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Preface

This monograph, consisting of two books, I and II, includes fresh approaches in the
two branches of combinatorics and functional equations, concentrating on algebraic
approaches to establishing a rigorous theory for discussing the property of being well-
defined and solutions for which it is not necessary to care about convergence or non-
convergence and suitability. Its central feature is in building up a theory for unifying
the theories of counting distinct classes in classifications under a variety of isomor-
phisms on a variety of combinatorial configurations, particularly maps (rooted and
un-rooted), embeddings of graphs on surfaces, even graphs themselves and so forth,
with an infinite partition vector as given parameter.

This monograph is on the basis of my previous books: Enumerative Theory of Maps
published by Kluwer (Springer) in 1999, General Theory of Map Census by Science
in 2009 and Theory of Combinatorial Functional Equations (in Chinese) published by
USTC Press in 2015, by introducing the extension of an integral domain which is a ring
of obeying the cancelation law, a mathematical theory for a series of combinatorial
functional equations, discovered mostly in the last 30 years or more in specific cases,
relevant for counting non-isomorphic classes, via certain classifications of combinato-
rial configurations, particularly combinatorial maps, graphic embedding on surfaces,
even graphs themselves, lattices, networks, hypergraphs, matroids, words, designs,
cryptographics, to name only a few, with an infinite partition vector as given parame-
ter.

This monograph might be seen as an advanced version of the previous one, re-
flecting a series of items of progress made since then.

First, almost all equations are generalized to have constant coefficients of certain
terms for each equation. These constants are arbitrarily given mostly in Z, because of
their original usage.

Second, all functional equations related to plane trees and near-trees are shown to
have their solutions in the form of an explicision (or explicit expression) summation-
free obtained only by transformations on the extension of integral domain.

Third, all functional equations related to outer planar maps are shown to have
their solutions in the form of an explicision obtained only by transformations on the
extension of integral domain.

Fourth, all functional equations related to planar maps are indirectly shown to
have their solutions in the form of explicisions implied from an investigation of a cor-
responding planar embedding by introducing a new extra parameter vector.

Fifth, all functional equations related to maps on surfaces are still indirectly
shown to have their solutions in the form of explicisions looking not so complicated
as in the third case via investigations of the embedding of underlying graphs with
symmetry considered.
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VI —— Preface

Sixth, all solutions of equations considered have a specific case as one of the appli-
cations done just from determining the number of certain equivalent classes of maps
under a given parameter vector.

The whole book is concentrated on contemplating the constructibility and the re-
alizability not only for systematization in theory but also for efficientization in running
and for intelligentization in usage.

The constructibility enables us to emphasize on exploiting the inner constructions
for the consistency theory established on each equation considered in the extension
of integral domain. The realizability enables us to evaluate the solution via a number
of operations on the extension of integral domain itself as well.

Although all equations have a combinatorial meaning as a special case or in one
of their applications, the basic theoretical principles presented in this subject can be
seen as pure mathematics, independent of combinatorics, particularly, from the point
of view of maps related to graph theory.

For each equation with meson functional, from certain restrictions, a number of
function equations, difference (straight and slope) equations, and differential (ordi-
nary and partial) equations are also involved with as an application for classifying
varieties of combinatorial maps. From these, explicit expressions of the solutions for
the corresponding meson functional equations are indirectly extracted, as shown in
each of the chapters from Chapter 3 through Chapter 21.

The monograph is divided into two books, I and II. In Book I, the central content
is on basic theory of equations with or without a functional. And book II is on an ad-
vanced theory of meson functional equations because of its universality.

This volume is Book I titled Combinatorial Functional equations 1—Basic Theory,
which contains Introduction and Chapter 1 through Chapter 10.

Introduction provides an overall view of all the equations particularly mentioned
as representatives.

Chapter 1and Chapter 2 are for the main background from algebra, theory of func-
tions and functionals, and only for meson functionals with the general equation.

From Chapter 3 on through Chapter 7, basic equations including function equa-
tions with one and more variables and functional equations with infinite variables
under basic functionals such as straight and/or slope differences, ordinary or partial
differentials and most simple meson equations under the meson functional are, to a
certain extent, investigated. The origins of them are with certain enumerations of a
variety of maps in a finite number of parameters on surfaces of smaller genera.

Chapter 3 and Chapter 4 are concerned with equations of functions of, respec-
tively, one and at least two variables.

Chapter 5 is involved with basic functional equations under a straight difference,
a slope difference, or both.

Chapter 6 and Chapter 7 are concentrated on, respectively, ordinary and partial
differential equations.
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From Chapter 8 through Chapter 10, we are only concerned with basic meson func-
tional equations. They are all solved directly by extracting the solution with the coef-
ficient of each term in the solution as an explicision (i. e., explicit expression) in the
form of a summation-free, or finite sum with all terms positive in the extension of in-
tegral domain.

Chapter 8 addresses two types of tree equations under a meson functional with
constant coefficients.

Chapter 9 and Chapter 10 address two types of near-tree equations, or, as we may
say, uni-cyclic equation and wintersweets equations, under the meson functional with
constant coefficients on the extension of the integral domain.

An attempt has been made to keep the presentation of this book as self-contained
as possible. It should not be necessary to read more specialized books beforehand
whatever; the concepts of the extension of an integral domain (a ring obeying the can-
celation law) and of the meson functional have to be clearly understood.

Because of the concentration only on algebraic qualitative and quantitative the-
ories of all equations considered, many articles on map enumeration are omitted, for
which I would like to apologize. However, for more details as regards the references
one is referred to the bibliographies of my previous two books: Enumerative Theory of
Maps [44] (1999, pp. 392-406) and General Theory of Map Census [51] (2009, pp. 451-
470).

Many people, I‘should mention, are, directly or indirectly, contributors to this
book. However, I can only name a few because of the limited space. First of all,  have to
express my appreciation to Professor W. T. Tutte for indicating to me the potential topic
on map enumeration when I was in the University of Waterloo 30 years ago. This topic
should now be seen as the origin of the present book. Many of my cooperators used
to do, or are still doing, research on the topics around, such as Junliang Cai, Han Ren,
Rongxia Hao, Zhaoxiang Li, Wenzhong Liu, Yan Xu, Yongli Zhang, and Liyan Pan, and
they are presenting a number of new relevant results. Last but not least, I have also to
express my heartiest thanks to Juniang Cai, Rongxia Hao, Zhaoxiang Li and Liangxia
Wan for carefully reading the manuscripts to avoid too many errors and mistakes. Of
course, any error or mistake remaining belongs to myself.

Daotiancun, Beijing Y.P. Liu
October, 2018
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Introduction

From Chapter 3 on through Chapter 10, all typical equations considered are listed for
an overall picture of this book. The book is divided in four parts.

Part one consists of two chapters: Chapter 3 and Chapter 4 dealing with function
equations.

In Chapter 3, six types of equations are covered.

First, we consider the quadratic equation for f € R{z} with four independent con-
stant parameters

{azf2 -bf +c=0; O

flz:O = d;

where a, b, c,d € Z,. In this equation, the coefficient az of f? involves the variable z.
Second, we consider the quadratic equation for f € R{z} with four independent
constant parameters

{af2 -bf +cz=0; )

flz:() = da

where a,b,c,d € Z,. In this equation, the term independent of f involves the vari-
able z.

Third, we consider the quadratic equation for f € R{z} with four independent
constant parameters

{a(l +2)fP—-bQ+2)f +cz =05 )

f|z:0 = d,

wherea,b,c,d € Z,, abc > 0. Several coefficients (like a(1 +z), b(1+z) and cz) involve
the variable z.
Fourth, we consider the cubic equation for f € R{z}

{f3+ a(lz;Z)f2+ b(zz_Z)f+C=0;
f|z:0 :d)

(4)

wherea,b,c,d € Z,.
Fifth, we consider the cubic equation for f € R{z}

{azf3 —3bzf2+ 3z - 1)f + ¢ = 0; ©)

f|z:0 =d,
wherea,b,c,d e Z,.

https://doi.org/10.1515/9783110625837-202



XIV — Introduction

Sixth, we consider the quartic equation for f € R{z}

{zf4 —al-2)f +b1-32)f*+32zf —cz = 0; ©)

flz:O = d;

wherea,b,c,d € Z,.
In Chapter 4, five types of equations are covered.
First, we consider the quadratic equation for f € R{x,y} with four independent
constant parameters
{axyzfz +(x-Df +cx-1)=0; @)
flx:O,y:O =d,

wherea,c,d € Z,, ac > 0.
Second, we consider the quadratic equation for f € R{x,y}
axyf 2
—= -(1+y)f+cxy=0;
{ X—f y y ®)
fx=0,y=0 =d,

wherea,c,d € Z,.
Third, we consider the linear equation for f € R{x,y}

5 axy X 1
= h-
f CXy+1—xy<l—x l—xf>

flx:O,y:O =d,

wherea,c,d € Z, and h = f(1,y).
Fourth, we consider the quadratic equation for f € R{x,y}

€)

{axzy(l =2 = (1= +Xy)f + c(1-x%) + bx’yh = O; (10)

f|x=0,y=0 =d,

where a,b,c,d € Z, and h = f(1,y).
Fifth, we consider the equation of higher degree for f € R{x,y}

a’y(f-h
XA+h)?-Q1+)% (1)
fly:O = d(:> hy:O = d):

f=cxy+

wherea,c,d € Z, and h = f(1,y).

Part two consists of basic functional equations which involve fundamental func-
tionals as differences (straight and slope) in Chapter 5.

In Chapter 5, five types of equations are covered.
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First, we consider the equation in which only one straight difference occurs for
feR{xy}

{ f(1-axyb, (X)) = c; (12)

flx:y:O = d>

where a,c,d € Z, and 8, ,(xf) = ((xf),=; — (xf))/(1 - x) is the straight difference of xf
between 1 and x shown in Chapter 2.

Second, we consider the equation in which two straight differences occur for f €
Rix,y}

{f (1+ ayzt(fiey +f,o0) = € + byzt(8y,(tf) + 6,.(2); 13)

fly:O:z:t:O =d,

in which, both straight differences of z and ¢t occur fora, b,c,d € Z...
Third, we consider the equation in which only one slope difference occurs for f €
Rix,y}

{f = c+@Cyf? + bydy (0Cf) —xyhf — (=D - 1 (14)

flx=0=y-0 =d (initial condition!),

wherea,b,c,d € Z, and h = f|,_; € R{y} with only one slope difference of x shown in
Chapter 2.

Fourth, we consider the equation in which two slope differences occur for f €
Riy,z. t}

ayzto,f  byzto,f
1- au;t:l 1- a1,z£z:1 (15)

f=2cyz’t +
fly:O:z:t:O =d,

wherea,b,c,d € Z,.
Fifth, we consider the equation in which one straight difference and one slope
difference occur for f € R{x,y}

ax2y (61,xf )2
fmer DD 0, (16)
f|y:0=>x:0 =d,

such thatf € Ri{x,y} fora,b,c,d € Z,.

Part three consists of basic functional equations involving fundamental function-
als: ordinary differential and partial differential in, respectively, Chapter 6 and Chap-
ter7.

In Chapter 6, six ordinary differential equations are covered.
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First, we consider the equation in which one ordinary differentiation occurs with
a variable parameter for h € R{y}

dh dh
yd = ZT<2ayd—y + bh)
hly:O = d

17)

where a,b,d € Z, and 7 is known from

0, when n = 0;
B;‘T =11, whenn = 1;
31 9ytd) ', whenn> 2,

forn=>o0.
Second, we consider the equation in which one ordinary differentiation occurs for
h € Rix}

20k _ _ Ok
{Zxdx_ c+a(l-x)h; (18)

hg = hlyo = d
wherea,c,d € Z,.

Third, we consider the quadratic equation in which one ordinary differentiation
occurs for f € R{x}

2df e 2
{Zxdx— c+b(-x)f -axf; (19)

fo=fl=0=4d
wherea,b,c,d € Z,

Fourth, we consider the quadratic equation in which one ordinary differentiation
occurs for f € R{x} with two variable parameters

x? f = ba(X)f — axf? — 2cxB(x)

g
dx

(20)

=d,
x=0

fora,b,c,d € Z, where

a(x) =1-2x — 2Xforiens
d
ﬁ X) fOnen +2X——— fOnen

and forien the solution of equation (19).
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Fifth, we consider the quadratic equation in which one ordinary differentiation
occurs for f € R{x} with three independent constant parameters
df
2 2
ax"— =-d+ (1 - bx)f —cxf
dx @1
f |x:0 = da

wherea,b,c,d e Z,.
Sixth, we consider the quadratic equation in which one ordinary differentiation
of second order occurs for f € R{x}

2
<2az + 5bf — 3CZd—f>ﬂ = 48z;
dz / dz?
22)
fo=d Y| -a
z=0 — > dZ 220 - >

wherea,b,c,d € Z,.
In Chapter 7, seven partial differential equations are covered.
First, we consider the quadratic function equation for f € R{x, y}

{ﬁwﬁaw—%V—M%ﬁ+d%—w=m
(23)

f|x:y:0 = d)

where a,b,c,d € Z, and f* = aif used in the partial differential equations appearing
below.

Second, we consider the system of partial differential equations about (g,f) €
R*x,y}

Xy xd) -yl

X2 —y = 22yf
f- Xyf2 - xXyf* +x* -y (24)
xX2-y ’

f|x:y:0 = 1: ng:y:() = O:

where f* = 92f and g* = 92g.
Third, we consider the system of partial differential equations for (g,f,h) €
2 2
= X" (1= 2yh)f - ¥f; o

R {x,y}
ag>
4
xylz=2
y< 0z /|z=x

|P2y8. bl ) = (F - 2 yh)g - yg; o5

(25)
x*yh? + (y - x*)h - xzyhzx +xX2-y=0;

~f|x:y:0 =0; g|x:z:y:0 =1 hlx:y:O =1
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where f; ., and g; .5 are the results from functions f and g deleting the terms of x with
degrees less than and equal to, respectively, 4 and 3.

Fourth, we consider the system of partial differential equations for (g,f,h,p) €
R*{x,y}

| 0, oh
x4y<xa—g + [z—] ) = X*f - x*y(g + g* + 20f) - y(f — xX*0f )
X 0Z |,

x4y<p + x?—i) =x*(* -y - 2*yp)g + X*ydlg;
(26)
= Czy —— Baauplyy) = X*(1- 2Cyp)h - y(h - XCoch);

x*yp? + (y = x)p - x’ydlp + x> -y = 0;

~f|x:z:y:0 = g|x:z:y:0 = h|x:z:y:0 =0; p|x:z:y:0 =1L

Fifth, we consider the equation in which two partial differentiations occur for f €
R{x,y} with three constant parameters

of _of

axy(ZyE x—) A -xyfli=)f -6

f|x:0.y:0 =d,

@7)

wherea,c,d € Z, and a # 0.
Sixth, we consider the equation in which one partial differentiation with a con-
stant parameter occurs for f € R{x, y} with four constant parameters

of xy bx’y
aXB)/a <1 axy+ﬁ>f— f|x1 clxy +1)

flx:O,y:O =d,

(28)

where a,b,c,d € Z, and a + 0.
Seventh, we consider the equation in which one partial differentiation occurs for
f € Rix,y} with four constant parameters

0 x? bx?
2axyaf2 <1 axy+ ))/(2>f yflx1

flx:O,y:O =d,

(29)

where a,b,c,d € Z, and a # 0.

Part four consists of basic equations involving the meson functional in Chapter 8
through Chapter 10.

In Chapter 8, two types of basic functional equations are covered.

First, we consider a most simple equation with the meson functional and three
independent constant coefficients for f € R{x, y}
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ay’f
=f - byy;
yj 1-of g (30)

flyzo = d)

wherea,b,c,d e Z,,f =f(y) €e Rix,y}andy = (0,y,,¥3,...).
Second, we consider another most simple equation with the meson functional and
three independent constant coefficients for f € R{x,y}

ax j ysx,y(”f'x:u) :f -G
y (€}))

flx:O,y:O =d,

wherea,c,d € Z, and f = f(x,y¥) € R{x,y} fory = (y1,¥2 V3. .).

In Chapter 9, only one type of basic equation involving the meson functional is
covered.

Consider the meson equation for f € R{x,y} with three independent constant
coefficients,

ax J yax,yflx:u =f- alxzfgtree;
y (32)

flx=0y-0 = a0,

where ay, a;, a, € Z,, foree € Rix,y} is the solution of equation (31) witha=c=d = 1.
Because the solution of equation (32) when ay = a; = a, = 1is the enufunction of
general plane rooted trees with the root-vertex valency (x) and the vertex partition
vector (y) as parameters, equation (32) is called a type of unicycle model.

In Chapter 10, another type of basic equation involving with the meson functional
is covered.

Consider the meson equation for f € R{x,y} with four independent constant co-
efficients as

1-y,

—(1-B9 g,
azxyjyisx,y(uflx_u)—(l ? 3)f & (33)

f|x:0<:>y:0 =do,

where ag,a;,ay,a; € Z,.
Because of a solution of equation (33) for ay = a; = a, = a3 = 1, meaningful in
wintersweets as outer planar maps, this equation is called a wintersweets model.






1 Preliminaries

For the sake of brevity we adopt, throughout this book, the usual logical conven-
tions: disjunction, conjunction, negation, implication, equivalence, universal quan-
tification, belong to, and existential quantification, denoted by the familiar symbols:
V, A, 1, =, &, Y, € and 3, respectively.

1.1 Sets and mappings

A set consists of objects considered to have a property in common. The objects are
called elements of the set. If a set consists of all objects considered, then the set is said
to be universal, and denoted by Q. Usually, sets are represented by capital letters, as
A, B, C, and elements by lower case ones, as a, b, c. The statement “a is an element
of the set A” is denoted “a € A”. If any element of set A is an element of set B, then A
is called a subset of B, denoted by A < B. A set without an element is the empty set,
denoted by 0.

Any set A is a subset of A itself and the empty set is always a subset of any set. We
denoted by O the set, or family of all subsets, in the universal set,i.e., O = {A | A € Q},
or 2%, Naturally, 6,Q € O.

Fortwosets A, B € O, we denote by U and n the two operations called, respectively,
union and intersection, i. e.,

AuB={x|xeAorxeB} and AnB={x|xeAxc¢eB}

Set A minus set B, denoted by A\B, is the result of deleting all elements of B from
A, or called the difference of A and B.

If B A, the difference is denoted by A — B. If A = Q, the difference is denoted by
B = Q - B, called the complement of B.

Because each of U and n satisfies the commutative law and the associative law, we
are allowed to adopt

n n
J4; and ()4 (1.1.1)
i=1 i=1

where 4; € Q and both i and n, where1 < i < nand n > 1, are positive integers.
Moreover, they satisfy the distributive law. These laws are similar to what appeared for
addition and multiplication in arithmetics. However, the idempotent law, the absorp-
tion law, the unitary law and the universal bound law are not available for similarity
as regards arithmetics (see § 1.1 in [52] (Liu YP)). On the basis of what was mentioned
above, the following results can be found.

https://doi.org/10.1515/9783110625837-001



2 =—— 1 Preliminaries

Theorem 1.1.1. For any A,X < Q, we have

{(AnX:A)V(AuX:X)zA:Q; 112)
AnNX=X)VAUX=A)=A=0Q.
Theorem 1.1.2. Forany A, B € Q, we have
AnB=As AuB=B. (1.1.3)
Theorem 1.1.3. For any A,B,C < Q, we have
(AnB=AnC)A(AuB=AuC)e B=_C. (1.1.4)
Theorem 1.1.4. Forany A € Q, we
A=A (1.1.5)
Theorem 1.1.5. For any A,B < Q, we have
AUB=AnB; AnB=AUB. (1.1.6)

Let A,B ¢ Q. A mapping from A to B is a correspondence between A and S such
that any element of A has a corresponding element of B. An element in A is said to
be co-image (or back image, or initial image), and an element in B, image (or forward
image, or end image).

For two sets A and B,

AxB={(x,y) | Vx € A,Vy € B},

is called their Cartesian product. The Cartesian product of a set X and itselfis called the
power of X. For example, X xX = X°. Generally, X! xX = X" where n > 1. Particularly,
X% =pand X! = X.

It is seen that U, N and \ are all mappings from 2% %220 2% (2% x 2% — 29), and -
from 22 to itself 2% — 2%).

An injection from set A to set B is a mapping a : A — B such that, Va, b € A,

a+ b= a(a) + alb).

An injection is also called a 1-1 mapping. A surjection is a mapping § : A — B such
that, Vb € B,

JaecA, PB(a)=Dh.

For example, union U, intersection N, and difference \ are all surjections, but not in-
jections. A mapping with both injection and surjection is called a bijection, or 1-1 cor-
respondence. For example, the complement ~is a bijection.
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1.1 Sets and mappings = 3

If repetition of an element in a set is allowable, then the set is said to be multiple;
otherwise, nonmultiple. All sets considered in this book are nonmultiple unless specif-
ically indicated otherwise. The number of occurrences of an element in a multiple set
is called the multiplier of the element.

Two sets A and B with a bijection are said to have their cardinalities equal, i. e.,
|A| = |B|. For example, the set of all positive integers and the set of all positive even
numbers have the same cardinality. A set with its cardinality a finite number is said to
be a finite; otherwise, an infinite set. Two finite sets have the same number of elements
if, and only if they have the same cardinality. For two finite sets X and T, we have

X x Y| =|X|x|Y] = [X]|Y].

Let X" be the set of all mappings from X to Y, then |XY| = Y|

An isomorphism, denoted by A ~ B, of two multiple sets A and B is a bijection
between A and B such that corresponding elements have the same multiplier. It is
easily seen that A ~ Bimplies that their cardinalities are equal.

Theorem 1.1.6. Two multiple sets A and B have an isomorphism t if, and only if,
|A| = |B| (1.1.7)

with Va € A, m(a) = m(t(a)) where m is the multiplier.

Proof. Necessity is from the definition of isomorphism. Sufficiency is from the defini-
tion of bijection. O

As consequence, two sets A and B are isomorphic if, and only if, |A| = |B.

However, the recognition of isomorphism between two systems (2A; uU,n,”) and
(25;u,n,) is not so easy in general because of the three operations involved.

On aset A # @, if there is an operation, denoted by ¢, such that the following four
axioms: Group 1-Group 4 are satisfied, then we call A a group, denoted by (4; ¢, 1,,).
Group 1 (closed law) Vx,y € A, x Oy € A.

Group 2 (associative law) Vx,y,z € A, x 0 y) 0z =x0 (Y © 2).
Group 3 (identity law) 31, (simply 1) € A, such thatVx € S, x ¢ 1, = x.
Group 4 (inverselaw) Vx € 5,3y € S, x 0y = 1.

If ¢ satisfies the commutative law in the group, then it is called a commutative group,
or Abelian group. For an Abelian group, the operation < is always replaced by + and
the identity by 0.

If there is another operation, denoted by -, on an Abelian group (4; +, 0) such that
- satisfies Group 1-Group 3 and {+, -} satisfies the distributive law: Va, b, c € A,

(a+b)-c=a-c+b-c c-(a+b)=c-a+c-b, (1.1.8)
then A is a ring, denoted by (4; +,-,0,1).
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4 = 1 Preliminaries

On the ring, if - satisfies the commutative law, then the ring is said to be com-
mutative. If a commutative ring A satisfies the cancelation law: Ya,b,c € A, ¢ # O,
a-c=b-c = a-=b,then thering is called an integral domain.

On a commutative ring (4; +,-,0,1), if for any a € A, a # 0, there exists a'such
thata-a ' =a!-a =1, thenitis called a field.

A space (exactly, vector space or linear space) over a field F, denoted by (X, F; +, »)
(simply X), is an Abelian group (X, +), or X, in company with the field (F, +, ), or
simply F, satisfying the following four axioms: Space 1-Space 4. The operation “+” is
called vector sum, “s” a scalar product. In the Abelian group X and the field F, addition
symbols are the same. For the scalar product a+«A = aA fora € Fand A € X, one
adopts the same symbol as the multiplication in F. An element of X is called a vector.
An element of F is called a scalar.

Spacel Va € F,VA,Be X,a(A +B) =aA + aB.
Space2 Va,b € F,VA € X, (a+ b)A = aA + bA.
Space3 Va,b € F,VA € X, (ab)A = a(bA).
Space4 VA e X,1A = A.

One might like to understand the distinctions in symbols between vectors and scalars.
0y and O denote the elements zero of, respectively, X and F. From Space 1-Space 4,
it is seen that VA € X, OpA = O, and Va € F, a0, = 0,. Hence, both 0, and Oy
are only denoted by 0. For Y ¢ X, if ) is a space itself with the same operations as in
X, then Y is called a subspace of X, denoted by Y C ¢ X (or simply, Y ¢ & if there
arises no confusion). Because of 0 being itself a space, called the zero space or a trivial
space, denoted by 0 as well, 0 is a subspace of any space. The subspace consists of all
vectors of order 2 and 0O is denoted by 7.

1.2 Functions and transformations

Let © = 2X, when X is a set of numbers; a mapping ¢ from A € O to B € Oisa function.
A and B are, respectively, called domain and co-domain of ¢p. The sets D = {x | Jy €
Byy=¢x)}cAandY ={y | Ix € A,y = ¢p(x)} < B are, respectively, the co-domain set
and image set(or range) of ¢. If D ¢ X", n is a positive integer, then the function ¢ is
called a function of n variables (or n-function), denoted by ¢ = p(x), X = (X1, X3, ..., %)
is a row vector. When n = 1, ¢ is a function of one variable; otherwise, a function of
several variables. If ¢(0) = 0, then ¢ is a homogeneous function.

Although the set of all integer numbers Z, the set of all rational numbers Q, the
set of real numbers R and the set of all complex numbers C are involved in this book,
domains and ranges are always in R unless specifically indicated otherwise.

By two functions f and g being equal, i. e., f = g, is meant that their domains are
the same and their ranges are the same with the property that, for any x in the domain,

f(x) =gx).
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1.2 Functions and transformations =—— 5

If a function ¢ has the property: for any x and y,

DX +Y) = p(X) + P(y), (1.2.1)

then ¢ is said to be a linear function; otherwise, a nonlinear function. Let a = (ay, a,,
as,...)and b = (by, by, bs, ...), then (a,b) = a;b; + a,b, +- - + a,b, = a(b)' is called the
inner product of a and b where '~T represents the transpose.

Theorem 1.2.1. A homogeneous function ¢ : R" — R is linear if, and only if, there exists
a constant vector a such that

¢ = (a,x). (1.2.2)
Proof. Since ¢ is a homogeneous function,
¢(0) = 0. (1.2.3)

From the linearity, i. e., (1.2.1), by substituting y for —x, (1.2.3) leads to ¢(x) +¢(-x) = O.
Hence,

P(-x) = -Pp(x). (1.2.4)

On the basis of (1.2.1), for any positive integer n, we have

‘{b(i Xi) = Zn:(b(xi) (1.2.5)
i1

i=1

wherex; = (0,...,0,x;,0,...,0),i=1,2,...,n.
Letx = x;, 1 < i < n, then, for any positive integer n,

¢(nx) = np(x). (1.2.6)

Because of %x =y, i.e., nx = my, from (1.2.6), we have n¢(x) = mg(y), i. e.,

m m
¢<;v> =¢px) = ;(;b(y). (1.2.7)

From (1.2.4), (1.2.6) is valid for any rational number n. By the density of rational num-
bers and the connectedness of function ¢, for any a € R, we have

¢(ax) = ap(x). (1.2.8)

Necessity. Because of the linearity of ¢, for any X,y € R", ¢p(x +y) = p(X) + ¢(y).
Since, for any R,

n
X = Z Xili’
i=1
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6 —— 1 Preliminaries

where 1, is the vector of all components 0 but only the ith 1, by (1.2.5),

¢(X) = ¢<zxi1i>> by (1.2.8),
i=1

=

=) x;¢(1;).

1

]
uN

Therefore, (1.2.2) is valid where a = (¢(1,), $(1,), ..., $(1,,)). The necessity is done.
Sufficiency. By considering a(x’ + y') = ax’ + ay’, from (1.2.1), the sufficiency is
done. O

The operation x = t+a on the function ¢(x) is called a translation. It is easily seen
that any nonhomogeneous function can be obtained by translation.

Let A = (a;})1<i<n,1<j<m D€ @an nxm (i. e., n rows and m columns) matrix. By employ-
ing X = AZ', the n variables in X replaced by m variables in z, the procedure is called
doing a linear transformation on a function ¢(x).

Theorem 1.2.2. On aring, all m x n linear transformations form a linear space.

Proof. On the basis of the four axioms on a space: Space 1-Space 4, because of all mxn
matrices forming an Abelian group for matrix addition, all linear transformations form
a linear space. O

Although Theorem 1.2.2 is not new in linear algebra, attention should be paid to
the fact that the valid area much larger than Z, Q, R and C etc., or we say that elements
in the ring are not necessarily numbers.

Only a square matrix may to have an inverse. All matrices which have an inverse
are called invertible. It is well known that a matrix is invertible if, and only if, its de-
terminant is not 0.

Theorem 1.2.3. On aring (not necessarily commutative) R, all square matrices of deter-
minants not O form a noncommutative ring.

Proof. By the definition of a ring, we arrive at the conclusion. O

Given two functions f and g of one variable x. If the range of g is the range of f,
we have the composition, denoted by f - g = fg, i.e., for any x available, f o g(x) =
f(g(x)). However, when g = f, f o g # f* in general. For example, let f(x) = x + 1, then
fof)=ffX)=fx+1)=x+2. Butf2 = (x+1)?> = x>+ 2x+1. For avoiding confusion,
take f o f = f°2. Recurrently, f o f"' = f", n > 3. When f(x) = x, f™ = f, n > 2. For
convenience of usage, f! = f is always assumed. This function is called the identity,
denoted by 1. The function f(x) = x", n > 0, is called a power function where n is its
degree. When n = 0, the power function f(x) = 1is confirmed.
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1.2 Functions and transformations = 7

Given three functionsh: A — B,g : B — Cand f : C — D of one variable x with
both f and g a surjection. Observe that f o g o h = fgh. Because of

(fg)h(x) = fg(h(x)) = f(gh(x)) = f(gh)(x),

for any x € A, we have (fg)h = f(gh). Thus it is shown that the composition satisfies
the associative law. Hence, fgh is meaningful.

Any function f : A — B has a left identity, denoted by 14, and a right identity,
denoted by 1, such that

lAf :f :le. (1.2.9)

This is called the identity law.

For a functionr : S —» TwhereS c Aand T ¢ B, ifforany x € S, r(x) = f(x), ther
is called the restriction of f, i.e., r = f|s. Conversely, f is called a extension of r. For a
functioni: S — A, ifforanyx € S, i(x) = x, then i is called the inclusion. Thus, i = 14]s.

A function can always be represented as a composition of two functions: one is an
injection and the other is a surjection. Assume the image set of f is U € B, then f = roi,
where the restrictionr = f|, : A — U is a surjection and the inclusioni: U — Bis an
injection.

Given two functionsf : A — Band g : B — A. We address composition. If fog = 15,
then f is the left inverse of g and g, the right inverse of f. If a function has both left
inverse and the right inverse, then from the identity law (1.2.9), the two inverses are
the same, called the inverse. The inverse of f is denoted by f .

Theorem 1.2.4. A function of domain not empty has a left inverse if, and only if, it is
an injection. A function of domain not empty has a right inverse if, and only if, it is a
surjection. A function of domain not empty has an inverse if, and only if, it is a bijection

Proof. Assume g : B — A with the left inverse f : A — B, then fg = 1. Hence,
g(x;) = g(xp) implies x; = f(g(x;)) = f(g(x)) = x,. This shows that g is an injection.

Conversely, assume g : B — A is an injection. Because of B # @, let x,, € B. Since
g is an injection, for any x € A, there is at most one y € B such that g(y) = x. Let the
function

I {y(g(y) =Xx), when xis in the image set of g;
X) =

Xo» otherwise.

It is easily checked, for any y € B, that f(g(y)) = y, i.e., fg = 15. Hence, g has the left
inverse. This is the first statement.

Symmetrically, the second statement is a result of the first. Then the third is de-
duced from the first two statements. O
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8 = 1 Preliminaries

In the theorem, the condition B # 0 is of no importance, otherwise it is a degener-
acy of the theorem. On the basis of the uniqueness of inverse, we have

(g™

Further, the inverse of the composition of two functions obeys the rule of reversing the
order:

R (1.2.10)

(fe) ' =g 'f . 1.2.11)

Because of there being no commutative law for composition of two functions, the order
has to be considered.

Let x be an undeterminate (not necessary a number!), then x", integer n > 0, is
called a monomial of degree n. Take x° = 1. A polynomial is a linear combination of
monomials. For example,

n
Ay + GX + AX* + -+ apX" (: X[,y = ). a,-x') (1.2.12)
i=0
is the general form of a polynomial of degree n, n > 1, where
a=(apaya,....a,) and Xy, = (Lx.x....x").

The components of a are called the coefficients of the polynomial and a, the coefficient
vector shown in (1.2.12). A monomial with its coefficient in a polynomial is called a
term.

For aring R (precisely (R; +, 0, 0, 1), the symbol - is always omitted in expressions);
let

Py = {ax(,,;; | vae R"',n>0},

then on Py, the addition (+) and multiplication (o, often omitted!) are

s ot . max{s,t} .
Z ax' + z bx' = Z (a; + by
i=0 i=0 i=0

fora;=0(i>s>0)and b; =0 (i > t = 0);

S X t . s+t
(Z apc‘)(Z bjx’> = Z Xk
i=0 j=0 k=0

where
k ki
Cy = z aibj = z Z aibkfj'
0<i<s,0<j<t i=0j=0

i+j=k
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1.2 Functions and transformations = 9

Theorem 1.2.5. (Pg;+,0,0,1) is a ring.

Proof. First, for addition and multiplication, it is easy to check the axioms: Group 1
(closed law), Group 2 (associative law), commutative law, and distributive law, i.e.,
(1.1.8).

From (1.2.12), when a = (0,0,0,...) = 0, the polynomial is 0 (Group 3 for +) and
whena = (1,0,0,....) = 0, the polynomial is 1 (Group 3 for o).

For +, the inverse of polynomial determined by a is the polynomial by —a (Group 4
for +). However, Group 4 is not valid for o.

In consequence, (Pg; +, 0) is an Abelian group and (Pg; o, 1) can only be checked to
satisfy the axioms: Group 1-Group 3. By considering the distributive law, the theorem
is proved. O

Let R = (Pg;+,°,0,1). Because of R ¢ R[x], the ring R[x] is called an extension
of R.

In general, because of a polynomial of m (m > 2) variables and n (n > 2) degree
have the form

Pn(Em) = Y. DKy 1)Xiy (1.2.13)
i=0

where p;(X,,_;) is a polynomial of m - 1 variables and degree i, by employing Theo-
rem 1.2.5 recurrently, we find that R[X] is an extension of ring R.

Theorem 1.2.6. A polynomial p(x) has (x — a) as a factor if, and only if, p(a) = O.

Proof. Because of p(x) with factor (x — a), there exists a polynomial g(x) whose degree
is at least 1 less than the degree of p(x), so that p(x) = (x — a)q(x). Therefore, p(a) = 0.

Conversely, on the basis of p(a) = 0, assume p(x) = ¢y + ¢;x + (:2)(2 +eetcpxy we
have

n n

p(x) = Z cx - iciai = Zci(xi ~a')
i=0

i=0 i=1

n i-1
=(x- a)(cl + z lof Z ajxi_l_j)

=2 j=0
Therefore, p(x) has a factor (x — a). O

Theorem 1.2.7. Two polynomials over an infinite field are equal if, and only if, their co-
efficient vectors are the same.

Proof. Since the sufficiency is easily seen to be true, only it is necessary only to prove
the necessity. Because of two polynomials are equal with the same degree, assume
px) = ag+a;x+---+ax" and q(x) = by + byx +- - -+ b,x" are equal. If a; = b; not for all
0 <i < n, then from Theorem 1.2.6, d(x) = p(x) — g(x) has at most n points such that

Brought to you by | Stockholm University Library
Authenticated
Download Date | 10/30/19 11:37 AM



10 —— 1 Preliminaries

d(x) = 0 and d(x) # O for other points. This is a contradiction to p(x) and q(x) being
equal. O

In Theorem 1.2.7, an infinite field cannot be replaced by a finite field. For example,
on a mod 3 integer field Z;, the polynomials p(x) = x> = x and g(x) = 0 are the same,
but their coefficients are different.

