.

 9. Add the text that you want displayed or the sound that you want to

play when the user pauses the cursor over the button.

 Some designers add a sound to alert users that something will happen

when this area of the movie is clicked. Other designers add text that

tells the viewer what to do.

 10. Click the Current Scene button or the Back button.

 Flash exits symbol-editing mode, and the invisible button is added to the

document library.

 11. Drag the invisible button to a spot on the Stage.

40_385395-bk07ch01.indd 50040_385395-bk07ch01.indd 500 10/28/08 8:41:02 PM10/28/08 8:41:02 PM

Creating Buttons 501

Book VII
Chapter 1

Adding Buttons
to a Flash Project

 An invisible button is an opaque blue when you’re editing the document

(see Figure 1-3). When the document is published or tested, the button

is invisible.

Figure 1-3: An invisible button is visible when you edit the document.

Creating an animated button
If you want to create a unique button, add an animation to the button that

plays when a user pauses the cursor over the button. You can use a shape

tween animation that morphs the original button shape into a different

shape or an image sequence animation, which is a good option for a pho-

tographer’s site. When you use an animation in a button, make sure that it’s

relatively short. You need only a couple of seconds to pique the viewer’s

curiosity. To create an animated button, follow these steps:

 1. Create a new movie clip symbol, and then create your animation.

 If you don’t know how to create a movie clip, see Book II, Chapter 4.

 2. Choose Insert➪New Symbol.

 The New Symbol dialog box appears.

 3. Choose Button from the Type drop-down menu.

40_385395-bk07ch01.indd 50140_385395-bk07ch01.indd 501 10/28/08 8:41:03 PM10/28/08 8:41:03 PM

Creating Buttons502

 4. Enter a name for the button.

 5. Click the Up state.

 The graphic you add to this state is what the user sees when the frame

on which the button appears is loaded.

 6. Create a graphic for the Up frame.

 Create a graphic that’s the same size as your movie clip.

 7. Choose Window➪Align.

 The Align panel appears.

 8. Center the shape to the Stage vertically and horizontally.

 9. Click the Down frame and press F6.

 This step creates a keyframe for the Down state frame and copies the

graphic from the Up state frame.

 10. Click the Over frame and press F7.

 This step adds a blank keyframe to the Over state frame.

 11. Drag the movie clip symbol you created in Step 1 on the Stage.

 12. Choose Window➪Align.

 The Align panel appears.

 13. Center the shape to the Stage vertically and horizontally.

 14. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 Flash publishes the movie and displays it in another window.

 15. Pause the cursor over the button.

 The movie clip plays.

Creating a navigation menu with buttons
If you’re creating a Flash Web site, you need buttons for navigation. If you

think that you need to create a separate button for each menu link, you’re

wrong. You can quickly create a navigation menu in Flash by following these

steps:

 1. Decide whether your menu will be vertical or horizontal.

 The number of buttons needed for navigation and the amount of text

you have on each button determine the placement of your menu. If you

have lots of buttons and just a bit of text, a vertical placement may be

the answer. If you need a menu with just a few buttons, a horizontal

menu gives you more room for the rest of your movie.

 2. Divide the available space by the number of buttons needed.

40_385395-bk07ch01.indd 50240_385395-bk07ch01.indd 502 10/28/08 8:41:03 PM10/28/08 8:41:03 PM

Creating Buttons 503

Book VII
Chapter 1

Adding Buttons
to a Flash Project

 If you have a horizontal menu, the answer determines the maximum

width of each button. If you have a vertical menu, the answer deter-

mines the maximum height of each button.

 3. Create a button symbol, as outlined in the earlier section “Creating a

multistate button.”

 4. Right-click (Windows) or Control+click (Mac) the first button layer,

and then choose Insert Layer from the context menu.

 5. Create the text for the first button.

 Figure 1-4 shows a rectangular button for a site home page.

Figure 1-4: Back home again.

40_385395-bk07ch01.indd 50340_385395-bk07ch01.indd 503 10/28/08 8:41:03 PM10/28/08 8:41:03 PM

Creating Buttons504

 6. Click the Current Scene button or the Back button.

 The button is added to the document library.

 7. Right-click (Windows) or Control+click (Mac) the button you just cre-

ated and choose Duplicate from the context menu.

 The Duplicate Symbol dialog box

appears (see Figure 1-5).

 8. Enter a new name for the

symbol.

 The menu link name is as good

as any.

 9. Click OK.

 The dialog box closes and Flash

creates a duplicate symbol.

 10. Repeat Steps 7 through 9 for the other buttons that are needed for the

menu.

 11. Double-click the first duplicated button.

 The button opens in symbol-editing mode.

 12. Change the button text to the name you want.

 13. Click the Current Scene button or the Back button.

 You exit symbol-editing mode and the button is updated.

 14. In the Timeline panel, right-click (Windows) or Control+click (Mac)

the uppermost layer and choose Insert Layer from the context menu.

 15. Name the new layer Buttons.

 You should create separate layers for the main parts of the site

interface.

 16. Drag the buttons from the document library to the Stage.

 We find that it helps to have a guide at the point where you insert the

menu buttons.

 17. Align the buttons.

 Choose Window➪Align to open the Align panel. The alignment depends

on how your buttons are positioned. If you have a horizontal menu, you

can use one of the distribution options. Figure 1-6 shows a Flash Web

site with a navigation menu created by using the methods listed in this

section.

Figure 1-5: Duplicating the button symbol.

40_385395-bk07ch01.indd 50440_385395-bk07ch01.indd 504 10/28/08 8:41:03 PM10/28/08 8:41:03 PM

Using the Button Library 505

Book VII
Chapter 1

Adding Buttons
to a Flash Project

Figure 1-6: A flashy navigation menu.

Using the Button Library
If you don’t like creating your own buttons, you can use the ones that ship

with Flash. The Flash button library contains a wide variety of button pre-

sets, all neatly sequestered in groups of similar buttons. To access the

button library, follow these steps:

 1. Choose Window➪Common Libraries➪Button Library.

 The button library appears.

 2. Click a title to see all buttons in that group.

 3. Click a button to preview it.

 Figure 1-7 shows a button from the Playback group.

 4. Choose Window➪Library.

 The document library opens.

 5. Drag buttons from the button library to the document library.

 You can now drag the buttons from the document library into your project.

40_385395-bk07ch01.indd 50540_385395-bk07ch01.indd 505 10/28/08 8:41:03 PM10/28/08 8:41:03 PM

Making Buttons Functional with ActionScript506

Examining the buttons in the button

library gives you an idea of the

techniques the pros use to create

buttons. Select a button that piques

your curiosity and drag it into the

document library. Double-click the

file in the document library to view

it in symbol-editing mode. Then you

can dissect the button to see how

it was built. You can also edit the

button to suit your project.

Making Buttons Functional
with ActionScript

In previous versions of ActionScript,

you could apply actions directly

to a button symbol type. However,

that isn’t the case when you use

ActionScript 3.0 to add interactiv-

ity to a project. In previous ver-

sions of ActionScript, you used

event handlers to determine which

event triggered the execution of the

ActionScript. The onRelease event

handler in the earlier versions of

ActionScript executed the associated action when the button was clicked

with a mouse and then released. In ActionScript 3.0, you use event listeners.

ActionScript tells the Flash Player the event to listen for. For example, CLICK

is an event that you can tell the Flash Player to listen for.

A mouse event is the event that must occur in order to execute the func-

tion associated with the mouse event. ActionScript has a class with several

mouse events. You can have different things happen when a user interacts

with a button. For example, you can have one thing happen when users

hover their cursor over the button, and something different when users click

the button. You create the function that executes when the mouse event

occurs. The events in the following list cover common mouse interaction

with a button:

 ✓ CLICK: Occurs when the user clicks the left mouse button once on the

button symbol

 ✓ DOUBLE_CLICK: Occurs when the user clicks the left mouse button

twice on the button symbol

Figure 1-7: A playback button without a cause.

40_385395-bk07ch01.indd 50640_385395-bk07ch01.indd 506 10/28/08 8:41:04 PM10/28/08 8:41:04 PM

Creating the ActionScript Code to Make a Button Interactive 507

Book VII
Chapter 1

Adding Buttons
to a Flash Project

 ✓ MOUSE_OVER: Occurs when the user pauses the cursor over the button

symbol

 ✓ MOUSE_OUT: Occurs when the user moves the cursor from the button

target area after moving the cursor over the target button area

Creating the ActionScript Code
to Make a Button Interactive

If you’re a devout coward when it comes to writing any kind of code, there’s

no need to stress out. The code involved is fairly simple. To show you how

easy it is, follow these steps:

 1. Create a new Flash document.

 2. Click the sixth frame on the Timeline, and then press F6 to create a

keyframe.

 3. Select the Text tool, choose your favorite font, and create a big

numeral 6.

 4. With the keyframe still selected, open the Property inspector.

 5. In the Label section, enter big6 in the Name text field.

 This bit of text is known as a frame label. You can address a label with

ActionScript. Notice that there are no spaces in the frame label.

 6. Click the tenth frame in the Timeline, and then press F7 to create a

blank keyframe.

 7. Select the Text tool, choose your favorite font, and create a big

numeral 10.

 8. With the keyframe still selected, open the Property inspector.

 9. In the Label section, enter big10 in the Name text field.

 10. Right-click (Windows) or Control+click (Mac) the first layer and

choose Insert Layer from the context menu.

 11. Name the layer Buttons.

 We know: It’s only an exercise. But the sooner you get in the habit of

labeling things, the sooner it becomes second nature.

 12. Create two button symbols.

 If you’re pressed for time, open the buttons library and drag two buttons

to the Stage. Put the buttons near the top of the document.

 13. Select the first button and open the Property inspector.

 14. In the Property inspector, enter btn1 in the blank text field.

40_385395-bk07ch01.indd 50740_385395-bk07ch01.indd 507 10/28/08 8:41:04 PM10/28/08 8:41:04 PM

Creating the ActionScript Code to Make a Button Interactive508

 When you use ActionScript on a button, the button must have an

instance name. When you create an instance name, remember to use a

logical name with no spaces.

 15. Select the second button, and in the Property inspector, enter btn2 in

the blank text field.

 Each button instance must have a unique name.

 16. Right-click (Windows) or Control+click (Mac) the Buttons layer and

choose Insert Layer from the context menu.

 17. Rename the layer Actions.

 That’s right — ActionScript should be on its own layer.

 18. Select the first keyframe on the Actions layer and choose

Window➪Actions.

 The Actions panel opens.

 19. Add the following code:

stop();
btn1.addEventListener(MouseEvent.CLICK,bigSix);
btn2.addEventListener(MouseEvent.CLICK,bigTen);

 The first line of code stops the movie dead in its tracks on the first

frame. The second and third lines of code add the MouseEvent event

listener to the buttons. When the buttons are clicked, functions named

bigSix and BigTen are executed. Now it’s time to create the functions.

 20. Add the following chunk of code to your script:

function bigSix(e:MouseEvent):void
{
gotoAndStop(“big6”);
}

function bigTen(e:MouseEvent):void
{
gotoAndStop(“big10”);
}

 These lines of code define two functions: bigSix and BigTen. The func-

tions tell the Flash Player to go to, and then stop on, the labeled frames

that are specified. At this stage, the Actions panel should resemble the

one shown in Figure 1-8.

40_385395-bk07ch01.indd 50840_385395-bk07ch01.indd 508 10/28/08 8:41:04 PM10/28/08 8:41:04 PM

Creating the ActionScript Code to Make a Button Interactive 509

Book VII
Chapter 1

Adding Buttons
to a Flash Project

Figure 1-8: Creating ActionScript for buttons.

 21. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 Flash publishes the movie and displays it in a new window.

 22. Test the buttons.

 When you click the first button, you should see a big numeral 6. When

you click the second button, you should see a big numeral 10.

40_385395-bk07ch01.indd 50940_385395-bk07ch01.indd 509 10/28/08 8:41:04 PM10/28/08 8:41:04 PM

Book VII: Getting Interactive510

40_385395-bk07ch01.indd 51040_385395-bk07ch01.indd 510 10/28/08 8:41:04 PM10/28/08 8:41:04 PM

Chapter 2: Using Flash
Components

In This Chapter
✓ Understanding components

✓ Working with the List and Label components

✓ Using check boxes and radio buttons

✓ Loading external graphic and SWF files with UILoader

✓ Creating a Web site

Much of the time, you work with complex elements in Flash. One set

of such elements is the user interface (UI). The UI makes the interac-

tion either smooth or awkward, and no designer or developer wants

a clumsy or unattractive UI. Whether your UI involves but-

tons, menus, or something as exotic as dynamic labels,

creating these elements from scratch takes time. With

Flash’s ready-made components, however, most of

the work has been done for you. All you have to do

is to place the component on the Stage and set the

values, and you’re good to go.

Some people may think that components take

away from the creative aspects of developing

with Flash. Actually, components contribute to

creativity, because they allow you to do things

that you couldn’t do otherwise. They even come

with their own ActionScript 3 methods and prop-

erties, and with very little code, you can make them

your own — as you see in this chapter. Topics we cover

include how to work with different components, use their

methods and properties, use ternary statements to simplify mul-

tiple selections, and dynamically change a component’s content.

Working with Flash Components
You can use Flash components for a wide variety of tasks. In virtually every

application in which you use components, you also use ActionScript 3; for

the functionality, you get a lot more bang for your buck. Using a combination

41_385395-bk07ch02.indd 51141_385395-bk07ch02.indd 511 10/28/08 8:42:49 PM10/28/08 8:42:49 PM

Using the List and Label Components512

of ActionScript 3 and the Component Inspector, you can easily put together

relatively sophisticated interfaces.

In working with components, you need to use both the Component and

Component Inspector panels. Before you continue, place the Component

and Component Inspectors panels in the dock or somewhere else that gives

you easy access to them.

Using the List and Label Components
The first two components we examine in this chapter are List and Label. The

List component is very handy for creating interactive menus. The Label com-

ponent can be used for dynamic output — not just for labeling, but also for

information display.

In this section, you use these components to make a fruit-calculator applica-

tion. Each time the user clicks a fruit name in a menu, Flash adds the value of

that fruit to a variable that is displayed in a Label component. The simple UI

allows the user to add up his purchases and see the results quickly.

Creating a calculator application
To create the application, follow these steps:

 1. Choose New➪Flash File (ActionScript 3.0) from the menu bar, and

save it as Simple.fla.

 2. Choose Window➪Properties from the menu bar (or press Ctrl+F3 in

Windows or Ô+F3 on the Mac) to open the Properties panel, type

Simple in the Class window, and save the file again.

 3. Choose Window➪Components (or press Ctrl+F7 in Windows or Ô+F7

on the Mac) to open the Components panel and drag a List component

to the Stage.

 4. With the List component selected, type Fruit in the Instance Name window

of the Properties panel; then press the Tab key and save the file.

 5. Drag a Label component from the Component panel to the Stage.

 6. With the Label component selected, type ListTotal in the Instance

Name window of the Properties panel; then press the Tab key and

save the file.

 7. Using the Align tool, position the Label component so that it’s aligned

vertically in the center of the List component.

 8. Select the Label component, and open the Component Inspector panel.

 Figure 2-1 shows the window you should see when you open the

Component Inspector with the Label component selected.

41_385395-bk07ch02.indd 51241_385395-bk07ch02.indd 512 10/28/08 8:42:50 PM10/28/08 8:42:50 PM

Using the List and Label Components 513

Book VII
Chapter 2

Using Flash
Com

ponents

Figure 2-1: Properties for the List component shown in the Component Inspector.

 9. Click the dataProvider row and then click the little magnifying glass

that appears.

 The Values window opens (see Figure 2-2). The label is the text of the

individual menu item, and the data is a string (even if you use a number)

that is associated with the label. In the example shown in Figure 2-2, the

data value of Apples is 1.72.

 You can easily change numbers that are stored as strings to real num-

bers. When you use the data, however, you need to know that it’s stored

in string format and requires conversion to number format if you plan to

do any calculations.

 10. Click the plus (+) button at the top of the Values window to add both

labels and values; then click OK to return to the Component Inspector

panel.

 Using Figure 2-2 as a guide, first type the data value in the Value column;

then type the label in the Value column. Make sure that the data values

are numbers without any symbols except decimal points (.).

 11. Select the Label component, and enter Total in the Value column.

 Before you click any items on the List component, the Label component

displays Total. As soon as you start clicking selections in the List com-

ponent, the values change dynamically and appear in the Label.

 12. Open a new ActionScript file, and save it as Simple.as in the same

folder as the Simple.fla file.

41_385395-bk07ch02.indd 51341_385395-bk07ch02.indd 513 10/28/08 8:42:50 PM10/28/08 8:42:50 PM

Using the List and Label Components514

Figure 2-2: Data and label values.

 13. Add the following code to the Simple.as file and save the file again.

package
{
 import flash.display.Sprite;
 import fl.controls.List;
 import flash.events.Event;
 public class Simple extends Sprite
 {
 private var total:Number=0;
 private var totalOld:Number=0;
 private var totalStr:String;

 public function Simple()
 {
 Fruit.addEventListener(Event.CHANGE,

getSelection);
 }

 private function getSelection(e:Event):void
 {
 totalStr=Fruit.selectedItem.data;
 total+=Number(totalStr);
 totalStr=total.toFixed(2);
 ListTotal.text=”$”+totalStr;
 }
 }
}

41_385395-bk07ch02.indd 51441_385395-bk07ch02.indd 514 10/28/08 8:42:50 PM10/28/08 8:42:50 PM

Using the List and Label Components 515

Book VII
Chapter 2

Using Flash
Com

ponents

 The program is a little different from some of the others because it uses

the List component (instance name: Fruit) and a CHANGE event. As with

a Button component, however, as long as the event is identified, all you

need is a function that it fires whenever the event occurs. Rather than

use CLICK and the MouseEvent, this program uses CHANGE and the Event

event. (Don’t worry: You’re not seeing double!) So in the parameter of

the getSelection() function, you see e:Event instead of

e:MouseEvent. The logic is identical, though.

 Keeping in mind that the data that you enter in the Component Inspector

is string data, the variable you store it in is a string as well (totalStr).

Whatever the user selects is stored in Fruit.selectedItem data. The total

variable is a real number, so the string is converted to a number via the

Number class. Whatever value is derived is

stored is added to the current value of Total to

keep a running total. Then the program recon-
verts the number to the totalStr string and

adds the toFixed(2) method so that it has

only two decimal points — just like real money!

 14. Save the file again.

 15. Test the application by pressing Ctrl+Enter

(Windows) or Ô+Return (Mac).

 You see the value of the Label component

change to the running total, as Figure 2-3 shows.

Adding a CHANGE choice
When you have an event that uses CHANGE, you can’t click the same spot

twice and get a different result. Try it with the application you built in the

preceding section with the List and Label components. You can pound on

the same fruit selection all day, and the value stays the same.

You may reasonably ask, “Why not use the CLICK event?” Well, no such

event is available for a selection event. So you have to add another selection

that effectively acts as a change with no content. Here’s how:

 1. Open Simple.fla, select the List component, and open the

Component Inspector.

 2. Select the dataProvider row and then click the magnifying-glass icon

to open the Values window.

 3. Add a data value of 0 and the label *Change*, as shown in Figure 2-4.

 You still see only five selections on the Stage. The reason is that you can

make only five total selections when you use the Component Inspector.

 4. Test the application.

 By scrolling, you can see the new *Change* selection. So if you alternate

between selecting Bananas and *Change*, you see the amount being

added to the total.

Figure 2-3: Interactive
element of application built
with two components.

41_385395-bk07ch02.indd 51541_385395-bk07ch02.indd 515 10/28/08 8:42:50 PM10/28/08 8:42:50 PM

Using the List and Label Components516

Figure 2-4: Adding a selection with a data value of 0.

That procedure sort of solved the problem, but because the user can’t see

the *Change* option without scrolling, she may not realize that such an

option exists.

Extending visible selections without scrolling
This example shows the limitations of using the Component Inspector. The

List component has a property called rowCount that determines how many

rows are visible. As you see in the preceding sections, no such property is

mentioned. In the ActionScript 3 reference document, however, rowCount

is listed as one of the List class’ properties. To change the number of visible

rows, follow these steps:

 1. Open the Simple.as file that you created in the section “Creating a

calculator application,” earlier in this chapter.

 2. Add or change (or both) the following code:

public function Simple()
{
 Fruit.rowCount=6;
 Fruit.addEventListener(Event.CHANGE, getSelection);
}

 3. Test the application again.

41_385395-bk07ch02.indd 51641_385395-bk07ch02.indd 516 10/28/08 8:42:51 PM10/28/08 8:42:51 PM

The Check Box and Radio Button: Making Life Easier for the User 517

Book VII
Chapter 2

Using Flash
Com

ponents

 This time, you see all six selections, as shown in Figure 2-5. The List

component on the Stage, however, still shows only five, because of the

limitations of using the Component Inspector with the List component.

Figure 2-5: Display of added selection.

 When you use components, be sure to check what properties they have

in addition to those shown in the Component Inspector panel.

The Check Box and Radio Button:
Making Life Easier for the User

Some years back, Steve Krug wrote a popular book on human–computer

interfaces (HCI): Don’t Make Me Think (New Riders, 2005). Krug was referring

to a simple UI that could be easily and intuitively navigated by the user. The

clearest UIs, which you may remember from HTML forms, are the humble

check box and radio button. If users have to ponder what you’re selling,

explaining, or displaying, they’re likely to click the Back button in their

browsers and never return to your site. Especially when you’re asking users

to fill out a form or perform some other chore, making things simple (and

not making users think) keeps everyone happy.

The best no-brainer UI pair consists of the CheckBox and RadioButton com-

ponents. (You also find ActionScript classes of the same names.) With check

boxes, all the user has to do is to check all the listed items that apply — as

41_385395-bk07ch02.indd 51741_385395-bk07ch02.indd 517 10/28/08 8:42:51 PM10/28/08 8:42:51 PM

The Check Box and Radio Button: Making Life Easier for the User518

many or as few as he wants. What more, the selections can be short or long,

but the size of the check box is unchanged.

The only difference between check box and radio buttons is that radio but-

tons are mutually exclusive. In a group of radio buttons, only one can be

selected. If you ask a user to select a dog breed — such as Collie, Poodle, or

Bulldog — radio buttons are good to use because a dog can be only a single

breed. Breeds are mutually exclusive. If your dog is a collie, it can’t also be a

poodle. (Where’s the Mutt button?)

Reading results
You need a way to determine whether a check box has been checked and

whether a radio button has been selected. Then you need a way to pass on

the information contained in the selected component. The common property

in both components is selected. For example, the statement

myCheck.selected==true

sets up a Boolean value for the selected property. So you could write code

like this:

if(myCheck.selected==true)
{
 //do something
}
else
{
 //do something else
}

That code would work perfectly well with both CheckBox and RadioButton

objects. As an alternative, you could use a ternary statement. Ternary state-
ments are shorthand versions of if..then..else statements. They have

the following format:

var case1 = cb.selected ? doThis : doThat;

This code is the same as writing

if (case1==cb.selected)
{
 doThis;
}
else
{
 doThat;
}

41_385395-bk07ch02.indd 51841_385395-bk07ch02.indd 518 10/28/08 8:42:51 PM10/28/08 8:42:51 PM

The Check Box and Radio Button: Making Life Easier for the User 519

Book VII
Chapter 2

Using Flash
Com

ponents

As you can see, the ternary statement is compact. If you have lots of check

boxes and radio buttons, you have much cleaner code if you use ternary

statements.

Using ternary statements with lots of components can save time in other

ways. After you set up one component with a ternary statement, you can cut

and paste the rest, changing only the instance names and values.

Creating a swinging shop
Back in the 1940s, a dance style called swing was popular, along with a

style of speech called jive talk. The example in this section creates a swing-

oriented online shop to illustrate the use of CheckBox and RadioButton com-

ponents, along with the ActionScript that gets the job done.

Adding the CheckBox components
To set up the application’s check boxes, follow these steps:

 1. Open a new ActionScript file, and save it as Swing.fla.

 2. Open the Properties panel, type Swing in the Class window, and save

the file again.

 3. Using the Text tool, add to the top the static text labete Swing Styles.

Below that, add another static text label, Which of these drapes
would bend a smile?

 4. Open the Components panel, and drag five CheckBox components to

the Stage.

 5. Place the components in a list on the left side of the Stage.

 6. Select a component, type a name for it in the Instance Name window

of the Properties panel, and press the Tab key, repeating this process

until all the components are named.

 For this example, give the components the following names:

 • jitterbug

 • slacks

 • ties

 • shoes

 • lids

 7. Save the file again.

 Now you need to add labels for the check boxes.

41_385395-bk07ch02.indd 51941_385395-bk07ch02.indd 519 10/28/08 8:42:51 PM10/28/08 8:42:51 PM

The Check Box and Radio Button: Making Life Easier for the User520

 8. Select a CheckBox component and type a label for it in the Label row,

repeating this process by selecting each one in turn until all the com-

ponents are labeled.

 For this example, enter the following labels:

 • Jitterbug Shirt

 • Swell Slacks

 • Jive Ties

 • Dancing Shoes

 • Lively Lids

 Figure 2-6 shows how the check boxes should appear after they’re

labeled.

Figure 2-6: Adding CheckBox components to the Stage.

Adding the RadioButton components
Now you’re ready to add the radio buttons. Follow these steps:

 1. Using Figure 2-7 as a guide (at the end of this set of steps), drag four

RadioButton components from the Components panel to the right side

of the Stage.

 2. Place the components in a list on the right side of the Stage.

 3. Select a component and type a name for it in the Instance Name

window of the Properties panel, selecting each button and repeating

this process until all the components are named.

41_385395-bk07ch02.indd 52041_385395-bk07ch02.indd 520 10/28/08 8:42:51 PM10/28/08 8:42:51 PM

The Check Box and Radio Button: Making Life Easier for the User 521

Book VII
Chapter 2

Using Flash
Com

ponents

 For this example, give the components the following names:

 • guy

 • gal

 • yes

 • no

 Now you need to add group names. Radio buttons need both labels
and group names because only one button in a group can be selected.

(See Step 6 in the previous section to see how to open the Components

Inspector.)

 4. In the Components Inspector, you see the groupName row and a text

box next to it, as shown in Figure 2-7. Enter the group name, and then

the label.

 The following list shows what each groupName and label should be:

 Group Label

 gender Guy

 gender Gal

 ul Yes!

 ul Not now. . . .

 Figure 2-7 shows where to enter a RadioButton component’s group

name.

Figure 2-7: Adding a group name to a RadioButton component.

41_385395-bk07ch02.indd 52141_385395-bk07ch02.indd 521 10/28/08 8:42:52 PM10/28/08 8:42:52 PM

The Check Box and Radio Button: Making Life Easier for the User522

Finishing the application
All you have left to do are add a command button and a text box, enter some

ActionScript, and test the application. Follow these steps:

 1. Drag a Button component from the Components panel to the Stage,

placing it between the groups of check boxes and radio buttons.

 2. Select the Button component, and type send in the Instance Name

window of the Properties panel.

 3. With the component still selected, type the label Send Me in the

Component Inspector panel.

 4. Drag a TextArea component from the Components panel to the Stage,

placing it directly below the command button you just created.

 5. Select the TextArea component, and in the Properties panel, type the

instance name ta and change the height value to 130.

 6. Save the swing.fla file.

 7. Open a new ActionScript file, and save it as Swing.as in the same

folder as the Swing.fla file.

 8. Enter the following code:

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class SwingCheck extends Sprite
 {
 private var decision:String=”You dig:\n-------

-\n”;

 public function SwingCheck()
 {
 sendme.addEventListener(MouseEvent.

