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ABSTRACT

A component will not be reliable unless it is designed with required reliability. Re/iability-Based
Mechanical Design uses the reliability to link all design parameters of a component together to
form a limit state function for mechanical design. This design methodology uses the reliability
to replace the factor of safety as a measure of the safe status of a component. The goal of this
methodology is to design a mechanical component with required reliability and at the same time,
quantitatively indicates the failure percentage of the component. Reliability-Based Mechanical
Design consists of two separate books: Volume 1: Component under Static Load, and Volume 2:
Component under Cyclic Load and Dimension Design with Required Reliability.

'This book is Reliability-Based Mechanical Design, Volume 2: Component under Cyclic Load
and Dimension Design with Required Reliability. It begins with a systematic description of a
cyclic load. Then, the books use two probabilistic fatigue theories to establish the limit state
function of a component under cyclic load, and further to present how to calculate the reliability
of a component under a cyclic loading spectrum. Finally, the book presents how to conduct
dimension design of typical components such as bar, pin, shaft, beam under static load, or cyclic
loading spectrum with required reliability. Now, the designed component will be reliable because
it has been designed with the required reliability.

'The book presents many examples for each topic and provides a wide selection of exercise
problems at the end of each chapter. This book is written as a textbook for senior mechanical
engineering students after they study the course Design of Machine Elements or a similar course.
'This book is also a good reference for design engineers and presents design methods in such
sufficient detail that those methods are readily used in the design.

KEYWORDS

reliability, reliability-based design, mechanical component, mechanical design,
computational method, numerical simulation, static load, cyclic load, fatigue dam-
age, limit state function, failure, safety, probability, the P-S-N curve approach, the
K-D probabilistic fatigue damage model
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Preface

Reliability-Based Mechanical Design consists of two separate books: Volume 1: Component under
Static Load and Volume 2: Component under Cyclic Load and Dimension Design with Required
Reliability.

Volume 1 consists of four chapters and Appendix A. They are:

* Chapter 1: Introduction to Reliability in Mechanical Design;
* Chapter 2: Fundamental Reliability Mathematics;
* Chapter 3: Computational Methods for the Reliability of a Component;
* Chapter 4: Reliability of a Component under Static load; and
* Appendix A: Samples of MATLAB Programs.
Volume 2 consists of three chapters and two appendixes. They are:
* Chapter 1: Introduction and Cyclic Loading Spectrum;
* Chapter 2: Reliability of a Component under Cyclic Load;
* Chapter 3: The Dimension of a Component with Required Reliability;
* Appendix A: Three Computational Methods for the Reliability of a Component; and
* Appendix B: Samples of MATLAB Programs.

'The first book discusses fundamental concepts for implementing reliability in mechanical
design and the reliability of a component under static load. The second book presents more
advanced topics, including the reliability of a component under cyclic load and the dimension
design with required reliability.

This is Reliability-based Mechanical Design, Volume 2: Component under Cyclic Load and
Dimension Design with Required Reliability. It is recommended that Volume 1 should be read
first before Volume 2 because it provides fundamental concepts and computational methods for
implementing reliability in mechanical design and the reliability of a component under static
load.

'This book presents how to determine reliability, and quantitively predict the failure per-
centage of a component under cyclic load. This book also presents how to design component
dimension with required reliability for a component under static load or cyclic load. Therefore,
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the component will be reliable during its service under the specified load because it has been
designed with required reliability.

'This book is based on the author’s recent research and a series of lecture notes of an elective
course for senior mechanical students. This book is written as a textbook for senior mechanical
students. Every topic is discussed in sufficient detail and demonstrated by many examples so
that students or design engineers can readily use them in mechanical design. At the end of each
chapter, there is a wide selection of exercise. This book can also be used for a graduate student
course and a reference book for design engineers.

This book consists of three chapters and two appendixes. A concise summary of each
chapter are as follows.

* Chapter 1: Introduction and Cyclic Load Spectrum

'This chapter presents a systematic description of a cyclic load. Six models of cyclic loading
spectrum will be presented and can be used to describe any type of cyclic load.

* Chapter 2: Reliability of a Component under a Cyclic Load

'This chapter describes how to establish the limit state function of a component under a
cyclic load, and then how to determine the reliability of a component under such cyclic
load. The book presents two fatigue theories to calculate the reliability of a component
under cyclic load. The first theory is the P-S-N (Probailitis-Stress-Number of cycles) curve
approach. The second theory is the probabilistic fatigue damage model (the K-D model).
Five typical component cases under cyclic load presented in this chapter include bar under
cyclic axial load, pin under cyclic direct shearing, shaft under cyclic torsion, beam under
cyclic bending, and a rotating shaft under cyclic combined loads.

* Chapter 3: The Dimension of a Component with Required Reliability

'This chapter presents how to design the dimension of a component with required reliability
under static load or cyclic load. For the dimension of a component under cyclic load, the
second fatigue theory, that is, the K-D model is mainly used. Five typical component
dimension design with required reliability presented in this chapter include bar under axial
load or cyclic axial load, pin under direct shearing or cyclic direct shearing, shaft under
torsion or cyclic torsion, beam under bending or cyclic bending, and a component under
combined loads or cyclic combined loads.

* Appendix A: Computational Methods for Calculating the Reliability of a Component

Appendix A concisely describes the procedures of the Hasoder-Lind (H-L) method, the
Rachwitz-Fiessler (R-F) method, and the Monte Carlo method for calculating the reliabil-
ity of a component, which has been presented in details in the first book: Reliability-based
Mechanical Design, Volume 1: Component under Static Load.

* Appendix B: Samples of six MATLAB Programs
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Appendix B provides six MATLAB program as a reference, including three programs

for the calculation of reliability and another three programs for dimension design with

required reliability.

'This book could not have been completed and published without lots of encouragement
and help. First, I sincerely thank Mechanical Department Chairman and Professor Mickael
Jackson at the Wentworth Institute of Technology, whose encouragement motivated me to open
two technical elective courses about the reliability in mechanical engineering. Second, I sincerely
thank Professors Anthony William Duva and Richard L. Roberts for reviewing some of the
manuscripts. Third, I sincerely thank Morgan & Claypool Publishers and Executive Editor Paul
Petralia for helping with this publication. Finally, I sincerely thank my lovely wife, Suyan Zou.
Without her support, I could not have completed this book.

Xijaobin Le
October 2019







CHAPTER 1

Introduction and Cyclic
Loading Spectrum

1.1 INTRODUCTION

Reliability-Based Mechanical Design consists of two separate books: Volume 1: Component under
Static Load and Volume 2: Component under Cyclic Load and Dimension Design with Required
Reliability.

This book is Volume 2. It is recommended that Volume 1 should be read first before Vol-
ume 2 since fundamental concepts of probability theory and their implementation in mechanical
design, as well as construction of the limit state function of a component under load are discussed
in detail. The following are some concise notes on topics previously discussed in Volume 1 but
that will be frequently used in this book.

Fundamental reliability mathematics, which discusses the fundamental concepts and def-
initions of probabilistic theory, is discussed in detail in Chapter 2 of Volume 1 [1]. The purpose
of this is to provide a foundation and basic understandings for implementing probability theory
in reliability-based mechanical design.

Computational methods of the reliability of a component, which discuss several com-
putational methods including the Hasoder—Lind (H-L) method, the Rachwitz—Fiessler (R-F)
method, and the Monte Carlo method, are discussed in Chapter 3 of Volume 1 [1]. The concise
description of their procedures and flowcharts are presented in Appendix A of this book.

In reliability-based mechanical design, component geometric dimensions, loads, and
stress concentration factor on a component are typically treated as random variables. These are
discussed in detail in Chapter 4 of Volume 1 [1]. Since these will be frequently used in this
book, we concisely describe them here.

Component geometric dimension is a random variable because of its dimension toler-
ance. It is typically treated as a normally distributed random variable d. According to the
definition of dimension tolerance, the components’ dimension inside the dimension tolerance
range (d +t1,d + ty) will be accepted. For a normal distribution, the probability of event
(g —404 <d < pg + 4o4) will be 99.9968%. 'This event can be used to represent the di-
mension tolerance range with a very small error (0.0032%). Therefore, the mean and standard
deviation of a normally distributed dimension random variable d can be determined per Equa-




2 1. INTRODUCTION AND CYCLIC LOADING SPECTRUM

tion (1.1):
d +t d +1t i+t
d:( +L)J£( +U):d+L42-U
(1.1)
d+ty)—(d+1tr) tv—1L
04 = g =g

where 1z and o4 are the mean and standard deviation of a normally distributed dimension d.

The type of distribution and its corresponding distribution parameters of an external load
will be calculated per the design specifications of a design case. If a load P such as concentrated
force, concentrated moment, or torque, is expressed as a range of value such as (Pjoy, Pyp), it
could be treated as a normally distributed random variable. We can use the same reasoning and
similar equation as Equation (1.1) to determine its mean and standard deviation:

(Plow + Pup)

2
(1.2)
(Pup - Plow)
op = 3

P =

where p and op are the mean and standard deviation of a normally distributed load P.

The static stress concentration factor is a function of geometric shape and dimension.
Since the geometric dimension is a random variable, the stress concentration factor is also a
random variable and typically follows a normal distribution. We can use the following equations
to determine the mean and the standard deviation of stress concentration factor:

yx = 0.05

MUK = KTable (13)
ok = Yk X wk = 0.05K7,pse,

where yx is the coefficient of variance of the static stress concentration factor. Kz, is the stress
concentration factor obtained from tables in current design handbooks or design books. ux
and ok are the mean and standard deviation of normally distributed static stress concentration
factors.

'This book consists of three chapters and two appendixes. The concise outlines of each
chapter are as follows.

* Chapter 1: Introduction and Cyclic Loading Spectrum

'This chapter explains the connection of this book with the first book: Reliability-Based
Mechanical Design, Volumel: Component under Static Load. Then, this chapter presents a
systematic description of a cyclic load. Six models of cyclic loading spectrum will be pre-
sented and can be used to describe any type of cyclic load.

* Chapter 2: Reliability of a Component under a Cyclic Load
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'This chapter describes how to establish the limit state function of a component under a
cyclic load, and then how to determine the reliability of a component under such cyclic
load. The book presents two fatigue theories to calculate the reliability of a component
under cyclic load. The first theory is the P-S-N (Probabilidtic-Stress-Number of cycles)
curve approach. The second theory is the probabilistic fatigue damage model (the K-D
model). Five typical component cases under cyclic load presented in this chapter include
bar under cyclic axial load, pin under cyclic direct shearing, shaft under cyclic torsion,
beam under cyclic bending, and a rotating shaft under cyclic combined loads.

* Chapter 3: The Dimension of a Component with the Required Reliability

'This chapter presents how to design the dimension of a component with required reliability
under static load or cyclic load. For the dimension of a component under cyclic load, the
second fatigue theory, that is, the K-D model is mainly used. Five typical component
dimension design with required reliability presented in this chapter include bar under static
axial load or cyclic axial load, pin under static direct shearing or cyclic direct shearing, shaft
under static torsion or cyclic torsion, beam under static bending or cyclic bending, and a
component under combined static loads or cyclic combined loads.

* Appendix A: Computational Methods for Calculating the Reliability of a Component
'This appendix concisely describes the procedure of the H-L, R-F, and Monte Carlo meth-

ods for calculating the reliability of a component, which has been presented in detail in

Volume 1 [1].

* Appendix B: Samples of Six MATLAB Programs
'This appendix provides six MATLAB programs as a reference, including three programs

for the calculation of reliability and another three programs for dimension design with

required reliability.

1.2 CYCLICLOADING SPECTRUM

Mechanical devices or systems always have at least one moving component. Due to the repeated
functions or stop-start process or mechanical vibration, mechanical components are typically
subjected to a cyclic load. A schematic of a cyclic load is depicted in Figure 1.1. The maxi-
mum Stress Opax and the minimum stress o,y of cyclic stress (loading) are the maximum and
minimum values of the cyclic stresses, as shown in Figure 1.1. The mean stress oy, the stress
amplitude oy, and the range of stress o, of the cyclic stress (loading) are defined as:

Omax T Omin

Om =~ (1.4)

Omax — Omin
_ 1.5
. s)

Oq =
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Or = Omax — Omin = 204. (16)

The stress ratio S, is defined as the ratio of the minimum stress oy,;, to the maximum stress
Omax, that is,

5, = Jmin (1.7)

Umax
A cyclic stress curve can be treated as a wave. One complete of the wave such as the minimum
point to the adjacent minimum point, or the maximum point to the adjacent maximum point is
one cycle of the cyclic stress, as shown in Figure 1.1.

Stress One

Cycle
AR TAN
ViAVERVAE

min

Y

Time

Figure 1.1: A schematic of cyclic stress with a constant stress amplitude.

The magnitude of cyclic stress can be fully defined by any two out of these six variables
Omax> Omins Om, Oa, Or, and S,. The duration of the cyclic stress will be defined by the number
of cycles of the cyclic loading. One special cyclic stress that has a zero mean stress is called the
tully (completely) reversed cyclic stress, as shown in Figure 1.2. For a fully reversed cyclic stress,
it has: 01pax = —Omin, and the stress ratio S, = —1. This type of cyclic stress is a special case
because lots of fatigue strength data are based on fatigue tests under a fully reversed cyclic stress.

Example 1.1

Cyclic stress has a stress amplitude 0, = 10 ksi and the stress ratio S, = 0.5. Calculate the mean
stress oy, the maximum stresses Oyax, the minimum stresses oyy,in, and the range of stress o, of
this cyclic stress.

Solution:

Based on Equations (1.5) and (1.7), we have:

0y = 10 = Omax — Omin (a)

S, =05 = 2w (b)
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Stress

VAV

Omax = 40 (ksi), Omin = 20 (ksi). (c)

Figure 1.2: A fully reversed cyclic stress.

From Equations (a) and (b), we have:

Based on Equations (1.4) and (1.6) by using information from Equation (c), we have:

Omax + Omin __ 40 + 20
2 )

Or = Omax — Omin = 40 — 20 = 20 (ksi).

Om = = 30 (ksi)

There is a lot of different cyclic loads. The cyclic loading spectrum refers to a description
of cyclic stress (loading) levels vs. corresponding cycle numbers. Generally, three parameters,
including stress amplitude, mean stress, and the number of cycles of the cyclic loading, are
used to describe a cyclic loading spectrum fully. However, for fatigue design, a non-zero mean
cyclic loading is typically converted into a fully reversed cyclic loading with an equivalent stress
amplitude, which will be discussed in detail in Chapter 2. So, two parameters including the
tully reversed stress amplitude 0, and the cycle number n;, of cyclic loading are typically used
to describe a cyclic loading spectrum for the reliability calculation of a component under cyclic
load. Both stress amplitude o, and the cycle number ny, can be a constant (deterministic value)
or several constant or random variable. With the reasonable combinations of variations of stress
amplitude 0, and the cycle number 7y, the systematic description of cyclic loading spectrum
will include the following six models. These six cyclic loading spectrum models [2] can describe
any cyclic loading spectrum.

Model #1: A constant stress amplitude of cyclic loading with a constant cycle number.

Model #1 is the simplest cyclic loading spectrum for fatigue design. For example, the component
under design is subjected to a constant cyclic stress amplitude o, = 15 (ksi) with a given cycle
number ny, = 5 x 10* (cycles).
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Model #2: A constant stress amplitude of cyclic loading with a distributed cycle number.

Model #2 is a typical cyclic loading spectrum for a component with a single steady function,
that is, a constant cyclic stress amplitude. However, the cycle number ny, of the cyclic loading is
treated as a random variable and is described by a probabilistic distribution function. How can
this be? It is because, in the reliability-based mechanical design, the components under design
are a batch of “identical” components in service. Each component during its service life had one
value of the number of cycles. All of those can be used to determine the distribution function
of the cycle number. For example, the component under design is subjected to a constant stress
amplitude of a fully reversed cyclic stress 0, = 15 (ksi) with a normally distributed cycle number
nr, which has a mean i, = 3 x 10 (cycles), and a standard deviation 0,,, = 3500 (cycles), that
is,n, = N(3 x 10°,3500). Here, the expression X = N(jtx,0y) means that the random variable
X is a normal distribution with a mean py, and a standard deviation oy.

Model #3: A given fatigue life (cycle number) with a distributed amplitude of a cyclic loading.

Model #3 is a typical cyclic loading spectrum for the component with specified service life,
but the fully reversed stress amplitude o, varies and can be treated as a random variable, and
is described by a probabilistic distribution function. For example, the component under design
with a cycle number nz, = 8 x 10* (cycles) is subjected to a fully reversed cyclic stress. The stress
amplitude o, of this cyclic loading follows the uniform distribution between 25 (ksi) and 35 (ksi).

Model #4: Multiple constant amplitudes of cyclic loadings with multiple constant cycle num-
bers.

Typically, model #4 could be used to describe the cyclic loading spectrum of a machine with
several distinguished functions or actions. For example, the cyclic loading spectrum of the com-
ponent under design is:

Cyclic stress level 1: 041 =20 (ksi), nz; = 260,000 (cycles)
Cyclic stress level 2 : 04 = 30 (ksi), npa = 50,000 (cycles).

Model #5: Multiple constant stress amplitudes of cyclic loadings with multiple distributed cycle
numbers.

Model #5 is a common cyclic loading spectrum and can be used to describe many loading condi-
tions for machines with several distinguished functions. For example, the cyclic loading spectrum
of the component under design is:

Cyclic stress level 1: 041 =20 (ksi); n = N(260,000, 10,000)
Cyclic stress level 2 : 040 =25 (ksi); In(nz,) = N(8.425,0.136).




1.3. REFERENCES 7

Model #6: Multiple distributed stress amplitudes of cyclic loading levels with multiple given
cycle numbers.

Model #6 is also a common cyclic loading spectrum and can be used to describe many loading
conditions for the machines, the service of which are pre-scheduled. For example, the cyclic
loading spectrum of the component under design is:

Cyclic stress level 1:nz; = 260,000 (cycles); 041 = N (20,000, 1890)
Cyclic stress level 2 :np, = 5000 (cycles); In (042) = N(3.25,0.108).

Any cyclic loading for fatigue design can be described by one of the above six fatigue cyclic
loading spectrum models. Thus, they are a systematic description of cyclic loading spectrum.

1.3 REFERENCES

[1] Le, Xiaobin, Reliability-Based Mechanical Design, Volume 1: Component under Static Load,
Morgan & Claypool Publishers, San Rafael, CA, 2019. 1, 3

[2] Le, Xiaobin, The reliability calculation of components under any cyclic fatigue loading
spectrum, ASME International Mechanical Engineering Congress and Exposition, IMECE—
70084, Tampa, FL, November 3-9, 2017. DOI: 10.1115/imece2017-70084. 5

1.4 EXERCISES

1.1.  Cyclic stress has a maximum stress Opax = 60.25 (ksi) and a minimum stress opin =
—9.32 (ksi). Calculate its mean stress, stress amplitude, and stress ratio.

1.2. Cyclic stress has a constant mean o, = 15.72 (ksi) and a stress amplitude o, =
25.39 (ksi). Calculate its maximum stress and the minimum stress of this cyclic stress.

1.3.  What is cyclic loading spectrum? Describe one example.
1.4.  What causes cyclic stress? Use two examples to explain the lists.

1.5. Describe an example in which model #1 cyclic loading spectrum can be used to describe
its cyclic stress.

1.6. Describe an example in which model #2 cyclic loading spectrum can be used to describe
its cyclic stress.

1.7.  Describe an example in which model #3 cyclic loading spectrum can be used to describe
its cyclic stress.

1.8. Describe an example in which model #4 cyclic loading spectrum can be used to describe

its cyclic stress.


http://dx.doi.org/10.1115/imece2017-70084
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1.9. Describe an example in which model #5 cyclic loading spectrum can be used to describe

its cyclic stress.

1.10. Describe an example in which model #6 cyclic loading spectrum can be used to describe
its cyclic stress.




CHAPTER 2

Reliability of a Component
under Cyclic Load

2.1 INTRODUCTION

Metal components under repeated loadings, that is, cyclic load, can fracture even though the
component’s maximum nominal stress is far less than ultimate material strength or yield strength.
'This type of failure is fatigue failure. In industries, more than 90% of metal component failure
is due to fatigue failure.

A fatigue issue with the number of cycles at failure between 1 and 103 is generally classified
as low-cycle fatigue. When the number of cycles at failure is more than 103, it is high-cycle fa-
tigue. This chapter will only focus on high-cycle fatigue, which is the typical case for mechanical
component design in industries.

The component design, that is, determination of component geometric dimension under
cyclic loading with the specified reliability will be discussed in Chapter 3. This chapter will show
and explain how to calculate the reliability of a component under cyclic loading. The reliability
calculation of a component with an infinite life will be discussed in Section 2.7. Two different
probabilistic fatigue theories will be used to conduct the reliability calculation of a component
with a finite fatigue life. One theory is the P-S-N curves approach, which will be discussed
and explained in Section 2.8. Another theory is the probabilistic fatigue damage theory, which
includes fatigue strength index K and the fatigue damage index D. This probabilistic fatigue
damage theory can be called as the K-D model, which will be discussed and explained in Sec-
tion 2.9.

'This chapter will present and discuss different methods to determine the reliability of a
component under any cyclic load with plenty of examples.

2.2 FATIGUE DAMAGE MECHANISM

Fatigue phenomena were first discovered and studied during the 19th century with the arrival of
machines and freight vehicles during the industrial revolution [1]. Fatigue is defined as “failure
under a repeated or varying loading, which never reaches a level sufficient to cause failure in a
single application.”

Fatigue failure of a metal component under cyclic loading is a complicated phenomenon,
and only partially understood [2]. However, we have a fundamental understanding of fatigue
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failure or fatigue damage. Fatigue damage is the weakening of a metal material due to a gradually
crack propagation of inherent existing microscopic cracks or defect inside or on the surface of
the metal component under repeated cyclic loading. Without a crack inside or on the surface of
a metal component, there is no fatigue. If the magnitude of cyclic loading is not big enough to
generate a crack propagation, there will be no fatigue.

The fatigue damage mechanism can be typically described by the following four stages.
Let use a microscopic crack on the surface to explain and demonstrate these. Figure 2.1 shows a
magnified microscopic crack on the surface of a component under a fully reversed cyclic bending
moment. In this example, let us assume that the nominal normal stress due to the bending stress
is 20 ksi, and the material yield strength is 60 ksi.

1. Crack initiation. There are always lots of randomly distributed defects inside a component
such as voids and dislocations and on the surface of a component such as manufacturing
scratches [3]. A fatigue crack will typically initiate at a microscopic crack or defect inside
or on the surface of a component. As shown in Figure 2.1a, the bending moment tries
to open the microscopic crack “A”, which will have very high stress because of the sharp
tip of the microscopic crack “A”. Let us assume that the stress concentration factor in
this situation is 3.5. So, the maximum stress at the tip of the microscopic crack “A” could
be 3.5 x 20 = 70 ksi and will be larger than the material yield strength. The material at
the tip of the crack “A” will start yielding and has some plastic deformation, as shown in
Figure 2.1b. When the material at the tip is yielding, the sharp tip of the crack “A” will
become a dull tip, and the stress concentration factor decreases. Let assume that the stress
concentration factor becomes 2.5. Now the maximum stress at the dull tip of the crack “A”
is 2.5 x 20 = 50 ksi. It is less than the material yield strength. Therefore, the yielding at
the tip of the crack “A” will stop. If external loading is not a cyclic loading, the effect of
the microscopic crack “A” on the component is negligible and can be ignored because the
plastic deformation at the tip of the crack “A” is in microscopic level.

2. Crack propagation. When the component is under a fully reversed cyclic loading, the
reversed bending moment now tries to close the microscopic crack “A”, as shown in Fig-
ure 2.1c. It is well known that if the dull tip of the microscopic crack “A” undergoes “strain
hardening” due to the yielding [3], the material around the dull tip area will be brittle. Af-
ter one time or a few times of such “open” and “close” actions, a new microscopic crack
“B” will be generated beneath the crack “A”. This result is a crack propagation, as shown
in Figure 2.1c. When the component is under a fully reversed cyclic loading, the micro-
scopic crack “B” will be opened again as shown in Figure 2.1d, which is the same situation
as shown in Figure 2.1a. In this stage, the crack could continue to grow as a result of
continuously applied cyclic loading.

3. Fracture due to static loading. Eventually, a crack will reach a critical size and the effective
cross-sectional area of the component is so reduced that the actual stress on the effective
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Figure 2.1: Schematic of a gradually crack propagation.

area under a normal service cyclic load will be larger than the ultimate material strength,
causing the component to rupture due to static loading.

4. Fatigue damage is irreversible and will be gradually accumulated. The fatigue damage is due
to crack propagation. When the cyclic loading stops, the propagated microscopic cracks
still exist. Therefore, the fatigue damage is irreversible and will be gradually accumulated
on the continuous cyclic loading.

2.3  FATIGUE TEST, S-N CURVE, AND MATERIAL
ENDURANCE LIMIT

A cyclic load applied on a component can be any type of cyclic load and can be described by
six models of cyclic loading spectrum [4], which has been described in Section 1.2. But, lots
of material fatigue strength data is typically obtained from a stress-life method. In the stress-
life method, a specimen is subjected to cyclic stress with a constant stress amplitude until it
fractures and fails. There are many different types of fatigue specimen and fatigue test procedures.
Fatigue test specimen will be designed and manufactured according to corresponding fatigue
standards such as ASTM standards, and the test procedure will also follow the procedure defined
by corresponding fatigue test standards. The cyclic stress for a fatigue test could be cyclic bending
stress, cyclic axial stress, or cyclic shear (torsion) stress. The cyclic stress in a stress-life method is
typically a fully reversed cyclic stress, that is, a constant stress amplitude with zero-mean stress.
'The main reasons for this are as follows. (1) Lots of fatigue test data are from rotating bending
fatigue test, in which the cyclic stress is a fully reversed cyclic stress. (2) In fatigue theory for
fatigue design, non-zero mean cyclic stress will typically be converted into fully reversed cyclic
stress with an equivalent stress amplitude by including the effect of mean stress. (3) Even though
fatigue tests are under cyclic stress with non-zero mean stress, it might be still presented as
fatigue test data with an equivalently fully reversed cyclic stress for the purpose that the fatigue
test data can be used for fatigue design. In the following, we will assume that cyclic stress in the
stress-life method is a fully reversed cyclic stress.

In a stress-life method with a fatigue test specimen under a fully reversed cyclic stress,
test results are the stress amplitude 7 and the number of cycles at the failure N. Both S and
N is material fatigue strength data. This stress amplitude S} in a fatigue test is called as the

11
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material fatigue strength at the given number of cycles n;, = N. The physical meaning of this
fatigue strength S is that when the number of cycles of a fully reversed cyclic stressisn, = N,
the fatigue specimen will fail if the stress amplitude o, of a fully reversed cyclic stress is more
than S%. In other words, the maximum stress amplitude of a fully reversed cyclic stress cannot
exceed S to avoid a fatigue failure when the service life is specified as n = N. The number of
cycles at failure N in the fatigue test is called as the material fatigue life at this specified stress
level o, = S’ of a fully reversed cyclic stress amplitude. The physical meaning of the material
fatigue life N is that if the fatigue test specimen is under a fully reversed cyclic stress with a stress
amplitude 0, = S7, the fatigue specimen will fail when the service life 7z of such cyclic stress
is more than N. Therefore, the fatigue test results (S7, N) is a pair of fatigue strength data in a
fatigue test.

After fatigue tests on the fatigue specimen of the same material are continuously con-
ducted at different stress amplitudes (stress levels), a group data (S%, N) will be collected and
can be depicted as an S-N curve, as shown in Figure 2.2. The S-N curve is typically plotted in
a Cartesian coordinate with a log-log scale.

Low-Cycle High-Cycle
Fati Fatigue
S, atigue gu
\\ l«—Infinite Life>

Fatigue Strength S}' (ksi)

10° 103 100
Number of Cycles at Failure N

Figure 2.2: Schematic of an S-N curve.

In Figure 2.2, the small dots are a pair of fatigue test data. There are three different fatigue
regimes, as shown in Figure 2.2. The fatigue failure form N = 1to N = 1000 (cycles) is generally
classified as low-cycle fatigue. In low-cycle fatigue, the stress level at the number of cycles at
failure N =1 is the ultimate material strength S,,. For low-cycle fatigue, the test method is
typically through strain-life method or linear-elastic fracture mechanics method, in which, the
strain or the crack growth will be controlled or measured. This low-cycle fatigue is not the
concerned topics of this book.

The fatigue failure with N > 1000 (cycles) is generally called as high-cycle fatigue. The
high-cycle fatigue will be the focus of this book and is the typical case for most of the fatigue
design in the industry.
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Material endurance limit: For some materials like steels as shown in Figure 2.2, there is a value
below which fatigue specimen will not fail with a very large number of cycles such as more
than 10° (cycles). Material endurance limit S/ is usually defined as the maximum fully reversed
stress amplitude that a material can withstand infinitely without fracture. For some materials,
the fatigue strength S at the fatigue life N = 10 (cycles) is named as material endurance limit
S,.

In high-cycle fatigue, a fatigue life between N = 10° (cycles) and N = 10° (cycles) is
defined as a finite-life region, and a fatigue life N > 10° (cycles) is defined as an infinite life.

In a finite-life region, when there are fatigue tests on at least three different stress am-
plitude levels of fully reversed cyclic stress, the average fatigue life N at the same fatigue stress
level vs. the fatigue strength S in a log-log scale coordinate system can be typically simplified
as a linear line, as shown in Figure 2.2. The material fatigue strength S and the fatigue life N
on this linear line has the following relationship:

N(S})m = Constant, (2.1)

where S¢ and N are the material fatigue strength and the corresponding fatigue life on the
simplified linear line. m is the slope of the traditional S-N curve and is a material mechanical
property determined by fatigue test data. m can be determined through the linear least-squares
regression by using the fatigue test results:

I [XI: (Inoy - In N,~)i| — (XI: 1noa,~) (XI: In N,-)

m — , (2.2)

1 |:Z (In oai)z] - (ZI In oai)z
I

where [ is the number of different stress amplitude levels o, for fatigue tests; o, is the i th stress

amplitude level in fatigue tests; In N; is the average fatigue life in a log-scale at the fatigue test
level o,;. If there are a total J fatigue tests at the fatigue test stress level o,;, the In N; will be:

In Ni = —Z'] In Nij s
J
where Nj; is the number of cycles at the failure of the j th fatigue test under the fatigue test stress
level oy;.
When there are only a few fatigue tests for the S-N curve, Equation (2.1) is the design
equation for the traditional fatigue design approach. The case with plenty of fatigue tests will be
discussed in Sections 2.8 and 2.9 and will be the focus of this book.

(2.3)

Example 2.1
Fatigue tests of steel specimens under a fully reversed cyclic bending stress are listed in Table 2.1.
Determine the material property m on a log-log scale.
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Table 2.1: A group of fatigue test data

Stress Amplitude o, (Mpa) | Sample Size | Fatigue Life N (cycles) x 103
392.40 4 34,42, 43, 48

372.78 6 36,47, 48, 53, 62, 65
353.16 6 60, 70, 77, 84, 89, 116
333.54 4 111, 114, 145, 197
313.92 5 171, 253, 254, 301, 309

Solution:

In this group of fatigue tests, there are five different stress amplitude levels. So, I = 5. In each
fatigue stress levels, the fatigue tests are repeated for several times. We will use Equation (2.3) to
calculate the average fatigue life in a log-scale at each stress amplitude level. For example, there
are six repeated fatigue tests on the third stress level 0,3 = 353.16 (Mpa), the average fatigue
life in a log scale log N3 will be:

_ 1n(60000) + In (70000) + In (77000) + In (84000) + In (89000) + In (116000)

1I1N3 6

= 11.30523.
'The stress amplitudes and corresponding average fatigue life on a log-log scale for this example
are listed in Table 2.2.
By using the data from Table 2.2 with Equation (2.2), the material property m is:

m = 8.303.