Theorem 1.2.8. There is only one polynomial of degree not greater than n, satisfying the
values at n + 1 distinct points.

Proof. Suppose a;, 0 < i < n, are n + 1 distinct points. We have p(a;) = y;, 0 <i < n.
Now, construct a polynomial p(x) of degree n such that p(a;) =y;,0<i<n,i.e.,

px) = Z yl< ;’((;) > (1.2.14)

where

n
gi(x) = [[x-ay.
O}an
Attention: Because of the distinction among a;, 0 <i<n, g;(a;) # 0,0 <i<n.

In what follows, observe the uniqueness. Assume r(x) is another polynomial of
degree n satisfying r(a;) = y;, 0 < i < n. Because of p(a;) - r(a;) = 0, 0 < i < n, the poly-
nomial p(x) — r(x) of degree at most n has n + 1 factors of degree 1. From Theorem 1.2.6,
the only possibility is p(x) — r(x) = 0, i.e., p(x) = r(x). O

In proving the theorem, (1.2.14) provides an explicit formula for determining a
polynomial of degree n via the values at n + 1 distinct points. This formula is called
Lagrange interpolation. Usage of Lagrange interpolation is not only for determining a
polynomial but also for approximating a general nonlinear function.

1.3 Extensions of integral domain on series

A polynomial of infinite degree is called a series. The general form of a series is
s(X) = ay + a;x + azx + - z a; X, (1.3.1)

where, foranyi, 0 <i < oo, g; € R, Ris aring.
Occasionally, for generality, finite monomials of negative powers are allowed, i. e.,
for a nonnegative integer L,

S ) = z ax' —Za X +Zax, (1.3.2)

i=—-L

is called the Laurent series.
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1.3 Extensions of integral domain on series = 11

For convenience, a series is represented by its coefficients in a vector. For example,
s(x)in (1.3.1) is a = (agy, a3, ay, . - . , 00).
The addition of two series a and b is defined by
a+b:C, C=(ao+b0,al+b1,(12+b2,...,00).

Let Sy = {a | Va € R®}, i. e., the set od all series such that each of its coefficients is
in the ring R, then, by considering the closed law on Sy for addition deduced from that
on R, we have c € S. Similarly, the commutative law and the associative law on Sy, are
from thoseon R. Let 0 = (0,0,0,...,00), then0+a = a+0 = a, 0 is the zero on S. For
a € S, the inverse of -a = (-ay — a;, —a,, ..., —00) because of (-a) +a=a + (-a) = 0.
Hence, (Sg; +, 0) is an Abelian group.

For two series s;, s, € S defined by, respectively, a and b, let

a*b:c, c:(CO,Cl,Cz,...,OO),

where, fori =0,1,2,..., 00,

i
Ci = z a]bk = Z a}-bl—_j.

j+k=i j=0
0<j,k<i

From the closedness for multiplication on R, the closedness for = on Sy, is easily seen.
Thus, * can be dealt with as the multiplication on Sg.
Fora,b,c € Sg,leth=a « (b x ¢c)and g = (a * b) = c. Since, fori = 0,1,2,..., co,

1 i—j
h; = Z a]-( Z bkci,]-,k ) by the associative law on R,
k=0

= a}-bkci_j_k

and

i/
8= Z( z akb}-_k>c,~_]-, by exchanging %; and %,
1 1-)
= ( ajbk>ci1-k, by the associative law on R,
1 1
= z ( aih;_i )ci_j, by substituting [ = j - k for j,
J

i
Z b;_rci; ) by the associative law on R,

we have h = g. This shows that % obeys the associative law on Sg.
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12 —— 1 Preliminaries

Let1; = (1,0,0,...,0). Since foranya € Sy (a # 0),a =1 =1+ a = 1, we find that
1, is the identity on Sg.

Theorem 1.3.1. Let R{x} = (Sg; +, *, 0,1), then R{x} is a ring if, and only if, R is a ring.

Proof. Sufficiency. On the basis of what discussed above, only necessary to observe if
the two operations satisfy the distributive law.
Foranya,b,c e Sp,leth=a « (b+c)and g =a *b +a  c. Because of

i i
hi = Z a)'(bi_]' + Ci—j) = Z(a]bl_] + ajci_j) =(a=x* b)l +(a= C)i =g
j=0 j=0

where the second equality is from the distributive law on R, we find that the distribu-
tive law holds on Sy as well.

Necessity. It is easily seen that we have a relationship between (Sg;+,0) and R
as Sp © R, + on Sy & + on R and hence the closed law, the associate law, and the
commutative law. By considering 0 € S = 0 € Ras thezeroand -a € S = -a € R
as the inverse, from the four axioms we use Group 2-Group 4, and R induced from
Sg is an Abelian group. On the basis of the relationship between * on Si and - on
R, for multiplication, the closed law, associative law and the identity law on R are
established from those on Sg. Further, for + and - on R, the distributive law is from that
on Sg. Thus, the ring R is derived from the ring Sg. This is the necessity. O

On the basis of Theorem 1.3.1, from R = R{0} ¢ R{x}, R{x} is the extension of the
ring R via a series with only one undeterminate, which is still a ring. Similarly, the
extensions R{xX}, X = (x;,X,,X3,...) of ring R can be established from {x} as a starting
point. For example, R{x;, x,} = R{x;}{x,} and for any integer n > 3, R{x,} = R{X,,_1}{x,,}

From the procedure of proving Theorem 1.3.1, all the extensions obtained in this
way are a ring if R is commutative.

More generally, Theorem 1.2.5 enables us to extract the extensions for the case
that some undeterminates make it allowable to generate polynomials but not series.
For example, R[x;, x,} represents the case that S(x, x,) = S[x;]{x,} € R[x;,x,} is a poly-
nomial of x; and a series of x,. Thus, the meaning of R[xy, ..., X;]{Xj41> ...} is known
forn > 3.

Let L(x) = a_,ox"l0 +a, +1x‘l°+1 + Ay 40X + -+ + Ay, x™ be a Laurent series
of x with the least power —1,, integer I, > 0, where a; € R, -l < i < co,and R a
ring. Denote by £ the set of all Laurent series. Similarly to S, L(x) is represented by
a= (a_lo, A 410425 Aoy

If a+ b = cis defined by

—ly+2

Ci=ai+b,-, —IOSiSOO)
then the addition is established on L.
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1.3 Extensions of integral domain on series = 13

Let a = b = ¢ be such that
i
C = Z ajbi_}-, _10 <i<o00.
j==l

The multiplication is established on L.

Theorem 1.3.2. Let L{R;x} = (L;+, *,0,1), then L{R; x} is a ring if, and only if, R is a
ring.

Proof. Itis only necessary to pay attention to the fact that any ordinary series S(y) can
be deduced from a Laurent series L(x) by the substitution x' = y*b, —I; < i < co.
Therefore, the conclusion is derived from Theorem 1.3.1. O

A ring which obeys the cancelation law is called an integral domain.
Theorem 1.3.3. Both L{R;x} and R{x} are integral domains.

Proof. According to what has been mentioned, it is only necessary to prove the theo-
rem for R{x}.

First, we prove that the ring R is actually an integral domain. Since R is an integer
ring, it is easily shown from arithmetics that, for any integer a,b,c € R, ¢ # 0, ac =
bc & a = b, hence the cancelation law. Therefore, R is an integral domain.

Then, we derive that R{x} is also an integral domain from the integral domain R.
From Theorem 1.3.1, R{x} = (Sg; +, *,0,1) is a ring.

For the cancelation law, a polynomial without 0 has to be investigated. Two cases
should be considered. Let ¢ # O.

Case 1 ¢, # 0. Because of R{x} being a ring, there exists ¢’ € Sg such that
S(x)S'(x) =1, i.e., ¢ is the inverse of c. This implies the cancelation law.

Case 2 c, = 0. Let an integer, a > 1, be the minimal power of all terms in S_.(x)
determined by c. From S,(x) = ¢,x*T(x) with T(x) in Case 1, the minimality of « leads
to the existence of the inverse T~ (x) for T(x). For any Sa(x), Sp(x) € Sk, we have

Sa(X)Sc00) = Sp(X)Sc(xX) = Sp(x)caX™ = Sp(X)Cex",
byc, # 0inR,
= S,00x* = S, (x)x*%,
by x not being zero,
= S,(x) = §p(x).

This is the cancelation law. Hence, R(x) is an integral domain. O

For the functions considered in this book, their coefficients are all in the integral
domain R. Particularly, they are in the extensions R{x} unless specifically indicated
otherwise. Occasionally, £{x} = £{R; x} if necessary.
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14 =— 1 Preliminaries

Leta(x) € R{x}. For convenience, denote by ay,; = (g, d;,a;, ..., 00), the function
a(x), as a series of the determinate x.

The differential of the series a(x) with respect to x is defined to be a transformation
such that

e _aya (133)

where the matrix A = (@;;)o<jccos @ = (@i0 Aj1> Ai2s - - > Ajoo) = Opyp, 1. €., in O, only the
ith component 1 changed from 0. Attention: 0;5, = O.
Let ng_,; = (0, 1,2,3,..., l) and Ik—>oo = (ai)j)ksi)jgoo where

|1, whenk<i=j<oo;
N 0, otherwise.
Simply, Diag1;_,, = Diag[1i, 1js1> Lisas - - -) = Ixoo fOI k = 0. Thus, we have
A =n,_,, Diag[0,Diag1,_,.,).

Therefore, we have

da . .
Fa T (ny_,, Diag[0,Diag1,_,.,))- (1.3.4)

Theorem 1.3.4. ‘?E" € R{x} if, and only if, a(x) € R{x}.
Proof. On the basis of (1.3.4), the conclusion is straightforwardly obtained. O

The integral of a series a(x) € Si with respect to x is defined as
J a(x)dx = a,,B (1.3.5)

where B = (bi,j)OSi,jSoo’ bi = (bi,O’ bi,l’ bi,Z’ e bi,oo) = 0[1/(i+1)] ,l.e., the ith component 0
of O replaced by 1/(i +1),0 <i < co.
Let us introduce another vector,

11 1
l/nlﬁn,l = <1,§, §,,;>

for n > 1. By employing the symbols used in (1.3.4), because of B = 1/co Diag1,_,,,
(1.3.5) becomes

J a(x)dx = a,(1/(n +1)_,, Diag1y_,,)- (1.3.6)

For convenience, the integral of any constant is always pre-assumed to be the constant
itself.

Theorem 1.3.5. [ a(x)dx € R{x} if, and only if, a(x) € R{x}.

Proof. On the basis of (1.3.6), the conclusion is easily drawn. O
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1.4 Functionals and functional equations = 15

1.4 Functionals and functional equations

For a set S and P, a partition of S, let P = {P,, P;, P,,P;,...}, then we find that P; € S
for any integer i > 0; P; n P; = @ for any integers i,j > 0; and  J;,; P; = S. The last two
statements are always written as

Y P =5,

i=0

the sum(or, as we say, disjoint union) of all P;,i > 0.

Lets;,i > 1, be the cardinality I{P; | Vj = 1,|P;| = i, P; € P}, thens = (s;,5,,53,...)
is called the partition vector, while P, is taken for certain technical usage as its cardi-
nality |Py| = m

For a set S, let P be all the partitions of S; the function

fs=Y K"y, (1.4.)
PeP

where

s(P H ys (P

i>1

is called the partition function of S.

Letn =1+ };,s;ands = m+ Y, is;. Because of the nonnegativity of m and s;
for all i > 1, if m and s are given, the function f; in (1.4.1) becomes a polynomial. This
enables us to determine fg from m + s smaller to greater.

A functionalis considered in this book as a transformation from the function space
with the basis, e.g., {1,x,x% x>,...} to itself or another space, i.e., an abstract linear

space.
For a function f = f(x) = f(x,y), the operation
(x) -f(z)
5x,zf|x u= f X — ]; (1.4.2)

is called a straight difference of f. Denote by [f]i = a)’;f the coefficient of X' inf € R{x, y}
fori>o0.

Theorem 1.4.1. The operator 6, , on f defined by (1.4.2) is a linear functional.

Proof. LetF; = [f]i, i>0andFg = [SXZfIX:u];, i > 0. Because of

1
fO-f@)=(x-2)) F (Z . H)

i>0
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16 —— 1 Preliminaries

we have
6x,zf|x=u = ZX]< z Fizl_l_]>
j20  Nizj+l
and hence
Fgj =) Fujuz, j20.
i20
This implies that the straight difference §, , determines a transformation given by Y =

)
()’,-[,j])i,jzo where

0, wheni>j;

Yij 1, wheni = j;

27, otherwise,

in the function space with basis {1, x, x?>, x>, .. .}. On the basis of Theorem 1.2.1, the con-
clusion is drawn. O

For a function f = f(x) = f(x, V), the operation

Oy of ly=u = Zf(xi_# (14.3)

is called the slope difference of f.
Theorem 1.4.2. The operator 9, , on f (f(0) = 0) defined by (1.4.3) is a linear functional.
Proof. LetF; = [f]i, i>0andFy = [ax)zflxzu]i, i > 0. Because of
Bof lxeu = ). F,-(M ) (1.4.4)
i=0 X-z
we have F3y = -F, = f(0) =0, F; = 0. Fori > 2,
o x2 ]
Fy = [éﬂﬁ]x.
Because of i > 2,

2x - xz' = xz(x 7 - 21

i-2
- (x-2) z i1
j=0

i1
=(x-2) Z Xz

j=1

Brought to you by | Stockholm University Library
Authenticated
Download Date | 10/30/19 11:37 AM



1.4 Functionals and functional equations = 17

and hence
o oxzt T
o u _ j =i
)\ U e 2 Xz
j=1
From (1.4.4),
Fai = [ZF ZXI _]:|
i>2 =1 X (1.4.5)
= Y FZ™
j=i+1
fori>1.

On the basis of (1.4.5), it is seen that the slope difference 9, , is a transformation
given by Y; = (y ])l j>1 Where

[a] {0 When l > j;
ij

Z7*1 otherwise,

in the function space with basis {1, x, x%,x2,.. }. On the basis of Theorem 1.2.1, the con-
clusion is drawn. O

For a function f(x) in the functional space with basis {1, x,x%, x>, .. .}, the differen-
tial of f with respective to x, denoted by 3¢ is defined as a linear combmatlon of

—_— = . (1.4.6)
dx ix !, whenix>1,

dx! _ {0, wheni = 0;
fori>o0.
Theorem 1.4.3. The operator defined by (1.4.6) is a linear functional.

Proof. Let Fdffi = [gx_f]i’ i > 0. From (1.4.6), Fdffi = (1 + 1)Fi’ i > 0, we see that the
differential is the transformation determined by Y4 = (y,-[f;1fﬂ )ij=0, Where

i, whenj=i-1;
yam = J . (1.4.7)
W 0, otherwise,
fori,j > 0. On the basis of Theorem 1.2.1, the theorem is done. O

For a function f(x) in the functional space with basis {1, x, x%,x3,.. }, the integral
of f with respective to x, denoted by j fdx, is defined as a linear comblnatlon of

X, wheni = 0;

Xdx=4 1 . (1.4.8)
J —x™, wheni>1,
i+1

fori>o0.
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18 = 1 Preliminaries

Theorem 1.4.4. The operator f dx defined by (1.4.8) is a linear functional.

Proof. Let Fi; = [[fdx];, i > 0. From (14.8), Fip; = 75 Fiyy, 1 2 0, we see that the
[int]

integral is the transformation determined by Y;; = Vij Jijz0 where
! whenj=i+1;
yl[;.nt] ={i+1 ’ (1.4.9)
’ 0, otherwise,
fori,j > 0. On the basis of Theorem 1.2.1, the theorem is done. O

Let us write (x),, = x(x = 1)--- (x — n + 1), for integer n > 1, called the decrease
factorial function. As shown in Rota GC [75] (1964), the umbrella operation (or shadow
operator) denoted by L is the linear extension by transforming x' into a polynomial
pi(x) of degreeifori > 1. Because of the constant term, which is allowed to be missing,
only homogeneous polynomials are considered with p;(0) = 0. For example, p;(x) =

(0);.
Theorem 1.4.5. The shadow operator is a linear functional.

Proof. Let Fy; = [Lf];, the coefficient of (x);, i > 0, in Lf. L is determined by the matrix
Y = (y}?])i,izl of infinite dimension by

1, whenj=1;
e g (14.10)
> 0, otherwise,
and, fori > 2,
-1y whenj = 1;
: [L] [L] S i
—-({-1y; . +y . ,, when2<j<i-1
Yl = =1y +Yigja J (1.4.11)
J 1, whenj =i
0, otherwise,

the transformation is a functional. On the basis of Theorem 1.2.1, the conclusion is
drawn. O

All functionals mentioned above are transformations from the space of functions
into itself.

However, in Chapter 2, a new functional, called the meson functional, is going to
be investigated from the space of functions into a general abstract linear space instead
of the function space itself.

An equation of functions which involves a certain functional is concisely called
a functional equation. Of the two volumes of the book, Volume II is concentrated on
meson functional equations.
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1.5 Notes =— 19

1.5 Notes

1.5.1. The basic knowledge needed in the whole book is explained in this chapter to
make the book, in principle, self-contained. All material mentioned is particularly de-
signed for use in the relevant context.

1.5.2. The system of sets using (Q; U, N,”) forms a lattice, or from another point of view,
aBoolean algebra. As regards the algebraic structure, one might have a look in Birkhoff
G [2] for details.

1.5.3. In §1.2, theorems 1.2.1 and 1.2.2 are not necessarily restricted for real functions.
They both have a more general form for mappings on an abstract symbol set.

1.5.4. For more about the algebraic notions in §1.3, one might wish to read [79] (Sha-
farevich IR).

1.5.5. On umbrella calculus under a shadow functional, a number of topics involved
with polynomials are particularly investigated in [75] (Rota GC), [74] (Roman SM, Rota
GC), [78] (Rota GC, Shen ], Taylor BD), [76] (Rota GC, Kahaner D, Odlyzko A), [77] (Rota
GC, Taylor BD), [63] (Mullin RC, Rota GC), et al.

1.5.6. In [19] (Liu YP, 1986), or [60] (Liu YP, Book 3: 1163-1167), the meson functional
is used as the shadow operator. However, in [24] (Liu YP, 1986), or [60] (Liu YP, Book 3:
1175-1179), because of the shadow operator going from a basis to another on the func-
tion space itself, the linear operator which transforms a function space to a vector
space (or abstract linear space) should be employed under a name different from that
of the shadow. By [36] (Liu YP, 1990), or [60] (Liu YP, Book 3: 1326-1331), this operator
is denoted jy.

Because the above operators mentioned in Section 1.4 are all seen as different
types of functionals, by [57] (Liu YP, 2012), or [60] (Liu YP, Book 23: 11223-11230) and
[58] (Liu YP, 2012), or [60] (Liu YP, Book 23: 11276-11283), this operator is named a
meson functional.

Brought to you by | Stockholm University Library
Authenticated
Download Date | 10/30/19 11:37 AM



Brought to you by | Stockholm University Library
Authenticated
Download Date | 10/30/19 11:37 AM



2 Meson functional

2.1 Basic concepts

Let V be an abstract linear space with its basis {y;,y,,ys, ...} over a field F and F the
space of functions with its basis {y, y?,y>, .. .} over the field F. The transformation from
F to V, denoted by jy, such that

in —y, foriz1, (2.11)
y

is called a meson functional.
Attention: for an element c € F, fy ¢ = c is always ensured and hence, jy y0 =1.

Because for g; € F
J ay' = g J)’i

<
<

and for a;,a; € F

we see that, for any

fl Z aijyi, 1=12,
j=0
on the basis of
J af;=a J azy
y y j20
=a) a; JJ’]
=0y
=a in, acF;
y (212
[ @+ bs) = Y caay + bay) [ ¥
y j=0 y
=a) ayy;+b) ayy
j=0 j=0
=ajf1+bjf2, abecF,
y y

the functional is linear on the space F.

https://doi.org/10.1515/9783110625837-002
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22 —— 2 Meson functional

On the other hand, the transformation from V to F, denoted by fy, such that

y
in -y, foriz1, (213)

is called anti-meson.
Attention: for an element c € F, jy ¢ = c is always ensured and hence jy Vo = 1.
For the anti-meson, because, for g; € F,

y y
jaiYi =4q; J’yi

and, for a;, a; € F,
y y

y
J(ai)’i +ay;) = a; JYi +a; jyi’

we see that, for any

Vi = Zaijyj> i=12,
j=0
on the basis of
y y
Javi =da J Z auy]
j=0
y
=aZ%JW
j=0
y
:ajvi, ackF; (2.1.4)

y y
J’(av1 +bv,) = Z(aalj + bay) ij

j=0
=a) ayy;+b) ayy;
j=0 j=0
y y

:aJv1+ij2, a,beF,
this functional is also linear on the space V.
Theorem 2.1.1. The meson jy and anti-meson jy functionals are mutually inverse.

Proof. Foranys € F,s =Sy + Sy + Sy +--+,

V:Js:Zsiy,-ev,

y i>0
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2.2 Shift — 23

we have

siy"), by (2.1.2),

(
y .

:J( sin>, by (2.1.1),
( lyl>, by (2.1.4),

y
Z J by (2.1.3),
i>0

Hence, jy is the inverse of fy.
Conversely, foranyve V,v=vy+Vviy; + V) + -+,

Y

S= J Z vy e F,
i>0
we have
y
<J v,yl>, by (2.1.4),
i>
J(Z vl y,>, by (2.1.3),
y i>0
J( viy i>, by (2.1.2),
y i>0
= v, jy, by (2.1.1),
20y
eV.
Therefore, jy is the inverse of jy . O
2.2 Shift

Fora,b € V, assume a = (ay, a;,a,,...) and b = (by, by, b, ...). The transformation
from a to b such that

bi =dj.1» i> 0, (2.2.1)
is called a left shift, denoted by L.
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24 — 2 Meson functional

In fact, it is seen that
La' =Ia", Tisthe transpose,
where L = (li,j)ogi,jgoo and

|1 whenj=i+1
Y 0, otherwise,
0<i,j<oo.
Theorem 2.2.1. The left shift L obeys the following rules:

(@) L" = (I{}o<ijeco Where

. _{1, whenj=1i+n;

ij = .
/ 0, otherwise.

(i) LL" =1+ L"L where I = (€;j)o<i j<co- - €., the identity,

1, whenj=1i;
Y 0, otherwise.

(iii) Foranya € V,

—_—
—_—
o

(La) =y
(iv) For any s(y) € F,

J)’S()’) =L J s(y).
y

y

Proof. Different from (i) proved by induction, (ii)—(iv) are all from the definition. [

Fora,b € V, assume a = (ay, a;, a,,...) and b = (b, by, by, .. .), the transformation
from a to b such that

a;,_,, wheni>1;
b; = { 1 2.2.2)

0, otherwisei = 0,

is called the right shift, denoted by R.
It is easily seen that

Ra' - RaT, Tis the transpose,
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2.3 Truncation =—— 25

where R = (rl-,j)og,-’]-Soo and

|1 whenj=i-1
Y 0, otherwise,

0<i,j<oo.

Theorem 2.2.2. The right shift R obeys the following rules:
(i) R'= (ll-’fj)ogi)jgoo where

. {1, whenj=i-n;

o 0, otherwise.

(i) R=L".

(iii) RRT = Iy, = R'R = I, where Iy, is the identity (the matrix with all entries on the
diagonal 1; all other entries 0).

(iv) Foranya eV,

y y
[ Ra) =y [ @- aoo).
(v) Foranys(y) € F,

[y 50) =R [ 5.

Y Y

Proof. Different from (i) proved by induction, (i) and (iv)—(v) are all from the defini-
tion. Then (iii) is from (ii) and Theorem 2.2.1(ii). O

2.3 Truncation

The operation of the first i components on a vector put all O is called a truncation,
denoted by J, or precisely an i-truncation.
Fora e V,letJa =]a,] = (¢;j)o<ijccor then

(2.3.)

1, whenj=1i,i>1;
Y 0, otherwise.

Let [;; be the matrix in which only the entry at (i, j) is 1 with all others 0, then the
left shift matrix

L= zli,m;

i=0
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26 —— 2 Meson functional

L’ = <Z Ii,i+1><z Ii,i+1>

i>0 i>0

=Y L

i>0

Further, for any integer n > 1,

L"= (ZIi,m)n_l(Z Ii,i+1>

i>0 i>0
= ( Y Lo ) ( D Ii,i+1> 23.2)
i>0 i>0
= Z Ii,i+n'
i>0

Similarly, for the right shift matrix R, we have

R"= <Z Ii,i1>n_l<z Ii,i—l)

20 20
= (Z Ii,i—n+1><z Ii,i—l) (2:33)
20 20
=Y ILjp
20

Theorem 2.3.1. For any integer n > 1, the n-truncation matrix

J™ =R"L", (2.3.4)
where ](1) =].
Proof. From (2.3.2) and (2.3.3),

R'L" = (Z I,-,,;n><z Ii,i+n>

i=0 i=0

= z Ii,i'

i>n

This is the conclusion. O

2.4 Projection

OnV,leta = ijo ay; €V, then the operation P and Q deduced from
Pa = Z(j + 1)@,y
j=0

1
Qa=) 79

j=1

(2.4.0)

is, respectively, called left projection and right projection.
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2.4 Projection =—— 27

It is easily seen that if Pa = Pa” and P = (Vi) o<ij<oos then we have

i+1, whenj=i+1;
pij = . (2.4.2)
0, otherwise.
Similarly, if Qa = Qa’ and Q = (4ij)o<ij<cor then we have
1 . .
=, whenj=i-1,i>1;
gij=1' ' (24.3)
0, otherwise.

Theorem 2.4.1. Ifn=(1,2,3,...,00)andu = (1,1/2,1/3,..., 0c0), then the left projection
matrix and the right projection matrix are, respectively,

P=nL and Q=Ru’ (.44)
where L and R are, respectively, the left shift matrix and the right shift matrix.
Proof. From (2.3.2),

nL = n(Z . +1> by the distributive law,

>0

= Z nl;;,;, by the definition of I;;,
i>0

=Y (i+ DIy, from (24.2),
i>0

=P.

The first conclusion is done.
We proceed similarly for the last conclusion. O

Attention: P and Q are not commutative under multiplication, because of

I of 0 0
PQ:<0 O) and QP=<0T 1>' 2.4.5)

Theorem 2.4.2. For integer n > 2, let P" = PP"! = (p(” Josijcoo and Q" = QQ" =

(q Nosi ji<co» then we have

Mli+n-1), whenj=i+n;
p = {1l , 24.6)
0, otherwise,
and
- ?g; whenj=i-n,i>n;
q;; = i+n-1 2.4.7)
i 0, otherwise.
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28 —— 2 Meson functional

Proof. When n = 2, because of
PP = (Z(i + 1)11.,,.+1><Z(i + 1)1,.,,.“),
i>0 i~0
the first conclusion of Theorem 2.4.1 is employed,
= (Z(i +1)( + 2)1,-,i+2>,
i=0
the definition of matrix I;; is employed,
=p?
this is the case of the first conclusion when n = 2.
For n > 3, we have

PPn—l

(Z Ii,i+1)<z ﬁ(i +n—1- D0 )

i>0 i>0 [=0

induction is employed,

n-2
Ya+m[[G+n-1-DLy,
0

i>0 1=

n-1
= > [ 16 +mijn

i>0 =0
= p"

Therefore, the first conclusion is drawn.
Similarly, by considering Theorem 2.2.2(ii) and Theorem 2.4.2, the second conclu-
sion is drawn from the first one. O

2.5 Convolution

The convolution of two vectors a,b € V, denoted bya® b, is

a@b =C= (Co,cl, Cz, CB,...) (2.5.1)
where, for integerj > 0,
j
Cj = Z aibj_i. (2.5.2)
i=0

Lets,h € F.Forintegeri > 0, let S; = 8;'5 and H; = a;h, then we have

S

JS = (50,81,52,...) €V;

y (2.5.3)
H= Jh = (Hy,Hy, Hy,..) € V.
y
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2.6 Differential and integral —— 29

Theorem 2.5.1. Let¥ =S and ® = H, then

Yed-= j(sh). (2.5.4)
y

Proof. Since

. i
3,(sh) = ) S;Hj, by(23.2),
j=0

=SoH,
from (2.3.3), the theorem is done. O

From the commutativity of 7 under multiplication, it is seen that the convolution
obeys the commutative law on V; this implies that, for any s, h € F,

Js@]h:Jh®J& 25.5)

t y t y

For any integer k > 1and h € F, let Hl.“‘] = a;hk, i > 0; then we have

H; k=1;

(k] i ;

Hi = { i [k=1] (2.5.6)
2j-oH; "Hj, whenkz>1

For any integer k > 1, let

ol - Jhk, (2.5.7)
y
then from (2.3.3), we have
o = (gl HM, 7M. ). (2.5.8)

Theorem 2.5.2. For any integersk >1andi > 0, d)l[k] = Hl.[k], ie.,

i T i [k=1] (2.5.9)
2j-o B @, whenk =2
Proof. From (2.5.6) and (2.5.8), (2.5.9) is derived. O
2.6 Differential and integral
For the function y", integer n > 0, the following operation:
n-1
h >1;
d [t whenn 261)
dy 0, whenn =0,
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30 —— 2 Meson functional

is called the differential. The differential on the space F{y;y} over the field F(y), is
determined by the linear extension, i. e., for any a € F,
d

ny _ d
S@")=agy

and

d m n_dm dn
dy(y +y)—dyy e

Theorem 2.6.1. Foranys =s(y), t = t(y) € F{y;v},

d(st) ds ¢ dt

= —ft+s—. 2.6.2
dy dy +sdy (262)

Proof. Lets; = a;s(y) and t; = a}",t(y), i > 0. Because of
n
a;'(i-ir) = Z (k +1)Sy4qtp  and
k=0

dt 4
a"<s—> =Y (k+Dt157 1
y dy ];) k+1°n-k

we have

ds dt

n n
n( 4s nf G\ _ 1 1
a( dyt)+ay(s dy) Y D5t Y Vs

n n
= Z (k + 1)5k+1tn—k + Z (n -k + 1)tn—k+15k
k=0 k=0
n-1
= N+ Dsppato + Y. (k + DSpyqty i
k=0
n
+ Z(n —k+ Dty iS5k + (n+ Dty150
k=1
n-1
=(n+1)spqto + Z ((k + DSppqlbpg + (n - k)tn—ksk+1)
k=0

+(n+1)t,,1S0

n
=M+ 1Syt + (n+1) Z Sitnis1 + (M + D180
k=1
n+l1

=(n+1) z Sitn-k+1
k=0

- d(st)
y dy :
Therefore, (2.6.2) is proven. O
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2.6 Differential and integral = 31

Theorem 2.6.2. Fors = s(y) € F{y;y}, and integern > 1,

= - 2.6.
i ns a (2.6.3)

Proof. We proceed by induction. When n = 0 and n = 1, it is easily seen that the
conclusion is true. For n > 2, because of

ds" ds o1 ds™!
= +s ,
dy dy dy

by Theorem 2.3.1,

_ _d
= Es" Ly stn-1)sm2S

dy dy’
by the induction hypothesis,
— " 1§y+( n—1)s" 13;
by the commutative law for multiplication,
n-1ds
dy’

by the distributive law for multiplication and addition,

=1+n-1s

n-1ds

=ns d—y,

then (2.6.3) is obtained. O
On the basis of F{y;y}, for any integer n > 1, the operation defined by
Jy"dy - Ly (2.6.4)
n+1

is called integration.
Then, by linear extension, we have, for any a € F,

J(aJ/”)dy =a J y'dy
and
J(y'" +y")dy = jy"’dy + Jy"dy

on F{y;v}.
Theorem 2.6.3. Foranys =s(y), t = t(y) € F{y;v},

ds dt
J d—tdy =st - jsd—ydy. (2.6.5)
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32 —— 2 Meson functional

Proof. On the basis of the cancellation law on the integral domain F{y;y}, it is only
necessary to prove

ds dt d(st)
Jdtdy Jddy de dy-

For any integer n > 1, because of

([ )= a3 (Ge) = alfsgo) 28 ()
ay<Jdtd =7 () ana ([sgar)= 97 (sy,

we have

" ([sa)-a(@(50) 4 ()

a”(Jd tdy>+a U s 3503 (s5,
_ l n-1 d(St)) .
= nay <_dy , Theorem 2.6.1 is employed,
_nf [ d(st) )
_ay“ 4y dy ).

Therefore, (2.6.5) is obtained. O

Theorem 2.6.4. For any integer n > 0 and s € F{y;V},

n@) ~ sn+1
J(s d dy = 1 (2.6.6)

Proof. On the basis {y,y%,y>,...}, from (2.3.4), for any integer n > 1, we have

d " ~ d<yn+1>
dny dy—dy 1) by (2.6.1),

= yn_

This implies that on the basis of F{y;y}, integration is the inverse of differentiation.
From the linearity of the two operations on F{y;y}, for any s € F{y;y}, by (2.6.3), we

have
=(n+1) J(s"g—;)dy.

By dividing n + 1 on the two sides, (2.6.6) is obtained. O
Theorem 2.6.5. For any s = s(z) € F{z;V},
T

(12) -A[))

z
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2.6 Differential and integral =—— 33

where P is the left projection matrix and

z d z
JLPST = Js (2.6.8)

where s = jzs eV.
Proof. First, we prove (2.6.7). Let s; = a;, i >0, then

Js: (50>51,535--.) =S.
z

Since the right hand side of (2.6.7) is

T
ps’ = (0,51,2s5,353,...) = L(P(Js) ) = (51,25,,353,...)

z

and the left hand side of (2.6.7) is

[ (g

z
= Y (n+ DSy Jz"
n=0

z

= (Sl, 232, 353, .. .),

by comparing the two sides, (2.6.7) is found.
Then, we prove (2.6.8). Because of LPs” = (s, 2s,,3s3,...),

N

V4
JLPsT = | Y (n+Dspz,

n=0

z
= ) M+1)sy44 Jzn
n=0

v

= Y (n+1)s,,,2".
0

=
v

The left hand side is the differential of s. On the other hand, because of s = IZ S,
z z

ORIEE

The left hand side is the differential of s as well. Therefore, (2.6.8) is obtained. O
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34 =— 2 Meson functional

Theorem 2.6.6. Forany v =v(vy,Vy,Vy,...) € V,letv =v(z) = IZV € F(z;y), then

g—‘z/ = jz P'L" (2.6.9)
and
jvdz = vaT. (2.6.10)

Proof. First, we prove (2.6.9). Because of v = jz s, by transposing the two sides of
(2.6.7), and then invoking jz, (2.6.9) is found.
Then, we prove (2.6.10). Because of

T 1 1 1 >
vQ =(0,vg, =V, oVp —V3,... ), byvey,
Q < 05V 3V2 Y3 y
-y 1
Lon+1 M
we have
z z 1
JVQT = J Ve by the linearity of the anti-meson functional,
n=0
z
= - Vn sz by s = v,(n > 0),
son+l1
= Jsdz.
This is (2.6.10). O

2.7 Differences

We proceed on the basis of R{z} € F{z,y}. For integer n > 1, two operations are estab-
lished as

n_X -y
6,2z = Xy (2.7.1)
and
n_ .n
3,2t = L (272)
8 X—y

called straight difference and slope difference, respectively.
For any function f(z) € R{z}, by the linear extension from (2.71) and (2.7.2), the
straight difference and the slope difference of f = f(z) are, respectively, obtained:
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2.7 Differences =—— 35

fOO-£fy)

6x,yf = X—y > (2.7.3)
X) = X]
o, f = LYV (2.74)
xX-y
Theorem 2.7.1. For any f € R{z}, let f = f(z), then
Oy (2f) = xy6y ,f - (2.7.5)
Proof. From the linearity of 9, , and §, , it is only necessary to discuss f (z) = Zn>0.
Because of
Oyy2f = ax,yz”“
yxn+1 _ Xyn+1
~ X" — yn
= Xy P y
= xy6, 2"
=xyb,,f,
the conclusion is drawn. O
Theorem 2.7.2. Forany f € R{z},
Y285 2 (of) = B 2 (of) = XY 8,0 (o). (2.76)

Proof. From (2.7.3) and (2.7.4), the left hand side of (2.7.6) is

XEYAOPFOA) - VP F D) = XY () - FP))

X2 -2
_ XY 0CF0A) -y 0R)
= X2 -2 :
From (2.7.3), this is the right hand side of (2.7.6). O
For a set A of configurations, let
faboy) = Y XDy 2.77)
Ac A

where m(A) > 0 and n(A) > 0 are, respectively, an invariant number and an invariant
vector of A. Let F 4(x,y) be a function of two variables such that

y
Fo(xy) = JfA(x, y). (2.7.8)

The powers of x and y on F 4 (x,y) are, respectively, called the first parameter and
the second parameter.
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36 —— 2 Meson functional

Theorem 2.7.3. Let S and T be two sets of configurations. If for T € T, there exists
a mapping from T to S as A(T) = {8,S,,...,Syyr)41} Such that S; corresponds 1-1 to
{i,m(T) + 2 — i}, where i and m(T) + 2 — i are the contributions to, respectively, the first
parameter and the second parameter,i =1,2,...,m(T) + 1, satisfying the condition

=Y XT),
TeT
then
Fs(xy) = xyb,,(zf7) (2.79)
where fr = f+(2) = f+(z,¥).
Proof. On the basis of A,
m(T)+1 (T)—is2..0(T)
Fs(x,y) = X'y ey
Xm(T)+1 _ ym(T)+1 T
Y Ty
T;’ x-y
= xySX)y(sz).
This is (2.7.9). O

Corollary 2.7.4. Let f1 and Fs be, respectively, given by (2.7.7) and (2.7.8), then

Fs(x,y) = nycsx,y(ZfT)-
y

Proof. From (2.7.8) and Theorem 2.7.3, the conclusion is derived. O

Theorem 2.7.5. Let S and T be two sets of configurations. If for T € T, there exists
a mapping from T to S as A(T) = {S,S,,...,Syyr)-1} Such that S; corresponds 1-1 to
{i, m(T) — i} where i and m(T) + 2 — i are the contributions to, respectively, the first pa-
rameter and the second parameter,i = 1,2,...,m(T) — 1, satisfying the condition

=Y AT),
TeT
then
Fs(x,y) =0, (f7) (2.7.10)

where fr = f1(2) = f1(z,¥).