CLICK,getAll);
 }

 private function getAll(e:MouseEvent):void
 {
 decision+=(jitterbug.selected==true) ?

“Shirt\n” :””;
 decision+=(slacks.selected==true) ?

“Slacks\n” :””;
 decision+=(ties.selected==true) ? “Ties\n”

:””;
 decision+=(shoes.selected==true) ?

“Shoes\n” :””;
 decision+=(lids.selected==true) ? “Hats\n”

:””;

41_385395-bk07ch02.indd 52241_385395-bk07ch02.indd 522 10/28/08 8:42:52 PM10/28/08 8:42:52 PM

Creating an Interface with Flash Components 523

Book VII
Chapter 2

Using Flash
Com

ponents

 decision+=(guy.selected==true) ? “Hep
cat\n” :”Hep chick\n”;

 decision+=(yes.selected==true) ? “Get
newsletter\n” :”No newsletter”;

 ta.text=decision;
 }
 }
}

 9. Save the Swing.as file.

 10. Choose Control➪Test from the menu bar (or press Ctrl+Enter in

Windows or Ô+Return on the Mac) to test the application.

 Figure 2-8 shows an example of what you can expect to see.

Figure 2-8: CheckBox and RadioButton data displayed in a
TextArea component.

The Button component is incorporated into the application so that the user

could make all the selections before processing the information. You could

have used a CHANGE event with the check boxes and radio buttons to fire

off functions as each selection is made, but you had no reason to do so.

Creating an Interface with Flash Components
To some extent, creating an interface with Flash components is a clear

and simple way for users to interact with the application you build. You

shouldn’t do this with an eye to a static site, however; you have to think,

“How will this change?” You must create an interface that has development

flexibility but is clear for the user.

41_385395-bk07ch02.indd 52341_385395-bk07ch02.indd 523 10/28/08 8:42:52 PM10/28/08 8:42:52 PM

Creating an Interface with Flash Components524

In this section, you create a simple interface that you’re going to be using in

an application later in this chapter. In this interface, the user simply makes

a radio-button selection. When she does, the application loads all the nec-

essary materials, and the user sees just the information she needs. What’s

more, the information arrives just when she needs it and isn’t a burden on

the overall application.

Setting up the components
To create the simple example interface, you use the following components:

 ✓ Two UILoader components (discussed in the following section) to load

SWF and graphics files when they are requested

 ✓ One Label component to display a header that shows the user what

selection he made

 ✓ One TextArea component containing data loaded from a text file

 ✓ Two RadioButton components that let the user make information selections

This architecture makes it simple to change any of the data that’s loaded or

to add more radio buttons. Figure 2-9 shows the basic layout and the place-

ment and types of components.

UILoaderRadioButton

Label TextArea

Figure 2-9: Components laid out for flexible interface.

41_385395-bk07ch02.indd 52441_385395-bk07ch02.indd 524 10/28/08 8:42:52 PM10/28/08 8:42:52 PM

Loading As You Go: Why You’ll Love the UILoader 525

Book VII
Chapter 2

Using Flash
Com

ponents

Tracking the elements
With all the components working interactively, you’re going to need a

system for keeping track of everything. With these components, you’ll be

keeping track of three key Flash CS4 elements:

 ✓ The component instance names in the Properties panel

 ✓ The data entered directly through the Component Inspector panel

 ✓ Data changed dynamically through ActionScript

Table 2-1 shows the components and their instance names entered in the

Properties panel and their initial settings in the Component Inspector.

Table 2-1 Component Settings
Component Instance

Name
(Used as
Reference in
ActionScript)

Initial Component Setting

RadioButton mol Group name=m, label=Moldova

RadioButton moz Group name=m,
label=Mozambique

Label country Selectable=false, label=Country

UILoader (w=150, h=300) map Source=mapPH.png
scaleContent=true

UILoader (w=300, h=150) flag Source=flagPH.png
scaleContent=true

TextArea (w=350, h=200) ta Editable=false

When you start building the application, you can use Table 2-1 as a quick ref-

erence to help keep everything straight. (Ever hear of a planning stage? This

is it!)

Loading As You Go: Why You’ll Love the UILoader
The one new component we haven’t discussed in this chapter yet is the

UILoader. Using the UILoader, you can use the source property easily,

either directly in the Component Inspector or in ActionScript. Because you

can treat the UILoader as a dynamic object, changing the graphic or SWF file

stored in the UILoader component is easy. You can’t use a text file as the

source, however.

41_385395-bk07ch02.indd 52541_385395-bk07ch02.indd 525 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Loading As You Go: Why You’ll Love the UILoader526

Graphic versus SWF files
When using the UILoader component, you can choose to resize the SWF or

graphic file to fit the size of the UILoader component. If you set the scale-
Content property to true, you specify that everything that appears in the

UILoader will be resized to fit the dimensions of the component. That prac-

tice is great in terms of design considerations, but some graphics become

ugly and hard to read when they’re resized. So, you have to consider the

component size in addition to the graphic size.

Using graphics in the example application
In the example application that you’re about to build, you use both national

flags and maps of the nations being described as vacation destinations. Our ini-

tial experiments showed that the flags could be left as GIF files, and they worked

pretty well when they were resized, but the maps were unreadable and blurry.

Vector graphics scale very well, as noted in Book I, Chapter 2, so we took the

maps and imported them into Flash. Because the maps were GIF files, Flash

treats them as bitmapped graphics.

Converting bitmaps to vector graphics
To convert bitmapped graphics to vector graphics in Flash, all you have to

do is the following:

 1. Import a bitmapped graphic to the Stage.

 In the application we developed, we downloaded maps from the Central

Intelligence Agency Web site (www.cia.gov) — a good source of public-

domain maps and national flags.

 2. Select the imported graphic and choose Modify➪Bitmap➪Trace Bitmap.

 The Trace Bitmap dialog box opens.

 3. Enter some values in the Color Threshold and Minimum Area text boxes.

 Figure 2-10 shows settings of 10 and 1, respectively.

 4. Click OK.

 Flash converts your bitmapped graphic to a vector graphic.

 5. Save the file, which will have the extension .fla.

 6. Choose Control➪Test from the menu bar (or press Ctrl+Enter in

Windows or Ô+Return on the Mac) to test the application and to

create an SWF file.

 The SWF file is the one that Flash loads and resizes. Because you now

have your graphic in vector format, little distortion occurs when you

load it into the UILoader component.

41_385395-bk07ch02.indd 52641_385395-bk07ch02.indd 526 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Loading As You Go: Why You’ll Love the UILoader 527

Book VII
Chapter 2

Using Flash
Com

ponents

Figure 2-10: Converting a bitmapped graphic to a vector graphic.

When you work with graphics converted from bitmap to vector format,

the graphics don’t always look as good as you had hoped. Feel free to use

the tools in Flash, such as the Text tool, to make everything look better.

Remember that the Flash tools create vector graphics as well.

What about loading text and XML files?
We knew you were going to ask that. You can put data from text and XML

files in the TextArea component, but you need three classes:

 ✓ URLLoader: Creates the basic loader object

 ✓ URLRequest: The request with the actual URL string

 ✓ URLLoaderDataFormat: Allows you to specify the format of the data

being loaded

The process involves instantiating a URLLoader and then using the load

method to load the data (a text file) by identifying it in the URLRequest object.

The URLLoader dataFormat property is assigned a URLLoaderDataFormat

set to the constant property TEXT.

As soon as the text file is loaded, an event handler passes the values in

the text file to the text property of the TextArea component. The process

may seem to be a bit convoluted, but as you’ll see, it takes just a few lines

of code. (Remember, seeming difficult and being difficult are two different

things!)

41_385395-bk07ch02.indd 52741_385395-bk07ch02.indd 527 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Creating the Bottom Feeder Travel Agency Web Site528

Creating the Bottom Feeder Travel Agency Web Site
Suppose that your client is the Bottom Feeder Travel Agency (BFTA). They

make arrangements for their customers to travel to exotic but somewhat

damaged locations at cut-rate prices. To reassure clients that these little-

known countries they’re advertising really exist, they feel obliged to add a

map and the country’s national flag. Also, they include a lively text descrip-

tion of each country’s attractions.

Because their list of countries is so long, they divided it up into alphabeti-

cal listings, and you will develop the M countries on their list: Moldova and

Mozambique. (I know: You’re probably wondering, “What about Mali — the

home of the famed Timbuktu?” They’re working on it.)

Adding the site’s components
Follow these steps to set up the site components:

 1. Open a new ActionScript file, and save it as ComLoader.fla.

 2. Open the Properties panel, type ComLoader in the Class window, and

save the file again.

 3. Open the Components panel, and drag the following elements to the

Stage:

 • Two RadioButton components

 • Two UILoader components

 • One Label component

 • One TextArea component

 4. Position the components as shown in Figure 2-9, earlier in this chapter.

 5. Using Table 2-1 as a guide (refer to the section “Tracking the ele-

ments,” earlier in this chapter), add the instance name for each com-

ponent in the Properties panel.

 Note the different sizes of the UILoader components to name each cor-

rectly. The one on the left loads the map with a 150 x 300 image; the one

in the top-right corner loads the 300 x 150 image of the flag.

 6. Select the components in turn, and in the Component Inspector, enter

the values shown in the Initial Component Setting column of Table 2-1.

Adding text
Now you’re ready to add text to the site. Follow these steps:

 1. Add static text as shown in Figure 2-9. (Feel free to use your own

design tastes.)

41_385395-bk07ch02.indd 52841_385395-bk07ch02.indd 528 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Creating the Bottom Feeder Travel Agency Web Site 529

Book VII
Chapter 2

Using Flash
Com

ponents

 2. Using a text editor (such as Notepad on a Windows computer or

TextEdit on the Mac), add the following text files, and save them in

the same folder as the ComLoader.fla file:

 Mozambique (moz.txt)

 Mozambique is a beautiful country on the southeast coast of Africa.

Although the roads need improvement and fuel prices are high, you’ll

find savings in other areas. Locally made items show off the country’s

unique character. Mozambique is quite inexpensive, and you can enjoy

its culture and history, and its scuba diving off the coast.

 Moldova (moldova.txt)

 Never heard of Moldova? Don’t let that prevent you from visiting this

landlocked nation. Part of Romania until the end of World War II, visiting

this little country is a bargain. You can easily see the entire country in

a couple of days. Enjoy the different local festivals, each showing off a

unique flavor of a region or town. Let this country be your starting point

for a vacation to all the nearby countries bordering the Black Sea.

Adding maps
In this section, you add maps to the Web site. Follow these steps:

 1. If you decide to place the maps in an SWF file, load the map on the

Stage of a new Flash file with the Stage the exact size of the graphic.

Center the file horizontally and vertically on the Stage.

 2. Change the bitmapped graphic into vector graphics using the steps

described in “Converting bitmaps to vector graphics,” earlier in the

chapter.

 Repeat this process for each graphic you wish to save as an SWF file in

the same folder as the other files in the project.

 3. Download the flags from www.cia.gov for this application because

they’re close in size to the UILoader component.

 If you leave them as GIF files, you find little distortion.

 4. Using a graphics program, create one 150 x 300 placeholder for the

flag and one 300 x 150 placeholder, and save them as flagPH.png

and mapPH.png, respectively.

 Make sure that they’re in the same folder as the other files for this proj-

ect. When users first come to the page, they see the placeholders, but

not the map or flag images. You can include a text message to the effect

that once a country is selected, the proper flag and map appear. Figure 2-11

shows the kind of message you can leave.

41_385395-bk07ch02.indd 52941_385395-bk07ch02.indd 529 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Creating the Bottom Feeder Travel Agency Web Site530

Figure 2-11: The initial page clearly shows areas where
information appears.

Finishing the application
To finish the application, follow these steps:

 1. Open a new ActionScript file and save it as ComLoader.as in the same

folder as ComLoader.fla. Add the following ActionScript 3.0 code:

package
{
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.net.URLLoaderDataFormat;

 public class ComLoader extends Sprite
 {
 private var loadEm:URLLoader;
 private var txtURL:String;

 public function ComLoader()
 {
 loadEm=new URLLoader();
 loadEm.dataFormat=URLLoaderDataFormat.TEXT;
 loadEm.addEventListener(Event.

COMPLETE,taHandler);

41_385395-bk07ch02.indd 53041_385395-bk07ch02.indd 530 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Creating the Bottom Feeder Travel Agency Web Site 531

Book VII
Chapter 2

Using Flash
Com

ponents

 mol.addEventListener(Event.CHANGE,
moldova);

 moz.addEventListener(Event.CHANGE,mozam);
 }

 private function moldova(e:Event):void
 {
 txtURL=”moldova.txt”;
 loadEm.load(new URLRequest(txtURL));
 country.text=”Moldova”;
 map.source=”molmap.swf”;
 flag.source=”molflag.gif”;
 }

 private function mozam(e:Event):void
 {
 txtURL=”moz.txt”;
 loadEm.load(new URLRequest(txtURL));
 country.text=”Mozambique”;
 map.source=”mozmap.swf”;
 flag.source=”mozflag.gif”;
 }

 private function taHandler(e:Event):void
 {
 ta.text=e.target.data;
 }
 }
}

 Make sure that you use the same instance names you have for your com-

ponents in your ActionScript 3.0 code.

 2. Double-check to make sure everything is in the same folder, including

the graphics, text, and SWF files. Test it, and if all is in working order,

you should see the outcome shown in Figure 2-11.

When you first load the program, you see the structure of the application,

which gives you a visual representation of the use of components on the

page. As you can see in Figure 2-12, however, as soon as you make a selec-

tion, the structure disappears into the background, and the information is

brought to the fore.

Overall, components allow even novice developers to put together very

sophisticated applications. More important, you can easily reuse or update

the site by changing just the content of the components, leaving the struc-

ture intact. Take advantage of the quality of programming behind the com-

ponents and the ease of using them.

41_385395-bk07ch02.indd 53141_385395-bk07ch02.indd 531 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Creating the Bottom Feeder Travel Agency Web Site532

Figure 2-12: The components aid in creating flexible structures
and easy updates.

41_385395-bk07ch02.indd 53241_385395-bk07ch02.indd 532 10/28/08 8:42:53 PM10/28/08 8:42:53 PM

Chapter 3: The Art and Science of
Creating a Flash Application

In This Chapter
✓ Sketching a Flash page

✓ Differentiating dynamic and static page elements

✓ Setting placeholders to view a page layout

✓ Placing and styling page elements with ActionScript

✓ Formatting your code

You can think of a Flash CS4 page in three dimensions. The first two dimen-

sions are the vertical and horizontal planes, where you place objects on

your page. The third dimension is the list of possible images, text,

videos, and animations that will appear on your site. So when

preparing a site, you have to imagine the possible types of

media that reside in the different parts of your application

and whether they’re static or dynamic. This chapter

examines the architecture of a Flash application.

You can download the files related to this chapter

from www.dummies.com/go/flashallinone.

Organizing a Flash Page
The first step in creating a Flash page is organiz-

ing it. Throughout this book, we discuss organizing

everything from symbols to components, and now

we’re going to let you in on our secret Web-site organiza-

tion tools: a pen and a piece of paper! Now that you’re in on

our secret, take a look at a simple piece of Flash CS4 architecture

in Figure 3-1.

In this example, you see two of the three dimensions: horizontal and vertical

positioning of materials. If the objects and media on the Stage never change,

you can think of that space on the page as being two-dimensional. There’s

nothing wrong with two-dimensional objects, but separating them from the

three-dimensional objects on a Flash page is important, because Flash takes

a different approach to placing objects on the Stage and the kinds of con-

tainers that hold the objects.

42_385395-bk07ch03.indd 53342_385395-bk07ch03.indd 533 10/28/08 8:43:44 PM10/28/08 8:43:44 PM

Organizing a Flash Page534

(Possibly SWF)

About

Pictures Text

Contact

Links

Text HeaderLogo

Graphic or SWF

Menu

Figure 3-1: Begin with a simple drawing of what you want on a page.

Separating static and dynamic elements
The next step is separating the static materials (two-dimensional) from the

dynamic (three-dimensional). Static materials don’t change, which means

that their content doesn’t change. (For purposes of this discussion, static

materials don’t require ActionScript 3 to make changes.) Dynamic materials,

on the other hand, must have some way of changing.

In looking at your initial sketch of your Web site, think about what won’t change.

To get you started, Table 3-1 lists some common static and dynamic elements.

Table 3-1 Static and Dynamic Elements
Static Dynamic

Logo Pictures

Header About

Menu Contact

Links

You can place all static elements by positioning them on the Stage. In looking

at these elements in Table 3-1, you can be pretty sure that the logo isn’t going

to change unless the client is a conglomerate that has several pages each with

a different company sporting a unique logo. The header is a little more prob-

lematic, because it can be either static or dynamic (a header created with a

42_385395-bk07ch03.indd 53442_385395-bk07ch03.indd 534 10/28/08 8:43:44 PM10/28/08 8:43:44 PM

Organizing a Flash Page 535

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

dynamic text field, for example). Likewise, you may think of a menu as being a

fairly stable element, but if the contents of the page change when other mate-

rials on the page do, the contents of the menu could change as well.

In Table 3-1, most elements listed are dynamic, and the static elements could

be dynamic if the nature of the Web site changed. So you may want to use

dynamic containers for all the elements and simply leave the static elements

unchanged.

If you spend time creating a design, you probably don’t want to reinvent the

wheel every time you start a new application that’s similar to one you’ve

already made, or to rebuild an entire site to make a few changes.

Build every site with the assumption that it will change. In fact, build every

site as though you want to make changes. Embrace fluidity even if you create

a static site.

Laying out the parts
After you know which elements of your site will be static and which will

be dynamic, you need to replace your rough drawing with actual objects.

(Chapter 2 in this minibook shows a good cross section of the components

you might want to use.) The design is quite simple, keeping the focus on the

information design instead of the graphic design. (Good graphic design and

information design aren’t mutually exclusive, however — quite the opposite.)

Figure 3-2 shows the hand-drawn layout of Figure 3-1 replaced with actual

content holders.

Figure 3-2: Flash page with rough layout of page elements.

42_385395-bk07ch03.indd 53542_385395-bk07ch03.indd 535 10/28/08 8:43:45 PM10/28/08 8:43:45 PM

Organizing a Flash Page536

UILoader components
Immediately, you see that the UILoader component is used in three places:

 ✓ Logo

 ✓ Picture 1

 ✓ Picture 2

You may wonder why we use a UILoader for the logo; after all, the logo is

listed as a static element in Table 3-1, earlier in this chapter. Note that the

sketch in Figure 3-1 shows that logo will be either a graphic or an .swf file.

The UILoader component can load both graphic files and .swf files, so it

provides a dynamic general-use container. Placing a bitmap image, vector

graphic, or movie clip in the top-left corner of the Stage is perfectly func-

tional, but when the time comes to make changes or add different content

for a new site, you may wish that you had used a more dynamic container.

List component
The menu uses a List component. For this example, we could have used

radio buttons, symbol buttons, Button components, or anything else that a

user can click to change content, but we chose the List component because

a single selection has both label and data content that can be used with

ActionScript. The size of the menu in this example is based on the sketch in

Figure 3-1, but if the menu requires only a few selections, we can go back and

revise that space.

TextArea component
If the Flash site you’re building will have lots of text, the size and position

of the TextArea component may be a problem. Instead of having one big

TextArea component, as in our example, you may want to use two smaller

ones that explain what the pictures mean. Figure 3-3 shows two UILoader

placeholders for images and the smaller TextArea components beneath.

These small TextArea components act as extended captions.

As you can see, a little rearrangement and the addition of a second TextArea

component alter the functionality of the sample page, but the Flash applica-

tion maintains its basic style and look.

We created the examples in this section from a single sketch. In building a

real site, however, we would use many more sketches to experiment with

different ideas and looks. In all likelihood, we would have included a sketch

with different arrangements and numbers of TextArea components.

42_385395-bk07ch03.indd 53642_385395-bk07ch03.indd 536 10/28/08 8:43:45 PM10/28/08 8:43:45 PM

Organizing a Flash Page 537

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

Figure 3-3: Alternative arrangement of picture holders and
TextArea.

Header TextField
In our example, the TextField component that serves as the header is a static

text field. If we used a dynamic text field instead, would the difference be

significant? We don’t see how. If we used a dynamic TextField component

instead, we could incorporate the same design into other Flash applications

that needed a dynamic header.

Button components
On the far right side of Figure 3-2, you see the little Button components that

we added to the application. These components are so small that we had no

room for labels inside the buttons, so we placed the labels in static TextField

components below the buttons. (In a case like this, you may simply want to

create new buttons.)

Also, you have to think about where the information from these buttons

is going to be placed. The About button could place information in the

TextArea component; so could the Contact button. The Links button is a bit

more problematic. You could have a separate page appear with the links, or

(using HTML text) you could place the links in the TextArea component.

Text labels
The final content holders in the example are the labels that we had to add

for the buttons. We could have added other static labels where needed, but

because the labels work with either Button components or with buttons cre-

ated on the Stage or stored in the Library panel, we have other options.

42_385395-bk07ch03.indd 53742_385395-bk07ch03.indd 537 10/28/08 8:43:45 PM10/28/08 8:43:45 PM

Organizing a Flash Page538

Graphic elements and the grid
The graphic elements are nothing more than a few background rectangles

that provide backdrops for the buttons and graphic holders. The 16-pixel

squares that make up the grid are the default size in Flash CS4. Virtually

every good design book suggests arranging elements on a grid, so if you

don’t use your grid, you may want to develop the habit of doing so.

Organizing the layout for ActionScript
The most dynamic site imaginable is one in which everything can be placed

when you run your application. Using the position information from your

rough layout of a page, you can write an ActionScript program that places all

the elements you need on the Stage. You can use Flash components for every-

thing other than the TextField class, which you develop wholly from code.

If you have both the Library and Component panels in the dock, you can

have only one of these panels open at a time. But if you place a component

on the Stage and then delete it, that component stays in the Library panel, so

this method is an easy way to get the components you need into the Library.

Finding the coordinates
In Figure 3-2, all the components are laid out in the positions shown in the

sketch in Figure 3-1 and resized to fit the area required. By selecting each

component in your design and examining the values in the Properties panel,

you can construct a table that contains all the coordinates information you

need. Table 3-2 shows the instance names, x and y coordinates, and width

and height of the components. Your own application will differ, but you need

to make a record of similar information for the components in your layout.

Table 3-2 Element Coordinates
Element Instance Name X Y W H

UILoader logo 16 16 80 80

List menu 16 112 100 256

UILoader pix1 130 144 64 64

UILoader pix2 130 256 64 64

TextField header 172 16 262 49

TextArea ta 208 112 286 256

Button b1 508 112 30 22

Button b2 508 224 30 22

Button b3 508 334 30 22

At this point, you should remove everything from the Stage except the

underlying design and static text labels for the buttons.

42_385395-bk07ch03.indd 53842_385395-bk07ch03.indd 538 10/28/08 8:43:45 PM10/28/08 8:43:45 PM

Organizing a Flash Page 539

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

Figure 3-4 shows what the application example looks like when all the ele-

ments that ActionScript 3 will generate are removed.

Figure 3-4: Base page.

Placing the objects on the Stage
The next step is placing the dynamic elements of your page on the Stage.

Follow these steps:

 1. Open a new ActionScript file and save it as Manage.fla.

 2. Place the background elements of your application on the Stage.

 For this example, use the elements shown in Figure 3-4, earlier in this

chapter.

 3. Choose Window➪Extensions➪Kuler from the menu bar to open the

Kuler panel.

 For this example, type Bordeaux in the search window (the one with the

little magnifying glass) of Kuler. After Bordeaux is found, select it and click

the right-pointing arrow and choose Add to Swatches Panel. The following

colors (using their hexadecimal values) appear in the Swatches panel:

 • F7F2B2: Header backdrop, button label

 • ADCF4F: Background

 • 84815B: Button backdrop

 • 4A1A2C: Header text

 • 8E3557: Image backdrop

 Feel free to use a different Kuler palette or to design your own.

42_385395-bk07ch03.indd 53942_385395-bk07ch03.indd 539 10/28/08 8:43:45 PM10/28/08 8:43:45 PM

Organizing a Flash Page540

 4. Save the file.

 5. Open the Properties panel, type Manage as the class name, and save

the file again.

 Dynamically created UILoader components have no visible parts when

they’re loaded to the Stage without any content, so you have to provide

some.

 6. Using your favorite graphics

program, create a UILoader

placeholder.

 For this example, create a square,

136 x 136 pixels, colored bur-

gundy (0x4A1A2C). Add the text

label “UILoad”, colored cream

(0xF7F2B2). Then save the place-

holder as ph.png in the same folder

as the Manage.fla file. Figure 3-5

shows what the example looks like.

 If you don’t have a graphics pro-

gram handy, you can always use

Flash CS4. For this example, a 136

x 136 square with the features

specified in Step 6 will do the trick.

Name it ph.swf. Later, when you write the ActionScript, use “ph.swf”

instead of “ph.png” where you see source=”ph.png”.

 7. Open a new ActionScript file, and save it as Manage.as in the same

folder as Manage.fla.

 8. Using your coordinates table as a guide, enter ActionScript code to

populate the Stage with dynamic containers.

 For this example, use the coordinates in Table 3-2 to enter the following

code:

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.text.TextFormat;
 import flash.text.TextFieldType;
 import fl.containers.UILoader;
 import fl.controls.Button;
 import fl.controls.TextArea;
 import fl.controls.List;

 public class Manage extends Sprite
 {
 private var logo:UILoader;
 private var menu:List;

Figure 3-5: Placeholder for UILoad
components.

Organizing a Flash Page 541

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

 private var pix1:UILoader;
 private var pix2:UILoader;
 private var header:TextField;
 private var ta:TextArea;
 private var about:Button;
 private var contact:Button;
 private var links:Button;
 private var textStyle:TextFormat;

 public function Manage()
 {
 logo=new UILoader();
 logo.scaleContent=true;
 logo.autoLoad=true;
 logo.source=”ph.png”;
 logo.x=16, logo.y=16;
 logo.width=80, logo.height=80;
 addChild(logo);

 menu=new List();
 menu.x=16, menu.y=112;
 menu.width=100, menu.height=256;
 addChild(menu);

 pix1=new UILoader();
 pix1.x=130, pix1.y=144;
 pix1.width=64, pix1.height=64;
 pix1.scaleContent=true;
 pix1.autoLoad=true;
 pix1.source=”ph.png”;
 addChild(pix1);

 pix2=new UILoader();
 pix2.x=130, pix2.y=256;
 pix2.width=64, pix2.height=64;
 pix2.scaleContent=true;
 pix2.autoLoad=true;
 pix2.source=”ph.png”;
 addChild(pix2);

 //TextFormat goes here

 header=new TextField ;
 header.type=TextFieldType.DYNAMIC;
 header.x=172, header.y=16;
 header.width=262,header.height=49;
 header.autoSize=TextFieldAutoSize.LEFT;
 header.selectable=false;
 header.textColor=0x4A1A2C;
 header.text=”Dynamic Ideas”;
 addChild(header);

 ta=new TextArea();
 ta.x=208, ta.y=112;

42_385395-bk07ch03.indd 54142_385395-bk07ch03.indd 541 10/28/08 8:43:46 PM10/28/08 8:43:46 PM

Organizing a Flash Page542

 ta.width=286, ta.height=256;
 addChild(ta);

 //Buttons
 about=new Button();
 about.x=508, about.y=112;
 about.width=30, about.height=22;
 about.label=”|”;
 addChild(about);

 contact=new Button();
 contact.x=508, contact.y=224;
 contact.width=30, contact.height=22;
 contact.label=”|”;
 addChild(contact);

 links=new Button();
 links.x=508, links.y=334;
 links.width=30, links.height=22;
 links.label=”|”;
 addChild(links);

 }
 //handler functions go here
 }
}

 9. Save the file.

 10. Test the application.

 At this point, the example looks like Figure 3-6.