Table 2.2: Average log stress amplitudes and fatigue life

Stress level # 1 2 3 4 5
Ino,,; 5.972282 | 5.920989 | 5.866922 | 5.809763 | 5.749138
InN; 10.63186 10.8372 11.30104 | 11.83417 | 12.43832

For fatigue design with an infinite fatigue life, the material endurance limit S, is one
fatigue strength data for the material. When there is a lack of fatigue test data for material
endurance limit S/, it can be estimated by using the ultimate strength of the same material [5].
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For bending cyclic loading:

For steel,
~ oss. S, < 1400 Mpa (200 ksi) 00
700 Map) (100 ksi) S, = 1400 Mpa (200 ksi). '
For iron,
, 0.4S,, Su < 400 Mpa (60 ksi) 2.5)
| 160 (Map) (24 ksi) S, > 400 Mpa (60 ksi). '
For aluminum,
0.4S,, S < 330 Mpa (48 ksi) 00
1130 (Map) (19 ksi) S, > 330 Mpa (48 ksi). '
For copper alloy,
0.4S, S < 280 Mpa (40 ksi
S/ = ’ ’ pa (40 k) @.7)
100 (Map) (14 ksi) S, > 280 Mpa (40 ksi).
For axial cyclic loading:
For steel,
S! = 0.458,. (2.8)
For cyclic torsional loading:
For steel,
S! = 0.29S,,. (2.9)
For iron,
S! = 0.328,. (2.10)
For copper alloy,
S! = 0.228,. (2.11)

24 THE MARIN MODIFICATION FACTORS

Material fatigue strength data are typically obtained from fatigue tests on standard rotating-
beam bending specimen under fully reversed cyclic bending stress. The fatigue specimens are
designed according to the fatigue test standards. For example, the rotating-beam bending stress
specimen has a polish surface finish and a curved cylindrical shape with a smallest diameter
0.300” in the middle of the specimen. The fatigue tests are typically under a fully reversed cyclic
bending stress at the room temperature. For fatigue design, a component under consideration
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will have a different surface finish, different dimension, and different types of cyclic loading.
Different surface finish will have quite different initial defects or cracks on the surfaces. A com-
ponent with a bigger dimension means that it will have a much higher likelihood of more initial
defects inside components. The maximum stress’ area of a component due to bending, torsion,
and axial loading are quite different. For a component under bending, the maximum stress will
happen on the uppermost and lowermost layers. For a component under torsion, the maximum
stress will appear on the outer surface. However, a component under axial loading, the maxi-
mum stress will appear on the whole cross-section. Therefore, component fatigue strength will
be different from the material fatigue strength obtained from fatigue specimen tests. This differ-
ence of fatigue strength between fatigue test specimen and a component is typically considered
by several Marin modification factors [2, 6, 7]. Those modifications on the material fatigue test
data are based on the rotating-beam bending fatigue test under a fully reversed cyclic bending
stress. The following equation can calculate component endurance limit S, at the critical section:

Se = kakpkeS), (2.12)

where S, is the material endurance limit obtained from fatigue test on the fatigue test spec-
imen. k, is the surface finish modification factor. kp is the size modification factor. k. is the
loading modification factor. A mechanical component might have several different component
endurance limits at different critical section due to the different size modification factors.

Component fatigue strength Sy at a given fatigue life N can be obtained through the
tollowing equation:

Sy = kakpkeS). (2.13)

where S’ is material fatigue strength at the fatigue life N, which is the number of cycles at
failure in the fatigue test. For fatigue design, the component fatigue strength Sy is not one value
and will have a different value at different given fatigue life N. The rests in Equation (2.13) are
the same as those in Equation (2.12).

'The surface finish modification factor k, can be treated as a normally distributed random
variable. Its mean juz, [7] will be calculated by the following equations:

16.45(S,,)"*7**7  For hot-rolled component
39.9(S,) %%°  For as-forged component
Uk, = (2.14)

2.7(S,) 0263 For machined surface component

1.34 (SW)_O’0848 For ground surface component,

where S, is material ultimate tensile strength in the unit of ksi.
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Its standard deviation o, will be calculated by using an estimated coefficient of variance
Yk, [7] of the surface finish modification factor k, by the following equations:
0.098 For hot-rolled component
0.078 For as-forged component
Yk, = . (2.15)
0.06  For machined surface component
0.131  For ground surface component

Oky = Vg X Mkqy- (2.16)

'The size modification factor kj, will be treated as a deterministic and can be calculated by the
following equation [7]:

0.3
1 For axial load,

4\ 01133
. . . 1 1
ky = ( ) For bending or torsion load with 0.11” <d <2 (2.17)

where d is the diameter (or equivalent diameter) of the component in the unit of inch at the
critical section.

The load modification factor k. can be treated as a normally distributed random variable.
Its mean jux, can be calculated by the following equation [7]:

1 For bending load
Uk, = 3 0.774 For axial load (2.18)
0.583 For torsional load.

Its standard deviation o, will be calculated by using an estimated coeflicient of variance yx,. [7]
of the load modification factor k. by the following equations:

0 For bending load

Yk. = 10.163  For axial load (2.19)
0.123  For torsional load

Oke = Ve X Mk - (2.20)

In Equation (2.19), the coefficient of variance y, for bending loads is zero, and the mean value
ik, is 1. This result is because the fatigue strength test data comes from cyclic bending loading.

Example 2.2
A machined bar with a diameter 1.5”is subjected to a cyclic torsion loading. Its ultimate material
strength is 61.5 ksi. If the fatigue test data are obtained from rotating-beam specimen under
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tully reversed cyclic bending stress, determine the surface finish modification factor kg, the size
modification factor kp, and the load modification factor k..

Solution:
The surface finish modification factor k, will be treated as a normally distributed random vari-
able. The mean fuz, of the surface finish modification factor k, per Equation (2.14) is:

ik, = 2.7 (Su)7%%%%% = 2.7(61.5) 792653 = 0.9053. (a)
'The coeflicient of variance of k, per Equation (2.15) is:
Yk, = 0.06. (b)
'The standard deviation of k, per Equation (2.16) is
Ok, = Vi, X fk, = 0.06 x 0.9053 = 0.0543. ©

The size modification factor kj; will be treated as a deterministic per Equation (2.17) is:

—0.1133 —0.1133
ky = (:_3) = (g) = 0.8333. (d)

'The load modification factor k is treated as a normal distributed random variable. Its mean jiz,
per Equation (2.18) is:
jtk, = 0.583. (e)

The coeflicient of variance of yk,. per Equation (2.19) is:
Ve, = 0.123. )
The standard deviation of k. per Equation (2.20) is

Ok, = Yk, % Jk, = 0.123 x 0.583 = 0.0717. ()

2.5 THEEFFECT OF MEAN STRESS

Fatigue strength data is typically from fatigue tests under a fully reversed cyclic stress. Even
when a fatigue test is under a non-zero-mean cyclic stress, it is typically presented as a fatigue
strength data with an equivalent stress amplitude of a fully reversed cyclic stress. This approach
is simply because general cyclic loading for mechanical component fatigue design might be any
non-zero-mean stress cyclic stress. There are many fatigue theories such as Soderberg approach,

Modified Goodman approach, Gerber approach, and ASME-Elliptic approach for considering
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the effect of mean stress [2, 5]. This book will use the Modified Goodman approach to consider
the effect of mean stress in cyclic stress through the following equation:

Sul

Og\ =/
Ua—eq = (SMT —Om

Oq4 when o, <0,

) when o, >0
2.21)

where 0, and 0y, are the stress amplitude and the mean stress of cyclic stress. In Equation (2.21),
Sue is the ultimate material strength as a deterministic value, which will be equal to the average
value of the ultimate material strength. 04—, is the equivalent stress amplitude of a fully reversed
cyclic stress. For cyclic stress with negative mean stress, the equivalent stress amplitude will be
equal to the stress amplitude of the cyclic stress with negative mean stress because the compressed
mean stress will help to stop the crack propagation. Therefore, the Modified Goodman approach
is more conservative.

Example 2.3

A component is subjected to cyclic stress with a mean stress 0y, = 5 (ksi) and a stress ampli-
tude 0, = 17 (ksi). The ultimate material strength is 61.5 (ksi). Determine its equivalent stress
amplitude of a fully reversed cyclic stress.

Solution:
Per Equation (2.21), the equivalent stress amplitude in this example with a positive mean stress
om = 5 (ksi) will be:

Su 61.5 ,
eq = — =17 = 18.5 (ksi).
Jazeq = Oa (Sm—am) (61.5—5) (ksi)

Example 2.4
A fatigue test specimen is under cyclic stress with a mean stress 0, = 15 (ksi) and a stress
amplitude o, = 15 (ksi). The fatigue life, that is, the number of cycles at failure under such cyclic
loading for this fatigue specimen is 6.5 x 10> (cycles). The ultimate strength of the material of
the specimen is 61.5 (ksi). Express this fatigue test data as a fatigue test data under a fully reversed
cyclic stress.

Solution:
Per Equation (2.21), the equivalent fatigue strength in this example with a positive mean stress
om = 21 (ksi) will be:

Sut 61.5
o _ u . . .
St = Oa—eq = Oa (—Sm —Um) =21 (—61.5 _21) = 31.89 (ksi).

So, for this fatigue test, the fatigue test results could be equivalently expressed by:
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* the fatigue strength S/, = 31.89 ksi at the fatigue life N = 6.5 x 10° (cycles) under a fully
reversed cyclic stress, that is, (Sj/r = 31.89 ksi, N = 6.5 x 10° cycles).

2.6 THE FATIGUE STRESS CONCENTRATION FACTOR

'The fatigue stress-concentration factor K will be used to multiply the nominal stress amplitude
and can be treated as a normally distributed random variable. Its mean g, can be calculated

by the following equation [7]:

UK, = 1+i(Kt_1

v\ K

where K; is static stress concentration factor which can be obtained through any design hand-

book and some websites. r is the notch radius in the unit of inch. 4/a is defined as the Neuber
constant and can be calculated through the following equation:

(2.22)

5

5
—  For a transverse hole
Sut
4
Ja = 5 For a shoulder (2.23)
ut
S_m For a groove,

where S, is material tensile ultimate strength in the unit of ksi.
The coeflicient of variance of the fatigue stress concentration factor K¢ can be estimated
by the following equation:

0.11 For a transverse hole
Yk, = 10.08 For a shoulder (2.24)
0.13  For a groove.

The standard deviation of the fatigue stress concentration factor Ky will be:

OK, = KK, X YK, - (225)
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Example 2.5
A machined steel shaft with a shoulder, as shown in Figure 2.3 is subjected to cyclic bending
stress. ‘The ultimate strength of the shaft material is 61.5 (ksi). Determine the fatigue stress
concentration factor K¢ in the shoulder of the shaft.

02.00 3.00

Figure 2.3: Schematic of a segment of a shaft with a shoulder.

Solution:
'The Neuber constant on the shaft shoulder per Equation (2.23) is:

B

Va=— = = 0.06504. (a)

4
Sut 1.5

@)}

From design handbooks or some websites about static stress concentration factors, the theoretical
geometric stress concentration of this shoulder K; due to bending is

K, = 1.78. (b)

The mean g, of the fatigue stress concentration factor Ky in the shoulder of the shaft per
Equation (2.22) is

K, 1.78
“Kf_1+ p (K,—l)f_ L2 (1.78—1)006504_1'573' (©)
— E—— a .
N/ ¢ J0.1875 \ 1.78

'The standard deviation of the fatigue stress concentration factor Ky per Equations (2.24) and
(2.25) is:

ok, = UK, X vk, = 1.573 x 0.08 = 0.1258. (d)
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2.7 RELIABILITY OF A COMPONENT WITH AN
INFINITE LIFE

For a component with infinite life, the component endurance limit S, will be used for the com-
ponent fatigue design. The limit state function of a component with an infinite life will be:

>0 Safe
8 (S€7 Ky, O—eq—a) =S, — Kf X 0eqga =10 Limit state (2.26)

< 0 Failure,

where S, is the component endurance limit at the critical section, which is defined by Equa-
tion (2.12). Ky is the fatigue stress concentration factor at the critical section and is defined by
Equations (2.22)—(2.25). 0¢4—a is the component’s equivalent fully reversed cyclic stress ampli-
tude at the critical section and is determined by Equation (2.21).

The limit state function Equation (2.26) can be used to calculate the reliability of a com-
ponent with infinite life. The H-L, R-F, or Monte Carlo method, which were discussed in
Chapter 3 of Le [8], can be used to calculate its reliability. The concise description of proce-
dures of three methods is presented in Appendix A of this book. We will use three examples to
demonstrate how to calculate the reliability of a component with infinite life. The corresponding

MATLAB programs will be displayed in Appendix B for a reference.

Example 2.6

A machined constant circular bar with a diameter d = 1.250 & 0.005” is subjected a cyclic axial
loading. The mean axial loading Fj, of the cyclic axial loading is a constant and equal to 12 (klb).
'The loading amplitude F, of the cyclic loading follows a normal distribution with a mean ur, =
8.5 (klb) and a standard deviation o, = 1.2 (klb). The ultimate material strength is 61.5 (ksi).
Its endurance limit S, follows a normal distribution with a mean 5, = 24.7 (ksi) and a standard
deviation og;, = 2.14 (ksi), which are based on fatigue tests under fully reversed bending stress.
'This bar is designed to have an infinite life. (1) Establish the limit state function of this problem.
(2) Calculate the reliability of the bar under the cyclic axial loading.

Solution:
(1) Establish the limit state function of this problem.

We can use Equation (2.26) to establish the limit state function for this problem.
Per Equation (2.12), the component endurance limit will be:

Se = kakpk.S.. (a)
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Per Equations (2.14), (2.15), and (2.16), the surface finish modification factor k, of the ma-
chined bar will be a normal distribution with the following distributed parameters:

Pk, = 2.7 (Su) %207 = 2.7 x 61.5702653 = 0,905 (b)
Oky = Yk, X Mk, = 0.06 x 0.905 = 0.0543. ©)

Per Equation (2.17), the size modification factor kj will be treated as a constant and is equal to
1 due to the cyclic axial loading:

kp = 1. (d)
Per Equations (2.18), (2.19), and (2.20), the loading modification factor k. will be treated as a
normal distribution with the following mean and standard deviation:

k. = 0.774 (e)
Ok, = Vke X [k, = 0.774 % 0.163 = 0.1262. (f)

For this problem, the fatigue stress concentration factor K will be equal to 1 due to a constant
circular cross-section.

The mean stress 0, and the stress amplitude o, of the cyclic axial stress in this problem
can be calculated by the following equations:

_ Fn_ 4F,  4x12 15279
- wd?/4  wd? wd? 42

_ F, _4F, 1273F,
© mwd?/4  wd?  d?

(ksi) ()

Om

(ksi). (h)

Oa

"The diameter d of the bar can be treated as a normal distribution. Its mean g and standard
deviation o4 can be determined per Equation (1.1):

_0.005 — (—0.005)
a 8
Since the cyclic axial stress is not a fully reversed cyclic stress, we need to use Equation (2.21)

to consider the effect of mean stress and converted it into a fully reversed cyclic stress with an
equivalent stress amplitude:

g = 1250, oy = 0.00125. 6)

A\ ) 1.273F, 61.5 78.290F, o)
= J

Ga—eq = 0a (Su, . 4z 15279 | = 61.5d2 — 15.279°
61.5— —
42
Now, by using all information from Equations (a)—(j), we can establish the limit state function

for this problem per Equation (2.26):

78.290F,
61.5d2 —15.279°

g (kaske Si.d. Fa) = kake S, - (k)



24 2. RELIABILITY OF A COMPONENT UNDER CYCLIC LOAD

Table 2.3: The distribution parameters of random variables in Equation (k)

k, k, S, (ksi) d (in) F, (klb)
Ui, Ok, M, O, us, s, Hd od Ur, oF,
0.905 | 0.0543 | 0.774 | 0.1262 | 247 | 2.14 1250 | 0.0125 8.5 1.2

In this example, all random variables in the limit state function (k) are normal distributions.
Their distribution parameters are listed in Table 2.3.

(2) Use the H-L method to calculate the reliability of the bar.

'The limit state function (k) contains five normally distributed random variable and is a
nonlinear function. We will follow the H-L method presented in Appendix A.1 and the program
flowchart in Figure A.1 to create a MATLAB program. This MATLAB program is displaced
in Appendix B as “B.1: The H-L method for Example 2.6.”

The iterative results are listed in Table 2.4. From the iterative results, the reliability index
B and corresponding reliability R of the bar in this example are:

B =2.792757 R = ©(2.792757) = 0.9974.
|
Table 2.4: The iterative results of Example 2.6 by the H-L method
Iterative # ky k: A d F; B* IABY|

1 0.905 0.774 24.7 1.25 17.85956 | 2.534002

2 0.865081 | 0.52188 | 22.42825 | 1.246358 | 10.37987 | 2.800277 | 0.266275

3 0.872351 | 0.481666 | 22.74402 | 1.247141 | 9.811213 | 2.793018 | 0.00726

4 0.874674 | 0.477329 | 22.8934 | 1.247324 | 9.816224 | 2.792766 | 0.000252

5 0.874928 | 0.476348 | 22.91546 | 1.24734 | 9.808635 | 2.792757 | 8.78E-06
Example 2.7

The critical section for a machined rotating shaft is on the shoulder section, as shown in Fig-
ure 2.4. The bending moment M (klb.in) on the shoulder section can be described by a lognor-
mal distribution with a log-mean i, pr = 0.315 and a log-standard deviation 01, pr = 0.142.
The shaft material’s ultimate strength is 61.5 (ksi). Its endurance limit S, follows a normal dis-
tribution with a mean j1g; = 24.7 (ksi) and a standard deviation o, = 2.14 (ksi), which are
based on fatigue tests under fully reversed bending stress. This shaft is designed to have an in-
finite life. (1) Establish the limit state function of this shaft. (2) Calculate the reliability of the
shaft.
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Figure 2.4: Schematic of a shoulder section of a shaft.

Solution:
(1) Establish the limit state function of the rotating shaft.

We can use Equation (2.26) to establish the limit state function for this problem.
Per Equation (2.12), the component endurance limit will be:

Se = kakpk.S.. (a)

The mean and standard deviation of the surface finish modification factor k, of the machined

shaft can be calculated per Equations (2.14), (2.15), and (2.16):
[k, = 0.905; oy, = 0.0543. (b)
'The size modification factor kj, can be calculated per Equation (2.17):
ky = 0.8507. ()
'The loading modification factor k. will be 1 because the cyclic stress is cyclic bending stress:
ke = 1. (d)

The static stress concentration K in this case, can be obtained from any design handbook or a
stress concentration website:

K, = 1.96. ()

'The mean and standard deviation of the fatigue stress concentration factor Ky can be calculated

per Equations (2.22)-(2.25):

nk, = 1.562;  ox, = 0.1250. (f)
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For a rotating shaft, the bending moment will induce a fully reversed cyclic bending stress. Its
stress amplitude of the fully reversed cyclic bending stress will be:

de de
_ 5_ 5_32M
Oa = =7 = T g4 T oxd3 (®)
64

The diameter d of the shaft can be treated as a normal distribution. Its mean py and standard
deviation o4 can be determined per Equation (1.1):

~0.005 — (—0.005)
B 8

pa = 1250, oy = 0.00125. (h)

Now, by using all information from (a)—(h), we can establish the limit state function for this

problem per Equation (2.26):

>0 Safe
/ ! 32M . . .
g(M,ka,Se,Kf,d) = kakpS, — Ky —5 =10 Limit state (1)

<0 Failure.

In this example, M is a lognormal distribution, and the rest random variables in the limit state
function (i) are normal distributions. Their distribution parameters are listed in Table 2.5.

Table 2.5: The distribution parameters of random variables in Equation (i)

M (klb.in),

Lognormal

k4, Normal S, (ksi), Normal Ky, Normal d (in), Normal

N Distribution Distribution Distribution Distribution
Distribution

Ok, us,

e

Hinpm OlnM M, as, MK, 0K, Hd 0d

0.315 0.142 0.905 | 0.0543 | 24.7 2.14 1.562 | 0.1250 | 1.250 | 0.00125

(2) Use the R-F method to calculate the reliability of the shaft.

The limit state function (i) contains four normally distributed random variable and one
lognormal distribution variable. We will use the R-F method to calculate the reliability of this
example. The procedure of the R-F method and the program flowchart are presented in Ap-
pendix A.2. The MATLAB program of the R-F method for this example is displayed in Ap-
pendix B as “B.2: The R-F method for Example 2.7.”

The iterative results are listed in Table 2.6. From the iterative results, the reliability index
B and corresponding reliability R of the bar in this example are:
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B = 2.72094 R = ®(2.72094) = 0.9968.
|
Table 2.6: The iterative results of Example 2.6 by the H-L method
Iterative # M ky A ky d B IABY|

1 1.384144 |  0.905 24.7 1.562 1.050139 | 2.993

2 1.800485 | 0.85477 | 21.84149 | 1.716223 | 1.256083 | 2.72047 | 0.272531

3 1.808252 | 0.85755 | 21.81578 | 1.687236 | 1.249902 | 2.720937 | 0.000468

4 1.807202 | 0.857805 | 21.81853 | 1.689117 | 1.249948 | 2.72094 | 2.67E-06
Example 2.8

The critical section of a constant rectangular cross-section beam with a height 2 = 2.00 £ 0.010”
and a width b = 2.0 £ 0.010” is under a cyclic bending loading. This cyclic bending loading
has a constant mean bending moment M,, = 20.5 (klb.in). Its bending moment amplitude can
be treated as a normal distribution with a mean pp, = 11.5 (klb.in) and a standard deviation
om, = 1.5 (klb.in). The beam can be treated as a hot-rolled component. The beam material’s
ultimate strength is 61.5 (ksi). Its endurance limit S, follows a normal distribution with a mean
ws;, = 24.7 (ksi) and a standard deviation og; = 2.14 (ksi), which are based on fatigue tests
under fully reversed bending loading. This beam is designed to have an infinite life. (1) Establish
the limit state function of this beam at the critical cross-section. (2) Calculate the reliability of
the beam by using the Monte Carlo method, the relative error and the reliability range with a
95% confidence level.

Solution:
(1) Establish the limit state function of this beam at the critical cross-section.

We can use Equation (2.26) to establish the limit state function for this problem.
Per Equation (2.12), the component endurance limit will be:

Se = kakpkeS,. (a)

The mean and standard deviations of the surface finish modification factor k, of the hot-rolled
component can be calculated per Equations (2.14), (2.15), and (2.16):

Mk, = 0.772; ok, = 0.0757. (b)

Per Equation (2.17), the size modification factor kj will be treated as a constant. Since the
cross-section is not a circular cross-section and the beam is not a rotating component, the equiv-
alent diameter should be used for the calculation. The equivalent diameter [2] for non-rotating
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rectangular cross-section for this case is d, = 0.808+/bh = 0.808+/2 x 2 = 1.616". So, the size
modification factor kj can be calculated per Equation (2.17):

d —0.1133 1.616 —0.1133
kp = — =(—= = 0.826. ()
0.3 0.3

Per Equations (2.18), (2.19), and (2.20), the loading modification factor k. will be treated as a
constant 1 due to the cyclic bending stress:

ke =1. (d)

For this problem, the fatigue stress concentration factor K will be equal to 1 due to a constant
cross-section.

The mean stress 0, and the stress amplitude o, on the critical cross-section due to the
cyclic bending moment can be calculated by the following equations:

h
Mn>  6F, 6x205 123

Om = e b b b D (©)
u
‘2 _ M o (f)

%= 312 T i
'The height & and the width b of the beam can be treated as normally distributed random vari-
ables. Their means and standard deviations can be determined per Equation (1.1):

_0.010 — (—0.010)

wh =20, o . = 0.0025 (g)
0.010 — (—0.010
wp =10,  op= é ) — 0.0025. (h)

Since the cyclic bending stress is not a fully reversed cyclic stress, we need to use Equation (2.21)
to consider the effect of mean stress and to convert it into a fully reversed cyclic stress with an
equivalent stress amplitude:

o)

B Su ) _6M. [ 615 | 369M,
Ga—eq = Ca (Su,—am) T | s 123 | T 61shhr =123
' bh?
Now, by using all information from (a)—(i), we can establish the limit state function for this
problem per Equation (2.26):
369M, .
61.5hh2 — 123" (])

In this example, all random variables in the limit state function (j) are normal distributions. Their

g (ka. S} h.b, My) = 0.826k, S, —

distribution parameters are listed in Table 2.7.
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Table 2.7: The distribution parameters of random variables in Equation (j)

ky S, (ksi) h (in) b (in) M, (klb)
U, O, us, os, U Oh Up od MM,

a

0.772 0.0757 | 247 | 2.14 2.0 | 0.00025 2.0 |0.00025 11.5 1.5

oM

a

(2) Use the Monte Carlo method to calculate the reliability of the beam.

'The limit state function (j) contains five normally distributed random variable and is a
nonlinear function. We can follow the procedure and the flowchart of the Monte Carlo method
presented in Appendix A.3 to compile a MATLAB program. It is displayed in Appendix B as
“B.3: The Monte Carlo method for Example 2.8.” The program results are:

'The reliability of the component: R = 15280173/15998400 = 0.9551.

'The failure probability of the component: F = 1 — R = 0.00459.

The relative error of the failure probability: ¢ = 0.00231.

'The error range of the failure probability: F = F &+ ¢F = 0.00459 £ 0.0001.

'The reliability range with a 95% confidence level: R = 0.9551 £ 0.0001. [ ]

2.8 RELIABILITY OF A COMPONENT BY THE P-S-N
CURVES APPROACH

2.8.1 THE MATERIAL P-S-N CURVES

'The fatigue failure of a component is mainly due to the “defects” such as manufactured scratches
on the surfaces of a component, “dislocations, 7«

» o«

impurity,” “micro-cracks,” or “micro-cavities”
inside a component. The “defects” or the “uncertainty” are randomly scattered on the surface
of or inside the component. Therefore, fatigue strengths of the component under cyclic loading
due to “uncertainty” are random variables. Fatigue tests usually cost lots of time and human
resources. If there are only a few fatigue tests, the traditional S-N is used for fatigue design,
which has been briefly in Section 2.3. When there are at least three different stress amplitude
levels with enough number (at least 30) of fatigue tests at each cyclic stress level, the P-S-N
curves can be used to describe material fatigue strength. The P-S-N curves approach is a well-
known approach for describing the uncertainty in fatigue strength. The P-S-N curves approach,
as shown in Figure 2.5, is a common probabilistic fatigue design theory for components under
cyclic loading spectrum.

The P-S-N curves contain two sets of distribution functions: (1) the distribution functions
of the failure cycle number at different constant cyclic stress amplitudes. These functions are also
called as the P-N distributions (Probabilistic-Number of the cycle) at the given fatigue strength
S }; and (2) the distribution functions of cyclic stress amplitudes at different constant cycle num-
bers. These functions are also named as the P-S distribution (Probabilistic-fatigue Strength) at
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Figure 2.5: A schematic sketch of the P-S-N curve.

the given fatigue life N (the number of cycles to failure). These two sets of distribution functions
can be used for presenting fatigue test data and estimating the reliability of a component under
cyclic loading.

'The distribution functions of the failure cycle number at different constant cyclic stress
amplitudes can be directly obtained through the fatigue tests under the same cyclic stress level
(fatigue strength) and can usually be described by a lognormal distribution [7, 9].

'The distribution functions of fatigue strength at different constant fatigue life can usually
be described by the three parameters Weibull distribution or normal distribution or lognormal
distribution, and its distribution parameters are derived by the statistical S-N envelope as shown
in Figure 2.5 [7, 9].

Following, we will show two examples of the distributions of the fatigue life at the given
fatigue strength, that is, the P-N distributions at the given fatigue strength S7..

In 1969, Dr. Dimitri B. Kececioglu and his colleagues presented P-S-N curves of several
fatigue test data [10]. One set of fatigue date is the P-N curves of a carbon cold-drawn steel
wire specimen under fully reversed cyclic bending loading, as shown in Table 2.8 [10, 11]. The
numbers of fatigue tests in the first two stress levels are more than 30. The number of fatigue
tests in the third level is almost 30. The number of fatigue tests at rests of stress levels are less
than 30. Table 2.8 shows five lognormal distributed material fatigue life at the corresponding
material fatigue strength (fully reversed stress amplitude) of the P-N curves. For example, at
the given fatigue strength % = 66 (ksi), the corresponding material fatigue life N is a lognor-
mal distributed random variable with a log mean pi,e y = 5.587 and a log standard deviation
Olog N = 0.108. This distribution can be used for reliability-based fatigue design.
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Table 2.8: P-S-N curves of a steel wire specimen under fully reversed cyclic bending stress [10,
11]

Fatigue Strength Lognormal Distributed the Number of Cycles to
(fully reversed Number of Failure
stress amplitude Specimens . .
Ksi) Mean gy Standard Deviation 6jogy
66 50 5.587 0.108
76 37 5.140 0.094
86 26 4.715 0.068
96 17 4.394 0.052
106 10 4.102 0.073

During 2016-2018, we used the hydraulic Instron 8801 fatigue test machine to conduct
a total of 195 fatigue tests under cyclic axial loading [12]. The hydraulic Instron 8801 fatigue
test machine, as shown in Figure 2.6, is a standard device manufactured by Instron for running
fatigue tests under cyclic axial loading. The fatigue test specimen is clamped by the upper grip and
the lower grip. The upper grip is connected to the load cell. The lower grip is directly connected
with a hydraulic actuator. It forces the lower grip to have a cyclic up-and-down motion.

Figure 2.6: A photo of Instron 8801 fatigue test machine.

'The fatigue test specimen was made from Aluminum 6061-T6 10 Gauge sheet. The chem-
ical compositions of this 10 gauge 6061-T6 sheet provided by the material supplier are displayed
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in Table 2.9. The mechanical properties of this sheet provided by the material supplier are listed
in Table 2.10.

Table 2.9: Chemical composition of the 6016-T'6 sheet

Element‘ Si ‘ Fe ‘ Cu ‘ Mn ‘ Mg ‘ Cr ‘ Zn ‘ Ti ‘Others‘ Al
% 0.629 | 0.306 | 0.276 | 0.020 | 1.030 | 0.185 | 0.004 | 0.021 | 0.15 |Remain

Table 2.10: Mechanical properties of the sheet

. Tensile i Yield . .
Size | 0.100"X48"X144" 51.2 ksi 41.8 ksi | Elongation % | 16
strength strength

'The fatigue specimen was a rectangular sheet-type flat fatigue test specimen, shown in
Figure 2.8, and was designed according to ASTM STM E466-15, Standard Practice for Con-
ducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials [13].
'The manufacturing route for this specimen is: (1) use a sheet shearing machine to shear the sheet
into a rectangular plate 11.75” x 2.375” along the longitudinal direction; (2) use a milling ma-
chine to mill the sheared rectangular plate into a rectangular plate 11.375” x 2”; and (3) clamp
the milled rectangular plate in the designed fixture and then use the compiled CNC program to
mill the plate per the drawing shown in Figure 2.7.

2.250
TYP. ‘ R6"
/TYP. .600 +.005
2.000 1: .010

1.250+£.010

(10 Gage)—>‘ ‘&

11.375 +.020
Figure 2.7: 'The dimensions of the sheet-type flat fatigue specimen.

Since the thickness of the sheet-type fatigue specimen is only 0.100”, the fatigue test
specimen under cyclic axial loading is very easy to be buckling. To avoid the buckling during the
cyclic axial loading, the cyclic axial loading for the fatigue test was with a loading ratio S, = 0,
that is, the axial loading varying between 0 to maximum tensile loading. The fatigue tests under
five different stress levels with a total 195 of fatigue tests have been conducted. The fatigue test
procedure is: (1) visually check the fatigue test specimen before testing. Any abnormal fatigue

specimen such as a bent specimen or visual big crack or scratch on the outer surfaces of the
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Figure 2.8: Histogram for the cyclic stress level: o, = 20.833 (ksi) and 0, = 20.833 (ksi).

specimen will be discarded; (2) measure the actual width and thickness of the specimen and
record them in a test log; (3) install specimen and make sure that the specimen is installed
vertically and centrally in the upper and lower grips; (4) use the compiled WaveMatrix program
to run the cyclic axial loading fatigue test, which is the control program for the Instron 8801
fatigue test machine, until the specimen is fractured; and (5) record the number of cycles at
failure and some special notes in the test log.