Proof. On the basis of the determination of A,

m(T)-1 oot T
Fstoy)= Y ) xymD-iyn®
TeT =1
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2.8 Meson equations =—— 37

This is (2.7.10). O

Corollary 2.7.6. Let f and F be, respectively, determined by (2.7.7) and (2.7.8), then

Fsty) = [ 3,67
y

Proof. From (2.7.8) and Theorem 2.7.5, the conclusion is drawn. O

2.8 Meson equations

If an equation involves the meson functional, probably companied by some of differ-
ences, differentiations, and/or integrations, it is in short called a meson equation.
In this book, all meson equations are considered to be of the form

f=a+bxX"A(cf) + ex* J(y’3 By : fflx=y 0));
y (2.8.1)

f|y:0:»x:0 =d,

where a > 0 and 8,y > 1 are integers, a,b,c,d € R, f,A,B € R{x,y} and O is a set of
operations as regards functionals including probably a meson functional itself.

Observation 2.8.1. If a # d, then equation (2.8.1) is not consistent.

Proof. Because of 8,y > 1, no constant term is in f — a and hence the conclusion of the
observation. O

This observation enables us to restrict ourselves to considering equation (2.8.1)
always with the condition: a = d.

Because of f, A = A(x;f) and B = B(y : f,fly-, 0) all in R{x;y}, we are allowed
to write it as a sum of homogeneous functions of a parameter chosen beforehand in
Rix;y}.

Letn = In| = |[(n;,ny,n3,...) and s = in” be, respectively, called the pan-order
and the pan-size where i = (1,2,3,...) and " is the transpose of a vector, or generally a
matrix.

Observation 2.8.2. For two sizes s; and s,, s; + S, is a size as well.

Proof. Lets; =in; and s, = ing. Because of 5; + 5, = i(nf +m).,s=in’,n= n? + ng,
is a size as well. O
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38 =—— 2 Meson functional

This observation enables us to introduce two types of partitioning of the set
As = {n| a power index of f € R{y}}
for pan-order and for pan-size. Thus, we have

YnsoFun for nasthe pan-order;

fsy) = { (2.8.2)

Ynso Fs« forsas the pan-size,

where F, , and F , are, respectively, homogeneous in nand s for y.

Observation 2.8.3. For two functions f,g € R{x;y} determined by, respectively, F;(i >
0) and G;(j = 0) as in (2.8.2), their product is determined by

1
C =) FGry (2.8.3)
k=0
forl>o0.
Proof. For pan-order, it is natural. For pan-size, it is from Observation 2.8.2. O

This observation shows that C; is determined by F;(i < [) and G;(j < I). If f = g,
then fg = f? and C = Fl[z] for I = 0. Furthermore, for any integer n > 3, f" is the sum of

1
—1].,
Fl[n] — z FkF[Yl lik
k=0

overl > 0.

On the basis of equations (2.8.1) and (2.8.2), two infinite equation systems can be
extracted each of which is equivalent to equation (2.8.1) in R{x; y}.

Because of the additivity for the pan-order and pan-size, from A(x,f) € R{x,v},
we are allowed to write

Yss0As.> Whensis the pan-size;

AG.f) = { (2.8.4)

Yms04.n Whennisthe pan-order.

Because of By : f,fly-,>0) € R{X,¥}, 1et B(y : f,fly-,»0) = By + yB; +y’B, + -+, then
we have

| 0B+ £-flecys 00) = ¥ ypeiBy

b i>0
where

B;. ., when sisthe pan-size;
B, = {2520 is+] P (2.8.5)

>n0 Bif«nj» When nis the pa-order.
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Lemma 2.8.4. Equation (2.8.1) for a = d is equivalent to the equation system of infinite
number of undeterminates F ., s > 0,

Fy, =a+bxAg, +cx* ) ygiBis 1., fors=1
i=0 (2.8.6)
F;,.=a, fors=0.

Proof. Because of the equality for two subfunctions with the same pan-size on the
two sides of equation (2.8.1), a solution of equation (2.8.6) determines a solution of
equation (2.8.1) O

Similarly, for order, we have the following.

Lemma 2.8.5. Equation (2.8.1) for a = d is equivalent to the equation system of an infi-
nite number of undeterminates F, ,,n > 0,

F.,=a+ beA*’n +cox® Z)/ﬁ+iBi[*,n—1]> forn>1;
i>0 (2.8.7)
F.n=a forn=0.

Proof. Because of the equality for two subfunctions with the same pan-order on the
two sides of equation (2.8.1), a solution of equation (2.8.6) determines a solution of
equation (2.8.1). O

A function f € R{y} with all terms x™y' for m > 0 and i > 0 having m ¢ {ij1j=1}
is said to be a partition function. Let P be the set of all partition functions.

Observation 2.8.6. Any partition function is in R{x; y}.
Proof. The reason is that polynomials are seen as special cases of series. O

Observation 2.8.7. For any partition function f € R{x; y},flmn_size:s = (f)s is a homo-
geneous polynomial of pan-size s.

Proof. Because of the limitation y, allowable from s given, (f), in the partition func-
tion has a finite number of terms and hence is a homogeneous polynomial of pan-
size s. O

Observation 2.8.8. If f is a solution of equation (2.8.1), then, for any integer s > 1, the
homogeneous polynomial (f) for pan-size can be determined by (f);, t <s - 1.

Proof. On the basis of Observation 2.8.7, by considering &, > 1, the conclusion is
drawn. O

Theorem 2.8.9. Equation (2.8.1) is well-defined on R{x;y} for f € P if,and onlyif,a = d.

Proof. Observation 2.8.1 provides the necessity. Only the sufficiency is considered. Be-
cause of the initial condition of equation (2.8.1) and the three observations just men-
tioned above, we are allowed to establish a procedure for reaching the solution of
equation (2.8.1). O
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40 =— 2 Meson functional

2.9 Notes

2.9.1. Since the series of articles by Blissard (see [3, 4], 1861—1862), the Blissard opera-
tion dealing with a symbol operator has been established, it looks no further attention
has been paid to it until Rota dealt with a functional, called shadow (or umbrella) func-
tional, to extract a summation free explicit form of the Bell number for enumerating
partitions of a set (or an integer), as shown in Rota GC [75] a century ago.

2.9.2. Umbrella calculus is formulated on the basis of shadow functionals by the Rota
group with relationships to Hopf algebra and the M&bius algebra. The reader inter-
ested in symbol algebra is referred to [63] (Mullin RC, Rota GC, 1970), [74] (Roman SM,
Rota GC, 1978), [75] (Rota GC, 1964), [76] (Rota GC, Kahaner D, Odlyzko A, 1973), [77]
(Rota GC, Tayler BD, 1994), [78] (Rota GC, Shen J, Tayler BD, 1997) etc.

2.9.3. In the beginning of our research on the enumeration of planar maps with a
vertex partition vector as parameter, the shadow operator used to be misemployed as
a particular type of Blissard operator denoted by ¢ as in [17-31, 34, 35] (Liu YP, 1985—
1989).

2.9.4. Then, from 1990 on, as shown in [36-39, 41, 43] (Liu YP, 1990—1993), etc., the
operator has been ignored as a more general functional of transforming the space of
functions to an abstract linear space denoted by j instead of the shadow functional.

2.9.5. Because of the distinction of the functional from the shadow, we have had to
adopt in our work the meson functional as shown in [57, 58] (Liu YP, 2012) since 2012,
particularly in [59] (Liu YP, 2015).

2.9.6. This book only concentrates on the property of being well-defined of the me-
son functional equations considered and their solutions extracted via constructions
for realization on computers without much investigation on the inner structures of
the functional itself. These structures hopefully are useful for evaluating the explicit
forms of their solutions in the extended integral domain directly.
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3 Function equations of one variable

3.1 First coefficient variable

Let R{z} be the extension of integral domain F{z} over the integer ring R with z as
an undeterminate. Of course, R{z} is a ring as well. The equation considered in this
section is about finding a function f of z, f € R_{z}, such that

{azf2 ~bf +c=0;
flz:O = da

where a, b, c,d € R, is satisfied. This is equation (1) in Introduction.

At first glance, it looks like an ordinary quadratic equation. However, its main
differences from the quadratic equation in elementary algebra are: (1) at least one of
the coefficients in the terms involving the undeterminate contains a variable; (2) the
solution has to be in R, {x}.

Whenever noticing thatifa = b = ¢ = d = 1, the equation becomes what is
obtained in enumerating the classes of non-isomorphic planted plane trees. We face
the suggestion to call equation (3.1.1) the model of planted trees.

In what follows, some conditions have to be clarified.

(3.1.1)

Condition 1. Because of f € R{z},

f=) Fz2" (3.1.2)

where F, e R,n > 0.

From the initial condition of (3.1.1), whenever
c=hbd (3.1.3)

is satisfied, equation (3.1.1) has the possibility of consistency, and hence only

2 — 0
{azf —bf +bd = 0; 614)

f|z:0 =d,
has to be considered.

Condition 2. If d = 0, equation (3.1.4) becomes
(azf - b)f = 0.

Because of the triviality that f = 0 is a degenerate case of a linear equation, it is
only necessary to consider azf — b = 0. However, because of the non-existence of an
inverse of az in R{z}, this leads to the conclusion that equation (3.1.4) has no solution.
Therefore, d # 0.

https://doi.org/10.1515/9783110625837-003
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42 — 3 Function equations of one variable

Condition 3. Because of that, b = 0 or a = 0 leads to the triviality of equation (3.1.4),
and both a + 0 and b # 0 have to be pre-assumed.

Theorem 3.1.1. Equation (3.1.4) has, and is the only one to have, a solution in R_{z} if,
and only if, abd + 0.

Proof. Because of the infiniteness in the ring R, no zero factor exists in R. Thus, ble
‘R. By the cancelation law, equation (3.1.4) has the following equivalent form:

— b l£2 4.
{f—ab 2Zf? + d; 515)

f|z=0 = d)

in R{z}.
From (3.1.2), by equating the coefficients of terms with the same degree on two
sides, equation (3.1.5) becomes, for any integer m > 0,

Fy=d (theinitial condition), m =0;

a_m-1,.2 . m
F, = -0 two coefficients of z equal
"™ b* o qual) (3.1.6)

a m-1
= E Z FiFm—l—i’ m>1.
i=0

Since all F;, 0 < I < m—1, are known, F,, is determined by some of F;,0 <l < m-1.
On account of the principle shown in the proof of Theorem 2.8.9, the conclusion
is drawn. O

In the proof of Theorem 3.1.1, it is seen that (3.1.6) has provided the solution of
equation (3.1.5), hence equation (3.1.1), if any, has the form of a sum with all terms
positive.

Moreover, when a = b = d = 1(c = bd = 1), the F,, become the Catalan numbers

2m)! 1 <2m + 1)
= = s 3.1.7
T omi(m+1)! 2m+1\ m G17)
or in the form of a recursion
1, when m = 0;
Cn =1 wma (3.1.8)
Y=o CiCp1, whenm=1.
Theorem 3.1.2. The solution of equation (3.1.4) is determined by
m ym+1
2m)!
_admem) (3.19)

™ pmml(m + 1)!
form=>0.
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Proof. We proceed by induction on m. When m = 0, from the initial condition of equa-
tion (3.1.4), (3.1.9) is checked to be true. When m > 1, on the basis of the assumption
that, for any integer 0 < I < m -1, (3.1.9) holds. From (3.1.6), we have

a m-1 aldl+1(21)! amflfldmflfl+1(2(m 1= l))'

F, =~
b & P+ D P m -1 - Di(m - 1-1+1)!
Ca"dmt ey 2(m-1-1D)!
b S NI+ 1) (m-1-Di(m-1-1+1)V
by (3.1.8) and (3.1.7),
B atd™!  (2m)!
Cbm mim+ 1)
Thus, (3.1.9) is true for m > 1. O

This is a summation-free explicision (i. e., an explicit expression) of F,,.
Now, let us go back to the specific case of a = b = ¢ = d = 1 in equation (3.1.1).

Theorem 3.1.3. The equation

2
zZf*-f+1=0;
{ /-1 (3.1.10)
f|z:0 =1,
for f € R{z} is well-defined. The solution of equation (3.1.10) is determined by
Fy =1 (theinitial condition), m = 0;
m-1 (3.1.11)
Fp=)Y FFpyp m21,
i=0
for Fy, = 9)'f, m > 0. Form > 0,
2m)!
F,=— 1,12
o mli(m+1)! G.112)

Proof. The first conclusion is seen to be true from Theorem 3.1.1. The second con-
clusion is seen to be true from (3.1.6). The third conclusion is seen to be true from
(3.1.8). O

From (3.1.7) and (3.1.7), F,,, in (3.1.12) is just the Catalan number C,,. This explicision
is, particularly, summation-free.

In what follows, some examples are given to show certain direct applications of
equation (3.1.1) and other equations which are going to be discussed in this book.

Example 1. Topological classifications of binary trees. A binary tree is defined to be a
tree such that it has exactly one vertex of valency 2 (root-vertex!) with all other vertices
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AN

To,1 T To1 Ts9

Figure 3.1.1: Binary trees of n = 1-2.

T51 T3 T33 T34 Ts5

Figure 3.1.2: Binary trees of n = 3.

of valency either 1 (end vertex!) or 3 (inner vertex!). In some references, a root-vertex is
called a peak and the end vertex is called an articulate vertex.

Two binary trees are said to be topologically equivalent if they are treated as pla-
nar embedding equivalents. In other words, edges at a vertex are certainly considered
to have a rotation (a cyclic order).

In Figure 3.1.1 and Figure 3.1.2, non-equivalent binary trees with the number n = 0,
1and 2 of non-end vertices are shown. For example, when n = 0, only one binary three
Ty, as shown. When n = 1, only one as well, shown as T, ;. When n = 2, two binary
trees are shown as T,; and T,,. When n = 3, five binary trees are as shown by T,
Tys..., Tsse

Because two smaller binary trees are obtained by deleting the root-vertex (or the
peak), the enumerating function ty;,; = t,;,:(2) is checked to satisfy equation (3.1.10).
From Theorem 3.1.3,

2m)!

m — —
%z toint = mm+1! ™

Therefore, Ty =1, T; =1, T, =2and T5 = 5.

Example 2. Classification of plane rooted trees by size n > 0. A plane tree is a planar
embedding of a tree, because of two sides occurring at one end of an edge. If the pair
at an end and a side for a chosen edge is marked on a plane tree, then the plane tree
is called rooted. The symbol of the mark is said to be the root, denoted by a hollow.
In Figure 3.1.3, L,; denote the i (i > 1)th plane rooted tree of size n. Because of the
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3.1 First coefficientvariable =——— 45

@)

Lonw L1y Lox  L3i  Lsp Ly Lyp Lygs

Figure 3.1.3: Plane rooted trees of n = 0—-4.

asymmetry of a rooted plane tree, each hollow on a plane tree represents a rooted
one. Rooted plane trees produced from a chosen plane tree are distinguished by i.
For integer n > O given, the number of rooted isomorphic classes of plane trees is
Ap =L+l + 1,3+, wherel,;, i > 1, is the number of hollows on L, ;. For example,
as shown in Figure 3.1.3, A\g =1, Ay =1, A, =2, A; =5and A, = 14.

The recursion (3.1.8) is satisfied by A, A, = C,,, n > 0.

Example 3. Classification of planar rooted petal bundles by size. In a planar embed-
ding of a graph, each edge has two sides and two ends. A pair {end,side} marked is
called a root. A graph with a singe vertex is said to be a petal bundle. The mark of a
root is represented by a hollow on its figure as shown in Figure 3.1.4. P, ; is the ith (i > 1)
isomorphic class of a planar petal bundle of size n. A hollow determines a rooted petal
bundle. For given integer n > 0, the number of planar rooted petal bundles of size n is
Py =1l + 1,5 +1,3+---, wherel,;, i > 1, is the number of hollows on P, ;. For example,
in Figure 3.14, Py = 1, P, = 1, P, = 2, P; = 5and P, = 14. On P,;, each pair of two
occurrences of a number represents an edge.

oK AN K

3 3
Py P11 Py P31 P32 P41 Pyo P43

Figure 3.1.4: Planar petal bundles of size n = 0-4.

Similarly, it can be shown that the function ¢, determined by 9} t,e = P, (n > 0)
satisfies equation (3.1.1) for a = b = ¢ = d = 1. From Theorem 3.1.3, P, = C,,, n > 0.
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46 —— 3 Function equations of one variable

Example 4. Sequence of integrals. Consider the function

1
2n+1
Az) = Z z"bn j 2"V1 - 72dr.

n=0 ]

It is well known that, for any integer n > 0,

b2n+1 1
J V1 -12d1 = C,,.

-1

n

From Theorem 3.1.3,
9,'A(z) = F,

for m > 0. On account of equation (3.1.10) being well-defined, A(z) is the solution of
equation (3.1.1) fora=b =c=d = 1as well.

Example 5. Continued fraction. We address the continued fraction

1

5 =) Cut™ = (1);
T m=0
1- 2
. T
1 v
1 v
TZ
l —
1—--.

let 7 = vz, then, from Theorem 3.1.3, 0}'¢ = 0]')(\/z) = F,,. From Theorem 3.1.1 (whose
specific case of a = b = d = 11is Theorem 3.1.3), (z) is the solution of equation (3.1.1)
inthecaseofa=b=c=d=1.

3.2 Last coefficient variable

Let R{z} be the extension of the integral domain R consisting of all Laurent series over
the integer ring R with z as an undeterminate.

The purpose of this section is to find a function f € R{z} with all coefficients pos-
itive over the non-negative part of the real field R, such that the equation

{afz —bf +cz=0;
f|z:0 =d,
where a, b, c,d € Z, is satisfied. This is equation (2) in Introduction.

Because of the constant term involving a variable, the equation is said to be of the
type of last coefficient variable.

(3.2.1)
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3.2 Last coefficientvariable =——— 47

Observation 3.2.1. Ifd # 0, then equation (3.2.1) is not consistent.

Proof. Assume integer d > 0. Let F,, = 0;f, n > 0, then from equation (3.2.1),
2 ) _ _ _b
aFy-bFy=ad" -bd=0=ad=b= Fy = p

Because of F, € R, a >and b > 0. However, for determining F;, from equation (3.2.1),
we have

2aF0F1—bF1+c=O=>2bF1+c=O=>F1:—%<0,

where the last = is reasoned from the fact that if ¢ = 0 then the equation becomes
trivial. A contradiction to F; € R, occurs. O

If a new function h of z is introduced with f = zh, then equation (3.2.1) becomes

{azzh2 —bzh +cz =0;
h|Z=O = d

This is just the type discussed in the last section.
So, another equation is considered in this section as

2

af*-bf +cz=0;
{ f (3.2.2)

o,f =d,

for f € R{z} with all coefficients in R, .

Observation 3.2.2. In equation (3.2.2), ¢ = bd.

Proof. Because of 82 f = 0, from equation (3.2.2), we have

—ba;f+c:0:>d:%=>b>0,
and hence c = bd. O

On account of a = 0 leading to equation (3.2.2) being trivial, in what follows, only

2 —_ 0
{af —bf + bdz = 0; (523)

oif =d,
where abcd # 0, a,b,c,d € Z, and f € R{z} is considered.

Theorem 3.2.3. Equation (3.2.3) has, and is the only one to have, a solutioninf € R{z}.
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48 —— 3 Function equations of one variable

Proof. Letf € R{z} be determined by F,, =0, f € R,, m > 0.
It is well known that F, = 0 and F; = d. For integer m > 2, from equation (3.2.3),

m
bF, =a) FiF, ; byF, =0,

Because of b > 0,

a m-1
Fn=3 Y FiFp . (3.2.4)
i=1

By the induction principle on n, on the basis of all F; (0 < i < m - 1) being known,
from (3.2.5), F,, is then determined.
On account of m being arbitrarily chosen, f is determined as the solution. O

On the basis of the proof of Theorem 3.2.1, a procedure is easily found to extract
the solution:

0, when m = 0;
Fm = d, whenm = 1; (3.2‘5)
5 "' FF,_;, whenmz>2

By employing (3.2.5), one might like to see what happens for m smaller. Then we
have

Fy =0, known from what we mentioned above;

F, =d, from the initial condition.

When m = 2, from (3.2.5),

1
a a a
F=5 i§:1FiF2—i = EF12 = Edz,
2 2 3
a Z a ad
F5= b i:1FiF3_i B E(ZFIFZ) - 2( b? >’
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3.2 Last coefficient variable =——— 49

Fs = %iFFS,—Z (F\F, + F,F3)
a a\’ a\’
(5)C(5) #+2(5) )
@) @

2.

Theorem 3.2.4. The solution of equation (3.2.3) determined by F,,, m > 0, has a
summation-free explicision in the form of

Il
N

0, whenm = 0;
Fp=14d, whenm = 1; (3.2.6)

(%)m—ldm Cm-l;
where C,,_, is the Catalan number shown in (3.1.7).

Proof. Because of F; = 0 and F; = d as is known from the initial condition of equation
(3.2.3), F; is checked from C, = 1.
Foralll<l<m-1,
-1

a
Fl = <B) dlCl_l

are assumed to be true. By the principle of induction, we determine F,,,.
On the basis of (3.2.5) and the assumption, we see that

m—i-1

m- . a .
< > dl CH( 5 ) d""Coi
i1

m-1
d'" Z CiiCpi» by (3.18),

i=

This is the conclusion. O

This theorem enables us to find the condition for the solution of equation (3.2.3)
with all coefficients integers.

Corollary 3.2.5. The solution f of equation (3.2.3) holds for all 9]' = F,, € Z, if, and only
if,blacZ,.

Proof. A direct result of Theorem 3.2.4. O
Now, let us to go back to the case of a = b = ¢ = d = 1 for equation (3.2.3), i. e.,

<11‘2—}’+Z=0;

1 (327)
alf =1.
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50 —— 3 Function equations of one variable

Theorem 3.2.6. Equation (3.2.7) is well-defined on R{z}.

Proof. We have the case of a = b = ¢ = d =1 of Theorem 3.2.3. O

From (3.2.5)ofa = b = ¢ = d = 1, a procedure is easily found to extract the solution
of equation (3.2.7) as

0, when m = 0;
Fn=11, whenm = 1; (3.2.8)
iy FiF,p;, whenm >2.

On the basis of (3.2.8), a summation-free explicision is easily found as well.

Theorem 3.2.7. The solution f of equation (3.2.7) is in the summation-free form of

gy = 2m =2 (3.2.9)

~ (m-1)!m!
forinteger m > 1.

Proof. Inthe case of a = b = ¢ = d = 1 of Theorem 3.2.4, by (3.1.8), the conclusion is
then drawn. O

For Theorems 3.2.6 and 3.2.6, some applications are shown via examples.

Example 1. Classification of planted trees by size. A planted tree is a plane rooted tree
with rooted vertex of valency 1. The enumerating function of planted trees by size as
the parameter is

tplant = Zlivee = Z Cn—lzn (3.2.10)

n>1

where .. is the enumerating function of plane rooted trees by size (see Liu YP [46],
Tutte WT [85], 1964).

Example 2. Classification of lei petal bundles. Lei petal bundles are plane petal bun-
dles with root face of valency 1. The enufunction (i. e., enumerating function!) of lei
petal bundles by size is denoted by

bei = thet

where ¢, is the enufunction of plane rooted petal bundles by size.
From Example 2 in 3.1 and Example 1 in this section,

n
tiei = fplant = Z Cnaz".

n=1
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-]

Sip Saq1 Sz 539 San S42 Sa3

Figure 3.2.1: Non-separable outer-planar maps of size 1-4.

Example 3. Non-separable outer-planar maps. In Liu YP [33], it was shown that the
enufunction of non-separable outer-planar rooted maps by size f,g, = fsp(2) is @ so-
lution of equation (3.2.7).

Figures 3.2.1 and 3.2.2 show all such maps of size from 1 through 5 where S, ; is the
ith equivalent class of size n.
Hollows near the edges distinguish the non-equivalent classes, or rooted manners.
Thus,

1(S;,) forsizel,

1(S,;) forsize?2,

1(S31) +1(S3) =2 forsize 3,

1(S41) +3(S52) + 1(Sy3) =5 forsize 4,

and
1(S5.1) +3(Ss5) + 3(S53) + 4(Ss4) + 2(S55) + 1(S5.6) = 14 for size 5.
To be compared with (3.2.9) we have

a;fnsop =1= a;f; aﬁ nsop = 1= aﬁf;
Cfnsop = 2= 02fs  Oofnsop = 5 = 02f;
0 fusop = 14 = O2f.

o o
o
o
o
o o
o o
o
o
o o
Ss.1 S0 Ss3 Ss.4 Ss5 Ss.6

Figure 3.2.2: Non-separable outer-planar maps of size 5.
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52 —— 3 Function equations of one variable

3.3 At least two coefficients variable

If an equation of function has at least two coefficients variable, then it is called a levity
variform.

In this section, only quadratic equations with all three coefficients variable are
considered and are called total variform.

This equation is of the form

a(l+z)f = b(1+2)f + cz = 0;
{ (1+2)f* - b1 + 2)f 631)
flz:O = d>
where a, b, c,d € R, abc > 0. This is equation (3) in Introduction.
Let F; = 9if and F7 = 9if?,i > 0, then
i
F? = Y FF, ;. (332
j=0
On the basis of equation (3.3.1), because of
bf = a(1+2)f* - bzf + cz, (3.3.3)
the equation system
bF, = aF([JZ], when n = 0;
bF, = c+aF? +aF? ~bF,, n=1 (3.3.4)
b(F,) = a(F?' + F2\ ) + bF,;, n=>2,
is easily found for F, = d.
Let FEI = F2 _2FF,, then from (3.3.2), we have
1 n-1
F@2 = N FF,;. (3.3.5)
i=1
Lemma 3.3.1. Equation (3.3.1) is equivalent to the following equation system:
bF, = aF([)z], whenn = 0;
(b —2aFy)F, = c, whenn = 1; (3.3.6)

(b -2aF,)F, = a(F? + F?) ~bF, |, whenn=>2,

forFy=dandf € Riz}.

Proof. By a series of transformations which are equivalent in R{z}, equation (3.3.6) is
obtained from equation (3.3.1). O
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3.3 At least two coefficients variable =—— 53

On the basis of equation (3.3.6), a number of conditions on a, b, ¢ and d for the
consistence of equation (3.3.5) and hence equation (3.3.1) are found.

Observation 3.3.2. For abc > O with all of a, b, c € Z.,, the solution of equation (3.3.6)
satisfies d(b — ad) = 0.

Proof. From the first equation of equation (3.3.6), the initial condition leads to d = ad”.
This is the conclusion. O

This observation enables us to discuss equation (3.3.5) in two cases: (i) d = 0 and
(ii) d = b/a.
Let FA = 2F F,, + -+ + 2F;_yF,_i,1 + F?. where

FB =N FF, (3.3.7)

for1<i<|n/2] and n > 1; then equation (3.3.6) becomes

aF([)Z] - bF, =0, when n = 0;
c
F=—7—, henn=1;
1= b 2aF, W (3.3.8)
a(F? + F2 ) _bF,_
F, = Fuy + Fncy) "1 whennz2.
b - 2aF,

The condition abc > 0 in equation (3.3.1) is for avoiding unnecessary cumbersome
variants.
First, for d = 0, equation (3.3.8) becomes

Fy=0, when n = 0;
c

Fl = E, . o whenn = 1; (3.3.9)
a +F - bF,_

F, = Facy + Fcy) "1 whennz>2,

b

forn>1.
Theorem 3.3.3. Equation (3.3.9) is well-defined on R{z} for abc > 0, a,b,c € Z,.

Proof. 1t is well-known that we have F, and F; for n = 0 and 1. For n > 2, according to
the principle of induction on n, the assumption of all F; for 0 < I < m-1known is made.
From the assumption, all of F,Ez_]l, Fr[lz_]1 and F,_; are known. Therefore, F, is clear from
the third equation of equation (3.3.9). The uniqueness of the solution is determined

only by the initial condition. O
This theorem enables us to induce a number of corollaries.

Corollary 3.3.4. The solution of equation (3.3.9) holds for all coefficients non-negative
integers if, and only if, b is a common factor of a and c.
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54 —— 3 Function equations of one variable

Proof. The reason is the fact that, for positive integers a, b and c, both ¢/b and a/b
are integers if, and only if, b is a common factor of @ and c on the basis of (3.3.8) and
(3.3.9). O

When a = b = ¢ = 1, equation (3.3.9) becomes
Fy, =0, whenn = 0;
F =1, whenn = 1; (3.3.10)
Fy=(F® +FZ)+F,,, whennz2,
forn > 0.

Corollary 3.3.5. The solution of equation (3.3.10) holds for all coefficients non-negative
integers.

Proof. This is a direct result of Theorem 3.3.3 and Corollary 3.3.4 in the caseofa = b =
c=1 O

Then, for d = b/a, equation (3.3.8) becomes

Fo=-, whenn = 0;
F = —%> whenn = 1; (3.3.11)

F,=F, - %(F,Ez_]l + F,[f_]l), whenn > 2,

forn> 0.
Theorem 3.3.6. Equation (3.3.11) is well-defined on R{z} for abc > 0, a,b,c € Z.,.
Proof. Similar to the proof of Theorem 3.3.3. O

Let f and f’ be the functions in R{z} determined by, respectively, F, in (3.3.9) and
F,in (3.3.11) forn > 0.

Theorem 3.3.7. Forintegersn >0, F, = F, — b/a and F, = —F} forn > 1.

Proof. We consider equations (3.3.9) and (3.3.11), which are known to be true forn = 0
and 1. We proceed by induction on n > 1. Assume that, for any positive integer [ < I <
n-1, F, + F| = 0, to see what happens for | = n. Because of

a
b
a, 2] [2]
- E(F’n—l +F, )

n-1

(2 2
Fy+F,=—(FA +FP)_F _ +F,

a =2 - [2] '
= E(Fn—l _F,n—l) + 2Fn—l
a

2 (2]
+ E(F1[1—11 _F’n—l)
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= 2Fr’1—1 + %(_ZF(’)F;;A)
=2F, - 2F,
=0,
the conclusion is obtained. O

This theorem tells us that f' = 1-f.
When a = b = ¢ = 1, equation (3.3.11) becomes

Fo=1, when n = 0;
F=-1, whenn=1; (3.3.12)
Fy=F - (F,[,Z_]l + F,[lz_]l) whenn > 2,

forn > 0.
Theorem 3.3.8. Equation (3.3.12) is well-defined on R{z} for abc > 0, a,b,c € Z,.
Proof. This is a result of Theorem 3.3.6 in the caseofa=b=c=1. O

Corollary 3.3.9. The solution of equation (3.3.12) holds for all coefficients as non-
positive integers except only for F, = 1.

Proof. This is a result of Theorem 3.3.7 and Corollary 3.3.5. O

Let h and h' be the functions determined, respectively, by H, = F,, in (3.3.10) and
H! = F,in (33.12).

Corollary 3.3.10. ' =1-h.
Proof. This is the special case of a = b = ¢ = 1in Theorem 3.3.7. O

On the basis of Corollary 3.3.5, some examples are shown to have applications in
combinatorics.

Example 1. Classification of non-separable outer-planar simple rooted maps by size.
Let fosops € R{z} be the enufunction for enumerating non-isomorphic classes of non-
separable outer-planar simple rooted maps with size n as parameter. That implies F,, =
L frsopt> 1 2 0, in (3.3.10).

By employing (3.3.10), one can see that

Flzl, F2:0, F3:F4:1, F5:3, F6:6 al’ld F7:15.
See Figure 3.3.2 and Figure 3.3.3, where we refer to
Fl by 1P1)1, F3 by 1P3’1,
F4 by 1P4’1, FS by1P5,1 +2PS,2’
F¢by 5P, +1P;, and
F; by 1P, + 6P;; + 3P; 3 + 4Py 4.
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56 —— 3 Function equations of one variable

Example 2. Classification of non-isomorphic non-separable outer-planar rooted tri-
angulations by the valency m of root-face. Because it is well-known that a non-
separable outer-planar simple map of size n is a non-separable outer-planar trian-
gulation of root-face valency m if, and only if, n = 2m — 3, we have
;n nsotr — agm—S nsopslroot-face valency m

where f .., € Riz} is the enufunction of non-isomorphic non-separable outer-planar
rooted triangulations by the valency m of the root-face.

Only n = 3,5 and 7 are available for, respectively, m = 3,4 and 5. Then a; footr = 1
Opfoor = 2and Ofy,on = 4 are represented by, respectively, 1P;;, 2P, and 4P, , in
Figure 3.3.2 and Figure 3.3.3.

Example 3. Isomorphic classification of planted trinary trees. A planted trinary tree
is a trinary tree of end vertex rooted type. A trinary tree is a tree with all vertices of
valency 3 except for ends (of valency 1).

According to the out-duality, a map is a planted trinary tree if, and only if, its out-
dual is a non-separable outer-planar triangulation. The number of end vertices of a
planted trinary tree is the valency of the root-face of the outer-planar triangulation.

Because the number of end vertices in a planted trinary tree is 2 less than the
number of its 3-valent vertices, a trinary tree of order n > 4 has m = (n + 2)/2 end
vertices.

Let foni—¢ € R{z} be the enufunction of planted trinary trees by the number s of
3-valent vertices as parameter, then

S 25—3
azf ptri-t = az f nsops |r00t-face valency s

where s > 1.
In Figure 3.3.1, one can see the number of isomorphic classes of planted trinary
trees fors = 1,2and 3 as (1T} ;) + (2T,4) + (3T3,).

Tia 151

Figure 3.3.1: Planted trinary trees with 1-3 trivalent vertices.
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Figure 3.3.2: Non-separable outer-planar simple rooted maps of size 0-6.

Figure 3.3.3: Non-separable outer-planar simple rooted maps of size 7.

— 57

Example 4. Isomorphic classification of non-separable outer-planar simple rooted
maps including the vertex map. By the substitution f = g — 1 in equation (3.3.1) with

a=b=c=1andd = 0, one can see the equation about g is

{(1+z)g2—3(1+z)g+32+2= 0;
ng:() = 1

(3.3.13)

The solution of equation (3.3.13) is g = f + 1 where f is determined by F,, = 9J'f,

m > 0, which are shown in (3.3.10).