Figure 3-6: Dynamically created elements on the Stage.

42_385395-bk07ch03.indd 54242_385395-bk07ch03.indd 542 10/28/08 8:43:46 PM10/28/08 8:43:46 PM

Styling Code 543

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

In looking at Figure 3-6, you see immediately that the header text is the

wrong size and not necessarily in the font you want. (It certainly is different

from the example shown in Figure 3-2.) Nevertheless, what you see is very

close to the initial sketch. You can remedy the problems by adding a section

of code that takes care of styling issues.

Styling Code
In the preceding section, you may have noticed that a comment in the code

reserved some space for styling. You may think of style as being a static fea-

ture of any page, but like content in a Flash page, style can also be dynamic.

In this particular case, we’re not suggesting making a dynamic change to a

page’s style, but pointing out that style is in fact a dynamic element because

it can be changed after the page is launched.

In this section, you see how to set the style of the elements on the page.

Formatting the TextField class
with the TextFormat class
To format text in a TextField object, you must adopt a TextFormat object.

The TextFormat class has the following properties (among others) that you

need to format text just the way you want it:

 ✓ bold

 ✓ color

 ✓ font

 ✓ italic

 ✓ size

To work its magic, the TextFormat instance is assigned to a TextField

instance, using this statement:

MyTextField.defaultTextFormat=MyTextFormat;

So all that’s necessary is to add the styles you want to the TextFormat

instance and then assign the whole thing to the TextField instance. (Those

among you who are sharp of eye will notice a little overlap with one of the

properties. We’d never dream of insulting your intelligence by pointing out

which property that is, though.)

In the application example, you haven’t specified a font. Some fonts, such as

Arial Black are big and bold to begin with, so you may not have to specify

that the font is bold — as you’d expect for header text. You have to add to

the script in the Manage.as file to get the style you want for the header.

42_385395-bk07ch03.indd 54342_385395-bk07ch03.indd 543 10/28/08 8:43:46 PM10/28/08 8:43:46 PM

Styling Code544

By great good fortune, you’ve declared a variable, textStyle:TextFormat,

that you can use. The necessary class import of TextFormat has been taken

care of as well. So all you need to do is to find the commented line

//TextFormat goes here

and add the following code just below it:

textStyle=new TextFormat();
textStyle.font=”Arial Black”;
textStyle.size=32;
textStyle.color=0x4A1A2C;

Next, right after the line

header=new TextField();

add this line:

header.defaultTextFormat=textStyle;

You’re good to go. Test the application again, and you should see what you

do in Figure 3-7.

Figure 3-7: Styling a TextField instance with a TextFormat
instance.

Applying dynamic text style to UI components
Reformatting the text in a TextField is easy. All you have to do is whip up a

TextFormat you like and apply it to the TextField instance. Can you do the

42_385395-bk07ch03.indd 54442_385395-bk07ch03.indd 544 10/28/08 8:43:46 PM10/28/08 8:43:46 PM

Styling Code 545

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

same with UI components? Fortunately, the answer is yes. (You knew that.

We can’t surprise you no matter what!)

If you look at the ActionScript 3.0 Reference that jumps up when you click

the Help icon in an ActionScript file, you can find the UIComponent class —

the parent class for all the UI components discussed in this chapter. For

most classes, you find properties and methods, as well as events that can be

used with the class. For the UIComponent class, you find four types of styles:

 ✓ disabledTextFormat

 ✓ focusRectPadding

 ✓ focusRectSkin

 ✓ textFormat

Of these four styles, all you need is the textFormat style. With it, you can

apply styles from a TextFormat class. So you can not only style the text in

your UI components but also use the TextFormat class to do so. (In other

words, you don’t have to find out about a whole separate class to style the

text in UI components.)

The little things always get people in trouble. The class TextFormat uses an

uppercase T, and the style textFormat uses a lowercase t. This difference is

little, but it may jump up and get you when you least expect it.

Following is the general format for adding a text format to a UI component:

var uiFormat:TextFormat = new TextFormat();
uiFormat.property=”value”
uiComponent.setStyle(“textFormat”, uiFormat);

The property can be any of the TextFormat class properties, such as font,

color, and size.

This example shows you how to set the text style for a Label component.

Follow these steps:

 1. Open a new ActionScript file, and save it as LabelStyle.fla.

 2. Type LabelStyle in the Class box of the Properties panel, and save the

file again.

 3. Open a new ActionScript file, and save it as LabelStyle.as.

 4. Enter the following code:

package
{
 import fl.controls.Label;
 import flash.display.Sprite;
 import flash.text.TextFormat;

42_385395-bk07ch03.indd 54542_385395-bk07ch03.indd 545 10/28/08 8:43:47 PM10/28/08 8:43:47 PM

Styling Code546

 public class LabelStyle extends Sprite
 {
 private var labFormat:TextFormat;
 private var formLabel:Label;

 public function LabelStyle()
 {
 labFormat=new TextFormat();
 labFormat.font=”Comic Sans MS”;
 //labFormat.font=”Blackoak Std”;
 labFormat.size=24;
 labFormat.bold=true;
 labFormat.color=0xcc0000;

 formLabel=new Label();
 formLabel.x=100,formLabel.y=100;
 formLabel.height=36;
 formLabel.width=150;
 formLabel.text=”Styled Label”;
 formLabel.setStyle(“textFormat”,labFormat);
 addChild(formLabel);
 }
 }
}

 5. Save the file.

 6. Test the application.

 When you do, you should see the

output shown in Figure 3-8.

In looking at the ActionScript, notice

that the size of the font is set to 24

points (labFormat.size=24) and

that the height of the Label component

is set to 36 (formLabel.height=36).

The reason for those settings is that font designs determine the actual size.

If you used a small font like Times New Roman, you would have been able to

set the Label height to 24, and everything would have fit fine. Comic Sans MS,

however, is designed for use as a display font. Display fonts tend to be larger

in both height and width; they’re typically used in headers, because their size

attracts the user’s attention. A typical body-text font like Times New Roman,

though, will fit, based on matching the font size to the Label text container.

Likewise, fonts take up different amounts of horizontal space. If your system

has a large font such as Blackoak Std, change the lines to use the larger font,

as follows:

//labFormat.font=”Comic Sans MS”;
labFormat.font=”Blackoak Std”;

Test the application again. This time, you see the image shown in Figure 3-9.

Figure 3-8: Label UI component with styled
text.

42_385395-bk07ch03.indd 54642_385395-bk07ch03.indd 546 10/28/08 8:43:47 PM10/28/08 8:43:47 PM

Styling Code 547

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

Figure 3-9: Label UI component with styled text.

Because Blackoak Std is a wider font than Comic Sans MS, you would have

to change the width of the Label component to see all the label text. The

heights of the two fonts are close to the same, however. When you use differ-

ent fonts with UI components, you have to make adjustments based on the

font family in use and the selected font size.

Styling the Button components
In the fast world of the Internet, you often see icons on buttons to show the

user at a glance what those buttons are for. In this section, you see how

to add graphic characters to buttons by using the Wingdings font, which

features graphic symbols instead of just alphanumeric characters. (Note:

The Wingdings font is a common graphics font. If you don’t have it in your

system, use another with symbols of your own choosing.)

The plan is to place the following symbols from the Wingdings font on the

buttons in the application example:

Button Symbol Code

About [$]

Contact % [(]

Links ≈ [h]

The About button has a pair of reading glasses next to it; Contact, a tele-

phone; and Links, a couple of wavy lines. In the code, you use the character

to the right in brackets.

42_385395-bk07ch03.indd 54742_385395-bk07ch03.indd 547 10/28/08 8:43:47 PM10/28/08 8:43:47 PM

Styling Code548

Make changes to the button-code section where you see the line

//Buttons

Replace the existing code with the following in that section of the Manage.
as file:

//Buttons
btnFormat=new TextFormat();
btnFormat.font=”Wingdings”;
btnFormat.size=16;

about=new Button();
about.label=”$”;
about.setStyle(“textFormat”, btnFormat);
about.x=508, about.y=112;
about.width=30, about.height=22;
addChild(about);

contact=new Button();
contact.label=”(“;
contact.setStyle(“textFormat”, btnFormat);
contact.x=508, contact.y=224;
contact.width=30, contact.height=22;
addChild(contact);

links=new Button();
links.label=”h”;
links.setStyle(“textFormat”, btnFormat);
links.x=508, links.y=334;
links.width=30, links.height=22;
addChild(links);

Save the file, and test your application. Figure 3-10 shows what the buttons

in the sample application should look like.

Adding selections to the List component
Next, you need to turn to the blank menu and see what you can do about

adding content. For the application example, use the following list of services:

 ✓ Site Architecture

 ✓ Graphic Design

 ✓ Flash Animations

 ✓ ActionScript 3.0 Development

 ✓ Video Development

 ✓ Streaming Video

 ✓ Site Conversion

42_385395-bk07ch03.indd 54842_385395-bk07ch03.indd 548 10/28/08 8:43:48 PM10/28/08 8:43:48 PM

Styling Code 549

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

Figure 3-10: Buttons with styled text.

To add content to a List component, you need a DataProvider object. Next,

you add the menu selections to the DataProvider. Finally, you assign the

DataProvider to the List.dataProvider and all the data to the List object.

You create and add data to a DataProvider instance by using the following

format:

var appData:DataProvider=new DataProvider();
appData.addItem({label:”Row Name”, data: 22});

The first element is the label that appears in the List as a row name; the

second value, data, is a numeric or string value. In this example, the List

component would display “Row Name” and the data value 22.

Next, to assign the data in the data provider to a List component, you use

the following format:

appList.dataProvider=appData;

List.dataProvider is a List property, so a simple assignment is all you

need.

In the application example, the List has the instance name menu, so all you

have to do is add the items to the data provider and then assign the data

provider to menu. First, though, you need to import the DataProvider, so add

the following line to the list of import statements:

import fl.data.DataProvider;

42_385395-bk07ch03.indd 54942_385395-bk07ch03.indd 549 10/28/08 8:43:48 PM10/28/08 8:43:48 PM

Styling Code550

Where you have all the private variables lined up, attach the following to the

bottom of the list:

private var menuData:DataProvider;

Now you’re ready to change the menu ActionScript in the Manage.as file:

//Menu data and menu
var asd:String=”ActionScript \n3.0 Development”;
menuData=new DataProvider();
menuData.addItem({label:”Site Architecture”});
menuData.addItem({label:”Graphic Design”});
menuData.addItem({label:”Flash Animations”});
menuData.addItem({label: asd});
menuData.addItem({label:”Video \nDevelopment”});
menuData.addItem({label:”Streaming Video”});
menuData.addItem({label:”Site Conversion”});

menu=new List();
menu.rowHeight=36
menu.rowCount=7;
menu.labelField=”label”;
menu.dataProvider=menuData;
menu.x=16,menu.y=112;
menu.width=100,menu.height=256;
addChild(menu);

Save the changes you made, and test the application. This time, you see

menu selections for the List component, as shown in Figure 3-11.

Figure 3-11: Menu choices added dynamically.

42_385395-bk07ch03.indd 55042_385395-bk07ch03.indd 550 10/28/08 8:43:48 PM10/28/08 8:43:48 PM

Styling Code 551

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

As you see in Figure 3-11, two menu selections take up two lines: ActionScript

3.0 Development and Video Development. By establishing a row height of

36, you have plenty of room to have text on two lines in a single row. Rather

than make the List component wider, all you need to do is use the \n charac-

ter to inject a line break.

Adding text to the TextArea component
Your last task in the application example is to get some text to the TextArea

component and add the style you want. In Chapter 2 of this minibook, you

see how to pull data out of a text file and display it in a TextArea component.

You do that again in this section and at the same time add some style.

At this stage, you’ve made so many changes that we decided to provide the

entire code for the Manage.as file. In this way, you can see how everything

works together without having to flip back and forth too much. Just follow

these steps:

 1. Replace the current Manage.as code with the following code:

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.text.TextFormat;
 import flash.text.TextFieldType;
 import fl.containers.UILoader;
 import fl.controls.Button;
 import fl.controls.TextArea;
 import fl.controls.List;
 import fl.data.DataProvider;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.net.URLLoaderDataFormat;
 import flash.events.Event;

 public class Manage extends Sprite
 {
 private var logo:UILoader;
 private var menu:List;
 private var pix1:UILoader;
 private var pix2:UILoader;
 private var header:TextField;
 private var ta:TextArea;
 private var about:Button;
 private var contact:Button;
 private var links:Button;
 private var headerText:String;
 private var asd:String;
 private var textStyle:TextFormat;
 private var btnFormat:TextFormat;
 private var taFormat:TextFormat;
 private var menuData:DataProvider;
 private var taLoader:URLLoader;
 private var textURL:String;

42_385395-bk07ch03.indd 55142_385395-bk07ch03.indd 551 10/28/08 8:43:49 PM10/28/08 8:43:49 PM

Styling Code552

 public function Manage()
 {
 //Holder for logo
 logo=new UILoader();
 logo.scaleContent=true;
 logo.autoLoad=true;
 logo.source=”ph.swf”;
 logo.x=16,logo.y=16;
 logo.width=80,logo.height=80;
 addChild(logo);

 //Menu data provider
 asd=”ActionScript \n3.0 Development”;
 menuData=new DataProvider();
 menuData.addItem({label:”Site Architecture”});
 menuData.addItem({label:”Graphic Design”});
 menuData.addItem({label:”Flash Animations”});
 menuData.addItem({label:asd});
 menuData.addItem({label:”Video \nDevelopment”});
 menuData.addItem({label:”Streaming Video”});
 menuData.addItem({label:”Site Conversion”});

 //Create menu
 menu=new List();
 menu.rowHeight=36;
 menu.rowCount=7;
 menu.labelField=”label”;
 menu.dataProvider=menuData;
 menu.x=16,menu.y=112;
 menu.width=100,menu.height=256;
 addChild(menu);

 //Create two image containers
 pix1=new UILoader();
 pix1.x=130,pix1.y=144;
 pix1.width=64,pix1.height=64;
 pix1.scaleContent=true;
 pix1.autoLoad=true;
 pix1.source=”ph.png”;
 addChild(pix1);

 pix2=new UILoader();
 pix2.x=130,pix2.y=256;
 pix2.width=64,pix2.height=64;
 pix2.scaleContent=true;
 pix2.autoLoad=true;
 pix2.source=”ph.png”;
 addChild(pix2);

 //TextFormat goes here
 textStyle=new TextFormat();
 textStyle.font=”Arial Black”;
 textStyle.size=32;
 textStyle.color=0x4A1A2C;

 //Create header
 headerText=”Dynamic Ideas”;
 header=new TextField();
 header.defaultTextFormat=textStyle;
 header.type=TextFieldType.DYNAMIC;
 header.x=172,header.y=16;
 header.width=262,header.height=49;

42_385395-bk07ch03.indd 55242_385395-bk07ch03.indd 552 10/28/08 8:43:49 PM10/28/08 8:43:49 PM

Styling Code 553

Book VII
Chapter 3

The Art and Science
of Creating a Flash

Application

 header.autoSize=TextFieldAutoSize.LEFT;
 header.selectable=false;
 header.textColor=0x4A1A2C;
 header.text=headerText;
 addChild(header);

 //Format style for TextArea content
 taFormat=new TextFormat();
 taFormat.font=”Verdana”;
 taFormat.size=11;
 taFormat.bold=false;
 taFormat.color=0x4A1A2C;

 //Create TextArea component
 ta=new TextArea();
 ta.editable=false;
 ta.x=208,ta.y=112;
 ta.width=286,ta.height=256;
 addChild(ta);

 //Create loader for TextArea
 taLoader=new URLLoader();
 taLoader.dataFormat=URLLoaderDataFormat.TEXT;
 taLoader.addEventListener(Event.COMPLETE,taText);
 textURL=”text.txt”;
 taLoader.load(new URLRequest(textURL));
 ta.setStyle(“textFormat”, taFormat);

 //Format for buttons
 btnFormat=new TextFormat();
 btnFormat.font=”Wingdings”;
 btnFormat.size=16;

 //About, Contact and Links buttons
 about=new Button();
 about.label=”$”;
 about.setStyle(“textFormat”, btnFormat);
 about.x=508,about.y=112;
 about.width=30,about.height=22;
 addChild(about);

 contact=new Button();
 contact.label=”(“;
 contact.setStyle(“textFormat”, btnFormat);
 contact.x=508,contact.y=224;
 contact.width=30,contact.height=22;
 addChild(contact);

 links=new Button();
 links.label=”h”;
 links.setStyle(“textFormat”, btnFormat);
 links.x=508,links.y=334;
 links.width=30,links.height=22;
 addChild(links);
 }
 //handler functions go here
 private function taText(e:Event):void
 {
 ta.text=e.target.data;
 }
 }
}

42_385395-bk07ch03.indd 55342_385395-bk07ch03.indd 553 10/28/08 8:43:49 PM10/28/08 8:43:49 PM

Styling Code554

 2. Create a text file using Notepad (or TextEdit on the Mac), and enter

the following text:

 All the text that goes into the TextArea component should be consis-

tent with the design of the application. In this case, a sans serif font,

Verdana, is used because it is easy to read — primarily because it was

designed to be used for viewing on a computer screen. The 11-point

font size is easily readable but doesn’t take up an inordinate amount of

space.

 Information from the About, Contact, and Links buttons could use this

space as well. Each could load an appropriate text file to tell the viewer

about the selected information.

 You can also use selections from the Menu to add material in this space

as well as bring up appropriate images to accompany the text. Because

the image holders are adjacent to this text, the association is better

enforced.

 3. Save the file as text.txt.

 4. Place the text.txt file in the same folder as the Manage.fla file.

 Figure 3-12 shows what you see.

Figure 3-12: Completed dynamic layout.

ActionScript provides a great deal of flexibility for developing dynamic

Flash applications. For some people, this approach may appear to be a great

deal more work than a static layout should require. Remember, however,

that other than the few things placed on the Stage, the entire application is

dynamic. Now you can develop virtually everything on a page by using code

and change it while the application is running.

42_385395-bk07ch03.indd 55442_385395-bk07ch03.indd 554 10/28/08 8:43:49 PM10/28/08 8:43:49 PM

Chapter 4: Up in the AIR

In This Chapter
✓ Understanding AIR applications

✓ Working with AIR files

✓ Converting Flash to AIR

✓ Writing AIR-only ActionScript applications

Besides using Flash on the Internet, you can use Flash as a desktop

application, just as you would your word processor or favorite game.

While Adobe AIR was introduced in Flash CS3, using it in Flash CS4 is even

simpler and more robust. The idea behind AIR is that if you have developed

a skill set for an Internet application such as Flash, you can leverage that

skill to make applications that run directly from the desktop without having

to have Flash open and running.

The AIR on Your Desktop
Flash CS4 lets you create AIR applications, just

as you would create any other Flash application

to run on a Web hosting service. What’s more,

ActionScript 3 classes that are available for

exclusive use with AIR allow you to do things on

your desktop that may be difficult or impossible

to do on the Internet. So you’re getting bonus

classes by creating AIR applications.

You’ll be surprised by how easily you can develop

AIR applications. If you want, you can even convert

existing Flash applications to AIR versions, as you see

later in this chapter.

If you don’t already have AIR, download it from www.adobe.com. It’s a free

application, and you can use it with Adobe Dreamweaver and applications

other than Flash CS4.

43_385395-bk07ch04.indd 55543_385395-bk07ch04.indd 555 10/28/08 8:44:43 PM10/28/08 8:44:43 PM

556 Making a Simple AIR Application

Making a Simple AIR Application
To get up and running with AIR, in this section you create a simple applica-

tion that uses standard Flash and ActionScript. The application, which con-

verts miles to kilometers and kilometers to miles, is a conversion program

for bicyclists who compete in both American and European cycling events.

It helps users get an intuitive feel for the length of the cycling course by

converting it to the units of measurement with which they feel most comfort-

able, and it’s simple to use: If the user enters values in the miles box, any

values in the kilometer box are cleared, and vice versa.

Creating the Flash file
In this first set of steps, you create a Flash file. Because certain subtle differ-

ences exist, we go into a little more detail than usual to keep you on track.

Follow these steps:

 1. Open a new AIR file, as shown in Figure 4-1.

 2. Save the file as KlickConvert.fla.

Figure 4-1: Opening a new AIR file.

43_385395-bk07ch04.indd 55643_385395-bk07ch04.indd 556 10/28/08 8:44:44 PM10/28/08 8:44:44 PM

557

Book VII
Chapter 4

Up in the AIR

Making a Simple AIR Application

 3. Open the Properties panel, type KlickConvert in the Class window,

and save the file again.

 4. Set the background color to E5DFC2 (tan), and put the following colors

in the Swatches panel for easy access:

 • F0D513 (yellow)

 • D40022 (red)

 • 61261E (brown)

 • E5DFC2 (tan)

 Check out Book II, Chapter 2 for details on using hexadecimal values for

colors.

 5. Use the Oval, Paint, and Line

tools to draw an abstract bicycle,

using the colors in the Swatches

panel.

 Figure 4-2 shows a simple bicycle

drawing.

 6. Select the image and convert

it to a symbol by choosing

Modify➪Convert to Symbol

from the menu bar (or press F8)

to open the Convert to Symbol

dialog box.

 7. Place the image in the top center

of the Stage (refer to Figure 4-2).

Below it, add the static text Kilometer – Mile Converter and save the

file.

 8. Drag two TextInput components and one Button component to the

Stage.

 9. Place one TextInput component on the left side of the Stage and give

it the instance name miles in the Properties panel; place the other

TextInput component on the right side of the Stage and give it the

instance name klicks.

 10. Add the static text Miles below the left TextInput component and the

static text Kilometers below the right TextInput component.

 At this point, your application should look like the one shown in

Figure 4-2.

Figure 4-2: Graphic image in symbol format.

43_385395-bk07ch04.indd 55743_385395-bk07ch04.indd 557 10/28/08 8:44:44 PM10/28/08 8:44:44 PM

558 Making a Simple AIR Application

 11. Center the Button component on the Stage below the two TextInput

components, and give it the instance name convert in the Properties

panel (see Figure 4-3).

 12. Save the file.

Figure 4-3: A completed application.

Creating the ActionScript file
Now you’re ready to create the ActionScript. Follow these steps:

 1. Open a new ActionScript file, and save it as KlickConvert.as in the

same folder as the KlickConvert.fla file.

 2. Add the following code:

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.events.FocusEvent;

 public class KlickConvert extends Sprite
 {
 private var distance:Number;

 public function KlickConvert()
 {
 convert.label=”Convert”;
 klicks.addEventListener(FocusEvent.FOCUS_IN,clearMiles);

43_385395-bk07ch04.indd 55843_385395-bk07ch04.indd 558 10/28/08 8:44:44 PM10/28/08 8:44:44 PM

559

Book VII
Chapter 4

Up in the AIR

Making a Simple AIR Application

 miles.addEventListener(FocusEvent.FOCUS_IN,clearKlicks);
 convert.addEventListener(MouseEvent.CLICK, doConvert);
 }

 private function clearMiles(e:FocusEvent):void
 {
 miles.text=””;
 }

 private function clearKlicks(e:FocusEvent):void
 {
 klicks.text=””;
 }

 private function doConvert(e:MouseEvent):void
 {
 if (klicks.text==””)
 {
 distance=Number(miles.text)*1.61;
 klicks.text=distance.toFixed(2);
 }
 else
 {
 distance=Number(klicks.text)/1.61;
 miles.text=distance.toFixed(2);
 }
 }
 }
}

 3. Save the KlickConvert.as file.

 4. Test the application as you would any other Flash file.

 As soon as you enter a number in one of the TextInput boxes, the

application clears the text in the other box. The algorithm is set up to

multiply or divide by 1.6, depending on which TextInput component is

selected. Figure 4-4 shows what you can expect to see.

Notice that the Output panel shows the following:

[SWF] KlickConvert.swf - 41873 bytes after decompression

This message is characteristic of an AIR application. When the test is com-

plete, the Output panel adds the following:

Test Movie terminated.

That message, too, is characteristic of an AIR application. When you see

those messages, you know you’re on the right track.

43_385395-bk07ch04.indd 55943_385395-bk07ch04.indd 559 10/28/08 8:44:44 PM10/28/08 8:44:44 PM

560 Making a Simple AIR Application

Figure 4-4: Converting miles to kilometers.

Publishing the AIR file
Unlike publishing a regular Flash file, publishing a Flash file as an AIR file is a

bit more involved. In this section, you publish as an AIR file the Flash file you

created in the preceding sections. Follow these steps.

 1. Select the KlickConvert.fla file and choose File➪AIR Settings.

 The AIR – Application & Installer Settings dialog box appears.

 2. Fill out the dialog box as shown in Figure 4-5.

 The first four windows are filled out for you. Adding a description and

copyright are optional. Likewise, the Destination and Included files are

filled out.

 3. Click the Publish AIR File button.

 The Digital Signature dialog box appears, as shown in Figure 4-6.

43_385395-bk07ch04.indd 56043_385395-bk07ch04.indd 560 10/28/08 8:44:44 PM10/28/08 8:44:44 PM

561

Book VII
Chapter 4

Up in the AIR

Making a Simple AIR Application

Figure 4-5: The AIR – Application & Installer Settings dialog box.

Figure 4-6: Setting up a digital signature.

43_385395-bk07ch04.indd 56143_385395-bk07ch04.indd 561 10/28/08 8:44:45 PM10/28/08 8:44:45 PM

562 Making a Simple AIR Application

 4. Click the Create button to the right of the Certificate box.

 (After you create other digital certificates, you can browse for them or

choose them from the pull-down Certificate menu in this dialog box.)

 The Create Self-Signed Digital Certificate dialog box opens (see

Figure 4-7).

Figure 4-7: Creating a digital certificate.

 5. When you fill out the dialog box, fill out all windows. Click OK when

you’re finished.

 You can use any name your want for the publisher name, organizational

unit, and organization name. Then select a country from the pop-up

menu and add and confirm a password. Leave the type as 1024-RSA, and

save it as a name of your selection. As soon as you click OK, the digital

certificate is complete.

 6. After you click OK for the digital certificate, click OK for both dialog

boxes — Create Self-Signed Digital Certificate and AIR – Application &

Installer Settings.

 Your AIR application is now created.

Installing and testing the application
To install the AIR file on your computer to run as a standard application,

follow these steps:

43_385395-bk07ch04.indd 56243_385395-bk07ch04.indd 562 10/28/08 8:44:46 PM10/28/08 8:44:46 PM

563

Book VII
Chapter 4

Up in the AIR

Making a Simple AIR Application

 1. Open the location where you saved your AIR file.

 Figure 4-8 shows the group of files that are created when you create

an AIR file. Notice that the group contains an .xml and an .air file in

addition to the files you usually see in a Flash application. The .xml file

holds the information you entered for your digital signature.

Figure 4-8: Group of files created in the AIR application.

 2. Double-click the KlickConvert.air file.

 The Application Install dialog box appears (see Figure 4-9).

 You’re the publisher, so you shouldn’t have to concern yourself with the

Publisher Identity warning. With unrestricted System Access, however,

you may want to be careful. Later, if you believe that the application

opened the door to Internet gremlins, repeat this install procedure to

uninstall any installed AIR program.

 3. Click the Install button.

 The Installation Preferences page of the Application Install dialog box

opens.

 4. From the pull-down menu, choose the location where you want to

install the application, and check or clear the check box to specify

whether you want to start the application after installation (see

Figure 4-10).