For all following fatigue tests, the dimensions of the middle section of the specimen are
the width b = 0.600 £ 0.005” and the thickness # = 0.100 £ 0.005”. The loading frequency is
20 (Hz); that is, the cyclic loading cycles will be repeated 20 times in a second. The stress ratio
S, = % = 0. The test conditions and results of these five different stress levels are listed in
Table 2.11. Stresses in Table 2.11 are calculated by using the nominal dimensions, that is, the
width b = 0.600” and the thickness t = 0.100".

In Table 2.11, F, and F,, are the loading amplitude and the loading mean of the cyclic
axial loading. o, and o0y, are the stress amplitude and the stress mean of the cyclic axial stress
under the cyclic axial loading with F, and F,, . N is the number of cycles to failure of each
fatigue specimen test under the corresponding specified cyclic loading.

The minimum N, the maximum N,,.y, the mean uy, and the standard deviation oy
of the number of cycles to failure under five different stress levels are listed in Table 2.12. From
Table 2.12, the number of cycles to failure at the same stress level has a very big variation. For
example, at the cycling loading level F, = 1325 (Ib) and F,,, = 1325 (Ib), the maximum cycle of
numbers to failure is almost three times of the minimum cycle of the number to failure.

The number of fatigue tests in each stress level listed in Table 2.11 is more than 30.
Histograms of the number of cycles to failure N in each stress level are displayed in Fig-
ures 2.8-2.12. Figure 2.8 is the histogram of N with a sample size 50 at the first stress level
F, = Fp = 1250 (Ib). Figure 2.9 is the histogram of N with a sample size 55 at the second
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Table 2.11: Fatigue test data under cyclic axial loading with a stress ratio S, = 0 [11]

F, (Ib) F,, (Ib) o, (ksi) oy, (ksi) Frequency Samples
1250 1250 20.833 20.833 20 (Hz) 50
92171, 70272, 81285, 122628, 117940, 108584, 105626, 108478, 91504, 124341,
82764, 72315, 61440, 70179, 111914, 105461, 63454, 77811, 112188, 97636,
N 88818, 125856, 125108, 128583, 83833, 131692, 129422, 91333, 65294, 88960,
112093, 106840, 107792, 76654, 80709, 144728, 90767, 109190, 119484, 107040,
76279, 134353, 61451, 91384, 112944, 78865, 90895, 59056, 133075, 107914
F,(b) | F, (Ib) o, (ksi) Ty, (ksi) Frequency Samples
1325 1325 22.083 22.083 20 (Hz) 55
75819, 65144, 74538, 57606, 56898, 83130, 70734, 81732, 59123,34609, 51723,
67689, 90634, 92805, 80232, 80146, 50395, 58294, 58306, 77666, 45867, 53352,
N 45295, 46894, 74711, 66332, 67625, 45168, 65383, 52614, 59240, 81547, 51968,
53924, 63214, 82222, 67763, 71004, 79390, 56301, 72795, 86831, 45676, 59665,
64815, 47176, 63627, 61775, 31474, 62380, 76340, 62633, 55449, 64220, 62850,
F,(b) | F,, (Ib) o, (ksi) o, (ksi) Frequency Samples
1350 1350 22.5 22.5 20 (Hz) 30
55740, 30958, 61312, 50246, 69952, 69652, 44155, 75026, 69953, 76280, 42858,
N 81745, 54140, 62791, 83492, 58030, 67268, 64992, 54181, 60379, 41778, 71907,
68426, 52853, 46879, 56964, 51692, 62875, 37836, 40000
F,(b) | F,, (Ib) o, (ksi) o, (ksi) Frequency Samples
1375 1375 22917 22917 20 (Hz) 30
60639, 56861, 45306, 50836, 46038, 56269, 54201, 50630, 67016, 46932, 31499,
N 67836, 33708, 53025, 52895, 42112, 49586, 30872, 46168, 55442, 51839, 40660,
31760, 45480, 41600, 50742, 64874, 34599, 67186, 53949
F,(b) | F,, (Ib) o, (ksi) o, (ksi) Frequency Samples
1400 1400 23.333 23.333 20 (Hz) 30
57008, 35051, 32983, 30485, 39212, 68979, 33110, 60411, 54700,50617, 33079,
N 57704, 44198, 37292, 47345, 45435, 40340, 64051, 51288, 50667, 46380,55792,
45103, 44285, 37200, 31247, 30815, 48816, 50164, 66793
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Table 2.12: Some statistical values about the number of cycles to failure N

F, (Ib) Fyy (1b) Niin Nimax HUN ON
1,250 1,250 59,056 144,728 98,768 22,527
1,325 1,325 31,474 92,805 63,904 13,693
1,350 1,350 30,958 83,492 58,812 13,354
1,375 1,375 30,872 67,836 49,352 10,574
1,400 1,400 30,485 68,979 46,352 11,093
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Figure 2.9: Histogram for the cyclic stress level: 0, = 22.083 (ksi) and 0, = 22.083 (ksi).
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Figure 2.10: Histogram for the cyclic stress level: o, = 22.5 (ksi) and 0,, = 22.5 (ksi).

stress level F, = F,, = 1325 (Ib). Figure 2.10 is the histogram of N with a sample size 30 at the
third stress level F, = Fy, = 1350 (Ib). Figure 2.11 is the histogram of N with a sample size 30
at the fourth stress level F, = Fy, = 1375 (Ib). Figure 2.12 is the histogram of N with a sample
size 30 at the fifth stress level F, = F,, = 1400 (Ib).
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Figure 2.11: Histogram for the cyclic stress level: 0, = 22.917 (ksi) and 0, = 22.917 (ksi).
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Figure 2.12: Histogram for the cyclic stress level: 0, = 23.333 (ksi) and o, = 23.333 (ksi).

'The histograms shown in Figures 2.8, 2.9, and 2.10 indicate that the number of cycles to
failures N might follow a lognormal distribution. The histograms shown in Figures 2.11 and
2.12 do not suggest any distribution. However, they are not symmetric. So, they might also be
a lognormal distribution.

We can use the Chi-Square goodness-of-fit test [7, 8, 14] to check whether they are
a lognormal distribution. In the MATLAB program, the function “chi2gof” can be used to
conduct the Chi-Square goodness-of-fit test, which has been discussed in Section 2.13 of the
book [8]. The Chi-Square goodness-of-fit test on these data shows that the number of cycles
to failures in each loading level can be treated as a lognormal distribution. The P-N curves for
this set of fatigue test data with corresponding distribution parameters are listed in Table 2.13.
In Table 2.13, iy and o1, & are the log mean and log standard deviation of the lognormal
distributed number of cycles to failures N.

Dr. E. B. Haugen in 1980 provided a set of P-S distributions of several materials under
fully reversed bending loading or fully reversed axial loading [9]. Table 2.14 lists the P-S distri-
butions at given fatigue life of three different materials. In Table 2.14, the fatigue strength S7
has the unit of ksi. For three-parameter Weibull Distribution of S%, y is the location parameter,
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Table 2.13: The P-N distribution at different fatigue strength levels

Axial Stress _ .| Equivalent Stress | Lognormal Distributed Fatigue Life
o, (ksi) | oy, (ksi) g
Level # Oaeqi (ksi) ‘ MinN ‘ OInN
1 20.833 | 20.833 35.126 11.4736 0.238106
2 22.083 | 22.083 38.832 11.0410 0.227320
3 225 225 40.139 10.9551 0.242377
4 22917 | 22917 41.485 10.7831 0.225735
5 23.333 | 23.333 42.871 10.716 0.241955

B is the shape parameter, and 7 is the scale parameters. For the normal distribution of S%, s,
is a mean and g is a standard deviation. For steels, the P-S distribution at the fatigue life

N = 10° (number of cycles to failure) in Table 2.14 is the distribution function of the material
endurance limit.

2.8.2 THE COMPONENT P-S-N CURVES

There are two sets of distribution functions of a material P-S-N curves, which are the P-N
distribution of the material fatigue life N at a given stress level and the P-S distribution of
the material fatigue strength S at a given fatigue life N. After the differences between the
material fatigue test specimens and the component are considered by some modification factors,
accordingly, we will have two sets of distribution functions of a component P-S-N curves, which
will be the P — N, distribution of the component fatigue life N, and the P — Sy distribution
of the component fatigue strength Sy.

For the component fatigue strength Sy at the given fatigue life N, we can provide two
approaches to modify the material fatigue strength S%. In the first approach (the traditional
approach), the surface finish modification factor kg, the size modification factor kp, and the
loading modification factor k. are used to modify the material fatigue strength S to get the
component fatigue strength Sy, as shown in Equation (2.13). While the fatigue strength con-
centration factor K is used to modify the stress amplitude 04—c4. The limit state function of a
component at the given fatigue life N will be:

>0 Safe
8 (Sr.Ks.0a—eq) = Sy — KyOa—eq = kakpkeS} — KyOa—eq = 40 Limit state  (2.27)

<0 Failure.
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Table 2.14: The P-S distributions at different fatigue life of three materials

Fatigue Life (number | 3-Parameter Weibull Distribution of Sy

of cycles to failure) ‘

AISI 1045 Steel
Rotary Bending, WQ for 1520°F Tempered at 1210°F, K, = 1; S,,= 105 ksi; S, = 82 ksi

Normal Distribution of Sy

10* 79.0 2.6 86.2 85.40 2.640
10° 67.0 2.75 73.0 72.34 2.092
109 56.7 2.85 61.65 61.11 1.672

AISI 3140 Steel
Rotary Bending, OQ for 1520°F Tempered at 1300°F, K, = 1; S, = 108 ksi; S, = 87 ksi

A-286 Stainless steel
Fully Reversed Axial Load, K, = 1; S,,= 90 ksi; S, = 46 ksi

3-Parameter Weibull Distribution

Fatigue Life (number Normal Distribution

of cycles to failure) Hs), as,
104 40 1.84 54 52.44 7.072
105 31 2.1 43 41.63 5.347
106 24 2.2 34 32.856 4.267

For the reliability calculation, since K is always larger than 1, the above limit state function can
be converted into the following equivalent limit state function,

> (0 Safe

kokpk
able Limit state (2.28)

Ky

g(Sf’ Kf’o'a—eq) = S} —0Og—eq =10

<0 Failure.
We will use the symbol S, to represent the component fatigue strength with the consideration
of all modification factors including the fatigue stress concentration factor Ky:

 kakpke

Sy at the given fatigue life N. (2.29)
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Equation (2.29) can be used to build the limit state function Equation (2.28) of the component
under cyclic stress at the given fatigue life. This result is the second approach to obtain com-
ponent fatigue strength at the given fatigue life. We can assume that the modification factors
will not change the type of distributions, but only change the distribution parameters. So, we
can assume that S, will have the same type of distribution as that of S%. If S’ follows a normal
distribution with a mean u s, and a standard deviation s/ the normally distributed S, will

have the following mean ys,, and standard deviation o, :

kaKbk,
ps, = Hretlke (2330)
/’LKf h

) ) 2 T\ 2
o5, = ek tice “S?J (aka ) N (UL) n (”ﬁ) N (“Sf ) 7 (2.31)
pk, N \ g [hk, e Is,
where jix, and o, are the mean and the standard deviation of the surface finish modification
factor k, and determined per Equations (2.14), (2.15), and (2.16). kj is the size modification
factor and determined per Equation (2.17). pug,. and oy, are the mean and the standard deviation
of the load modification factor k. and determined per Equations (2.18), (2.19), and (2.20). uk,
and ok, are the mean and standard deviation of the fatigue stress concentration factor K and
determined per Equations (2.22), (2.23), (2.24), and (2.25). u s} and oy are the mean and the
standard deviation of material fatigue strength S at the given fatigue life. jis,, and os,, are the
mean and the standard deviation of the component fatigue strength at the given fatigue life.
For the component fatigue life N, at the given cyclic stress level, we can use the following
approach to modify the material fatigue life N. In a traditional S-N curve per Equation (2.1),
the component S-N curve will be:

kokpk. "
N ( ble g }) = constant. (2.32)

We can rearrange Equation (2.32) as follows:

kakpke \™ /., \m
N [ Zebte S%) = constant. (2.33)
f
Ky

Based on Equation (2.33), we can use N, to represent the component fatigue life after the
consideration of all modification factors at the given cyclic stress level:

kakbkc "
Ky '

N, =N ( (2.34)

It is assumed that the component fatigue life N, has the same type of distribution as that of N.
If N is a lognormal distribution with a log-mean pu;, v and log-standard deviation o0y, 5, the
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distribution parameters of the component fatigue life N, will be:

k
HinN, = PN +m X In (M) (2.35)
2%
2 Ok 2 Ok, 2 0K, ’
OmN. = |(Omn)" +m? (—“) —|—( ") + | — , (2.36)
Mk Mk, 129.4%

where p1, 5 and o1, v are the log mean and the log standard deviation of the material fatigue life
at the given cyclic stress level. ju1, . and o1, &, are the log mean and the log standard deviation
of the component fatigue life at the given cyclic stress level.

Figure 2.13 schematically depicts the material S-N curve per Equation (2.1) and the com-
ponent S-N curve per Equation (2.32). The component fatigue life N, per Equation (2.34) is
schematically displayed by a horizontal line. At the given cyclic stress level S%, which is exactly
equal to the cyclic loading stress level, the material fatigue life is shrinking along the horizontal
line from N to Nc¢. In the P-S-N curve approach, N¢ is a random variable and will be described
by a distribution function.

The component fatigue strength S, per Equation (2.29) is schematically displayed by a
vertical line in Figure 2.13. At the given fatigue life N, which is exactly equal to the number of
cycles of the cyclic loading stress, the material fatigue strength S is shrinking along the vertical
line from S to Sy In the P-5-N curve approach, Sy is a random variable and will be described
by a distribution function.

logSy

< logSy Material S-N curve

%0 '

g |5

7

Q

& | Component S-Ncurve S,

= Fatigue Life
103 N 106 logN

logN,

Figure 2.13: Schematic of a material S-N curve and a component S-N curve.

The applications of the P — N¢ curves at a given cyclic loading stress level or P — S¢y
curves at a given fatigue life will be demonstrated in the following sections.
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2.8.3 RELIABILITY OF A COMPONENT UNDER MODEL #1 CYCLIC
LOADING SPECTRUM

The general description of model #1 is (04, 0/, nr), where o, is a constant stress amplitude of
the cyclic stress, 0y, is constant mean stress of the cyclic stress, and ny, is the number of cycles of
the cyclic loading. Since provided P-S-N curves are typically obtained based on fully reversed
cyclic stress fatigue tests, the non-zero-mean cyclic stress will be converted into an equivalent
stress amplitude 04—¢4 of a fully reversed cyclic stress per Equation (2.21).

When the P — S, curve of component fatigue strength S, at the given fatigue life N =
ny, are provided, the reliability of the component can be directly calculated by the following
equation:

Oa—eq

R=P(Sy>0ues) = 1= [ fo,()ds =1~ Fs, (ueg) . 237
where fs,,(s) and Fgs,,(s) are the probability density function (PDF) and cumulative distribution
function (CDF) of the component fatigue strength S, at the given fatigue life N which is equal
to the number of cycles ny of the model #1 cyclic stress. 04— is a constant equivalent stress
amplitude of the cyclic stress.

When the P — S curve of component fatigue strength S at the given fatigue life N =
ny, are obtained through the material P-S-N curves, that is per Equation (2.29), the component
fatigue strength at the fatigue life N = np, is:

kakpk
Scf: aKbc
f

Sy at the given fatigue life N. (2.29)

'Then the limit state function of the component under this situation is:

> (0 Safe
kakpke

Ky

g (Kake. Kyr.Sp) = S} —0Oa—eg =10  Limit state (2.38)

< 0 Failure,

where kg, kp, and k. are the surface finish modification factor, the size modification factor, and
the loading modification factor, respectively. K is the fatigue stress concentration factor. S } is
the material fatigue strength at the fatigue life N = ny. 04—q is a constant equivalent stress
amplitude of the cyclic stress, which can be calculated per Equation (2.21). In Equation (2.38),
kp and 04—eq will be treated as deterministic constants. The reliability of the component under
such a cyclic loading can be calculated by using the limit state function Equation (2.38) with
the H-LL method, R-F method, or Monte Carlo method.

When the P — N, curves of component fatigue life N, at the given fatigue cyclic stress
level §% = 04—eq are provided, the reliability of the component can be directly calculated by the
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following equation:

R=P(N.>np)=1 —/;nL SN. (n)dn =1— Fy.(np), (2.39)

where fn,(n) and Fu,(n) are the PDF and CDF of the component fatigue life N, at the given
cyclic stress level S’ which is equal to 04— of model #1 cyclic stress. ny, is the number of cycles
of the model #1 cyclic loading stress. nz, is a constant number for the model #1 cyclic loading
stress

When the P — N, curve of component fatigue life N at the given fatigue cyclic stress
level S% = 04—eq are obtained through the material P-S-N curves, that is per Equation (2.34),
the limit state function of this problem is:

. > (0 Safe
) —np =130 Limit state (2.40)

< 0 Failure,

kakpke.
Ky

¢ (karke. K7oN) :N(

where kg, kp. kc, and K are the same as those in Equation (2.38). N is the material fatigue
life at the cyclic stress level S¢ = 04—eq. L is a constant number for the model #1 cyclic loading
stress. The reliability of the component under such a cyclic loading can be calculated by using
the limit state function Equation (2.40) with the H-L method, R-F method, or Monte Carlo
method.

For a component under model #1 cyclic loading spectrum, we could use Equations (2.37)
or (2.39) to directly calculate component’s reliability. Or, we can use the limit station functions
(2.38) and (2.40) to calculate component’s reliability. Three examples are presented to show how
to calculate the reliability of a component under model #1 cyclic loading spectrum.

Example 2.9

A beam at its critical section is subjected to a fully reversed cyclic bending stress with a constant
stress amplitude 0, = 35.5 (ksi) and a constant number of cycles nz, = 3.90 x 10° (cycles). After
a series of calculation, the component fatigue life of the beam at its critical section under the
tully reversed cyclic bending stress S, = 35.5 (ksi) follows a lognormal distribution with a log
mean (i, y = 13.305 and a log standard deviation 01, y = 0.187. Calculate the reliability of the
beam.

Solution:
For this problem, the component fatigue life P — N¢ distribution at the given cyclic stress level
is given. We can directly use Equation (2.39) to calculate the reliability of the beam.

If the Microsoft Excel formula is used,

R = P(Nc >nL)= I_FNC(nL)
= 1 — LOGNORM.DIST (3.90 x 10°, 13.305,0.187, true) = 0.9894.
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If the MATLAB function is used,

R=P(Ne>ng)=1—Fy, (nz) = 1 —lognedf (3.90 x 10°, 13.305,0.187) = 0.989%.

Example 2.10

A constant cross-section bar is subject to a fully reversed cyclic axial stress with a constant stress
amplitude 0, = 23.5 (ksi) and a constant number of cycles n;, = 1 x 10* (cycles). The material
fatigue life at the fully reversed rotating bending stress amplitude St = 23.5 (ksi) follows a
lognormal distribution with a log mean ), y = 13.72 and a log standard deviation o1,y =
0.124. The bar can be treated as a hot-rolled component. Its ultimate strength is 45.4 (ksi), and
its slope of the traditional S-N curve m is 8.30. (1) Determine the distribution parameters of
the component fatigue life at the given cyclic stress level. (2) Calculate the reliability of this bar.

Solution:

(1) Determine the distribution parameters of the component fatigue life N, at the given cyclic
stress level.

Since the material fatigue life distribution at the given cyclic stress level is provided, Equa-
tion (2.34) will be used to get the component fatigue life.

Per Equations (2.14)—(2.16), for a hot-rolled component, the distribution parameters of
the surface finish modification factor k, are:

Uk, = 16.45(S,) 7% = 16.45 (45.4)7%7**7 = 0.9671 (a)
Ok, = Yk, X Mk, = 0.098 x 0.9671 = 0.09478. (b)

Per Equation (2.17), the size modification factor kj is:
ky =1. ()
Per Equations (2.18)—(2.20), the loading modification factor k. for cyclic axial loading are:
jk, = 0.774. (d)

Ok, = Yk, X [k, = 0.163 x 0.774 = 0.1262. (e)

In this example, Ky will be 1 because of a constant cross-section bar.
'The component fatigue life at the given cyclic stress level will be:

N =N (kakc)&so- (f)
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If it is assumed that the component fatigue life N, still follows a log-normal distribution, we
can calculate its log-mean and log-standard deviation per Equations (2.35) and (2.36):

PN, = N +m X In (e, i, )

= 13.72 4 8.30 x In (0.9671 x 0.774) = 11.393 (g)
2 2
(o) Of..
OIn N, = (O—lnN)2 + m2 ( ka) + (L)
\ Mk, Mk,
0.09478\%  [0.1262\>
= |(0.124)* + 8.302 ( ) + ( ) = 1.5838 (h)
\ 0.9671 0.774

(2) Calculate the reliability of this bar.

If we use the distribution parameters in Equations (g) and (h), that is, N, is a log-
normal distribution with p, n. = 11.393 and o1, 5. = 1.5838, the reliability of the bar per
Equation (2.40) will be:

R=P(Ne>np)=1—Fy, (nz) = 1 — lognedf (1000, 11.393,1.5838) = 0.9159.

Of course, this is only an approximate result. If the limit state function Equation (2.40) for
this example is used, we need to use the R-F or Monte Carlo method to compile a MATLAB

program to calculate the reliability of the bar and will get a more accurate result.

Example 2.11

The critical section of a machined rotating shaft is at its shoulder section. The schematic of the
shoulder section is shown in Figure 2.14. The critical section is subjected to fully reversed cyclic
bending stress with a constant stress amplitude o, = 10.67 (ksi) and a constant number of cycles
ng = 3 x 10° (cycles). The material fatigue strength S ¢ at the fatigue life N = 3.5 x 10° from
tully reversed rotating bending stress tests follows a normal distribution with a mean u s, =
26.52 (ksi) and standard deviation og, = 1.98 (ksi). The ultimate strength of this material is

61.5 (ksi). (1) Express the componeﬁt fatigue strength at the fatigue life N = 3.5 x 10°. (2)
Calculate the reliability of the shaft.

Solution:
(1) The component fatigue strength at the fatigue life N = 3.5 x 10°:
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1
R6

”

0 1.125+.005 0 1.375+.005

Figure 2.14: Schematic of the shoulder section of a shaft.

Per Equation (2.29), we can have the expression of the component fatigue strength S, at the
fatigue life N = 3.5 x 10°:

kakpk
Scf: aKb c
v

S at N =35x 10°. (a)

Per Equations (2.14)—(2.16), the distribution parameters of the surface finish modification factor
k4 for a machined component are:

Pk, = 2.7 (Su) 70203 = 2.7 (61.5)7%2%%% = 0.9053 (b)
Oky = Viky X Hi, = 0.06 x 0.9053 = 0.05432. (0)

Per Equation (2.17), the size modification factor is:

d —0.1133 1.125 —0.1133

Per Equations (2.18)—(2.20), the distribution parameters of the loading modification factor k.
for cyclic bending stress, we have:

Mkc =1 (C)
ok, = 0. (f)

Per Equations (2.22)—(2.25), we can calculate the mean and standard deviation of the fatigue
stress concentration factor K. In this example, K; = 2.01 and r = 0.0625".
Per Equation (2.23), the Neuber constant /a is

4
= —0.06504. (2)

4
va = S, 615
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Per Equation (2.22), the mean of Ky is

K; 2.01
HE, = 2 (K, —1 = 2 201 —1 =1.5934. (h)
+ = Ja 1+ ( : )0.06504
ﬁ( K; ) V0.0625 \ 2.01

Per Equations (2.24) and (2.25), the standard deviation of Ky is:
ok, = 1K, X vk, = 1.5934 x 0.08 = 0.1275. (i)

So, the component fatigue strength S, for this example is

k
Sy =0.8609—=S;  at N =35x10°. §)
Ky

The distribution parameters of every random variable in Equation (j) are all known, the compo-
nent fatigue strength S is fully specified.

(2) Calculate the reliability of the shaft.

The limit state function in this example per Equation (2.38) will be:
(k K S’) 08609 X957 _ 10.67 (k)
g as f ) f — . Kf f . .

'The distribution parameters in the limit state function (k) are listed in Table 2.15.

'The limit state function (k) contains three normally distributed random variable and is a
nonlinear function. We can follow the H-L method and the program flowchart in Appendix A.1
to create a MATLAB program. The iterative results are listed in Table 2.16. From the iterative
results, the reliability index 8 and corresponding reliability R of the shaft in this example are:

B =156120 R = ®&(1.5620) = 0.9409.

Table 2.15: The distribution parameters of random variables in Equation (k)

k, Ky S]'r (ksi)
H, Ok, HK, 0K, Hs; os;
0.9053 | 0.05432 | 1.5932 0.1275 26.52 1.98
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Table 2.16: The iterative results of Example 2.11 by the H-L method

Iterative # k, ky S" B* A
1 0.9053 1.5932 21.8117 | 1.508306
2 0.87095 | 1.718111 | 24.4495 | 1.559894 | 0.051589
3 0.865776 | 1.721417 | 24.64291 | 1.561837 | 0.001942
4 0.865396 | 1.721634 | 24.65684 | 1.561987 | 0.00015
5 0.865369 | 1.72165 | 24.65787 | 1.561999 | 1.18E-05

2.8.4 RELIABILITY OF A COMPONENT UNDER MODEL #2 CYCLIC

LOADING SPECTRUM

Model #2 cyclic loading is one constant cyclic stress level o, with a distributed number of cycles
nz. When a component is subjected to model #2 cyclic loading and if the component fatigue
life Nc at the cyclic stress level o, is provided, we will have the following limit state function:

>0 Safe

g(Ne,np) = Ne —np =10 (2.41)

Limit state

<0 Failure,

where N is the component fatigue life at the fatigue strength S; = o4.

If the component fatigue life N¢ at the cyclic loading stress loading level o, is obtained
per Equation (2.34), the limit state function of a component under the model #2 cyclic loading
spectrum will be:

> (0 Safe

kakpko\™
ah C) —ng =130 Limit state

Ky

g(kaka7Kf’N7nL) = N ( (2.42)

<0 Failure,

where kg, kp, k¢, and Ky are the surface finish modification factor, the size modification factor,
the loading modification factor, and the fatigue stress concentration factor, respectively. k4, ke,
and Ky will be normally distributed random variables. kj, will be treated as a deterministic con-
stant. N is a distributed material fatigue life at the fatigue strength S} = 04. nz is a distributed
number of cycles of the cyclic stress loading oy,.

Both limit state function (2.41) and (2.42) can be used to calculate the reliability of a
component under model #2 cyclic loading spectrum by the H-L, R-F, or Monte Carlo method.
We will use the limit state function (2.41) to demonstrate an example.
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Example 2.12

A component is subjected to a fully reversed cyclic bending stress with a constant stress amplitude
04 = 26.6 (ksi). The number of cycles ny, of this cyclic loading can be described by a normal dis-
tribution with a mean p,,, = 4.25 x 10* (cycles) and a standard deviation 0, = 3253 (cycles).
'The fatigue life of this component N, at the fatigue strength S/ = 0, = 26.6 (ksi) follows a log-
normal distribution with a log-mean 1, 5, = 11.01 and the standard deviation o1, 5. = 0.158.
Calculate the reliability of the component.

Solution:
Since the component fatigue life N, of this component at the cyclic stress level o, = 26.6 (ksi)
is given, we can use Equation (2.41) to build the limit state function:

>0 Safe
g(Ne,np) = Ne—np =40 Limit state (a)
<0 Failure.
The distribution parameters of the limit state function (a) are listed in Table 2.17.
The limit state function (a) contains one normally distributed random variable and one
lognormal distribution. We can use the R-F method to calculate its reliability, which is presented
in Appendix A.2, to compile a MATLAB program for this example. The iterative results are

listed in Table 2.18. From the iterative results, the reliability index § and corresponding reliability
R of the component in this example are:

B =2.02131 R = ©(2.02131) = 0.9784.

Table 2.17: The distribution parameters of random variables in Equation (a)

N¢ (lognormal distribution) ny, (normal distribution)
HinNe OlnN, Hn, On;
11.01 0.158 42500 3253

2.8.5 RELIABILITY OF A COMPONENT UNDER MODEL #3 CYCLIC
LOADING SPECTRUM

Model #3 cyclic loading spectrum is one constant number of cycles 7 with a distributed cyclic
stress amplitude 0,. When a component is subjected to model #3 cyclic loading and if the com-

ponent fatigue strength Scy at the fatigue life N = ny is provided, we will have the following
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Table 2.18: The iterative results of Example 2.12 by the R-F method

Iterative # N nr p* |AB|
1 61,235.48  61,235.48 | 1.760759
2 44.322.18 | 44,322.18 | 2.02009 | 0.259331
3 45,263.78 | 45,263.78 | 2.021308 | 0.001218
4 45,217.85145,217.85| 2.021311 | 2.82E-06
limit state function:
>0 Safe

(2.43)

g (SCf,Ga) =S¢ —0a =10 Limit state

< 0 Failure,

where Sy is the component fatigue strength at the fatigue life N, which is equal to the number
of cycles ny, of model #3 cyclic loading spectrum.

If the component fatigue strength Sy at the fatigue life N = ny is obtained per Equa-
tion (2.39), the limit state function of a component under the model #3 cyclic loading spectrum

will be:

> (0 Safe
kakpke

X; (2.44)

Limit state

g(ka’kCaKf7S}a0a):SCf_Uaz S}'_Oa: O

<0 Failure,

where kg, kp, k¢, and Ky are the surface finish modification factor, the size modification factor,
the loading modification factor, and the fatigue stress concentration factor, respectively. kg, k¢,
and Ky will be normally distributed random variables. k;, will be treated as a deterministic con-
stant. S’ is a distributed material fatigue strength at the fatigue life N = np. o, is a distributed
tully reversed cyclic stress amplitude of the model #3 cyclic loading with the given constant
number of cycles ny..

Both limit state functions (2.43) and (2.44) can be used to calculate the reliability of a
component under model #3 cyclic loading with the H-L, R-F, or Monte Carlo method. We

will use Equation (2.44) to run one example.

Example 2.13

'The critical section of a machined stepped plate is at its stepped section, as shown in Figure 2.15.
'The plate has a thickness # = 0.375 & 0.010”. The plate is subjected to a fully reversed axial
loading amplitude F, which is a normal distribution with a mean u, = 5.2 (klb) and a standard

deviation o, = 0.61 (klb). The number of cycles of this fully reversed axial loading is n;, =
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3 x 10° (cycles). The ultimate strength of this material is 61.5 (ksi). The material fatigue strength
S} at the fatigue life N = 3.5 x 10° from fully reversed rotating bending stress tests follows a
normal distribution with a mean u s, = 26.52 (ksi) and standard deviation s, = 1.98 (ksi).

Use the Monte Carlo method to calculate the reliability of this plate and its range with a 95%
confidence level.

1

R? n
h=2.000+.010

.

Figure 2.15: Schematic of the stepped section of a plate.

W= 3.000+.010

Solution:
(1) Build the limit state function at the stepped section of the plate.