3.4 Model of triangulations

Consider the equation (Liu YP [51], p. 70)

1- -2
f3+Z—22f2+ZTf+1:O;

flz:O =0,

(34.0)

for f € R{z} with all coefficients in Z, . This is equation (4) in Introduction I when
a =b =c =1andd = 0 this being meaningful in the classification of outer-planar

triangulations.
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58 —— 3 Function equations of one variable

For convenience, by the cancelation law, equation (3.4.1) is transformed into

243 _ 2 2 2,
{zzf_zf +(1-2)f +z°f +25 (3.4.2)

f|Z:0 = 0

Because of f € R{z}, f is determined by F,, = dJ'f for n > 0, and hence 2 2 vy,
respectively,

Fr[r%] - ZFsz—v
5 =0 o (3.4.3)
FM Z FlFm—l’
i=0
forn> 0.
By the initial condition
F2 g2 _ g,
([)3] 1[3] (3] (3.4.4)
FPl=FP =FP = 0.
Then (3.4.3) becomes
Fi2 = rnilF-F . form > 2;
m y = m-r ==
= (3.4.5)
FO = 3 FF2. form=3,
i=1
forn > 0.

On the basis of equation (3.4.2), by transforming in R{z}, it is seen that the equa-
tion system

(0. pl2] _
z 1 Fy =0
(for constant term);
1. _ rl2l [2]
z : 2Fy=F" - F;
(for first term);
22 2R =FP + FP - FP 4 Ry +1
(for second term); hE
|22: 27, = F9 s F _F2  F (4.6
e =0 3 2 1
(for third term);
3 2 2
2% 2F =FP + FP - FP 4 F,
(for third term);
1. _ i3] [2]
Z"™ . 2F, =F" +F

n+1

_Fr[12]+Fn—1

(for n + 1-st term, n > 4),
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is equivalent to equation (3.4.2) and hence to equation (3.4.1)
Forz’,F'=0 = F}=0 =

Fy = 0. (34.7)

This is the initial condition.
For z!, because of Fy = 0 and hence Flm =0,2F, = Flm - F([)z] is an identity.
Forz?, from Fy = 1 = FP) = 0, 2F = FP + F - FA 1 Fy+1 = 2F = F +1 =

(F,-1)°=1>= F =1 (3.4.8)

For 22, from F®) = 3F}F, = 0, F¥ = 2F\F, = 2F,and FY?) = F} = 1,2F, = F) +
F3[2] - F2[2] + F; = 2F, = an identity.
For z*, from F) = 0, Fi? = 2F; + F2, F{? = 2F,,
2 =FP +F? - FY +F, = 2F, =2F; + F} - 2F, + F,
= F3-F,=Fy(F,-1)=0.
Because of F, = 1 not being available, for F,, € Z_ for all n > 2, this enables us to have

F,=0. (3.4.9)

Observation 3.4.1. IfF, =1,thenF; ¢ Z..
Proof. From F, = 0, F; = 1and F, = 1, we have the equation
2, =F)'+FP -F+F; =
2F, =1+ (2F, +2F;) - Q2F;+1) + F; =
0=1+2F;-2F;-1 = F;=0.

We proceed addressing F,. By F; = F, = 1and F; = 0,

2 =FP+FP -FP 4 F, =
2F = 3F}F, + (2FFs + 2F,F, + F3) — (2F\F, + 2F,F3) + F, =
= F,+3=0.
However, F, = -3¢ Z,. O
This enables us to choose F, = 0 instead of F, = 1.
For z°, from F3[3] =F =1,
F? = 2F\F, + 2F,F, = 2F,,
F? = 2F\F; + F} = 2F,,
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60 —— 3 Function equations of one variable

2F, = F3 4+ Fl2 _FP 4 Fy
= 2F4=1+2F4—2F3+F3
= 0=1-F; =

Fy=1. (3.4.10)

Now we consider z"*2(n > 4). Because of F, = 0, F; = 1and F, = 0, we have

n-1
3 2 2
FBl = FoF 4 Y FF2,
i=1

= Y FFF,
1<i,j,k<n-1
2] n-2
Foy = 2FFy + 2F Fy + 2F5F, Z FiFp1
i=3
n-1
=2F, + ZFiFnH—i)
i=2
and, by F, = 0,
2] n-1
Fio = 2F1Fy g + 265F, + zFiFn+2—i
i=3
n-1
=iyt Z FiFpip i
i=3

Thus, 2Fn+1 = Fr[13] + F[z] _ F[Z]l +Fn =

n+2 n+

n-1 n-1
0= Y FFFy+ ) FiFpoi—Fy— ) FiFpa=
1<ijk<n-1 i=3 i=2
i+j+k=n

Fp =2, +392, (34.11)

where, by F, = 0,

1
P = Y FFF
1<i,j,k<n-1

e 2 (34.12)
2
Z;—)l = Z FiFn+2—i - Z FiFn+1—i'
i=3 i=3

Observation 3.4.2. For any integer n > 3, Zf_)l > 0.
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3.4 Model of triangulations —— 61

Proof. Because of F ., ; — F,1; 20,

n-1 n-2
z FiFn+2—i - z FiFn+1—i
i=3 i=3

n-2 n-2

=F, F3+ z FiFypi - Z FiFpi
i=3 i=3
n-2

=Fp1+ z Fi(Fpip-i = Fp1-t)
i=3

> 0.
From (3.4.12), this is the conclusion. O

In the proof of Observation 3.4.2, all F,, € Z, and F,, > F,_; for n > 3 are known to
be true by induction on n from Fy, F;, F, € Z,.

Observation 3.4.3. Foranyintegern > 3, F, € Z, is determined only by F;,0 <l < n-1,
on the basis of F, = 0 and F, = 0.

Proof. On the basis of Observation 3.4.2, having checked Z;l_)l and Z;Z_)l, the conclusion

is drawn. O

Theorem 3.4.4. Equation (3.4.6), and hence equation (3.4.1), is well-defined for all
F,(n>0)eZ,if,and only if, F, = 0.

Proof. This results from the procedure for evaluating a solution of equation (3.4.6)
mentioned above. O

This theorem enables us to complete the procedure for getting the solution only
from the initial conditions F, = 0 and F, = 0.

Theorem 3.4.5. The solution of equation (3.4.6), and hence equation (3.4.1), is in the
form of a sum with all terms positive,

0, when n = 0;
1, whenn = 1;
F,= (3.4.13)
0, whenn = 2;
fo_)l + Zflz_)], whenn > 3,

where Z;l_)l and Zf_)l are seen in (3.4.12).

Proof. On the basis of Observation 3.4.2 and Theorem 3.4.4, the conclusion is drawn.
O

Although (3.4.13) is particularly suitable for us to go further on the other two
stages: efficientization and intelligentization, an explicision in the form of a sum with
all terms positive is also found.
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62 —— 3 Function equations of one variable

Theorem 3.4.6. In (3.4.13), for integern > 0,

0, whenn=0andn =2
1, whenn = 1;
F, = He1\/3l—n—3 (3.4.14)
z )( ) whenn > 3.
n+l l l -1
[™<len-1

Proof. Because
Z(l) +Z(2 _ (n—l)(Bl—n—3>
l I-1

for n > 3in (3.4.13), from Theorem 3.4.5, the conclusion is drawn.

O

Some applications are shown of usage of the equation discussed in this section.

Example 1. Classification of outer-planar rooted triangulations by the valency of
rooted face. In Liu YP [51] (Section 3.1), one can see that the solution of equation
(34.) is f = zg,, where g, is the enufunction of outer-planar rooted triangulations

with the valency of the rooted face as parameter, i. e., dgy, = d*'f forn > 0.

In Figures 3.4.1-3.4.3, one can see the rooted non-isomorphic classes of outer-
planar triangulations with the root-face valency at most 7. As a result of (3.4.14) in

o
o
o
o
o
o
Ts52

)

o
o
o
o
o o
1 Ty Ty2

Toqx Tip T3

)

)

Figure 3.4.1: Classification of outer-planar triangulations of root-face valency 0-5.

i@ %o |
o

o o

Ts,1 Ts 0

Figure 3.4.2: Classification of outer-planar triangulations of root-face valency 6 (I).
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Ts,7 Ts 8

Figure 3.4.3: Classification of outer-planar triangulations of root-face valency 6 (II).

Theorem 3.4.6
aggot = B;f =1 a;got = a;f =0, aggot = a;f =1,
N8t =f =1, 8oy =0f =4, 0.8, = 05f =10,
080 = oif =34

Example 2. From Figure 3.4.1 through Figure 3.4.3, one might also see the rooted non-
isomorphic non-separable outer-planar triangulations contained in outer-planar tri-
angulations, and hence those with given value of the root-face valency. This task will
be completed in the next chapter as corollaries.

Here, the rooted non-isomorphic classes of non-separable outer-planar triangula-
tions with a number of inner faces of at most 4 are provided as

(1T54) + (2T, 5) + (5Ts 1) + (6T ¢ + 6T 7 + 2T g).

On account of the relation between the root-face valency and the number of inner
faces in a non-separable outer-planar triangulation, where T35 T, »; Ts; and Ty ;, 6 <
i < 8, we have those with the number of inner faces, respectively, 1; 2; 3 and 4.

As a matter of fact, if the vertex map is arranged as a non-separable outer-planar
triangulation without inner face in degeneracy, then the enufunction f; = f,,:(2) of
non-separable outer-planar rooted triangulations with the number of inner faces as
parameter is a solution of the equation

2
Zf*-f+1=0;
{ /=1 (3.4.15)
fZ:0 = 1
This again goes back to t;,; in Section 3.1.
3.5 Model of quadrangulations
Consider the equation
3 2
zZf7=3zf*+(CBz-1f +1=0;
{ f> - 32 + Bz - Uf 351)
f|z:0 = 1)
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64 —— 3 Function equations of one variable

where f € R{z} with all coefficients in Z, . This is equation (5) in Introduction when
a = b = ¢ = d = 1because of it is meaningful in the classification of non-separable
outer-planar quadrangulations.

For any integer n > 0, let F,, = d7f be the coefficient of the term with z" in f € R{z},
then the coefficients F!? and F?! of 2" in, respectively, f* and f> have the form

n
FZ = Y FiF s
=0 (3.5.2)
FP' = % FFF = Z FF2,
ochjieen
forn>o0.
Theorem 3.5.1. Equation (3.5.1) is equivalent to the equation system as
-Fy+1=0; whenn = 0;
[3(]) 2 (3.5.3)
F. -3F~ +3F, 1 -F, =0, whennzx1,

forF,, e Riz},n>= 0.

Proof. By employing the cancelation law on R{z}, for z°, equation (3.5.1) leads to the
equation

-Fy+1=0.

This is the first equation of equation (3.5.3) for the initial condition.
Then, for any integer n > 2, the coefficient of the term involving z,,, equation (3.5.1),
leads to the equation

FBL—3F +3F - F,=o0.

This is the other equation in the system equation (3.5.3) for all n > 1. Since all trans-
formations used above are equivalences on R{z}, the conclusion is drawn. O

On the basis of this theorem, we are allowed to concentrate on the equation system
(3.5.3) instead of equation (3.5.1).

Let (Fy, Fy, F, ..., F,,...) be asolution of equation (3.5.3). Because F, = 1, which is
the initial condition determined by the first equation of equation (3.5.3), F,, forn > 1
can be extracted by the following procedure.

From F;, =1, it is seen that

FP=1 and FJ=1. (3.5.4)
Whenn=1,F} - 3F +3F -F,=0 = 1-F,=0 =
F=1. (3.5.5)

Then F1) = 2and FP*! = 3
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3.5 Model of quadrangulations —— 65

Whenn=2,FF -3F? +3F, -F,=0 = 0-F,=0 =
F,=0. (3.5.6)
Then FZ[Z] =1land F2[3] =3.
Whenn=3,F -3F? +3F,-F;=0 = 0-F;=0 =
Fy3=0. (3.5.7)
Then F{” = 0 and FI*! = 3.
Whenn =4, FP' - 3FP 43F, - F, =0 = 3-F,=0 =
F, =3. (3.5.8)
Then Fi” = 0 and FI’ = 3.
Whenn>4,F2 -3F? +3F,_ -F,=0=>
F,=FP +3F,, -3F2,. (3.5.9)
Observation 3.5.2. Ifn = 2(mod 3) or O(mod 3), then F,, = O forn > 1.

Proof. Inaway to sketch the proof by the meaning of F,, in non-separable outer-planar
quadrangulations without inner-face number n = O(mod 3) or 2(mod 3) shown in Ex-
ample 1 afterward in this section. O

Observation 3.5.3. For any integer n > 0, F,[f] +3F, - 3F,[12] > 0.

Proof. We proceed by induction on n. The cases for n < 3 are known. For n > 4, sup-
pose Fr[13—]1 +3F,_1 - 3F,52_]1 > 0 is known, we prove F,[f] +3F, - 3F,[12] > 0. According to
Observation 3.5.2, we are allowed to consider n = 1(mod 3). From F;, = F([)z] = F([)3] =1,

FP'=FB +3F, and FJ=F? 1+2F,
Because of
F,[f 4 3F, - BFE] = Fr[13—]1 - 3Fr[,2_]1, by Observation, 3.5.2,
=FB +3F, ; -3F,  byinduction hypothesis,
> 0.
This is the conclusion. O
The two observations above enable us to establish our theorems.
Theorem 3.5.4. Equation (3.5.1) is well-defined in R{z}.

Proof. Our proof is on the basis of Theorem 3.5.1, Observation 3.5.2 and Observa-
tion 3.5.3. On account of the procedure shown in (3.5.4)—(3.5.8), F,, is only determined
by F;,0 < I < n -1, for any integer n > 1. The conclusion is drawn. O
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66 —— 3 Function equations of one variable

This theorem enables us only to discuss equation (3.5.3) for equation (3.5.1) in what
follows.

Theorem 3.5.5. The solution of equation (3.5.1) is determined by F,, = 9;f, n > 0, in the
form

1, whenn = 0;
, when n = 0(mod 3) or 1(mod 3); (3.5.10)

0
X, otherwise,
where
%y = F 4 3F, - 3F
forn=1(mod3),n > 1.

Proof. For n = 0, the case follows from the initial condition. For n = O(mod 3) or
1(mod 3), the case follows from Observation 3.5.2. The last case is done from (3.5.9). O

This theorem suggests us to introduce a substitute as
f =1 +2zg (3511)
in R{z} to transform equation (3.5.1) into

[
g|z:0 =1

(3.5.12)

Theorem 3.5.6. Equation (3.5.12) is well-defied in R{z}.
Proof. Letx = z> where h = 8|y, then equation (3.5.12) becomes

{xh3 -1=h;
h|X:0 =1

(3.5.13)

We work on the basis of H, = oy h for n > 0. When n = 0, we have the equation H; = 1.
This is the initial condition. Then, for n > 1, we proceed by induction on n. On account
of the equation, H,, = HE_]I. Assume, for 0 < s < n -1, that H; = Hfl We prove
H, = Hr[ill. Because Hr[,3-11 is only dependent on H forn -1 > s > 0, H,, is determined.
Because h is well-defined for the equation, g is well-defined for equation (3.5.12). [

Corollary 3.5.7. Equation (3.5.13) is well-defined. Its solution is in the form of a sum-
mation-free explicision, forn > 0,

(3.5.14)

1, whenn = 0;
H, = 1 <3n

" ) whenn > 1.
2n+1

n
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Proof. We work on the basis of H,, = Hr[13—]1 from Hy = 1for n > 0. We proceed by
induction on n, and the conclusion can be drawn. O

This corollary enables us to deduce an explicision of the solution of equation
(3.5.12) and hence equation (3.5.1).

Theorem 3.5.8. The solution of equation (3.5.12) is determined by G,, = d,g forn > 0 in
the form

1, whenn = 0;
0, n = 1(mod 3) and 2(mod 3);}
G. = R 3.5.15
n GEy n = 0(mod 3) ( )
whenn > 1.
Proof. This is a result of Theorem 3.5.6. O

Furthermore, a summation-free explicision of G,, can also be found.

Theorem 3.5.9. The solution of equation (3.5.12) has a summation-free explicision in the
form

1, whenn = 0 and 1;
G, = ! <3s>’ whenn=2s+1,s>1; (3.5.16)
2s+1\s
0, otherwise.
Proof. This is a result of Theorem 3.5.6 and its Corollary 3.5.7. O

Example 1. Classification of non-separable outer-planar quadrangulations by inner
size. By inner size is meant the number of inner edges, or say, those that are not
on the root-face boundary. Let g be the enufunction for counting non-isomorphic
classes of non-separable outer-planar rooted quadrangulations by inner size. From
non-separability and outer planarity, the least one is a quadrangle without inner edge.

On the basis of the quadrangle, any non-separable outer-planar rooted quadran-
gulation can be done by adding three non-root edges, while one inner edge and one
inner face (quadrangle!) are produced step by step. If s is the inner size of a quadran-
gulation, then it has inner size s + 1, number of non-rooted edges 3s and size 3s + 1.
Thus, fors > 0,

05 = 0Pg = 3. (3.5.17)
In Figure 3.5.1, one can see the rooted non-isomorphic classes d;q for 0 <'s < 3:

(1Ty,) + 3Ty ) + (8T + 4T55) + (20T + 10T5, + 10753 + 5T5 4, + 10T555).
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Figure 3.5.1: Classification of non-separable outer-planar quadrangulations.

Example 2. Isomorphic classes of planted quadrary tree by the number ends. A quad-
rary tree is a tree whose vertices of valencies number either 1 or 4. On the basis of
Example 1, because the outer dual of a quadrary tree is a non-separable outer-planar
quadrangulation, from a bijection between their isomorphic classes, the correspond-
ing task can be done.

3.6 General model

Consider the equation

4 4 3 _ 2 =0
{Zf 1-2f"+1-32)f" +32f ~z2=0; (3:6.1)

flz:() = 19

for f € R{z}. This is equation (6) in Introduction when a = b = ¢ = d = 1 because it is
meaningful in the classification of general outer-planar maps.
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This equation is extracted from an investigation of the classification of general
outer-planar maps within rooted isomorphism. One may refer to Liu YP ([51], p. 100)
Because of f|,_o =1, forn > 0, let

i
Afi=Fiy =Y RFEY, i22
zf ( n ) kgo kg (3.6.2)
3%f = Fo(= F).
On the extension of integral domain R{z}, equation (3.6.1) is equivalently transformed
as
FP +F' =0 = FJ(-Fy +1) =0,
byf'z:O = 1’
=Fy=1,

Fil=1 @<i<a)y

FW - FP L FB 4 FP 3F 3R —1=0
=1-3F+1+2F-3+3-1=0
= -F+1=0
=F =1,

2 _ Bl _ 4 _ 4
FP =2 FP'=3 FY=4
FU - FBV 4w FBL PV 3FP 43k =0

n-1
= F - <3Fn +y FkF,QZ_]k> +FB
k=1

n-1

+ (ZF,, +y Fan_k> —3F2 43F, =
k=1

Thus, we have

n-1
Fy :Fr[llill_ ZFk(Fn—k+F,[,2_]k)
k=1

n-1
+F2L 4 Y FyFo oy —3F2 +3F,
k=
! (3.6.3)

n-1
4] 2]
= <Fn1 -y Fank>
k=1
3 2
+ (F,[l_]1 +3F,_ 1 - 3F,[l_]1)

(= Fyocicn-1 = Fep1), n22.
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Because of Fy = 1, 2FyF,_; = 2F,_; in F,[f_]l, equation (3.6.3) becomes

n-r (3.6.4)

Fp=3® 1352 n>2
FO =F1 = l,

where

n-1
() _ pl4] 2] .
z“n—l = Fn—l - Z Fan—k’
k=1

s (3.6.5)
2 3
25121 = Fr[ljl -3F,-3 z FiFy 1.
i=1

Lemma 3.6.1. Equation (3.6.1) for f € R{z} is equivalent to equations (3.6.3) and hence
to equation (3.6.4) for F € R®{z} where F = (F,F, F,, ...).

Proof. Because all transformations in the process from equation (3.6.1) through equa-
tions (3.6.3) are equivalent, the conclusion is drawn. O

This lemma enables us only to consider the system of equations (3.6.3), or equiv-
alently equation (3.6.4), instead of equation (3.6.1).

Theorem 3.6.2. In R*°{z}, the system of equations (3.6.4) and hence equation (3.6.1) in
‘R{z} has, and is the only one to have, a solution.

Proof. On the basis of the equivalence between (3.6.1) and (3.6.4), for any integern > 1,
F, € R is uniquely derived from F, = 1 by (3.6.4). Then the conclusion is directly
drawn. O

Now, one might like to investigate some constructions of the solution for evaluat-
ing a compact expression.

Observation 3.6.3. For any integern > 3,
A T,
FiY > Y RF2 . (3.6.6)
k=2

Proof. We proceed by induction on n, and the conclusion can be drawn. O
Similarly, another inequality can also be obtained.
Observation 3.6.4. For any integern > 3,

n-2

FJ >3F, 1 +3 ) FF, .. 3.6.7)
i=1
Proof. We proceed by induction on n, and the conclusion can be drawn. O
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Theorem 3.6.5. The solution of equations (3.6.4) and hence equation (3.6.1) in R{z} is
of the form

(3.6.8)

n

. 1F0 =1 whenn = 0;

Z;l_)l + fo_)l, whenn > 1,

2

1> both non-negative, are shown in (3.6.5).

where 251131 and X

Proof. By considering the procedure shown in the beginning of this section, it is seen
that F,, for n > 0 determines a solution of equations (3.6.4) and hence equation (3.6.1)
in R{z}. Its integrality and non-negativity are shown in Observation 3.6.3 and Obser-
vation 3.6.4. This is the conclusion. O

Now, one might like to seek some constructions of the solution for evaluating a
compact expression.

Example 1. Classification of general outer-planar quadrangulations within a rooted
isomorphism by size. From the quadrangularity of the inner faces, no self-loop occurs.
From the outer planarity, no multi-edge occurs. Hence, all quadrangulations consid-
ered here are simple (by no means seen without difficulty!).

In Liu YP [51] (pp. 99-100), one can see the proof that the solution f;, of (3.6.1)
is the enufunction of general outer-planar rooted quadrangulations with size as the
parameter.

By (3.6.4), the solution of equation (3.6.1) was calculated as

foq(2) =1+2z+ 22% +52° + 152 + 482° + 1602°

+55227 +19532% + ...

For example, the coefficient 1953 of z® is meant that all general outer-planar quad-
rangulations of size 8 have 1953 rooted isomorphic classes. Because trees are all outer
planar without inner face, from (3.1.6),

n . (@m)!
z ‘root — m’

then the general trees of size 8 have

(81'_69)" =13 x11x 10 = 1430
rooted isomorphic classes. Hence, general outer-planar quadrangulations with at
least one inner face have 1953 — 1430 = 523 rooted isomorphic classes as shown in
Figure 3.6.1-Figure 3.6.6 where we have Q,;, 1 < i < 30, general outer-planar rooted
quadrangulations with one inner face, and Q,;, 1 < i < 3, general outer-planar rooted
quadrangulations with two inner faces. A hollow represents the location of a root.
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72 —— 3 Function equations of one variable

There being no hollow in a figure represents that all incident pairs {end,side} (or
{semi-edge,semi-side}) on the boundary of the outer face have a hollow.
In Figure 3.6.1, rooted isomorphic classes are provided as

1201)1 + 1201)2 + 24Q1’3 + 2401)4 + 1201)5 + 1201,6’

altogether 96 rooted isomorphic classes.

O Q Q 0]
¢ o ( D

¢ ¢ q

Do I ¢ 5 )

D

D Q@ D
9 9O o 9O O OO
Q1,1 Q1,2 Q1,3 Q1,4 Q15 Q16

N\ A
O

A\

J

5\./
OO\ O
N\
FEED

o

Figure 3.6.1: Classification of general outer-planar quadrangulations: Q;1-Qq .

In Figure 3.6.2, one can see
2401’7 + 24Q1,8 + 1201’9 + 1201’10 + 2401’11 + 12Q1’12,

altogether 108 rooted isomorphic classes.

©) (6
ca/@ mo &
o ¥o %o :-

c— 66— 9O
Q1,7 Q18 Q19 Q1,10 Q1,11 Q1,12

[€33)
JO)
D—

D\ 4
o

L

(G ASAS D)
)

(CaaSay)

Figure 3.6.2: Classes of general outer-planar quadrangulations: Q;7-Q; 5.

In Figure 3.6.3, is shown
24Q413 +12Qq34 + 24Qy 55 + 24Qy 36 + 12Qy 17 + 6Qy 18,

altogether 102 rooted isomorphic classes.
In Figure 3.6.4, it is shown that

24Qq19 +12Q1 50 + 6Qy 51 + 12Q1 5 + 24Qq 3 + 24Q; 4
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Figure 3.6.3: Classes of general outer-planar quadrangulations: Q; 13-Qj 1g-
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Figure 3.6.4: Classes of general outer-planar quadrangulations: Q; 19—Q; 24.

has altogether 102 rooted isomorphic classes.
In Figure 3.6.5, it is seen that

24Qq 55 + 12Q4 56 + 24Q; 57 + 12Qy 8 + 12Qy 59 + 3Qy 30

has, altogether, 87 rooted isomorphic classes.

@ - Q
q & @ D 1
¢ O ¢ BT
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5
5
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@
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Figure 3.6.5: Classes of general outer-planar quadrangulations: Q; 15—Q; 3.

In Figure 3.6.6, it is seen that
16Q,; +8Q,, +4Q; 7
has, altogether, 16 + 8 + 4 = 28 rooted isomorphic classes.
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Figure 3.6.6: Classes of general outer-planar quadrangulations: Q,;-Q, 3.

Since general outer-planar quadrangulations with one inner face have
96 + 108 + 102 + 102 + 87 = 495

classes and general outer-planar quadrangulations with two inner faces have 28
classes, general outer-planar quadrangulations with at least one inner face have
28 + 495 = 523 classes. By considering 1430 classes of general outer-planar quadran-
gulations without inner face, 1930 + 523 = 1953 classes are done.

3.7 Notes

3.7.1. From Example 1 and Example 2 in Section 3.2, one can see that, for arbitrarily
given size, the number of isomorphic classes for planted trees is equal to lei petal bun-
dles. Is there a bijection between them? The bijection is known to be the planar dual
between them.

3.7.2. Similarly, from Example 2 and Example 3 in Section 3.2, for size given, planted
trees and non-separable outer-planar rooted maps have the same number of isomor-
phic classes. Is there a bijection between their isomorphic classes? This question re-
mained unanswered yet in the literature. Here, such a bijection is provided.

For a non-separable outer-planar map (including the link map, a map with a single
edge which is a link, as a degenerate case), the map obtained by arranging each edge
on the outer face boundary and each inner face as, respectively, an end vertex and a
inner vertex, two vertices adjacent as their corresponding faces adjacent or one inci-
dent to the other, is called its outer dual. The root-edge is chosen in a corresponding
way. It can be shown that the outer dual of a non-separate outer-planar rooted map is
a planted plane tree. Because of the symmetry, the outer dual of a planted plane tree is
a non-separable outer-planar rooted map. This is a bijection, or a 1-1 correspondence.
The reader is referred to Liu YP [44], or for some details to Liu YP [56].

3.7.3. By duality and outer duality, problem 5.1 and problem 5.2 in Liu YP [33] have
been solved. This shows that the equations considered being well-defined stimulates
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the discoveries of some laws, rules and theorems to reflect certain inner relationships
among some distinguished objects characterized by those equations.

3.7.4. In Section 3.4, by substituting f = zg into equation (3.4.1), we have

3,3 2

z +(1-2)g°+(z-2)g+1=0;

{ 2+ (1-2)g° +(z-2g 671)
glz:O =1

This is equation (11.4) about @ in Liu YP [32]. Although an explicision is found, the
form is rather complicated as a multiple sum of alternative terms. In Example 1 of
Section 3.4, g is g in (3.71). However, the solution of equation (3.4.1) determined by
(3.4.14) is a sum of positive terms evaluated only via transformations in the exten-
sion of integral domain R{z}. This is an answer of problem 11.1. Although this result is
equivalent to that in Dong FM-Liu YP [8], the procedure looks simpler.

3.7.5. Because of the emphasis on recursion in the form of a sum with all terms posi-
tive, the details for extracting a compact explicision is often omitted without descrip-
tion for the reader. However, as soon as it is clear that an equation is well-defined, how
to transform the solution in the form of an explicision with all coefficients as a sum of
all terms positive, and further only one term, or as we say, a summation-free form, is
still an indispensable problem!
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4 Equations of function with several variables

4.1 Elimination of variables

Consider the equation

2¢2 =U;
{axy 2+ b(x - 1f +c(x-1) = 0; (4.1.1)

f|x:0,y:0 =d,

forf € R{x,y}and a,b,c,d € Z,. This is equation (7) in Introduction when b = 1.
When a = b = ¢ = d = 1, one can see that the result of equation (4.1.1) is just the
equation that appeared in Liu YP [13] (equation (5.3), 1984), for enumerating plane
tree-like maps with the size and the outer face valency as two parameters.
Although this equation has two variables, x and y, we notice that, by the substi-
tution

= _) .1-2
z T x (4.1.2)
equation (4.1.1) becomes
2
-bf -c=0;
{“Zf f-c (4.13)
flz:O = da

for f € R{z}. This is an equation with only one variable z, i. e., equation (3.1.1).
Observation 4.1.1. Equation (4.1.1) on R{x,y} is equivalent to equation (4.1.3) on R{z}.

Proof. Because of

s 1 218—1> a  (s-1)!
= = -_— .1.
%z =y (1— U7 oo (4.1.4)
forl > 1, we have z € R{x,y} and hence R{z} = R{x,y}. O

This observation enables us to consider equation (4.1.3) instead of equation (4.1.1).
Theorem 4.1.2. Equation (4.1.1) is well-defined if, and only if, ¢ = bd and abd # 0.
Proof. This is a result of Observation 4.1.1 and Theorem 3.1.1. O

From this theorem, we are allowed to only discuss

{azfz—bf—bdzo; @.15)

f|z:0 = d:
fora,b,d € Z, and abd > 0.

https://doi.org/10.1515/9783110625837-004
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78 —— 4 Equations of function with several variables

Theorem 4.1.3. The solution of equation (4.1.5) is determined by

Af = <‘_’>m amt (2’” * 1) (4.1.6)

b) 2m+1\ m
for any integer m > 0.

Proof. Because of equation (4.1.5), same as equation (3.1.5), Theorem 3.1.2 results in
(4.1.6). O

On the basis of (4.1.2), (4.1.4) and Theorem 4.1.3, one might think of an explicision
of a)’(';"f in the solution of equation (4.1.1) for m,n > 0.

Theorem 4.1.4. The solution f of equation (4.1.1) is determined by the following explici-
sions:

d, whenm=n-=0;
m dm+1 _
e @ S
xyJ =

(4.1.7)
whenn=2kandm >k > 1;

0, otherwise,

form,n > 0.

Proof. By (4.1.6),

)a;f;" ", by (4.14),

_< )m dm! <2m+1)(m—1)
- 2m+1\ m N\k-1/

the conclusion is drawn. O

The explanation above shows how to eliminate a variable in an equation with at
least two variables by introducing a substitution of variables.

In what follows, two other methods are introduced for eliminating a variable. One
is to fix a variable at a constant number. The other is to consider the coefficients of
terms in the unknown function expressed by the variable one hopes to be eliminate.
Only the former is discussed in this section because of the latter being met everywhere
for each equation considered.

In Dong FM-Liu YP [8], one can find the equation

of 2 _ 0.
{x—f A+y)f +xy =0 (4.1.8)
fx:O,y:O =0.

This is equation (8) in Introduction when a = ¢ = 1and d = 0 because it is meaningful
in a classification of non-separable simple outer planar maps.
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4.1 Elimination of variables =— 79

By the cancelation law, equation (4.1.8) is transformed to

_ 22 3,,.
{xf =1+ f - xYf +xy; (4.1.9)

fx=0,y=0 =0,

for f € Rix,y}.

Because of equivalence, we are allowed to discuss equation (4.1.9) instead of equa-
tion (4.1.8).

Letf € R{x,y}beasolution of equation (4.1.9); thenf is determined by F,,, , = 0"

Xy
for m,n > 0. Furthermore, letF, , = 0\'f and F, , = a;,'f, then
F,.,= Z Fpn € Rix}, fornz0;
mz0 (4.1.10)
Fom=) Fuy€Riyl, form=0,
n=0
and hence f is determined by F, ,,(n = 0), or by F, ,,(m > 0) as well.
Now, F, ,, for all n > 0 are chosen to determine f as follows:
Y XF, = ng) + FEI ,—X°F,_;, bynosenseofF, ;,
=F Eg) =F f,0~
By the initial condition, we have
F,o=0 = F2 =0andF? = 0. (4.1.11)
ForF, 4,
y': xF, =F +F2 - xX°F, o +X by (4.111),
=x.
By the cancelation law for x,
F,i= = Fﬂ =0and FE; =x". (4.112)
For F, ,, we have
y i xF, 5= Fﬂ + Fﬂ ~-xX’F,; by(4.1.12),
=x" - x’x°.
Hence,
F,,=0 = F’ =x*and F?] = 0. (41.13)
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80 —— 4 Equations of function with several variables

ForF, 3,

Y i xF, 5= F,[‘Z; + Fﬂ -xX’F,, by(4.1.13),

= X4.

By the cancelation law for x,
F,3=x = F =0and F’} = 2¢. (4.1.14)
ForF, ,,
y*: XF,, = Fﬂ + Fﬂ ~-X’F,5 by (4114),
=2 -’ =x°.
By the cancelation law for x,
F.,=x"= Fﬂ =2’ and Fﬂ =, (4.1.15)
ForF, s,
Vo XF, 5= Fﬂ + Fﬂ - )(ZF*,4 by (4.1.15),
=2+ 2 - Xt = X0+ 20
By the cancelation law for x,
F,5= X+ 2" = Fﬂ =2x° and FE]6 =2 +5x°. (4.1.16)

For F, ,, n > 6, we have

1
Fop - L2 £

*,n—1

)= XF, g (4.1.17)

Theorem 4.1.5. Equation (4.1.9), and hence equation (4.1.8), is well-defined on R{x, y}.

Proof. On the basis of (4.1.11)-(4.1.16), when 0 < n < 5, F, , are determined from
F,o = O (the initial condition). For n > 6, if all F, ; are determined for k < n -1,
then from (4.1.17), F, ,, is determined by all F, ; for k < n - 1. Hence, the conclusion is
drawn. O

Combinatorial structures of the solution of equation (4.1.9) have to be investigated
onall F, ,, n > 0, for any given integer m > 3, because they are known for m < 2 from
(4.1.11)-(4.1.13).

Observation 4.1.6. For any integer m > 3 given, ifn > 2m-2orn < m-1, thenF, , = O,
elseF, , £ 0.
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4.1 Elimination of variables = 81

Proof. We proceed by induction on m. For 0 < m < 5, from (4.1.11)-(4.1.16), the con-
clusion are checked. In general, for m > 6, whenever all F; ,, for k < m — 1 are known,
from (4.1.17), F,, , is deduced to obey the conclusion. O

In fact, the observation can be shown for non-separable outer planar maps. From
Theorem 4.1.5, the conclusion of this observation is easily obtained.

Observation 4.1.7. For any integer m > 3, if m < n < 2m - 3, then F, - x’F, ,_; > 0.
Proof. On the basis of Observation 4.1.6, for m > 3, onlywhenm <n <2m-3,F, , is
allowed to be non-zero. Because of F, , > 0,

F[Z] > 2F*,1F*,n—1 = 2X2F*,n—l 2 XZF*,nfl'

*N =
This is the conclusion. O

Because of F, ; = 0, this observation enables us to write

R, F

*,n—1 1
504.1 " XF, g+ = z FoiFsnis (4.1.18)
i=2

1(n-1) ~— X

which only dependson F, ;,0 < k<n-1.

Observation 4.1.8. For any integer m > 3,if m < n < 3m - 5, then
X|(FZ +F2 ), (4.1.19)

i.e., x is a factor ofFElz + F,[‘z}l_l.

Proof. Because of any non-zero term in F ,[le, and F £2)]1—1 with a factor x?, the conclusion

is true. 0

On the basis of this observation, it is well-known that all coefficients of Z?&ll)

given by (4.1.19) are allin Z, .