43_385395-bk07ch04.indd 56343_385395-bk07ch04.indd 563 10/28/08 8:44:46 PM10/28/08 8:44:46 PM

564 Making a Simple AIR Application

Figure 4-9: Start page of the Application Install dialog box.

Figure 4-10: Choosing the installation directory.

43_385395-bk07ch04.indd 56443_385395-bk07ch04.indd 564 10/28/08 8:44:46 PM10/28/08 8:44:46 PM

565

Book VII
Chapter 4

Up in the AIR

Converting Standard Flash Applications to AIR

 5. Click Continue.

 At this point, you should see the

application icon (or its name in a

list) in the directory you specified,

as shown in Figure 4-11. The icon

has the AIR logo and the .app

extension.

 6. Double-click the icon to launch

your application.

Given the power and extent of both Flash and ActionScript, your capacity

to create professional applications is similar to that provided by languages

such as C++ and Java.

Converting Standard Flash Applications to AIR
In addition to creating an AIR application from scratch, you can take one of

your old Flash applications and convert it to AIR. This ability opens your

entire library of applications for use on the desktop.

We refer to an example application from the book. However, you can use the

same process for any Flash application you already created. Chapter 2 of

this minibook is an application named Simple.fla (which is available for

downloading from www.dummies.com/go/flashallinone). It includes

List and Label components. As each item is selected in the List, it is totaled

in the Label — a calculator that totals how much fruit you’ve purchased. A

separate Simple.as file contains the code. Make copies of the FLA and the

ActionScript files you convert. The following steps show you all you need to

do to convert these files so that they can be installed on your computer and

run as AIR applications (you don’t have to change any of the ActionScript 3.0):

 1. Open a new Flash (Adobe AIR) file and save it.

 The example we used was saved as SimpleAIR.fla in the Convert2AIR

folder. In the Properties panel, we typed Simple for the class name.

You use the same ActionScript 3.0 file (we used Simple.as) with no

changes. We saved the file SimpleAIR.fla again. Be sure to leave it

open, though.

 2. Open the FLA file. Make sure that all layers are unlocked. Press Ctrl+A

(Ô+A on the Mac) to select all the objects.

 We opened the Simple.fla file.

Figure 4-11: Your AIR application in the
directory.

43_385395-bk07ch04.indd 56543_385395-bk07ch04.indd 565 10/28/08 8:44:47 PM10/28/08 8:44:47 PM

566 Made for AIR: Using ActionScript Exclusively for AIR

 3. Select the tab or window with the FLA file you’re using and press

Shift+Ctrl+V (Ô+V on the Mac) to paste everything from the original

FLA file to the new AIR file. Save the file.

 We copied the stage of Simple.fla and pasted it into the SimpleAIR.
fla file.

 4. Choose File➪AIR Settings from the File menu and follow Steps 1

through 6 from the previous section.

After you’re finished, you can run the application on your desktop. It looks

and acts no different from the Flash CS4 version when you test it. Also note

that you will have both a new .xml and .air file. (We had SimpleAIR-
app.xml and SimpleAIR.air in the Convert2AIR folder.) You will find

that most applications can be converted to AIR by using the same method.

Made for AIR: Using ActionScript Exclusively for AIR
When ActionScript 3 was released, several classes were created exclusively

for AIR applications. Many actions that are common in desktop applications

wouldn’t work the same way if they were used with Internet applications,

so rather than limiting AIR applications to what would make sense for Web

applications, Adobe created a special subset for AIR.

In this section, you find out how to use some of the AIR classes created

exclusively (members only) for AIR. Using these special AIR classes, you can

do things that you cannot do with applications in Flash created for the Web.

The few AIR classes we examine provide you with far more capability than

using non-AIR Flash.

Open the ActionScript 3.0 Language and Component Reference site by open-

ing an ActionScript file and clicking on the question mark icon (?) at the

top of the window. When the ActionScript 3.0 Language and Component

Reference site is open make sure that frames are enabled. Then find and

open the File class. Figure 4-12 shows what you see.

The little red icons next to several of the classes indicate that they are AIR-

only classes. File, FileListEvent, FileMode, and FileStream, for example, can

be used with Flash AIR applications but not with non-AIR Flash projects.

They simply don’t work on the Web.

To see how to work with AIR ActionScript, in the following section you

create a simple application that allows you to read the directories on your

computer. To make it more interesting, all the directories are displayed in a

List component. This application illustrates that filename information can be

placed in a selectable container, which has implications for more sophisti-

cated file work on your system.

43_385395-bk07ch04.indd 56643_385395-bk07ch04.indd 566 10/28/08 8:44:47 PM10/28/08 8:44:47 PM

567

Book VII
Chapter 4

Up in the AIR

Making a Desktop AIR Browser

Figure 4-12: Some ActionScript is for AIR applications only.

Making a Desktop AIR Browser
The main practical purpose of this application is placing file names in a List

component for future development. But you also can use the application to

look at different parts of your computer without disrupting your desktop

or losing your place in an open folder that you’re using. To get started, you

look into the AIR-only File class.

Using the File class
For this particular use of the File class, you create a File instance, just as you

would with any other class, but you’re going to do something a little different.

The File class has three directory properties:

 ✓ documentsDirectory

 ✓ desktopDirectory

 ✓ userDirectory

When you declare a File instance, you can do it just as you would any other

instance. For this application, you use the name folder for the File instance

name, declared as follows:

private var folder:File;

43_385395-bk07ch04.indd 56743_385395-bk07ch04.indd 567 10/28/08 8:44:47 PM10/28/08 8:44:47 PM

568 Making a Desktop AIR Browser

When the variable is instantiated, however, you include the property:

folder=File.documentsDirectory;

Two differences are important to notice:

 ✓ The new statement wasn’t included. Typically, you expect to see

folder= new File();

 The new statement is unused in the instantiation.

 ✓ The type of directory — a property of the File class — is included in

the instantiation.

Including the name of the directory property isn’t a general feature of all AIR

classes; it’s unique to File when you’re creating a specific kind of directory.

FileStream, for example, is another AIR class, and you declare it by using the

new statement:

private var fStream:FileStream;
fStream = new FileStream();

So although you can instantiate File instances without using new and include

a class property in the process, doing so isn’t typical of all AIR classes.

Creating the AIR application
You should treat this application like any other AIR or Flash project. Using

special AIR-only ActionScript changes nothing, other than the fact that you

must use an AIR file.

Setting up the AIR file
To set up the AIR file for the application, follow these steps:

 1. Open a new AIR file and save it as BrowsePod.fla.

 2. Add the following colors to the Swatches panel:

 • 91003A (red)

 • 0B4C9F (blue)

 • C8A67A (tan)

 3. Open the Properties panel and enter BrowsePod as the class name.

43_385395-bk07ch04.indd 56843_385395-bk07ch04.indd 568 10/28/08 8:44:47 PM10/28/08 8:44:47 PM

569

Book VII
Chapter 4

Up in the AIR

Making a Desktop AIR Browser

 4. Choose Window➪Properties (Ctrl+F3, Ô+F3 on the Mac) from the

menu bar to open the Properties panel. Add the tan from the Swatches

panel for the Stage color in the Properties panel and save the file.

 5. Add a layer to the timeline, and name the top layer Components and

the bottom layer Background.

 Book I, Chapter 2 describes how to work with layers.

 6. Lock the Components layer.

 7. Click the Background layer; and draw a blue rectangle with the

dimensions w=550, h=32; and position it at x=0, y=59.

 8. Lock the Background layer.

 9. Drag a Button component to the Stage, centering it on the blue rect-

angle, and give it the instance name browse in the Properties panel.

 10. Drag a List component to the Stage, centering it below the blue rectan-

gle; set the dimensions to w=200, h=240; and give it the instance name

list in the Properties panel.

 11. Save the file.

 12. Centered above the button, add Desktop Browser in static 24-point red

text. Then save the file again.

 Figure 4-13 shows how the Stage should appear.

Figure 4-13: Component and color-scheme layout.

43_385395-bk07ch04.indd 56943_385395-bk07ch04.indd 569 10/28/08 8:44:47 PM10/28/08 8:44:47 PM

570 Making a Desktop AIR Browser

Entering the ActionScript
Now you add the ActionScript. Follow these steps:

 1. Open a new ActionScript file, and save it as BrowsePod.as in the

same folder as the BrowsePod.fla file.

 2. Enter the following code:

package
{
 import flash.display.Sprite;
 import flash.filesystem.File;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.text.TextFormat;

 public class BrowsePod extends Sprite
 {
 private var folder:File;
 private var files:Array;
 private var browseFormat:TextFormat;

 public function BrowsePod()
 {
 folder=File.documentsDirectory;
 //folder=File.desktopDirectory;
 //folder=File.userDirectory;

 browse.addEventListener(MouseEvent.CLICK, showDir);

 browseFormat=new TextFormat();
 browseFormat.color=0x91003A;
 browse.setStyle(“textFormat”,browseFormat);

 }

 private function showDir(e:MouseEvent):void
 {
 try
 {
 folder.browseForDirectory(“Select Folder”);
 folder.addEventListener(Event.SELECT, folderSelected);
 }
 catch (error:Error)
 {
 trace(“Arrrrg!:”, error.message);
 }
 }

 private function folderSelected(e:Event):void
 {
 list.removeAll();
 folder=e.target as File;
 files=folder.getDirectoryListing();
 for (var fli:uint = 0; fli < files.length; fli++)
 {
 list.addItem({ label:files[fli].name});
 }
 }
 }
}

43_385395-bk07ch04.indd 57043_385395-bk07ch04.indd 570 10/28/08 8:44:48 PM10/28/08 8:44:48 PM

571

Book VII
Chapter 4

Up in the AIR

Making a Desktop AIR Browser

Completing the application
To finish the application, follow these steps:

 1. Select the BrowsePod.fla tab (or window) and choose File➪AIR

Settings.

 The AIR – Application & Installer Settings dialog box opens.

 2. Fill out the dialog box as described in Steps 2 through 6 in the section

“Publishing the AIR file” (earlier in the chapter) and in Figures 4-4

through 4-14.

Figure 4-14: Settings for BrowsePod AIR application.

 3. Click the Publish AIR File button.

 This time, you see that a certificate has been provided for you (assum-

ing that you’re using the same computer and Flash application).

43_385395-bk07ch04.indd 57143_385395-bk07ch04.indd 571 10/28/08 8:44:48 PM10/28/08 8:44:48 PM

572 Making a Desktop AIR Browser

 4. Enter a password and click OK.

 You should find BrowsePod.air in your application folder.

 5. Double-click the BrowsePod.air icon to install the application on your

computer.

 A warning page appears.

 6. Click OK.

 You see the Application Install dialog box, shown in Figure 4-15.

 This figure is slightly different from the image shown in Figure 4-10,

earlier in this chapter, because Figure 4-11 was taken on a Macintosh

and Figure 4-15 was taken on a Windows Vista PC. The Windows version

gives you the additional option of adding a shortcut icon to the desktop.

(The default installation location also is different for the two platforms.)

Figure 4-15: The Application Install dialog box on a Windows Vista PC.

 7. Click Continue.

 The AIR file is created and the dialog box closes.

 8. Click the BrowsePod AIR icon.

 9. Test the application.

 Figure 4-16 shows a typical page in Windows Vista.

43_385395-bk07ch04.indd 57243_385395-bk07ch04.indd 572 10/28/08 8:44:48 PM10/28/08 8:44:48 PM

573

Book VII
Chapter 4

Up in the AIR

Making a Desktop AIR Browser

Figure 4-16: Browsing directories with the AIR application.

Modifying the AIR application
One of the options you have with the File class is the kind of directory that

your BrowsePod application works with. You can change the following lines

to use different kinds of initial directories:

folder=File.documentsDirectory;
//folder=File.desktopDirectory;
//folder=File.userDirectory;

Comment out the top line (that’s geek for “add two slashes in front of the

line — //”), and uncomment the second line (remove the slashes) to see the

difference in the starting points.

You can also test the third line to see where it begins the directory search. If

you decide that you like one type of directory better than another, you can

republish your AIR application. Or you can modify the program to offer dif-

ferent options for the type of directory in use.

43_385395-bk07ch04.indd 57343_385395-bk07ch04.indd 573 10/28/08 8:44:48 PM10/28/08 8:44:48 PM

574 Book VII: Getting Interactive

43_385395-bk07ch04.indd 57443_385395-bk07ch04.indd 574 10/28/08 8:44:49 PM10/28/08 8:44:49 PM

Book VIII
Finalizing a

Flash Project

44_385395-pt08.indd 57544_385395-pt08.indd 575 10/28/08 8:45:41 PM10/28/08 8:45:41 PM

All things must pass — even your most

revered Flash project. When the time comes

and you say it’s “Soup!” (ready to be served to the

world), it’s time to publish your project. But if you

publish a project without doing some testing and

debugging, you’ll probably have to deal with one

or more of Murphy’s laws.

In Book VIII, we show you what you need to know

to test and debug a project. In addition, we show

you how to optimize your project and determine

how much bandwidth your creation uses when it’s

downloading to visitors’ browsers. And, if you

bust the bandwidth bank, we show you how to

create a preloader. Last but not least, we show

you how to publish your project.

44_385395-pt08.indd 57644_385395-pt08.indd 576 10/28/08 8:45:42 PM10/28/08 8:45:42 PM

Chapter 1: Testing and Debugging
a Flash Project

In This Chapter
✓ Testing a movie

✓ Previewing a movie

✓ Debugging a movie

After you slave and toil to create a compelling Flash movie, you have

to make sure that it works as expected. Otherwise, you’ll end up with

copious amounts of egg on your face. And, if you created the Flash proj-

ect for a client, after the client wipes the egg off his face, you’ll get a nasty

phone call — hopefully, not from that person’s lawyer. So, no matter how

large or small your project, you need to test and retest your project

to make sure that it performs as planned.

Testing a Movie
When you’re creating a Flash project, you should

test the project after you make a major change.

When you test often, you can detect a mistake or

an inconsistency right after you create a new ani-

mation or create a new ActionScript rather than

after you do a couple of hundred other things

to the document and have no idea how to track

down the rotten smell in the state of Denmark.

You can perform quite a few tests in Flash authoring

mode. This option is handy when you don’t want to wait

for Flash to publish the document as an SWF file and play

it in another window. You can test a movie in authoring mode by

choosing one of these methods:

 ✓ Drag the playhead to scrub the Timeline. This option comes in handy

when you want to check a few frames of animation or preview the

manner in which a sound is synchronized to the Timeline.

45_385395-bk08ch01.indd 57745_385395-bk08ch01.indd 577 10/28/08 8:46:24 PM10/28/08 8:46:24 PM

Testing a Movie in Another Window578

 ✓ Choose Control➪Play or press Enter or Return to play the movie

in movie editing mode. This action plays the Timeline in its entirety,

unless you use ActionScript to stop the movie on one or more

keyframes.

 ✓ Choose Control➪Rewind to rewind the movie to the first frame after

playing the movie.

 ✓ Choose Control➪Go To End to navigate to the last frame in the movie.

 ✓ Choose Control➪Enable Simple Frame Actions to preview simple frame

actions, such as stop and goto in Flash authoring mode.

 ✓ Choose Control➪Enable Simple Buttons to test the functionality of

simple buttons when testing a movie in Flash authoring mode.

 ✓ Choose Control➪Enable Live Preview to preview component animation

and 9-slice scaling when working in Flash authoring mode.

 ✓ Choose Control➪Mute Sounds to mute Timeline and button sounds

when testing a movie in Flash authoring mode.

Testing a Movie in Another Window
Sometimes it’s important to see the entire movie, such as when you make

radical changes to your ActionScript or extensively modify an animation or

swap several symbols. When you need to preview the entire movie, follow

these steps:

 1. Choose Control➪Test Movie.

 Flash displays a dialog box telling you that it’s exporting the Flash

movie. After a few seconds, the movie appears in another window (see

Figure 1-1). The movie plays in its entirety and loops continuously.

 2. Choose Control➪Rewind.

 Flash rewinds the movie to the first frame and stops playing it.

 3. Choose Control➪Play.

 Flash plays the movie. While the movie plays, make sure that the anima-

tions are smooth and that any ActionScript executes flawlessly. Test

each button to make sure it does what it’s supposed to do.

 4. Choose View➪Show Redraw Regions.

 Flash displays a red rectangle around all areas that are redrawn, such as

animations.

45_385395-bk08ch01.indd 57845_385395-bk08ch01.indd 578 10/28/08 8:46:24 PM10/28/08 8:46:24 PM

Debugging a Movie 579

Book VIII
Chapter 1

Testing and
Debugging a
Flash Project

Figure 1-1: Testing a movie.

Previewing a Movie
Testing a movie is all well and good, but there comes a point when you

want to see what viewers will see on the Web. You can preview your movie

in the Flash Player or in a browser. To preview a Flash movie as your view-

ers will see it, choose File➪Publish Preview➪Default. This action publishes

the movie using the default Publish settings and displays it in the default

device. You can choose a different option from the Publish Preview menu.

The available options are those you select in the Publish Settings dialog box.

For example, if you choose to publish the document as a Flash SWF movie, a

JPEG image, and a Flash projector, those options appear on the menu.

Debugging a Movie
If you have gobs of ActionScript in a document, or even just a paragraph or

three, you can make sure that your code is performing flawlessly when you

debug a movie. The debugging interface differs depending on whether you’re

debugging a document with ActionScript 2.0 or ActionScript 3.0. The avail-

able options are identical.

45_385395-bk08ch01.indd 57945_385395-bk08ch01.indd 579 10/28/08 8:46:24 PM10/28/08 8:46:24 PM

Debugging a Movie580

When you debug a movie, you can add breakpoints to your ActionScript. A

breakpoint tells the debugger to stop the movie at this point in your script.

When you stop a movie at a breakpoint, you can examine various elements

to make sure that they’re performing as you expect. For example, if your

ActionScript causes an object to move, you can add a breakpoint at a point

in your script where the object is supposed to be at a known coordinate.

When the movie halts, you can examine the variable data for the object,

such as the X and Y position, in the Variables pane of the debugger.

Setting breakpoints
The first step in debugging a project is setting breakpoints. You can set

breakpoints at any point in your script. You can set as many breakpoints as

you need to make sure that your script executes as envisioned. You should

set your breakpoints at the beginning of a function, so that whenever you

debug the movie, you can step through the function, one line at a time. To

set breakpoints, follow these steps:

 1. Choose Window➪Actions.

 The Actions panel appears.

 2. Click the blank space to the left of the line number of the code where

you want a breakpoint to appear.

 Alternatively, you can select a line of code, right-click (Windows) or

Control+click (Macintosh) and choose Toggle Breakpoint from the

context menu. Using either method causes Flash to add a red dot to

the left of the line number.

 If no line numbers are visible in the Actions panel, you can add a break-

point by clicking the blank space to the left of the line of code you want.

 3. Continue adding breakpoints as needed.

 Figure 1-2 shows a script with several breakpoints.

Using the debugger
After you add breakpoints to your ActionScript, you’re ready to debug your

movie. When you debug your movie, you can check your code and make

sure that your animations play as you envisioned. To debug your movie,

follow these steps:

 1. Choose Window➪Actions.

 The Actions panel opens.

45_385395-bk08ch01.indd 58045_385395-bk08ch01.indd 580 10/28/08 8:46:24 PM10/28/08 8:46:24 PM

Debugging a Movie 581

Book VIII
Chapter 1

Testing and
Debugging a
Flash Project

Figure 1-2: Don’t confuse breakpoints with breakdances.

 2. Set breakpoints as needed.

 If you fast-forwarded to this section and don’t know how to set breakpoints

or, for that matter, don’t know what they are, read the previous section.

 3. Choose Debug➪Debug Movie.

 The Flash workspace is reconfigured to show the debug options (see

Figure 1-3). The debugging workspace is divided into five panels:

 • The Debug console: Has the controls you use to debug the movie.

 • The Variables panel: Displays values for parameters, such as the size

of an object and its current position.

 • The panel to the right of the Debug console: Displays symbols and scenes.

 • Your script: Lies directly beneath the list of symbols and scenes lists

the breakpoints.

 • The Output panel: Displays information about the tasks being per-

formed by the Debugger.

45_385395-bk08ch01.indd 58145_385395-bk08ch01.indd 581 10/28/08 8:46:25 PM10/28/08 8:46:25 PM

Debugging a Movie582

Step In

Step Over

Exit Debugger

Continue

Figure 1-3: So what’s bugging you?

 4. Click the Continue button in the Debug console.

 The Flash Player plays the movie.

 5. If buttons are in your movie, click them.

 If you have a breakpoint at the function associated with the button, the

Debugger halts the movie (see Figure 1-4).

 6. In the Variables panel, click a plus sign to view the parameters for the

object at this point in the movie.

 The current values for each applicable parameter are displayed in the

Variables panel (see Figure 1-5).

45_385395-bk08ch01.indd 58245_385395-bk08ch01.indd 582 10/28/08 8:46:25 PM10/28/08 8:46:25 PM

Debugging a Movie 583

Book VIII
Chapter 1

Testing and
Debugging a
Flash Project

Figure 1-4: Debugger says “Stop.”

 7. Continue debugging the movie.

 At this point, you can either click the Step Over button to step over

the next step in the function or click the Step In button to advance to

the next step in the function. Alternatively, you can click the Continue

button to continue playing the movie.

 If you find errors in your script, note the line or lines on which the

errors appear. If you find errors in your script, you have to correct them

in Flash authoring mode and debug the movie again to make sure that it

plays properly.

 8. Click the End Debug Session button, which looks like a red X.

 The default Flash workspace appears and you can edit your movie. Run

the Debugger as many times as needed until your movie is perfect.

 9. After running an error-free debugging session, choose Debug —

Remove All Breakpoints.

45_385395-bk08ch01.indd 58345_385395-bk08ch01.indd 583 10/28/08 8:46:25 PM10/28/08 8:46:25 PM

Debugging a Movie584

Figure 1-5: This panel shows the winds of change.

 This step removes all breakpoints you added to your script. You can

also remove individual breakpoints in the Debugger by right-clicking

(Windows) or Ctrl+clicking (Macintosh) a line of code with a breakpoint

and then choosing Toggle Breakpoint from the context menu. You can

also remove all breakpoints by choosing the Remove All Breakpoints

command from the context menu. Removing a breakpoint is useful

when you’ve identified that the code associated with the breakpoint is

performing perfectly. The same context menu is available in the Actions

panel in Flash authoring mode.

45_385395-bk08ch01.indd 58445_385395-bk08ch01.indd 584 10/28/08 8:46:26 PM10/28/08 8:46:26 PM

Chapter 2: Fine-Tuning and
Optimizing Your Flash Project

In This Chapter
✓ Analyzing your movie

✓ Optimizing your project

After you create your Flash masterpiece, you want to make sure that it’s

squeaky-clean and that everything works as planned. You have a lot

of tools at your disposal to check out every facet of your Flash project. You

use the Movie Explorer to quickly navigate to and find items in your Flash

movie. You can configure the Movie Explorer to display everything in your

movie or limit the display to individual categories, like ActionScript, movie

clips, and buttons. Before you do any serious heavy lifting before publishing

the file, you should make the file as lean and mean as possible —

otherwise known as optimizing your movie.

Using the Movie Explorer
The Movie Explorer shows all elements in your

Flash movie in outline form. You choose which

items are displayed in the Movie Explorer. When

you need to, you can cut straight to the chase

and find the element in your project. To analyze

your movie with the Movie Explorer, follow these

steps:

 1. Choose Window➪Explorer.

 The Flash Movie Explorer appears (see

Figure 2-1).

 2. To search for a specific item, enter its name in the Find text box.

 You can search for an item name, a font name, a string of ActionScript

code, or a frame number. After you enter the search query, the Movie

Explorer refreshes to show all instances that match your query.

 3. Filter your results by clicking the icons that correspond to the items

you want to view.

 You can limit the view to a single item such as text, several items, or all

items.

46_385395-bk08ch02.indd 58546_385395-bk08ch02.indd 585 10/28/08 8:47:05 PM10/28/08 8:47:05 PM

Using the Movie Explorer586

 4. Click an item to select it.

 The path to the item is displayed

at the bottom of the Movie

Explorer.

 5. Click the Customize Which

Items to Show icon.

 The Movie Explorer Settings

dialog box appears (see

Figure 2-2).

 6. Select the items you want to

show.

 You can also display context

for movie elements and symbol

definitions.

 7. Right-click (Windows) or

Ctrl+click (Macintosh) and

choose an option from the con-

text menu (see Figure 2-3).

 The available menu commands

differ depending on the item you

select. You can use commands

from this menu to navigate to

the item in your movie, show the

object in the document Library,

or edit the item, for example.

 8. If you prefer working from a

menu, click the Movie Explorer

Panel Options icon.

 This step reveals a menu with

the same options as the context

menu. You have the following

commands at your disposal:

 • Go To Location: Moves the

focus in the document to the

frame, layer, or scene you

select in the Movie Explorer.

 • Go To Symbol Definition:
Shows the symbol definition in the document library. This option

is available only if you select Symbol Definitions from the Movie

Explorer Settings dialog box.

Show Frames
and Layers

Show ActionScript

Show
Text

Customize
Which
Items

to Show

Show
Video,

Sounds, and
Bitmaps

Show
Movie Clips,

Buttons,
Graphics

Figure 2-1: The Flash Movie Explorer.

Figure 2-2: Customize Movie Explorer settings.

46_385395-bk08ch02.indd 58646_385395-bk08ch02.indd 586 10/28/08 8:47:05 PM10/28/08 8:47:05 PM

Optimizing a Flash Movie 587

Book VIII
Chapter 2

Fine-Tuning and
Optim

izing Your
Flash Project

 • Select Symbol Instances: Shows the

instances of a symbol you select in the

Movie Explorer. This option is available

only if you select Movie Elements from the

Movie Explorer Settings dialog box.

 • Show in Library: Highlights the selected

symbol in the document library.

 • Rename: Highlights the text for the item

you select. Enter new text to change the

name.

 • Edit in Place: Enables you to edit the

selected symbol instance on the Stage.

 • Edit in New Window: Opens the selected

object in a new window in which you can

edit the object.

 • Show Movie Elements: Changes the Movie

Explorer display and shows all elements in

the document organized by scene.

 • Show Symbol Definitions: Displays symbol

definitions at the bottom of the Movie

Explorer. Click the plus sign to the left of a

symbol to show all layers and elements used to create the symbol.

 • Copy All Text to Clipboard: Copies all text in the Movie Explorer to

the Clipboard.

 • Expand Branch: Expands the tree at the selected element.

 • Collapse Branch: Collapses the tree at the selected element.

 • Collapse Others: Collapse all branches other than those associated

with the selected element.

 • Print: Creates a hard copy of the list displayed in the Movie Explorer.

Optimizing a Flash Movie
Whenever possible, your goal as a Flash designer is most likely to create a

thing of beauty that’s interactive and that downloads quickly. In this regard,

you need to optimize your project before you publish it. You also need to

think about the final output during all phases of your project. When you opti-

mize a document, the published movie downloads quicker and isn’t proces-

sor intensive. This section shows you a few techniques you can use to make

sure that you publish a lean, mean Flash movie.

Figure 2-3: Using the Movie
Explorer context menu.

46_385395-bk08ch02.indd 58746_385395-bk08ch02.indd 587 10/28/08 8:47:06 PM10/28/08 8:47:06 PM

Optimizing a Flash Movie588

Your first step is to get rid of the dead weight. Eliminate unused objects by

following these steps:

 1. Choose Window➪Library.

 The document library appears.