We will use Equation (2.44) to build the limit state function at the stepped section of the

plate. Per Equation (2.39), we can have the expression of the component fatigue strength S, at
the fatigue life N = 3.5 x 10°:

kakoke
=g
1

St at N =3.5x10°. (a)
Per Equations (2.14)—(2.16), for a machined component, the mean and standard deviation of
the surface finish modification factor k, are:

[k, = 0.9053; oy, = 0.05432. (b)
Per Equation (2.17), the size modification factor kj for cyclic axial loading is
kp = 1. (c)

Per Equations (2.18)—(2.20), for cyclic axial loading, the mean and the standard deviation of the
loading modification factor are:

g, = 0.774;  op, =0.1262. ()

In this example, K; = 2.14 and r = 0.25”. Per Equations (2.22)-(2.25), we can calculate the
mean and standard deviation of the fatigue stress concentration factor Ky:

[k, = 1.880;  og, = 0.1504. (e)
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So, the component fatigue strength S, for this example is
k
Sy = =S} at N =3.5x10°. (£)
Ky

'The fully reversed stress amplitude o, due to the fully reversed axial loading F, in this example
is:

F,

Ogq = 7 ;t' (g)

The mean and standard deviation of geometric dimensions & per Equation (1.1) are:
wh=2" oy =0.0025". (h)

'The mean and standard deviation of geometric dimensions 7 per Equation (1.1) are:
wr = 0.375", op = 0.0025". (1)

So, the limit state function at the stepped section of this plate per Equation (2.44) is

>0 Safe

o (Kakeo Ky Spn. Fa) = Soy =g = 5425 =74 = 20 Limicstaee )

<0 Failure.

'The distribution parameters of every random variable in Equation (j) are all normal distributions.
Their distribution parameters are listed in Table 2.19.

Table 2.19: The distribution parameters of random variables for Example 2.13 in Equation (j)
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ky ke Ky S} (ksi) h t F, (klb)
Hi, Ok, i, O, Mk, | OK. | HS; | OS; | Hh | Oh He Ot | MUF, | OF,

0.9503 | 0.05432 | 0.774 | 0.1262 | 1.880 | 0.1504 | 26.52 | 1.98 | 2 | 0.0025 | 0.375 | 0.0025 | 5.2 | 0.61

(2) Reliability of the stepped plate and its range with a 95% confidence level.

We can use the Monte Carlo simulation method to calculate the reliability of this example.
We can follow the Monte Carlo method and the program flowchart in Appendix A.3 to create
a MATLAB program. The estimated reliability of this component R, the probability of failure

F, and the relative error ¢ of F are:
R = 0.9464, F = 0.0536, e = 0.0066.
So, the range of the probability of failure with a 95% confidence level will be:
F =0.0536 £ 0.0536 x 0.0066 = 0.0536 = 0.0004.
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'Therefore, the range of the reliability of the component with a 95% confidence level will be:

R=1—-F =0.9464 = 0.0004.

2.8.6 RELIABILITY OF A COMPONENT UNDER MODEL #4 CYCLIC
LOADING SPECTRUM

Model #4 cyclic loading spectrum is multiple constant cyclic stress levels with multiple constant
numbers of cycles, which has been discussed in Section 1.2. When a component is under the
model #4 cyclic loading spectrum, no direct limit state function can be established. However,
the equivalent fatigue damage concept [11, 15] proposed by Dr. Dimitri B. Kececioglu in 1977
can be used to estimate the reliability of the component under such cyclic loading spectrum. The
assumption in the approach is that the cyclic number at a cyclic stress level could be transterred
to another stress level with an equivalent cyclic number under the condition that the probability
of a safe status of the component at the original stress level is the same as that at the transferred
stress level with the equivalent cyclic number. In this approach, the reliability index of the com-
ponent under cyclic loading is used as an indirect index for measuring the fatigue damage of a
component.

Let us use two levels of the model #4 cyclic loading spectrum as listed in Table 2.20 to
demonstrate the equivalent fatigue damage concept and procedure. The corresponding fatigue
life distributions are also listed in Table 2.20. In Table 2.20, o,; and o, are the fully reversed
cyclic stress amplitudes in the cyclic stress levels i and j. n;; and ny; are the numbers of cycles in
the cyclic stress levels i and j. They are all constants for the model #4 cyclic loading spectrum,
that is, deterministic values. S} is material fatigue strength, which is equal to the cyclic stress
amplitude of the corresponding stress level, as shown in Table 2.20. The component fatigue life
Nc at the given fatigue strength S/ = 0y, is typically a lognormal distribution, which has been
discussed in Section 2.8.2. It can be obtained per Equation (2.34). Its distribution parameters
can be calculated per Equations (2.35) and (2.36). In Table 2.20, i, N, and o1, n; are the mean
and the standard deviation of the component fatigue life N¢; at the cyclic stress level i. i, N,
and o1, N; are the mean and the standard deviation of the component fatigue life N¢; at the
cyclic stress level ;.

'The general procedure for transferring cyclic stress level from stress level i to the stress
level j is described as the following.

Step 1: Calculate the index of the fatigue damage of the component due to the cyclic stress
(04isny;) in the stress level 7.

The index of the fatigue damage of the component due to the cyclic stress (0, 71;) in the stress
level #i can be indirectly represented by the probability P (N¢ > nz;) = P [In(Nc¢) > In (n)],
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Table 2.20: Two cyclic stress levels and corresponding component fatigue life

Model #4 Cyclic Loading Spectrum

Component Fatigue Life N¢

(lognormal distribution)
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. Number of .
Stress level # | Cyclic stress Cyclic stress HinNg OlnNg
cycles
i Oai npi Sf = Ogi HinN¢; OlnN(;
J Ogj np; Sf = Ogj lulnNCj UlnNCi

which is the reliability of the component under the cyclic stress level #i. The reliability can
be directly represented by the reliability index f. Therefore, we can use the reliability index to
represent fatigue damage due to the cyclic loading. The reliability index f; of the component in
the cyclic stress level #i will be:

_ Min Ng; — In (n1i)

i = ———M—.

Oln N¢;

(2.45)

Step 2: Calculate the equivalent number of cycles from the cyclic stress in stress level #i to the
cyclic stress level #; .

Let ne4i—; represent the equivalent number of cycles to the cyclic stress level #;. According to
the equivalent fatigue damage concept, the reliability index of this n,4;—; in the stress level #;
will be B; . Therefore, we have:

_ HMinNg — In (”eqi—j)

Bi ) (2.46)
Uln ch
By rearranging Equation (2.46), we have:
Negi—j = exP (fin Ng — Bi X OlnNg) - (2.47)

Step 3: Combine cyclic stresses of the two-stress levels.

'The component fatigue damage due to the two cyclic stresses (04, 1) and (o), 11;) in two stress
levels #i and #; will be equal to the component fatigue damage due to cyclic stress (04, 717 +
Negi—j) in the stress level #;. So, the total equivalent number of cycles 7.4 in the stress level
J is:

(2.48)

Nj—eq = Nij + Negi—j

where 71j_4 is the equivalent number of cycles, including the original number of cycles in current
stress level and the transferred equivalent number of cycles from another stress level.
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Step 4: Calculate the reliability of the component due to model #4 cyclic loading spectrum.

If there are more than two stress levels in the model #4 cyclic loading spectrum, we can repeat
Step 1 to Step 3 to combine two stress levels into the next stress level, until we reach the last
stress level. Let us assume that the j stress level is the last stress level of model #4 cyclic loading
spectrum. The reliability of the component due to all stress levels will be:

(2.49)

R—a MKin N — In (nLj + neqi—j) )
O—lnch

If the component fatigue life N¢ follows another type of distribution, we can follow the
above steps to run a similar calculation by using the equivalent fatigue damage concept.

Example 2.14

A component is subjected to model #4 cyclic loading spectrum, as shown in Table 2.21. The
component fatigue life N, under the corresponding stress levels are lognormal distributions, as
shown in Table 2.21. Use the equivalent fatigue damage concept to calculate the reliability of
the component.

Table 2.21: Model #4 cyclic loading spectrum for Example 2.14

Model #4 Cyclic Loading Spectrum

Component Fatigue Life No

(lognormal distribution)

B1

_ MinNe; —In(npr)  12.95987 — In(81000)

Megi—2 = exp (11.01311 — 8.437205 x 0.197) = 11658.8

Ny—eg = N2 + Neg1—2 = 16000 + 11658.8 = 27658.8.

Oln Nc

0.198

= 8.437205

Level # Cyclic stress Number of | Cyclic stress . o
(psi) cycles (psi) Y ¢
1 65,000 81,000 65,000 12.95987 0.198
2 85,000 16,000 85,000 11.01311 0.197
3 105,000 2,800 105,000 9.47966 0.195
Solution:

We can use Equations (2.45), (2.47), and (2.48) twice to convert the number of cycles in stress
level 1 to level 2, and then from stress level 2 to the last stress level 3.
For the stress level 1 to stress level 2, we have:
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For the stress level 2 to stress level 3, we have:

_ MinNe, —In(nra—y) 1101311 — In(27658.8)

— 3.986858. d

P2 Ol Nes 0.191 (d)
Nega—3 = exp (9.47966 — 3.986858 x 0.195) = 6016.27 (e)

N3eq = N3 + Nugz—3 = 2800 + 6016.27 = 8816.27. (f)

The stress level 3 is the last. Therefore, the reliability of the component in this example per
Equation (2.49) is

} = ®(2.02721) = 0.9787. (g)

R_ | HnNca —In (73-eq) | _ q)[9.47966—1n(8816.27)
O'mNC3 0.195

In Example 2.14, if we convert the cyclic stress from the stress level 3 to the stress level 2,
and then from the stress level 2 to the stress level 1, we will get the reliability R = ® (2.07511) =
0.9810. The results are slightly different because it is an approximate estimation with the assump-
tion of the equivalent fatigue damage concept.

2.8.7 RELIABILITY OF A COMPONENT UNDER MODEL #5 CYCLIC
LOADING SPECTRUM

Model #5 cyclic loading spectrum consists of multiple constant stress amplitudes of cyclic load-
ings with corresponding distributed cycle numbers at each cyclic stress level. This section will
discuss how to calculate the reliability of a component under model #5 cyclic loading spectrum.

It is very difficult to create the limit state function of a component under model #5 cyclic
loading spectrum. The author, in 2016, proposed an approach with a modified equivalent fatigue
damage concept to deal with this type of problem [16]. Let us use two stress loading levels with
a distributed number of cycles as an example to explain this approach. The cyclic loading and
corresponding component fatigue life at two different stress levels are listed in Table 2.22. ny;
is a distributed number of cycles of the fully reversed cyclic loading with a stress amplitude o,;
in the stress level #i. N¢; is the distributed component fatigue life at the fully reversed fatigue
strength § j’, = 0y in the stress level #i. The component fatigue life N¢; can be determined by
Equations (2.34), (2.35), and (2.36), which have been discussed in Section 2.8.2. Two assump-

tions [16] for this approach are as follows.

Assumption One: The reliability index of the component under cyclic loading is used as an
indirect index for measuring fatigue damage of a component. To transfer a distributed cyclic
number 7, at the stress level o, to the distributed cyclic number n;; at the stress level oy, the
reliability index of the component due to ny; at the cyclic stress level o, should be equal to
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Table 2.22: Two cyclic stress levels of model #5 cyclic loading spectrum

Component Fatigue Life N at the

Stress Model #5 Cyclic Loading Spectrum

] Given Fatigue Strength S
Cyclic Stress Distributed Fatigue Strength Distributed
Amplitude (constant) | Number of Cycles (constant) Fatigue Life N¢
i Oai np; St =04 Nc;
J i i Sf = 04 N

the reliability index of the component due to an equivalent random variable n;_ ;. This random
variable n;_; has the same type of distribution and the same standard deviation as the cyclic
loading ny;, but its mean is the equivalent cyclic number 7,4;—;.

Assumption Two: The equivalent cyclic number 7,4 is a deterministic cyclic number and
will only affect the mean value of the distributed cyclic number at the cyclic stress level 0,;. So the
new distributed cyclic number including the equivalent cyclic number 7,4, —; at the cyclic stress
level o, will be n.4i—j + nyj, which can be defined as n;_,,. When compared with the original
random variable 7, the new random variable n;_., will have the same type of distribution and
the same standard deviation but have an increase in its mean value by 7.4 ;.

We will discuss two cases in the following sections: (1) both the component fatigue life
N¢ and the cyclic number ny of the cyclic loading are the normal distribution; and (2) both
the component fatigue life N¢ and the cyclic number 77, of the cyclic loading are log-normal
distribution.

Both Normal Distributions
When both the component fatigue life N¢ and the cyclic number n7 of model #5 cyclic load-
ing at the cyclic stress levels are normal distributions, as shown in Table 2.23. We can use the
tollowing procedure to determine the equivalent cyclic number 7.4 ; and the new distributed
cyclic number n;_,, at the stress level o,;. Then, we can calculate the reliability of a component
under such cyclic loading spectrum.

The limit state function of the component due to the cyclic loading at the stress level #i
is:

>0 Safe
g (Neiyngi)) = Nei—np =130 Limit state (250)

<0 Failure.

Since both the component fatigue life N¢; (strength) and the number of cycles ny; of the cyclic
loading are normal distributions, the limit state function will be a normal distribution. The
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Table 2.23: Normal distributions for n;, and N¢

Model #5 Cyclic Loading Spectrum Component Fatigue Life N¢

Stress
‘ ny (normal distribution) ‘ . ‘ Distributed Fatigue Life N¢
Level Stress Fatigue
Standard Standard
# Level Mean L Strength Mean ..
Deviation Deviation
/ Tai Hny,; Ony, S = ai HN¢; ON¢;
J Oqj Hny, Ony; Sf = Ogj HNg ONg

reliability index of the limit state function (2.50) can be directly calculated by the following
equation:

pi= Mo _FLH (2.51)
(O—Nc,')2 + (O—Li)2
Per Assumptions One and Two, the reliability index for the equivalent cyclic number 14— ; of

the cyclic loading from the stress level #i to the stress level #; should have the same reliability
index f3;:
ﬂi _ U N zneqt—] . (252)
(ong)” + (o)
Rearrange Equation (2.52), the equivalent cyclic number 7,4 —j from the stress level #i to the
stress level #; is:

Meaivi = v — Byl (ow6)” + (on,)” (2.53)

Per Assumption Two, the new distributed cyclic number n;j_,, at the stress level o,; will have
following mean and the same standard deviation:

Mj—eq = Negi—j + UL;

Unj_eq =O0L;,

(2.54)

where p;—.4 and 0y;_,, are the mean and the standard deviation of the normally distributed
random variable n;_,.

If there are more than two stress levels in the model #5 cyclic loading spectrum, we can
use above procedures to continuously convert cyclic loading from one level to next level per
Equations (2.51)—(2.54) until the equivalent cyclic loading in the last stress level has included
all transferred equivalent cycles. If the stress level #; is the last stress level, the reliability of the
component under model #5 cyclic loading spectrum is:

R=o| HNe " Mizea | (2.55)

\/(UNCJ)Z + (U"LJ)Z
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where ® () is the CDF of standard normal distribution.

Example 2.15

A component is subjected to model #5 cyclic loading spectrum with three stress levels as listed in
Table 2.24. Both the number of cycles 7, and the component fatigue life N¢ follow normal dis-
tributions. Their distribution parameters at three stress levels are listed in Table 2.24. Calculate

the reliability of this component.

Number of cycles

Table 2.24: Normal distributions for n; and N¢ for Example 2.15

Component Fatigue Life N¢

e Lyl (normal distribution) (normal distribution)
Level Stress
. Standard Standard
# Amplitude ) o
Deviation (6n, ) Deviation (o)

1 45 (ksi) 11,000 1,200 45,000 3,600

2 40 (ksi) 32,000 5,400 118,800 11,000

3 35 (ksi) 112,000 9,800 356,200 26,000

Solution:

'The equivalent cyclic number 71,41 of the cyclic stress from the stress level 1 to the stress level

2 per Equations (2.51) and (2.53) is:

_ 45000 — 11000
g = /«LNCI2 Pnpy - = 8.959787 (a)
\/(ONCI) + (onLl) \/(3600)2 + (1200)2
2 2
Negi—2 = UNey — Pi \/(ach) + (U"LZ)
= 118800 — 8.959787 x \/ (11000)? + (5400)% = 9000.96. (b)

Therefore, the number of cycles n,_,, in the stress level #2 including the transferred number of
cycles from the stress level #1 will have the mean and standard deviation per Equation (2.54):

Mo—eq = Neg1—2 + pp, = 9000.96 + 32000 = 51006.96

02—¢q = 0L, = 5400.

(c)

Now, repeat above calculations to convert the cyclic stress at the stress level #2 with the distri-
bution parameters in Equation (c) to an equivalent number of cycles 1,53 at the stress level

#3.
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Per Equation (2.51), we have:

— o 118800 — 51006.96
By = —MNc2 " H2meq — 5.532329. (d)

\/ (0Ne)” + (02-cq)” \/ (11000)> + (5400)2

Per Equation (2.53)

Nega—3 = UNc3 — P2 \/(GNC3)2 + (013)°

= 356200 — 5.532329 x \/ (26000)* + (9800)% = 202480.9. (e)

Per Equation (2.54), the cyclic stress 13—, in the stress level #3, including all of the transferred
number of cycles from the stress level #1 and #2 will have a following mean and standard devi-
ation:

M3—eq = Nega—3 + pip; = 202480.9 + 112000 = 314480.9

03—¢q = 015 = 9800.

(f)

Since the stress level #3 is the last stress level, we can use Equation (2.55) to calculate the relia-
bility of the component by using the equivalent number of cycles n3_,,, which includes all three
cyclic stresses.

MNc3 — H3—eq
2
\/(UNC3) + (013)°

o [ 356200 — 3144809
/(26000)2 + (9800)2

R=9®

) = @ (1.501465) = 0.9334. (2)

Both Lognormal Distributions
When both the component fatigue life N¢ and the cyclic number 77, of model #5 cyclic loading
at the cyclic stress levels are lognormal distributions, as shown in Table 2.25. We can use the
tollowing procedure to determine the equivalent cyclic number 7,4 —; and the new distributed
cyclic number n;j_,, at the stress level o,;. Then, we can calculate the reliability of a component
under model #5 cyclic loading spectrum.

For both lognormal distribution, the event (N¢; > ny;) is the same as the event (In(N¢;) >
In(n.;)) because both N¢; and ny; are positive. The limit state function of the component due to
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Table 2.25: Log-normal distributions for ny, and N¢

. T Number of Cycles ny Component Fatigue Life V¢
tress | Cyclic Stress (lognormal distribution) (lognormal distribution)
Level | Amplitade ——1 7 [ | . . .
Standard Standard
# (constant) Mean .. Mean ..
Deviation Deviation
i Oai Hinpy, Olnny, HinN, OInN,
J Ouj Hinny; Olnny; HnN; OlnN;

the cyclic loading at the stress level #i is:

>0 Safe
g (Nci.ngi)) = In(N¢g) —In(ng;) = {0 Limit state (2.56)

<0 Failure.

Now, both In(N¢;) and In(n;;) are a normal distribution. We can repeat the same calculations as
those in Section 2.8.7. The reliability index of the limit state function (2.56) in the stress level
#i is:
ﬂi — Min N¢; MinLi ) (257)
\/(Uln NC,-)2 + (0'lnLi)2

'The reliability index for the equivalent cyclic number 7,4 —; of the cyclic loading from the stress
level #i to the stress level #; should have the same reliability index ;.

_ PmNg — In (1egi—j)

(2.58)
(on)” + (o)

Bi

From Equation (2.58), the equivalent cyclic number 7,4 —; from the stress level i to the stress
level j is:

Negi—j = €Xp |:I'Llnch —Bi \/(Um ch)z + (01nnL,)2] . (2.59)

Per Assumption Two in Section 2.8.7, n.4i—; will be added to the mean of n;;. The mean of the
lognormally distributed 7;; with the log mean i, L and log standard deviation 01y, ,; can be

calculated by the following Equation (2.60) [8]:

(Glnnu)2
M”Lj = exp MlnnLj + T . (260)
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'Therefore, the new mean for the new distributed cyclic number n;_,, at the stress level o, will

be:

2
Olnny;
Mj—eq = Negi—j + Hny = Negi—j + €XP |:/’L1HnLj + %} . (2.61)

'The new distributed cyclic number n;_,, at the stress level o,; will still be a lognormal distribu-
tion. The log standard deviation of the new distributed cyclic number n;_,, is the same as that
Of nr.

Olnn;_,, = OlnL;- (262)

For a lognormal distribution, the log mean of the new distributed cyclic number 7;_,, is:

2
Olnn;_,
MHj—eq = €XP |::ulnnj_eq + #} . (263)

Rearranging Equation (2.63), the log mean of the new distributed cyclic number n;_,, is

(Uln nj—eq ) ’

> , (2.64)

:u“lnnj_pq =In (/'Lj—eq) -
where [y, e and o1, ey ATE the log mean and the log standard deviation of the lognormally
distributed random variable 7, _,.

If there are more than two stress levels in the model #5 cyclic loading spectrum, we can
use above procedures to continuously convert cyclic stress from one level to next level per Equa-
tions (2.57)—(2.64) until the equivalent cyclic stress in the last stress level has included all trans-
terred equivalent cycles. If the stress level j is the last stress level, the reliability of the component
under model #5 cyclic loading spectrum is:

Min Ng — Mlnnj_gq
VOung) + (O,

where @ () is the CDF of standard normal distribution.

R=9d , (2.65)

Example 2.16

'The component made of steel is subjected to model #5 cyclic loading spectrum with three fully
reversed bending stress levels. Both the numbers of cycles of the fully reversed bending stress
ng, and the component fatigue life Nc at each stress level are lognormal distributions as listed
in Table 2.26. Calculate the reliability of the component under such cyclic loading spectrum.
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Table 2.26: Lognormal distributions for n, and N¢ for Example 2.16

Stress Stress
Level | Amplitude

Number of Cycles nj,

(lognormal distribution)

Hinny;

Component Fatigue Life N¢

(lognormal distribution)

o-lllllLi llllL’VCi

# (ksi)
1 66 10.8 0.19 12.86454 0.24868
86 8.9 0.18 10.85669 0.15658
3 106 8.1 0.16 9.44520 0.16809
Solution:

'The equivalent cyclic number n,,1—> of the cyclic stress from the stress level #1 to the stress
level #2 per Equations (2.57) and (2.59) is:

HinN¢y — Min L1 12.86454 — 10.8

B1 = 5 = = 6.596892 (a)
\/ (O Net)” + ©@mr1)? \/ (0.24868)* + (0.19)
Neg1—2 = €Xp |:,ulnNc2 - bH1 \/(Cfllnch)2 + (OlnnL2)2:|
= exp [10.85699 — 6.596892 x \/ (0.15658)% + (0.18)2] = 10751.99, (b)

the new mean for the new distributed cyclic number n,_,, at the stress level #2 per Equa-

tion (2.61) is:
(Olnan)z i|

HU2—eqg = Neg1—2 + €XP |:,ulnnL2 + )

(0.18)?
2

= 10751.99 + exp |:8.9 + } = 18203.71. ()

'The log standard deviation of the new distributed cyclic number n,_,, per Equation (2.62) is
Olnnz_fq =O0InL, = 0.18 (d)

the log mean of the new distributed cyclic number n,_,, per Equation (2.64) is

) 2
. 0.18
% — In(18203.71) — 18

Now, repeat above calculations to convert the cyclic stress at the stress level #2 with the distri-
bution parameters in Equations (d) and (e) to an equivalent number of cycles 71,4, —3 at the stress

level #3.

Minny—py, = I (2—eq) — = 9.793181. (e)




2.8. RELIABILITY OF A COMPONENT BY THE P-S-N CURVES APPROACH 63
Per Equation (2.57), the reliability index B, of the component under the new distributed
cyclic number n,_,, in the stress level #2 is:

MinNeo — Mnnp—,  10.85699 —9.793181

= = 4.457785. (f)
\/ (01nNes) + (O z2)? \/ (0.15658)2 + (0.18)?

B2 =

Per Equation (2.59), the equivalent cyclic number n,,5—3 from the stress level #2 to the stress
level 3:

Neg2—3 = €XP |:I'LlnNc3 - ﬂZ \/(OlnNC3)2 + (OlnnL3)2:|

= exp [9.4452 — 4.457785 x \/ (0.16809)2 + (0.16)2] = 4494.921; (g)

the new mean for the new distributed cyclic number n3_,, at the stress level #3 per Equa-

tion (2.61) is:

2
(0.16)2
2

M3—eq = Neg2—3 + exp |:,u'lnnL3 +

= 4494.921 + exp |:8.1 + ] = 7831.83. (h)

'The log standard deviation of the new distributed cyclic number n3_,, per Equation (2.62) is
O—lnn3,eq =O0InL; = 0.16; (1)

the log-mean of the new distributed cyclic number n3_,, per Equation (2.64) is

(Uln n3—eq)2

2

(0.16)2
2

= In(7831.83) — = 8.953151. 4)

Mlnn3—eq = ln (M3_6q) -
Since the stress level #3 is the last stress level, we can use Equation (2.65) to calculate the relia-
bility of the component by using the equivalent number of cycles n3_.,, which includes all three
cyclic stresses:

R— Min Nes — Minns_, _ o[ 244528953151
V/(0.16809)2 + (0.16)2

\/(Oln NC3)2 + (Orlnn?afeq)z

= ©(2.120303) = 0.9830.
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2.8.8 RELIABILITY OF A COMPONENT UNDER MODEL #6 CYCLIC
LOADING SPECTRUM

Model #6 cyclic loading spectrum is several distributed cyclic stress amplitudes at specified cycle
numbers, that is, (ny;, 04, 1 = 1,2,...). Here, ny; is a constant number of cycles in the cyclic
number level #i. Fully reversed cyclic stress level o; in the cyclic number level #i is a distributed
random variable. The corresponding component fatigue strength data will be the component
fatigue strength S; at the given fatigue life N = ny;. The component fatigue strength S.; at
the given fatigue life N = n;; can be calculated per Equation (2.29). Its mean and standard
deviation can be calculated through Equations (2.30) and (2.31). This section will discuss how
to calculate the reliability of a component under model #6 cyclic loading spectrum.

It is difficult to establish the limit state function of a component under model #6 cyclic
loading spectrum. It is typically assumed that the influence of the sequence of cyclic loading on
fatigue life or fatigue damage can be negligible. Therefore, each loading condition in the model
#6 can be treated as an independent event. The author proposed an approach [17] in 2017 to
estimate the reliability of a component under such cyclic loading spectrum. This approach has
the following two assumptions.

Assumption One: Based on the concepts of the widely accepted Miner rule [7, 10, 18], the
effect of the sequence of cyclic loading on the fatigue damage during the service life of the
component can be ignored, so that each cyclic loading stress condition (n;, 0,4) can be treated
as an independent random event.

Assumption Two:  Since the fatigue damage of the component due to these independent cyclic
stress conditions is assumed to be independent, the estimation of the reliability R of the com-
ponent under Model #6 (n.;, 04;) is equal to the multiplication of the reliability R; of the com-
ponent under each cyclic loading condition (ny;, 04).

Assumption One is mainly based on the widely accepted linear cumulative fatigue damage
theory. Assumption Two is a natural extension of Assumption One, but it is the expression of
the reliability computational method. So, according to Assumption Two, the reliability of a
component under the model #6 cyclic loading spectrum can be modeled as a series of reliability
block diagrams, each of which represents the component under each cyclic loading condition.
'Thus, the reliability R of a component under model #6 cyclic loading spectrum is:

R = H R;, (2.66)

i=1
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R; is the reliability of the component under cyclic stress (7., 04;) and can be calculated based
on the following limit state function of the component under cyclic stress (1, 04):

>0 Safe
g (Sefis 0ai) = Sef — 04 = 0 Limit state (2.67)

< 0 Failure,

S¢q and o, are the component fatigue strength and the cyclic stress amplitude at the cyclic
number level #i.

When both the fatigue strength S.; and the cyclic loading stress level o, at the given cycle
number n;; are normal distributions, the reliability R; can be directly calculated as the following:

MS(‘ﬁ - /"L(Ta,'
J(05,)% + @0,

where jis,, and o5, are the mean and the standard deviation of normally distributed Sc. pto,,
and 0y, are the mean and the standard deviation of normally distributed o,;. ® (-) is the CDF
of standard normal distribution.

Ri =P (SLﬁ > Uai) =& s (268)

When both the fatigue strength S.; and the cyclic loading stress level o, at the given
cycle number 7, are lognormal distributions, the reliability R; can be directly calculated as the
tollowing:

Min Sei Min oy,
2
\/(Gln Sfﬁ) + (Jln Ua,')z

where ji1, 5., and o, 5, are the log-mean and the log standard deviation of log-normally dis-
tributed S.4. fino, and o1, are the log-mean and the log standard deviation of log-normally
distributed o,;. ® () is the CDF of standard normal distribution.

For a general case with any other type of distributions for S, and o, the H-L, R-F
method, or Monte Carlo method discussed in Chapter 3 can be used to calculate the reliability
of the component per the limit state function Equation (2.67).

, (2.69)

Ri = P (S¢i > 041) = P [In(Se) > In(o,] = @

Example 2.17

A component is subjected to two distinguished fully reversed cyclic bending stresses due to two
designed functions. The fully reversed cyclic bending stresses can be described by two normal
distributed stress amplitudes at 8,000 cycles and 200,000 cycles, as shown in Table 2.27. The cor-
responding fatigue strength of the component at the given fatigue life 8,000 cycles and 200,000
cycles can be described as a normal distribution, as shown in Table 2.27. Calculate the reliability
of the component.
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Table 2.27: Distribution parameters of S.4 and o, for Example 2.17

Cyclic Stress Amplitude 6,; | Component Fatigue Strength S

Number of

Level (ksi) (normal distribution) (ksi) (normal distribution)
Cycles ny;
(constant)
1 8,000 34.25 4.15 50.19 4.72
2 200,000 29.13 2.78 37.72 3.16
Solution:

Since both the component fatigue strength S.s and the cyclic stress amplitude o,; are normal
distributions, the reliability R; of the component under cyclic stress 041 in the cyclic number

level #1 per Equation (2.68) is:

:LLSLf] - //LO'al

\/(Uslfl )2 + (Oaal )2

Ry =P (Scfl > O’al) =

50.19 —34.25
= = $(2.536208) = 0.994397. (a)

J@727 + 4157

Repeat the same calculation in the cyclic number level #2 per Equation (2.68),

l’l’Scfz - /'Laaz
J05.2) + (00)?

} = (2.040962) = 0.979373. (b)

R2 =P (Scfz > O’a2) =

- 37.72 —29.13
V(3.16)2 + (2.78)2

Per Equation (2.66), the reliability of the component under this model #6 cyclic loading spec-

trum 1is:

S]

R = l_[ R;i = Ry x R, =0.994397 x 0.979373 = 0.9739. (c)
i=1
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Example 2.18

A component is subjected to two distinguished fully reversed cyclic bending stresses due to
two designed functions. The fully reversed cyclic bending stresses can be described by two nor-
mally distributed stress amplitudes at 5,000 cycles and 300,000 cycles, as shown in Table 2.28.
'The corresponding fatigue strength of the component at the given fatigue life 5,000 cycles and
300,000 cycles can be described as log-normal distribution, as shown in Table 2.28. Calculate
the reliability of the component.

Table 2.28: Distribution parameters of S.; and o,; for Example 2.18

Cyclic Stress Amplitude 6,; | Component Fatigue Strength S

NGO (ksi) (normal distribution) (ksi) (lognormal distribution)
Cycleswn;; —7 7 7 7 1 1 "
(constant) Hs,,; o, Hins,, OIS,
1 5,000 54.2 6.775 4.3562 0.0321
2 300,000 45.2 5.3336 4.0507 0.0315
Solution:

Since the component fatigue strength S are lognormal distributions and the cyclic stress am-
plitude o,; are normal distributions, we need to use Equation (2.68) to establish the limit state
functions.

The limit state functions for the cyclic number level #1 and #2 are
> (0 Safe
g (Ser1.0a1) = St —0a1 = 40 Limit state (a)
<0 Failure

>0 Safe

g (Ser2.0a3) = Ser2 — a2 = 10 Limit state (b)

<0 Failure.

Based on the limit state functions (a) and (b), the R-F method can be used to calculate their
reliabilities. We can follow the procedure and the flowchart of the R-F method presented in Ap-
pendix A.2 to compile a MATLAB program. The iterative results for the limit state function (a)
are listed in Table 2.29. From the iterative results, the reliability index f; and corresponding
reliability R; of the component in this example are:

B1 =3.296752; Ry = ®(3.296752) = 0.999511.
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Table 2.29: The iterative results at the cyclic number level #1

Iterative # Sert o p* A|p*|
1 78.0005 78.0005 3.289598
2 75.1051 75.1051 3.296735 0.007137
3 75.24278 75.24278 3.296752 1.7E-05

'The iterative results for the limit state function (b) is listed in Table 2.30. From the iterative
results, the reliability index B, and corresponding reliability R of the component in this example
are:

B2 = 2.175236; Ry = $(2.175236) = 0.985194.