Theorem 4.1.9. The solutionf of equation (4.1.9) and hence equation (4.1.8) determined
by F, ,, n = 0, has the form

0, whenn = 0;
X2, whenn=1;
0, whenn = 2;
3
F,,={0 whenn = 3; (4.1.20)
X(F*,n—l + 2F*Jl—2)
F,oi+X°F, , 1;
+ zl(l;33 F*’i(””—”’“))
whenn 2= 4.
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82 —— 4 Equations of function with several variables

Proof. The cases of 0 < n < 2 are clear from (4.1.11)—(4.1.13). The general case of n > 3
is based on (4.1.14)—(4.1.17) and Observation 4.1.7. O

This theorem enables us to evaluate the solution of equation (4.1.9), and hence
equation (4.1.8), directly from a recursion in the form of a sum with all terms positive.

Theorem 4.1.10. The solution f of equation (4.1.9) and hence equation (4.1.8) is deter-

mined by aé;"y';) f = Fpforl<m<n<2m-3, whichis in a summation-free explicision:
1, whenm =2andn =1,
a(()’("';’)')f = { s (4.1.21)
()" 3), when3<m<n<2m-3.

Proof. On the basis of Theorem 4.1.9, we proceed by induction on m > 1, and the con-
clusion can in principle be drawn. O

In equation (4.1.9), by x = 1, let h = f|,_; € R{y}, then h satisfies the equation

2 _ -0
{(1 +YR-(1+y)h+y=0; 4122)

hly:O = 0

This is an equation in total variform shown in Section 3.3 whena = b = ¢ = 1and
d=0.

Theorem 4.1.11. The solution h of equation (4.1.22) determined by a;,’h =H,forn>1,
which is in an explicision in the form of a sum with all terms positive:

1, whenn = 1;
0, whenn = 2;
oh=1_, | , (4.1.23)
Y3 7 G ) (3), when9 >n > 3;
Yt 5 () (), whenn > 10.
Proof. Because of H, = F, ,|,-;, from (4.1.21), (4.1.23) is easily obtained. O

4.2 Linear forms

Consider the equation

5 xy X 1 >
= h-

f Xy+1—xy<1—x 1 xf
flx:O,y:O =0,

(4.2.1)

where f € R{x,y}and h = f(1,y) € R{y}.
This is equation (9) in Introduction when a = ¢ = 1and d = 0, it being meaningful
in a classification for restriction to outer planar maps.
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For convenience, it is transformed on R{x, y} into its equivalent

2
Xy ) Xy
<“ 1-x0)d-0 >f =Y Ao (422

For any integer n > 0, let

oyh=H, and J)f =F,, (4.2.3)
where
_ m _ y(mn) -
Fop= Y Fppx", Fpy= O f and Hy=F, yli. (4.2.4)

m=>0
By employing the cancelation law on R{x, y}, equation (4.2.2) is transformed into
(1-xf =(1-x)x’y - (x - )(2))(2y2 +x’y(h-f), (4.2.5)
and we obtain

y’: 1-XF, =0 = F,,=0andH, =0, (4.2.6)

y' (- x)F,; = 1-x)x" +x*(Hy - F, )
= (1-xF,;=(1- x)x° (4.2.7)

= F,, = x? and H; =1,

Vi (1=X)F, 5 = —(x = x*)* + X*(H; - F,. ;)
= (1-x)F,,=-(1- XX + x2(1 - xz) (4.2.8)
= F,,= X2 and H; =1,
in general, forn > 3,
Y': (1=X)F, , = X*(Hyy — F, ). (4.2.9)

Lemma 4.2.1. Equation (4.2.2) on R{x,y} is equivalent to the equation system

F*)lzx2 = H; =1, whenn=1;
F*)lzx2 = H; =1, whenn=12
Fop=xF, o+ X*(Hy_ = F, 1y

= H,=F,,Ix=1, whennz3,

(4.2.10)

fromF, o =0= Hy=0o0nR{x}.
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84 — 4 Equations of function with several variables

Proof. Because all transformations based on the cancelation law that are an equiva-
lence on R{x,y}, the conclusion is drawn. O

This lemma enables us discuss a solution of the equations of system (4.2.10) in-
stead of equation (4.2.2), and hence equation (4.2.1).

Theorem 4.2.2. Equation (4.2.2), and hence equation (4.2.1), is well-defined on R{x,y}.

Proof. We proceed by induction on n > 0. When n = 0, the result is known from the
initial condition. When n = 1 and 2, the results are from (4.2.7) and (4.2.8). In general,
(4.2.10) leads to the conclusion. O

Because we aim at an expression in the form of a sum with all terms positive,
relative constructions of the solution have to be investigated in correspondence.

Observation 4.2.3. For any integer n > 1, F, , has a factor x>

Proof. We proceed by induction on n. From (4.2.7) and (4.2.8), the conclusion forn = 1
and 2 is true. For n > 3, assume that x*|F «n-1- We prove X?|F «n- Because of

1-x)F,, = x*(H,_, - F .n-1)» by the assumption,
m-1
=x"Y Fpaa —x)( > x'>,
m=2 i=0
by the cancelation law, we have

m-1
F*,n =x Z Fm,nl( Z Xl)- (4.2.11)

m>2 i=

Therefore, x2|F one O

This observation tells us that, for any integer n > 1, the minimum degree of x in
F, ,is not less than 2.

Observation 4.2.4. For any integer n > 3, H, - Fg , has a factor 1 - x.

Proof. This follows from the proof of Observation 4.2.3. O
Observation 4.2.5. For any integer n > 3, if m > n, then Fpn=0.

Proof. We proceed by induction on n, on the basis of (4.2.10). O

This observation shows that, for any integer n > 3, F, ,, is a polynomial of x with
degree at most n.

Observation 4.2.6. For any integern >3, F,, , € Z,.

Proof. We proceed by induction on n, on the basis of (4.2.10). O
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4.2 Linearforms =—— 85

The observations above claim that all F, , for n > 3 are polynomials of x with
minimum degree not less than 2, the maximum degree is not greater than n, and all
coefficients are non-negative.

Observation 4.2.7. For any integern > 3,

Hn—l - F*,n—l

> 0. (4.2.12)
1-x
Proof. This is a result of Observation 4.2.6. O

The observations described above are helpful as they clarify the structure of the
solution of equation (4.2.1).

Theorem 4.2.8. The solution of equation (4.2.2), and hence equation (4.2.1), determined
by F, , for n > 1, is a recursion in the form of a sum of finite non-negative terms:

X2, whenn = 1;
F,p=1x% whenn = 2; (4.213)
-2/ ¢n-1 i
x? Yo (X Fin1)X, whenn > 3.

Proof. From (4.2.10), it is only necessary to consider the case of n > 3. On the basis of
Observations 4.2.5 and 4.2.7, the conclusion is drawn. O

Although equation (4.2.2) is linear about f € R{x,y}, one has another function
h = fl,-; € R{y}. This function h cannot be determined directly by taking x = 1 on the
equation. A new parameter ¢ € R{y} is introduced satisfying the relations

3

1+ —>2 =0

- (;2" §) (4.2.14)

2 y

+—2° __h=0,
R e
called a characteristic equation of equation (4.2.2).

There is an equivalence between equation (4.2.14) and

=1+ &%y,
{6 ey (4.2.15)
h=4¢y.
From & € R{y}, by the first relation in (4.2.15), we have
L hen n = 0;
a; §= { n-1,~i n—1-i " (4.2.16)
Yit0(0,$)@; " '§), whenn=>1,

forn> 0.
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86 —— 4 Equations of function with several variables

Then, by the second relation in (4.2.15), we have

0, h =0;
oyh = . whenn (4.2.17)
a;* &, whenn>1,

for n > 0 where B;H.f is given by (4.2.16) forn > 1.

Theorem 4.2.9. The function h in equation (4.2.2) is determined by H,, n > 0, in a
summation-free explicision:

° {O, when n = 0; (6.218)
n= ] @2 -2
% whenn > 1.

Proof. Because equation (4.2.15) is the same as equation (3.2.7), from (3.2.9) and
(4.2.8), (4.2.18) is obtained. O

Further, for m,n > 0 and f € R{x,y} being the solution of equation (4.2.2) and
hence equation (4.2.2), a summation-free explicision of a)'(')’)’,”f can also obtained.

Theorem 4.2.10. Let f be the solution of equation (4.2.2), hence equation (4.2.1), and
Fypp = 0y f form,n > 0. Then Fy, , has the form

1, whenm=2andn=1;
Fon= ’%1(2";"2‘2), when2<m<nandnz 2 (4.2.19)
0, otherwise.

Proof. Method 1 is by induction on the basis of (4.2.13). Method 2 is by induction on
the basis of (4.2.15) and (4.2.16). O

Example 1. We study an isomorphic classification of restrict outer planar rooted maps
with size and valency of root-vertex. A outer planar map is called restrict if there is no
loop in the root-loop and nor after a contraction of the root-loop.

Consider the equation in Liu YP [45] (pp. 90-92), or [48] (pp. 69-70),

xy
=1+ x%f + —2—(h - xf);
{f CARErt (4.2.20)
flx:O,yzo =1
where h = f,_;.
Or equivalently, its normal has the form of
2
Xy h
-y + == )f=1+xy—. 221
( xy+1_x>f +xy1_X (4 )
By the cancelation law,
(1-x+xX°y)f =1-x+xyh. (4.2.22)
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Theorem 4.2.11. Equation (4.2.22), or equation (4.2.21), is well-defined in R{x,y}.
Proof. The proof is similar to the proof of Theorem 4.2.2. O

Because of

m+l 2(n-1)
% Fuan 367= 3 (5 e o
1

m=>1 i=0 m=1\ j=
on /2n-1)
m
38 h e
m=4 \ j=m-2
from (4.2.21),
0, when m = 0;

Zfz(rl'_l) Fj, 1, whenl<m<3;

(4.2.23)

e Z}zz(',; U F;,, when4<ms<2n
o, whenm >2n+1.
By (4.2.23), forn = 1,2 and 3,
Foi=x+x5 F=2+2¢+2C +x%
(4.2.24)

F,3=7x+ 7+ 7 +5x" + 3¢ + x5

On this basis, Figures 4.2.1-4.2.6 show the classification of such maps with size
3 and less. In these figures, T,, ;) stands for the ith map with size n and root-vertex
valency m. In each figure, a small hollow indicates the location of the root.

From (4.2.24), it is seen that restrict outer planar maps of size 1 have two possibili-
ties: root-vertex valency: 1and 2. They are (F 1, F,;) = (1,1). Figure 4.2.1 shows the two
classes:

Fl,l =1 = 1T1)1(1); FZ,l =1 = 1T2’1(1).

From (4.2.23), it is seen that restricting to outer planar maps of size 2 leaves four
possibilities of root-vertex valencies m: 1 < m < 4. They are

(Fl’z, F2’2, F3)2,F4’2) = (2, 2, 2, 1)

Ty 1) Ty

Figure 4.2.1: Classes of restrict outer planar maps with size 1 and valencies 1-2.
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88 —— 4 Equations of function with several variables

PIVOYV ¥

Tio1) Tioe) T55(1) T5 52 T30(1)

Figure 4.2.2: Classification of restrict outer planar maps of size 2 and valencies 1-4.

Figure 4.2.2 shows the classes. They are

Fi,=2 = 1T1’2(1) + lTLz(z);
Fyy=2 = 1Ty,4) + 1T
F55=2 = 2T53,4);
Fp,=1= 1T4,2(1).

From (4.2.23), it is seen that restricting to outer planar maps of size 3 and root-
vertex valencies m, 1 < m < 6, we have

(F1,3; F2,3) F3,3)F4)3)F5,3> F6,3) = (7, 7,7,5,3, 1)-

T1 31 11 3(2) T13(3) T1 34 T 3(5) 11 3(6)

Figure 4.2.3: Classification of restrict outer planar maps of size 3 and valency 1.

Figure 4.2.3 provides the case of valency 1:
Fi3=7 = 1T, 30) + T30 + 1Ty 33) + 2Ty 304y + 1T1 3¢5 + 1T 3(6)-
Figure 4.2.4 provides such classes in two cases:
Fo3=7 = 2T)54) + 1T530) + 1T533) + 1T304y + 2T5 35

Figures 4.2.5 and 4.2.6 provide the classes for root-vertex valencies, respectively,
3and 4-6:

F3)3 = 7 - 2T3’3(1) + 2T3’3(2) + 2T3’3(3) + 1T3’3(4)
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ALY

Ty 301 T53(2) T5 3(3) T5 3(5)

Figure 4.2.4: Classification of restrict outer planar maps of size 3 and valency 2.

VALV

T33(1) T33(2) T3.3(3) T3 34)

Figure 4.2.5: Classification of restrict outer planar maps of size 3 and valency 3.

s A YA

Ty 31 Ty 3(2) T5 31 Ts,3(1)

Figure 4.2.6: Classification of restrict outer planar maps of size 3 and valencies 4-6.

and

F4’3 =5 = 2T4’3(1) + 3T4,3(2)
F5)3 = 3 - 3T5)3(1);

F6,3 = 1 - 1T6,3(1)'

One might like to see if it is possible to get an explicision of the solution f € R{x,y}
of equation (4.2.20). Because h € R{y} is unknown as well, a parameter £ ¢ R{y}
instead of x has to be considered to satisfy the characteristic equation as in (4.2.14),

3, _ 0
{1_€+$y_0’ (4.2.25)

h=4¢%
from the equivalence (4.2.22) of equation (4.2.20).
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90 —— 4 Equations of function with several variables

Let & be determined by P; = B}",{ fori > 0. From equation (4.2.25), we have

¥ Py=1=Py=1= PP =1pP0 =1
V' P=PPlspy=1= PP =2 PP =3
y* Py=P¥=p,=3= PP =7p0 =12
3 [3] [2] 3]
y> P,=Py' =P;=12 = P =30,P; =55
2 ’ ’ (4.2.26)
B3] 2%
P, =P = Pr[l]:ZPiPn—l—i’
n n-1 i=0
y (n > 4) 2] = ln
Py=) PP &) )
i=0 S Py :zPiPn—i'
i=0
Let h be determined by H,, for n > 0. Because of h = & 2 in (4.2.25), we have
1, when n = 0;
H,=1_, (4.2.27)
zi:() PiPn—i’ when n > 1.

Theorem 4.2.12. Let f,,, = f(x,y) be the solution of equation (4.2.20) and Moy =
froplx=1 = h(y), then we have

1, whenn = 0;
hrop = (4.2.28)
yoep { ;fé';:lz);!, whenn > 1,
and
L whenm =0, n = 0;
a((;";)l)ﬂop = m 3k-m (3n-m-1 k (4.2.29)
) Zk:[m/z] ﬁ( ,'},,:",1 )(m—k)’ whenn>1,1<m<2n;

Proof. Because of hy,;, = h and hence 9 h,,, = H, in (4.2.27), (4.2.28) can be done by
induction on n. On the basis of (4.2.23), (4.2.29) can be done by induction on n. O

Corollary 4.2.13. For integer n > 1, we have the identity

(4.2.30)

B D M G | (R

[m/2]<k<m
1sm<2n

Proof. It can be directly proved by induction on nas aresult of (4.2.25) and (4.2.26). [

This corollary suggests us to determine the function h of one variable first if the
direct determination of the function f of two variables needs some sophistication in
solving the equation for f € R{x,y} involving h = f|,_; € R{y}.
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4.3 Quadratic forms =— 91

4.3 Quadratic forms

Consider the equation about f € R{x,y} as

) N R 2 2 2 -0
{xy(l XAf? = (1= +X°Yf + (1-x°) + X°yh = 0; (431)

f|x:0,y:0 =1

where h = f(1,y) € R{y}. This is equation (10) in Introduction whena=b=c=d =1
because of it is meaningful in a classification of Eulerian planar maps.
For convenience, its equivalence

2
f=1+ 1"_ 3)’( S(h-f) + X%y (4.3.2)

is used.
Because of the occurrences of x always in the form of x2, by the substitution z = x,
equation (4.3.2) becomes

f=1+ %(h —F) + 2yf2. (4.33)

Let F, , = 0,f and H, = ojh, then we have

Hy=F, plyo = Z Finn (4.34)
m>0
where F,, , = a((;"%’)f, m,n > 0.
s 2 2
Writing FLL =0,f",
n
Fa[cz,ll = ZF*,iF*,n—h (435)
i=0
by (4.3.3),
F 1, when n = 0;
*n ZF[Z] + Z(Hn—lfF*,n—l) When n> 2
*,n—1 1-z > 2 L.

From (4.3.4), it is seen that

Hn—l - F*,n—l = Z (Fm,n—l - Fm,n—lzm)

m=0
m-1
=(1-2) ) Fm’nl( > z’)
m>1 i=0
=(1-2) Z( z Fm,n—l>zi'
i>0 ‘m=i+1
Therefore,
1, when n = 0;
F, .= . ; (4.3.6)
Z(F*,n—l + ZizO(ZmziH Fm,n—l)z )’ whenn > 1.
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92 — 4 Equations of function with several variables

Observation 4.3.1. For any integern > 1, F, , is determined by all F, ;,0 <k <n-1.

Proof. From (4.3.6), itis seen that for the whole right hand side of the relation involving

F, , thereis only dependence on F, ;, O < k < n - 1. This implies the conclusion. [
On the basis of this observation, we are allowed to establish the qualitative theory

of equation (4.3.1).

Theorem 4.3.2. Equation (4.3.1) on R{z,y} is well-defined.

Proof. On the basis of Observation 4.3.1, all F, , can be determined from the initial
condition on R{x, y}. Hence, equation (4.3.1) has, and is the only one to have, a solution
on R{x,y}. O

In order to evaluate the solution f € R{x,y} of equation (4.3.1), its relative struc-
tures have be investigated.
Lemma 4.3.3. Forany integern > O, F, , is a polynomial of z with degree of z at most n.

Proof. We proceed by induction on n. Because of F, , = 1, the conclusion is true when
n = 0. For general n > 1, assume the truth for k, n = k > 1. By (4.3.6),

Fir= z(Fﬂ( + Z)

From the assumption, F £2}< is a polynomial of z with the degree at most k. Since the

degree of ) is less than that of F£2}]<, the degree of ZFEI]( is at most k + 1. Hence, for

n =k +1, the degree of F, , is at most n. This is the conclusion. O

This lemma enables us to get the solution of equation (4.3.1) in a recursion as a
sum of finite terms.

Lemma 4.3.4. For any integern > 0, F, ,, has all coefficients of terms in Z,..

Proof. We proceed by induction on n. Because of only addition and multiplication be-

ing used for getting F, , from F, ;, 0 < k < n - 1, the conclusion is drawn. O
This lemma enables us to see that all coefficients of the terms in F, ,, are positive.

Theorem 4.3.5. The solution f € R{x,y} of equation (4.3.1) determined by F, , = a;f for
n > 0 as a recursion in form, as a sum with all terms positive, is

F 1, whenn = 0; 437)
2 (el FoiF i+ Lisnena mniZ), whenn>1. -

Proof. On the basis of the two lemmas, by (4.3.5), (4.3.6) becomes (4.3.7). O
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4.3 Quadratic forms =— 93

Example 1. Isomorphic classification of planar Eulerian rooted maps with size and
root-vertex valency are arbitrarily given. By (4.3.7),

F.i= Z(Ff)0 +0)=2z(1+0) =z,
F.,= Z(ZF*,OF*J +F1,1) =z(2z+1)
=z+ 222,

F.3= Z<2F*,0F*,2 + Fi,l + z Fm,2Xi>

i+1<m<2
0<i<1

=2(22 +52° +3+22)

=3z+42° + 523,

F,,= Z<2F*,0F*,3 +2F, oF. 3+ z Fm,3xi>

i+1sm<3=0
0<i<2

= 2(62 +102% + 142° + 12 + 9z + 52°)

=12z + 152 + 152° + 142*.

We might state that the solutions of equation (4.3.1), denoted by f;r = f(x,y) € R{x,y}
and hpE = prl,(:1 = h(y) € R{y}, are, respectively,

foE=1+ @y +(z + 222)y2 +(3z+ 4% + 523)y3
+ (1522 + 152% + 142*)y* + ..

and
hoe = 1+ Dy + Gy + (12y° + (56)y* +---

where z = x°.
In Figures 4.3.1-4.3.5, aT,, ,, stands for a figure which is a map of size n and root-
vertex valency m with a root-isomorphic classes,2<m < 8and1<n < 4.

(-]

X

1T2,1 1T272 2T472

Figure 4.3.1: Classes of planar Euler root-maps of size 1-2.
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94 — 4 Equations of function with several variables

a
o [ oo ‘ ’
o
&7 CBO ,
a N

2T5 3+ 4Ty 3 3153 2753 1755

Figure 4.3.2: Classes of planar Euler root-maps of size 3.

From Figures 4.3.1 through 4.3.2, it is seen that planar Euler root-maps of size 1 have 1
class, i.e., 1T, , the coefficient F, ; = x? of the term yin pr; planar Euler root-maps of
size 2 have 3 classes, i. e., 1T,, + 2T, 5, the coefficient F, , = x?+2x* of term y? in forand
the planar Euler root-maps have 3 classes, i. e., (2T 3 +4T,3)+ (3T 3) + (2T 3) + (1T53) =
3T,3 + 4T, 5 + 5T, 3, the coefficient F, , = 3x* + 4x" + 5x° of the term y* in foE-

From Figs. 4.3.3 through 4.3.5, it is seen that planar Euler root-maps of size 4 have
56 classes, i.e., (21,3 + 4T,3) + (3T43) + (2Tg3) + (1T,3) = 3T,3 + 4T,5 + 5T 3, the
coefficient F, , = 3x% + 4x* + 5x° of the term y* in foE-

2Ts4 4Tg 4 6154 + 2154

Figure 4.3.3: Classes of planar Euler root-maps of size 4 .

o (@0’0‘

3764 + 1T2,4 6T674 + 2T2,4 4Ty 4 4T4,4

3

Figure 4.3.4: Classes of planar Euler root-maps of size 4 Il.
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4.4 Forms of degree not less three —— 95

1T4’4 4T274 + 4T4’4 2T2,4 + 2T4’4 1T2’4

Figure 4.3.5: Classes of planar Euler root-maps of size 4 Ill.

Example 2. Consider the equation about f € R{x,y} as

2 2 2
1- -(1- h+(1-x)=0;
{x y(1=20f? = (1= x + X°y)f +xyh+ (1-x) 438)
flx:O,y:O =1
where h = f(1,y) € R{y}.
For convenience, its equivalent form
f=1+ %(h —xf) + Xyf? (4.39)

is adopted. Similarly, a qualitative theory is established and for equation (4.3.8) its
solution is evaluated for getting a recursion in the form of a sum with all terms positive.

4.4 Forms of degree not less three
Consider the equation about f € R{x,y} as

2
2 xy(f - h) .
f =Xy a2 (4.4.1)
fly:O = 0 (:> hy:() = 0))

where h = f(1,y) € R{y}. This is equation (11) in Introduction whena = ¢ = 1andd = 0
because it is meaningful in a classification for non-separable Euterian planar maps
Since only x? appears in the equation, let z = x?, equation (4.4.1) becomes

B zy(f —h) )
{f AT A2 -a+? 44.2)
fly:O = 0 (:> hy:O = O))

where h = f(1,y).
For convenience, equation (4.4.2) is equivalently transformed into

2 2y _ _h).
{(f—zy)(Z(Hh) - A+f)%) =zy(f - h) (44.3)

fly=0 = 0(= hy_q = 0).
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For any integer n > 0, let

F[l] - a)r/lf = [f]n = F*,n) When l = 1;
" a)r}f] = [fl]n = [f[l]]ns When i > 2.

As a matter of fact, only i = 2 is used here. Because of
n
FEEI = ZF*,nfiF*,i’ nxo,
j=0

and because of h = f|,_;, for any integer n > 0,

Hy = 3h=F,pl,s
n
HZ =) HyH,,
j=o

our aim is to determine all functions F, ,, with one variable z for n > 0.
For convenience in the usage of equation (4.4.3), we notice that

1+F,,, h ~ 0
[1+f]n=a;,'(1+f):{ +F,p whenn

N whenn > 1,

and
(1 +f][2] -1 +f)2 _ (1 +F*,0)2) when n = 0;
Y 2F, , + Fﬂ whenn > 1.
From (4.4.6), we have
1+H,, whenn=0;
(1+h],=0;(1+h) = 0
H,, whenn > 1,
and
1 H g gy = | (P HO  whenn=0;
S 2H, + H?), whenn > 1.
Because of

[(f -29)(zA+h)? = A+ )], = [f -2v]o[zA + h)> - 1+ )],

= [flo(z[1+ )?],) - [1+£)?], by (4.4.10) and (4.4.8),

= F,o(z(1+ Hy)> = (1+F, o))

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)
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and
[zy(f - )], = 0.
From equation (4.4.3), we have
Fo(z(1+Hy)* - (1+Fy)?) = 0.
It is seen that the initial condition of equation (4.4.3) is satisfied, i. e.,

Hy=0 = H’ =0

F.o=0 = {
* 21 _
Fh=0.

For any integer n > 1, because of
[(f —2n)(zA+ R - 1 +£)7)],

YU -zylilzA+h)? - A+, by (4412),

i=0
(Fo1-2)[z0+h? =1+ = (F, 1 -2)(z - 1),
B whenn=1;
| Fanz -0+ Y F izt P - 14+ £,
whenn > 2

and

[Zy(f - h)]n =2z(Fyy —Hy),
from equation (4.4.3), we have

[(F.,-2)(z-1)=2(Fy-Hy) = F,;-z=0
= F; =z, whenn=1;
F.,(z-1)=z(F,-H)) = F,,(z-1)=2z(z-1)

= F,=2z, whenn=2
< n-2

Fopz=1)=2(F,p—Hy )+ Y Foni(L+f17 = z[1+h)1)
i=1

Fopr=Hoy %2 417 -2+ b

z-1 ; ot z-1 ’

= F.,=2

whenn > 3.

Theorem 4.4.1. Equation (4.4.2) is well-defined on R{z,y}.

(4.4.11)

(4.4.12)

(4.4.13)

Proof. From (4.4.4) and (4.4.10), all F, ,, n > 2, are determined by F;, 0 < i < n-1.Itis
easy to see that F, , € R{z} ¢ R{z,y}. Therefore, f € R{z,y} is a solution of equation
(4.4.3). Furthermore, F, ,, n > 1, is determined by the value of F,. From the initial

condition of equation (4.4.3), this solution is the only one.

O
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98 —— 4 Equations of function with several variables

Assume that F, , is a polynomial of z with degree m,, i. e., it has the form

m, )
F,,=) F,7 (4.4.14)
j=0
WhereF}-,n €ER,0<j<m,,n=1
From (4.4.6),
m,_y
Fn—l - Hn—l Z F]n 1(Z 1)

j:l

=(z-1 z n- 1(1+z+- +Zj_l) (4.4.15)
m,_;—1
=(z-1) ( Z jn— I)Z
k=0 \j=k+1

On one hand, from (4.4.4) and (4.4.6),

i
@l
Fl—zH = Y (F.jF, ;- zHH; )

j=1
i myrmii—1 ymi+m;_;
=z(z - 1)2 Z ( Z ))zt,
s=t+1
where
0, when0 <s< 2
A](’sl) = Z k+l=s Fk,jFl,i—j’ when s > 2, (4416)
1<k<m;
1<l<sm;_;
and
m; .
F,;-zH; = ZFj,i(Z] -z)
j=1
=2z(z - l)z i(1+z+- +zj_2)
m-2/ m;
=Z(Z— 1) Z < z Fj’i>Zt.
t=0 \j=t+2
From (4.4.8) and (4.4.10),

1+ — 21+ P = 2F, ; - 2H)) + (F - zH)

1

m-2/ m i M=l omm 4417
O O 0 ol (5> X B

j=t+2 j=1 t=0 s=t+1
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4.4 Forms of degree not less three =— 99

By (4.4.15) and (4.4.17), (4.4.13) leads to

0, when n = 0;
z, whenn=1,2,3;

my,_—-1 my,_ k
o 2o (Zj:kil in-1)Z (4.4.18)
EN -2 —2 ; L
+z Z?:l Fn—i(2 Z;io (Zjniﬁ.z Fj,i)Zt
mi+m;_i—1

i —j t
Y 2o Az,
when n > 4,

where

A= Y A, (4.4.19)

and A;Sl.) is given by (4.4.16).
From (4.4.18) and (4.4.19), it is seen that F, ,,, n > 0, provides an expression of the
solution f € R{z,y} of equation (4.4.2).

Lemma 4.4.2. For any integern > 2, F, ,, is a polynomial of z with degree |n/2].

Proof. For a polynomial P of z, denote by u(P) the degree of P, we show m,, = u(F, ) =
|n/2]. From (4.4.5),

u(F2) = max(m,,_; + m;). (4.4.20)
? O<i<n
It is easily seen that when n = 2 and 3, the conclusion is checked to be true. We
proceed by induction on n > 4, assume forany 0 <i < n-1, u(F,;) = m; = |i/2], to
prove m, = |n/2].
From (4.4.5), it is seen that y(F,[f’,]q) < max{u(F,;) + u(F,;) 1 0 <i < n}=[n/2.
Because of F, ; = 0, |n/2| = max{u(F, , ;) + u(F,;) | 1 <i < n-1} = [n/2]. By the
assumption,

[n/2] < max {u(F.p) + W(F. ) < [(n=D/2] + [i/21} < [n/2].
On the other hand, for n > 4, from the induction assumption, by (4.4.17), we have

(1+£12 —2[1+n2
HF ) = ) )

=1+|(n-1)/2] =1+|n/2] -1=|n/2].

From (4.4.13), the conclusion is drawn. O

On the basis of this lemma, in (4.4.18) and (4.4.19), allm;, 0 < i < n, can be replaced
by Li/2].
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100 —— 4 Equations of function with several variables

Lemma 4.4.3. For any integer n > 2, all coefficients of polynomial F, , are non-negative
integers.

Proof. From (4.4.18) and (4.4.19), by induction on n, the conclusion can be drawn. [

Theorem 4.4.4. The solution | of equation (4.4.1) determined by F «nforn = 0 has a
recursion in the form of a sum with all terms positive,

0, whenn = 0;
X2, whenn=1,2,3;
-1 1)/2 k
P X Zk 0 (z](rllﬁl/ JF n— 1)X2 (4.4.21)
*n = n-2 2 yLE-2/2) lif2) fo o
+X 211 *nl(z (Z —t+2 ]IX
2 )/2 1
" j:1 ZU/ 1+1G-j)/2]- Zt)
whenn > 4,
where
. Li/21+1G-5)/2] < (6)
S
Ay = z Aj,i (4.4.22)
s=t+1
and
0, whens = 0and 1;
(8) _ &
Aj,i = z k+l=s Fk,jFl,i—j’ whens > 2. (4'4'23)
1<k<|j/2]

1| (i-))/2]

Proof. By considering the relationship between the solution f of equation (4.4.2) and
the solution f of equation (4.4.1) and Lemma 4.4.2, from (4.4.18) and Lemma 4.4.3, the
conclusion is drawn. O

Example 1. Isomorphic classification of non-separable Euler planar rooted maps by
size and root-vertex valency. As a matter of fact, in (4.4.21), Fm)n is the number of iso-
morphic classes of non-separable Euler planar rooted maps with size n and root-vertex
valency 2m. Figures 4.4.1-4.4.3 provide, respectively, the cases for sizes 1-3, 4-5 and
6. For instance, from Figure 4.4.3, it is seen that

(1Th) + 2T, 6) + QT + 2T, ¢) + Ty + 4T g) + (1T + 4T, ¢) + (Tg )
= 6T2)6 + 12T4,6 + 1T6,6‘

We might state that in non-separable Euler planar rooted maps of size 6, the root-
vertex valencies have three possibilities: 2, 4 and 6. They have, respectively, 6, 12 and
1 isomorphic classes.
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° o
T271 T272 T2,3

Figure 4.4.1: Non-separable Euler planar rooted maps of sizes 1-3.

&—
Toa Ty T 5 1Ty 5 + 4Ty 5

Figure 4.4.2: Non-separable Euler planar rooted maps of sizes 4-5.

Tog 2Ty 2To 6 + 214 @To6 + 4Tue 1To6 +4Ths  Top

Figure 4.4.3: Non-separable Euler planar rooted maps of size 6.

4.5 Notes

4.5.1. Insolving an equation of a function with several variables, a universal principle
is available to find a way to reduce variables, and/or decrease its degree so that the
equation is transformed into one with less variables, or a system of equations with
less degree. How could we seek a proper manner for employing the principle? This
depends on the level of understanding the structures of the equation considered.

Most equations encountered in this book still involve some parts of the unknown
or undeterminate. In order to extract the solution needed for the equation as an ex-
plicit expression (or abbreviated, as explicision), via a certain number of characteris-
tic curves excluding the whole unknown, to evaluate parts of the unknown such that
the equation is transformed into an ordinary one without any part of the unknown.
The Tutte quadratic method, or multi-root method, is an example only for quadratic
equations. See Tutte WT [80-84].
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102 — 4 Equations of function with several variables

However, in this book, all equations considered, or relevant, are addressed with-
out usage of this method. In consequence, the solutions with its companion parts are
evaluated at the same time.

4.5.2. A linear equation of an unknown with a companion part in variables comes
from the research of root-isomorphic classification for outer planar maps; see Liu
YP [23-26]. Based on these is the method of characteristic curves, as shown by (4.2.14)
in 4.2. It is different from Tutte’s.

4.5.3. If f in equation (4.1.5) is replaced by

_f-xy

~ i.e, f=xg- (xy)z, (4.5.1)

then we have

_ g+ ()’

- - () 4.5.2
-0y -g (y)g - (xy) (45.2)

By substituting z = xy, we have

2 5.2 2_ 0.
{(X+z)g (x—-xz-2z%)g+z"=0; 453)

g|x:0,z:0'

Theorem 4.5.1. Equation (4.5.3) is well-defined in R{x, z}. Its solution g, determined by
G, = a;’g(n > 0) € R{x}, is of the form of a sum with terms positive,

0, when0 <n<2;
0, whenn = 3;
XG, = n-3 n—4 (4.5.4)
X Zi=3 G*,iG*,nfi + Zi=3 G*,iG*,nflfi + XG*,nfl + 26*,)‘172’
whenn > 4.

Proof. The first conclusion is from Theorem 4.4.1. The second conclusion is drawn sim-
ilarly to the proof of Theorem 4.4.4. O

4.5.4, In Liu YP [51] (equation (8.1.15), p.211) a very early version in [13] (equation
(3.8), 1984), one might find the equation for f € R{x, y},

{xzy(l —x)f2 - (1—x+x2y)f+xyh+ 1-x)=0; 45.5)
flx:O,y:O =1,
where h = f(1,y) € R{y}.
By transforming equation (4.5.5) into its equivalent form,
Xy 2, 2
f=1+ ——(h-xf) + xXyf
<| 1-x Y (4.5.6)
f|y:0:>x:0 =1
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4.5 Notes = 103

similar to Theorems 4.3.2 and 4.3.5, that equation (4.5.6) is well-defined and its so-
lution has the form of a finite sum with all terms positive can also be seen. In fact,
the solution is determined by F, ,, (n = 1), which is a polynomial of x with degree not
greater than 2n and all coefficients in Z,.

4.5.5. From the decomposition principle presented by Liu YP [21] (1986), equation
(4.4.1) can easily be derived. In Liu YP [40] (1992), an explicision of its solution in
summation-free form is also provided. Equation (1) in Liu YP [42] (1992) is just equa-
tion (4.4.23).

4.5.6. From (4.4.21), by substituting z = x?, a solution of equation (4.4.1) is done in
R{x,y}. Although recursion is very convenient for efficientization and intelligentiza-
tion, explicision is necessary for use of computers. For convenience, an explicision of
an implicit function is also necessary. We need to get an explicision of the solution f of
equation (4.4.1) determined by F, ,, (n > 0) without the knowledge of F, ; (0 < i < n-1).
Letg =f +1and!= h + 1, for getting an equivalence of equation (4.4.1),
{g3 —(1+X)g + Xy - BP)g + (P -yl + XyP?) = 0;
(4.5.7)
glx:y:O =1

where l = g(1,y) € R{y}.