 2. From the Library Options menu, choose Select Unused Items.

 Flash selects the unused items. Before you delete them, make sure that

they’re not items you can use in another project. If they are, create a

new document, pin the library of the movie you’re optimizing, and drag

the unused but useful symbols into the new document.

 3. Press Delete to remove the unused items.

 Even if you remove just a few unused items, the document is still smaller

when published.

Here are some other actions you can take to optimize a document:

 ✓ Use symbol instances whenever possible. When you use a symbol

instance, the Flash Player re-creates the instance using information from

the document library.

 ✓ Avoid animating images whenever possible.

 ✓ Use the Alpha color effect judiciously. This effect uses computer memory

and may slow down playback on older, less powerful computers.

 ✓ Use gradients sparingly. When you use gradients, the file size of the

published movie increases.

 ✓ Limit the number of font faces you use. Embedding fonts increases the

file size of the published documents.

 ✓ Whenever possible use device fonts. When the Flash Player encounters

a device font, it gets the information from the viewer’s computer.

 ✓ Whenever you create a complex shape, choose Modify➪Shape➪
Optimize. This command enables you to simplify an object by reducing

the number of points required to define the object.

 ✓ Avoid embedding movies in a document. Whenever possible, load

external movies into the document.

 ✓ Optimize individual objects in the document library. This strategy

enables you to apply more compression to a sound or an image than the

global settings in the Publish Settings dialog box. This option is useful

when you have either small images you’re using for buttons or sounds

you’re using for buttons. As a rule, you can apply more compression to

these objects because they’re not as important to the overall look and

feel of the published movie.

46_385395-bk08ch02.indd 58846_385395-bk08ch02.indd 588 10/28/08 8:47:06 PM10/28/08 8:47:06 PM

Chapter 3: Dealing
with Bandwidth

In This Chapter
✓ Measuring the bandwidth of your movie

✓ Creating a preloader

Done right, a Flash movie is a svelte thing of beauty that loads faster

than a speeding locomotive or jet plane. But sometimes you have to

add some squeaky-clean video while your client’s target audience accesses

the Internet with a tin can and a tight string. In other words, your file may

run the risk of breaking the bandwidth of some of the computers belong-

ing to your client’s intended audience. At other times, you have to create a

Flash movie for an audience with dialup connections and tailor your movie

to the connection. How do you perform these feats of magic? And,

if you do break the bandwidth of your intended audience, is

a “band aid” available to fix it? The answer to both ques-

tions is yes. In this chapter, we show you how to know

whether your Flash project will break the bandwidth

of your intended audience and what to do if it does.

Using the Bandwidth Profiler
The handy Bandwidth Profiler tells you how fat

or skinny your Flash file is. When you access the

Bandwidth Profiler, you see how much information

is contained on each frame, and which frames may

be a potential bottleneck at a given download speed.

You can view the Bandwidth Profiler as either a frame-

by-frame graph or a streaming graph. When you view the

Bandwidth Profiler and simulate a download, the movie starts

playing when enough frames have been downloaded. If a frame contains

enough data to stop the movie from playing, the movie pauses until enough

data has downloaded to continue playing the movie. Whenever this hap-

pens, you know that you have the problem of movie interruptus. To analyze

your movie with the Bandwidth Profiler, follow these steps:

47_385395-bk08ch03.indd 58947_385395-bk08ch03.indd 589 10/28/08 8:47:50 PM10/28/08 8:47:50 PM

Using the Bandwidth Profiler590

 1. Choose Control➪Test Movie.

 Flash publishes the document as an SWF file and displays it in another

window. Alternatively, you can press Ctrl+Enter (Windows) or Ô+Return

(Macintosh).

 2. Choose View➪Bandwidth Profiler.

 The Bandwidth Profiler appears — see Figure 3-1, which shows the

Bandwidth Profiler as a frame-by-frame graph. The left window shows

information about your movie. For the purpose of this demonstration,

we use a rather large promo that Doug created for his photography

business. Because the promo was distributed on CD discs, the file down-

loaded a lot faster than it would on most types of Internet connections.

The Bandwidth Profiler also shows how many frames must preload

before the movie plays. The profiler also shows the selected frame and

the amount of data that’s on the frame.

 3. Choose View➪Download Settings and choose a connection speed from

the menu.

 You can choose a speed from the ridiculously slow to the outrageously fast.

If your customer is displaying the published SWF file on a muy rapido intranet

server, you can create settings to match the speed of your client’s intranet:

 a. Choose Customize to open the Custom Download Settings dialog box.

 b. Enter the speed in one of the Bit Rate text fields of a user setting.

 You also see a red line appear across the graph. When a frame is higher

than the red line, Flash Player stops until the frame loads in its entirety.

If you have several frames packed with a lot of data at the start of a

movie, the file takes longer to load. If the frames with a lot of data are

at the end of the movie and your intended audience connects at a fairly

fast speed, the movie may play without stopping. The only way to know

for sure is to simulate a download.

 Figure 3-1: The Bandwidth Profiler at work.

47_385395-bk08ch03.indd 59047_385395-bk08ch03.indd 590 10/28/08 8:47:51 PM10/28/08 8:47:51 PM

Using the Bandwidth Profiler 591

Book VIII
Chapter 3

Dealing w
ith

Bandw
idth

 4. Choose Simulate Download.

 The movie begins playing as soon as enough frames have downloaded.

A green bar appears across the top of the profiler, indicating the total

number of frames that have loaded (see Figure 3-2). The playhead shows

which frame of the movie is playing. If the playhead catches up with the

green progress bar, the movie stops playing until enough frames have

loaded for it to continue playing. If the playhead stops in the simulated

download, your movie is a candidate for a preloader. Alternatively, you

have to change some compression settings on sound files, video clips,

and bitmaps that are in the movie. You can change individual settings by

choosing the item in the document library and then modifying the prop-

erties. The topic of sounds is covered in Book V, Chapter 3.

Figure 3-2: Simulating a download.

47_385395-bk08ch03.indd 59147_385395-bk08ch03.indd 591 10/28/08 8:47:51 PM10/28/08 8:47:51 PM

Creating a Preloader592

 5. Choose View➪Streaming Graph.

 This step changes the display to Streaming Graph mode. Frame con-

tent is displayed as alternating light and dark bands. The first frame of

a symbol contains its content and information and is therefore larger

than subsequent frames. The Bandwidth Profiler in Streaming Graph

mode is shown in Figure 3-3.

Figure 3-3: The Bandwidth Profiler in Streaming Graph mode.

Creating a Preloader
To create a preloader, follow these steps:

 1. Create a new document.

 For the document type, choose ActionScript 3.0. Name the document

myPreloader and save it.

47_385395-bk08ch03.indd 59247_385395-bk08ch03.indd 592 10/28/08 8:47:52 PM10/28/08 8:47:52 PM

Creating a Preloader 593

Book VIII
Chapter 3

Dealing w
ith

Bandw
idth

 2. Choose Insert➪New Symbol.

 The New Symbol dialog box appears.

 3. Name the symbol bwRX and choose Movie Clip from the Type menu.

 So we had a little fun with the name — bandwidth RX. You can give the

movie clip any name you want. The name becomes critical when you

name the movie clip instance.

 4. Using the Primitive Rectangle tool, create a rectangle that’s 1 pixel

wide by 50 pixels long.

 You can change the dimensions of the rectangle in the Property inspec-

tor. Use any color that suits your fancy. This document will be your

generic preloader for any movie with bandwidth issues. You can change

the color of the rectangle to suit the movie for which you’re creating the

preloader by editing the symbol.

 5. Click the Stroke color swatch to open the Swatches panel, and then

click the No Color icon.

 You’ll change the dimensions of the rectangle and use a motion tween to

animate it. Strokes do wonky things during motion tween animations.

 6. In the Property inspector, change the X value to –100 and the Y value

to –25.

 This step positions the rectangle off-center horizontally and centered

vertically. You see the method to our madness in a few steps.

 7. Select the rectangle and press F8 to convert it to a symbol.

 The Convert to Symbol dialog box appears.

 8. Name the symbol preloadBar, choose Graphic from the Type menu,

and then click the center left registration point.

 You’ll animate this symbol by using a classic motion tween.

 9. Click OK.

 The symbol is added to the document library.

 10. Click frame 100 and then press F6.

 The blank frame is converted to a keyframe.

 11. Right-click (Windows) or Ctrl+click (Mac) one of the in-between frames

and then choose Classic Tween.

 That’s right — this is one time that you use the old tried-and-true motion

tween to get the job done.

 12. Select the symbol in the 100th frame, click the chain icon in the

Property inspector, and then change the W value to 200.

 Click the chain icon, which enables you to resize the width without

changing the height.

47_385395-bk08ch03.indd 59347_385395-bk08ch03.indd 593 10/28/08 8:47:52 PM10/28/08 8:47:52 PM

Creating a Preloader594

 13. Click the current scene or Back button.

 The movie clip is added to the document library.

 14. Drag an instance of the bwRX movie clip on Stage.

 15. In the Property inspector, change the X value to 225 and the Y value

to 200.

 This step places the movie clip in the center of the Stage when the ani-

mation is completed.

 16. In the Property inspector, enter bwRX_mc in the text field.

 You use this name in the ActionScript to make the preloader bar move

while the specified movie loads.

ActionScript makes the preloader spring to life. In addition to moving the

preloaderBar symbol, it loads the file. The bwRX movie clip animation is 100

frames in duration. When 10 percent of the movie has loaded, the animation

is on Frame 10; when 50 percent has loaded, the animation is on Frame 50;

and so on. When the movie is completely downloaded, the preloader anima-

tion disappears and the movie plays.

Adding ActionScript to the preloader
To add the ActionScript to the preloader, follow these steps:

 1. Right-click (Windows) or Ctrl+click (Mac) the layer on which your

Movie Clip symbol resides, and from the context menu, choose Insert

Layer.

 A new layer is added to the Timeline.

 2. Double-click the current layer name and enter actions.

 This is only a one-frame preloader, but it still pays to develop good

habits. Naming layers is a good habit to form.

 3. Click the keyframe on the actions layer, right-click (Windows) or

Ctrl+click (Mac), and choose Actions from the context menu.

 The Actions panel appears.

 4. Enter the ActionScript code shown in Listing 3-1.

 You can download a text file of the script (385395_bk08ch03_preloader.
txt) from this book’s companion Web site at www.dummies.com/go/
flashallinone. Download the file preloader.txt from this chap-

ter’s folder.

47_385395-bk08ch03.indd 59447_385395-bk08ch03.indd 594 10/28/08 8:47:52 PM10/28/08 8:47:52 PM

Creating a Preloader 595

Book VIII
Chapter 3

Dealing w
ith

Bandw
idth

Listing 3-1: The Preloader ActionScript Code
var fileToLoad:String = “myFile.swf”; var req:URLRequest = new

URLRequest(fileToLoad);
var loader:Loader = new Loader();

 loader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS,
 fileLoading);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, fileLoaded);
 loader.load(req);

function fileLoading(event:ProgressEvent):void
{
 var percent:Number = event.bytesLoaded/event.bytesTotal;
 var roundedPercent:uint = Math.ceil(percent * 100);
 bwRX_mc.gotoAndStop(roundedPercent);
 }

bwRX_mc.stop();

function fileLoaded(event:Event):void
{
 removeChild(bwRX_mc);
 addChild(loader);
}

 5. Replace the text myFile.swf in the first line of code with the file-

name of the file you want the preloader to load.

 Make sure that the file you’re loading is in the same folder as the pre-

loader. You can also use this preloader to load any file type that can be

loaded into a Flash movie.

 6. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 Flash publishes the movie and plays it in another window. The file loads

so quickly that you don’t even see the preloader.

 7. Choose View➪Download Settings and then select a connection speed

from the menu.

 Choose the speed at which your intended audience connects to the

Internet.

 8. Choose View➪Simulate Download.

 When the movie plays, the bwRX animation plays. The preloaderBar

symbol moves to show how much of the movie has been loaded. When

the animation stops, the movie you specified in Step 5 plays.

47_385395-bk08ch03.indd 59547_385395-bk08ch03.indd 595 10/28/08 8:47:53 PM10/28/08 8:47:53 PM

Creating a Preloader596

The code in Listing 3-1 has all the components to run the animation and load

the movie. The first three lines of code declare variables:

 ✓ First line: Identifies the file to load

 ✓ Second line: Creates an instance of the URLrequest object

 ✓ Third line: Creates an instance of the Loader object

The next lines of code add event listeners and instructions for the loader.

Notice the function names at the end of the event listener statements.

The fileLoading function creates a variable named percent, which is

the result of the number of bytes in the file divided by the number of bytes

loaded. This returns a number between zero and one. The next line of code

creates a round number between 0 and 100. The final line of code tells

the instance of the bwRX symbol (bwR_mc) to go to and stop at the value

roundedPercent, which is a number between 1 and 100, the exact number

of frames in the motion tween animation. The next line of code tells the

instance of the movie clip to stop playing when the file is fully loaded. The

fileLoaded function loads the file, which then begins playing without inter-

ruption, thanks to Freddy the Preloader.

Displaying the percentage of
a file that’s been loaded
The progress bar gives you an indication of how quickly the associated file

is loading, but you can show visitors the actual percentage that has been

loaded by following these steps:

 1. Choose Insert➪New Symbol.

 The New Symbol dialog box appears.

 2. Choose Movie Clip from the Type drop-down menu, and name the

movie clip dispText.

 3. Click OK.

 Welcome to Symbol Editing mode.

 4. Select the Text tool.

 5. In the Property inspector, choose Dynamic Text from the Type drop-

down menu.

 Dynamic text can be updated by ActionScript. In this case, the text box

will display the percentage of the file that has loaded and will update

47_385395-bk08ch03.indd 59647_385395-bk08ch03.indd 596 10/28/08 8:47:53 PM10/28/08 8:47:53 PM

Creating a Preloader 597

Book VIII
Chapter 3

Dealing w
ith

Bandw
idth

until 100 is reached, at which point the movie associated with the pre-

loader is fully loaded and plays.

 6. Enter progress_Display_txt in the blank text field at the top of the

Property inspector.

 This is the instance name for the text box that will be addressed by

ActionScript.

 7. Choose an option from the Family drop-down menu and then specify

the font size.

 These options determine what the progress text looks like. We suggest

you choose _sans, _sans serif, or _typewriter. If you choose a different

family, you run the risk of choosing a font that is not on the user’s com-

puter. We’re talking about a preloader here; there’s no need to choose

an artsy-fartsy font.

 8. Click the current scene or Back button.

 The movie clip is added to the document library.

 9. Drag an instance of the dispText movie clip on the Stage and position

it above the progress bar movie clip.

 If you want to get real persnickety, use the Align panel to align the movie

clip horizontally to the center of the stage.

 10. In the Property inspector, name the instance of the dispText movie

clip progress_Text_mc.

 If you guessed that you’re going to address the movie clip with

ActionScript, you would be voyant, Claire.

 11. Click the first frame.

 This is where all of your ActionScript for the preloader resides.

 12. Add the following code to the fileLoading function:

progress_Text_mc.progress_Display_txt.text=(roundedPercent + ‘ %’);

 Your fileLoading function code should resemble Listing 3-2.

Listing 3-2: The Revised fileLoading Function
function fileLoading(event:ProgressEvent):void
{
 var percent:Number = event.bytesLoaded/event.bytesTotal;
 var roundedPercent:uint = Math.ceil(percent * 100);
 bwRX_mc.gotoAndStop(roundedPercent);
 progress_Text_mc.progress_Display_txt.text=(roundedPercent + ‘ %’);
}

47_385395-bk08ch03.indd 59747_385395-bk08ch03.indd 597 10/28/08 8:47:53 PM10/28/08 8:47:53 PM

598 Creating a Preloader

 13. Press Ctrl+Enter (Windows) or Ô+Return (Mac).

 Flash publishes the movie and plays it in another window. At this stage,

you may see 100% before the movie starts playing.

 14. Choose View➪Simulate Download.

 Flash simulates downloading the file. If you’ve followed the steps cor-

rectly, you’ll see a number followed by the percent sign, which signifies

the percentage of the movie that has downloaded.

47_385395-bk08ch03.indd 59847_385395-bk08ch03.indd 598 10/28/08 8:47:53 PM10/28/08 8:47:53 PM

Chapter 4: Publishing Your
Flash Project

In This Chapter
✓ Publishing your movie

✓ Choosing Publish Settings

✓ Using Flash files with HTML documents

After you spend lots of hours creating a cool Flash file, tweaking the

ActionScript to add every ounce of interactivity that the law allows

and then testing the file, you’re ready to publish the file in a format sup-

ported by Flash. Before you can publish the file, you have to choose one or

more formats and then specify the publish settings for each format. When

you specify publish settings, you also specify the quality of the

sound and image files in your Flash document. The publish

settings determine the file size and other factors, such as

the version of Flash Player with which the file is compat-

ible. That’s what this chapter is all about — publish-

ing your Flash file to share with a few friends or the

world!

Publishing a Flash File
The default publish settings yield a Flash SWF

file and an HTML document. The HTML document

contains the code needed to embed the SWF file

within the document. In addition, the code detects

the version of Flash Player used by the viewer. The

HTML code also contains JavaScript that enables the

movie to play instantly in any browser without triggering an

ActiveX warning.

You can publish your file in other formats, such as JPEG, GIF, or PNG, with

an HTML document to display the published file on the Web. Another option

is publishing the file as a Flash Projector. A projector is an executable file

that can be played whether or not the Flash Player is installed on the user’s

computer. In the following sections, we show you the steps needed to pub-

lish a file in supported formats.

48_385395-bk08ch04.indd 59948_385395-bk08ch04.indd 599 10/28/08 8:48:39 PM10/28/08 8:48:39 PM

Publishing a Flash File600

Specifying publish settings
The file format you choose determines the available settings you have. In

this section, we cover publish settings for Flash SWF files, the associated

HTML document, and image files. The default publish settings yield a Flash

SWF file and an HTML file. The settings you use match the settings you specify

when you create a new document. For example, if you create a new document

for a mobile device, your publish settings must match the settings you speci-

fied in Device Central. To start the publishing process, follow these steps:

 1. Choose File➪Publish Settings.

 The Publish Settings dialog box appears (see Figure 4-1).

Figure 4-1: Choosing publish file formats.

48_385395-bk08ch04.indd 60048_385395-bk08ch04.indd 600 10/28/08 8:48:40 PM10/28/08 8:48:40 PM

Publishing a Flash File 601

Book VIII
Chapter 4

Publishing Your
Flash Project

 2. Select the file formats in which you want to publish the document.

 The default settings are for a Flash SWF file and an HTML document.

 3. Click a tab to specify settings for that format.

 Each tab is covered in detail in upcoming sections.

 4. Click Publish.

 Flash publishes the file in the formats you specified in Step 2.

 You can publish a document with the current settings by either choos-

ing File➪Publish or pressing Shift+F12.

 5. After the files are published, click OK.

 The Publish Settings dialog box closes.

Specifying SWF settings
From the Flash tab of the Publish Settings dialog box, you specify the ver-

sion of Flash Player with which the published file is compatible, the global

settings for image and sound quality, SWF settings, and more. To specify

SWF settings, follow these steps:

 1. Choose File➪Publish Settings.

 The Publish Settings dialog box appears.

 2. Choose Flash as one of the file formats.

 3. Click the Flash tab.

 The Flash settings appear (see Figure 4-2).

 4. Choose an option from the Player drop-down menu.

 This version of Flash Player is the one with which the published file

is compatible. If your document uses ActionScript 3.0, you’re limited

to Flash Player 9 and Flash Player 10. If you’re using features such as

inverse kinematics animation that are exclusive to Flash CS4, your only

option is Flash Player 10.

Publishing a Flash projector
When you create a Flash application, you
can publish it as a Windows projector or a
Macintosh projector. Projector files are stand-
alone applications that can be used on the
desktop or from a CD disc. A Windows projector
file is a stand-alone executable with an .exe

(executable) file extension. A Flash projector
file is a stand-alone application with an .app
(application) file extension. You specify publish
settings for a projector file on the Flash tab of
the Publish Settings dialog box.

48_385395-bk08ch04.indd 60148_385395-bk08ch04.indd 601 10/28/08 8:48:40 PM10/28/08 8:48:40 PM

Publishing a Flash File602

Figure 4-2: Choosing Flash publish settings.

 5. Choose an option from the Script drop-down menu.

 Choose the version of ActionScript that’s the same as the one with

which you created the document.

 6. Click Settings.

 This step opens a dialog box that enables you to specify advanced

ActionScript settings, such as the Document class or the frame on which

to export classes. Unless you have a computer science degree from MIT

(or the equivalent), don’t mess with the advanced settings. Just hustle

your behind to Book IV, and don’t you dare send an e-mail to us and ask

about advanced AS 3.0 settings until the ink on your MIT diploma is dry.

48_385395-bk08ch04.indd 60248_385395-bk08ch04.indd 602 10/28/08 8:48:40 PM10/28/08 8:48:40 PM

Publishing a Flash File 603

Book VIII
Chapter 4

Publishing Your
Flash Project

 7. Drag the slider to set the JPEG quality.

 This step determines how much compression is applied to images. The

default value of 80 gives good results in most instances. Choose a lower

setting for a smaller file size at the expense of image quality.

 8. Select the Enable JPEG Deblocking option if you specify a low-quality

setting globally or have specified high compression when changing an

image’s properties in the document library.

 This option smoothes images with high compression to prevent them

from looking pixelated (or blocky, if you will).

 9. Accept the default Audio

Stream settings or click Set to

open the Sound Settings dialog

box (see Figure 4-3).

 From within the Sound Settings

dialog box, you can specify

global compression settings. For

more information on sound set-

tings, see Book V, Chapter 3.

 10. Accept the default Audio Event

settings or click Set to open the Sound Settings dialog box (refer to

Figure 4-3).

 This dialog box enables you to specify global settings for event sounds.

 11. (Optional) Click Override Sound Settings.

 This option overrides any sound settings you apply by changing a

sound’s properties in the document library.

 12. (Optional) Click Export Device Sounds.

 Use this option when you’re creating Flash files for handheld units, like

mobile phones.

 13. In the SWF Settings section, you have the following options:

 • Compress Movie: Compresses the movie, which results in a smaller

file size and faster download; selected by default.

 • Include Hidden Layers: Exports hidden layers with the published

movie.

 • Include XMP Metadata: Includes metadata with the file.

 • Include SWC file: Exports an SWC file with the document. SWC files

are used with remote debugging sessions.

Figure 4-3: Specifying global sound settings.

48_385395-bk08ch04.indd 60348_385395-bk08ch04.indd 603 10/28/08 8:48:41 PM10/28/08 8:48:41 PM

Publishing a Flash File604

 14. In the SWF Settings section, click File Info.

 This step opens the dialog box shown in Figure 4-4. From within the

dialog box, you can add a description of the file, contact information,

and International Press Telecommunications Council (IPTC) information,

for example. This information is stored as metadata with the file.

Figure 4-4: Adding metadata to a Flash file.

 15. In the Advanced section, choose from the following Trace and Debug

options:

 • Generate Size Report: Generates a report in the Output panel that

shows the amount of data in the published file.

 • Protect from Import: Prevents people from importing the resulting

SWF file into Flash and using some of your graphics or converting

the file into an FLA document. When you choose this option, the

Password text field becomes available. Enter a password, and users

are prompted for a password when attempting to import the file

into Flash.

 • Omit Trace Actions: Eliminates any trace actions you may have added

to your ActionScript to test and debug the file.

 • Permit Debugging: Makes it possible for you to remotely debug the file.

48_385395-bk08ch04.indd 60448_385395-bk08ch04.indd 604 10/28/08 8:48:41 PM10/28/08 8:48:41 PM

Publishing a Flash File 605

Book VIII
Chapter 4

Publishing Your
Flash Project

 16. Choose an option from the Local Playback Security drop-down menu.

 You can restrict access to files on the local computer or on the network.

 17. Choose an option from the Hardware Acceleration drop-down menu.

 The default option is None. Alternatively, you can choose Level 1 Direct,

which uses DirectX for hardware acceleration, or Level 2 – GPU, which

uses a graphics processing unit attached to the user’s video card for

hardware acceleration.

 18. Accept the default script time limit of 15 seconds, or enter a different

value.

 This option limits the amount of time a script plays. Most scripts should

execute in a fraction of a second. When a script continues to execute in

an effort to resolve an error, the host computer CPU slows to a crawl

and a crash may incur.

 19. Click OK. Or click Publish to publish the document.

If you modify Flash and HTML settings and will use the settings frequently,

click the plus sign (+) next to the Current Profile drop-down menu, to open

the Create New Profile dialog box. Enter a name for the profile and click OK.

This action adds the new profile to the Current Profile drop-down menu for

future use.

Specifying HTML settings
The default publishing option includes an HTML file with the Flash document.

You can choose a template and modify settings on the HTML tab of the Publish

Settings dialog box. To specify HTML settings, follow these steps:

 1. Choose File➪Publish Settings.

 The Publish Settings dialog box appears.

 2. Choose HTML as one of the file formats.

 3. Click the HTML tab.

 The HTML settings appear (see Figure 4-5).

 4. Choose an option from the Template drop-down menu.

 We’d put you to sleep if we listed every detail about each template. You

can get a down-and-dirty description of what a template is used for by

clicking Info after selecting a template.

 5. (Optional) Choose the Detect Flash Version option.

 Choose this option, and Flash adds code to the HTML page that

searches the user’s computer for the optimum Flash Player version

that’s needed to play the SWF file as designed.

48_385395-bk08ch04.indd 60548_385395-bk08ch04.indd 605 10/28/08 8:48:42 PM10/28/08 8:48:42 PM

Publishing a Flash File606

Figure 4-5: Specifying HTML settings.

 6. Choose one of the following options from the Dimensions drop-down

menu:

 • Match Movie: Embeds the width and height dimensions of the movie

in the HTML file.

 • Pixels: Opens the Width and Height text fields with the current pixel

dimensions of the movie. You can manually change these values.

However, Flash doesn’t change the other dimension. Unless you do

the math and change the value of the other dimension to preserve the

original document aspect ratio, the published file will be distorted.

48_385395-bk08ch04.indd 60648_385395-bk08ch04.indd 606 10/28/08 8:48:42 PM10/28/08 8:48:42 PM

Publishing a Flash File 607

Book VIII
Chapter 4

Publishing Your
Flash Project

It’s also not advisable to increase the dimensions of a file that has

bitmap images because they will be distorted.

 • Percent: Enables you to specify the percentage of the browser that’s

filled with the Flash movie. You can manually change these values.

However, Flash doesn’t change the other dimension. Unless you do

the math, the resulting file will be distorted.

 7. In the Playback section, you have the following options:

 • Paused at Start: The movie is paused on the first frame until the user

clicks a button or selects a command from the context menu.

 • Loop: The default option plays the file and loops it continuously.

 • Display Menu: The user has the option of using a context menu when

viewing the movie. Users access the context menu by right-clicking

(Windows) or Ctrl+clicking (Mac). Then they can choose how the file

is played in their version of the Flash Player.

 • Device Font (Windows only): When Flash Player encounters a font

not installed on the user’s computer, it substitutes a smooth-edged

system font from the user’s computer.

 8. Choose one of the following options from the Quality drop-down

menu:

 • Low: Yields a low-quality movie in which playback speed is more

important than the quality of the graphics. Anti-aliasing isn’t used

with this option.

 • Auto Low: Favors playback speed over quality when the movie begins

playing. However, if Flash Player senses that the quality can be

improved without sacrificing playback speed, it increases the qual-

ity as the movie plays. When the movie starts playing, anti-aliasing is

disabled until Flash Player decides that it can be used without reduc-

ing playback speed.