The reliability of the component under this cyclic loading spectrum per Equation (2.66)
is:

N

R = 1_[ Ri = Ry x R, =0.999511 x 0.985194 = 0.9847.
i=1

Table 2.30: The iterative results at the cyclic number level #2

Iterative # Sep2 op p* A|p*|
1 57.46615 57.46615 2.172718
2 56.17362 56.17362 2.175234 0.002516
3 56.21165 56.21165 2.175236 2.25E-06

THE RELIABILITY OF A COMPONENT WITH P-S-N CURVES BY
THE MONTE CARLO METHOD

'The limit state function must be established first before the Monte Carlo method can be used to
calculate the reliability of a component under cyclic loading Spectrum. When the P-S-N curves
are used as the fatigue strength data, the limit state function of a component under six possible
cyclic loading spectrums are listed here.

For model #1 cyclic loading spectrum (o, 17 ), which is a constant number of cycle ny, ata
constant fully reversed cyclic stress amplitude o, we can have two versions of limit state function
per Equation (2.38) when the component fatigue strength S, is used or per Equation (2.40)

2.8.9
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when the component fatigue life Nc¢:

> (0 Safe
kakpke

7\ o _ ..

g (kaakm Kf7Sf) =K S¢—0a 0 Limit state (2.38)
<0 Failure
. > (0 Safe
kaokpk
g (ka.ke. K. N) =N (aK—bc) —np =10 Limit state (2.40)
f

<0 TFailure.

For model #2 cyclic loading spectrum (o4, n7,), which is a distributed number of cycle ny, at
a constant fully reversed cyclic stress amplitude oy, the limit state function can be established
per Equation (2.41) when the component fatigue life Nc at the given constant cyclic stress
amplitude o, is provided. The limit state function will be constructed per Equation (2.42) when
the material fatigue life N at the given constant cyclic stress amplitude o, is provided:

>0 Safe
g(Ne,np) = Ne —np = 10 Limit state (2.41)
<0 Failure
>0 Safe

kakbkc " ..
g (ka ke, Kf N.np) = N X, ) = 0 Limit state (2.42)
f

<0 Failure.

For model #3 cyclic loading spectrum (0, n1.), which is a distributed fully reversed cyclic stress
amplitude o4, with a constant number of cycles 7y, the limit state function can be established
per Equation (2.43) when the component fatigue strength S¢; at the given constant fatigue life
N = ny, is provided. The limit state function will be constructed per Equation (2.44) when the
material fatigue strength S% at the given constant fatigue life N = n is provided:

>0 Safe
g (Scr.04) = Scp—0a =40 Limit state (2.43)
<0 TFailure
> (0 Safe
kakbkc R
g (ka,kc, Ky, S},Ua) = K—fS} —04 =10 Limit state (2.44)

<0 Failure.
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For model #6 cyclic loading spectrum (04,17, i =1,2,...), which are distributed fully re-
versed cyclic stress amplitude o,; with a constant number of cycles n;; in the cyclic number level
#i, the limit state function of the component for each cyclic number level #i can be established

per Equation (2.67):

>0 Safe
g (Sefis 0ai) = Sef — 04 = 0 Limitstate i =1,2,... (2.67)

<0 Failure.

For all the above cases, we can directly use the Monte Carlo method to calculate the reliability
of a component per its limit state function. The Monte Carlo method procedure and program
flowchart is displayed in Appendix A.3.

For model #4 and model #5 cyclic loading spectrums (04, 7, i = 1,2,...), we could not
build their limit state functions, but the equivalent fatigue damage concepts could be used to
calculate the reliability.

The author presented an approach [19] in 2018 to use the Monte Carlo method to cal-
culate the reliability of a component under these two cyclic loading spectrums. The two key
concepts in the widely accepted Miner rule are that fatigue damage caused by cyclic loading
could be treated as independent random events and could be cumulated linearly. Based on these
two key concepts in the Miner rule, the following is the computational algorithm for imple-
menting the Monte Carlo method to calculate the reliability of a component under the model
#4 and #5 cyclic loading spectrum.

'The accumulated fatigue damage Fj in the jth trial of the Monte Carlo method is:

F=Y 4 (2.70)

where 7, is a randomly generated sample of the distributed number of cycles 7, at the cyclic
stress level o; in the jth trial for the model #5 cyclic loading spectrum. n;; will be equal to ny;
for the model #4 cyclic loading spectrum. N¢;; is a randomly generated sample of the distributed
component fatigue life N¢; at the cyclic stress level o, in the j th trial. The subscript i represents
the ith cyclic stress level. The symbol I represents the total number of different cyclic stress
levels. The trial result tn; of the j th Monte Carlo simulation will be determined per the following

equation:
1, if Fj <1
nj = ' (271)
0, if Fj >1.

In Equation (2.71), the trial result m; = 1 represents that the component in the jth trail is

safe because the cumulative damage F; is less than 1. The trial result in; = 0 indicates that the
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component in the jth trail fails because the cumulative damage F; is larger than 1. The sum of
all trial results ) _ tn; will be the number of trails with a safe status. So, the component reliability
R under such cyclic loading spectrum is:

Nt
R= (Z inj | /Ne, (2.72)

where N; is the total number of trials in the Monte Carlo simulation. Since the limit state
function of a component under cyclic loading spectrum is typically not very complicated, N; =
15,998,400 can be used.

Example 2.19

Use the Monte Carlo method to calculate the reliability of Example 2.14 in Section 2.8.6. A
component is subjected to cyclic loading at three different constant fully reversed cyclic stress
levels with three different constant numbers of cycles as listed in Table 2.31. The component
fatigue life N, under the corresponding stress levels are also listed in Table 2.31. Use the Monte
Carlo method to calculate the reliability of the component.

Table 2.31: Model #4 cyclic loading spectrum and corresponding component fatigue life for
Example 2.19

Component Fatigue Life N¢; at 6,; (psi)

Stress | Cyclic Stress | Number of (lognormal distribution)

Level | Amplitude Cycles ny;

i 6,4i (psi)
65,000 81,000 12.95987 0.198
85,000 16,000 11.01311 0.197
3 105,000 2,800 9.47966 0.195

Solution:

We can use the above Equations (2.70), (2.71), and (2.72) to compile the Monte Carlo method
program, which is displayed in Appendix A.3. Based on the proposed computational algorithm,
the MATLAB program can be compiled, and the reliability of the component from the MAT-
LAB program is:

N
15992388
R = m; | /N, = 222220 _ 0.9996.
; " | INC= 15598300

'The result from Example 2.14 by using the equivalent fatigue damage concept is R =
0.9877. The result of the Monte Carlo method is 0.9996. The results are not the same. However,
the relative difference is only 2.1%. [ ]
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Example 2.20

Use the Monte Carlo method to calculate the reliability of the component in Example 2.15 in
Section 2.8.7. A component is subjected to model #5 cyclic loading stresses with three stress
levels as listed in Table 2.32. The component fatigue life at a corresponding cyclic stress level
is also listed in Table 2.32. Use the Monte Carlo method to calculate the reliability of this
component.

Table 2.32: Model #5 cyclic loading spectrum and corresponding component fatigue life for
Example 2.20

= Number of Cycles ny; Component Fatigue Life N¢;
tress Cyclic Stress (normal distribution) (normal distribution)
Level .
Amplitude
#
45 (ksi) 11,000 1,200 45,000 3,600
2 40 (ksi) 32,000 5,400 118,800 11,000
3 35 (ksi) 112,000 9,800 356,200 26,000

Solution:

We can use the above Equations (2.70), (2.71), and (2.72) to compile the Monte Carlo method
program. Based on the proposed computational algorithm, the MATLAB program can be com-
piled, and the reliability of the component from the MATLAB program is:

Ny
15763743
R = m; | /N, = 2222172 _ 9853,
(Z ”’)/ © = 15998400

The result from Example 2.15 by using the equivalent fatigue damage concept is R =
0.9334. The result of the Monte Carlo method is 0.9853. The results are not the same. However,
the relative difterence is only 5.6%. [ |

2.9 THE PROBABILISTIC FATIGUE DAMAGE THEORY
(THE K-D MODEL)

29.1 INTRODUCTION

For high-cycle fatigue issue, which is the main focus of this book, most of the fatigue test data
are from fatigue tests under a constant cyclic stress level. There are many theories to interpret
and to describe fatigue data [1, 20]. One of the typical well-known approaches for describing
the fatigue test data is the P-S-N curve approach, which has been discussed in Section 2.8 [3-5].
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In this approach, a probabilistic distribution function is used to describe the fatigue test data at
the same cyclic stress level. If fatigue tests are at several cyclic stress levels such as seven stress
levels, there will be seven difterent probabilistic distribution functions if there are big enough
number of tests in each stress levels. However, the P-S-N curve approach has the following four
issues in its implementation for fatigue reliability design.

1. Since fatigue tests are time-consuming, there are only a few fatigue test data at each stress
levels, which are common cases, as shown in the fatigue data book [21]. In such a situation,
the P-S-N curve cannot be constructed due to the small sample size.

2. In some available fatigue test data, the total number of fatigue test might be more than
30 even though the number of fatigue tests in the same stress level is small, which is the
common case in the fatigue data book [21]. The P-S-N curve approach cannot use such
data to construct the P-S-N curves.

3. When the cyclic stress level in cyclic loading is not equal to the fatigue test stress level,
the probabilistic distribution function at this level is not available in the P-S-N curves,
which is a typical case in reality for fatigue design. So the P-S-N curves cannot be used
to solve this type of issue. The P-S-N curve approach could use the interpolation method
to obtain the probabilistic distribution function at the required stress level for reliability
fatigue design. However, this distribution function is not directly obtained from or based
on the test data, and it might induce some big error.

4. In fatigue tests, actual dimensions of fatigue specimen will be slightly different. Therefore,
the actual stress level for the same nominal stress level fatigue test might be different; even
the nominal stress level is the same. However, the P-S-N curve approach ignores these
differences and use the nominal stress level to create the P-S-N curves.

'The fatigue damage mechanism, which has been discussed in Section 2.2, shows that the
fatigue damage is mainly caused by cyclic loading and randomly distributed defects inside a
component such as voids and dislocations and or on the surface of a component such as man-
ufacturing scratches. This result strongly suggests that the fatigue damage mechanism for the
same type of material specimen under different cyclic test stress levels should be the same. There-
fore, we can use all test data from every stress level to construct a probabilistic fatigue damage
model for presenting material strength, which is the topic in this Section 2.9.

2.9.2 THE MATERIAL FATIGUE STRENGTH INDEX K,

In the traditional fatigue design, the S-N curve is typically plotted in a logarithmetic axis with
a fatigue strength S verse the fatigue life N. S is equal to a fully reversed stress amplitude o,.
'The fatigue life N is the number of cycles to failure at the stress level o,. This traditional S-N
curve in logarithmic axes will typically be treated as a straight lineper Equation (2.1):

N(S]’,)m = Constant. (2.1)
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In the traditional S-N curve, N(S/)™ is treated as constants. It is obvious that the N(S j’p)'"
cannot be a constant when the reliability of a component is used as the design parameter. The
author in 1993 proposed a probabilistic fatigue damage model [22-24] in which N(S})™ is
treated as a random variable and is called as the material fatigue strength index.

The material fatigue strength index K¢ is a mechanical property of a material and is solely
determined by experimental fatigue data per Equation (2.73) and can be used to indirectly rep-
resent the materials fatigue resistance to the fatigue damage or the material fatigue strength.
The material fatigue strength index Ky is a random variable. Its sample value can be calculated
by fatigue test results of material fatigue specimen from the same type of cyclic loading stress,
which could be cyclic bending stress, or cyclic axial stress, or cyclic torsion stress.

K() = Nl:/‘ (O'm')m s (273)

where the subscript i represents the ith fatigue stress level o,;. The subscript j represents the
Jj th fatigue test in the ith fatigue stress level o,;. (Nj;, 07) are the fatigue test results of the jth
fatigue test at the i th fatigue stress level o,,; . Nj; is the number of cycles to failure or the material
fatigue life of the jth fatigue test at the ith fatigue stress level 0. 0, is a fully reversed cyclic
stress amplitude or the material fatigue strength, which is equal to the fully reversed cyclic stress
amplitude of the ith fatigue stress level o,;. m is a material fatigue property, is the slope of the
traditional S-N curve and can be calculated per Equation (2.2) which has been discussed in
Section 2.3 and repeated here as Equation (2.74):

1 1 1
Iy [n(ow) - In(N)] =) [In(0a)] Y [In (N;)]
d d d , (2.74)

m =

I I 2
1y [n(oa))* - [Z In (oa»}

where [ is the number of different stress amplitude o, for the total fatigue tests; o, is the ith
stress amplitude of a fully reversed cyclic stress in the fatigue test; In(N;) is the average fatigue life
in log-scale at the fatigue test level o,;, which can be calculated per Equation (2.3) and repeated

here as (2.75):
In (N
v, = =220 1;( ), (2.75)
where N;; is the number of cycles to the failure of the jth fatigue test under the ith same stress
amplitude oy;.
For the same type of cyclic loading test stress, there are three possible cyclic loading
stresses: fully reversed cyclic stress, non-zero mean cyclic stress, and notched cyclic stress.
For a fatigue test under a fully reversed cyclic stress level o, 0,; will be just equal to the

tully reversed cyclic stress amplitude oy:

04 = 04 for a fully reverse cyclic stress. (2.76)
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If a fatigue test is conducted under a non-zero mean cyclic stress level (04, 0p), it should be
converted into fully reversed cyclic stress. The modified Goodman approach can be used to
consider the effect of mean stress per Equation (2.21), which has been discussed in Section 2.5

and repeated here as Equation (2.77):

Og when o, <0

Oui = Su (277)

— wh >0,
Oa S —om) when oy, >

where Sy, is the material ultimate tensile strength and will be treated as a deterministic value
because it is only used for considering the effect of mean stress.

For a notched fatigue test under the cyclic stress level (04, 07,) with a fatigue stress con-
centration factor K, the cyclic stress level needs to be transferred into a fully revered cyclic
stress. It is typically that Ky will be multiplied with the stress amplitude. o,; can be calculated
by the following equation:

Krog, when o0, <0

Ou4i = Sy (278)
Kfo,——— when 0, >0,

where Ky is the fatigue stress concentration factor, which has been discussed in Section 2.6. S,
is the material ultimate tensile strength.

For each fatigue test, we can obtain one sample value of the material fatigue strength
index Ko per Equation (2.73). When the number of fatigue test is big enough such as more
than 30 tests, we can plot its histogram. Based on the shape of the histogram, we can assume its
type of distribution function and then conduct the goodness-of-fit test to verify the assumption.
Finally, we can determine its type of distribution and corresponding distribution parameters.
'These topics have been discussed in Section 2.13 of Le [8]. The material fatigue strength index
Ky is typically a lognormal distribution [22-24]. Since the sample value of K is calculated per
Equation (2.73) and is related to the value of m, m will be one parameter for describing the
material fatigue strength index K. If we assume that the material fatigue strength index Ko is a
lognormal distribution with a log-mean i, g, and a log standard deviation oy, k,,, the material
fatigue strength index K¢ will be a three-parameter distribution as shown in Table 2.33.

Table 2.33: The material fatigue strength index K with three distribution parameters

Slope of the Traditional S-N ‘ Log-normally Distributed K|

Curve The Log Mean The Log Standard Deviation

m HinkK, Onk,




76 2. RELIABILITY OF A COMPONENT UNDER CYCLIC LOAD

Now, we will use the fatigue test data listed in Table 2.11 in Section 2.8.1 to show how
to get the distribution parameters of the material fatigue strength index Kj.

Example 2.21

A sheet-type flat fatigue specimen designed per ASTM STM E466-15 is shown in Figure 2.8.
The material is aluminum 6061-T6 10 Gauge sheet. Its chemical composition is shown in Ta-
ble 2.9. Its mechanical properties are shown in Table 2.10. For all fatigue test specimen, the
nominal dimensions of the middle section of the specimen are the width 5 = 0.600 £ 0.005”
and the thickness 7 = 0.100 % 0.005”. The fatigue test loading is cyclic axial loading with a load-
ing frequency 20 (Hz), and the loading ratio S, = £ 72 = (. The test conditions and results of
these five different cyclic stress levels are listed in Table 2.11. Stresses in Table 2.11 are calculated
by using the nominal dimensions, that is, the width » = 0.600” and the thickness t = 0.100".

Use those data to determine the type of distribution of the material fatigue strength index Ko
and its three distribution parameters.

Solution:
(1) 'The slope of the traditional S-N curve.

To calculate the sampling value of each fatigue test, we need to use Equation (2.74) to calculate
the slope of the traditional S-N curve. Since the cyclic stresses in these fatigue tests are no-
zero-mean cyclic stresses, we need to use Equation (2.67) to convert them into equivalent fully
reversed cyclic stresses. We also need to calculate the average fatigue life in log-scale at the
fatigue test level o,; per Equation (2.75). The equivalent fully revered cyclic stress amplitude
04 and the average fatigue life in log-scale In(/V;) at the ith fatigue test level o,; per the test
data are listed in Table 2.34. In Table 2.34, the first column is the cyclic stress level #i. The
2nd and 3rd columns are the mean stress and stress amplitude of the cyclic axial stress at the
corresponding cyclic stress level. The fourth column is the number of tests at the same cyclic
stress level. The fifth column is the equivalent fully revered cyclic stress amplitude. The sixth
column is the equivalent fully revered cyclic stress amplitude in a log-scale. The seventh column
is the average fatigue life in log-scale at the same cyclic stress level.

Use the data in the 6th and 7th columns in Table 2.34 per Equation (2.74) to conduct the
linear regression in Excel. m value is displayed in Figure 2.16:

m = 3.8812. (a)

(2) 'The sampling data of the material fatigue strength index Kp.

In this example, we have five different stress levels. Since all cyclic stresses are the same
type of cyclic stress, that is, the cyclic axial stress, we can use all of 195 fatigue tests in all 5 stress
levels to calculate the sampling values of the material fatigue strength index K. Based on the
test data (Ny, o) listed in Table 2.11, we can get 195 sampling data of K¢ per Equation (2.73).




Table 2.34: The equivalent stress amplitude and the average of In(N)
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Figure 2.16: The traditional S-N curve.

(3) 'The histogram.

Stress (ksi) (ksi) Number of | Equivalent (0a) ™)
o4 (ksi o (ksi Ogi i
level # i “ " tests (J) | stress o, (ksi) In {7ai In (i
1 20.833 20.833 50 35.12623 3.558948 11.4736
2 22.083 22.083 55 38.83228 3.659252 11.0410
3 22.5 22.5 30 40.13937 3.692358 10.9551
4 22917 22917 30 41.48497 3.725331 10.7831
5 23.333 23.333 30 42.87081 3.758191 10.716
11.6
115 °
11.4
11.3
112
CRtE
£ 1n ~e,
109 y=-3.8812x +25.272 e
10.8 R2=0.9914 o
10.7 & ]
1085 3.55 3.6 3.65 3.7 3.75 3.8
In (N)

'The histogram of K, with a total of 195 sampling data is displayed in Figure 2.17. From
the histogram shown in Figure 2.17, the material fatigue strength index K seems to be a log-
normally distributed random variable.

(4) Type of distribution and its distribution parameters.

Following the procedure discussed in Section 2.13.3 of Le [8], we can create the MAT-
LAB program to run the Chi-square (x?) goodness-of-fit test. The test result proves that the
material fatigue strength index Ky in this example can be described by a lognormal distribution.
'The three distribution parameters for the material fatigue strength index Ko of this example are
listed in Table 2.35.
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11.6
11.5 °
11.4 -
11.3
11.2
11.1

11

10.9 y=-3.8812x +25.272

10.8 R2=0.99139 (o
10.7 Y )

10'63.5 3.55 3.6 3.65 3.7 3.75 3.8

In (N)

In (sa)

Figure 2.17: The histogram of K¢ with a sampling size 195.
Table 2.35: Ky with three distribution parameters

Material: 6061-T6 | Sample Size: | Test Conditions: Cyclic Axial Stress, Milled Machined
10-Gauge Sheet Sheet-type Flat Specimen
The Slope of the The Log-normally Distributed K

Traditional S-N Curve: m The Log Mean: yjg, The Log Standard Deviation: oy,x,
3.8812 25.3014 0.245451

2.9.3 THE COMPONENT FATIGUE STRENGTH INDEX K

As we have discussed in Section 2.4, we will use the Marin modification factors to consider
the differences between material fatigue specimen and component. After the differences are
considered, we can obtain the component fatigue strength index K.

The component fatigue strength index K is a mechanical property of a component and is ob-
tained through modifying the material fatigue strength index Ky by the Martin modification
factors per Equation (2.79), and can be used to indirectly represent the component fatigue resis-
tance to the fatigue damage or the component fatigue strength. The component fatigue strength
index K can be determined by the following equation:

K = N; (kakpkcow)™ = (kakpke)™ [Ni (0a)™] = (kakpke)™ Ko, (2.79)

where k, is the surface finish modification factor. kj is the size modification factor. k. is the
loading modification factor. These Martin modification factors and its calculations have been
discussed in Section 2.3. m is the slope of the traditional S-N curve and can be determined
by Equation (2.74). K is the material fatigue strength index and can be determined by Equa-
tion (2.73).
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Equation (2.79) can be directly used in the limit state function for the reliability calcula-
tion. We can also typically assume that the component fatigue strength index K will have the
same type of distribution, that is, a lognormal distribution, as that for material fatigue strength
index Ko. We can use the following equations to calculate the log mean u, ¢ and the log stan-
dard deviation o1, g of the component fatigue strength index K:

Pk = m x In (i, kppte,) + i ko (2.80)

2 2
OmK = sz [(%) + (%) :| + (01 k0)%, (2.81)

where g, and oy, are the mean and the standard deviation of the normally distributed k. jik,
and oy, are the mean and the standard deviation of the normally distributed k.. kp, is treated as
a deterministic value. Their calculations have been discussed in Section 2.4.

'The component fatigue strength index K has three distribution parameters. The slope of
the traditional S-N curve for K will be the same as that for K. The component fatigue strength
index K is still a log-normally distributed random variable. Its log mean and log standard devi-
ation will be calculated per Equations (2.80) and (2.81). The three distribution parameters for
the component fatigue strength index K are listed in Table 2.36.

Table 2.36: The component fatigue strength index K with three distribution parameters

Slope of the Traditional S-N ‘ Log-normally Distributed K

Curve Log Mean The Log Standard Deviation

m Mink OlnkK

2.9.4 THE COMPONENT FATIGUE DAMAGE INDEX D

After the definition of the component fatigue strength index K and its calculation equations
are explained, we can define the component fatigue damage index and its calculation equation

accordingly.

The component fatigue damage index is an indirect measurement of the component fatigue
damage under cyclic loading, is linearly accumulated fatigue damage by each cycle of cyclic
stress and can be calculated by cyclic loading per Equation (2.82). Based on the definition and
the calculation Equation (2.79) for the component fatigue strength index K, the fatigue damage
index D of a component is calculated by the following Equation (2.82):

L
D = Znu (KfO'a,')m s (282)

i=1
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where L is the number of different cyclic loading levels and m is a material fatigue property and
is the slope of the traditional S-N curve. m is determined per Equation (2.74). K is the fatigue
stress concentration factor on the component critical section, which has been discussed and can
be calculated per Equations (2.22)—(2.25) in Section 2.6. ny; is the number of cycles of the ith
cyclic loading stress level o,,. 0, is an equivalent fully reversed cyclic stress amplitude and can
be calculated by the following equation:

Oa for a fully reversed cyclic stress

0, = 1 0a om < 0 of non-zero mean cyclic stress (2.83)
Su

0 —_—

¢ (Su —om)

where (04, 0p) are the stress amplitude and the mean stress of cyclic stress. Sy, is the ultimate
material strength. Equation (2.83) is based on the modified Goodman approach for the consid-
eration of the effect of mean stress in cyclic stress.

np; or 0,4 can be a constant value or a distributed random variable, which is defined by the
provided cyclic loading spectrum.

om > 0 of non-zero mean cyclic stress,

Following are the equations for calculating component fatigue damage per given cyclic
spectrum.

For model #1, model #2, and model #3 cyclic loading spectrum (o, n1,), the component
fatigue damage due to the cyclic loading spectrums is:

D =np (Kfoa)m , (2.84)

where Ky and m have the same meaning as those in Equation (2.82). For model #1, ny is
a constant number of cycles and o, is the fully reversed constant cyclic stress amplitude. For
the model #2, ny is a distributed number of cycles and o, is the fully reversed constant cyclic
stress amplitude. For model #3, ny is a constant number of cycles and oy is the fully reversed
distributed cyclic stress amplitude.

For model #4, model #5, and model #6 cyclic loading spectrum (0,4, npi, i = 1,2,..., L),
the component fatigue damage due to the cyclic loading spectrums is calculated per Equa-
tion (2.82) and repeated here as Equation (2.85):

L
D = ZHL,' (KfO'al')m s (285)
i=1

where K¢, m, and L have the same meaning as those in Equation (2.82). For model #4, ny; is a
constant number of cycles and oy, is the fully reversed constant cyclic stress amplitude at the ith
cyclic stress level. For model #5, ny; is a distributed number of cycles and o, is the fully reversed
constant cyclic stress amplitude at the ith cyclic stress level. For model #6, n;; is a constant
number of cycles and o, is a distributed fully reversed constant cyclic stress amplitude at the i th
cyclic stress level.
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2.9.5 THE PROBABILISTIC FATIGUE DAMAGE THEORY (THE K-D
MODEL)

Based on the definitions of the component fatigue strength index K and the component fatigue
damage index D, the general limit state function of a component under cyclic loading is:

>0 Safe
g(K,D)=K—-D =140  Limit state (2.86)

<0 Failure.

If the material fatigue strength index K is given, the limit state function of a component under
model #1, model #2, or model #3 cyclic loading spectrum is:

>0 Safe
g (K. D) = K — D = (kakpke)" Ko —nr (Kyoa)" =30 Limit state (2.87)

<0 Failure.

Allvariables in Equation (2.87) have the same meanings as those in Equations (2.79) and (2.84).
If the material fatigue strength index Ky is given, the limit state function of a component
under model #4, model #5, or model #6 cyclic loading spectrum is:

L >0 Safe
g(K,D) = K — D = (kgkpke)™ Ko — Znu (KfUai)m =40 Limit state (2.88)

= < 0 Failure.
All variables in Equation (2.88) have the same meanings as those in Equations (2.79) and (2.85).
When this probabilistic fatigue damage model (the K-D model) is used, the reliability of a

component under any cyclic loading spectrum can be calculated per Equations (2.87) or (2.88).

2.9.6 RELIABILITY OF ACOMPONENT UNDER CYCLIC AXTAL
LOADING

Per Equations (2.87) or (2.88), we can establish the limit state function of a component under
any type of cyclic axial loading spectrum. After the limit state function of a component under
cyclic axial loading is established, we can use the H-L method, R-F method, or Monte Carlo
method to calculate its reliability. In this section, we will use two examples to demonstrate how
to calculate the reliability of a component under cyclic axial loading spectrum.

Example 2.22
A constant round bar with a diameter 0.850 %+ 0.005” is subjected to model #1 cyclic axial loading
spectrum as listed in Table 2.37. The ultimate material strength Sy, is 75 (ksi). Three parameters
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of the component fatigue strength index K are m = 8.21, i, k = 41.738, and oy, ¢ = 0.357.
For the component fatigue strength index K, the stress unit is ksi. Calculate the reliability of
this bar.

Table 2.37: Model #2 cyclic axial loading for Example 2.22

The Amplitude of Cyclic Axial Loading

Number of The Mean of the Cyclic 177, (020) (hacoimmoe ) Gy ot
Cycles nj Axial Loading F,, (klb) ‘
103000 8.85 | 14.11 | 151
Solution:

(1) 'The cyclic axial stress and the component fatigue damage index.

'The mean stress 0, and the stress amplitude o, of the bar due to the cyclic axial loading

are:
_ _Fn 4Py ©
m = 2d2/4 T nd? :
F.  4F,
a = —F" = —F. b
%a = Td2/4 T wd? (b)

Since the cyclic axial stress is a non-zero mean cyclic stress, we need to convert it into a fully
reversed cyclic axial stress per Equation (2.83). The equivalent stress amplitude of this converted
tully reversed cyclic stress is:

Su 4F, Sy
Ou—eq = O, = .
e a(Su_am) (nSud2_4Fm)

()

'The component fatigue damage index D of the bar under model #2 cyclic loading spectrum per

Equation (2.84) is

AF,S, 8.21
} @

8.21
D=y (Kroa) ™ =m. [(nSudZ —4F,)

(2) The limit state function of this bar.
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The limit state function of the bar per Equation (2.87) is

4FaSu 8.21
K, F,,d)=K — ———
g( s Las ) nL[(]TSudZ—"-Fm)}

>0 Safe

300F, 8.21
a ] =30 Limit state

(757d? — 35.4) (©)

= K — 103000 [
<0 Failure.
In this limit state function, we have three random variables. The diameter d will be treated as

a normal distribution. Its mean and standard deviation can be determined per Equation (1.1).
'The distribution parameters of these three random variables are listed in Table 2.38.

Table 2.38: The distribution parameters of random variables in Equation (e)

K (log-normal) F, (klb)
Hink OlnkK HFa OFa Hd 0d
41.738 0.357 14.11 1.51 0.85 0.00125

(3) Reliability of the bar.

The limit state function (e) contains two normal distributions and one log-normal dis-
tribution. We will use the R-F method to calculate its reliability, which is displayed in Ap-
pendix A.2. We can follow the procedure and the flowchart of the R-F method to create a
MATLAB program. The iterative results are listed in Table 2.39. From the iterative results, the
reliability index B and the corresponding reliability R of the bar in this example are:

B =2.172022 R = d(2.172022) = 0.9851.

Table 2.39: The iterative results of Example 2.22 by the R-F method

Iterative # K* F} d B* A
1 1.43E+18 14.11 0.775131 | 2.161288
2 9.22E+17 | 17.13139 | 0.852768 | 2.17213 | 0.010842
3 9.5E+17 | 17.04937 | 0.84992 | 2.172022 | 0.000108
4 9.51E+17 | 17.05197 | 0.849898 | 2.172022 | 1.01E-07
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Example 2.23

A bar with a diameter 0.820 £ 0.005” is subjected to model #6 cyclic axial loading spectrum
listed in Table 2.40. The ultimate material strength Sy, is 75 (ksi). Three parameters of the com-
ponent fatigue strength index K are m = 8.21, i, x = 41.738, and o1, k. = 0.357. For the com-
ponent fatigue strength index K, the stress unit is ksi. Calculate the reliability of this bar.

Table 2.40: Model #6 cyclic axial loading spectrum for Example 2.23

The Fully Reversed Axial Loading

Level # The Number of Cycles Amplitude F,; (klb) (normal distribution)
ny; (constant)
”Fai O-Ftli
1 5,000 22.15 3.25
2 200,000 12.45 1.5

Solution:
(1) 'The cyclic axial stress and the component fatigue damage index.

Since the cyclic axial loadings are fully reversed cyclic axial loading, the fully reversed cyclic
axial stress amplitudes will be as follows.
In the level #1, the fully reversed axial stress amplitude oy is

O41 = —Fal = 4Fa1 (a)
T rd2/4 T md?’
In the level #2, the fully reversed axial stress amplitude oy is
FaZ 4Fa2
= e . b
%al = T2 /4 md? (b)

'The component fatigue damage index D of the bar under this model #6 cyclic loading per Equa-
tion (2.85) is:
4F, 1 \™ 4F o \"
D = nri (W) +nr1 (m) . (C)
(2) The limit state function of this bar.