Because equation (4.4.21) is of degree three with a part [ of the unknown f, certain
complications are involved in the evaluation. In order to determine /, a parameter q =
q(y) € R{x,y} is introduced satisfying the relation

q-1=1(yq’) (4.5.8)

and we have the equation

202 2 2 2 2 2
xyx -1 +(Xy-x"+1)p+x —-1-x =0;
{ y(x* - 1)p* + (Py p vq 459)

plx:y:O = 1)

to determine g = p(1,y).
On R{x,y}, whenever the substitution z = x? is employed, equation (4.5.9) be-
comes

. 2 _ - - = >
{zy(z Df*+(@y-z+Df +z-1-2yq = 0; (4.5.10)

f|x:y:0 = 1)

where g = f(1,y).
In Section 4.3, the solution of equation (4.3.3) is shown by (4.3.6). The case of z = 1
is just g.
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5 Difference equations

5.1 With straight difference of one variable

Consider the equation for f € R{x}

{f (1261, () = 1; (5.1.1)

fly:Oﬁx:O =1

where 8, ,(xf) = ((xf)y=1 — (xf))/(1 - x) is the straight difference of xf between 1 and
x. This is equation (12) in Introduction when a = ¢ = d = 1it being meaningful in the
classification for loopless planar maps.

Since only one variable x is involved, the equation is said to be in straight differ-
ence form of one variable.

For any integer n > 0, let F, , = [f], = 9,f, then

a}',’f(l - xy6,,(xf)) = z F,:[1-xy8;,(xf)],_;- (5.1.2)

n
=0

Write h = fl,_, and H,, = [h], = d;h, n > 0, then

h-x
[1-x8,00)), = [1- 0522 . (51.3)
—x
Whenj =0,
[1-xy6,,(xf)], = 1. (5.1.4)
Whenj > 1,
h-xf
(1280, 0] = -y T ]j
X
=1 [h-xf1;4 (5.1.5)
X
= —E(qu —XF,j1).
Lemma 5.1.1. Equation (5.1.1) for f € R{x,y} is equivalent to the equation system
{a;/)(f(l -xy6,(xf))) =1, n=0; (516)
0 (f(1-xy8,,(xf))) =0, n=1m

for{F, , = a;f | n >0} < Rix}.
https://doi.org/10.1515/9783110625837-005
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106 —— 5 Difference equations

Proof. Because of

3 (F (1= xy8,,(xf))) = [f(1 - xy8,, ()],

and (5.1.2),
[f(l - Xyé‘l,x(xf))]o = F*,O[1 - Xy(sl,x(xf)]o’ (5'1'2)’
=Fyo, from the initial condition, (5.1.7)
=1

This is the case of n = 0 in (5.1.6).
For any integer n > 1, from (5.1.2) and (5.1.6),

0, (f(1=xy8,,(f))) = [f(1 - xy81,(xf))],,, from (5.1.2),

= Y Fi[1-xy8,,(xf)],_;» from (5.1.4)and (5.15),
i=0

X n-1
=Fon-1% Y FuiHy iy =XF, i)
-x £
i=0
=0.

This is the general case of equation (5.1.1), i. e.,

X n-1
F*,Y[ = l_ F*,i (Hn—i—l - XF*,n—i—l)' (5.1.8)
~Xi%
Therefore, the conclusion is drawn. O

Observation 5.1.2. For integerj > 0, (1 - x)|(H; - xF, ;).

Proof. Forj >0, itisseenthatH; = Fy; + Fy; + -+ + F;j +--- where F, ; = F; + Fy ;X +
-+ F;x' +---.When i = j = 0, because of F, - xF 5 = 1 - x, the conclusion is true.
Fori,j > 1, because of

X . i
Fi,j - XFI"]'XI = Fl)}(l - XPrl) = Fl,](l - X)(Z Xl>,

=0

we have (1 - x)|(F;; - xFi,jx"). From

Hj= ) F
i>0
we have (1 - X)|(H; = XF, ). This is the conclusion. O

This observation enables us to see that, for any integer n > 0,
H, - xF,
_n T wn € R{X}
1-x

is a polynomial of x.
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5.1 With straight difference of one variable =— 107

Observation 5.1.3. For integerj > 0, F, ; is a polynomial of x with degree j.

Proof. Whenn = 0, F, 5 = 6,0F;, = 1is a polynomial of x with degree 0 = n. By
induction, forn > 1, assume forany O < k < n-1, F, ; is a polynomial of x with degree
k; we prove F, , is a polynomial of x with degree n. Let dr = d(F) be the degree of F
and write d; = d(F, ;). From (5.1.8), we have

j-1 H . .- XF* s
d(F,;) =1+d F*iu
’ i 1-Xx
) ] ) (5.1.9)
=1+d(F,;,), byinduction assumption,
=1+(G-1) =j.
This is the conclusion. O

This observation enables us only to discuss F,, ,, for 0 < m < n whenevern > 1is
given. Moreover, for n > 1, all F, , are seen without a constant term not zero. So, it is
only necessary to consider n > 1.

Theorem 5.1.4. Equation (5.1.1) is well-defined in R{x, y}.

Proof. Because of a solution f of equation (5.1.1) is determined by F, ,, forn > 0 in
Lemma 5.1.1, (5.1.7) and (5.1.8), one is led to the conclusion. O

Because there is no constant in F, , for n > 1, (5.1.9) enables us to write

F, =F x+F, xX*+-+F, x";
{ o = Fipx + Fop nn (5.1.10)

Hy=Fig+F,+ - +Fy,,

for{F]-,n ln>j=1cR.
For any integer j > 0, from (5.1.10),

j )
Hi-xF,;j=Y F;(1-x")
=1

j j
=(1-%) ZF,J(Z x5>
=1

s=0

=@ —x)<H]~ +y Fs,ixl>,

Is<j
1<l<j

and hence

H; —xF,;
] *J) 1

ﬁ = I{} + Z FS,]‘X . (5.1.11)
1155151:

<lsj
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108 — 5 Difference equations

By substituting (5.1.11) into (5.1.8),

n-1
F,n= xz ,( i1 + Z an11x> (5.1.12)

i=0 I<s<n—i-1
1<l<n-i-1
From (5.1.7) and (5.1.12),
1, whenn = 0;
Fop= xS0 Fi(Hyig + Y0 ApigX!),  from Foy = 0 (k 2 1), (5.1.13)

= X(F* n-1t Zoglgnfifl F, iAI n—i—lxl)’ whenn >1,
? O<i<n-2 o

where

n-i-1

Aln i-1 7= Z s,n-i-1- (5.1.14)

Theorem 5.1.5. The solution f of equation (5.1.1) on R{x, y} is determined by F, ,, = a;’f €
R{x} for n > 0iin the form of a sum with finite terms all positive as

1, whenn = 0;
Fin= ] (5.1.15)
X(Fupq+ 2055:;;1 F, i\, i1X), whennz=>1,

where A, ; 1 is given in (5.1.14).
Proof. This is a result of (5.1.13) and (5.1.14). O

Example 1. Classification of loopless planar rooted maps by size and root-vertex va-
lency. In Liu YP [36], one finds the equation

X)/ 61,x (Xf )

—_— 5.1.16
1- Xyal,x(xf) ( )

f=1+
One of its solutions is just the enufunction of root-isomorphic classes of loopless
planar maps with size and root-vertex valency as two parameters. However, attention
should be paid to the fact that u, v, h and h; in [36] are, respectively, x, y f and h here.
Because of the existence of (1 - xy§, , (xf )~ on R{x,y}, equation (5.1.16) is equiv-
alent to equation (5.1.1). See Figure 5.1.1 for sizes between 0 and 2.
In Figure 5.1.2, the distinct root-isomorphic classes of loopless planar maps with
size 3 are provided by

(T3 + T53) + (Ty 53+ 2T53) + (T3 3 + 2155 + 3T53) + (T53) + (T3)
=(1+1+DT3+ QR+ 2+ DT+ (1+3+1)T55
= 3T1’3 + 5T2’3 + 5T3’3
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5.1 With straight difference of one variable =— 109

o

o

To T Too Tio+Top

Figure 5.1.1: Classes of loopless planar rooted maps with sizes: 0-2.

T 2T:
T3+ 133 T3+ 213 lingS 32’3 T33 To3

Figure 5.1.2: Classes of loopless planar rooted maps with size 3.

In Figure 5.1.3, the distinct root-isomorphic classes of loopless planar maps with size
4 are provided by

(Ty 4 +3T54) + BTy + 2T5 4 +3T3,) + (T4 + Ty p)
+ (T4 + 4Ty, +3T3,) + (Tyy + 4T, +3T5,)
=(1+3+1+1+ DT 4 +2+2+4+4)T,,
+(B+3+3) 3, +Tyy
=TTy, +13Ty, + 9T54 + Ty

o
o
o

) o o
o

o o

o
3T 4+ 2T 4 Tia+4Tos Tia+4To4
T4+ 314 +3T54 Tia+Tha 13754 13T5 4

Figure 5.1.3: Classes of loopless planar rooted maps with size 4 I.
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110 —— 5 Difference equations

o

0 '.
o

“

T4+ 3134 Tha 2754 + 2Ty 4

2T g4+ 2154 Tia+3T34
+4T4,4 +4T4’4

Figure 5.1.4: Classes of loopless planar rooted maps with size 4 II.

]
o
o
]

T T
41_’;13;4 24 Ty4+3T3, Ty 4+ 3154 To4

Figure 5.1.5: Classes of loopless planar rooted maps with size 4 Il1.

In Figures 5.1.4 and 5.1.5, the distinct non-isomorphic classes of loopless planar maps
with size 4 are provided by

(T4 + 2T, 4 + 4T, 4) + (Tyy +3T5, + 4T, 4)
+ (Tyy +3T5,) + (T, ,) + 2T, + 2T, 4)
=QR+DT,+2+1+2)T,, + 3+3)T3,
=+4+4+1+2)T,,3Ty 4 +5T,4 + 615, + 11T, 4,

(Tyy+ Ty +2T, 4) +(Ty 4 +3T3,) + (Ty 4 +3T3,) + (Try)
= 3T1’4 + 2T2’4 + 6T3’4 + 2T4)4.

In Figures 5.1.3-5.1.5, the distinct root-isomorphic classes of loopless planar maps
with size 4 are provided by

13Ty 4 + 20T, 4 + 21T5 4 + 14T, 4.
Thisis F, , forn = 4 in (5.1.13), i.e.,

F, = 13x + 20x% + 21 + 14x".
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5.2 Form of several straight differences =— 111

5.2 Form of several straight differences

Consider the equation for f € R{y,z, t}

{f(l +yzt(fig + f21)) = 1+ yzt(81,(tf) + 61, (2f)); (5.21)

fly:0=>z:t:0 =1

This is equation (13) in Introduction when a = b = ¢ = d = 1 because it is mean-
ingful in the dichrosum (i. e., dichromate sum) for ordinary planar maps.

In the equation, both a straight difference for z and a straight difference for ¢ occur.
So, this equation is said to be in the form of several straight differences.

Because of f € R{y,z, t}, wheneverallF, , = B;,'f € R{z, t} for n > 0 are determined
by equation (5.2.1), a solution of the equation is easily found.

For convenience, let us write

{[ﬂz:l]n = [f]n|z:1 = F*,n|z=1; (5.2.2)
[f't:]]n = [f]nlt:l = F*,nlt:l’
and
1
[51,Z(Zf)]n = E([f'z:l]n _Z[f]n)
1
= ——(Fynlz=1 —2F, n);
] 1z =nmet : (5.2.3)

[616P), = 1 (Flecale —21710)

1
= E(F*,nh:l - 2zF, p).

On the basis of (5.2.2) and (5.2.3), a procedure can be established to determine all
F, , for n > 1 from F, which is known by the initial condition as follows.
Whenn =0,

YO o [fAyztflo + flee))]o = [1+ 2t (81,(2f) + 61, (t)) ] -

Because of

[F(+yzt(Flom + Flic))]o = Flol1+ Y2t (Flooy + flizi)]o = Fo
and
[1+yzt(8,,(zf) + 6,4(tf))]y = 1,
we have

F*.O =1= F*.O'Z:l =land F*.Olt:l =1 (5-2-4)
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112 — 5 Difference equations

Whenn =1,
V' P+ vzl + fle))]y = [1+yzt(81,(2f) + 6,,(tF)];-

Because of
F(1+yzt(floo + flie)]y = Flo[L +y2t(Flooy + flez)];
+ [fli[1+yzt(flog + fle=)]y, by (5.2.4),
=zt[fl,o1 + flialo + Fi, by (5.2.4),
=F, +2zt
and

(1+yzt(6,,(2f) + 6,,(tf))], = 2t[6,,(2f) + 614(tf)],, by (5.2.3),
=2zt
we have F; + 2zt = 2zt i.e.,
F,1=0 = F,4l,.y=0andF, | = 0. (5.2.5)
For n > 2, by equation (5.2.1), we have
V' [f(U+yzt(Floo + flec)], = [1+ y2t(81,(2f) + 814(t)],,-
On the left hand side,
[f(1+yzt(floo + fle=d)],

= Z[f]i[l =Yzt (flp—g + flec) ]

i=0
n-1
=F,,+2t Y Filfloey +flecilpi by (5.2.2),
i=0
n-1
=F, p+azt Z Foi(Fonicalz=1 + Fonoicale=r)-
i=0

On the right hand side, from n # 0,
[1+yzt(6,2(2f) + 61,,())],,
= 2t[61,(zf) + 8,4(t)],;, by (5.2.3),

3 (F*,n—llz:l —2F, 1 Finaler - tF*,n—l)
=zt + .
1-z 1-t

Therefore, we have

F -zt F*,n—l |z:1 B ZF*,n—l " F*,n—llt:l B tF*,n—l
- 1-z 1-t

(5.2.6)
n-1

- Z Foi(Fun-iilz=1 + Fupoicale=1) >

i=0

Also, F, , € Riz, t}.
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5.2 Form of several straight differences = 113

Theorem 5.2.1. Equation (5.2.1) on R{y, z, t} is well-defined.

Proof. Itis easily seen that (5.2.4) leads to the initial condition of equation (5.2.1). From
(5.2.6), foranyn > 1, F, , is determined by only F;, 0 < i < n—1. Hence, equation (5.2.1)
has a solution on R{y, z, t}.

From uniqueness of the procedure of finding F, , for the given initial condition,
the solution is the only one. O

As a matter of fact, (5.2.6) has already provided us a recursion for a finite sum with
all terms positive.

Theorem 5.2.2. The solution of equation (5.2.1) R{y,z, t}isf = 1, i.e.,

a; £ {1, whenn = 0; (5.27)
0, whenn>1.
Proof. Whenn =0, (5.2.4) shows F, , =, the initial condition of equation (5.2.1). When
n=1,(525)showsF, = 0.
For n > 2, we proceed by induction on n. Assume for any integeri,n—-1>1i > 1,
F,;=0.WeproveF, , = 0 by (5.2.6).
On account of the assumption,

F*,n—l'z:l —ZF*,n—l F*,n—lltzl - tF*,n—l

=0
1-z 1-t
and
n-1
ZF*,i(F*,n—i—1|z=1 +F, nicale=1)
i=0
=F, o(F, no1lz=1 + Fupoale=1)
=0.
Then, from (5.2.6), we have F, , = 0.
This is the conclusion. O

Example 1. Dichrosum equation of ordinary planar rooted maps. In Tutte WT [87]
(1971), Tutte proposed the equation

¢ =1+uxz’t - xzt(qﬁq,')t:l - w>
- (5.2.8)
+vyzt’ - th<¢¢z:1 - w )
-z
By substituting x = y into equation (5.2.8), we have
R (
0 =1+ w7 - yat( B - L)
é é (5.2.9)
1~ Z
+vyzt’ - yzt(qbqbZ:1 - %)
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114 — 5 Difference equations

In fact, equation (5.2.1) is equation (5.2.9) for u = v = 0. Both equation (5.2.8) and
equation (5.2.9) are in the form of several straight differences. Although their being
well-defined can be addressed in a similar manner to that of equation (5.2.1), their
solutions are much more complicated than the solution of equation (5.2.1) is.

Example 2. Dichrosum for u = v = 0. Because, for the dichromat (or Tutte polynomial)
Xy,v» We have

1, when M = §, the vertex map;

Xo,oM) =
00 0, otherwise,

the dichrosum function of ordinary planar maps is the constant 1, the solution of equa-

tion (5.2.1). The fact in this section is proved only by Theorem 5.2.2.

5.3 With slope difference of one variable

Consider the equation for f € R{x,y}

_ 2 2 2y _(h_ 1.
{f—1+x Yf* +y0u,(Cf) = xyhf — (h=1)(f - 1); (5.3.0)

f lx=0=y=0 = 1 (the initial condition!),

where h = f|,_; € R{y}. This is equation (14) in Introduction whena=b=c=d =1
because it is meaningful in the classification of simple planar maps.

On account of the slope difference for only one variable x, the equation is called
a slope difference of one variable.

For f € Ri{x,y}, f is determined by

Fon=1[fla=0)f €R{x}, nz0. (5.3.2)

Thus, the problem of evaluating f for equation (5.3.1) becomes that of extracting all
F, , for n > from the initial condition of equation (5.3.1) on R{x,y}.
If F;, 0 <i < n, are to be found, then

F2 = [f],,=3f =Y F.iF. s (5.3.3)
i=0
Because of
(A1, = O1(hf) = i)[h]i[ﬂn_,- (534)
and

(5.3.5)

), <|F*,0(: 1=F,oly=1)» whenn = 0 (the initial value!);
n

F, ply=1> whenn > 1,
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5.3 With slope difference of one variable =— 115

we have
n
(hfln = ) FileetFaoie (5.3.6)
i=0
Furthermore,
X
i)y = 7 Funlxr = XF..) (5.37)
and

[(h=D(f -1)], =) [h-1][f -1], theinitial value,
i=0

(5.3.8)
o when n = 0;
Y hlf;, whenn>1.
On the basis of these, by equation (5.3.1),
Yo [flo=1-[h-D(f -D], by(538),
=1([h]o - )([flo - 1), by (5.3.5),
=1-(Fy-17°
—Fy=1-(Fy-1?=2F,-F,
- 0 = Fo(l - Fo).
By the initiation of equation (5.3.1), the only possibility is
Fy=1 (53.9)
From equation (5.3.1), we also have
V' If = X[ + 0w ()], — xThflo = [(h=D(F - D], (5.3.10)
By (5.3.9), [h—1], = [f — 1], = F, — 1= 0. For any integer n > 2,
n-1
[((h=D( - D], = Y [M]i[f s (53.11)
i=1
Whenn =1, [(h - 1)(f — 1)]; = 0. Thus, (5.3.10) becomes
[Fl = X*[f*]g + [31,(0CF)]o = X[ Lo,
By employing (5.3.3) and (5.3.7),
Fy=xX’Fi+x-xF2, by (539),
e o (5.312)
=x".
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116 —— 5 Difference equations

If, forintegern > 1, all F, ;, 0 < i < n—1, are known, then, by equations (5.3.1) and
(5.3.3)-(5.3.8),

V' Ul = X1 + 0PNy — X[l - [(R=D(F - D),
n-1

2 X
= FiF i+ —— (Fp_qly=1 — XF
X i;) if'n-1-i t 1—x( n-1lx=1 = XFy_1) (5.3.13)

n-1 n-1
-X Z Fi|x:1Fn—1—i - Z Filx:an—i-
i=0 i=1

Lemma 5.3.1. For any integern > 1, F, , is a polynomial of x with degree 2n and mini-
mum of degrees not less than 2.

Proof. When n = 1, from (5.3.12), the conclusion is true.

For n > 2, we proceed by induction on n; assume thatall F, ;, 0 < i < n-1, are
polynomials of x with the minimum not less than 2 and maximum not greater than 2i
of degrees. Denote by d(P) the degree of the polynomial P. By the assumption,

n-1
d( Y Fl-F,,“> =2i+2(n-1-i)=2(n-1),
i=0

d(anllle - anl) = 1 + Z(n - 1) = 2n - 1,

n-1
d( Y Fi|x_1Fn1i> <2n-1),

i=0
and
n-1
d( [h]i[f]n—i) <2(n-1).
i=1
From (5.3.13),
dF,,) =2+2(n-1) =2n. (5.3.14)

By considering that F, , has neither a term with degree O of x nor a term with
degree 1 of x, the conclusion is drawn. O

This lemma enables us to express F, ,, n > 1, in the form
2n
Fop= ) FpupX", Fpn€R. (5.3.15)
m=2

Hence, we have
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5.3 With slope difference of one variable =— 117

Foalei=XF 1 (2(7121) Fm,n_l(l - xm+1)>

1-x C1-x\ &
2(n-1) m
= Z Frn-1 Z be (5.3.16)
m=2 i=0
2(n-1) .
= Z Ai,n—lxl
i=0
where
2(n-1)
Ajpr= ) Fypor (5.3.17)
m=max{2,i}

Theorem 5.3.2. Equation (5.3.1) on R{x, y} is well-defined.

Proof. Via (5.3.2)-(5.3.13), F, ,, n = 0, as obtained provide a solution f of equation
(5.3.1). Because of F, , € R{x},f € R{x,y}. By considering the uniqueness of F, ,, under
the initial condition, f is the only solution. O

In order to clarify the solution and make it as simple as possible, its useful struc-
tures have to be further investigated.

Lemma 5.3.3. For any integer n > 3, polynomial F, , has its minimum of degrees not
less than n.

Proof. Although we checked from (5.3.13) that, for n = 1 and 2, the minimum degree
of F, , is greater than n, the minimum degree of Fj is just 3.

For n > 4, we proceed by induction on n. Assume for any integeri,3 <i<n-1,
that polynomial F; has its minimum degree i. From Lemma 5.3.1,

2i
F; = Z.Fm,ix’. (5.3.18)

m=i
Denote by I(F;) the minimum degree of F;, then I(F;) = i. Because of

F, il,-1 — XF,_ i
% = Y FppaX, (5.3.19)

(n-1,i)<m<2(n-1)
0<i<2(n-1)

we have

, 2(n-1) / 2(n-1) ;
[al,x(x f)]n—l =X Z ( Z . Fm’"_l )X
i=0 \m=(n-1) (5.3.20)

i+1
= z Frpax™,

(n-1,i)sm<2(n-1)
0<i<2(n-1)
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118 — 5 Difference equations

where (n - 1,i) = max{n - 1,i},

2(n-1)

Xflpa= Y WX (5.3.21)
m=0
in which
Zln:—r}:l[znn/lzj Fi|x:1Fm,n—l—i’ 0O<m<n-1;
Fonn-1 = n-1-m/2|
Zi:o FilyetFpn1-p n<m<2n-1),
and
2(n-1)
[(h=-D(F -D], = ) @ppix™ (5.3.22)
m=1
where
Z?;;—m FilystFppn1p  whenl<m<

('Dm,n—l = z::nlin”/lzj Filx:lFm,n—l—i> when3<m<n-1,
Y B Fon1oi Whenn <m < 2(n-1).
Observation 5.3.4. For any integern—-1>m=>0,n >3,
Am—l,n—l - \ym—l,n—l - (Dm,n—l =0.
Proof. The result can be found in Example 1 of this section. O

On this basis, by (5.3.3), (5.3.19) and (5.3.13), the assumption leads to
IF, ) = min{2 + 1([f*],_ ) 1[0y, OF)] ey = X[y — (R =D - D]}

>min{2+ (n-1),n} > n.
Therefore, the lemma is proved. O

From Lemma 5.3.1 and Lemma 5.3.3, we write

5 2(n-1)
Flia= Y QuaX™ (5.3.23)
m=n-1
Qm,n—l = Z FiiF 1o (5.3.24)
(l,:)téz,,,'r,'n_l

where S, ={,) |i<l<2in-1-i<t<2(n-1-i),0<i<n-1}.
Observation 5.3.5. Forinteger2(n-1)>m=>n-1,n=>3,
Am—l,n—l 2 \Pm—l,n—l + (Dm,n—l'

Proof. The result can be found in Example 1 of this section. O
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5.3 With slope difference of one variable =— 119

Lemma 5.3.6. The polynomial F, , has all its coefficients non-negative integers.
Proof. From Observation 5.3.5, the conclusion is derived. O

Now, we are allowed to present the solution f of equation (5.3.1) determined by
F, n(n = 0) in the form of a finite sum with all terms non-negative integers.

Theorem 5.3.7. The solutions f of equation (5.3.1) are determined by F,, ,, = a;’f forn>0
as

5 whenn = 0;

X, whenn = 1;
Fon=17, (5.3.25)

2, whenn = 2;

2 y2(n-1) Q m 2n A m h >3

X Zm:n—l mn-1X T Ym=n mn-1X > whenn2>3,

where

At = Mciner = Yimeine1 = Pnn (5.3.26)

and Q15 Mpovno1y Yinorno1 and @, 4 are given by, respectively, (5.3.24), (5.3.17),
(5.3.21) and (5.3.22).

Proof. This is a result of what was described above. O

In what follows, the example shows equation (5.3.1) to be meaningful in combi-
natorics.

Example 1. Isomorphic classes of planar simple rooted maps by size and root-face va-
lency. A map is said to be simple if neither a loop nor a multi-edge occurs.

Equation (5.3.1) is as a specific case of an equation from Liu YP [35] for determining
the enufunction with face partition vector.

In Figures 5.3.1-5.3.3, kS,,, , stands for a figure S whose maps are of size n, root-face
valency m with k hollows (distinct classes). We have

whenn=0, 1S9 Fy=1;

whenn=1, 1S,; o F = X%

whenn=2, 25,,eF,= x4
whenn=1, 1S33+55,3 e F3 = X3+ 5x5;

whenn=1, 1S,,+8S;,+14Sg, & F, = X"+ 8x° + 14x5.

(-] o (-]

@) G—o© G—6——=©

So,0 Sa1 2542

Figure 5.3.1: Classes of planar simple rooted maps with sizes 0-2.
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120 — 5 Difference equations

o
o
o
o o
S33

2563 3563

Figure 5.3.2: Classes of planar simple rooted maps with size 3.

—9 Q-
° o o
o
o o
&—O
S 8554 2564 8564 456 4

B

Figure 5.3.3: Classes of planar simple rooted maps with size 4.

As is seen, the corrections of Observation 5.3.4 and Observation 5.3.5 are natural.

Example 2. Equation

— 2 5
{ f=1+zyf* +yo,,(zf); (5.3.27)

flz:y:O = 1)

is also a type of straight difference with one variable.

In Liu YP [41], it is seen that the enufunction f of non-separable Euler planar
rooted maps with size (power of y) and root-vertex valency (power of x) satisfies the
equation

Xy(1-x)f - (1= +xX°Y)f +(1-x*) +xX’yh = 0, (5.3.28)

where h = f|,_;.

By substitution z = x? to equation (5.3.28) and the cancelation law for (1 — x?),
equation (5.3.28) can be transformed into equation (5.3.27).

Thus, the enumeration of root-isomorphic classes of non-separable Euler planar
maps can be done by solving a slope difference equation with one variable.

5.4 Form of several slope differences

In an equation of several variables, if the unknown comes to us with slope differences
of two or more variables, it is said to be in the form of several slope differences.
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5.4 Form of several slope differences =— 121

Consider the equation for f € R{y, z, t}

fooyts yztof  yztoyf

ot EW AR
1- 2= e (5.4.1)

f|y:0:z:t:0 =0.

This is equation (15) in Introduction when a = b = ¢ = 1and d = 0 because it is
meaningful in a classification of non-separable planar bipartite maps.

For f € Riz,t,y}, itis only necessary to determine F, ,, = [f], = 8;’f ,n>0.

By the initial condition of equation (5.4.1),

Fo = [flo = fly=0=z=t=0 = 0. (5.4.2)

For any integern > 0,

<[[fz—l]n =F, plzz, nz1land [f,]o = 0; (5.4.3)
[ftzl]ﬂ = F*,H'[:l’ n= 1 and [f[:1]0 = O
Furthermore,
zF, 1,4 - F.
[01.f ], = % by (5.4.2) and (5.4.3),
0, when n = 0; (54.4)
= tFanlic—Fen
-t
tF, ,l;-1 — F,
[0ef Tn = —’"Ilt B ; =, by (5.4.2) and (5.4.3),
0, when n = 0; (54.5)
= ZF*,n |z=1 _F*,n
1-z >
ZF* =1,z=1" F* =
[O1of1]n = nle 1»12_12 ale !, by (5.4.2) and (5.4.3),
0, when n = 0; (54.6)
=) Frnlerzm—Funlia
1-z >
and
tF* =1,t=1 — F* =
(O efptly = —2 Z 1’; i - nlz L, by (54.2) and (5.4.3),
0, when n = 0; (4.7)
= tF, plz=1,21=Fs nlz=1
1t :
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122 — 5 Difference equations

We notice that

From (5.4.6), for any integer i > 0,

) }( 01 2f1=1 )i
2 bl

and hence

[(1-222)) - [ 5282

Similarly, by (5.4.6), for any integeri > O,

-4 )-[54)

Now, we are allowed to determine F, , in the order of n = 0,1,2,3,....

When n = 0, from equations (5.4.1) and (5.4.3)-(5.4.9),

T Fo =0 = [f;0]o = [fizlo = 0, [01.f1o = [014f]0 = O,
[alzftzl]o = [al,tfz:l]O =0,

(-2

o2

This is the initial condition of equation (5.4.1).
When n = 1 from equations (5.4.1) and (5.4.10),

y': Fy =22 + 2t([0,,f o - [01,f 1) = 22°t
= [fmh =2t [fied)h = 2, [01.f]; = 2zt,
[al,tf]l =0, [al,zftzl]l =2, [al,tfz:l]l =0,

(-]
(-2 -

(5.4.8)

(5.4.9)

(5.4.10)

(5.4.11)
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5.4 Form of several slope differences

When n = 2, from equations (5.4.1) and (5.4.11),

oy ex)
2 1,z. 1t
:F, =zt - - -
Yo <[1_81,th_1 ]1 [1_al»tfz—1 1
2 2

= zt[0,,f; = 27242
= [fuly =20, [fi], = 22,
[01.f]; = 2t [0ef), = 2%,
(012fi1]a =2 [014fo1]2 = 2

-1
[(1——81’Zﬂ:1> ] =22t +t,
2 2

(-2 -

We now consider the general case of n > 3. First, we discuss how

(1 _Ofa )l and <1 _ Ouefea )1
2 2

can be expressed by F;, 0 <i<n-1.
From (5.4.8) and (5.4.9),

(1-22)] - 5[(2F2)] e, =)

i j=o0

and
(-2 FI2) o

are, respectively, deduced.
Because of 9, ,f;_1, 0y :f,-1 € Riz,t}, by the multiplication principle,

[EDRES I

— 123

(5.4.12)

(5.4.13)

(5.4.14)

By considering that they are only determined by Fy, F;, . .., F;, it is seen that (5.4.13)

and (5.4.14) are also determined only by Fy, Fy, ..., F;.

Theorem 5.4.1. Equation (5.4.1) is well-defined on R{z, t,y}.

Proof. 1t is only necessary to determine F, , = 8’;f € Riz,t}, n > 0. From (5.4.10)—
(5.4.12), we see that F,, = 0 (the initial condition!), F; = 2z°t and F, = 2z°t*. It is easily

seen that they are in R{z, t}.
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124 — 5 Difference equations

For n > 3 we proceed by induction on n; assume that F; € R{z,t},0 <i<n-1,
have been obtained. We evaluate F, ,, € R{z, t}.
By employing equation (5.4.1), from n > 3, we have

n (S al zft:l
y': F,, =zt z<[auf]i[1 - T]
i=0 n-1-i

— [Oyf; [1 _ % ] n717i> (5.4.15)

n-1

=2t Y ([3.f152 - 0120 )
i=0

where Z;Z_)l_l. and 2521_1. are, respectively, given by (5.4.13) and (5.4.14).

From (5.4.4)-(5.4.9), the right hand side in (5.4.15) is only dependent on F;, 0 <
I < n- 1. By the assumption, F, ,, € R{z,t}. Therefore, f € R{z,t,y} is a solution of
equation (5.4.1).

By considering the uniqueness of the procedure mentioned above for the initial
value, equation (5.4.1) only has a single solution. O

In what follows, some useful structures of F, ,, for n > 0, are investigated.
Lemma 5.4.2. For any integern > 1, 2|F, ,, i.e., 2is a factor of F,, .

Proof. We proceed by induction on n. From (5.4.11) and (5.4.11), when n = 1 and 2,
2|F, ,.

When n > 3, assume for any integer i, 2 <i < n-1, 2|F, , are known, we prove the
caseofi=n.

From (5.4.4) and (5.4.5), the assumption leads to 2| [0, ,f]; and 2| [0, ;f]; for 0 < i <
n - 1. From (5.4.15), 2|F, ,,. This is the conclusion. O

Lemma 5.4.3. For any integer n > 2, F, , is a polynomial of not only z but also t with
degree not greater than n and minimum degree not less than 2.

Proof. We proceed by induction on n > 1. From (5.4.11) and (5.4.11), it is easily seen
that the conclusion is true when n = 1 and 2.

For convenience, denote by d, (P) and d,(P) the degree of a polynomial P € R{z, t}
for, respectively, z and t.

When n > 3, assume that d,(F, ;) = d,(F.;) = k with minimum degree 2 for
2 <k <n-1. We prove thatd,(F, ,) = d;(F, ,) = n with minimum degree 2. O

Observation 5.4.4. For any integern > 3,
n-1 @ n-1 ©
Z [al,zf]iznz_l_i - Z[auf]izn_l_i > 0.
i=0 i=0

Proof. See Example 2 of this section. O
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5.4 Form of several slope differences =—— 125

Observation 5.4.5. For any integers,n-1>s>1, dZ(Zgz)) <s.

Proof. It is seen by induction on the basis of (5.4.13).

From (5.4.15),
n-1 y
d,(F, ) =1+ dz< Y (10,£152, - [al,tf]izgil_i)),
i=0
by Observation 5.4.4,
5 @)
=1+d,| Y [9,,f1;2? )
Z<z_zo e (5.4.16)
()
=1+ 02}2{’51 dz([al,zf]i) + dz(znzqfi)
= 1+ d([0yf1) + do(ZF,),
by Observation 5.4.5,
=1+(1+n-2)=n,
and
dt(F*,n) =1+ 0231)51 dt([al,zf]i) + dt(zgf_)l_i)
= 1+ d ([0, 1s) + 4 (55) G4.17)

=1+(n-1)+0=n.

Therefore, F, , is a polynomial of degree n of not only z but also .

Further from what was mentioned in the proof of Theorem 5.4.1, it is seen that,
forn > 2, zt|F, ,, i.e., F, , has a minimum degree not less than 2 of not only z but
also t. O

Lemma 5.4.6. For any integer n > 1, F, , comes to us with all coefficients non-negative
integers.

Proof. From (5.4.15), it is seen that Observation 5.4.4 leads to all coefficients of F,
being non-negative. As to integrity, it is deduced from F, , € R{z, t}. O

On the basis of Theorem 5.4.1 and Lemmas 5.4.2-5.4.6, let

fln=Fup= ) Fusnz"t’, 0<Fy€R. (5.4.18)

2<msn
2<s<n

Then we have

Pufla= Y < y Fk’s;n>zmts;

1sms<n-1 k=m+1

s (5.4.19)

[al,zftzl]n: Z < Z Fk)s;,,)Zm,

1smsn-1 \ k=m+1
2<s<n
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126 —— 5 Difference equations

and

[al,tf]n = Z ( Z Fm,k;n)‘zmts’

2<m<n k=s+1

1<s<n-1 (5.4.20)

[al,tfz:l]n = Z ( Z Fm)k;n>2m.

2<ms<n k=s+1
1<s<n-1

Based on (5.4.18), for any integer i > 2, we can write
. . YioFiFn, wheni=2,
[F, =F, = '[1 (5.4.21)
yroFFI wheni>3,
then from (5.4.13) and (5.4.13),

5@ _ {1, wheni=0;
i al,zft 101 :
Z] 5] wheni>1,

(5.4.22)
SO _ 1,. . wheni = 0;
1 Z}:l[%]?], wheni> 1.
Therefore, from (5.4.19), (5.4.20) and (5.4.22),
Z alZf Z;Z)l -i = Z Am,s;n—lzmts;
:zz—(i 1<m,s<n-1 (54.23)
[01,6f1; Zn i = z BsniZ"t,
i=0 1<m,s<n-1

where Ay s 1> Brsin1 € R{zZ:th Apsnct — Bmsio1 = 0 (Observation 5.4.4!), being de-
pendent only on F;, 0 < i < n -1, and given in (5.4.19)-(5.4.22).