 • Auto-High: Starts out playing the movie with high-quality graphics

and anti-aliasing. If the frame rate starts to drop, Flash Player lowers

quality and, if necessary, disables anti-aliasing.

 • Medium: Uses some anti-aliasing, but doesn’t smooth bitmap images.

 • High: Always uses anti-aliasing; the default option. High-quality

graphics are favored over playback speed. Bitmap images are

smoothed if the SWF file contains no animation, but aren’t smoothed

if the file contains animation.

 • Best: Provides the highest-quality display. All output is anti-aliased

and bitmaps are smoothed.

48_385395-bk08ch04.indd 60748_385395-bk08ch04.indd 607 10/28/08 8:48:42 PM10/28/08 8:48:42 PM

Publishing a Flash File608

 9. Select one of the following options from the Window Mode drop-down

menu:

 • Window: Renders the background of the Flash movie opaque and

uses the background color of the HTML document; the default

option. If you have HTML or JavaScript code for items like pop-up

menus, they don’t render above or below the window provided for

the Flash movie.

 • Opaque Windowless: Causes the background of the Flash movie to be

opaque. Anything in the HTML document below the Flash content

isn’t visible. HTML content will be visible above the Flash movie.

 • Transparent Windowless: Causes the background of the Flash movie

to be transparent. HTML content is rendered above or below the

Flash movie.

 10. Choose one of the following options from the HTML Alignment drop-

down menu:

 • Default: Places the content in the default browser position, which

doesn’t necessarily center the content in the browser.

 • Left, Right, Top, or Bottom: Positions the Flash content in the corre-

sponding position in the browser.

 11. Choose one of the following options from the Scale drop-down menu:

 • Default (Show All): Displays the entire Flash content in the specified

window while preserving the aspect ratio.

 • No Border: Resizes the Flash content in the specified window without

a border. The content is distorted if the aspect ratio of the window

doesn’t match that of the Flash content.

 • Exact Fit: Resizes the Flash content to fit the specified window.

Distortion may occur if the aspect ratio of the window isn’t the same

as the Flash content.

 • No Scale: Preserves the original size of the Flash content when the

window is resized.

 12. Choose an option from the Flash Alignment drop-down menus to

determine how the content is placed in the application window.

 13. Check the default Show Warning Messages option to display a warn-

ing message if tag settings are in conflict.

 14. Click OK to apply the settings to the current document.

Publishing Flash documents in other formats
In addition to publishing a Flash document as a SWF file, you can publish the file

as an image. You can publish the document in either the GIF or JPEG file format.

48_385395-bk08ch04.indd 60848_385395-bk08ch04.indd 608 10/28/08 8:48:42 PM10/28/08 8:48:42 PM

Publishing a Flash File 609

Book VIII
Chapter 4

Publishing Your
Flash Project

To publish your file as a GIF image, follow these steps:

 1. Choose File➪Publish Settings.

 The Publish Settings dialog box appears.

 2. Choose GIF as one of the file formats.

 3. Click the GIF tab.

 The GIF publish settings are displayed (see Figure 4-6).

Figure 4-6: Specifying GIF publish settings.

48_385395-bk08ch04.indd 60948_385395-bk08ch04.indd 609 10/28/08 8:48:42 PM10/28/08 8:48:42 PM

Publishing a Flash File610

 4. In the Dimensions section, accept the default Match Movie option.

 If you deselect this option, you can manually enter values for the size

you want. Note that Flash doesn’t recalculate values to resize the result-

ing file proportionately.

 5. Choose an option in the Playback section.

 You can publish the option as a static image or an animated GIF. If you

choose the latter option, you can create an animation that loops end-

lessly or specify the number of times the animation repeats.

 6. In the Options sections, choose one of the following options:

 • Optimize Colors: Removes from the GIF color palette any colors not

used in the document. This option reduces the file size.

 • Interlace: Causes the image to be displayed in stages when it loads

into the viewer’s browser. The first stage gives the viewer an idea of

what the image looks like. Each stage adds more information until

the image is displayed at full fidelity.

 • Smooth: Produces a higher-quality image by applying anti-aliasing.

 • Dither Solids: Applies dithering to approximate colors in the image

that aren’t in the GIF color table.

 • Remove Gradients: Doesn’t display gradients in the published image.

The gradient is displayed as a solid color using the first color in

the gradient. Gradients may cause banding to appear when the GIF

format attempts to display them. If you use this option, choose the

first color of your gradient carefully.

 7. Choose one of the following options to determine how transparency is

handled:

 • Opaque: Renders the background a solid color.

 • Transparent: Renders the background transparent.

 • Alpha: Renders the background as partially transparent. When you

select this option, the Threshold text field appears. The default value

of 128 renders the background with 50 percent transparency. Lower

values make the background more transparent, and higher values

make the background more opaque.

 8. Choose one of the following options from the Dither drop-down menu:

 • None: Doesn’t apply dithering. When a color is encountered that isn’t

on the color palette, it’s replaced with the closest approximation

48_385395-bk08ch04.indd 61048_385395-bk08ch04.indd 610 10/28/08 8:48:43 PM10/28/08 8:48:43 PM

Publishing a Flash File 611

Book VIII
Chapter 4

Publishing Your
Flash Project

that’s in the palette. This option creates images with smaller file

sizes, but the colors don’t match the original document perfectly.

 • Ordered: Applies dithering with the smallest increase in file size.

 • Diffusion: Applies higher-quality dithering and produces the greatest

color fidelity with the original document. This results in a larger file

size and is available only when you select the Web 216 color palette.

 9. Choose one of the following options from the Palette Type drop-down

menu:

 • Web 216: Renders the image using the colors from the Web 216 color

palette, which is the default color palette for the Swatches panel.

 • Adaptive: Analyzes the colors you used in the document and creates

a color palette to faithfully render the image.

 • Web Snap Adaptive: Analyzes the colors you used in the document

and creates a palette using the colors from the Web 216 palette.

 • Custom: Enables you to assign to the document a color palette you

created. When you choose this option, the Palette field becomes

active. Click the Folder icon to navigate to the color palette. Flash

supports ACT color palettes.

 10. If you choose the Adaptive or Web Snap Adaptive color palette, the

Max Colors field becomes available. Enter a value for the maximum

number of colors that will be used to render the image.

 The maximum number of colors for a GIF image is 255. Entering a lower

value results in a smaller file size with poorer image quality.

 11. Click OK.

 The Publish Settings dialog box closes. The GIF settings are applied

to the image that’s generated when you publish the document.

Alternatively, click Publish to publish the document.

To publish your file as a JPEG image, follow these steps:

 1. Choose File➪Publish Settings.

 The Publish Settings dialog box appears.

 2. Choose JPEG as one of the file formats.

 3. Click the JPEG tab.

 The JPEG settings appear (see Figure 4-7).

48_385395-bk08ch04.indd 61148_385395-bk08ch04.indd 611 10/28/08 8:48:43 PM10/28/08 8:48:43 PM

Publishing a Flash File612

Figure 4-7: Specifying JPEG publish settings.

 4. In the Dimensions section, accept the default Match Movie option.

 If you deselect this option, you can manually enter values for the size

you want. Flash doesn’t recalculate values to resize the resulting file

proportionately.

 5. Drag the Quality slider to specify image quality.

 The default setting of 80 gives you good image quality. Specifying a

lower setting results in a smaller file size with poorer image quality.

A setting of 100 produces the best image quality.

48_385395-bk08ch04.indd 61248_385395-bk08ch04.indd 612 10/28/08 8:48:43 PM10/28/08 8:48:43 PM

Integrating Flash Movies with HTML Documents 613

Book VIII
Chapter 4

Publishing Your
Flash Project

 6. (Optional) Choose the Progressive option.

 This step produces a JPEG file that loads into the user’s browser in

stages. Each stage is progressively better. The full image quality is

revealed after the final pass.

 7. Click OK.

 The Publish Settings dialog box closes. The JPEG settings are applied

to the image that’s generated when you publish the document.

Alternatively, click Publish to publish the document.

Integrating Flash Movies with HTML Documents
When you choose Flash and HTML for your publishing options and choose

Default, the SWF file appears in the left corner of your browser. You can

easily change this by editing the HTML document in an HTML editor such as

Dreamweaver or a word processing application such as Notepad. You use a

<div> tag with the alignment option set to the center to display the Flash file

in the center of the Web browser. The exact location of the code you need

to modify differs depending on the HTML option you choose in the Publish

Settings dialog box. To center the Flash SWF file in the Web browser, follow

these steps:

 1. Open the HTML document in an HTML editor or a word processing

application such as Notepad.

 Don’t use Word to edit the document. When Word opens an HTML

document, the application has a tendency to mess with the code — not

always in a good way.

 Less is more. Open the application in the most basic word processing

application on your computer. If you edit the file in an HTML editor,

switch to the mode that lets you edit the code.

 2. Add the following bit of code before the spot where the Flash SWF file

appears: <div align=“center”>.

 If you’re using the HTML template that includes JavaScript to run

ActiveX content, place the tag before the line of code that reads

<script language=”JavaScript” type=”text/
javascript”> AC_FL_RunContent (

 3. Add the following bit of code at the end of the code to embed the

Flash file: </div>.

 If you’re using the HTML template that includes JavaScript to run ActiveX

content, place the tag after the line of code that reads </noscript>.

Listing 4-1 shows the HTML code with the added tags to center the Flash

file in the Web browser.

48_385395-bk08ch04.indd 61348_385395-bk08ch04.indd 613 10/28/08 8:48:43 PM10/28/08 8:48:43 PM

614 Integrating Flash Movies with HTML Documents

Listing 4-1: Centering the SWF File in the Browser
<div align=”center”>
 <!--url’s used in the movie-->
 <!--text used in the movie-->
 <!-- saved from url=(0013)about:internet -->
 <script language=”JavaScript” type=”text/javascript”>
 AC_FL_RunContent(
 ‘codebase’,’http://download.macromedia.com/pub/shockwave/cabs/flash/
 swflash.cab#version=10,0,0,0’,
 ‘width’, ‘550’,
 ‘height’, ‘400’,
 ‘src’, ‘McTimeline’,
 ‘quality’, ‘best’,
 ‘pluginspage’, ‘http://www.adobe.com/go/getflashplayer’,
 ‘align’, ‘middle’,
 ‘play’, ‘true’,
 ‘loop’, ‘true’,
 ‘scale’, ‘showall’,
 ‘wmode’, ‘window’,
 ‘devicefont’, ‘false’,
 ‘id’, ‘McTimeline’,
 ‘bgcolor’, ‘#f7f2b2’,
 ‘name’, ‘McTimeline’,
 ‘menu’, ‘true’,
 ‘allowFullScreen’, ‘false’,
 ‘allowScriptAccess’,’sameDomain’,
 ‘movie’, ‘McTimeline’,
 ‘salign’, ‘’
); //end AC code
</script>
 <noscript>
 <object classid=”clsid:d27cdb6e-ae6d-11cf-96b8-444553540000”
 codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/
 swflash.cab#version=10,0,0,0” width=”550” height=”400” id=
 “McTimeline” align=”middle”>
 <param name=”allowScriptAccess” value=”sameDomain” />
 <param name=”allowFullScreen” value=”false” />
 <param name=”movie” value=”McTimeline.swf” />
 <param name=”quality” value=”best” />
 <param name=”bgcolor” value=”#f7f2b2” />
 <embed src=”McTimeline.swf” quality=”best” bgcolor=”#f7f2b2”
 width=”550” height=”400” name=”McTimeline” align=”middle”
 wmode=”window” allowScriptAccess=”sameDomain”
 allowFullScreen=”false” type=”application/x-shockwave-flash”
 pluginspage=”http://www.adobe.com/go/getflashplayer” />
 </object>
 </noscript>
</div>

48_385395-bk08ch04.indd 61448_385395-bk08ch04.indd 614 10/28/08 8:48:43 PM10/28/08 8:48:43 PM

Index

Numbers and Symbols
* (asterisk) wildcard, 311

/**/ (block comment) operator, 316
// (comment) operator, 286, 316
{} (curly braces), 284–285
- (decrement) operator, 316
/= (divide/assign) operator, 316
/ (division) operator, 316
== (equality) operator, 316
> (greater than) operator, 316
>= (greater than or equal to)

operator, 316
++ (increment) operator, 316
!= (inequality) operator, 316
<= (less than or equal to) operator,

316
&&= (logical AND assignment)

operator, 317
&& (logical AND) operator, 317
! (logical NOT) operator, 317
||= (logical OR assignment)

operator, 317
|| (logical OR) operator, 317
 %= (modulo/assign) operator, 316
% (modulo) operator, 316
* (multiplication) operator, 316
*= (multiply/assign) operator, 316
=== (strict equality) operator, 316
!== (strict inequality) operator, 316
-= (subtract/assign) operator, 316
- (subtraction) operator, 316
3D animation

3D Rotation tool, 11, 23, 224–225
3D Translation tool, 11, 23, 225–226

3D Rotation tool
creating animations, 224–225
overview, 11, 23

3D Translation tool
creating animations, 225–226
overview, 11, 23

A
access

modifiers
overview, 312–313
types, 313

setting, 312–315
statements, 291

Actions panel, 57–58
ActionScript 3.0

actions, 52–53
adding

to pages, 52
to preloader, 594–596

arrays, 338–344
basic structure, 306–315
changes since previous version,

268–272
changing movie clips, 39
classes, 59
code for interactive buttons,

507–509
conditional statements, 321–329
controlling

Flash Timeline, 48, 273–275
movie clip Timelines, 276–281

copying motion with, 255–257
creating

ActionScript file for AIR
application, 558–560

Timeline functions, 49–53
two buttons, 49–50

cue points, 453–458
for desktop AIR browser, 570
exclusively for AIR, 566–567
files, 59
formatting buttons, 50–52
graphic programming, 351–358
help, 79–80
levels, 56–61
loading

external sound files, 378–381
soundtracks, 381–383

loops, 329–336
making buttons functional with,

506–507
operators, 315–320
organizing

layout for, 538
tasks, 55–56

overview, 13, 47–48, 267
Timeline

to ActionScript file, 59–61
adding blank keyframes, 211–212

49_385395-bindex.indd 61549_385395-bindex.indd 615 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Flash CS4 All-in-One For Dummies616

ActionScript 3.0
adding frames, 209–210
adding keyframes, 210–211
anatomy, 208
buttons, 292–295
class, 287–288
clip code, 286
code, 56–59
code and design, 295–298
comments, 286
controlling movie clip, 276–281
copying frames, 212–213
creating frames, 209–212
creating functions with

ActionScript, 49–53
editing frames, 212–213
frames, 208–213
instances, 296–298
managing, 213
overview, 20, 48, 207–208,

273–275
selecting frames, 212
templates, 284–285
text fields, 292–295
User Interface (UI) component

classes, 299–304
working with, 49

transporting objects, 53–56
vectors, 345–351

ActionScript 3.0 Language and
Components Reference, 312

Add Anchor Point tool, 116
add/assign (+=) operator, 316
“add colors,” 128
addChild() method, 355–358
addChild (objName) statement,

288–289

addChildAt (objName, index)
statement, 289

adding
ActionScript

to pages, 52
to preloader, 594–596

blank keyframes, 211–212
CHANGE choice, 515–516
CheckBox components, 519–520
cue points, 442–444
data to arrays, 339
event listeners to buttons, 269–270
frames, 209–210
hyperlinks to text, 143
keyframes, 210–211
maps, 529–530

multiple frames, 210
player controls, 475–476
RadioButton components, 520–521
selections to List component,

548–551
site components, 528
sound

to buttons, 376–377
from document library, 374
effects, 375–376

text
to pages, 528–529
to TextArea component, 551–554

worker methods, 474–475
addition (+) operator, 315–316
addMedia() method, 474–475
addUI method, 474–475
Adobe

AIR
converting standard Flash

applications to AIR, 565–566
creating a desktop AIR browser,

567–573
creating simple AIR application,

556–565
extension, 70
file publishing, 560–562
overview, 555
using ActionScript for, 566–567
Web site, 555

AIR applications
converting Flash applications to,

565–566
creating ActionScript file, 558–560
creating Flash file, 556–558
installing, 562–565
modifying, 573
publishing AIR file, 560–562
testing, 562–565
using ActionScript exclusively for,

566–567
AIR browser

completing application, 571–573
creating AIR application, 568
entering ActionScript, 570
File class, 567–568
modifying AIR application, 573
setting up AIR file, 568–569

Audition, 367–368
classes, 311
Extension Manager CS4

launching extension, 84–85
managing with, 85–86

49_385395-bindex.indd 61649_385395-bindex.indd 616 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Index 617

Flash Media Live Encoder CS4
overview, 14–15, 427
recording with, 419–421

Illustrator, 35
Kuler, 10
Media Player download, 417
Online Forums resource, 87
Premiere Pro video editor, 425
Sound Document (*.asnd) format,

362
Training resource, 87

Adobe Updater Preferences dialog
box, 81

advanced animation techniques
copying motion, 254–257
editing

motion tween animations,
245–254

multiple frames, 261–263
shape tween animations, 258–260

motion
paths, 244–245
presets, 241–243

Onion Skins, 261
Advanced option, 172
AIFF Sound (*.aif, *.aiff) format, 362
AIR. See Adobe, AIR; Adobe, AIR

applications; Adobe, AIR
browser

AIR - Application & Installer Settings
dialog box, 560–562, 571–572

Align panel, 121–122
Alpha option, 172
analogous, 138
animation. See also advanced

animation techniques; Flash
Animation; frame-by-frame
animation; IK (Inverse
Kinematics) animation; text,
animations

animated buttons, 501–502
copying motion, 254–257
creating, 72–76

Application Install dialog box,
563–565, 572

applications
adding

selections to List components,
548–551

text to TextArea component,
551–554

Adobe AIR
converting standard Flash

applications to, 565–566
creating desktop AIR browser,

567–573
creating simple applications,

556–565
extension, 70
file publishing, 560–562
overview, 555
using ActionScript for, 566–567
Web site, 555

applying dynamic text style to UI
components, 544–547

button components, 537
chat

creating, 480–483
testing, 483–484

finding coordinates, 538–539
formatting TextField class with

TextFormat class, 543–544
graphic elements, 538
grid, 538
Header TextField, 537
layout preparation, 535
List component, 536
organizing

Flash pages, 533–543
layout for ActionScript, 538

placing objects on Stage, 539–543
separating static and dynamic

elements, 534–535
server-side, 479–480
styling

button components, 547–548
code, 543–554

text labels, 537
TextArea component, 536–537
UILoader components, 536
video editing, 492–493

applying dynamic text style to UI
components, 544–547

arrays
adding data to, 339
creating, 338–339
element, 338
retrieving data from, 339–340
sample, 341–344
sorting with, 341

assignment (=) operator, 315–316
asterisk (*) wildcard, 311

49_385395-bindex.indd 61749_385395-bindex.indd 617 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Flash CS4 All-in-One For Dummies618

attributes, begin, 458–459
Audacity Web site, 370
audio

bit depths, 362–364
data rates, 362–364
file tips, 66
formats, 361–362
importing, 371–373
recording hardware, 364–367
sample rates, 362–364
sending, 478
settings, 440–441
sound-editing software, 367–370

Audio Interchange File Format, 362
Audition (Adobe), 367–368
autofocus, Webcam, 414–415
AVI files

converting to F4V files, 430–432
downloading, 395

B
background

creating animated, 216–217
setting document, 70–72

bandwidth
Bandwidth Profiler, 589–592
creating a preloader, 592–598
defined, 433
managing, 433–434
overview, 589
Webcam, 415

Bandwidth Profiler, 589–592
bars

display, 18
menu, 16–17

battery power (camera), 486
begin attribute, 458–459
Bind tool

overview, 12, 24
using, 232

bit depth, 362
bit rate, 363
Bitmap files, 190
Bitmap Properties dialog box,

200–201
bitmaps

converting to vector graphics,
526–527

defined, 92
fill, 201–202

Find and Replace, 157
graphics, 91–93
swapping, 202–203
tracing, 196–198

bitrate settings, 439–440
blank keyframes. See also frames;

keyframes
adding, 211–212
creating, 209–212
overview, 209

block comment (/**/) operator, 316
Blue Snowball, 365–366
Blue Snowflake, 366–367
Bones tool

overview, 12, 24
using, 227–229

breakpoints, 580
Brightness option, 171
broadcasting, compared with

streaming, 463–464
browser (Adobe). See also Adobe

completing application, 571–573
creating AIR application, 568
entering ActionScript, 570
File class, 567–568
modifying AIR application, 573
setting up AIR file, 568–569

Brush tool
creating graphics with, 34–35
overview, 24
painting with, 109–110

building. See creating
built-in microphone, Webcam, 415
Button symbol, 160
buttons

adding
event listeners, 269–270
sound, 376–377

classes, 292–295
components

overview, 537
styling, 547–548

creating
animated, 501–502
buttons, 49–50
invisible, 499–501
multistate, 498–499
navigation menu with, 502–505
User Interface (UI), 308–309

defined, 498
formatting, 50–52
functions for, 270–271

49_385395-bindex.indd 61849_385395-bindex.indd 618 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Index 619

graphic, 38–39
interactive, 507–509
library, 505–506
making functional with

ActionScript, 506–507
Object Drawing, 109
overview, 497–498
scripts, 268
Timeline, 292–295

C
camera

battery power, 486
color, 137–138
exposure, 486
object, 478
settings, 478–479
tips, 485–487
video, 416

can, 428
captions (video)

creating video with, 460–462
launching, 459–462
overview, 458
timed text in XML file, 458–459

Carl Zeiss Tessar optical system,
414–415

catching
connection, 475
metadata, 475

CHANGE choice, 515–516
changing

appearance of play controls,
407–409

basic camera settings, 478–479
keyboard shortcuts, 28–30
movie clip properties, 39–40
timing of motion tween animations,

245
videos for progressive downloads,

405–407
chat application

changing basic camera settings,
478–479

creating
camera object, 478
chat application, 480–483
server-side application, 479–480

overview, 477
sending audio and video, 478

testing application, 483–484
Check Spelling dialog box, 154
CheckBox

adding components, 519–520
overview, 517–518
reading results, 518–519

checkConnect() method, 475
choosing

compression codec, 433
file types before conversion, 429
from lists, 299
video camera, 416
Webcam, 414–415

classes
ActionScript, 59
Adobe, 311
button, 292–295
File, 567–568
GraphicPlay, 353–355
MovieClip, 288–292
overview, 287–288
properties, 306
PubPriv, 314–315
Shape, 351–355
TestBench, 313–314, 315
testing, 315
TextField, 543–544
TextFormat, 543–544
top-level, 310
URLLoader, 527
URLLoaderDataFormat, 527
URLRequest, 527

clause, else, 323–325
cleaning Document Library, 175–176
clearing keyframes, 213
CLICK mouse event, 506
client, 464
clip art, 283
clip code, 283
closed path, 112
code

clip, 283
DoSound ActionScript, 380–381
hinting, 312
interactive buttons, 507–509
nonrunning, 296
SoundPlayer ActionScript, 379–380
styling, 543–554
Timeline, 56–59

codec, 433

49_385395-bindex.indd 61949_385395-bindex.indd 619 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Flash CS4 All-in-One For Dummies620

color
“add,” 128
changing, 137–138
creating custom set, 129–131
fill, 126–127
Find and Replace, 157
graphics, 36–37
Kuler Extension, 138–140
mixing swatch of, 131–133
panel, 131–133
replace, 129
setting document, 70–72
stroke, 125–126
Web-safe, 127

Color Panel, 131–133
commands

Copy Motion, 254–255
Find and Replace, 156–157
Trace Bitmap, 196–198

comment (//) operator, 316
commented out, 296
comments, 286
complementary, 138
components

button, 537, 547–548
CheckBox, 519–520
defined, 299
Flash

adding CHANGE choice, 515–516
CheckBox components, 517–523
converting bitmaps to vector

graphics, 526–527
creating calculator application,

512–515
creating interface with, 523–525
extending visible selection,

516–517
graphic vs. SWF files, 526
Label component, 512–517
List component, 512–517
loading, 525–527
loading text and XML files, 527
overview, 511–512
RadioButton components,

517–523
reading results, 518–519
settings, 525
UILoader, 525–527
Web site creation example,

528–532

Label
adding CHANGE choice, 515–516
creating calculator application,

512–515
extending visible selections,

516–517
setting text style for, 545–547

library, 308–309
List

adding CHANGE choice, 515–516
adding selections to, 548–551
creating calculator application,

512–515
extending visible selections,

516–517
overview, 536

RadioButton, 520–521
site, 528
TextArea, 536–537, 551–554
UI (User Interface), 299–304,

544–547
composing scenes, 486, 489–490
compound, 139
compression codec, 433
concatenate, 315
conditional statements
else clause, 323–325
if statement, 322–323
overview, 322
switch statement, 325–329

conducting interviews, 491
configuring connection to Flash

Media Server, 468–469
connection

catching, 475
to Flash Media Server, 467–468

constant, compared with variable
and objects, 309–310

constructor function
creating, 473
overview, 284

Content Path dialog box, 406
controlling

Flash Timeline, 48, 273–275
movie clip Timelines, 276–281

controls, play, 405, 407–409
conventions used in this book, 2
Convert Anchor Point tool, 116
Convert to Symbol dialog box,

161–163, 274–275, 593–594

49_385395-bindex.indd 62049_385395-bindex.indd 620 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Index 621

converting
AVI files to F4V files, 430–432
bitmaps to vector graphics,

526–527
files with default options, 429–432
keyframes to frames, 213
objects to symbols, 161–163
standard Flash applications to AIR,

565–566
text to graphics, 151
video files to Flash compatible

files, 395
coordinates, 538–539
Copy Motion command, 254–255
copying

frames, 212–213
motion

with ActionScript, 255–257
with Copy Motion command,

254–255
cost

Flash Media Server, 464
Sony ACID Music Studio, 370

Create New Symbol dialog box, 163–
164, 276–281, 293–295, 498–499

Create Project dialog box, 422–424
Create Self-Signed Digital Certificate

dialog box, 562
creating

ActionScript code for interactive
buttons, 507–509

ActionScript file for AIR
application, 558–560

AIR applications, 556–565
animated buttons, 501–502
animation, 72–76
applications with choices, 326–329
applications to find metadata in

video, 451–453
arrays, 338–339
bitmap fill, 201–202
blank keyframes, 209–212
button classes, 292–295
buttons, 49–50, 497–505
calculator application, 512–515
camera object, 478
chat application, 480–483
constructor function, 473
custom color set, 129–131
desktop AIR browser, 567–573

documents
from scratch, 69–70
from templates, 68

dynamic text, 144–145
Flash documents, 66–76
Flash files for AIR application,

556–558
flying text, 235–239
frame-by-frame animation, 217
frames, 209–212
functional buttons with

ActionScript, 506–507
gradient, 133–135
graphics

with drawing tools, 34–35
images, 353–355

groups, 122
guides, 185–186
input text, 144
interface with Flash components,

523–525
inventories, 470–471
Inverse Kinematics (IK) animation,

227–232
invisible buttons, 499–501
keyframes, 209–212
layer folders, 181–182
library folders, 172–173
lines, 103–104
live audio/video receivers, 469–477
logical comparison applications,

317–320
motion

presets, 242–243
tween animation, 218–220
tween animations with Motion

Editor, 249–252
MovieClip class, 288–292
multistate buttons, 498–499
navigation menu with buttons,

502–505
new layers, 180–181
new symbols, 163–166
with Oval tool, 98–99
paths with Pen tool, 111–112
with Polystar tool, 100
preloader, 592–598
Primitive Oval shape, 94–95
Primitive Rectangle shape, 95–97
progressive downloads, 400