'The limit state function of a bar due to model #6 cyclic axial loading spectrum can be

established per Equation (2.88):

> (0 Safe
4F,\™" 4F, mn
g (K, Fa1, Fao, d) = K —np (n al) —nri (ﬂ az) =10 Limit state  (d)

<0 Failure.
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"The diameter d will be treated as a normal distribution. Its mean and standard deviation can be
determined per Equation (1.1). There are four random variables in the limit state function (d).
K is a log-normal distribution. Fg1, Fy2, and d are normal distributions. Their distribution
parameters in Equation (d) are listed in Table 2.41.

Table 2.41: The distribution parameters of random variables in Equation (d)

K (log-normal) ‘

Hink OF, HFal OFal HFa2 OFa2 Hd 0d
41.738 0.357 22.15 3.25 12.45 1.5 0.82 0.00125

(3) Reliability of the bar.

We will use the Monte Carlo method to calculate the reliability of this example. The
Monte Carlo method is displayed in Appendix A.3. We can follow the Monte Carlo method
and the program flowchart to create a MATLAB program.

Since the limit state function is not too complicated, we will use the trial number N =
1,598,400. The reliability of this component R by the Monte Carlo method is

_ 1,578,582

= —— = 0.9876.
1,598,400

2.9.7 RELIABILITY OF A COMPONENT UNDER CYCLIC DIRECT
SHEARING LOADING

Per Equation (2.87) or Equation (2.88), we can establish the limit state function of a component
under any type of cyclic direct shearing loading spectrum and then calculate its reliability. In this
section, we will use two examples to demonstrate how to calculate the reliability of a component
under a cyclic direct-shearing loading spectrum.

Example 2.24

A single-shearing pin with a diameter 1.125 & 0.005” is under a zero-to-maximum cyclic direct
shearing loading. The maximum shear loading V,ax of this cyclic shearing loading can be treated
as a constant Vpax = 26.75 (klb). The number of cycles ny, of this cyclic shearing loading is also
treated as a constant 77, = 500,000 (cycles). The ultimate material strength S, of the pin is
75 (ksi). Three parameters of the component fatigue strength index K on the critical section for
the cyclic shear loading are m = 8.21, i, k = 37.308, and o1, ¢ = 0.518. For the component
fatigue strength index K, the stress unit is ksi. Calculate the reliability of the pin.
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Solution:
(1) 'The cyclic direct shearing stress and the component fatigue damage index.

'The mean shear stress 7, and the shear stress amplitude 7, of the pin due to this zero-to-
maximum cyclic shearing loading are:

Vi Via/2 2V ©

mE AT Rd2j4 T naz :
Vo Viax/2  2Vimax

R Y ) ()

Since this is non-zero-mean cyclic shear stress, the equivalent stress amplitude of a fully reversed
cyclic shear stress is:

Su 2 Vmax Su 2 Vmax Su

Ta_eq — (Su - Tm) - .7Td2 (Su - 2Vmax/7Td2) B (JTdZSu - 2VmaX). (C)

'The component fatigue damage index of this pin under model #1 cyclic shear stress per Equa-
tion (2.84) is:

(d)

2VmaxSu ]8.21

D =
e |:(7Td2Su - 2Vmax)
(2) The limit state function.

'The limit state function of the pin under model #1 cyclic loading spectrum per Equa-
tion (2.87) is:

> (0 Safe
8.21
:| =10 Limit state (e)

< 0 Failure.

2VimaxSu
(ndzsu - 2Vmax)

g(K,d)=K—nL[

There are two random variables in the limit state function (e). The dimension d can be treated as a
normal distribution, and its mean and its standard deviation can be calculated per Equation (1.1).
The distribution parameters in the limit state function (e) are listed in Table 2.42.

(3) The reliability of the single-shear pin.

We will use the Monte Carlo method to calculate the reliability of this example. We
can follow the Monte Carlo method and the program flowchart in Appendix A.3 to create a
MATLAB program. Since the limit state function is not too complicated, we will use the trial
number N = 1,598,400. The reliability of this component R by the Monte Carlo method is

1,583,621

= —— =0.9908.
1,598,400
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Table 2.42: The distribution parameters of random variables in Equation (e)

K (lognormal) ‘ d (in)
Hink OlnkK Hd O0d
37.308 0.518 1.125 0.00125

Example 2.25

A double-shearing pin with a diameter 0.500 % 0.005” is subjected to model #3 cyclic shear load-
ing spectrum, as shown in Table 2.43. The ultimate material strength S, of the pin is 75 (ksi).
Three parameters of the component fatigue strength index K on the critical section for the
cyclic shear loading are m = 8.21, i, ¢ = 37.308, and o1, x = 0.518. For the component fa-
tigue strength index K, the stress unit is ksi. Calculate the reliability of the pin.

Table 2.43: Model #3 cyclic shearing loading spectrum for Example 2.25

Mean of the Cyclic Amplitude of Cyclic Shear Loading
Number of N o
Shear Loading V, (klb) (normal distribution)
Cycles n;,
Vi (Klb)
600,000 3.422 | 4815 | 0.6
Solution:

(1) 'The cyclic shearing stress and the component fatigue damage index.

'The mean shear stress 7, and the shear stress amplitude 7, of the pin due to this cyclic
shearing loading are:
Vin/2 Vin/2 2Vin
A wd?j4 md? @)
Va2 Va2 2V,
A wd?/4  nwd?

Tm =

(b)

Tg =

Since this is non-zero mean cyclic shear stress, the equivalent stress amplitude of a fully reversed
cyclic shear stress is:
Su 2V, Sy

Tamer = T g S T (7d2Su — 2V)’ ©
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'The component fatigue damage index of this pin under model #3 cyclic shear loading spectrum

per Equation (2.84) is:

(d)

2V, 8, 8.21
(7d2S, — 2Vi)

D=nL[

(2) The limit state function.

'The limit state function of the pin under model #3 cyclic shearing loading spectrum per
Equation (2.87) is:
>0 Safe
8.21
] =10 Limit state (e)

<0 Failure.

2V, Sy

K. Vad) =K —ny | — a2
8 ( ) L [(nszu pY7

There are three random variables in the limit state function (e). The dimension d can be treated as
a normal distribution, and its mean and standard deviation can be calculated per Equation (1.1).
The distribution parameters in the limit state function (e) are listed in Table 2.44.

(3) The reliability of the double-shear pin.

We will use the Monte Carlo method to calculate the reliability of this example. We
can follow the Monte Carlo method and the program flowchart in Appendix A.3 to create a
MATLAB program. Since the limit state function is not too complicated, we will use the trial
number N = 1,598,400. The reliability of this component R by the Monte Carlo method is

1,581,583

= —— = (.9895.
1,598,400

Table 2.44: The distribution parameters of random variables in Equation (e)

K (lognormal) V, (klb)
Hink OlnkK Hva OVa Hd 0d
37.308 0.518 4.815 0.6 0.5 0.00125

2.9.8 RELIABILITY OF A SHAFT UNDER CYCLIC TORSION LOADING

Per Equation (2.87) or Equation (2.88), we can establish the limit state function of a shaft under
any type of cyclic torsion loading spectrum and then calculate its reliability by using the H-L
method, or the R-F method and the Monte Carlo method. In this section, we will use two
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examples to demonstrate how to calculate the reliability of a component under cyclic torsion
loading spectrum.

Example 2.26

A shaft with a diameter 1.250 £ 0.005” is subjected to model #4 cyclic torsion loading spectrum
as listed in Table 2.45. The ultimate material strength Sy, of the shaftis 75 (ksi). Three parameters
of the component fatigue strength index K on the critical section for the cyclic torsion loading
are m = 8.21, ui, x = 37.308 and 0y, k = 0.518. For the component fatigue strength index K,
the stress unit is ksi. Calculate the reliability of the shaft.

Table 2.45: The model #4 cyclic torsion loading spectrum for Example 2.26

Loading Number of Cvel Mean T,,; of the Cyclic | Amplitude 7,; of the
Level # e A Torque (klb.in) Cyclic Torque (klb.in)
1 6,000 2.25 5.13
2 500,000 2.25 9.42
Solution:

(1) 'The cyclic torsion stress and the component fatigue damage index.

For the loading level #1, we have the mean shear stress 7,,,1, the shear stress amplitude 7,1
and their corresponding equivalent shear stress amplitude 74—

Tml Xd/2 _ Tml Xd/2 _ 16Tm1

N e LY R T E @)
Tal Xd/2 Tal Xd/2 16Ta1 (b)
T, = = =
ol J nd*/32 ~ 7d3

Su 16741 Sy ©
Teg—1 = T, = . c

-1 al Sy —Tm1  wd3Sy — 16T

For the loading level #2, by repeating the above calculation, we have
S 167425

Teqg—2 = Ta2 ! = fa2 2 (d)

Sy —Tma  7wd3S, — 16T

'The component fatigue damage index of this shaft under model #4 cyclic torsion stress per

Equation (2.85) is:

162,.S,, 8.21 162,55, 8.21
D =npy | —retou _ 10tade
" [nd3Su - 16Tm1] T s 16T (©)

(2) The limit state function of the shaft.
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'The limit state function of the shaft under model #4 cyclic loading spectrum per Equa-
tion (2.88) is :

Kd)=K—np | ——traton L
g (K.d) o [nd3su 16T 7d?Sy — 16T

>0 Safe (f)

16741 Sy, ]8-21_ Lz[ 167428, T-“

=10 Limit state
< 0 Failure.
There are two random variables in the limit state function (f). The dimension d can be treated

as a normal distribution. Its mean and standard deviation can be calculated per Equation (1.1).
The distribution parameters in the limit state function (f) are listed in Table 2.46.

(3) The reliability of the shaft.

We will follow the Monte Carlo method and the program flowchart in Appendix A.3 to
create a MATLAB program. Since the limit state function is not too complicated, we will use
the trial number N = 1,598,400. The reliability of this shaft R by the Monte Carlo method is

1,582,682

= —— =0.9902.
1,598,400

Table 2.46: The distribution parameters of random variables in Equation (f)

K (lognormal) ‘ d (in)
Hink Olnk Hd O0d
37.308 0.518 1.25 0.00125

Example 2.27

A shaft with a diameter 1.500 =+ 0.005” is subjected to model #3 cyclic torsion loading spectrum
as listed in Table 2.47. The ultimate material strength Sy, of the shaftis 75 (ksi). Three parameters
of the component fatigue strength index K on the critical section for the cyclic shear loading
are m = 8.21, i, k = 37.308 and 01, k = 0.518. For the component fatigue strength index K,
the stress unit is ksi. Calculate the reliability of the shaft.

Solution:

(1) The cyclic torsion stress and the component fatigue damage index.
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Table 2.47: The model #3 cyclic loading spectrum for Example 2.27

Normally Distributed Torque Amplitude 7,
Number of Mean Torque (klb.in)

Cycles n;, T,, (klb.in) The Mean 7 The Standard

Deviation o7,
400,000 4.5 8.9 0.85

'The mean shear stress 7, the shear stress amplitude 7, and their corresponding equivalent
shear stress amplitude 7., of the shaft due to the model #3 cyclic torque loading are:

_ Twxd/2  Tuxd/2 16T,

=T T hdén T wdd @)
T,xd/2 T,xd/2 16T,
0 = = laxd/?_ 1o (b)
J wd*4/32 wd
Sus 16T,Sys
Toqg = Taq (c)

Sus — Ty 7d3S,, — 16T,

'The component fatigue damage index of this shaft under model #3 cyclic shear stress per Equa-
tion (2.84) is:

(d)

167, S, 8.21
nd3S, — 16T,

D=I1L|:

(2) The limit state function of this shaft.

'The limit state function of the shaft under model #3 cyclic loading spectrum per Equa-
tion (2.87) is:

> (0 Safe
8.21
} =40 Limit state (e)

<0 Failure.

167, Sy

K. Tod)=K—ny | ——or@
g (K. Ta.d) nL[nd3Su—16Tm

There are three random variables in the limit state function (e). The dimension d can be treated as
a normal distribution, and its mean and standard deviation can be calculated per Equation (1.1).
'The distribution parameters in the limit state function (e) are listed in Table 2.48.

(3) 'The reliability of the shaft.

The limit state function (e) contains two normal distributions and one log-normal dis-
tribution. We will follow the procedure of the R-F method in Section 3.2.4 and the flowchart
in Appendix A.2 to create a MATLAB program. The iterative results are listed in Table 2.49.
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From the iterative results, the reliability index B and corresponding reliability R of the shaft in

this example are:

B =2.278915

R = ©(2.278915) = 0.9887.

Table 2.48: The distribution parameters of random variables in Equation (e)

K (lognormal) T, (klb.in) d (in)
Hink Olnk KT, or, Hd 0d
37.308 0.518 8.9 0.85 1.500 0.00125
Table 2.49: The iterative results of Example 2.27 by the R-F method
Iterative # K* T, d p* A"

1 1.82E+16 1.5 11.57999 | 2.220042
2 2.13E+15 | 1.499878 | 8.913915 | 2.158924 | 0.061117
3 S5.11E+15 | 1.499899 | 9.915022 | 2.265797 | 0.106873
4 7.37E+15 | 1.499887 | 10.36785 | 2.278682 ' 0.012884
5 7.76E+15 | 1.499883 | 10.43223 | 2.278909 | 0.000228
6 7.75E+15 | 1.499882 | 10.43026 | 2.278915 | 5.31E-06

2.9.9 RELIABILITY OF A BEAM UNDER CYCLIC BENDING LOADING

Per Equation (2.87) or Equation (2.88), we can establish the limit state function of a beam under
any type of cyclic bending loading spectrum and then calculate its reliability. In this section, we
will use two examples to demonstrate how to calculate the reliability of a beam under cyclic
bending loading spectrum.

Example 2.28

'The critical section of a beam with a rectangular cross-section is subjected to model #5 cyclic
bending loading spectrum listed in Table 2.50. The height & and the width b of the critical
cross-section are 1 = 2.500 £ 0.010” and b = 4.00 £ 0.010”. The ultimate material strength S,
of the beam is 61.5 (ksi). Three parameters of the component fatigue strength index K on the
critical section for the cyclic bending loading are m = 6.38, i, k = 32.476, and 01, k = 0.279.
For the component fatigue strength index K, the stress unit is ksi. Calculate the reliability of
the beam.
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Table 2.50: Model #5 cyclic bending loading spectrum for Example 2.28

it::; Cyclic Bending Moment (klb.in) 1(\:::::1: Zifsfr)irlc)ilesi:)\r]f)l
#i ‘ M, ‘ M, ‘ UNy; ‘ ONy;
1 80.2 61.55 250,000 3,000
2 80.2 108.17 5,000 450

Solution:
(1) 'The cyclic bending stress and the component fatigue damage index.

For the stress level #1, the mean bending stress 0y,1, the bending stress amplitude g1,
and its corresponding equivalent bending stress amplitude 0,41 are

Myt X h/2 My X h/2 _ 6Mpm

oM = T T T2 b2 @)
o _Math/z_Ma1Xh/2_6Mal (b)
o I T bh3/12 bh2

o Se M, ©
eql = “al Su — Om1 a thSu — 6Mm1 '

For the stress level #2, by repeating (a), (b), and (c), we have
Su 6 M1 Sy

Ocq2 = Oa2 = ! (d)

Su — Om2 bthu —6Mm2.

'The component fatigue damage index of this beam under model #5 cyclic bending stress per
Equation (2.85) is:

6MalSu :|6.38 (e)

bh2Sy — 6 My

(2) The limit state function of the beam.

6Ma2Su :|6.38

D =N, a2t
= [ bh2Sy — 6Myps

+NL2[

'The limit state function of the beam under model #5 cyclic loading spectrum per Equa-

tion (2.87) is:

6M,1 S 6.38 6M.-S 6.38
g(K,NLl,NLz,b,h)=K—NL1[ a1 Su } _ Lz[%]

bh2S, — 6 M, h2S, — 6M,,»
>0 Safe
=40 Limit state (f)

<0 Failure.
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There are five random variables in the limit state function (f). The dimensions % and b can
be treated as normal distributions. Their means and standard deviations can be calculated per
Equation (1.1). The distribution parameters in the limit state function (f) are listed in Table 2.51.

(3) 'The reliability of the beam.

We will follow the Monte Carlo method and the program flowchart in Appendix A.3 to
create a MATLAB program. Since the limit state function is not too complicated, we will use
the trial number N = 1,598,400. The reliability R of this beam by the Monte Carlo method is

1514162

= ——— = 0.9473.
1,598,400

Table 2.51: The distribution parameters of random variables in Equation (e)

K (lognormal) ‘ Ny1 (normal) ‘ Ny, (normal) ‘ b (in)

Uk | Omk | HNy, oN, | UN, | ON, Hb op Hh op
32476 | 0.279 | 250,000 3,000 | 5,000 450 | 4.000 | 0.00125 | 2.500 | 0.00125

Example 2.29

'The critical section of a beam with a circular cross-section is subjected to model #2 cyclic bending
spectrum listed in Table 2.52. The diameter d of the critical cross-section is d = 2.500 £ 0.010”.
'The ultimate material strength S, of the beam is 61.5 (ksi). Three parameters of the component
fatigue strength index K on the critical section for the cyclic shear loading are m = 6.38, i, x =
32.476, and 01, k = 0.279. For the component fatigue strength index K, the stress unit is ksi.
Calculate the reliability of the beam.

Table 2.52: The model #2 cyclic bending loading spectrum for Example 2.29

Normally Distributed Bending Moment

Number of Mean Bending Amplitude M, (klb.in)
Cycles Moment M, (klb.in)
550,000 28.2 16.8 3.19
Solution:

(1) The cyclic bending stress and the component fatigue damage index.
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'The mean bending stress 0,,, the bending stress amplitude o, and its corresponding equiv-
alent bending stress amplitude o,, of the beam due to model #2 cyclic bending loading are:

My xd/2  Myxd/2  32M,

Om =TT T Thdbjes T nd? @)
Myxd/2 Maxd/2 32M,
O‘a = = = (b)
1 2d /64 nd3
Sy 32M,S,
Ocq = Oqg = (C)

Sy —om 7d3S, —32M,,

'The component fatigue damage index of this beam under model #2 cyclic bending stress per

Equation (2.84) is:

(d)

32M,S, 6.38
nd3S, —32M,,

D=nL|:

(2) The limit state function of the beam.

'The limit state function of the beam under model #2 cyclic bending loading spectrum per

Equation (2.87) is:

> (0 Safe

32M,S 6.38
g(K,M,,d) =K —npg [M] =10 Limit state (e)
u - m

<0 Failure.

There are three random variables in the limit state function (e). The dimension d can be treated
as a normal distribution. Its mean and standard deviation can be calculated per Equation (1.1).
'The distribution parameters in the limit state function (e) are listed in Table 2.53.

(3) 'The reliability of the beam.

'The limit state function (e) contains two normal distributions and one lognormal distri-
bution. We will use the R-F method to calculate its reliability. We can follow the procedure and
the flowchart in Appendix A.2 to create a MATLAB program. The iterative results are listed in
Table 2.54. From the iterative results, the reliability index § and corresponding reliability R of
the beam in this example are:

B =1.624707 R = & (1.624707) = 0.9479.
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Table 2.53: The distribution parameters of random variables in Equation (e)

K (lognormal) | M, (klb.in) | d (in)
Hink | Ok HM, oM, Ha od
32476 0279 168 | 3.19 | 2.500  0.00125

Table 2.54: The iterative results of Example 2.29 by the R-F method

Iterative # K* M, d i IABY|
1 1.32E+14 16.8 2.345547 | 1.557169
2 1.14E+14 | 21.63949 | 2.494604 | 1.624744 | 0.067575
3 1.12E+14 | 21.76716 | 2.499996 | 1.624707 | 3.69E-05

2.9.10 RELIABILITY OF A COMPONENT UNDER CYCLIC COMBINED
LOADING

Component under cyclic combined loading is very complicated because the frequencies of in-
dependent loadings might not be in phase. In this section, we will only discuss a rotating shaft
under a combined-torques-bending loading.

For a rotating shaft, the cyclic bending stress on a rotating shaft is mainly due to the
rotation of the shaft under a bending moment. For a combined stress fatigue issue, we can use
the Von Mises stress as the equivalent stress to run related fatigue calculation [2]. We will use
the following assumptions to study the fatigue issue of a rotating shaft.

(1) 'The cyclic stress due to the combined loading will be a cyclic Von Mises stress.

(2) The mean of the cyclic Von Mises stress is mainly induced by the acting torque on the
rotating shaft.

(3) The stress amplitude of the cyclic Von Mises stress is mainly induced by the acting bending
moment on the rotating shaft.

(4) 'The modified Goodman approach will be used to consider the effect of mean stress in
cyclic Von Mises stress.

Now, we will discuss the cyclic combined loading (n;, Tj, M;, i =1,2,...,L), where i
is the ith loading level. ny;, T;, and M; are the number of cycles, the torque and the bending
moment, respectively, in the ith loading level. L is the number of different combined loading
levels. n;; could be a constant number or a distributed number of cycles in a combined loading
level. M; can be a constant bending moment or a distributed bending moment in a combined
loading level. But 7; will be a constant in each loading level. In the ith combined loading level
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with a bending moment M; and a torque 7}, the mean stress 0,,,—mi, and the stress amplitude
Ovon—ai Of a cyclic Von Mises stress will be:

Ovon—mi = \/gKfsTTi (289)
Ovon—ai = KfUMi s (290)

where K and K are the fatigue stress concentration factors for torsion stress and bending stress
on the critical section, respectively, which has been discussed in Section 2.6. t7; is the outer layer
nominal shear stress of the rotating shaft on the critical section due to the torque 7;. oy, is the
maximum nominal bending stress on the rotating shaft due to a bending moment M;.

Since it is a non-zero-mean cyclic combined stress, we need to convert it into an equiv-
alent fully-reversed cyclic stress. The equivalent stress amplitude 04—, of this transferred fully
reversed cyclic stress is:

u — Ovon—mi Su — \/gKfstTi '

(2.91)

Oa—eqi = Ovon—ai S

'The component fatigue damage index D will be:
L m
Su Kf OM:
D= n|—L—=—| . (2.92)
; : (S,, N ﬁKfsrT,.)

For a solid shaft with a diameter d, Equation (2.92) for the component fatigue damage index

D will become . m
328, K M;
D= np ulS o . (2.93)
= md3S, — 168/3KT;

For a hollow solid shaft with an inner diameter dy and an outer diameter d, Equa-
tion (2.92) for the component fatigue damage index D will become

L m

328, Ky Mid

D= ny b A . (2.94)
= | 7w (d* —dg) Sy —16v3K;T;d

'The component fatigue strength K for a cyclic combined loading will be obtained based
on the cyclic bending stress because the cyclic Von Mises stress is mainly due to the bending
moment and the shaft rotation. Therefore, the limit state function of a rotating shaft due to a
combined loading is:

L m
328, Ky M; ,
K- ny solid shaft
(K.D)=K—D ; ’ [”d35u—16ﬁKfsTi}
g s = — = I m
328, KrM;d
K — Znu : u S hollow shaft.
= | 7w (d*—dg) Sy — 16v3K;T;d

(2.95)
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Equation (2.95) can be used to calculate the reliability of a rotating shaft under cyclic combined
loading. Now, we will use two examples to demonstrate how to calculate the reliability of a
rotating shaft under cyclic combined loading.

Example 2.30

'The critical section of a solid rotating shaft with a diameter 1.750 & 0.005” is subjected to cyclic
combined loading listed in Table 2.55. The ultimate material strength S, of the beam is 75 (ksi).
Three parameters of the component fatigue strength index K on the critical section for the cyclic
bending loading are m = 8.21, j1, k = 41.738, and 01, ¢ = 0.357. For the component fatigue
strength index K, the stress unit is ksi. Calculate the reliability of the shaft.

Table 2.55: The cyclic combined loading spectrum for Example 2.30

Stress Bending Moment
Number of Cycles ny; T T; (klb.i =
Level # umber of Cycles ny; orque 7; ( in) M; (klb.in)
1 5,500 17.75 15.75
2 580,000 10.29 10.15
Solution:

(1) 'The cyclic Von Mises stress and the component fatigue damage index.

For the stress level #1, the mean Von Mises stress 0,0,—m1 per Equation (2.49), the Von
Mises stress amplitude 0y0,—q1 per Equation (2.90) and its corresponding equivalent Von Mises
stress amplitude 04—.q1 per Equation (2.91) are

167
Ovon—m1 = ﬁKfSTT] = ﬁm (a)
32M,
Ovon—al = KfUMl = 1d3 (b)
S S 32MS, o
—eql — Ovon—al - .
4 ¢ Su — Ovon—m wd3S, — 16\/§T1

For the stress level #2, we repeat the above calculations,

32M, S
Og—eq2 = 2o (d)

7d3S, — 163/3T,

'The component fatigue damage index of this shaft under the cyclic combined loading per Equa-
tion (2.94) is:

32M1Su ]8.21 |: 32M25u :|8.21
L2 .

(e)
7d3S, — 16+/3T) 7d3S, — 1637,

D=nL1[
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(2) The limit state function of the shaft.

'The limit state function of the rotating shaft in this example per Equation (2.95) is:

32M; S, ]8'21 [ 32M, S, T”
K,dy=K—-n _
g(K. d) “ [ndSSu—mﬁTl L2 2d3s, — 16337,
> (0 Safe
=140 Limit state (f)

<0 Failure.

There are two random variables in the limit state function (f). The dimension d can be treated
as a normal distribution. Its mean and standard deviation can be calculated per Equation (1.1).
'The distribution parameters in the limit state function (f) are listed in Table 2.56.

(3) 'The reliability of the rotating shaft.
We will follow the Monte Carlo method and the program flowchart in Appendix A.3 to

create a MATLAB program. Since the limit state function is not too complicated, we will use
the trial number N = 1,598,400. The reliability of this shaft R by the Monte Carlo method is

1,581,687

Table 2.56: The distribution parameters of random variables in Equation (e)

K (lognormal)
Hink Olnk Hd 0d
41.738 0.357 1.750 0.00125

Example 2.31

The critical section of a solid rotating shaft with a diameter 2.150 & 0.005” is subjected to cyclic
combined loading listed in Table 2.57. The ultimate material strength S,, of the beam is 75 (ksi).
‘Three parameters of the component fatigue strength index K on the critical section for the cyclic
bending loading are m = 8.21, i, xk = 41.738, and o1, k = 0.357. For the component fatigue
strength index K, the stress unit is ksi. Calculate the reliability of the rotating shaft.

Solution:

1. The cyclic Von Mises stress and the component fatigue damage index.
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Table 2.57: The cyclic combined loading spectrum for Example 2.31

Normally Distributed Bending Moment
Torque 7 (klb.in) M (Klb.in)
by oM
450,000 | 21.15 | 21.34 | 131

Number of

Cycles

'The mean Von Mises stress 0,,,—m per Equation (2.49), the Von Mises stress amplitude
Ovon—a per Equation (2.90), and its corresponding equivalent Von Mises stress amplitude 04—,
per Equation (2.91) of the rotating shaft due to the cyclic combined loadings are:

16T
Ovon—m = \/gKfSTT = ‘/gm (a)
32M
Ovon—a = KfGM = 7d3 (b)
o . Sy _ 32MS, ©
T Sy — Ovonem wd3S, — 168/3T

'The component fatigue damage index of this shaft under the cyclic combined loading per Equa-
tion (2.94) is:

] . @

D =N,
t |:7td3Su —16v/3T
(2) The limit state function of the rotating shaft.

The limit state function of the rotating shaft under the cyclic combined loading in this
example per Equation (2.95) is:
>0 Safe
8.21
:| =10 Limit state (e)

<0 Failure.

32MS,
7d3S, —163/3T

g(K,M,d):K—NL[

There are three random variables in the limit state function (e). The dimension d can be treated
as a normal distribution. Its mean and standard deviation can be calculated per Equation (1.1).
The distribution parameters in the limit state function (e) are listed in Table 2.58.

(3) 'The reliability of the rotating shaft.

'The limit state function (e) contains two normal distributions and one log-normal distri-

bution. We will follow the procedure of the R-F method and the flowchart in Appendix A.2
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to create a MATLAB program. The iterative results are listed in Table 2.59. From the iterative
results, the reliability index B and corresponding reliability R of the shaft in this example are:

B =1.705804 R = & (1.705804) = 0.9560.

Table 2.58: The distribution parameters of random variables in Equation (e)

K (lognormal) M (klb.in) ‘ d (in)
Hink Olnk UM oM Hd O0d
41.738 0.357 21.34 1.31 2.150 0.00125

Table 2.59: The iterative results of Example 2.31 by the R-F method

Iterative # K* M d* B* IAB"|
1 1.43E+18 | 21.34 2.081 1.722323
2 8.29E+17 | 23.18013 | 2.15866 | 1.706654 | 0.015669
3 9.18E+17 | 23.11098 | 2.150319 | 1.705806 | 0.000849
4 9.24E+17 | 23.11206 | 2.149932 | 1.705804 | 1.81E-06

2.9.11 RELIABILITY OF A COMPONENT WITH THE K-D MODEL BY
THE MONTE CARLO METHOD

'The Monte Carlo method is displayed in Appendix A.3. In order to use the Monte Carlo method
to calculate the reliability of a component, we must establish its limit state function. When the
K-D model is used to describe the component fatigue strength index K and the component
fatigue damage index D, we can establish limit state functions for every possible cyclic loading
case.

When component is under simple cyclic loading, that is, cyclic axial loading, cyclic shear-
ing loading, cyclic torque loading, or cyclic bending loading, we can use Equation (2.87) to
establish a limit state function when simple cyclic loading can be described by model #1, #2,
and #3 cyclic loading spectrums. We can use Equation (2.88) to establish a limit state function
when simple cyclic loading can be described by model #4, #5, and #6 cyclic loading spectrums.

For cyclic combined loading on a rotating shaft, we can use Equation (2.95) to establish
a limit state function.

When a limit state function is established, we can use the Monte Carlo method to cal-
culate the reliability of a component under a cyclic loading spectrum. Lots of examples in Sec-
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tion 2.9 such as Examples 2.24, 2.28, and 2.30 use the Monte Carlo method to calculate the

reliability of component under a cyclic loading spectrum.

2.9.12 THE COMPARISON OF RESULTS BY THE K-D MODEL WITH THE
RESULT'S BY THE P-S-N CURVES

Both the P-S-N curves and the K-D model are probabilistic fatigue theory and can be used to
describe material fatigue test data, that is, material fatigue strength. Both can be used to calculate
the reliability of a component under cyclic loading spectrums.

Table 2.11 in Section 2.8.1 list fatigue test results of 195 fatigue tests on the 10 gauge
6060-T6 sheet-type flat test specimen under 5 different cyclic axial stress levels. The P-S-N
curves on these set of fatigue data are shown in Table 2.13 and are redisplayed here for conve-
nience. The K-D model on these set of fatigue test data is listed in Table 2.35 and redisplayed
here for conveniences. Now, the following three Examples 2.32-2.34 will be used to compare
the results from both fatigue theories.

Table 2.13: The P-N distribution at different fatigue strength levels

Axial Stress . | Equivalent Stress | Lognormal Distributed Fatigue Life
o4 (ksi) | 6y, (ksi) . (ksi
Level # Gu-eqi (Ksi) ‘ MinN ‘ OInN
1 20.833 | 20.833 35.126 11.4736 0.238106
2 22.083 | 22.083 38.832 11.0410 0.227320
3 22.5 22.5 40.139 10.9551 0.242377
4 22917 | 22917 41.485 10.7831 0.225735
5 23.333 | 23.333 42.871 10.716 0.241955

Table 2.35: Ky with three distribution parameters

Material: 6061-T6 | Sample Size: Test Conditions: Cyclic Axial Stress, Milled
10-Gauge Sheet 195 Machined Sheet-type Flat Specimen

Slope of the Traditional S-N Log Normally Distributed K|
Curve: m Log Mean: uj.g, Log Standard Deviation: oy,

3.8812 25.3014 0.245451

Example 2.32

'The aluminum 6061-T6 10 Gauge sheet-type flat fatigue specimen, as shown in Figure 2.8 is
subjected to cyclic axial stress with a stress amplitude 20.833 (ksi) and mean stress 20.833 (kis).
'The number of cycles of this cyclic axial loading is 60,000 (cycles). The ultimate tensile strength
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of this material is S, = 51.2 (ksi). The P-S-N curve of this material is listed in Table 2.13, and
the K-D model is listed in Table 2.35. Use the P-S-N curve and the K-D model to calculate its
reliability.