Theorem 5.4.7. For any integern > 3,

Fon= Y Fupn2™* (5.4.24)

2<m,k<n
where Fy yn = Ap1s-1n-1 — Bm-1s-1n-1 = O are givenin (5.4.23).
Proof. This is a direct result of the above. O

This theorem provides the solution of equation (5.4.1) with all coefficients in the
form of a finite sum with all terms positive.

Example 1. Chromatic equation of non-separable planar rooted maps. In Liu YP [15],

the equation
(g-AA- 1)xzzt)<1 - az‘if:l ><1 _ atgAz:l )

= yztazg<1 - _atg,/’lz:l ) - xztatg<1 - —azitzl >

(5.4.25)
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5.4 Form of several slope differences =— 127

occurs where

g= Z P(M : A)XP(M)yQ(M)rp(M)tS(M)
MeM

is a function of x, y, z and t such that M is the set of all non-separable planar rooted
maps with p(M) non-rooted vertices, g(M) non-rooted faces, r(M) root-vertex valency
and s(M) root-face valency of M. P(M : A) is the chromatic polynomial of M.

In equation (5.4.25), 0, and o, are, respectively, the slope differences: 9, , and 9, ;.

If equation (5.4.25) has x = y (the size n(M) = p(M) + q(M)!) and A = 2, then it is
equivalent to equation (5.5.1).
Example 2. Root-isomorphic classes of non-separable planar bipartite maps with
given size root-vertex valency and root-face valency. Because a map has chromatic
number 2 if, and only if, its underlying graph is bipartite, it is seen that, for any
integer n > 1, F, ,,/2 in the solution f of equation (5.4.1) provides the number of root-
isomorphic classes of non-separable planar bipartite maps with size n.

In Figure 5.4.1, a, b and c give F;/2 = 2’t, /2 = Z2%t? and F3/2 = 2%t3. Here, the
powers of z and t are, respectively, the root-face and root-vertex valencies. From d in
Figure 5.4.1 to e in Figure 5.4.2, F, /2 = 22t + 2. f-g in Figure 5.4.2 as

F5/2 =2t + (26 + 22°1° + 22°F)
=2 +)+2" (22 + 28).

° :
(-] o (-]
a b c

Figure 5.4.1: Classes of non-separable planar bipartite maps with sizes: 1-4.

e—= i {
b O o ° _ o
f

e g h

d

Figure 5.4.2: Classes of non-separable planar bipartite maps with sizes: 4-5.
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i J k l

Figure 5.4.3: Classes of non-separable planar bipartite maps with size 6.

From h in Figure 5.4.2 to i—l in Figure 5.4.3,
Fe/2 =2t + (2°0 + 22°F) + (2% + 22°F% + 22°F + 2*tY)
+ (2%t + 228 + 220t + 25

= 22(48 + 26" + £°) + 24 (482 + 26 + 3t%) + 284

5.5 Mixed form of straight and slope differences

Consider the equation for f € R{x,y}

Xzy(51,xf)2
f=1+xy8,,(f) + T-(+o,0) (5.5.1)
f|y:0:>x:0 =1

This is equation (16) in Introduction when a = b = ¢ = d = 1 because it is meaningful
in a classification of simple planar maps.

In this equation, on account of both straight and slope differences being involved,
it is called a mixed form of straight and slope differences.

Although F, , € R{x} for n > 1 can be directly deduced in the form of a sum with
all terms positive from the equation, a complication occurs for an infinite sum

Z [ al,xf ]
1+ 25
k=0 1-x1;
wherei > 1.

The aim of this section is to avoid the evaluation of an infinite sum. It is only nec-
essary to expand 6, ,f, 6, ,(xf) and 0, ,f in equation (5.5.1) on R{x,y}, for getting one
of its equivalent expressions,

) B _o
{f (xh +xy(1 = x)h + 1)f +xh = 0; (5.5.2)

fly:O,x:O = 1)

where h = f],_;.
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5.5 Mixed form of straight and slope differences =— 129

Then the first line of equation (5.5.1) is transformed into

f2—f-(xh+xy1-x)h)f +xh =0
= f(f-1)-xh(f - 1) = xy(1 - x)hf
= (f -xh)(f -1) = xy(1 - x)hf
= (1-f)oixf = xyhf.

(5.5.3)

For any integeri > 1, let F; = a;f be a polynomial of x with degree m;, from the

initial condition of equation (5.5.1), we have

m;
Fi = Fm)ixm
m=1
and
[xh—f] {—1, wheni = 0;
_ = i—1 k .
T=x i [3h( ;zlmax{k+1,2} F;)x*, wheni>1

By employing the third line of (5.5.3),

y° 1 [1-floldrflo =0, by (55.5),
= (1-Fy(-1)=0

= F, =1 (theinitial value of equation (5.5.1)),

and

Y = flolonf Ty + 1= fl1[01,fTo
= x[hfly, by (5.5.5),
= (-F)(-1) = xFyl,1Fy

= F=x.

In general, for any integer n > 2,

Y'Y = fLil0uuf 1 = X[Hf 1oy,
i=0
by [1-flo = 0and [0y,f1o = -1,
n-1
= Fon= ) Filoflns
i=1
n-1

+X Z Filx:an—l—i‘
i=0

Theorem 5.5.1. Equation (5.5.1) is well-defined on R{x, y}.

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

(5.5.8)
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130 — 5 Difference equations

Proof. By the principle of induction, based on (5.5.3) and (5.5.6)—(5.5.8), to determine
F, , for n > 0, a solution of equation (5.5.1) is found on R{x, y}.

Because of the uniqueness of the procedure used under the given initial condition
of equation (5.5.1), this solution is the only one. O

In order to seek a relatively simple expression of the solution, it is absolutely nec-
essary to investigate some concrete structures of polynomials F, , forn > 1.

Lemma 5.5.2. For any integer n > 1, F, , is polynomial of degree n with minimum de-
gree 1in R{x}.

Proof. For convenience, denote by d,(P) the degree of a polynomial P of z. If P has
only one variable, substitute for d(P). From (5.5.7), d(F, ;) = m; = 1. The conclusion is
true.
By the principle of induction, assume that, for any integeri, 1 <i <n-1, d(F;) =
m; = i are known. We prove d(F, ,) = m, = n.
By (5.5.8),
d(F, ,) = max{max{d(F;) + d(F, p)l1<i<n-1},
1+ max{d(F,__)I0 <i<n-1}},
by the induction assumption,
=max{max{i+ (n-ill<i<n-1},
l+max{n-1-il0<i<n-1}}
=1+(n-1)=n.
This is the conclusion for the degree. As for the minimum degree, the conclusion is
drawn from (5.5.4) and (5.5.7). O

Therefore, (5.5.4) can be precisely written as
i
F;=) Fpux™ (5.5.9)
m=1

Lemma 5.5.3. For any integern > 1, F, , has all coefficients in Z.,.
Proof. Similarly, by induction, the conclusion can be done. O

For any polynomials p and q of x, write X i[pq] = a;; (pq), then

lpql _ [pl ylql
x4 = Z 6 (5.5.10)
oty s
Let [0f] = [0,,f] and let
-1, wheni = 0;
Mei =1 o, ) (5.5.11)
Z:l:mam{k+1,2} Fys wheni >1,
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5.5 Mixed form of straight and slope differences =— 131

we have

n—i
[al,xf]n—i = Z H)n 1X1> (5.5.12)
j=1

and by following the procedure in the proof of Lemma 5.5.2:

Fi[al,xf]n—i = Z( Z ]2 n— 1> (5.5.13)
j=1 J1+i2=i
0<jp,jp<n-1
From (5.5.12),
[FioFy] _
X)n 1 = z ]11 ]2n i (5.5.14)
=i
0<jp,jp<n-1

is determined by coefficients of polynomials F; for0 <i<n-1.

Theorem 5.5.4. In the solution f of equation (5.5.1), F, ,, for n = 0 obeys an expression
determined only by the coefficients of the polynomials F; forO <i<n-1,

1, whenn=0;
F,0F, -
LI DO Vi (il sy M YL (5515)

m,n—1
whenn > 1,

where X,[,f il 4 given by (5.5.14) and

i
=[]y =Filysy = ). Fuy. (5.5.16)

m=0
Proof. On the basis of Theorem 5.5.4 and (5.5.8), by (5.5.11), (5.5.14) and (5.5.16), F, , for
n > 0, is determined by all coefficients of the polynomials F;, 0 <i<n-1. O

Example 1. Root-classification of dual simple planar maps by size and root-face va-
lency. A map is said to be comple when there is neither a cut edge nor a cut pair of two
edges. Because of that the dual of a comple map is a simple map, the name is for so.

From the uniqueness of duality, the equation for comple planar maps with given
size and root-face valency is the same as for simple planar maps with given size and
root-vertex valency as shown in equation (5.5.1).

Example 2. Root-classification of simple planar maps by size and root-vertex valency.
By simple map is meant there to be neither a loop edge nor a multi-edge. It is easily
seen that a cut edge or 2-circuit is allowed in a simple map.

Figures 5.5.1-5.5.3 show the root-isomorphic classes of simple planar maps with
sizes: 0-4.
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132 — 5 Difference equations

) v Lf
(b) () (d)

(a)

Figure 5.5.1: Root-isomorphic classes of simple planar maps with sizes: 0-3.

() (f) (9) (h)

Figure 5.5.2: Root-isomorphic classes of simple planar maps with sizes: 3-4.

In Figure 5.5.1, (a) represents F, , = 1, i. e., for a vertex map itself without edge. (b) and

(c) provide F; =xand F, = x + x?, i. e., the classes with, respectively, size 1 and size 2.
In Figure 5.5.1 (d), Figure 5.5.2 (e) and (f), we present F; = (x+2x%)+ (x+X°) + (x*) =

2x +3x° + X2, i. e., a classification for size 3.

Cases (g) and (h) in Figure 5.5.2, (i), (j) and (k) in Figure 5.5.3 present

Fu=(x+3) +Bx+ 27 +37) + (x + x*) + (x + 4x* +3°) + ()

= 6x +10x° + 6xX° + x4,

i. e., the classification for size 4.

° ° o 9)
(0 ) h

Figure 5.5.3: Root-isomorphic classes of simple planar maps with size 4.
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5.6 Notes

5.6.1. In Section 5.1, the solution f € R{x, y} of equation (5.5.1) is provided in the form
of a finite sun with all terms positive. As a specific case, the number of non-isomorphic
classes of loopless planar maps with given size and root-vertex valency.

The enumeration of loopless planar maps is from Liu YP [16] (1983). In Bender
EA-Wormald NC [1] (1985), the topic is further investigated as well.

In Li ZX-Liu YP [10] (2002), by the enufunction of loopless planar maps with size
(v) and root-face valency (x) as parameters, the equation

(1 - x)x°yf? - 1-x+xyQ1-x)h+ xzy)f +1-x+xyh=0 (5.6.1)

is found where h = f|,_;. Via transformation and the constant term of f considered,
the equation

: 2 02 .
{ f =1+ x%yf* = Xyhf +xy6; , (xf); (5.6.2)

fly:0$X:O =1

is obtained. Furthermore, for such maps on a projective plane, a straight difference
equation of one variable is also established,

_ 2 _ .
{f = X°ySf = xy(Sh + Sif) + xy8y, (Xf) + L(S); 563)

fly:O:)x:O =0,

where h = f|,_;, S is the solution of equation (5.6.2), S; = S|,-; and

_ 2 (0(XS) o
L(S)=x y<—ax S >

5.6.2. In Cai JL-Liu YP [7], from enumerating ordinary planar rooted maps with size
(y), root-vertex valency (z) and root-face valency (x), an equation for g is extracted as

(1-00-2)f" -f)+x-2)g=1-x0f" -(1-2f (5.6.4)

where f(x,y) = gl,.1 f* = 8ly=1-
By transformation and the constant term of g considered, a straight difference
equation of several variables

zZ—-X
* _ * A 6 - 6 5
{(f f)g (f f) (1 _ Z)(l _ X) + 1’Zg 1’Xg (565)

gly:O:x:O,z:O =0,

is found. Because of the occurrence of y, it looks as if there is no way as in Section 5.2
to solve it yet.

Brought to you by | Ludwig-Maximilians-Universitat Minchen Universitatsbibliothek (LMU)
Authenticated
Download Date | 11/2/19 5:46 PM



134 — 5 Difference equations

However, via decomposition of maps, another equation for g arises:
g=1+x’yzfg + xyz6,,(xg) — (1 - 2)xyzf*g (5.6.6)

is induced. Because of the symmetry between x and z in g with constant term consid-
ered, it becomes

fr+f

g=1+ xy2<Xf +2f" - — )g +xyz(6,(x8) + 6,,(28));

(5.6.7)
gly:O:x:O,z:O =1

This is a straight difference equation of several variables which can be solved in the
way of Section 5.2.

5.6.3. In investigating the enufunction of planar simple bipartite maps with size (y)
and root-face valency (x, z = x*), an equation for f arises:

nyz—(%+f*>+<%+1>f*=0 (5.6.8)

is extracted where f* = |,_; refer to Liu YP [44] (equation (7.4.21)).
Via a transformation and the initial value considered, the equation for f

B 2 _ L _ .
{f_1+zyf +You(E) - (7 - D(f - 1 (5.6.9)

fy:0=>z:0 =1

is attained. This is a slope difference equation of one variable. By the method used in
5.3, a recursion as a sum of finite positive terms, and an explicision can be done.

5.6.4. The slope difference equation of several variables

yztof  yztof

f=6yz’t+ ,
1- al,z3ft:1 1-— 51[sz:1 (5610)

f|y:0:>z:t:0 =0,

can by the method used in Section 5.4 be addressed to evaluate its solution by a recur-
sion in the form of a sum of finite positive terms, even an explicision.

In fact, equation (5.6.10) is (5.4.25) when A = 3. So, equation (5.6.10) is meaningful
in combinatorics.

5.6.5. The enufunction of non-separable Euler planar rooted maps with the num-
ber of non-root-vertices (z), the number of non-root-faces (y) and root-vertex valency
(x,t = x?) is shown to satisfy the equation

ty(f -f")

t+f*)2 - (1+f)> (5.6.11)

f=tz+

where f* = f|;_;.
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5.6 Notes = 135

The following mixed straight and slope difference equation for f € R{t,y,z} is
shown to be well-defined and its solution satisfies equation (5.6.11) as well:

tyby f _
(1- 0y )2 — t82 f (5.6.12)

f |z:0,y:0:>t:0 =0.

f=tz+
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6 Ordinary differential equations

6.1 Parametric equations

On the basis of equivalent equations, or equation systems transformed by character-
istic curves, or surfaces from a function, or functional equation, to establish a differ-
ential equation for evaluating a solution (or rather the solution, if it is known to be
well-defined!); that is, a local (restricted) solution via a differential equation deduced
from the original equation.

In Liu YP [13] (i. e., (3.8) with interchange between x and y!), one finds the equation
for f

X=X+ (y-x+1)f +x-1-xyh =0 (6.1.1)

where h = f|,_;.
From this equation, a parameter 6 is introduced to express both h and y such that
h is expressed as a function of only y, i. e.,

o 40-3
{ C(30-27 (6.1.2)
y=(1-6)(30-2).

In order to determine h, observe what is the equation satisfied by h. Because of

dh _ 2(5-66)
do  (360-2)3’
Q e (6.1.3)
do ’
we have
dh 2
- _-_c 6.1.
dy (30-2)7° (614)
From (6.1.2) and (6.1.4),
dh < dh >
— =2t1ly—+h);
Yy Ty (6.15)

wheret =1-6.
Lemma 6.1.1. In equation (6.1.5), T € R, {y}.
Proof. LetT, = a;’r, where integer n > 0. From the second case of (6.1.5) and 7 = y+372,
Yo Ty =3Tf = To(1-3T,) =0, TyeR,,
= Ty =0;

y'i Ty =1+6T,T, = T, =1

https://doi.org/10.1515/9783110625837-006
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138 — 6 Ordinary differential equations

Forn > 2,

n-1
y': T, =3) TiT,.;.
i=1

Hence, forn > 0,

0, whenn = 0;
T,=11, whenn =1; (6.1.6)
3y T T, otherwise.

Because of Ty, T; € R, and (6.1.6), T; € R, (i < n- 1) leads, for any integer n > 2, to
T, € R,, T € R.{y} as can be seen by induction. O

From (6.1.6),
2 3 4
T=y+3y +18y° +135y" +---. (6.1.7)

Furthermore, by induction on n, it is shown that, for integer n > 1,

3" on-2
T, = ( ) 6.1.8
n=7 g (6.1.8)

By comparing with (6.1.6) and (6.1.8), the combinatorial identity is done: for integer

nx2,
G BRI e

Theorem 6.1.2. Equation

dh dh
=2t 2y—
ydy T( dy +h>

hly:O - 1)

(6.1.10)

is well-defined on R _{y}.

This is equation (17) in Introduction when a = b = d = 1 because it is meaningful
in a classification for ordinary planar maps.

Proof. LetH, = d;h,n > 0. Write d = 2yg—3 +hand D, = d}d for n > 0. Because of

dh dh
[yd—y] a"( dy) =nH, nx1, (6.1.11)
and, forn > 0,
dh
[Zyd—y + h] = a;ld = Dn
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6.1 Parametric equations =— 139

where
H,, =0
_ o " (6.1.12)
2n+1)H,, n=>1,
forn >0,
0, whenn = 0;
[td], = {H,, whenn = 1; (6.1.13)
Z?:l TiDn—i> When n>2
On the basis of equation (6.1.10), by (6.1.6), (6.1.11) and (6.1.13), we have
v [y%] =2[td], = H, =2T,H, =0,
dy |4
by initial condition: H, = 1,
— H, =2T, =2, (6.1.14)
dh
y2 . I:y_:| = Z[Td]z - 2H2 = 2(3H1 + 3)
dy I,
- H2:3H1+3:9,
and, forn > 2,
n dh =
N vl 2[rd], = nH, = ZZ T.D,_;.
y n i=1
Therefore
2 n
Hy =~ Y TiDy ;. (6.1.15)
i=1
In consequence, for integer n > 0,
1, when n = 0;
H, =42 whenn =1; (6.1.16)

2y TiD,;, whenn>2.

On the basis of (6.1.16), from (6.1.8) and (6.1.12), it is seen that H,, is determined
by H;, i < n- 1. Thus, H, € R,. This leads to the fact that h ¢ R_{y} is a solution
of equation (6.1.10). Further by considering the uniqueness of the procedure starting
from the initial condition, h € R, {y} is the only solution of equation (6.1.10). O
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140 — 6 Ordinary differential equations

In fact, from (6.1.8) and (6.1.12), (6.1.16) becomes

1, whenn = 0;
a;,’h =12 whenn =1; (6.1.17)
Zyn WHH_I-, whenn > 2,
forn > 0.
On the other hand, for integer n > 1, write b’ = % and H;, = a;h’ . From
o2
(1-31)%
- ( 1 > (6.1.18)
153
and by induction on n, it is shown that
2.3 (2n +2)!
g = = ' 6.1.19
n n!(n + 3)! ( )
Because of nH,, = H,'1 for n > 1and by (6.1.19), it is seen that
1, whenn=0
a;’h = (initial condition of equation (6.1.10)); (6.1.20)
2er ?(rff;’)),', whenn > 1.
Via (6.1.17) and (6.1.20), the identity
| 1 _92i 1(2i — 2)!
3(2n)! _ Z 2n-2i +1)!(2i - 2)! (6.1.21)

2(n+2)'n! n-i+2)(n-1)!

is found for integer n > 1.

One might see that by 7, ' is determined. Then it is much simpler than the case
that h is determined directly by 0 as in Liu YP [13]. This suggests us carefully to choose
a parameter, or adaptively to substitute a parameter so that sophistication occurs as
little as possible.

The choice of an equation for a function considered is also essential for us to re-
duce the complexity in the procedure of solving it. For example, in Liu YP [12], the
function Y (x) is treated so as to satisfy a differential equation of first order instead of
the equation of second order in Tutte WT [80] to make the procedure of determining
Y much simpler.

In addition, for proving that an equation is well-defined, usually it is necessary to
transform the equation into a suitable equivalence so that the procedure of seeking a
solution from the initial condition is as simple as possible.

In what follows, several examples are chosen to address the universality for the
methods mentioned in this section.
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6.1 Parametric equations = 141

Figure 6.1.1: Root-classes of ordinary planar maps of size 2.

1

Figure 6.1.2: Root-classes of ordinary planar maps of size 3 I.

0

Example 1. Classification of ordinary planar rooted maps by size. By (6.1.20), the num-
ber of root-isomorphic classes of ordinary planar maps with given size is known. For
example, when n = 0, 1 represents that ordinary planar maps without edge has 1 root-
isomorphic class. This is the vertex map itself. When n = 1, 2 shows that such a map of
size 1 has 2 classes. They are the link map and the loop map seen, respectively, in the
left and the right in Figure 4.2.1. Such maps of size 2 have 9 classes as 2a + b + 2¢ + 4d,
as shown in Figure 6.1.1.

Ordinary planar maps of size 3 have 54 root-classes. They have 3a+2b+c+6d +e
(i.e.,3+2+1+6+1 = 13) root-classes shown in Figure 6.1.2, 6f + 6g + 3h + 6i + 6j
(6+6+3+6+6=27)inFigure 6.1.3,3k + 6l +3m+2n (3 + 6 + 3 + 2 = 14) shown in
Figure 6.1.4. The total sum is 13 + 27 + 14 = 54.

Figure 6.1.3: Root-classes of ordinary planar maps of size 3 Il.
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SRR

Figure 6.1.4: Root-classes of ordinary planar maps of size 3 1II.

Example 2. In Liu YP [29] and Liu YP [31], one might see the equation for f € R{x, y}
- (xh+xy(1-x)h+1)+xh =0 (6.1.22)

where h = f],_;.
It is well-known that h and y obey expressions of t as
h=t2Q2-t)
t-1)2-1t (6.1.23)
=G
Because of

we have
dh _ .
dy
Furthermore, the ordinary differential equation

dh

(6.1.24)

=(t-Dh;
, (6.1.25)

t
t=1+—y,
2—ty

is obtained.

Example 3. In Liu YP [36], one might see the equation for f € R{x,y} withh = f|,_; €
Rix}

Y+ (1-x+ xyh)f +x-1=0. (6.1.26)

It is well-known that h and y obey expressions of t (refer to Liu YP [16] and Liu YP [14]),
the equation

t-1 (6.1.27)

{h:ﬁ@-m
th
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is obtained. Because of

dh

— = t(4 - 3t);
a (4-3t)
dy 4-3t
dat
we have
dh ¢
= % 6.1.28
3 (61.28)
On the basis of (6.1.27) and (6.1.28), the ordinary differential equation
dh dh
— =@{t-D|ly—+h});
Yy ( )<y dy ) (6.1.29)

t=1+ tl‘y,
is obtained.

Example 4. In Liu YP [19], one finds the equation for f € R{x,y} with h = f|,_; € R{x}
2+ (M+x)(A-x) - xh)f + x*1-x)y(1+h) =0. (6.1.30)

It is well-known that h and y obey expressions of  as a parameter as

h= %'1(4 -
1 , (6.1.31)
y= ﬁ(n—l)(lt—n) .

Because of

dh 2
— =Z2-n)

3” 3( )

y 1

= ==-(n-2)(n-4),
dn 9(?1 )(n - 4)

we have

dh 6

_— = —. .1.32
dy 4-n (61.32)

On the basis of (6.1.31) and (6.1.32), the ordinary differential equation as

dh
(4- T])d— =6;
Y o (6.1.33)

-1+ Ly,
(4—n)2y

is obtained.
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Example 5. In Tutte WT [80], one might see the enufunction h = h(y) of simple planar
rooted triangulations and y expressed by s as

h= s(1+s)
{ (1-9)% (6.1.34)
y=-s(1+ s)z.
Because of
dh _ 3s+1
ds (1-s)
dy
— =-1+3s)1+5),
ds
we have
dh 1
—_— = 6.1.35
dy (1-5)31+5s) ( )
On the basis of (6.1.34) and (6.1.35), the ordinary differential equation
(1- S)Y% =h
6.1.36
Ly (6.1.36)
1+5s)?’

is obtained.

Example 6. In Tutte WT [80], the enufunction h = h(y) of strict planar rooted triangu-
lations and y are expressed by A as a parameter as

h=A3-2A);
3( ) (6.1.37)
y=21-A7).
Because of
dh ., )
e A3 - 4A);
dy 3
= =21-2,
ds -4
we have
dh 1
d_y = }? (6.1.38)
On the basis of (6.1.37) and (6.1.38), the ordinary differential equation
3B- M)y% =(1-A)h
dy (6.1.39)
A=1-2
A3

is obtained.
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6.2 Sum of petal bundles =— 145

6.2 Sum of petal bundles

For determining the number of root-isomorphic classes of petal bundles on orientable
surfaces, the following first order differential equation occurs (see Liu YP [47]):

dx (6.2.1)

{ZXZ@ =-1+(1-x)k;
ho = th:() =1

This is equation (18) in Introduction when a = ¢ = d = 1 because it is meaningful
in a classification for petal bundles on all orientable surfaces.

Theorem 6.2.1. Equation (6.2.1) is well-defined on R , {x}.

Proof. The first case of equation (6.2.1) is transformed into one of its equivalences as

dh
h=1+xh+2*—. 6.2.2
+xh + o ( )
Let H,, = 97h, n > 0. From the initial condition,
Hy=hy=1¢2Z,. (6.2.3)
Because of
Alxh =3 'h = Hy_y;
dh dh
a,';xza =" 2& = (n-1H,,
forn > 1, by (6.2.2),
H,=H, ;+2n-1)H,_;=2n-1)H,_ € Z,. (6.2.4)

Thus, h € R, {x} obtained by (6.2.3) and (6.2.4) satisfies equation (6.2.2), and hence
is a solution of equation (6.2.1).
From the uniqueness of H,, (n > 1) for H,,, this solution is the only one. O

In fact, from the recursion deduced from (6.2.3) and (6.2.4), it is seen that, for any
integern > 1,

B - (@n-1)!
Hrl = (2n - 1)” = m (6.2.5)
In Liu YP [47], one might see the following ordinary equation for g:
w2 %8 (1-2)g - x(h + 2x%>;
dx dx
(6.2.6)
dl 4
dx x=0 ’

where h determined by (6.2.5) is the solution of equation (6.2.1).
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146 —— 6 Ordinary differential equations

Note carefully that h satisfies (6.2.1), which is equivalent to

{4)(2% =(1-2)g-h+1; 627)
80 =8lx=0=0
Theorem 6.2.2. Equation (6.2.7) is well-defined on R, {x}.
Proof. The first case of equation (6.2.7) is equivalent to
=il L ogin-1 (6.2.8)
dx
Let G, = dyg, n > 0. Because of
Mxg=03""g=G,,n>1
a"gi G190y dxd’;” (n+1Gpy, n=0;
o = 2% 16,
for (6.2.5),
y°: Gy =Hy—-1 = G, = O(initial condition!) (6.2.9)
and, forn > 1,
y': G, =4(n-1)G,_; +2G,_; + H, (6.2.10)

= (4n-2)G,_, + H,,.

From (6.2.9) and (6.2.10), G, € Z, and G, € Z, are obtained, respectively. Thus,
g € R, {x} satisfies (6.2.8) and hence is a solution of equation (6.2.7).
From the uniqueness of G,, (n > 1) for Gy, this solution is the only one. O

On the basis of (6.2.9) and (6.2.10), we find that, for n > 2,

n-1
G, = H, +1‘[(41 2) + ZZH ]‘[1(4] 2). (6.2.11)
i j=i+

On the other hand, we look for an equation satisfied by f = g + h where hand g
are, respectively, the solutions of equation (6.2.1) and equation (6.2.7).

Because h and g are, respectively, the solutions of equations (6.2.1) and (6.2.7),
h and g satisfy, respectively, (6.2.2) and (6.2.8), and hence

g+h=< 1+h+2xg+4x2(;‘i>+<l+xh+2x2%>.
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6.2 Sum of petal bundles =— 147

From (6.2.2), by substituting xh + ZXZ% in the first parenthesis, of -1 + h,

f=1+2f + 4x2 d (6.2.12)

By considering f, = fl,-o = 8o + hp = 1 and then using (6.2.12), f satisfies the equation

2df
{4’( ax - L A-20h (6.2.13)

fo=flo=1
Theorem 6.2.3. Equation (6.2.13) is well-defined on R , {x}.

Proof. Takef = g+hsuchthatg and h are, respectively, the solutions of equation (6.2.1)
and equation (6.2.7), then from Theorems 6.2.1 and 6.2.2, g € R {x} and h € R, {x}.
Thus, f € R, {x}. As mentioned above, f is a solution of equation (6.2.13) in R, {x}.

On the other hand, if f determined by F,, = 8;’f , n > 0, there is another solution of
equation (6.2.13) in R, {x}, of the form

Ixf =0 f=Fppn=1;

n+1
ani{( n+1an% =n+1DF,;, n=0;
an Zg{( al’l de_( —I)Fn "

and considering (6.2.12), it is seen that
y0 : Fy = 1(the initial condition of equation (6.2.13)) (6.2.14)
and that, forn > 1,

y': F,=2F,_;+4n-1)F,_,
= (4n-2F, ;.

(6.2.15)

Because of the uniqueness of F,, € Z, (n > 1) in the procedure shown as (6.2.15)
onF, =1¢ Z,, itis the only solution of equation (6.2.13). O

On the basis of Theorem 6.2.3, and from F, = 1 and (6.2.15), the only possibility is
thatf =g + h.

Because of (4n-2)F,_; = 2(2n-1)F,_;, on comparing with (6.2.4) and F, = H, = 1,
we have, forn > 1,

2"(2n - 1)!

F, —2Hn——2n 1),

(6.2.16)

By considering f = g + h (i. e., g = f — h) with (6.2.5) and (6.2.16), we have, forn > 1,

@ -1)@2n-1)!

=T (6.2.17)

Gn = (2n - 1)Hn =
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148 —— 6 Ordinary differential equations

On account of (6.2.11), we obtain, forn > 2,

202" - 1)H, = ﬁ(m‘ -2)
i=2

P (6.2.18)
+Y H []4j-2
=2 j=i+l
where Hj;, 2 < i < n, is given by (6.2.5). Thus, the identity
n
22" - 1)@n- D = [@i-2)
=2 (6.2.19)

n-1 n
+y Q- ]]@i-2)
i=2

j=i+1
is concluded to.

Example 1. Root-isomorphic classification of orientable petal bundles on surfaces by
size. The case of genus 0 surface (i. e., Sy) is seen in Figure 3.1.4. Orientable petal bun-
dles of sizes 0, 1, 2, 3 and 4 on S, have, respectively, 1, 1, 2, 5 and 14 classes, in total
1+1+2+5+14 =23 classes.

In Figure 6.2.1, we show the cases of genus 1 (i. e., S;) and genus 2 (i. e., S,) surfaces.
In the figure, i and i (or i) represent the edge i on which two sides are with different
directions (or the same direction) fori = 1, 2, 3 and 4. On S;, because of no map (the
petal bundle is a specific case) with 0 1 edges, only observe those of sizes 2, 3 and 4.
For size 2, only 1a represents 1 class. For size 3, 4b + 3c + 3d, we have a total of 10
classes. For size 4, 8e + 8f + 8g + 8h + 16i + 8j + 4k + 4l + 4m + 2n, we have a total of 70
classes. On S,, only size 4 is a possibility. In this case, 40 + 8p + 8q + 1r, and we have
in total 21 classes. See Figure 6.2.2.

Example 2. Root-isomorphic classification of non-orientable petal bundles on sur-
faces by size. In Figures 6.2.3 and 6.2.4, it is seen that petal bundles of size 1 only
occur on a non-orientable surface of genus 1, i. e., S;; Size 2 is only possible on S; and
S5; and size 3 is only possible on S, S5 and S5.

In Figure 6.2.3, it is seen that we have petal bundles of size 1 on Sj, only 14, i.e.,
1class. There are petal bundles of size 2 on S; and S5, respectively, 1b + 3¢ and 2d + 2e,
i.e., 4 and 4 classes.

In Figure 6.2.4, we have root-isomorphic classes of petal bundles on non-orientable
surfaces with size 3. In the figure, e, like a, b, c and d, shows such classes of petal
bundles on surface S;.

Thus, the number of such classes for petal bundles on non-orientable surfaces of
genus 1is 6a + 6b + 6¢ + 3d + 1e, in total 6 + 6 + 6 + 3 + 1 = 22; f—m show the classes on
surface S5, and n—u on the surface S;.
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6.2 Sum of petal bundles = 149
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Figure 6.2.2: Petal bundles on orientable surface of genus 2 with size 4.
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150 — 6 Ordinary differential equations
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d

Figure 6.2.4: Petal bundles on non-orientable surfaces with size 3.

Hence, the number of such classes of petal bundles with size 3 on the non-orientable
surface of genus 2is 6f +12g +6h+6i+3j+3k+31+3m, in total 6+12+6+6+3+3+3+3 = 42
and on the non-orientable surface of genus 3, 2n + 60 + 12p + 3q + 67 + 6s + 3t + 3u,
atotalof2+ 6+ 12+ 3+ 6 + 6 + 3 + 3 = 41. See Figure 6.2.4.

6.3 Orientable sum

In Liu YP [44] (1999, Theorem 8.5.1, p. 268), the equation for f € R{x}

dx
fo=flk=o=1

2df —xf - xf%
{2)( =-1+Q1-0f -xf3% (6.3.1)

occurs. The aim is a solution in R {x} if there is any.

This is equation (19) in Introduction when a = b = ¢ = d = 1 because it is mean-
ingful in a classification for ordinary maps on all orientable surfaces.

Equation (6.3.1) is transformed into its equivalence

_ 20f
{f—1+xf+2x dx+Xf’ 63.2)

fo=flo=1
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Figure 6.2.4: Continued.
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152 —— 6 Ordinary differential equations

Because of f € R_{x}, f is determined by [f], = oyf for n > 0. Let F, = [f], for
n > 0, then

0, when n = 0;
[Xf]n = [f]nfl = (6.3.3)
F,.;, whennz>1,
and
n
(2], = Fly = Y FuFaip n20. (6.3.4)
i=0
Since, for any integer n > 0,
[df] 0 whenn = 0;
dx 1, (n+1)F,,;, whenn=>1,
we have
0, hen2>n> 0;
[Xzﬁ] _ [%] _ whens=n (6.3.5)
dxl, ldxl,> |(n-1)F,,, whennz>3.
On the basis of (6.3.3)-(6.3.5), by equation (6.3.2), we have
X% Fy =1+ [xf]y + 2[){2%] + [xfz]0 =0 = F,=1, (6.3.6)
0
x': Fy = [xf]; + 2[x2g] + (X, =Fo+F§ = F=1+1=2, (6.3.7)
1
d
F, = [xf1, +2[xzaf] + [xfz]2
2
X = F, =10, (6.3.8)
= Fl + ZFl + zFoFl
=2+4+4
and, forn > 2,
d
F,=[xfl, + 2[x2d—£] + [,
n n
X n-1
=Fy1+2-1F, + Y FFy 1 (6.39)
i=0
n-1
= Fy=(@n-1DF,;+ ) FiF, ;.
i=0
Lemma 6.3.1. For any integern > 0,
1 (whenn=0)
2 (whenn=1)t =F,€Z,. (6.3.10)

@n-1)F,_; + Y0 FiF,_1; (whenn > 2)
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6.3 Orientable sum = 153

Proof. Becauseof Fy =1, F; =2 € Z,, the conclusion is true for n = 0O and 1. Forn > 2,
by employing induction assumption we find that, foranyi,0 <i <n-1,F; € Z,.
Because ofall F,_;,F;, F,_1_; € Z.,(6.3.10) leads to F,, € Z, . Thisis the conclusion. O

This tells us that the function f determined by (6.3.10) in Lemma 6.3.1 obeys f ¢
R Ax}.

Theorem 6.3.2. Equation (6.3.1) is well-defined on R{x}.

Proof. 1t is easily understood that the function f obtained by (6.3.10) is a solution of
equation (6.3.1) because of F, = 1, the initial condition of the equation. Then we con-
sider the uniqueness of the procedure for the initial condition. This solution is the only
one of equation (6.3.1). O

Example 1. On all orientable surfaces, root-isomorphic classes of ordinal maps with
given size. Because of the results in, e. g., Liu YP [44] (1999, Theorem 8.5.1, p. 268),
or in dedeal, in Liu, YP [48] (2001, Theorem 9.5.1, p. 314), the enufunction of ordinary
maps with size as a parameter on all orientable surfaces satisfies equation (6.3.1), and
hence, Theorem 6.3.2leads to the solution f determined by (6.3.10) as the enufunction.
Here, only those for size at most 3 are shown.