49_385395-bindex.indd 62149_385395-bindex.indd 621 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Flash CS4 All-in-One For Dummies622

creating (continued)

project lists, 66
receivers, 471
with Rectangle tool, 99
server-side applications, 479–480
shape tween animation, 220–222
static text, 142–143
symbols, 160–167
text, 149–151
Timeline functions with

ActionScript, 49–53
typewriter text, 233–235
unique shapes, 100–103
universal chat application, 477–484
User Interface (UI) buttons,

308–309
video

with captions, 460–462
players, 446–448

Web site example, 528–532
XML files, 459

credits, video, 493–494
CS4. See Flash
cue points

ActionScript, 453–458
adding, 442–444
defined, 442
displaying, 448–450
extracting, 448–450
overview, 448
properties, 450

curly braces ({}), 284–285
Custom Anti-Aliasing dialog box, 147
Customize Tool Panels dialog box,

25–26
customizing

Tools panel, 25–26
video conversions, 433–434
video for progressive downloads,

401–403
workspace, 25–32

D
data

adding to arrays, 339
list, 200–201
rate, 363
retrieving from arrays, 339–340

debugging movies
overview, 579–580
setting breakpoints, 580
using debugger, 580–584

Deco tool, 11, 24
decrement (-) operator, 316
Default Colors tool, 24
default names, 175
defining

fill color, 126–127
stroke color, 125–126

Delete Point tool, 116
deleting

frames, 213
guides, 186
motion presets, 243
swatches, 128
workspace, 28

desktopDirectory property,
567–568

determining project scope, 65
dialog box

Adobe Updater Preferences, 81
AIR - Application & Installer

Settings, 560–562, 571–572
Application Install, 563–565, 572
Bitmap Properties, 200–201
Check Spelling, 154
Content Path, 406
Convert to Symbol, 161–163,

274–275, 593–594
Create New Symbol, 163–164,

276–281, 293–295, 498–499
Create Project, 422–424
Create Self-Signed Digital

Certificate, 562
Custom Anti-Aliasing, 147
Customize Tool Panels, 25–26
Digital Signature, 560–562
Document Properties, 70–72
Duplicate, 29–30
Duplicate Symbol, 174–175, 504
Export, 425
Export Color Swatch, 129, 130
Find and Replace, 156
Find Source, 199
Grid, 186–187
Guides, 185–186
Import, 193, 195–196, 372
Import Color Swatch, 128

49_385395-bindex.indd 62249_385395-bindex.indd 622 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Index 623

Import to Library, 371–372
Import Video, 396, 401–403
Info, 121
Installation Progress, 82
Keyboard Shortcuts, 29–30
Layer Properties, 183–184
Manage Workspace, 28
Movie Explorer Settings, 586–587
New Document, 68–70, 378–379
New Symbol, 500–502, 593–594,

596–598
Preferences, 31–32, 209–213
Publish Settings, 600–601, 601–605,

605–608, 609–613
Save As Preset, 243
Select Extension to Install, 85
Select External Editor, 390
Select Skin, 407–408
Show Details, 82
Sound Properties, 385–387
Sound Settings, 603–605
Spelling Setup, 153
Stroke Style, 108
Swap Bitmap, 203
Swap Symbol, 166–167, 170,

226–227
Tool Settings, 100
Trace Bitmap, 197–198, 526

Digital Signature dialog box, 560–562
directing videos, 490–491
display bar, 18
display list, 288
displaying

cue points, 448–450
objects, 183
percentage of file loaded to

preloader, 596–598
divide/assign (/=) operator, 316
division (/) operator, 316
docking floating panels, 26
document library

adding sound from, 374
cleaning, 175–176
creating library folders, 172–173
default names, 175
duplicating symbols, 174–175
importing symbols from Flash

documents, 176–178
overview, 19–20, 172

Document Properties dialog box,
70–72

documents
creating

Flash, 66–76
from scratch, 69–70
from templates, 68

dimensions, 191
importing

Photoshop documents with
layers, 195–196

symbols from Flash, 176–178
integrating Flash movies with

HTML, 613–614
optimizing, 588
publishing Flash documents in

other formats, 608–613
setting

background, 70–72
color, 70–72
frame rate, 70–72
size, 70–72

documentsDirectory property,
567–568

Don’t Make me Think (Krug), 517
DoSound ActionScript code, 380–381
double slashes (//), 286
double pipe, 317
DOUBLE_CLICK mouse event, 506
do…while loop, 334–336
downloading

Adobe Media Player, 417
AVI files, 395
Flash Media Live Encoder 2.5, 417
Flash Media Server, 465–467
progressive, 399–409
updates, 82

dragging movie clips, 350–351
drawing

with Pencil tool, 107–109
rectangles, 352

drawing tools
Brush, 34–35
Pen, 35
Pencil, 34–35

drawTriangles() method,
355–358

driver compatibility, Webcam, 415
Duplicate dialog box, 29–30
duplicate swatch, 128

49_385395-bindex.indd 62349_385395-bindex.indd 623 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Flash CS4 All-in-One For Dummies624

Duplicate Symbol dialog box,
174–175, 504

duplicating symbols, 174–175
DV editing for Web, 491–494
dynamic elements, separating from

static elements, 534–535
dynamic range, 363
dynamic text

choosing fonts for, 150–151
creating, 144–145
overview, 35–36

E
easing, 11
Edit Scene icon, 18
Edit Symbol icon, 18
editing

DV for Web, 491–494
frame-by-frame animation, 261–263
frames, 212–213
guides, 185–186
images

in external editors, 199
overview, 198–201
properties, 199–201

layer properties, 183–184
layers, 182–183
motion

paths, 244–245
tween animations, 245–254
tween animations in Property

Inspector, 245–248
multiple frames, 261–263
shape tween animations, 258–260
sound

in external editors, 390
files, 385–390
in Flash, 388–389

symbols
in another window, 169–170
overview, 168–172
in place, 168–169

text, 152
editors

editing sound in external, 390
video, 425

effects, sound, 375–376

elements
arrays, 338
coordinates, 538
defined, 338
graphic, 538
separating static from dynamic,

534–535
tracking, 525

else clause, 323–325
embedding video, 394–399
enabling, onion skins, 261
encapsulation, 313
equality (==) operator, 316
Eraser tool

overview, 24
using, 113–114

erasing. See deleting
events

handler, 268–269
list, 299
listeners, 269–270
mouse, 268–269, 506–507

Export Color Swatch dialog box, 129,
130

Export dialog box, 425
exporting, motion presets, 243
exposure (camera), 486
expressions, 317
extend (overflow), 136
extending

overview, 83–86
visible selections, 516–517

eXtensible Markup Language (XML)
files

creating, 459
loading, 527
timed text in, 458–459

extensions
Adobe AIR, 70
defined, 67
finding, 83–84
installing, 84–85
Kuler, 138–140
launching, 84–85
managing, 85–86

external editors
editing images in, 199
editing sound in, 390

external sound files, 378–381

49_385395-bindex.indd 62449_385395-bindex.indd 624 10/28/08 8:49:05 PM10/28/08 8:49:05 PM

Index 625

extracting cue points, 448–450
Eye Dropper tool, 24

F
F4V files, 430–432
F4V (MainConcept H.264 Video)

codec, 433
face-following, 415
Field Order option, 438
File class, 567–568
file formats

AIFF Sound (*.aif, *.aiff), 362
audio, 361–362
importing, 362
overview, 189–191
setting video, 437

File Transfer Protocol (FTP) tab,
441–442

fileLoading function, 596
files/folders

ActionScript, 59
audio, 66
bitmap, 190
choosing types before conversion,

429
converting

AVI to F4V, 430–432
with default options, 429–432
video files to Flash compatible,

395
creating

ActionScript file for AIR
application, 558–560

Flash files for AIR application,
556–558

layer, 181–182
library, 172–173
XML, 459

downloading AVI, 395
embedding video in Flash, 395–399
Flash File

ActionScript, 69, 2.0, 3.0
Adobe AIR, 69–70
Mobile, 70

Flash Project, 70
Flash Slide Presentation, 70
GIF image, 190

graphic vs. SWF, 526
JPEG image, 190
loading

external sound, 378–381
XML, 527

MacPaint image, 190
PNG, 190
publishing

AIR, 560–562
Flash, 599–613

setting up AIR, 568–569
storing for progressive downloads,

405
TGA image, 90
TIFF image, 191
video, 66, 395
XML, 458–459, 527

fill
bitmap, 201–202
color, 126–127
defined, 124

Fill Color tool, 24
film

clip
changing ActionScript, 39
debugging, 350–351
properties, 39–40
scripts, 271–272
Timelines, 276–281

debugging, 579–584
iMovie, 422–425
organizing, 587–588
previewing, 587–588
testing, 53, 577–579

filters
Gaussian Blur, 436
setting video, 436–437

Final Cut Pro video editor, 425
Find and Replace

Find and Replace dialog box, 156
using, 156–157

Find Source dialog box, 199
finding

coordinates, 538–539
extensions, 83–84

fine-tuning
Flash projects, 585–588
motion tween animations, 245
video settings, 435–442

49_385395-bindex.indd 62549_385395-bindex.indd 625 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies626

Flash
applications, converting to AIR,

565–566
customizing workspace, 25–32
documents

creating, 66–76
publishing in other formats,

608–613
Exchange, 83
File

ActionScript, 2.0, 3.0, 69
Adobe AIR, 69–70
Mobile, 70

files, creating for AIR application,
556–558

graphics
bitmap, 91–93
buttons, 38–39
color, 36–37
converting bitmaps to vector,

526–527
converting text to, 151
elements, 538
files, 526
raster, 91–93
settings, 605–608
symbols, 38, 160

interactivity, 13–15
Media Development Server 3, 464
Media Interactive Server 3, 464
Media Live Encoder 2.5 download,

417
Media Streaming Server 3, 464
movie integration with HTML

documents, 613–614
new features, 10–11
new tools, 11–12
pages, organizing, 533–543
Project, 70
projector, publishing, 601
publishing, 599–613
Slide Presentation, 70
Support Center resource, 87
using help, 78–79
workspace, 15–24

Flash Animation
Bind tool, 232
Classic Tween option, 223
creating

animated backgrounds, 216–217
frame-by-frame animation, 217

Inverse Kinematics (IK)
animation, 227–232

motion tween animation, 218–220
shape tween animation, 220–222

frame-by-frame, 41–42
Inverse Kinematics, 44–45
Motion tween, 42–43
overview, 41
reversing animation, 222–2223
Shape Tween, 43–44
simulating 3D animation, 223–226
Spray Brush tool, 226–227
3D Rotation tool, 224–225
3D Translation tool, 225–226

Flash components
adding

CHANGE choice, 515–516
CheckBox components, 519–520
RadioButton components,

520–521
CheckBox component, 517–523
converting bitmaps to vector

graphics, 526–527
creating

calculator application, 512–515
interface with, 523–525

extending visible selections,
516–517

graphic vs. SWF files, 526
Label component, 512–517
List component, 512–517
loading

components, 525–527
text and XML files, 527

overview, 511–512
RadioButton component, 517–523
reading results, 518–519
settings, 525
UILoader, 525–527
Web site creation example,

528–532
Flash Graphics. See also graphics

color, 36–37
creating with drawing tools, 34–35
instances, 37–41
overview, 33
symbols, 37–41
Text tool, 35–36

Flash Media Server
configuring connection, 468–469
connecting to, 467–468

49_385395-bindex.indd 62649_385395-bindex.indd 626 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 627

creating universal chat application,
477–484

downloading, 465–467
installing, 465–467
making live audio/video receiver,

469–477
overview, 410–411
streaming

compared with broadcasting,
463–464

media with, 464–469
types, 464–465

flash video, 14
flash.display package, 312
flash.events package, 312
flash.media package, 312
flash.net package, 312
flash.text package, 312
fl.controls package, 312
floating panels, 26
floating point, 307
FLV (On2 VP6) codec, 433
FLV (Sorenson Spark) codec, 433
flying text, creating, 235–239
folders/files

ActionScript, 59
audio, 66
bitmap, 190
choosing types before conversion,

429
converting

AVI to F4V, 430–432
with default options, 429–432
video files to Flash compatible,

395
creating

ActionScript file for AIR
application, 558–560

Flash files for AIR application,
556–558

layer,181–182
library, 172–173
XML, 459

downloading AVI, 395
embedding video in Flash, 395–399
Flash File

ActionScript, 69, 2.0, 3.0
Adobe AIR, 69–70
Mobile, 70

Flash Project, 70
Flash Slide Presentation, 70

GIF image, 190
graphic vs. SWF, 526
JPEG image, 190
loading

external sound, 378–381
XML, 527

MacPaint image, 190
PNG, 190
publishing

AIR, 560–562
Flash, 599–613

setting up AIR, 568–569
storing for progressive downloads,

405
TGA image, 90
TIFF image, 191
video, 66, 395
XML, 458–459, 527

font
considerations, 150–151
Find and Replace, 157

for each…in loop, 332–334
for loop, 329–330
forEach() method, 347–349
for…in loop, 331–332, 340
formatting

buttons, 50–52
text, 145–149
TextField class with TextFormat

class, 543–544
forNext() method, 348–349
fps (frames per second), 415
frame-by-frame animation

creating, 217
editing, 261–263
overview, 41–42

Frame Rate (frames per second
[fps]) option, 438

frames. See also blank keyframes;
keyframes

adding, 209–210
converting keyframes to, 213
copying, 212–213
creating, 209–212
deleting, 213
editing, 212–213
editing multiple, 261–263
moving, 213
overview, 209
rate, 70–72
selecting, 212

49_385395-bindex.indd 62749_385395-bindex.indd 627 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies628

frames (continued)

span, 209
types, 208–209

frames per second (FPS), 415
Free Transform tool

overview, 23
using, 117–119

frequency, 363
FTP (File Transfer Protocol) tab,

441–442
functions

for buttons, 270–271
constructor, 284
creating construction, 473
defined, 270
fileLoading, 596
Timeline, 49–53

G
GarageBand Web site, 369
Gaussian Blur filter, 436
getMeta() handler, 475
GIF image files, 190
gradient, rotate, 136
Gradient option, 36–37
Gradient Transform tool, 23
graphic programming

graphics property, 352
image creation, 353–355
Shape class, 351–355
triangle, 355–358

GraphicPlay class, 353–355
graphics

bitmap, 91–93
buttons, 38–39
color, 36–37
converting

bitmaps to vector, 526–527
text to, 151

elements, 538
files, 526
raster, 91–93
settings, 605–608
symbols, 38, 160

greater than (>) operator, 316
greater than or equal to (>=)

operator, 316

grid
organizing with, 186–187
overview, 538

Grid dialog box, 186–187
groups, creating, 122
guides

creating, 185–186
editing, 185–186
locking, 185
moving, 185
removing, 186

Guides dialog box, 185–186

H
H position, 117
Hand tool, 24
handlers, getMeta(), 475
hardware, recording, 364–367
Header TextField, 537
help

Actions panel, 58
ActionScript, 79–80
using, 78–79

hexadecimal values, 124
hiding, layers, 183
hinting, code, 312
horizontal (stroke), 108
hot shoe, 487
HSB color, 124
HTML (Hypertext Markup Language)

documents, 613–614
settings, 605–608

HTTP (Hypertext Transfer Protocol),
410

hyperlinks, 143
Hypertext Markup Language (HTML)

documents, 613–614
settings, 605–608

Hypertext Transfer Protocol (HTTP),
410

I
icons

Edit Scene, 18
Edit Symbol, 18
used in this book, 5

49_385395-bindex.indd 62849_385395-bindex.indd 628 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 629

identifiers, 307
IEEE Webcams, 416
if statement, 322–323
IK (Inverse Kinematics) animation

Bind tool, 232
creating, 227–232
overview, 10, 44–45

Illustrator (Adobe), 35
images

editing, 198–201
editing in external editors, 199
editing properties, 199–201
graphic, 353–355
importing sequences, 193–195
preparing for Flash, 191–193
resolution, 191
tips, 66

iMovie
overview, 422
recording video in, 422–425

Import Color Swatch dialog box, 128
Import dialog box, 193, 195–196, 372
Import to Library dialog box,

371–372
import statement, 310–311
Import Video dialog box, 396,

401–403
importing

audio, 371–373
file formats, 362
image sequences, 193–195
motion presets, 243
Photoshop documents with layers,

195–196
symbols from Flash documents,

176–178
types, 310–312
video for progressive downloads,

401–403
increment (++) operator, 316
indices, 356
inequality (!=) operator, 316
Info dialog box, 121
Info panel, 120–121
Ink Bottle tool

changing colors, 137
overview, 24

ink (stroke), 108
input text, 35

input text fields, 150–151
Installation Progress dialog box, 82
installing

AIR application, 562–565
extensions, 84–85
Flash Media Server, 465–467
updates, 82

instances. See also symbols
defined, 268
names, 296
NetConnection, 475
overview, 37–38, 159–160, 308

instantiate, 314
int (integer), 307
integrating, Flash movies with HTML

documents, 613–614
interactive buttons, 507–509
interface, creating with Flash

components, 523–525
Internet resources

Adobe
AIR, 555
AIR extension, 70
Audition, 367
Media Player, 417
Premiere Pro, 425

antonioswinterhaven.com, 14–15
Audacity, 370
Blue Snowball, 365
Blue Snowflake, 367
book companion, 4, 275, 287, 378,

395, 443, 471
dasdesigns.net/demo, 13–14
Final Cut Pro, 425
Flash Media Live Encoder, 2.5, 417
GarageBand, 369
Macintosh installation of Flash

Media Server, 465
MP3 format plug-ins, 370
phoenixfl.com, 12–13
pixelicious, 367
Sony

ACID Music Studio, 369
company, 370
Sound Forge, 368–369

Vegas Pro, 425, 493
YouTube, 393
Zoom H2, 364–365

interviews, conducting, 491

49_385395-bindex.indd 62949_385395-bindex.indd 629 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies630

inventories, making, 470–471
Inverse Kinematics (IK) animation

Bind tool, 232
creating, 227–232
overview, 10, 44–45

invisible buttons, 499–500
iteration, 329

J
JPEG image files, 190

K
keyboard shortcuts

changing, 28–30
Keyboard Shortcuts dialog box,

29–30
keyframe interval camera setting,

479
keyframes. See also blank keyframes;

frames
adding, 209–210
adding multiple, 211
clearing, 213
converting to frames, 213
creating, 209–212
defined, 207
moving, 213
nonroving, 253–254
overview, 209
roving, 253–254

Krug, Steve, Don’t Make Me Think,
517

Kuler (Adobe), 10
Kuler Extension, 138–140

L
Label component

adding CHANGE choice, 515–516
creating calculator application,

512–515
extending visible selections,

516–517
setting text style for, 545–547

Lasso tool
overview, 23
use of, 115

latency, 441
launching

captions, 459–462
extensions, 84–85

Layer Properties dialog box, 183–184
layers

creating
layer folders, 181–182
new, 180–181

editing
layer properties, 183–184
overview, 182–183

hiding, 183
importing Photoshop documents

with, 195–196
locking, 183
overview, 179–180
selecting, 182
unlocking, 183

layout
Flash page, 535
organizing for ActionScript, 538

LCD monitor (camera), 486
lead-in time, 487
lead-out time, 487
lens, Webcam, 414
less than or equal to (<=) operator,

316
Level option, 439
library

buttons, 505–506
components, 308–309
document, 374
folders, 172–173
symbols, 40–41

light sensitivity, Webcam, 414
Line tool, 23
linear gradient, 133
lines, creating, 103–104
List component

adding CHANGE choice, 515–516
adding selections to, 548–551
creating calculator application,

512–515
extending visible selections,

516–517
overview, 536

list data, 200–201
list events, 299
list item, 299

49_385395-bindex.indd 63049_385395-bindex.indd 630 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 631

lists
choosing from, 299
creating project, 66
display, 288

live receivers
adding

player controls, 475–476
worker methods, 474–475

catching connection and metadata,
475

creating
constructor function, 473
inventories, 470–471
receiver, 471

overview, 469
setting up application, 471–473
testing player, 476–477

loading
external sound files with

ActionScript, 378–381
Flash components, 525–527
soundtracks with ActionScript,

381–383
text, 527
XML files, 527

Loading an External Movie with a
Sound File script, 382–383

locking
guides, 185
layers, 183

logical AND (&&) operator, 317
logical AND assignment (&&=)

operator, 317
logical comparisons, 317–320
logical NOT (!) operator, 317
logical OR (||) operator, 317
logical OR assignment (||=)

operator, 317
Logitech Orbit, 421
Logitech QuickCam Pro 9000

camera, 414–415
loop variable value, 329–330
loops
do..while, 334–336
for, 329–330
for each..in, 332–334
for..in, 331–332, 340
overview, 329
while, 334–336

M
Macintosh

Adobe Premiere Pro video editor,
425

Final Cut Pro video editor, 425
Flash Media Server installation,

465
iMovie, 422–425
PCT image files, 190

MacPaint Image files, 190
Magnification drop-down menu, 18
making. See creating
Manage Workspace dialog box, 28
managing

bandwidth, 433–434
extensions, 85–86
metadata, 451–453
motion presets, 243
postproduction before video

conversion, 428–429
Timeline, 213
workspace, 28

maps, adding, 529–530
media, streaming, 464, 464–469
Media Player (Adobe), 417
megapixels, 414
menu

bar, 16–17
Magnification drop-down, 18
navigation, 502–505

metadata
catching, 475
creating applications to find in

video, 451–453
defined, 445, 471
managing, 451–453

methods
addChild(), 355–358
adding worker, 474–475
addMedia, 474–475
addUI, 474–475
checkConnect(), 475
drawTriangles(), 355–358
forEach(), 347–348
forNext(), 348–349
onCue, 457
pop(), 339–340
push, 339

49_385395-bindex.indd 63149_385395-bindex.indd 631 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies632

methods (continued)

sort(), 341
startDrag(), 350–351
stopDrag(), 350–351

microphone, built-in Webcam, 415
mind-mapping technique, 64
miter (stroke), 108
mixed-code-and-symbol approach,

296–298
mixing, swatch of color, 131–133
modes

camera setting, 478–479
Eraser, 113
Object Drawing, 104
painting, 109–110
symbol-editing, 169

modifiers, access, 312–313
modifying

AIR application, 573
with Free Transform tool, 117–119
groups, 122
objects in Property Inspector,

247–248
point by point, 115
Property inspector, 116–117
selecting objects, 114–115
shapes, 97, 104–106
symbol instance properties,

171–172
with tools, 116

modulo (%) operator, 316
modulo/assign (%=) operator, 316
monochromatic, 138
monotonous, 136
motion

copying with ActionScript, 255–257
copying with Copy Motion

command, 254–255
paths, 244–245

Motion Editor
creating motion tween animations

with, 249–252
motion tween animation, 220
overview, 11, 21

motion presets
creating, 242–243
managing, 243
overview, 241–242
using, 242

motion tween animations
changing timing of, 245
creating, 218–220
editing

overview, 245–254
in Property Inspector, 245–248

fine-tuning, 245
Motion Editor, 249–252
nonroving/roving keyframes,

253–254
overview, 11, 42–43

mouse event
CLICK, 506
defined, 506
DOUBLE_CLICK, 506
MOUSE_OUT, 507
MOUSE_OVER, 507
overview, 268–269

Movie Clip symbol, 160
Movie Explorer, 585–587
Movie Explorer settings dialog box,

586–587
MovieClip class, 288–292
movies

clip
changing ActionScript, 39
debugging, 350–351
properties, 39–40
scripts, 271–272
Timelines, 276–281

debugging, 579–584
iMovie, 422–425
organizing, 587–588
previewing, 579
testing, 53, 577–579

moving
frames, 213
guides, 185
keyframes, 213

MP3 (*.mp3) format, 362
multiplication (*) operator, 316
multiply/assign (*=) operator, 316
multistate buttons, 498–499

N
navigation menu, 502–505
NetConnection instance, 475

49_385395-bindex.indd 63249_385395-bindex.indd 632 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 633

New Document dialog box, 68–70,
378–379

New Symbol dialog box, 500–502,
593–594, 596–598

No Color tool, 24
non-numeric ID for vector elements,

345–347
nonroving keyframes, 253–254
nonrunning code, 296
normal (stroke), 108
Number (real number), 307
Nyquist, Harry, 363

O
object character, 313
Object Drawing button, 109
Object Drawing mode, using basic

shape tools, 104
objects

camera, 478
compared with constants and

variable, 309–310
converting to symbols, 161–163
displaying, 183
modifying in Property Inspector,

247–248
placing on Stage, 539–543
size, 53
transporting, 53–55

onCue method, 457
Onion Skins option, 261
online resources, 86–87
open path, 112
open socket technology, 464
operators, 315–320
optimizing

documents, 588
sound for projects, 385–387

options
Advanced, 172
Alpha, 172
Brightness, 171
Field Order, 438
Frame Rate (frames per second

[fps]), 438
Gradient, 36–37
Level, 439
Onion Skin, 261

Pixel Aspect Ratio, 438
Profile, 438–439
Solid Color, 36
Tint, 171

organization of this book, 2–4
organizing

Flash movies, 587–588
Flash pages, 533–543
with the grid, 186–187
with guides, 185–186
with layers, 179–184
layout for ActionScript, 538
projects, 179–187
with rulers, 185
tasks, 55–56

oval
creating, 94–95
tool, 98–99
unique shapes, 100–103

overtrack, 415

P
<p> tag, 457, 458–459
package statement, 284–285
paint

behind, 110
with Brush tool, 109–110
fills, 109
inside, 110
normal, 109
selection, 110
with Spray Brush tool, 110–111

Paint Bucket tool
changing color, 138
overview, 24

panels
Actions, 57–58
Align, 121–122
color, 131–133
docking floating, 26
Info, 120–121
Kuler, 138–140
overview, 19, 21–22
resizing, 26
Swatches, 102, 125–129
Tools, 22–26
Transform, 119–120
unlocking, 26

49_385395-bindex.indd 63349_385395-bindex.indd 633 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies634

panning video, 488
paragraph text, 148–149
parameter, 270
paths

closed, 112
creating with Pen tool, 111–112
motion, 244–245
open, 112

Pen tool
creating paths, 111–112
overview, 23, 35

Pencil tool
drawing with, 107–109
overview, 24, 34–35

Photoshop documents
importing with layers, 195–196
overview, 190

pipe, 317
pixel, 92
Pixel Aspect Ratio option, 438
placing objects on Stage, 539–543
planning

determining scope of project, 65
making lists, 66
mapping projects, 64–65
overview, 63–64

player
controls, 405, 407–409, 475–476
testing, 476–477
video, 445–448

PNG files, 190
point by point, 115
polygon, 100
Polystar

tool, 23, 100
unique shapes, 100–103

pop() method, 339–340
postproduction, 428
preferences

setting Flash, 31–32
updating, 81–82

Preferences dialog box
frames, 209–213
setting Flash preferences, 31–32

preloader
adding ActionScript, 594–596
creating, 592–598
displaying percentage of file

loaded, 596–598

Premiere Pro video editor (Adobe),
425

preparing
files and folders for progressive

downloads, 400
images for Flash, 191–193

previewing
film, 587–588
movies, 579

Primitive Oval tool, 93
Primitive Rectangle shape, 95–97
private access modifiers, 313
private statement, 291
Profile option, 438–439
programming, graphic, 351–358
progressive downloading

changing videos, 405–407
creating, 400
customizing video, 401–403
importing video, 401–403
overview, 399
play controls, 405, 407–409
preparing files and folders, 400
resizing video, 403–404
storing files, 405

project example
adding

maps, 529–530
site components, 528
text, 528–529

finishing, 530–532
overview, 528

projector
defined, 599
publishing Flash, 601

projects
bandwidth, 589–598
button library, 505–506
creating

ActionScript code for interactive
buttons, 507–509

buttons, 497–505
Flash documents, 66–76

debugging movies, 579–584
fine-tuning, 585–588
optimizing sound for, 385–387
organizing, 179–187
overview, 63
planning, 63–66
previewing movies, 579