Solution:
(1) The P-S-N curve approach.

'The P-S-N curve in Table 2.13 shows that the number of cycles to failures N under this
cyclic stress follows a lognormal distribution with a mean 1, = 11.4736 and the standard de-
viation o1, y = 0.238106. Since the number of cycles at the specified cyclic stress is a constant,
the reliability of this specimen under the specified cyclic stress will be:

MinN — ln(n))

R:P(Nzn):P(ln(N)zln(n))zd)(
OlnN

- 11.4736 — In(60000)
- 0.238106

) = &(1.98021) = 0.97616,

where @ () is the CDF of a standard normal distribution.
(2) The K-D probabilistic model.

The cyclic axial stress is with a stress mean o, = 20.833 (ksi) and the stress amplitude
04 = 20.833 (ksi). It is not a fully reversed cyclic stress. It will be converted into an equivalent
stress amplitude of a fully reversed cyclic stress per Equation (2.21):

Oaq X Su 20.83333 x 51.2

- - — 35.12623 (ksi).
(Su—om) _ (51.2—20.83333) (ksi)

Ocq

'The K-D model of this material under cyclic axial loading is shown in Table 2.35. The
fatigue damage index D due to the specified loading per Equation (2.84) will be:

D = noly = 60000 x (35.12623)% %812 = 598489 x 10'°.

Since the D in this example is a constant, the reliability of the specimen under the specified
cyclic loading will be:

R=P (Ko = D) = P (In(Ko) = In(D)) = ® (MK;WD))

Oln Ko

(25.3014 —24.8151

= @ (1.981209) = 0.97622.
0233106 ) (1.981209) = 0.976

The results from the P-S-N curve and the K-D model are almost identical. The relative difference
is 0.006%. [ |
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Example 2.33

The aluminum 6061-T6 10 Gauge sheet-type fatigue specimen, as shown in Figure 2.8 is sub-
jected to cyclic axial stress with a stress amplitude 20.833 (ksi), and mean stress 20.833 (ksi).
'The number of cycles ny, of this cyclic axial stress follows a lognormal distribution with a mean
Minn, = 10.5 and a standard deviation 01,,, = 0.35. The ultimate tensile strength of this ma-
terial is Sy, = 51.2 (ksi). The P-S-N curve of this material is listed in Table 2.13, and the K-D
model is listed in Table 2.35. Use the P-S-N curve and the K-D probabilistic model to calculate
its reliability.

Solution:

(1) The P-S-N curve approach.

Since both the fatigue life N and the number of cycles n, at the cyclic axial stress level are
log-normal distributions, the reliability of this specimen under the specified cyclic axial stress

will be:
R =P(N >n)=P(n(N) > In(n)) = P(In(N) — In(n) > 0)
=0

\/(O—ln]\/)2 + (O—lnn)2
= $(2.29995) = 0.98927.

KinN — Hin N _ 11.4736 — 10.5
/(0.238016)2 + (0.35)2

(2) The K-D probabilistic model.

The equivalent stress amplitude of a completely reversed cyclic stress per Equation (2.21)

is
0a XSy 20.83333 x 51.2
(Sy —om)  (51.2—20.83333)

'The fatigue damage index D due to the specified cyclic axial stress per Equation (2.84) will be:

Ocq = = 35.126 (ksi). (a)

D =npoll =np x (35.126)*%1%. (b)
'This equation can be expressed as:
In (D) =1In (nz) + mIn (0.,) = In (nz) + 13.812989. ©

Since ny, follows a lognormal distribution, D will also follow a lognormal distribution according
to the above equation. The mean and standard deviation of the lognormal distributed D will be:

MinD = Minn,; + 13.812989 = 10.5 + 13.812989 = 24.312989 (d)

OlnD = Olnn; = 0.35. (e)
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Since both the specimen fatigue strength index Ky and the specimen fatigue damage index D
are log-normal distributions, the reliability of this specimen under the specified cyclic axial stress

will be:

R=P(Ko>D)=P(nKo>InD)=P(nKo—1InD > 0)

- & (,uln Ko — MlnD)
\/(Uln K0)2 + (GIHD)Z

_ o[ (253014 —24.312989)
\/ (0.238106)* + (0.35)?

= @ (2.312136) = 0.98962.

The results from the P-S-N curve and the K-D model are almost identical. The relative difference
is 0.035%. [ |

Example 2.34

The aluminum 6061-T6 10 Gauge sheet-type fatigue specimen, as shown in Figure 2.8 is sub-
jected to two levels of cyclic axial stress listed in Table 2.60. The ultimate tensile strength of
this material is S, = 51.2 (ksi). The P-S-N curve of this material is listed in Table 2.13, and
the K-D model is listed in Table 2.35. Use the P-S-N curve and the K-D model to calculate its
reliability.

Table 2.60: Two levels of axial cyclic stress for Example 2.34

Level # o,4i (ksi) omi (ksi) | Number of Cycles n;;
1 20.833 20.833 30,000
2 22.5 22.5 15,000

Solution:
(1) The P-S-N curve approach.

This cyclic loading is model #4 cyclic loading spectrum. With the concept of equivalent
damage approach discussed in Section 2.8.6, the fatigue damage due to a cyclic stress level #1 can

be transferred to stress level #2 with an equivalent cyclic number per Equations (2.45), (2.47),
and (2.48):

_ MmNt —In(ngy)  11.4736 —1n(30,000)

A O N1 0.238106

= 4.89130. (a)
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With the same fatigue damage, that is, the same reliability index 8, the equivalent number of
cycles ny_p.4 of the stress level #1 into the stress level #2 is:

Negi—2 = exp (Uin N2 — P10 N2) = 17,493.1. (b)

Now, at the stress level 2, the total number of cycles n,_., including transferred equivalent
number of cycles will be:

N3eq = N2 + Neg1—2 = 15,000 + 17,493.1 = 32,493.1. (c)
Therefore, the reliability of the specimen under two stress levels per Equation (2.49) will be:
R =P (N> =nz_eg) = P (In(N2) > In(n2—cq))

_ P In (N2—oat) | _ <1> 10.9551 — In(32,493.1)
a N 0.242377

Oln N,
= ®(2.33651) = 0.99027.

(2) The K-D model.

'The cyclic axial stresses in this example are non-zero-mean cyclic stresses. We need to

convert them into a fully reversed cyclic stress per Equation (2.21).
For the stress level #1 with 041 = 20.833 (ksi) and 0,1 = 20.833 (ksi), the fully reversed
equivalent stress amplitude of 0,41 is

Oa1 X Sy 20.83333 x51.2
(Sy —om1)  (51.2—20.83333)

= 35.12623 (ksi). (d)

Ocq1 =

For the stress level #2 with 0,5 = 22.5 (ksi) and oy, = 22.5 (ksi), the fully reversed equivalent
stress amplitude of o, is

Oa2 X Sy 22.5x51.2
(Sy —0om2)  (51.2—22.5)

= 40.139 (ksi). (e)

Oeq2 =

The fatigue damage index D due to the specified cyclic axial stresses per Equation (2.85)

will be:
D =npioy + nraofh, = 30,000 x (35.126)>%%1% 4+ 15,000 x (40.139)*%812

= 5.50358 x 10'°, (f)

In this example, the fatigue damage index D is deterministic. The reliability of the specimen
under the specified cyclic axial stress by the definition of reliability will be:

Min Ko — hl(D) )

R =P (Ko= D)= P (In(Ko) =In(D)) = ‘D(
Oln Ko

(25.3014 —24.73125

= ©(2.322869) = 0.98991.
0.238106
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The results from the P-S-N curve and the K-D model are almost identical. The relative difference
is 0.036%. [ |

These three examples cover typical cyclic loadings. Results from these three examples have
shown that the reliability obtained from the P-S-N curves and the K-D models for the same
issue are almost the same with a maximum relative error 0.036%. These have approved and
verified that the probabilistic fatigue damage model (the K-D model) can be used to describe
the fatigue test data of the same material specimen under different fatigue test stress levels.

The K-D model can be used to solve the reliability of a component under any type of
cyclic loadings. The following Example 2.35 could not be directly solved by the P-S-N curve
approach and but can be solved by the K-D model.

Example 2.35

'The aluminum 6061-T6 10 Gauge sheet-type fatigue specimen as shown in Figure 2.8 is sub-
jected to cyclic axial stress with a stress amplitude o, = 25 (ksi) and a mean stress 0, = 15 (ksi).
The number of cycles of this cyclic axial stress is 50,000 (cycles). The ultimate tensile strength
of this material is S, = 51.2 (ksi). The P-S-N curves of this material is listed in Table 2.13. The
K-D model is listed in Table 2.35. Use the P-S-N curve and the K-D probabilistic model to

calculate its reliability.

Solution:

(1) The P-S-N curve approach.

'The P-S-N curves of this material listed in Table 2.13 do not have a probabilistic distri-
bution function for this specific cyclic axial stress which is a stress amplitude o, = 25 (ksi) and a
mean stress 0, = 15 (ksi). So, the P-S-N curve approach could not be directly used to calculate

the reliability of this problem.
(2) The K-D model.

'The K-D probabilistic fatigue damage model can be used to solve this problem.
'The equivalent stress amplitude of the cyclic stress with a stress amplitude o, = 25 (ksi)
and a mean stress 0, = 15 (ksi) per Equation (2.21) is:

_ Oz X Sy _ 25 x 51.2
 (Su—o0n) (51.2—15)

= 35.359(ks1). (a)

Oeq

'The fatigue damage index D due to the specified cyclic axial stress per Equation (2.85) will be:

D = npol = 50,000 x (35.35912)>%%12 = 511698 x 10'°. (b)
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In this example, the fatigue damage index D is deterministic. The reliability of the specimen
under the specified cyclic axial stress will be:

R=P (Ko > D)= P (In(Ko) > In(D)) = @ (/’Lano;ln(D))

Oln Ko

- 25.3014 — 24.65841
- 0.238106

) = ©(2.61961) = 0.99560.

Both the P-5-N curves and the K-D model are probabilistic fatigue theory and can be
used to calculate the reliability of a component under cyclic loading spectrums. There are four
distinguished features of the K-D model with comparison to the P-S-N curve approach.

1. The K-D model uses all fatigue test data under all test stress levels to conduct statistical
analysis to represent the scatters of material fatigue behavior. From the general view of
statistics, the derived distribution parameters in the K-D model are much reliable because
of the much larger sample size.

2. If sometimes, the fatigue test data of some materials are not enough to compile a practical
P-S-N curve, the data may still be used by the K-D model to describe the fatigue behaviors
and to conduct the calculation of the fatigue reliability. For example, five test data on each
of seven different constant stress levels are not enough for the P-S-N curve approach.
However, for the K-D model, the sample size is 35. Therefore, the K-D model is more
practical for fatigue reliability design.

3. In the K-D model, one probabilistic distribution function is used to describe material
fatigue behavior and to conduct fatigue reliability evaluation. So, it is more convenient for
fatigue reliability evaluation.

4. 'The K-D model can be used to calculate the reliability of a component under any type of
cyclic loading spectrum.

2.10 SUMMARY

Fatigue failure is one of the most common and important failure modes when a metal compo-
nent is subjected to a cyclic stress spectrum. Three parameters for describing cyclic stress are
stress mean Oy, stress amplitude 0, and the number of cycles n7. Since the mean stress will be
mainly used to calculate the equivalent fully revered stress amplitude, stress amplitude o, and
the number of cycles 7, are two main parameters for describing a cyclic loading spectrum. Six
different cyclic loading spectrums have been discussed in Section 1.2 and relisted here in Ta-
ble 2.61. Any cyclic stress spectrum or cyclic loading spectrum can be described by one of these
six cyclic loading spectrums.
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Table 2.61: Six cyclic loading spectrums

Cyclic loading )
Number of cycles 7, Mean stress g, Stress amplitude o,
spectrum model #

#1 ny-constant 0,,,-constant G,-constant

#2 ny~distributed G,,,-constant 6,-constant

#3 ny-constant G,,,-constant o,-distributed

44 nr, i=12,...,L Omi 1=12,..., L 0, 1=12,...,L

constants constants constants

ni,i=12,...,L Omi i=12,..., L 0, 1=12,..., L

s distributed constants constants
npi, i=12,...,L Omi 1=1,2,..., L 04 1=12,..., L

6 constants constants distributed

For a high-cycle fatigue issue, which is a common case in general engineering design,
material fatigue strength data is typically obtained through a stress-life method. In a stress-
life method, fatigue specimen is subjected to constant cyclic stress. The fatigue test result per a
fatigue test is the number of cycles at failure, that is, a fatigue life under specified constant cyclic
stress level. Both the P-S-N curve approach discussed in Section 2.8 and the K-D probabilistic
fatigue damage model discussed in Section 2.9 are fatigue theories to analyze and to represent the
fatigue test data for the calculation of reliability of component under a cyclic loading spectrum.

'The P-S-N curve approach can provide two sets of distributions. One is the P-N distri-
butions, in which material fatigue life under a specified constant cyclic stress level is treated as a
random variable and described by a normal distribution or a log-normal distribution. Another
is the P-S distributions, in which material fatigue strength at a specified constant fatigue life,
is treated as a random variable and typically described by a normal distribution or a log-normal
distribution. When the P-S-N curve approach is used to calculate the reliability of a component
under a cyclic loading spectrum, we have the following conclusions.

* When a component is subjected to model #1, model #2, or model #3 cyclic loading spec-
trum, we can use the P-S-N curve to build the limit state function. Therefore, the reliability
of component under such cyclic loading spectrum can be calculated by the definition of re-
liability, or the H-L, R-F, or Monte Carlo method. These are discussed in Sections 2.8.3,
2.8.4,and 2.8.5.

* When a component is subjected to model #4, or model #5 cyclic loading spectrum, the
limit state function of a component under such cyclic loading cannot be established. How-
ever, equivalent fatigue damage concepts can be used to calculate the reliability of the
component. These are discussed in Sections 2.8.6 and 2.8.7.
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* When a component is subjected to model #6 cyclic loading spectrum, a series reliability
block diagram is used to calculate the reliability of the component. This is discussed in
Section 2.8.8.

The K-D probabilistic fatigue damage model uses all fatigue test data of the same material
fatigue specimen under different cyclic stress levels to provide a three-parameters distribution
model for describing material fatigue strength. These three-parameters are m—the slope of the
traditional S-N curves in both log-axis scales, ji1,k,—the log-mean of and oy, x,—the log-
standard deviation of lognormally distributed material fatigue strength index Ko. When the K-
D model is used to deal with fatigue design of a component under a cyclic loading spectrum, we
can establish a limit state function of a component under any of the six models of cyclic loading
spectrums. Therefore, the reliability of component under such cyclic loading spectrum can be
calculated by the definition of reliability, or the H-L method, R-F, or Monte Carlo method.
These are discussed in Sections 2.9.5-2.9.11.

2.11 REFERENCES

[1] Lalanne, C., Fatigue Damage, 3rd ed., Wiley, Hoboken, NJ, 2014. DOI:
10.1002/9781118931189. 9, 72

[2] Budynas, R. G. and Nisbett, J. K., Shigleys Mechanical Engineering Design, 10th ed., Mc-
Graw Hill Education, New York, 2014. 9, 16, 19, 27, 96

[3] Callister, W. D. Jr. and Rethwisch, D. R., Materials Science and Engineering: An Intro-
duction, 9th ed., Joseph Wiley, Hoboken, NJ, 2014. 10, 72

[4] Le, Xiaobin, The reliability calculation of components under any cyclic fatigue loading
spectrum, ASME International Mechanical Engineering Congress and Exposition, IMECE—
70084, Tampa, FL, November 3-9, 2017. DOI: 10.1115/imece2017-70084. 11

[5] Ugural, A. C., Mechanical Design of Machine Components, 2nd ed., CRC Press, Taylor &
Francis Group, Boca Raton, FL, 2015. DOI: 10.1201/9781315369679. 14, 19, 72

[6] Ling,]. and Pan, J., Engineering method for reliability analyses of mechanical structures
for long fatigue lives, Reliability Engineering and System Safety, 56, pp. 135-142, 1997.
DOI: 10.1016/50951-8320(97)00012-4. 16

[7] Rao, S. S., Reliability Engineering, Person, 2015. 16, 17, 20, 30, 36, 64

[8] Le, Xiaobin, Reliability-Based Mechanical Design, Volume 1: Component under Static Load,
Morgan & Claypool Publishers, San Rafael, CA, 2020. 22, 36, 60, 75, 77

[9] Haugen, E. B., Probabilistic Mechanical Design, John Wiley & Sons, Inc., 1980. 30, 36


http://dx.doi.org/10.1002/9781118931189
http://dx.doi.org/10.1002/9781118931189
http://dx.doi.org/10.1115/imece2017-70084
http://dx.doi.org/10.1201/9781315369679
http://dx.doi.org/10.1016/s0951-8320(97)00012-4

2.11. REFERENCES 111

[10] Kececioglu, D. B., Smith, R. E., and Felsted, E. A., Distributions of cycles-to-failure in
simple fatigue and the associated reliabilities, Annals of Assurance Science, 8th Reliability
and Maintainability Conference, pp. 357-374, Denver, CO, July 7-9, 1969. 30, 31, 64

[11] Kececioglu, D. B., Robust Engineering Design-by-Reliability with Emphasis on Mechanical
Components and Structural Reliability, DEStech Publications, Inc., Lancaster, PA, 2003.
30, 31, 34, 52

[12] Le, Xiaobin, A probabilistic fatigue damage model for describing the entire set of fatigue
test data of the same material, ASME International Mechanical Engineering Congress and
Exposition, IMECE—-10224, Salt Lake City, UT, November 8-14, 2019. 31

[13] ASTM STM E466—15, Standard Practice for Conducting Force Controlled Constant
Amplitude Axial Fatigue Tests of Metallic Materials. DOI: 10.1201/9781420035636. 32

[14] Martinez, W. L. and Martinez, A. R., Computational Statistics Handbook with MATLAB,
3rd ed., CRC Press, Boca Raton, FL, 2016. DOI: 10.1201/9781420035636. 36

[15] Kececioglu, D., Probabilistic design methods for reliability and their data and research
requirements, Failure Prevention and Reliability, pp. 285-305, ASME, 1977. 52

[16] Le, Xiaobin, The reliability of a component under multiple cyclic stress levels with dis-
tributed cyclic numbers, ASME International Mechanical Engineering Congress and Exposi-
tion, IMECE—65269, Phoenix, AZ, November 11-17, 2016. DOI: 10.1115/imece2016-
65269. 55

[17] Le, Xiaobin, The reliability calculation of components under any cyclic fatigue loading
spectrum, ASME International Mechanical Engineering Congress and Exposition, IMECE—
70084, Tampa, FL, November 3-9, 2017. DOI: 10.1115/imece2017-70084. 64

[18] Miner, M. A., Cumulative damage in fatigue, Journal of Applied Mechanics, vol. 12, no. 3,
pp- 159-164, 1945. 64

[19] Le, Xiaobin, Applications of the Monte Carlo method for estimating the reliability of
components under multiple cyclic fatigue loadings, ASME International Mechanical En-
gineering Congress and Exposition, IME CE-86130, Pittsburg, PA, November 9-15, 2018.
DOQI: 10.1115/imece2018-86130. 70

[20] Suresh, S., Fatigue of Materials, Cambridge University Press, New York, 1998. DOI:
10.1017/cbo9780511806575. 72

[21] Henry, S. D. and Redenbatch, F., Fatigue Data Book: Light Structure Alloys, ASM Inter-
national, Materials Park, OH, 1995. 73



http://dx.doi.org/10.1201/9781420035636
http://dx.doi.org/10.1201/9781420035636
http://dx.doi.org/10.1115/imece2016-65269
http://dx.doi.org/10.1115/imece2016-65269
http://dx.doi.org/10.1115/imece2017-70084
http://dx.doi.org/10.1115/imece2018-86130
http://dx.doi.org/10.1017/cbo9780511806575
http://dx.doi.org/10.1017/cbo9780511806575

112 2. RELIABILITY OF A COMPONENT UNDER CYCLIC LOAD

[22]

[23]

Le, Xiaobin, A probabilistic fatigue damage model for describing the entire set of fatigue
test data of the same material, ASME International Mechanical Engineering Congress and

Exposition, IMECE-10224, Salt Lake City, UT, November 8-14, 2019. 74, 75

Zong, W. H. and Le, Xiaobin, Probabilistic Design Method of Mechanical Components,
Shanghai Jiao Tong University Publisher, September 1995, Shanghai, China.

[24] Le, Xiaobin and Peterson, M. L., A method for fatigue-based reliability when the loading

of the component is unknown, International Journal of Fatigue, vol. 21(6), pp. 603-610,

1999. DOI: 10.1016/50142-1123(99)00016-X. 74, 75

2.12 EXERCISES

2.1
2.2,

2.3.

What is fatigue? Describe one fatigue failure example.

Explain the fatigue failure mechanism. For a component with the same type of material
and dimensions under the same type of cyclic loading, which one will be failure first
if one is machined with a lathe and another one is machined with a polished surface

finish? Explain the choice.

A group of fatigue test for a steel specimen is listed in Table 2.62. Calculate the slope
of the traditional S-N curve in both In-axis scales.

Table 2.62: Steel specimen

2.4.

2.5.

2.6.

Stress amplitude (ksi) Sample size Fatigue life (cycles) x 103
25.14 4 328.12, 315.87, 337.62
30.38 2 64.18, 71.62
35.81 5 16.53, 16.95, 17.39, 18.03, 17.27
42.85 3 3.32,3.85,3.62

A group of fatigue test for a metal specimen is listed in Table 2.63. Calculate the slope
of the traditional S-N curve in both In-axis scales.

A machined bar with a diameter 2.150” is subjected to cyclic axial loading. Its ultimate
material strength is 61.5 ksi. If the fatigue strength is obtained from a standard pol-
ished specimen under a fully reversed bending stress, determine kg, kp, and k. for this
component.

A forged shaft with a diameter 1.750” is subjected to cyclic bending stress. Its ultimate
material strength is 91.7 ksi. If the fatigue strength is obtained from a standard pol-
ished specimen under a fully reversed bending stress, determine kg, k5, and k. for this
component.
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Table 2.63: Metal specimen

Stress amplitude (Mpa) Sample size Fatigue life (cycles) x 103
700 5 3.28, 3.81, 3.74, 3.69, 3.78
650 3 17.28, 18.09, 16.89
500 3 52.11, 49.83, 53.72
200 4 243.32,239.97, 245.74, 244.29

2.7. A component is subjected to cyclic bending stress with a stress mean o;, = 18.38 (ksi)
and a stress amplitude o, = 12.52 (ksi). Its ultimate material strength is 71.8 ksi. Cal-
culate the equivalent stress amplitude of a fully reversed cyclic stress.

2.8. A component is subjected to cyclic axial stress with a maximum stress oyax = 11.78 (ksi)
and a minimum stress Oy, = —50.14 (ksi). Its ultimate material strength is 61.5 ksi.
Calculate the equivalent stress amplitude of a fully reversed cyclic stress.

2.9. A shaft shoulder with a fillet radius r = 0.032” is subjected cyclic bending stress. Its
theoretical stress concentration factor due to static bending stress is 1.69. The shaft
material ultimate strength is 61.5 ksi. Determine its fatigue stress concentration factor.

2.10. A plate with a center transverse hole is subjected to cyclic axial loading. The radius of
the hole is 0.25”. Its theoretical stress concentration factor due to static bending stress
is 2.58. The shaft material ultimate strength is 61.5 ksi. Determine its fatigue stress
concentration factor.

2.11. A machined constant circular beam with a diameter d = 1.250 £ 0.005” is subjected a
cyclic bending loading. The mean bending loading M,, of the cyclic bending moment is
1.72 (klb.in). The bending moment amplitude M, of the cyclic bending moment follows
a normal distribution with a mean s, = 2.26 (klb.in) and a standard deviation opr, =
0.93 (klb.in). The ultimate material strength is 61.5 (ksi). The component endurance
limit S, follows a normal distribution with a mean g, = 22.4 (ksi) and a standard
deviation o5, = 1.44 (ksi). This bar is designed to have an infinite life. (1) Establish
the limit state function of this beam. (2) Calculate the reliability of the beam under the
cyclic bending loading.

2.12. A rectangular bar with a height # = 1.250 & 0.005” and a width b = 2.250 & 0.005” is
subjected to cyclic axial loading with a mean F,, = 32.15 (klb). The axial loading ampli-
tude F, follows a uniform distribution between 7.15 (klb) and 9.25 (klb). The ultimate
material strength is 61.5 (ksi). The component endurance limit S, follows a normal
distribution with a mean g, = 17.4 (ksi) and a standard deviation og, = 2.84 (ksi).
'This bar is designed to have an infinite life. (1) Establish the limit state function of this
problem. (2) Calculate the reliability of the bar under the cyclic bending loading.
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2.13.

2.14.

2.15.
2.16.

2.17.

2.18.

2.19.

2.20.

A shaft with a diameter d = 1.500 £ 0.005” is subjected to a cyclic torsion loading.
'The torque can be treated as a fully reversed cyclic torsion. The torque amplitude in the
unit of klb-in can be treated as lognormal distribution with a log mean p,7 = 1.85
and log standard deviation oy, 7 = 0.062. The component torsion endurance limit S,
follows a normal distribution with a mean s, = 12.4 (ksi) and a standard deviation
os, = 1.02 (ksi). This shaft is designed to have an infinite life. (1) Establish the limit
state function of this problem. (2) Calculate the reliability of the shaft under the cyclic
bending loading

What is the P-S-N curve approach? What are the two sets of curves that the P-S-N

curve can provide?
Conduct literature research and find an example where the P-S-N curves are presented.

A bar is subjected to cyclic axial stress with a mean stress 0, = 12.6 (ksi) and stress
amplitude o, = 8.6 (ksi). According to the design specification, the bar has a design
life n;, = 380,000 (cycles). The bar fatigue life N¢ at the stress level with a mean stress
om = 12.6 (ksi) and stress amplitude o, = 8.6 (ksi) follow a normal distribution with
a mean [y, = 440,000 (cycles) and a standard deviation oy, = 34,500. Calculate its
reliability.

A beam is subjected to a fully reversed cyclic bending stress with a constant num-
ber of cycles nz, = 450,000 (cycles). The stress amplitude of this fully reversed cyclic
bending stress o, follows a Weibull distribution with a scale parameter n = 18.25 (ksi)
and a shape parameter f = 1.5. The beam fatigue strength Sy at the fatigue life N =
450,000 (cycles) follows a normal distribution with a mean ps, = 21.98 (ksi) and a
standard deviation o5, = 1.78 (ksi). Calculate its reliability

A square bar is subjected to cyclic fully reversed axial stress with a constant stress ampli-
tude 0, = 24.6 (ksi). Its number of cycles of this fully reversed axial stress can be treated
as a normal distribution with a mean p,, = 125,000 (cycles) and a standard deviation
on; = 5600 (cycles). The bar fatigue life N¢ at the fatigue strength level Sy = 24.6 (ksi)
follows a lognormal distribution with a log mean i, y- = 12.13 and a standard devi-
ation o1, N = 0.249. Calculate its reliability.

A round bar is subjected to three constant cyclic stresses as listed in the 2nd and 3rd
columns of Table 2.64. The distributed fatigue life of this bar at the corresponding stress
levels are listed in the 4th and 5th columns of Table 2.64. Calculate its reliability.

A beam is subjected to three constant cyclic bending stresses with a distributed number
of cycles as listed in the 2nd, 3rd, and 4th columns of Table 2.65. The distributed fatigue
life of this bar at the corresponding stress levels are listed in the 5th and 6th columns of
Table 2.65. Calculate its reliability.
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Table 2.64: Cyclic stresses

Cyclic Loading Stress Spectrum ‘

Component P-N Distributions

Stress Fatigue Life N¢; (normal distribution)
Level # IN . N

1 25 90,800 151,000 12,100

2 35 4,500 8,800 790

3 40 1,825 2,830 235

Table 2.65: Cyclic bending stresses

Cyclic Loading Stress Spectrum

‘ Component P-N Distributions

Fatigue Life N¢; (normal

Stress eyt
distribution)
Level #
1 25 80,900 5,900 151,000 12,100
2 35 4,050 398 8,800 790
3 40 1,625 150 2,830 235

2.21. A shaft is subjected to model #6 cyclic bending stress. The numbers of cycles of each
stress level are constant and are listed in the 2nd column of Table 2.66. 'The fully re-
versed bending stress follows a normal distribution, and their distribution parameters
are listed in the 3rd and 4th columns of Table 2.66. The component fatigue strengths
Sy at the corresponding fatigue life are normally distributed random variable, and their
distribution parameters are listed in the 5th and 6th columns of Table 2.66. Calculate
its reliability.

Table 2.66: Cyclic bending stresses

Cyclic Loading Stress Spectrum

Stress
Level #

ny; (ksi)

Stress Amplitude o,;

(normal distribution)

Ho

ai

Og

ai

‘ Component P-Sy; Distributions

Fatigue Strength Sg;

(normal distribution)

Hs;

O'Sﬁ

3.18

3,000 27.15 2.12 39.77
20,000 215 2.19 31.78 2.86
300,000 18.34 1.25 23.06 1.73
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2.22. Conduct literature research to find a fatigue test under at least three different stress
level and with more than 30 tests. Then use the K-D probabilistic model to determine
its three distribution parameters: m, fiy &, and o1, -

2.23. A bar with a diameter 1.125 & 0.005” is subjected to a constant cyclic axial loading,
which is listed in the first three columns of Table 2.67. The ultimate material strength
Sy is 75 (ksi). The component fatigue strength index K on the critical section for the
axial cyclic loading is listed in the last three columns of Table 2.67. For the component
fatigue strength index K, the stress unit is ksi. Calculate the reliability of this bar.

Table 2.67: Cyclic axial loading

Component Fatigue Strength Index K

Cyclic Axial Loadi
yehe fnat Loading (lognormal distribution)
ny Fon Fy m Hink Ok
480,000 20.74 (klb) 18.82 (klb) 8.21 41.738 0.357

2.24. A bar with a diameter 1.500 % 0.005” is subjected to a fully reversed cyclic axial loading.
The axial loading amplitude follows a normal distribution. Information of this cyclic
axial loading is listed in the first three columns of Table 2.68. The component fatigue
strength index K on the critical section for the axial cyclic loading is listed in the last
three columns of Table 2.68. For the component fatigue strength index K, the stress
unit is ksi. Calculate the reliability of this bar.

Table 2.68: Cyclic axial loading

Cyclic Axial Loading

Normally Distributed F,

HF ‘ OF

a a

250,000 50.68 (klb) 4.82 (klb) 8.21 41.738 0.357

Component Fatigue Strength Index K

(lognormal distribution)

Hink

2.25. A round bar with a diameter 1.250 & 0.005” is subjected to a fully reversed cyclic bend-
ing loading with a constant bending moment amplitude. The number of cycles of this
cyclic bending loading follows a normal distribution. Information of this cyclic bending
loading is listed in the first three columns of Table 2.69. The component fatigue strength
index K on the critical section for the cyclic bending loading is listed in the last three
columns of Table 2.69. For the component fatigue strength index K, the stress unit is
ksi. Calculate the reliability of this bar.
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Table 2.69: Reverse cyclic bending loading

Cvelic Bending Loadi Component Fatigue Strength Index K
rclic Bending Loading
. - ° (lognormal distribution)

Normally Distributed 7

. M,
Hn; On,

200,000 8,900 8.86 (klb/in) 8.21 41.738 0.357

2.26.

A square beam with a side height 1.75 & 0.005” is subjected to several cyclic bending
loading. The number of cycles and the bending moment amplitudes of this cyclic bend-
ing loading are all constants. Information of this fully reversed bending loading is listed
in the first three columns of Table 2.70. The component fatigue strength index K on
the critical section for the cyclic bending loading is listed in the last three columns of
Table 2.70. For the component fatigue strength index K, the stress unit is ksi. Calculate
the reliability of this beam.

Table 2.70: Several cyclic bending loading

Cvelic Bendine Loadi Component Fatigue Strength Index K
yclic Bending Loadin
’ = - (lognormal distribution)

| M, (Klb.in) | M, (klb.in) |

3,500 10.64 18.24
30,000 10.64 14.73 8.21 41.738 0.357
450,000 10.64 8.75
2.27. A square beam with a side height 1.500 & 0.005” is subjected to several fully reversed

2.28.

cyclic bending loading. The number of cycles in each loading level is constants. The
bending moment amplitudes follow normal distributions. Information of this fully re-
versed bending loading is listed in the first three columns of Table 2.71. The component
fatigue strength index K on the critical section for the cyclic bending loading is listed
in the last three columns of Table 2.71. For the component fatigue strength index K,
the stress unit is ksi. Calculate the reliability of this bar.

A shaft with a diameter 1.125 & 0.005” is subjected to several fully reversed cyclic tor-
sion loading. The torsion amplitude in each loading level is constant. The number of
cycles in each torsion level follows a normal distribution. Information of this fully re-
versed torsion loading is listed in the first three columns of Table 2.72. The component
fatigue strength index K on the critical section for the cyclic torsion loading is listed in
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Table 2.71: Fully reversed cyclic bending loading

Component Fatigue Strength Index K

Cyclic Bending Loading

(lognormal distribution)

Normally Distrubuted M,

\ #pr, (klb.in) \ opr, (klb.in) \

2,500 16.51 1.49
40,000 11.08 0.89 8.21 41.738 0.357
350,000 7.86 0.53

Table 2.72: Fully reversed cyclic torsion loading

Component Fatigue Strength Index K

Cyclic Torsion Loading
. ° (lognormal distribution)

Normally Distributed n;, T, (klb.in)
2,000 160 8.84
8.21 37.308 0.518
560,000 35,400 3.87

the last three columns of Table 2.72. For the component fatigue strength index K, the
stress unit is ksi. Calculate the reliability of this shaft.

2.29. 'The critical section of a solid rotating shaft with a diameter 1.250 & 0.005” is subjected
to cyclic combined loading. According to the design specification, the cyclic loading
spectrum can be described by several stress levels and listed in the first three columns
of Table 2.73. The material ultimate tensile strength S, of the shaft is 75 (ksi). The
component fatigue strength index K on the critical section for the cyclic bending stress
is listed in the last three columns of Table 2.73. For the component fatigue strength
index K, the stress unit is ksi. Calculate the reliability of the shaft.

Table 2.73: Cyclic combined loading

Component Fatigue Strength Index K

Cyclic Axial Loadin
v - (lognormal distribution)

‘ Hink ‘ OlnK

| T;(klb.n) | M;(kib.in) |
3,000 4.78 7.32

8.21 41.738 0.357

200,000 4.78 4.16
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2.30. The critical section of a solid rotating shaft with a diameter 2.250 % 0.005” is subjected
to cyclic combined loading. According to the design specification, the cyclic loading
spectrum can be described by several stress levels with distributed stress amplitudes and
are listed in the first four columns of Table 2.74. The material ultimate tensile strength
Sy of the shaft is 75 (ksi). The component fatigue strength index K on the critical
section for the cyclic bending stress is listed in the last three columns of Table 2.74. For
the component fatigue strength index K, the stress unit is ksi. Calculate the reliability
of the rotating shaft.

Table 2.74: Cyclic combined loading

Component Fatigue Strength Index

Cyclic Combined Loading

K (lognormal distribution)

T (klb.in)

20,000 21.83 34.92 2.56
400,000 21.83 20.72 1.94

8.21 41.738 0.357
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CHAPTER 3

The Dimension of a
Component with Required
Reliability

3.1 INTRODUCTION

'The reliability-based mechanical component design includes two main tasks: design check and
dimension design. The design check is to calculate the reliability of a component under specified
loading conditions, which have been discussed in Chapter 4 for static loading of the book [1]
and Chapter 2 for cyclic loading spectrum of this book. Dimension design of a component is
to design the component dimension with required reliability under specified loading condition.
'The dimension design will be the topic of this chapter.

In Section 3.2, we will first discuss how to design the component dimension with required
reliability under specified loading condition. Then, in Section 3.3, we will discuss the dimension
design with required reliability under static loading. Finally, in Section 3.4, we will discuss the
dimension design with required reliability under cyclic loading spectrum. In each loading case,
we will discuss simple loading such as axial loading, direct shearing, torsion, and bending. Then,
for static loading, we will discuss component dimension design with required reliability under
several typical combined loadings. However, for cyclic loading, we will only discuss the dimen-
sion design of a rotating shaft the required reliability under the combined loading of steady
torsion with a constant or distributed bending moment.

3.2 DIMENSION DESIGN WITH REQUIRED
RELIABILITY

3.2.1 LIMIT STATE FUNCTION AND PRELIMINARY DESIGN

Component dimension d is treated as a normally distributed random variable. Its standard de-
viation o4 is determined by the manufacturing process. In mechanical component design, we
typically already choose the manufacturing process before we start to calculate its dimension. So,
the standard deviation 0, of component’s dimension can be treated as a known value. Therefore,
component dimension design with the required reliability under specified loading is mainly to
determine the mean p,4 of the dimension d. For dimension design with the required reliability
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R under a specified loading condition, we will use the following general limit state function:

>0 Safe
g(X1,....X,,d)={=0 Limit state 3.1)

<0 Failure,

where X; (i =1,2,...,n) is a random variable related to component strength or loading or
component geometric dimensions, which could be any type of distributions. d is a normal dis-
tribution dimension to be designed with a mean 4 and a standard deviation o4 . For component
dimension design, wy is to be solved from the limit state function (3.1). Since the component di-
mension with 14 will have the required reliability R, the reliability index 8 from Equation (3.1)
will be:

B = & 1 (R) = norminv (R), (3.2)

where ®~! (+) is the standard normal inversed CDF. norminy (-) is a function in MATLAB for
the standard normal inversed CDF.

For component dimension design, some design parameters are dimension-dependent. For
a component dimension design under static loading, the static stress concentration factor is
a dimension-dependent parameter. For a component dimension design under cyclic loading
spectrum, fatigue stress concentration factor and the size modification factor are dimension-
dependent parameters.

For a static stress concentration factor, we can use Tables 3.1-3.3 to estimate the prelim-
inary stress concentration factor. In Table 3.1, r is the radius of the fillet, and d is the diameter
of the smaller shaft. In Tables 3.2 and 3.3, r is the radius of the fillet, and W is the smaller width
of the bar or plate. The static stress concentration factor is mainly determined by the radius of
the fillet. Generally, we have the sketched structure of the component and know the reason
why there is a stress concentration area. Therefore, we know the radius of the fillet even we do
not know the component’s dimension. When the fillet radius is determined by other mating
purchased component such as a purchased bearing, we could call it a sharp radius, as shown in
Tables 3.1 and 3.2. When the fillet radius is not restricted by another component, we might call
a well-rounded radius, as shown in Tables 3.1 and 3.2. We can use Equation (1.3) discussed in
Section 1.1 to determine the mean and the standard deviation of the static stress concentration
factor.

Table 3.1: The preliminary stress concentration factors for a shaft [2]

‘ Bending Loading ‘ Torsion Loading | Axial Loading
Shoulder fillet-sharp (r/d = 0.02) 2.7 2.2 3.0

Shoulder fillet-well-rounded (r/d = 0.1) 1.7 1.6 1.9
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Table 3.2: The preliminary stress concentration factors for a stepped bar/plate

Stepped Plate or Bar ‘ Bending ‘ Axial
Shoulder fillet-sharp (/W = 0.02) 2.7 3.0
Shoulder fillet—well-rounded (r/W = 0.1) 1.7 1.9

Table 3.3: The preliminary stress concentration factors for a plate with a center hole

Plate with a Center Hole ‘ Bending Loading ‘ Axial Loading

Narrow plate (d/W = 2) 1 2.1
Plate (d/W =3) 0.667 2.3

In fatigue design, the fatigue stress concentration factor is a dimension-dependent which
will be determined by dimension, fillet radius, and type of material. The fatigue stress concen-
tration factor can be calculated per Equations (2.22), (2.23), and (2.24) in Section 2.6 when the
static stress concentration factor, fillet radius, and ultimate strength are known. Tables 3.1, 3.2,
and 3.3 can help to determine the preliminary static stress concentration factor. As we mentioned
above, the fillet radius can be pre-determined by the type of fillets and its purpose according to
the sketched structure of the component. We can also pre-select the type of material. Therefore,
we can determine a preliminary estimation of the fatigue stress concentration factor.

In fatigue design, the size modification factor is also a dimension-dependent parameter
and can be calculated per Equation (2.17) in Section 2.4. The size dimension factor for bending
or torsion has a value between 0.807-1.12. We can use 0.87 as its preliminary estimation:

kp = (3.3)

0.87 For bending or torsion loading
1 For axial loading.

In the following sections, we will discuss how to determine the mean us of a normally dis-
tributed dimension with the required reliability R.

3.2.2 DIMENSION DESIGN BY THE FOSM METHOD

When all random variables are normally distributed random variables in the limit state func-
tion (1.1), we can use the FOSM method to estimate g with the required reliability R under
specified loading condition. The FOSM method for calculating the reliability of a component
has been discussed in Section 3.5 of Volume 1 [1]. Now, we will discuss how to use the FOSM
to conduct the dimension design with the required reliability. The procedure of the dimension

design by the FOSM method is as follows.

Step 1: Preliminary design for determining K for static design or K¢ and kj, for fatigue design.
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For a component dimension design under static loading, we can determine the preliminary static
stress concentration factor, as discussed in Section 3.2.1 if the critical section is in the stress
concentration area. For a component dimension design under cyclic fatigue loading spectrum, we
can determine the preliminary fatigue stress concentration factor, as discussed in Section 3.2.1
if the critical section is in the stress concentration area. For the size modification factor, we will
use 0.87 for bending and torsion or 1 for axial loading per Equation (3.3).

Step 2: Use the FOSM method to calculate j%°.

According to the FOSM method, the mean and standard deviation of the limit state function [1]
will be:

e = g (Ixys -« os ixys 1°) (3.4)

&S 0g (X Xy d) 2 g (X1,..., Xn,d)
% = ;( 0X; X“X") * od

xod)z, (3.5)

means means

where j1x; and oy, are the mean and the standard deviation of normally distributed X;. pg and
04 are the mean and the standard deviation of the limit state function g (X1, ..., X,, d).04is
the standard deviation of the dimension and is pre-determined by the dimension tolerance per
Equation (1.1).

For dimension design, the reliability of a component is given; that is, R = ®(f). There-
fore, the design equation for a dimension with the required reliabilit R by using the FOSM
method [1] is

p=0o'(R)="2
Og

— g(/Lle""'U“X""U“Z'O) (36)

i g (X1...., Xn.d) o 2+ g (X1..... Xn.d) o 2
i =1 aXl means Xi 8d means d

In Equation (3.6), 15° is the only one unknown and can be solved.
Step 3: Update the dimension dependent parameters.

If there are dimension-dependent parameters in the limit state function, we need to use the
iterative process. After a new value ;%° of the mean 14 in an iterative step is available, we can
use /15 to update dimension-dependent parameters such as the static stress concentration factor
K, the fatigue stress concentration factor Ky, or the size modification factor kj if necessary.
Then, we can go back to Step 2 to calculate a new dimension 13"
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Step 4: Convergence condition.

For a dimension design, since we will obtain an approximate result, we can use the following
convergence condition:
abs(uit — i) < 0.001”. (3.7)

If the convergence condition is not satisfied, we go back to Step 2 until the convergence condition
is satisfied.

If the convergence condition (3.7) is satisfied, the /LZI will be the mean of the dimension
with the required reliability, that is,

fa =y (3.8)

If the limit state function is a linear function of all normally distributed random variables, the
FOSM method will provide an accurate result. However, if the limit state function is a nonlinear
function of all normally distributed random variables, the FOSM method will only provide an
approximate result [1].

Example 3.1

A circular stepped bar as shown in Figure 3.1 is subjected to axial loading F, which follows a
normal distribution with a mean ur = 28.72 (klb) and a standard deviation o = 2.87 (klb).
'The material of this bar is ductile. The yield strength S, of this bar’s material follows a normal
distribution a mean s, = 32.2 (ksi) and a standard deviation s, = 3.63 (ksi). Determine the
diameter d of the bar with a reliability 0.99 when its dimension tolerance is +0.005.

1

R§ n

03.250" d

Figure 3.1: Schematic of the segment of a stepped bar.

Solution:
(1) Preliminary design for determining K.

This is a static design problem. According to the schematic of the stepped shaft, we can
assume that it has a well-round fillet. Per Table 3.2, we have the preliminary static stress con-

centration factor,
K, =19, (a)
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(2) The limit state function of this stepped bar.
For this problem, the critical section will be on the stress concentration section, that is, the

stepped section. The normal stress on the critical section of the bar caused by the axial loading
Fis

F 4F
o= Mnazja T Nna? (b)
The limit state function of the bar is
> (0 Safe
4F o
g1 (Sy, F.K;, d) =5, —- Ktra’z =30 Limit state (c)

<0 Failure.

We will use “allowable force” to form another version of the limit state function as shown in
Equation (d), which will be much easier to solve ,ui}o
>0 Safe
md? o
g2 (Sy. F.K;.d) = S, e —K;F =140 Limit state (d)
<0 Failure.
In the limit state function, there are four normally distributed variables. The mean and standard
deviation of the static stress concentration factor K; can be determined per Equation (1.3). For

the dimension, the dimension standard deviation o4 can be determined per Equation (1.1).
Their distribution parameters in the limit state function (d) are listed in Table 3.4.

Table 3.4: Distribution parameters for Example 3.1

F (kIb)
R OF UK, OK, kd od

322 3.63 28.72 2.87 1.9 0.095 Ud 0.00125

(3) M;O in the first iterative process.

Per Equations (3.4) and (3.5), the mean and standard deviation of the limit state function
are:

7 (g)” ©

Kg2 = &2 (s, LF . LK, s Hd) = s, L HKE

T (M*O)z 2 Tpto 2
Og2 = Tdosy + (—uk,0F)? + (—prok,)? + | s, 2d oq | - (f)
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The reliability index f with the required reliability R = 0.99 per Equation (3.2) is

B =d1(0.99) = 2.32635. (2)
Per Equation (3.6), we have:
2
T M*O
g2 /’Lsy¥ — MK UF
p=tez_ — W
g *0 *0
(u T
(%Usy) + (—uk,0F)* + (—prok,) + (/Lsy Tdﬁd)

In Equation (h), only M:;o is an unknown and can be solved. Equation (h) is based on the limit
state function (d). This is much simpler than the corresponding equation based on the limit state
function (c). Per Equation (h) with the current value, we can solve /L:,O:

il = 1.7771". (i)
(4) Update K; based on pu° = 1.7771".

After we have dimension p1° = 1.7771, we have the geometric dimensions for the stress
concentration. Then we can calculate the static stress concentration factor K; based on current
dimensions, thatis, D = 3.25", d = MZO = 1.7771",and r = 1/8”.'The updated K in this case
is:

K; = 2.2039. G)

(5) Create a MATLAB program to conduct the iterative process.

We can follow the procedure discussed above and the formula listed in this problem to
make a MATLAB program. The results of the iterative process from the program is listed in
Table 3.5.

From the iterative results, the dimension of d in this example is

d =1.919 £ 0.005".

Example 3.2

On the critical cross-section of a beam with a rectangular cross-section is subjected to a bending
moment M = 50.25 £ 4.16 (klb.in). The yield strength S, of this beam’s material follows a
normal distribution a mean js, = 32.2 (ksi) and a standard deviation og, = 3.63 (ksi). If the
width of the beam is » = 2.000 & 0.010”. Determine the height / of the beam with a reliability
0.95 when the dimension tolerance is 0.010".
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Table 3.5: The results of the interactive process for Example 3.1

Iterative # K, U Alugl
1 1.9 1.777084
2 2.203939 | 1.913948 | 0.136865
3 2.214874 | 1.918691 | 0.004742
4 2.21526 | 1.918858 | 0.000167

Solution:
For this example, we do not have a static stress concentration factor. So, we can directly
use Step 2 of the procedure discussed above to conduct the component dimension design with

the required reliability.
(1) The limit state function.

'The normal stress of the beam caused by the bending moment M is

_ Mh/2 _6M @
T2 T bk :
The limit state function of the beam is
> (0 Safe
oM o
g (Sy, M,b,h) =5y — 2 =10 Limit state (b)

< 0 Failure.

'The bending moment M can be treated as a normal distribution. Its mean and standard deviation
can be determined per Equation (1.2). For the dimension, the dimension standard deviation
o4 can be determined per Equation (1.1). In the limit state function, there are four normally
distributed variables. Their distribution parameters in the limit state function (b) are listed in

Table 3.6.

Table 3.6: Distribution parameters for Example 3.2

M (klb.in)

322 3.63 50.25 1.04 2.000 | 0.0025 h 0.0025

(2) The mean and the standard deviation of the limit state function.
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Per Equations (3.3) and (3.4), the mean and the standard deviation of the limit state
function are:

( ) 6um 10 6 x 50.25 150.75
g = g (Ms, M. s Uh) = RS, — ——5 =322 — ——5 =322~
’ ’ Y el 2.00042 12

2 2 2
2 6om 6umOp R2pprop
8 = J (o5,)" + (_ubui) " ( n2u? ) - ( b3

9.7344  0.03551  0.56814 9.7699  0.56814
= \/13.17694— + + = \/13.1769 + + . (d)

()

14 1t 1 T I3

(3) 'The diameter of the beam with a reliability 0.95.
'The reliability index B with the required reliability R = 0.95 per Equation (3.2) is
B = d1(0.95) = 1.64485. (e)

Per Equation (3.5), we have the following equation:

29.125
322~ 2 32.2u3 — 150.75u
1.64485 = h = h ()]
131760 4 27099, 056814 131769 +9.7699,1% +0.56814
K H
By solving Equation (f), we have:
= 2.400". (g)

Therefore, the height of the beam with the required reliability 0.95 under the specified loading
will be
h = 2.400 £ 0.010".

3.2.3 DIMENSION DESIGN BY THE MODIFIED H-L METHOD

When a limit state function of a component is a nonlinear function of all normal distributions,
we can use the modified H-L method to determine the component dimension with the required
reliability under specified loading [3-5]. The H-L method iteratively calculates the reliability
index B and then uses converged reliability index f to calculate the reliability, which has been
discussed in Section 3.6 of Volume 1 [1]. It is also displayed in Appendix A.1 of this book.
For a dimension design, we already know the reliability index 8, and we will use the following
modified H-L method to determine iteratively the mean p4 of the dimension.
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'The general procedure for the modified H-L method for dimension design is explained
and displayed as follows.

Step 1: Preliminary design for determining K, for static or Ky and kj for fatigue design.

Per Section 3.2.1, we can determine the dimension-dependent parameters K, for static or Ky
and kp, for fatigue issue if necessary.

Step 2: Establish the limit state function.

'The general limit state function of a component for dimension design is listed in Equation (3.1)

and redisplayed here:
>0 Safe

g(X1,..., Xp,d) =13 =0 Limit state (3.1)
<0 Failure,

where X; (i =1,2,...,n)is arandom variable related to component strength or loading, which
could be any type of distributions. d is a normal distribution dimension with a mean p4 and a
standard deviation o4. For component dimension design, jt4 is the variable for solving and o4
is determined by the manufacturing process and is treated as a known variable.

Step 3: Calculate the reliability index f.

According to the required reliability of the component, we can determine the reliability index

per Equation (3.2) and is redisplayed here:

B = ® ' (R) = norminv (R). 3.2)

Step 4: Pick an initial design point P** (X;0,... X0, ... d*7).

The initial design point must be on the surface of the limit state function as specified by Equa-
tion (3.1). We can use the mean values for the first n variables and then use the limit state
function (3.1) to determine d*°:

Xi*o = ux,

I 1,2,...,n (3.9)
g (X710 .. X0, d*%) =o0. '

When the actual limit state function is provided, we can rearrange the second equation in Equa-
tion (3.9) and express d*° by using X0, X50, ... and X;°. Let’s use the following equation to
represent this:

d** = g1 (X7°, X;°,.... X9). (3.10)

Step 5: Calculate the new design point p*l (X;”, e X,’fl,d*l).
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Based on the H-L method that was discussed in Section 3.6 of Volume 1 [1] and also concisely
displayed in Appendix A.1 of this book, we can calculate the Taylor Series coeficients:

g (X1,...,Xn.d
Gilp+o = ox; g ) i=12,....n
aXi P*O (3 11)
Galoeo = 0 g (X1,...,Xn.d) '
d L d 3d P*O ’
Let us use variable Gy to represent the following equation:
n
Go= | _(Gilps0)* + (Galp+0)*. (3.12)
i=1
Since the reliability index f is a known value, we can use the same approach shown in the H-L
method to calculate the new design point P*! (X1, ... X*'  d*!):
X*l _ - Gl‘|P*0 ,
;= px; +ox; X B x G, i=1,...,n. (3.13)
0

d*! will be determined by the limit state function per Equation (3.10) and can be displayed as
tollows:
d*' =g (XTh X3 X (3.14)

Step 6: Update the dimension-dependent parameters.

If there are dimension-dependent parameters such as static stress concentration factor K; for
static loading, the fatigue stress concentration factor Ky and the size factor ky, for cyclic loadings,
we need to use the new dimensions to update these dimension-dependent parameters. Since
the value of any random variable at the design point in the H-L method is determined by this

equation:
- Gd |P*0
Go '

Rearranging the above equation, we can get the equation for ji4:

d*1=/1,d+adxﬂx(

ng =d* —o4 x B x (M), (3.15)
Go

0
After this ug is known, the geometric dimensions for the stress concentration areas are

all known. We can update the static stress concentration factor K,. Then, we can use Equa-
tions (2.22), (2.23), and (2.24) to update the fatigue stress concentration factor Ky and use
Equation (2.17) to update the size modification factor kp.

where (%) will be the value calculated in Equations (3.11) and (3.12).
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Step 7: Check convergence condition and the mean 14 of the dimension d.

d is the dimension in the unit of inch. Therefore, the convergence condition for the dimension

d can be:
abs (d*' — d*°) < 0.0001". (3.16)

If the convergence condition (3.16) is not satisfied, we need to update the design point by using
the following recurrence of Equation (3.17) and go back to Step 5:

X =x*  i=1,...,n

o (3.17)

If the convergence condition (3.16) is satisfied, the g in Equation (3.15) is the mean g4 of the
dimension d with the required reliability under the specified loading.

Since the modified H-L method is an iterative process, we should use the program for
calculation. The program flowchart of the modified H-L method is shown in Figure 3.2.

Example 3.3
Use the modified H-L method to do Example 3.1.

A circular stepped bar as shown in Figure 3.1 is subjected to axial loading F', which follows
a normal distribution with a mean pur = 28.72 (klb) and a standard deviation o = 2.87 (klb).
The material of this bar is ductile. The yield strength S, of this bar’s material follows a normal
distribution a mean s, = 32.2 (ksi) and a standard deviation o5, = 3.63 (ksi). Determine the
diameter d of the bar with a reliability 0.99 when its dimension tolerance is +0.005.

Solution:
(1) Preliminary design for determining K.

This is a static design problem. According to the schematic of the stepped shaft, we can
assume that it has a well-rounded fillet. Per Table 3.2, we have the preliminary static stress

concentration factor
K, =1.09. (a)

(2) The limit state function.

'The normal stress of the bar caused by the axial loading F is
F 4F

=K =K . b
o= Mrazs T N a2 (b)
The limit state function of the bar is
>0 Safe
4F
g(Sy,F,Kt,a’)=Sy—Kthd2 =40 Limit state (c)

<0 Failure.
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Input distributed parameters

v

Preliminary design to determine K, for static design, or Ky and k;, for fatigue design

¥

Calculate the reliability index 8 per Equation (3.2)

Determine the initial design point P*°(X}°, ..., X;0,...,d*0)
Equations (3.6) and (3.7)

v

Store data of iterative process including design point

v

Calculate Taylor Series coefficients G;| p+o, G4l p+o and G,

A

Equations (3.8) and (3.9)
v

Calculate the new design point P**(X;2,..., X1, d*1)
Equations (3.10) and (3.11)

!

Update the dimensiom-dependent parameters, Equation (3.15)

|d*1_d*0
<0.0001

Xi*[) = Xl*l
d*o = d*l

—G .
Ug = d*™t — oy XX <£)
GO

End

Figure 3.2: The program flowchart for the modified H-L method.
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In the limit state function, there are four normally distributed variables. For the dimension, the
dimension standard deviation 0, can be determined per Equation (1.1). The mean and standard
deviation of the static stress concentration factor K; are determined per Equation (1.3). Their
distribution parameters in the limit state function (c) are listed in Table 3.7. The mean and
standard deviation of K, in the table will be updated in each iterative step. (Note: The user-
defined subroutine for updating the stress concentration factor is required for this example.)

Table 3.7: Distribution parameters for Example 3.3

F (kIb)
Hs, os, MF OF HK, oK, Hq ]
32.2 3.63 28.72 2.87 1.9 0.095 Ud 0.00125

(3) 'The reliability index B with the required reliability R.
The reliability index 8 with the required reliability R = 0.99 per Equation (3.2) is
B = d1(0.99) = 2.32635. (d)
(4) Use the modified H-L method to determine the dimension.

Following the procedure and the flowchart in Figure 3.2 discussed above, we can compile a
MATLAB program. The program is listed in Appendix B.4 as “M-H-L-program-Example 3.3.”
'The iterative results are listed in Table 3.8.

Table 3.8: The iterative results of Example 3.3 by the modified H-L method

Iterative # Sy F* K; d* |Ad"|
1 32.2 28.72 1.9 1.468913
2 26.20276 | 32.92314 | 1.969613 | 1.775099 | 0.306186
3 25.437 | 32.08462 | 2.286689 | 1.916347 | 0.141248
4 25.3237 | 32.1278 | 2.286277 | 1.921748 | 0.005401
5 2531118 | 32.11423 | 2.286569 = 1.92194 | 0.000192
6 25.31073 | 32.11421 | 2.286546 | 1.921946 | 6.79E-06

According to the result obtained from the program, the mean of the diameter with a

reliability 0.99 is
jg = 1.922". (e)
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‘Therefore, the diameter of the bar with the required reliability 0.99 under the specified loading
will be
d = 1.922 £+ 0.005".

Example 3.4
Use the modified H-L method to do Example 3.2.

On the critical cross-section of a beam with a rectangular cross-section is subjected to a
bending moment M = 50.25 + 4.16 (klb.in). The yield strength S, of this bar’s material follows
a normal distribution a mean 15, = 32.2 (ksi) and a standard deviation o5, = 3.63 (ksi). If the
width of the beam is b = 2.000 & 0.010”. Determine the height % of the bar with a reliability
0.95 when the dimension tolerance is £0.010”.

Solution:

For this problem, there is not static stress concentration. So we do not need to do the preliminary

design.
(1) The limit state function.

'The normal stress of the beam caused by the bending moment M is

_ Mh2  6M @
T2 T bk ¢
The limit state function of the beam is
>0 Safe
6M .
g (Sy, M,b,h) =S, - i 0 Limit state (b)

<0 TFailure.

'The bending moment M can be treated as a normal distribution. Its mean and standard deviation
can be determined per Equation (1.2). For the dimension, the dimension standard deviation
04 can be determined per Equation (1.1). In the limit state function, there are four normally
distributed variables. Their distribution parameters in the limit state function (b) are listed in

Table 3.9.
(2) The reliability index 8 with the required reliability 0.95.
'The reliability index f with the required reliability R = 0.95 per Equation (3.2) is

B =7 (0.0.95) = 1.64485. ()
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Table 3.9: Distribution parameters for Example 3.4

M (Klb.in)
1, as o oM b ap th oh

322 3.63 50.25 1.04 2.000 | 0.0025 Lh 0.0025

Table 3.10: The iterative results of Example 3.1 by the modified H-L method

Iterative # Sy M b* h* |Ad"|
1 322 50.25 2 2.163718
2 26.32887 | 50.55881 | 1.981349 | 2.411446 | 0.247727
3 26.29544 | 50.50239 | 1.984518 | 2.409705 | 0.001741
4 26.29542 | 50.50235 | 1.984563 | 2.409678 | 2.68E-05

(3) Use the modified H-L method to determine the dimension.

We can follow the procedure, and the flowchart in Figure 3.2 discussed above, we can
make the MATLAB program. The iterative results are listed in Table 3.10.
According to the result obtained from the program, the mean of the beam heigh with a
reliability 0.99 is
[y = 2.410". ()

Therefore, the height of the beam with the required reliability 0.95 under the specified loading
will be

h =2.410 £ 0.010".

3.2.4 DIMENSION DESIGN BY THE MODIFIED R-F METHOD

When the limit state function (3.1) contains at least one non-normal distribution, we need to use
the modified R-F method to design the component dimension of a component with the required
reliability under specified loading [5]. The R-F method iteratively calculates the reliability index
B and then uses converged reliability index B to calculate the reliability, which has been discussed
in Section 3.7 of Volume 1 [1] and is also concisely displayed in Appendix A.2 of this book. Since
the reliability index B is a known value for a dimension design, we will use the modified R-F
method to determine iteratively the mean u,4 of the dimension d. The general procedure of the

modified R-F method for dimension design is explained and displayed as follows.

Step 1: Preliminary design for determining K, for static design or K¢ and k;, for fatigue design.
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Per Section 3.2.1, we can determine the dimension-dependent parameters K, for static design
or Ky and k;, for fatigue design if necessary.

Step 2: Establish the limit state function.
For a clear description of the modified R-F method procedure, we can rearrange the limit
state function (3.1) into the following form of the limit state function.

>0 Safe
g(X1,....Xr, Xpq1...., Xy, d) = {=0 Limit state (3.18)

<0 Failure,

where the first r random variables are non-normal distributed random variables and the rest
(n — r) random variables are normally distributed random variables. The last one is normally
distributed dimension with a mean ©; and a standard deviation oy.

Step 3: Calculate the reliability index f.

According to the required reliability of the component, we can determine the reliability index

per Equation (3.2) and is redisplayed here:
B = & 1 (R) = norminv (R). (3.2)

Step 4: Calculate the mean for non-normal distributed random variables.

For non-normally distributed random variables, we can calculate their means based on their type
of distributions, which was discussed in Chapter 3 of Volume 1 [1].

Step 5: Pick an initial design point p*0 (Xfo, e X;ko, X,*f:l, D G d*o).

'The initial design point could be any point, but it must be on the surface of the limit state
function. Typically, we can use the means of the first n random variables as the values X;** (i =
1,...,n) in the initial design point, the value d ** will be determined by the limit state function:

X0 = ux, i=12,...,n

4

g (X;“O, X0 d*") =0, (3.19)
where 1y, is the mean of every random variable X; (i = 1,...,n). For a non-normally dis-
tributed random variable X; (i = 1,...,r), we will use the mean values that have been calculated
in Step 4.

When the actual limit state function is provided, we can rearrange the second equation
in Equation (3.19) and express d*° by using X;°, X5°,..., and X,°. Let’s use the following
equation to represent this:

d** =g (X7°, X% ... X)) (3.20)

n
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Step 6: 'The means and standard deviations of variables at the design point
P*O (XikO X*O d*O)

For non-normally distributed random variables, we convert them into equivalent normal dis-
tributed random variable [1] per Equation (3.21). For the first 7 non-normal random variables
in the limit state function described in Equation (3.18), we have the following equations:

240 = 0 [, (X7°)] = nominy (Fy, (/)

1 1
PP S— (z;;?) - normpdf (z;?) i=1,2,....r (3.21)
T S (XF0) fx; (X7°)
HXjeq = x;«o - Z;’? X OXjeqs

where x*? is the value of the non-normally distributed random variable X; at the design point
P*0. fx, (xl* 0) and Fy;, (xl* 0) are the PDF and CDF of the non-normally distributed random
variable X; at the design point 