49_385395-bindex.indd 63449_385395-bindex.indd 634 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 635

publishing, 599–614
testing movies, 577–579
using ActionScript to make buttons

functional, 506–507
using sound in, 373–376

properties
changing movie clip, 39–40
class, 306
cue point, 450
desktopDirectory, 567–568
documentsDirectory, 567–568
editing image, 199–201
editing layer, 183–184
graphics, 352
modifying symbol instance,

171–172
rotation, 289
rowCount, 516–517
userDirectory, 567–568

Property Inspector
editing motion tween animations,

245–248
modifying shapes with, 116–117
motion tween animation, 220
overview, 19

protected access modifiers, 313
public access modifiers, 313
public statement, 291
Publish Settings dialog box

publishing Flash documents in
other formats, 609–613

specifying HTML settings, 605–608
specifying publish settings,

600–601
specifying SWF settings, 601–605

publishing
AIR file, 560–562
Flash documents in other formats,

608–613
Flash file, 599–613
Flash projector, 601

PubPriv class, 314–315
push() method, 339

Q
quality camera setting, 479

R
radial gradient, 133
RadioButton

adding components, 520–521
overview, 517–518
reading results, 518–519

raster graphics
defined, 91
overview, 92–93

reading results with CheckBox and
RadioButton, 518–519

Real Time Messaging Protocol
(RTMP), 410, 464

rearranging workspace, 26
receivers (live)

adding
player controls, 475–476
worker methods, 474–475

catching, connection and
metadata, 475

creating
constructor function, 473
inventories, 470–471
receiver, 471

overview, 469
setting up application, 471–473
testing player, 476–477

recording
with Adobe Flash Media Live

Encoder, 419–421
video in iMovie, 422–425

recording hardware
Blue Snowball, 365–366
Blue Snowflake, 366–367
Zoom H2, 364–365

rectangle
creating, 95–97
drawing, 352
tool, 99
unique shapes, 100–103

Rectangle Primitive tool, 23
reflect (overflow), 136
removing

frames, 213
guides, 186
motion presets, 243
swatches, 128
workspace, 28

49_385395-bindex.indd 63549_385395-bindex.indd 635 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies636

renaming
motion presets, 243
symbols, 175
workspace, 28

rendering for Web, 494
replace, using, 156–157
replace colors, 129
resizing

panels, 26
text field, 152
video

for progressive downloads,
403–404

settings, 437–439
resolution

image, 191
Webcam, 414

resources
list of, 86–87
online, 86–87
video creation, 416–426

retrieving data from arrays, 339–340
return, 270
reversing animation, 222–223
RGB color model, 123–124
rotate gradient, 136
rotation property, 289
round (stroke), 108
roving keyframes, 253–254
rowCount property, 516–517
RTMP (Real Time Messaging

Protocol), 410, 464
rulers, 185
running Flash spell checker, 154–155

S
sample

arrays, 341–344
vector script, 345–347

Save As Preset dialog box, 243
saving

custom workspace, 26–27
motion presets, 243

scene composition, 486, 489–490
Script Assist, 58
Script Navigator, 57

scripts
button, 268
Loading an External Movie with a

Sound File, 382–383
movie clip, 271–272
Silencing the Sound, 383

scrubbing, 207
scrubby sliders, 10
searches, 79
Select Extension to Install dialog

box, 85
Select External Editor dialog box,

390
Select Skin dialog box, 407–408
selecting

frames, 212
layers, 182

Selection tool
overview, 23
using, 229–230

sending video/audio, 478
separating static and dynamic

elements, 534–535
server-side applications, 479–480
setting(s)

access, 312–315
audio, 440–441
bitrate, 439–440
breakpoints, 580
camera, 478–479
changing basic camera, 478–479
document

background, 70–72
color, 70–72
frame rate, 70–72
size, 70–82

fine-tuning video, 435–442
Flash

components, 525
preferences, 31–32

HTML, 605–608
specifying

HTML, 605–608
publish, 600–601
SWF, 601–605

text style for Label component,
545–547

video
Advanced Settings option, 440
Audio tab, 440–441

49_385395-bindex.indd 63649_385395-bindex.indd 636 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 637

Bitrate Settings option, 439–440
filters, 436–437
format, 437
Others tab, 441–442
Resize Video, 437–439
video, 437

setup
AIR file, 568–569
components, 524
Flash spell check, 153–154
live receiver application, 471–473

shades, 139
Shape class, 351–355
shape tween animations

building, 220–222
editing, 258–260
overview, 43–44

shapes
basic tools, 104
lines, 103–104
modifying, 97, 104–106
Oval tool, 98–99
Polystar tool, 100
Primitive Oval, 93–95
Primitive Rectangle, 95–97
Rectangle tool, 93, 99
unique, 100–103

Sheffer stroke, 317
Show Details dialog box, 82
Silencing the Sound script, 383
simulating 3D animation, 223–226
size

object, 53
setting document, 70–72

smart quotes, 307
smart variables, 306
smooth (stroke), 108
software

sound-editing, 367–370
Webcam, 415, 421–422

Solid Color option, 36
Sony ACID Music Studio, 369–370
Sony Sound Forge, 368–369
Sony Web site, 370
sort() method, 341
sorting, with arrays, 341
sound

adding
to buttons, 376–377
from document library, 374
effects, 375–376

editing
in external editors, 390
files, 385–390
in Flash, 388–389

Find and Replace, 157
library, 377–378
loading external files with

ActionScript, 378–381
optimizing for projects, 385–387
stereophonic, 363
synching, 374–375
using in projects, 373–376

Sound Designer 2 (*.sd2) format,
362

Sound Document (*.asnd) format
(Adobe), 362

sound-editing software
Adobe Audition, 367–368
Sony ACID Music Studio, 369–370
Sony Sound Forge, 368–369

Sound Properties dialog box,
385–387

Sound Settings dialog box, 603–605
SoundPlayer ActionScript code,

379–380
soundtracks, loading with

ActionScript, 381–383
specifying

HTML settings, 605–608
publish settings, 600–601
SWF settings, 601–605

spell-checking
running Flash, 154–155
setting up Flash, 153–154
text field, 152–153

Spelling Setup dialog box, 153
Spray Brush tool

animating with, 226–227
overview, 12, 24
using, 110–111

spraying symbols, 166–167
square (stroke), 108
Stage

overview, 19
placing objects on, 539–543
typing on, 308
using components with class

references, 301–304
startDrag() method, 350–351

49_385395-bindex.indd 63749_385395-bindex.indd 637 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies638

statements
access, 291
addChild (objName), 288–289
addChildAt (objName,

index), 289
conditional, 321–329
defined, 270
if, 322–323
import, 310–311
package, 284–285
private, 291
public, 291
switch, 300–301, 325–329
ternary, 518
trace(), 287–288

static elements, separating from
dynamic elements, 534–535

static text
creating, 142–143
fields, 150
overview, 35

sterophonic sound, 363
stopDrag() method, 350–351
storing files for progressive

downloads, 405
storyboarding, 64
straight (stroke), 108
streaming media

compared with broadcasting,
463–464

with Flash Media Server, 410–411,
464–469

HTTP and RTMP, 410
overview, 409, 464

strict equality (===) operator, 316
strict inequality (!==) operator, 316
string, 307
stroke

color, 125–126
defined, 124
scale, 108

Stroke Color tool, 24
Stroke Style dialog box, 108
structure, basic ActionScript,

306–315
styling

button components, 547–548
code, 543–554

Subselection tool
modifying with, 115
overview, 23

subtract/assign (-=) operator, 316
subtraction (-) operator, 316
Successful Time Management For

Dummies (Zeller), 239
Sun Audio (*.au) format, 362
Swap Bitmap dialog box, 203
Swap Colors tool, 24
Swap Symbol dialog box, 166–167,

170, 226–227
swapping

bitmaps, 202–203
symbols, 170

Swatches panel
fill color, 126–127
overview, 127–129
selecting from, 102
stroke color, 125

SWF
files compared with graphic files,

526
settings, 601–605

switch statement, 300–301, 325–329
symbol-editing mode, 169
symbols

button, 160
converting objects to, 161–163
creating, 160–167
Document Library, 172–178
duplicating, 174–175
editing

in another window, 169–170
in place, 168–169

Find and Replace, 157
graphics, 38, 160
library, 40–41
modifying instance properties,

171–172
Movie Clip, 160
overview, 37–38, 159–160
renaming, 175
spraying, 166–167
swapping, 170
types, 160
vertical bar, 317

synching sound, 374–375
System 7 Sounds format, 362

49_385395-bindex.indd 63849_385395-bindex.indd 638 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 639

T
tags
<p>, 457–459
<tt>, 459

Target Bitrate (Mbps) slider, 439
tasks, organizing, 55–56
techniques

advanced animation
copying motion, 254–257
editing motion tween animations,

245–254
motion paths, 244–245
multiple frames, 261–263
Onion Skins, 261
presets, 241–243
shape tween animations, 258–260

mind-mapping, 64
templates

creating documents from, 68
Timeline, 284–285

ternary statements, 518
TestBench class, 313–314, 315
testing

AIR application, 562–565
chat application, 483–484
classes, 315
movies, 53, 577–579
player, 476–477
video, 425–426

text
adding

hyperlinks, 143
overview, 528–529
to TextArea component, 551–554

animations
creating flying text, 235–239
creating typewriter text, 233–235

converting to graphics, 151
creating

flying, 235–239
overview, 149–151
typewriter, 233–235

dynamic, 35–36, 144–145, 150–151
editing, 152
fields, (Timeline), 292–295
Find and Replace, 156
flying, 235–239
input, 35
labels, 537
loading, 527

paragraph, 148–149
resizing field, 152
specifying character parameters,

145–148
spell-checking, 152–153
timed, 458–459
types, 35–36
typewriter, 233–235

Text tool
adding hyperlink, 143
creating input text, 144
dynamic text, 144–145
overview, 23, 35–36
static text, 142–143

TextArea component
adding text to, 551–554
overview, 536–537

TextField class, 543–544
TextFormat class, 543–544
TGA Image files, 190
3D animation simulations, 223–226
3D Rotation tool

creating animations, 224–225
overview, 11, 23

3D Translation tool
creating animations, 225–226
overview, 11, 23

TIFF Image files, 191
timed text, 458–459
Timeline. See also ActionScript 3.0

to ActionScript file, 59–61
adding

blank keyframes, 211–212
frames, 209–210
keyframes, 210, 211

anatomy, 208
buttons, 292–295
class, 287–288
clip code, 286
code, 56–59
code and design, 295–298
comments, 286
controlling

movie clip, 276–281
overview, 48, 273–275

copying frames, 212–213
creating

frames, 209–212
functions with ActionScript,

49–53
editing frames, 212–213

49_385395-bindex.indd 63949_385395-bindex.indd 639 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies640

Timeline (continued)

frames, 208–213
instances, 296–298
managing, 213
overview, 20, 207–208
selecting frames, 212
templates, 284–285
text fields, 292–295
User Interface (UI) component

classes, 299–304
working with, 49

Tint option, 171
tips

camera, 485–487
image, 66
project planning, 66

Tool Settings dialog box, 100
Toolbox, Actions panel, 57
tools

Add Anchor Point, 116
basic, 104
Bind, 12, 24, 232
Bones, 12, 24, 227–229
Brush, 24, 34–35, 109–110
Convert Anchor Point, 116
Deco, 11, 24
Default Colors, 24
Delete Point, 116
Eraser, 24, 113–114
Eye Dropper, 24
Fill Color, 24
Free Transform tool, 23, 117–119
Gradient Transform, 23
Hand, 24
Ink Bottle tool, 24, 137
Lasso, 23, 115
Line, 23
new in CS4, 11–12
No Color, 24
Oval, 98–99
Paint Bucket, 24, 138
Pen, 23, 35, 111–112
Pencil, 24, 34–35, 107–109
Polystar, 23, 100
Primitive Oval, 93, 98–99
Rectangle, 23, 93, 99
Selection, 23, 229–230
Spray Brush, 12, 24, 110–111,

226–227
Stroke Color, 24

Subselection, 23, 115
Swap Colors, 24
Text, 23, 35–36, 141–145
3D Rotation, 11, 23, 224–225
3D Translation, 11, 23, 225–226
Transform Gradient, 136–137
Zoom, 24

Tools panel
customizing, 25–26
features, 23–24
overview, 22

top-level classes, 310
Trace Bitmap dialog box, 197–198,

526
trace() statement, 287–288
tracing bitmaps, 196–198
tracking elements, 525
Training (Adobe), 87
Transform Gradient tool, 136–137
Transform panel, 119–120
transitions, video, 493
transporting objects, 53–55
triad, 138
triangle, 355–358
trimming video, 434–435
tripod, 488–489
<tt> tag, 459
types

defined, 306, 307
importing, 310–312

typewriter text, 233–235
typing on Stage, 308

U
UI (User Interface)

component classes
applying dynamic text style to,

544–547
choosing from lists, 299
list data, 300–301
list events, 299
overview, 299
using components on Stage,

301–304
creating buttons, 308–309
overview, 511

49_385395-bindex.indd 64049_385395-bindex.indd 640 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 641

UILoader
components, 536
converting bitmaps to vector

graphics, 526–527
graphic files compared with SWF

files, 526
loading text and XML files, 527

uint unsigned integer, 307
universal chat application

changing basic camera settings,
478–479

creating
camera object, 478
chat application, 480–483
server-side application, 479–480

overview, 477
sending video and audio, 478
testing application, 483–484

unlocking
layers, 183
panels, 26

unreal numbers, 307
updating, 80–82
URLLoader class, 527
URLLoaderDataFormat class, 527
URLRequest class, 527
USB Webcams, 416
User Interface (UI)

component classes
applying dynamic text style to,

544–547
choosing from lists, 299
list data, 300–301
list events, 299
overview, 299
using components on Stage,

301–304
creating buttons, 308–309
overview, 511

userDirectory property, 567–568

V
values

hexadecimal, 124
loop variable, 329–330
of variables, 306–307

variables
compared with objects and

constants, 309–310
defined, 306
smart, 306
type, 306
value of, 306–307

vector elements, 345, 347
vector graphics

converting bitmaps to, 526–527
defined, 91
overview, 92

vector script, sample, 345–347
vectors

defined, 345
dragging movie clips, 350–351
forEach() method, 347–349
non-numeric ID, 345–347
overview, 345
parameters, 355

Vegas Pro video editor, 425, 493
vertical bar symbol, 317
vertical (stroke), 108
vertices, 356
video

ActionScript cue points, 453–458
adding cue points, 442–444
camera

choosing, 416
compared with Webcam, 413–416
tips, 485–487

captions
creating video with, 460–462
launching, 459–462
overview, 458
timed text in XML file, 458–459

changing for progressive
downloads, 405–407

choosing
compression codec, 433
file types for conversion, 429

composing scenes, 489–490
converting files with default

options, 429–432
creating

applications to find metadata in,
451–453

with captions, 460–462
resources, 416–426

credits, 493–494

49_385395-bindex.indd 64149_385395-bindex.indd 641 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies642

video (continued)

cue points, 448–450
customizing

conversions, 433–434
for progressive downloads,

401–403
directing tips, 490–491
editing

applications, 492–493
DV for Web, 491–494

editors, 425
embedding

in Flash files, 395–399
overview, 394–399

files
converting to Flash compatible

files, 395
tips, 66

Find and Replace, 157
fine-tuning settings, 435–442
flash, 14
importing for progressive

downloads, 401–403
making video player, 445–448
managing

bandwidth, 433–434
metadata, 451–453
postproduction before

conversion, 428–429
panning, 488
play controls, 405, 407–409
player

creating, 446–448
overview, 445–446

progressive downloading, 399–409
recording in iMovie, 422–425
resizing for progressive downloads,

403–404
sending, 478
settings, 437
streaming, 409–411
testing, 425–426
transitions, 493
trimming, 434–435
tripods, 488–489
Web, 393–394
zooming, 488

volume (camera), 487

W
W position, 117
WAV (*.wav) format, 361
Web

editing DV for, 491–494
rendering for, 494
server

defined, 410
progressive downloading from,

399–409
video, 393–394

Web audio
bit depths, 362–364
data rates, 362–364
file tips, 66
formats, 361–362
importing, 371–373
recording hardware, 364–367
sample rates, 362–364
sending, 478
settings, 440–441
sound-editing software, 367–370

Web-safe colors, 127
Web sites

adding components, 528
Adobe AIR, 555
Adobe AIR extension, 70
Adobe Audition, 367
Adobe Media Player, 417
Adobe Premiere Pro, 425
antonioswinterhaven.com, 14–15
Audacity, 370
Blue Snowball, 365
Blue Snowflake, 367
book companion, 4, 275, 287, 378,

395, 443, 471
dasdesigns.net/demo, 13–14
Final Cut Pro, 425
Flash Media Live Encoder 2.5, 417
GarageBand, 369
Macintosh installation of Flash

Media Server, 465
MP3 format plug-ins, 370
phoenixfl.com, 12–13
pixelicious, 367
Sony, 370
Sony ACID Music Studio, 369
Sony Sound Forge, 368–369

49_385395-bindex.indd 64249_385395-bindex.indd 642 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Index 643

Vegas Pro, 425, 493
YouTube, 393
Zoom H2, 364–365

Webcams
bandwidth, 415
choosing, 414–415
IEEE compared with USB, 416
software, 421–422

Welcome screen, 67
while loop, 334–336
Windows

Adobe Flash Media Live Encoder,
419–421

Adobe Premiere Pro video editor,
425

Media Player, 394
Movie Maker, 417–418
Vegas Pro video editor, 425

worker methods, 474–475
workspace

customizing, 25–32
deleting, 28
display bar, 18
document library, 19–20
managing, 28
menu bar, 16–17
Motion Editor, 21
overview, 15–16
panels, 19, 21–24
Property inspector, 19

rearranging, 26
renaming, 28
saving custom, 26–27
Stage, 19
Timeline, 20
Tools panel, 22–24

X
X (position), 117
XML (eXtensible markup language)

files
creating, 459
loading, 527
timed text in, 458–459

Y
Y (position), 117
YouTube Web site, 393

Z
Zeller, Dirk, Successful Time

Management For Dummies, 239
Zoom H2, 364–365
Zoom tool, 24
zooming video, 488

49_385395-bindex.indd 64349_385395-bindex.indd 643 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Flash CS4 All-in-One For Dummies644

49_385395-bindex.indd 64449_385395-bindex.indd 644 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Notes

49_385395-bindex.indd 64549_385395-bindex.indd 645 10/28/08 8:49:06 PM10/28/08 8:49:06 PM

Notes

49_385395-bindex.indd 64649_385395-bindex.indd 646 10/28/08 8:49:07 PM10/28/08 8:49:07 PM

 Don’t forget about these

bestselling For Dummies® books!

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

0-470-04529-9

0-471-75421-8

50_385395-badvert01.indd 64750_385395-badvert01.indd 647 10/28/08 8:50:36 PM10/28/08 8:50:36 PM

 Don’t forget about these

bestselling For Dummies® books!

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

0-7645-8958-X

0-7645-8996-2

50_385395-badvert01.indd 64850_385395-badvert01.indd 648 10/28/08 8:50:41 PM10/28/08 8:50:41 PM

 Don’t forget about these

bestselling For Dummies® books!

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

0-7645-7208-3

0-7645-4116-1

50_385395-badvert01.indd 64950_385395-badvert01.indd 649 10/28/08 8:50:41 PM10/28/08 8:50:41 PM

 Don’t forget about these

bestselling For Dummies® books!

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

0-470-04894-8

0-7645-9904-6

50_385395-badvert01.indd 65050_385395-badvert01.indd 650 10/28/08 8:50:43 PM10/28/08 8:50:43 PM

	Flash CS4 All-In-One for Dummies
	About the Authors
	Dedication
	Authors’ Acknowledgments
	Introduction
	About This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Book I: Introducing Flash
	Chapter 1: Exploring Flash
	Finding Out What’s New in Flash CS4
	Exploring the Flash Workspace
	Customizing the Workspace

	Chapter 2: Introducing Graphics, Symbols, and Animations
	Working with Flash Graphics
	Finding Out about Symbols and Instances
	Introducing Flash Animation

	Chapter 3: The Engine Beneath Flash: ActionScript 3
	Understanding What ActionScript 3 Can Do for You
	Creating Timeline Functions with ActionScript
	Bringing in New Objects
	Looking at the Many Levels of ActionScript

	Chapter 4: Creating Your First Flash Project
	Planning Your Project
	Creating Your First Flash Document

	Chapter 5: Pushing the Panic Button — Help!
	Getting By with a Little Help from Flash
	Updating Flash
	Extending Flash
	Flash Online Resources

	Book II: Creating Graphics
	Chapter 1: Creating Flashy Graphics
	A Tale of Two Graphic Types
	Creating Shapes
	Using the Drawing Tools
	Modifying Objects

	Chapter 2: A Splash of Color, S’il Vous Plaît
	Getting to Know Color: The Skinny on RGB, HSB, and Hexadecimal
	Stroked and Filled, but Not Punched
	Finding Your Way around the Swatches Panel
	Mixing a Color
	Changing Colors
	Using the Kuler Extension

	Chapter 3: Getting the Word Out with Text
	Using the Text Tool
	Formatting Text
	Creating Text
	Editing Text Fields
	Using the Find and Replace Command

	Chapter 4: Creating Graphic Symbols for Fun and Profit
	Understanding Symbols and Instances
	Creating Symbols
	Editing Symbols
	Using the Document Library

	Chapter 5: Organizing Your Work
	Organizing a Project with Layers
	Being Precise with Rulers and Guides and the Grid

	Chapter 6: Working with Images (Or, Bumpin’ with Bitmaps)
	Knowing Your File Formats
	Preparing Images for Flash
	Importing Image Sequences
	Importing a Photoshop Document with Layers
	Tracing Bitmaps
	Editing Images
	Creating a Bitmap Fill
	Swapping Bitmaps — It’s Legal in All 50 States

	Book III: Animating Graphics
	Chapter 1: Working with the Flash Timeline
	Getting to Know the Timeline
	Frames and Keyframes and Blank Keyframes
	Creating Frames, Keyframes, and Blank Keyframes
	Editing Frames
	Managing a Timeline

	Chapter 2: Creating a Flash Animation
	Creating an Animated Background
	Creating a Frame-by-Frame Animation
	Making a Motion Tween Animation
	Building a Shape Tween Animation
	Reversing an Animation
	Simulating 3D Animation
	Animating with the Spray Brush Tool
	Creating an Inverse Kinematics (IK) Animation

	Chapter 3: Animating Text
	Creating Typewriter Text
	Creating Flying Text

	Chapter 4: Advanced Animation Techniques
	Using Motion Presets
	Manually Editing a Motion Path
	Editing Motion Tween Animations
	Copying Motion
	Editing a Shape Tween Animation
	Editing Multiple Frames and Other Delights

	Book IV: Adding ActionScript 3.0 Magic
	Chapter 1: Who’s Afraid of the Big Bad ActionScript 3.0?
	Vive la Différence: New versus Old ActionScript
	Movin’ On the Timeline
	Controlling Movie Clip Timelines

	Chapter 2: Working Off the Timeline with Symbol and Component Classes
	Breaking the Timeline Habit
	Code and Design Made Easy
	The Simple Power of User Interface (UI) Component Classes

	Chapter 3: Formal Features and Structures
	Checkin’ Out the Basics: “My, My, I Declare!”
	Operators: Assign, Compare, and Do the Math

	Chapter 4: Making Decisions . . . and Repeating Yourself
	On One Condition! (Or, Maybe More than One): Conditional Statements
	Let the Looping Computer Do the Work

	Chapter 5: Harnessing the Power of ActionScript 3.0
	Meet the Gang: Arrays
	New in Flash CS4: Vectors
	An Introduction to ActionScript Graphic Programming

	Book V: Working with Flash Audio
	Chapter 1: Understanding Web Audio
	Exploring Flash-Sanctioned Audio Formats
	Understanding Bit Depths, Data Rates, and Sample Rates
	Recording Hardware
	Sound-Editing Software

	Chapter 2: Adding Sound to a Flash Production
	Importing Audio
	Using Sound in a Project
	Adding Sound to Buttons
	Using the Flash Sounds Library
	Use ActionScript to Load an External Sound File
	Using ActionScript to Load a Soundtrack

	Chapter 3: Editing Sound Files
	Optimizing Sound for Your Project
	Editing Your Sound Files

	Book VI: Working with Flash Video
	Chapter 1: Playing Video with Flash: The Producer’s Chair
	What Is Web Video?
	Embedded Video in Flash: Old School
	Progressive Downloading: Almost Streaming from a Web Server
	Streaming Video: Leaving the Socket Wide Open

	Chapter 2: From Camera to Desktop: Getting Video Ready for Prime Time
	Whatcha Gonna Do? Video Camera or Webcam
	Free Resources for Creating Videos

	Chapter 3: Getting Video Files Ready for Flash
	Managing Postproduction before Conversion
	Choosing File Types for Conversion
	Converting Files with Default Options
	Customizing Conversions
	Trimming Your Video: A Little Nip and Tuck
	Fine-Tuning Your Settings
	Adding Cue Points

	Chapter 4: Getting Fancy with Video
	Making Your Own Video Player
	Getting to the Cue Points
	Managing Metadata
	Putting on a Show with ActionScript Cue Points
	Captioning a Video

	Chapter 5: Live! From Your Desktop!
	Understanding Streaming versus Broadcasting
	Streaming Media with Flash Media Server
	Making a Live Audio/Video Receiver
	Creating a Universal Chat Application

	Chapter 6: Shooting a Video That Looks Good on the Web
	Getting It Right in the Camera
	Panning, Zooming, and Other Delights
	Composing a Scene
	Lights, Camera, Action!
	Editing DV for the Web

	Book VII: Getting Interactive
	Chapter 1: Adding Buttons to a Flash Project
	Creating Buttons
	Using the Button Library
	Making Buttons Functional with ActionScript
	Creating the ActionScript Code to Make a Button Interactive

	Chapter 2: Using Flash Components
	Working with Flash Components
	Using the List and Label Components
	The Check Box and Radio Button: Making Life Easier for the User
	Creating an Interface with Flash Components
	Loading As You Go: Why You’ll Love the UILoader
	Creating the Bottom Feeder Travel Agency Web Site

	Chapter 3: The Art and Science of Creating a Flash Application
	Organizing a Flash Page
	Styling Code

	Chapter 4: Up in the AIR
	The AIR on Your Desktop
	Making a Simple AIR Application
	Converting Standard Flash Applications to AIR
	Made for AIR: Using ActionScript Exclusively for AIR
	Making a Desktop AIR Browser

	Book VIII: Finalizing a Flash Project
	Chapter 1: Testing and Debugging a Flash Project
	Testing a Movie
	Testing a Movie in Another Window
	Previewing a Movie
	Debugging a Movie

	Chapter 2: Fine-Tuning and Optimizing Your Flash Project
	Using the Movie Explorer
	Optimizing a Flash Movie

	Chapter 3: Dealing with Bandwidth
	Using the Bandwidth Profiler
	Creating a Preloader

	Chapter 4: Publishing Your Flash Project
	Publishing a Flash File
	Integrating Flash Movies with HTML Documents
	Numbers and Symbols

	Index