From (6.3.10), we have Fy = 1, F; = 2, F, = 10 and F; = 74. Among F, + F; + F, =
1+2+10 = 13 maps, only 1 is not on S,, (sphere, or plane). This map has 2 edges with
1 vertex, shown in a of Figure 6.3.1 on S; (orientable surface of genus 1, or torus).

1 1 2 1 3 1 2
o o o
o o o
_ [} _ — _
S N 3\/ : 2\/ : 3\/ :
Ay _
2 1 2 3
o
1 3 5 i 3 2 i
a b c d

DI
—_

Figure 6.3.1: Classes of maps of size 3 on orientable surfaces of genus not 0.
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154 — 6 Ordinary differential equations

Because all maps of size 3 only are allowed to be on orientable surfaces of genus at
most 1, among all F; = 74 maps, only 20 are non-planar. They are all on S;. As shown in
Figure 6.3.1, see b—g, i. e., 4b+3c+3d+3e+6f +1g, we have a total of 4+3+3+3+6+1 = 20.

Example 2. Consider the generalized equation

dx
f|x:0 = 1)

2df —f — exf>:
{ax = -b+b(1-xf - exf% (6.3.10)

where a, b, c € Z,, bla b|c.
For convenience, the first case of equation (6.3.11) is replaced by its equivalence,

bf = b+ bxf + axZg + foz.
dx
From bla, « = a/b € Z... From b|c, 8 = c/b € Z, . The equation becomes
f=1+xf+ ang + Bxfz. (6.3.12)
On the basis of (6.3.3)-(6.3.5), (6.3.12) leads to

d,
X0 Fo=1+ [xf]0+a[x2d—£]0+ﬁ[xf2]0 =0

(6.3.13)
End FO =1,
x': F, = [xf]; + a[ng] +/5’[xj’2]1 =F, +ﬁF§
dx |, (6.3.14)
= F=1+8,
and, forn > 2,
d
F,=[xf], +« xzd—{(] +ﬁ[xf2]n
n., n
X n-1
=F+an-1F,_; +B Z FiF, i (6.3.15)
i=0
n-1
= F,=(an-a+1)F,_;+f z FiF, ;.
i=0
Lemma 6.3.3. For any integern > 0,
1 (whenn=0)
1+B8 (whenn=1)y =F,€Z,. (6.3.16)

(an-a+V)F,_ +BY" o FiF,i; (whennzx?2)
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6.4 Non-orientable sum = 155

Proof. Because of Fy =1, F; =1+ € Z,, and for any integer n > 2, by the induction
assumption, F; € Z,,0 <i < n-1, then (6.3.16) leads to F,, € R,. This is the conclusion.
O

This lemma shows that f € R, {x} is determined by (6.3.16).
Theorem 6.3.4. Equation (6.3.11) is well-defined on R{x}.

Proof. In (6.3.16), since F, = 11is just the initial condition of equation (6.3.11), from
the function f € R, {x} ¢ R{x} determined by (6.3.16), it is seen that f is a solution of
equation (6.3.11).

Furthermore, from the uniqueness of f as determined by (6.3.16) for the initial
condition F,, f is the only solution of equation (6.3.11). O

Because of F,,, n > 2, being of the form of a finite sum of positive terms as shown
in (6.3.16), all coefficients of f are expressed in the form of a finite sum of positive
integers.

6.4 Non-orientable sum

In Liu YP [46] (2003, Theorem 9.6, p.209. Attention should be paid to the expression
of b(x), “~” being replaced by “+”!); one might find

df

4° 2 = a(Of - xf2 - %B(x);
dx (6.4.1)
d_f B 4.
dx x=0 '
where
a(x) =1 -2X = Xforiens
_ o df Orien (6.4.2)
Bx) —fOrien + T

Here, foien s determined by (6.3.10) is the solution of equation (6.3.1).

This is equation (20) in Introduction when a = ¢ = d = 1 because it is meaningful
in a classification for petal bundles on all non-orientable surfaces.

For convenience, the first case of equation (6.3.1) is transformed into one of its
equivalences by

df

f=xb(x) + 2x(1 + fogen)f + 4x2& + xf2 (64.3)
= A(x) + 2BOOf + 2forienf + Xf°
where
Alx) = X(fOrien + ZX%>;
dx (6.4.4)
o 4.
B(x) = x<f + 2Xa>
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156 —— 6 Ordinary differential equations

For integer n > 0, let O, = [forienlns i- €5 Ooforien- From (6.3.10),

1, whenn = 0;
0,=12, whenn =1;
(20 =101 + ¥ 0;0y1_;, Whenn>2.

For any integern > 1,

[AX)], = [fOrien * 2"%]“_1

df Orien ]
= 2 —_—
On—l + |: dX -2

= On71 + 2()’1 - 1)On71
=(2n- 1)On—l

and

Bool, = [£ 2]

= Fn—l + 2(7’1 - l)Fn—l
= (2n - 1)Fn_1

where F,, = [f],,n>0.
On the basis of equation (6.4.4), for integer n > 0,

[f1n = [AQO],, + 2ABOOS ], + 2Wforienf Int + 1]
By employing (6.4.6) and (6.4.7),
x°: Fy=0+0+0+0=0,
by noticing that Oy = 1and F, = 0,
x': F;=1+0+0+0=1

and, for any integer n > 2, by noticing that Oy = 1and F,, = 0 as well,

n-1 n-2

Fy=(@n-10, +22n-1)F, 1 +2) FiOp i+ Y FiFy

i=1 i=1
n-2
= (2= 1)0,y + 4nFy_y + Y Fi(20, 1 + Fyy ).
i=1

(6.4.5)

(6.4.6)

(6.4.7)

(6.4.8)
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6.4 Non-orientable sum = 157

In consequence, for integer n > 0,

0, when n = 0;

1, whenn=1;
F,= (6.4.9)
(2n-1)0,_4 + 4nF,_4

+ Y2 Fi(20, 1 + Fp_ry), whenn>2.

Lemma 6.4.1. For any integern > 0, F,, € Z, is determined by (6.4.9).

Proof. First, Ffy = 0 € Z, and F; = 1 € Z,. Then, for integer n > 2, by induction,
assume F; e R,,0 <i <n-1 ByLemma6.3.1, 0, € Z,, n > 0. By the assumption,
F,,€2Z,andF;,F, ;€ Z,,1<1i<n-2 From (649), F, € Z, is deduced. The
conclusion is drawn. O

This lemma tells us that the function f determined by (6.4.9) is in R, {x} € R{x}.
Theorem 6.4.2. Equation (6.4.1) is well-defined on R{x}.

Proof. Because f is determined by (6.4.9) satisfying (6.4.3) the first case of equation
(6.41) withF; =1= % lx=0» Lemma 6.4.11eads us to see that f is a solution of equation
(6.4.1).

Furthermore, by considering the uniqueness of {F,, | n > 0} determined from
(6.4.9) for the initial condition F; = 1, f determined by {F,, | n > 0} is the only solution
of equation (6.4.1). O

It is shown from the theorem that f = fy,, determined by (6.4.9) is just the solution
of equation (6.4.1).

Example 1. Root-isomorphic classes of non-orientable maps. Since a map whose un-
derline graph without circuit is never non-orientable (a loop is a circuit in its own
right!), the maps of their underline graphs as trees do not occur in our case. Denote by
Gy, the zth item in all graphs with size x and order y. The solution fy,, of equation
(6.4.1) is just the enufunction of all non-orientable rooted maps with size as parameter.
From (6.4.9), F,, = {fyon, denoted by Ny, n > 0. Then we have

NO = O, Nl = 1, N2 = 14, al’ld N3 = 223.

In Figures 6.4.1-6.4.3, all root-isomorphic classes of non-orientable maps with size not
greater 3 are shown.

In Figure 6.4.1, a shows that maps of size 1 have only 1 class. In maps of size 2,
maps of underline graph G, ;_; have 4b + 1c, in total 4 + 1 = 6 = 5 classes on S; and
2d +2e, in total 2+ 2 = 4 classes on S5, a total of 9 classes. Maps of the underline graph
G,_,_; have 4f, in total 4 classes and 1f, in total 1 class, in summary 5 classes on Sj.
Thus, maps of size 2 have 5 + 5 = 10 classes on S; and 4 classes on S3, in summary
10 + 4 = 14 classes.

Brought to you by | Ludwig-Maximilians-Universitat Minchen Universitatsbibliothek (LMU)
Authenticated
Download Date | 11/2/19 5:43 PM



158 —— 6 Ordinary differential equations

e f g

Figure 6.4.1: Classes of non-orientable maps with sizes 1-2.

Figures 6.4.2—-6.4.3 provide classes of non-orientable maps with size 3. Among them,
Figure 6.4.2 shows the classes of maps considered of underline graph G;_;_; with size
3 and Figure 6.4.3, all other classes of maps with size 3. Attention: A figure without
hollow on one side of each edge stands for 12 (i. e., 4 x 3) hollows.

In Figure 6.4.2, 6a + 6b + 6¢ + 3d + le, in total 6 + 6 + 6 + 3 + 1 = 22 classes on Sj,
6f +12g + 6h+6i+3j+3k+3l+3m,intotal 6 +12+ 6+ 6 + 3+ 3 + 3 + 3 = 42 classes on
S;and2n+60+12p+3g+6r+6s+3t+3u,atotalof 2+6+12+3+6+6+3+3 =41
classes on S;.

In Figure 6.4.3, of the underline graph G;_,_;, we have 12a + 6b + 6¢ + 6d, in total
30 classes on S; and 6e + 12f + 6g, in total 24 classes on S;.

Of the underline graph G;_,_,, 6h, i.e., classes on S; and 3i, i. e., 3 classes on Ss.

Of the underline graph G;_,_3, 6j + 6k + 31, i. e., we have 15 classes on S; and 6m +
3n+3o0, i.e., 12 classes on Ss.

Of G3_,_4,3p, i.e., 3 classes on S; and 3gq, i. e., 3 classes on S.

Of G3_3_4, 6r, 1. €., 6 classes on S;j.

Of G3_5_,, 65 + 3t, i.e., 9 classes on S;.

Of G3_3_3, 6u, i.e., 6 classes on S;j.

On G3_3_4, 1v,i.e., 1 classes on S;.

In consequence, non-orientable maps of size 3 have 22+30+6+15+3+6+6+6+1 = 96
classes on Sj, 42 + 24 + 3 + 12 + 3 = 86 classes on S5, 41 on S5. On all non-orientable
surfaces, maps of size 3 have 96 + 86 + 41 = 223 classes in all.
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6.4 Non-orientable sum =— 159

Figure 6.4.2: Classes of non-orientable maps with underline graph G3_;_;.
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160 —— 6 Ordinary differential equations

Figure 6.4.2: Continued.
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Figure 6.4.3: Other classes of non-orientable maps with size 3.
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Figure 6.4.3: Continued.
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162 —— 6 Ordinary differential equations

6.5 Ordinary total sum

Consider the equation for f € R{x}

dx (6.5.1)

{axzﬁ =1+ (1-bx)f - exf?;
f|x=0 =1,

wherea,b,c € Z,.

This is equation (21) in Introduction when d = 1 and thena = 4, b = 2, ¢ = 1 be-
cause it is meaningful in a classification for ordinary maps on all surfaces (orientable
and non-orientable).

The following equivalence of the first case of equation (6.5.1) is adopted:

df

f=1+bxf+ axza +oxf?. (6.5.2)

From equation (6.5.2),

d
[fl, = (1, + bIxf1, + a[xzaf] + c[xfz]n
n
~ {1, when n = 0; (6:5.3)
blflyy +alLl, s +clf’l, . whenn=0,
for any integer n > 0.
LetF, = [f], = 0¢f and
df]
— =(n-1F,_;
[dx n-2 (n ) el
) n-1
[f ]n—l = Z FiFy 14
i=0
Based on (6.5.3),
x°: Fy=1, (6.5.4)
xt: Flsz0+O+cF(2, = F=b+g, (6.5.5)
and, forn > 2,
d
Fo=blflival L] el
n n-2
X n-1
=bF,;+an-1F,_; +c Z FiF 1 (6.5.6)
i=0
n-1
= F,=(an-a+b)F,_; +c z FiF,_i_;.
i=0
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6.6 Four color sum for triangulations on sphere —— 163

Lemma 6.5.1. For any integern > 0,
1 (whenn=0)
b+c (whenn=1)
(an-a+b)F,_; +c Y FF,

(whenn > 2)

=F,eZ, (6.5.7)

Proof. Because of Fy = 1, F; = b + ¢ € Z,, the conclusion is true forn = 0 and 1. We
proceed by induction. For integer n > 2, assume F; € Z,, 0 < i < n- 1. Because F),
is determined only by F;, 0 < i < n — 1, from the third case of (6.5.7), the assumption
leads to F,, € Z,. This is the conclusion. O

This lemma tells us that the function f determined by (6.5.7) is in R, {x} € R{x}.
Theorem 6.5.2. Equation (6.5.1) is well-defined on R{x}.

Proof. On the basis of (6.5.4)—(6.5.6), from Lemma 6.5.1, known that f € R {x} € R{x}
determined by (6.5.7) is a solution of equation (6.5.2) and hence equation (6.5.1).

Furthermore, by considering the uniqueness of the procedure for evaluating F,,

n = 0, by (6.5.7) from the initial condition F, f is the only solution of equation (6.5.1).

O

Because of each F,, n > 2, is a finite sum of positive integers, the function f is an
expression in the form of a sum with all terms positive.

Example 1. When a = 4, b = 2and ¢ = 1, equation (6.5.1) becomes the equation in Liu
YP [46] (2003, Theorem 9.7, p. 213)

2df _ — xf2
{4)( 3 = 1+ A-20f - X (6.5.8)

fO = f|X:O = 1>
used for determining the number of root-isomorphic classes of ordinary maps with size

as parameter on all surfaces (orientable and non-orientable). The number is called the
ordinary sum.

Example 2. Because equation (6.5.8) is the sum of equation (6.3.1) and equation
(6.4.1), the solution of equation (6.5.8) can be directly derived by (6.3.10) and (6.4.9).

6.6 Four color sum for triangulations on sphere

Consider the quadratic equation with ordinary differentiation of second order for f ¢
Rix}
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164 —— 6 Ordinary differential equations

2
<2z +5f - 32%)% = 48z;

o (6.6.1)
flo=0. | =0

This is equation (22) in Introduction when a = ¢ = 1and d = O because it is
meaningful in four color sums for planar triangulations as addressed by Tutte.

On the extension of the integral domain R{y}, for equivalently transforming equa-
tion (6.6.1) about f into a system of equations about {F,, = 8;’ | integer n > 0}, let us
write

df

n .
S :22+5f—325, Sp=0,S;
a2 (6.6.2)
f/l — @’ F;l/ — a;lfll)
where the integer n > 0. Thus, forn > 0,
5F,, whenn =0,
S,=421+F,), whenn=1,
" A+F) (6.6.3)
(5-3n)F,, whennz=>2
F) = (n+2)(n+1F,,.
Furthermore, for integer n > 0, let
n
Dy =) SiFy;. (6.6.4)

I\
o

On the basis of (6.6.2)—(6.6.4), from equation (6.6.1),

2% Ay =SoF) =0,
by SO = SFO and F(,)’ = 2F2, (6.6.5)
= A = (5F,)(2F,))

for n = 0. From the initial condition of equation (6.6.1) F, = 0, the equality A, = 0
holds.
Forn=1,
Z': A =SoF] +S,Fy,
by S, = 0and F|' = 6F;,
= A, = S, Fy, (6.6.6)
by S, = 2(1+ F;) and F} = 2F,,
= A = 2(1+ F,)2F,.
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6.6 Four color sum for triangulations on sphere —— 165

From the initial condition F; = 0 of equation (6.6.1), the equality A; = 48 holds when
F2 = 12.
Forn=2,
2% Ay =SoF) + SiF]' + S,F,
by S, =0and F; =0,
= A, = 2(6F;) + S,F{), (6.6.7)
by S, = (5 - 6)F, and F = 2F,,
Because of the condition F, = 12 for A; = 48, A, = 0 holds only when F; = 2F, = 24.
Forn =3,
22 Ay =SoFy + SF) + S,F] +s5Fy,
by S, =0andS; =2,
by Sz = —F2 al‘ld 53 = —4F3,
Because of the condition F; = 24 for A, = 0, the quality A; = 0 holds only when

In general, for n > 4, because of S, = 0, S; = 2and F,,

", = (n+DnF,,,

n
Z": A, =2n+1nF,, + ZSiF,;'_i,

i=2
by the first case of equation (6.6.3),

n
=2(n+1)nFy,, - Y B3i-5FF, (6.6.9)
i=2

by the second case of equation (6.6.3),

n
=2(n+nky, - z/\n,iFiFn—Hz)
i=2

where
Api=Gi-5)n-i+2)(n-i+1).
Only when

1 n

FnJrl = m & An,iFianiJrZ’ (6.6.10)

the equality A,, = 0 holds.
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166 —— 6 Ordinary differential equations

Theorem 6.6.1. Equation (6.6.1) for f is equivalent to the system of equations for
{F, | n>0}

0, whenn=0;
A, =148, whenn-=1; (6.6.11)
0, whennz>2,

with the conditions F, = 0 and F; = 0, where A, is given by (6.6.9).

Proof. By the procedure from (6.6.5) through (6.6.10), it is seen that a solution of equa-
tion (6.6.1) can be transformed into a solution of the system of equations equation
(6.6.11). Conversely, from (6.6.7)—(6.6.10), a solution of the system of equations (6.6.11),
and hence a solution of equation (6.6.1), can be derived. O

The theorem enables us to extract a solution of equation (6.6.11) for getting a so-
lution of equation (6.6.1).

Lemma 6.6.2. In a solution F,(n > 0) of equation (6.6.11), F,, > O for any integer n > 0.

Proof. We proceed by induction. With a view on the discussion of (6.6.5)—(6.6.8), from
Fo =F =0,F, =12, F; = 24 and F, = 168, it is seen that the conclusion is true for
n < 4.Forn > 5, assume that F; > 0for0 <j<n-1.By (6.6.10), on account of A,,; > 0
for 2 <i < n-1, the assumption leads to F,, > 0. O

Theorem 6.6.3. Equation (6.6.1) is well-defined on R {z}.

Proof. From Theorem 6.6.1 and Lemma 6.6.2, the function f determined by the proce-
dure of doing (6.6.5)—(6.6.10) is a solution in R, {z}. Then, by considering the unique-
ness of the procedure by running from (6.6.5) through (6.6.10) based on the initial con-
ditions F, = F; = 0, we find that the solution is the only one. O

Furthermore, the solution of equation (6.6.1) enables us to get its expression in the
form of a finite sum with all terms positive.

Theorem 6.6.4. The solution of equation (6.6.1) has its expression in the form of a finite
sum with all terms positive,

0, whenn =0,1;
12, whenn =2
F, =124, whenn = 3; (6.6.12)
168, whenn = 4;
|3y GEspie b pp L whenn > 5.

Proof. From theinitial conditions of equation (6.6.1), by (6.6.6)—(6.6.10), (6.6.12) is then
obtained. O
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6.6 Four color sum for triangulations on sphere —— 167

Next, as an example, we show an application of equation (6.6.1).

Example 1. Four color sum on root-isomorphic classes of planar triangulations. In
Tutte WT [86] is shown a solution of equation (6.6.1): F,,, n > 0 such that

h= an+zzn

n>1

is the four color sum function of planar rooted triangulations, i.e., H, = 97 h = Fp,,,
n > 1, is the total sum of colorations by 4 colors over all non-separable planar rooted
triangulations with 2n faces.

Lemma 6.6.5. In the solution F,(n > 0) of the system of equations (6.6.11), for any inte-
gern >4,

2(n+1n

n
Y @Bi-5)Mn-i+2)n-i+1)FF, ). (6.6.13)
i=2
Proof. By (6.6.12),
n
2+ DnFpyy = Y Gi-5)(n—i+2)(n—i+1)FFy i,
i=2

From the combinatorial meaning of F, ,;, F,,; is a positive integer, i.e., F,,; € Z,.
Therefore, the conclusion is drawn. O

The conclusion above can be directly proved by (6.6.12) itself, however, it looks
that some complication might be involved.

Theorem 6.6.6. On the solution F,(n > 0) of equation (6.6.1) as determined by (6.6.12),
foranyintegern>2,F, € Z,.

Proof. This is a direct result of Lemma 6.6.5. O

InFigure 6.6.1, itis seen that H; = F; and H, = F, are meaningful in combinatorics,
particularly, in the four color sum of maps. For example, a shows that non-separable

a b C

Figure 6.6.1: Four color sum of root-classes of triangulations on sphere.
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168 —— 6 Ordinary differential equations

planar triangulations of 2 faces have only 1 root-isomorphic class. Its chromatic poly-
nomial is P(a) = A(A-1)(A-2). When A = 4, P(a)|j_, = 4x3x2 = 24.Thisis H; = F3 = 24.
From b and ¢, it is seen that non-separable planar triangulations of 4 faces have 4 root-
isomorphic classes. Thus,

= AA - DA = 2)(A - 3)|jeq +3AA - DA - 2|1y
=24+3x12x2% =7 x 24 = 168.

6.7 Notes

6.7.1. All differential functional equations mentioned in 6.1 can be directly solved by
integration. However, certain complications are often encountered in trying to sim-
plify.

How to find the simplest differential equation is a problem absolutely necessary
to do further research on via suitable parametric expressions. For example, in Tutte
WT [84], a function for planar c-nets (or 3-connected planar maps) is extracted from
a second order ordinary differential equation. However, in Liu YP [12], one works by a
first order ordinary differential equation to get a result that is very simple.

6.7.2. In Liu YP [44] (1999, Theorem 8.5.2, p. 271), the first order ordinary differential
equation

2dg :
{4)( 4, = (1-0g - x(+h); (6.71)

g|x:() = 0)

is provided for counting the root-isomorphic classes of non-orientable petal bundles
with size as parameter. Here h is determined by equation (6.2.1). Notably, h is the solu-
tion of equation (6.2.1) if the constant term is omitted. It can be shown that the solution
g of equation (6.6.1) is just determined by (6.2.17).

6.7.3. The expression for F,, in the form of a finite sum of all terms positive shown by
(6.3.10) should be done further for getting an explicision of the summation free case.

6.7.4. On the basis of the explicision of F, determined by (6.3.10), we evaluate an
explicision in the summation free form of F,, determined by (6.4.9).

6.7.5. On the basis of (6.3.10) and (6.4.9), we evaluate an explicision in the form of a
finite sum with all terms positive of F,, as determined by (6.5.7).

6.7.6. Equation (6.6.1) firstly occurs in Tutte WT [86] (1982). However, no suitable ex-
pression, particularly an explicision, has been found yet up to now.
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7 Partial differential equations

7.1 Quadrangulations on sphere
Consider the equation (applied later!) for f € R{x,y}

{X“yf2 +(y-x)f Xy +x -y =0;
f|x:y:0 = 1,

(71.1)

where f* = aﬁf. This is equation (23) in Introduction whena = b = c =d = 1. Itis
meaningful for quadrangulations on the sphere.

This equation is derived from a theory of decomposition appearing in Liu YP [40]
(1992). More clearly this is found in Liu YP [44] (Section 5.4, 1999). Some definitions
relevant for y have to be attended to.

Let F, = [f], = 9,f, n > 0, then, for any integer n > 0,

Fy = [f*], = [0}f), = 3}[f], = O:F,. (71.2)

In order to evaluate F,,, n > 0, the first case of equation (7.1.1) is transformed into
one of its equivalences by

Xf = X"y +yf - XPyf* +xX° -y

(71.3)
=x*yf? + y(f - Xf* - 1) + X2
Because, for any integer n > 0,
n
[Fla= FiFy (7.1.4)
i=0
and
. Fo - x’F; =1, whenn = 0;
[f -x°f* -1], = { A (7.1.5)
F,-x"F,, whenn>1,
we have, from (7.1.3),
0 2 2 2 2
X [flo =[x = XFy =x5;
y [f 0 [ ]() ) 0 (7.1.6)
=Fy,=1 F;=0,
v Xl = xl‘[fz]o +[f - X" - 1],
by (7.1.4)-(7.1.5),
4 2%
=x"FoFy+ (Fy —xF; - 1),
oFo + (Fo o-1 (717)

by (7.1.6),

=x" = x2F1=x

4
—F =x, F =1,
https://doi.org/10.1515/9783110625837-007
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170 —— 7 Partial differential equations

Vo XUl =X + [ - -1,
by (71.4)-(7.1.5),
= x*(2FyF)) + (F, - X°F}),
by (71.6)-(7.1.7),
=un® = X¥’F =28
=F,= %, Fz* =0,
J/3 : Xz[f]3 = X4[f2]2 +[f -Xf* - 1,,
by (71.4)-(7.1.5),
= x"(F + 2F,F,) + (F, - X’F}),
by (7.1.6)-(7.1.8), (7.1.9)

= xl’(x4 + 4x4) + ot

(71.8)

2
= x°F, = 5x% + 3x"

=F=5"+2% F =2
and

i Xfl, = xl‘[fz]3 +[f - X" - 1],
by (7.1.4)—(71.5),
= x"(2F,F, + 2FyFy) + (F; - X°F;),
by (7.1.6)-(7.1.9), (71.10)
= x*(14x° + 4x%) + 5x°
= szz = 14x"° + 9x®

= F=14"+9%", F/ =0
As a matter of fact, for any integer n > 2,

Xan = XA[fz]n—l + [f _Xzf*]n—l

n-1 (71.11)
4 2%
=x" Y FiFyy i+ Fp - XFp .
i=0

Lemma 7.1.1. For any integer n > 1, F,, has a factor x>

21 where i > 0 is an

Proof. Because f is an even function for x, f has no term of x
integer.

First, from (71.7) and (7.1.8), both F, and F, have a factor x°.

Then we proceed by induction for n > 3. Forany i, 2 < i < n -1, assume F; has X2
as a factor. By (7.1.11) and the assumption, F,, has x? as a factor (attention: xl‘I(Fn_1 -

X’F )!). Therefore, the conclusion is drawn. a
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7.1 Quadrangulations on sphere =—— 171

This lemma tells us that on the basis of (7.1.11), for any integer n > 2,
I ey + I = 0) (71.12)

and, forn > 0, F, € R, {x}.
Lemma 7.1.2. For any integer n > 1, F, is a polynomial of x with degree at most 2n.

Proof. From (7.1.6) and (7.1.7), F, and F,; obey the conclusion.

We proceed by induction for n > 3. Assume for 1 < i < n -1, F; is a polynomial of
x with degree at most 2i. Then from Lemma 7.1.1, the degree of [f — X*f e is d([f -
xX*f*1,.1) < 2(n—1) —2 = 2n - 4. Because the degree of x*[f*],_; is d(x*[f?],_;) <
4+2(n-1) = 2n+2, from (71.11), d(F,)) < d(x*[f*],,_1) — 2 < (2n + 2) - 2 = 2n. Therefore,
based on the induction principle, the conclusion is easily drawn. O

Lemma 7.1.3. For any integer n > 1, F,, has no term of x with odd degree.
Proof. This is a result of f being even for x. O

The three lemmas above with the procedures of the proofs enable us to express F,,
for n > 1in the form of

2n
Fy= ) FppxX™
m=2
o (71.13)
n
= Z FZm,rzsz
m=1
where F,,, , € R,. Thus, because of

by (7.1.11), we have F,, € R, {x}.
Theorem 7.1.4. Equation (7.1.1) is well-defined on R{x, y}.

Proof. First, because of (7.1.3) equivalent to the first case of equation (7.1.1) and the
initial condition F;, = 1 of equation (7.1.1), on the basis of the lemmas above, f: F,, for
n > 0 evaluated from (7.1.6), (7.1.7) and (7.1.11), provide a solution of equation (7.1.1) on
Rix,y}.

Then, by considering the uniqueness of the procedure in evaluating F,(n > 1) on
R{x,y} for the initial condition of equation (7.1.1), f is known to be the only solution of
equation (7.1.1). O

In what follows, we discuss expressions of F,, n > 2, in the form of a finite sum
with all terms positive.
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172 — 7 Partial differential equations

Let us write F,[f] = [f?],, n = 0. On the basis of (7.1.6) and (7.1.7), forn > 2,

n
2
Fr[l V= Z FiFy_
(7.1.15)

n-2
=2F, + 2°F, y + Y FiF, ;.
i=2

Denote by £, the summation for i from 2 through n - 2; then from (71.13), n > 5, we
have

= i Z (ZFQIIF“ D 1>X

= (7.1.16)
n-1
= cD2t,nX >
t=2
where
t (min{n-2,n-t+1}
Dyt = Z( FZl,iFZ(t—l),n—i>' (71.17)
=1 i=2
On this basis, from (7.1.11), we have, forn > 5,
F, -x’F"
Fo=X*(2Fpy + X°Fy ) + 5 4) + 25— (71.18)
X
Meanwhile, from (7.1.14),
F, 2F* 1=
2 2 Z 2n— 1X
=2 (71.19)
n-2 a1
= F2(1+1),n—1X .
=1
From (7.1.13),
n
2x2(Fn_1 + Xan—z) = Z(Fz)n_lx4 + Z A1x21>
=3 (71.20)
n
= 2F2),Hx4 + Z 2A1x21
1=3
where A} = Fy_1) -1 + Fyg_z)n-2 for 3 <1< nand from (7.1.16),
2 ) 2t
XoZpg = XY Dy X
=2 (71.21)
n-1

2t
= z Dyt_1)p-1X" -
t=3
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7.1 Quadrangulations on sphere =—— 173

Theorem 7.1.5. Let f = f.quaq be the solution of equation (7.1.1), determined by Q, =
a)r/lfo-quad € R, {x}, forn > O, then

'1’ whenn = 0;
X, whenn =1;
Q. = 1 4, whenn = 2; 7122
N S whenn = 3; o
14x® +9x*, whenn = 4;
_2;1:1 sz,nxzm, whenn > 5,

where

Q1> whenm = 1;

Qg1+ 2F2 515 whenm = 2;

2Qxm-1,n1+ Qom-2,n-2)

Qmn=17 +Quminna + Pom-nyn-1» When3d<ms<n-2 (71.23)
2(QZ(H—Z),n—l + Q2(n—3),n—2)
+ Dop-tyn-1> whenm=n-1;

,Z(Qz(n_l))n—l + QZ(n—Z),n—z)) whenm = n,

and @, , determined by (7.1.17).
Proof. By substituting (7.1.19)—(7.1.21) into (7.1.18), the conclusion is easily drawn. [

Lemma 7.1.6. For any integern > O,

when n = 0(mod 2), Qz,n}

whenn =1(mod 2), Q,,

Proof. For n < 4, from (7.1.22), it is seen that the conclusion is true. For n > 5, by
induction on n. Assume for any integeri < n—1, the conclusion is true. When n is even.
Because of n -1 odd. From the assumption, Q4 ,,_; = 0. From (71.22), Q;, = Q4 ,_; = O.
n is odd, because n - 1 even. By the assumption, Q,,_; = 0. Hence, according to the
principle of induction, the conclusion is easily drawn. O

Lemma 7.1.7. Forany integern 21, Qyy_1), = 0.
Proof. Whenn =1,...,5. From (71.19), the lemma is true. When n > 6, we proceed by

induction on n. Assume for any integer i < n -1, Fy;_y); = 0. By (7.1.23),

Qon-1).n = 2Qxn-2)n-1 + Qn-3)n-2) + Pon-1),n-15
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174 —— 7 Partial differential equations

by the assumption, Q2,1 = 0 and Qy_3),» = 0. On the basis of (71.17), when
t=n-1,

n-1/ min{n-3,2}
Dyptyn-1 = Z( Z QZI,iQZ(n—Z),n—i—1>

=1 i=2
n-1

= Z (Qu2Qxn-2)n-3)-
=1

Because of Qyn_2)n-3 = 0, Pyn_1)n—1 = 0. Therefore, by the principle of induction, the
lemma is true. O

Corollary 7.1.8. For integer n > 5, the sequence {Q,, | n > 1} determined by (7.1.22) and
(7.1.23) satisfies the identity

Qn-2n-1 + Qn-zyn-2 + z Q31,iQyn-2),n-i-1 = 0. (71.24)

2<i<min{n-3,2}
1<l<n-1

Proof. By Theorem 7.1.5 and Lemma 7.1.7, the conclusion is drawn. O

Example 1. Root-isomorphic classes of planar near-quadrangulations.

In Figure 7.1.1, root-isomorphic classes planar near-quadrangulations with size
and root-face valency as parameters are provided. The cases for size 0, 1and 2 show no
difference with trees. They are already shown in Figure 3.1.3 as, respectively, Ly 1, Ly,
and L,,. From L3, and L, it is also seen that planar near-quadrangulations of size 3
and root-face valency 6 have 3L;; + 2Ls , in total 5 classes. From 4L, ; + 8L, 3 + 2L, 3, it
is seen that those of size 4 and root-face valency 8 have 14 classes. Their contributions
to Q; and Q, are, respectively, 5x° and 14x8.

From a of Figure 7.1.1, it is found that planar near-quadrangulations of size 3 and
root-face valency 2 have 24, a total of 2 classes. Their contribution to Qs is 2x2. From
b, c and d of Figure 7.1.1, it is found that planar near-quadrangulations of size 4 and
root-valency 4 have 4b + 4c + 2d, a total of 9 classes. The contribution to Q, is 9x*.

In summary, we have the two parts Q; = 5x° + 2x? and Q, = 14x® + 9x*. Here, the
effect of Lemma 7.1.6 and Lemma 7.1.7 might be seen.

o o o o

a b c d

Figure 7.1.1: Classes of planar near-quadrangulations of sizes 3-4.
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7.1 Quadrangulations on sphere =—— 175

Example 2. In Liu YP [44] (Section 5.4, 1999), an equation for f is given:

4. 2 2 2 2es
{x VfE+(=x)f +x"=-xf"-1-0; (71.25)
f|x=y=0 = 1>
where f* = Bﬁf.
For this equation, attention has to be paid to the fact that, because [f],, = a;,'f
(n > 0) is not a polynomial of x, trouble occurs in determining f. However, it can be
avoided by restricting the power of y.

Example 3. In Liu YP-CaiJL [6] (2000), an equation with three variables occurs:

x*zf? + (v - xz)f +x2 = x}yf* -y =0; (71.26)
flx:y:z:O =1 B

where f* = 9%f.
For this equation and the like, f can be determined by [f];, = a;éf fors,t > O,
more or less, without cumbersome dealings.

Example 4. Lack-1 face near-quadrangulations on the sphere. Consider the equation

3
X
(- 2"yg -y)f = ZTZ):((me:z - xq) + ¥f; 535
f|x:z:y:0 =0,
where g = q(x,y) is the solution of equation (71.1), and f,~X23 is the function obtained
by truncating all terms with degree of x less than 3 from f.
For convenience, it is necessary to discuss the issue of being well-defined and the

procedure of evaluating the solution of an equation considered.
First, equation (7.1.27) is transformed into one of its equivalences:

X _
f= ZXZYfO-nUf + ZTZyX(ZfO-nq|x:z - XfO-nq) +X ZYfi,(23 (7.1.28)

(71.27)

where fo.1q([fo-ngln = 9y 0-nq = Qu» 1 = 0) determines the solution of equation (7.1.1),
given by (7.1.22) and (7.1.23).

On the basis of (71.28), for F, = [f],, n > 0, the procedure of evaluating them
follows:

0 .
: = O(by y as a factor on the right);
y [flo = O(by y ght) (71.29)
== FO =0, [fO-an]O =0, [fixz3]0 =0,
Xz
yl ¢ Ifh= Z—x [Zfo-nq|x:z - XfO-nq]O
Xz
= ZTX(Z[fO-nq]le:z - X[fO»nq]O)
(71.30)

Xz
= ZTX(ZQOL(:Z - XQ()),
by (7.1.22) and (7.1.23),

=F=xz [fonfli=xz [fi311=0,
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176 —— 7 Partial differential equations

Vo [fl,=2¢ [f0an11+

:Zx(xz)+
Z_

ZfO nq|x—z Xfo nq]l
X(ZQ]|x:z _Xol)a

by (7.1.22) and (7.1.23),
2

+ Xz + xz) (71.31)

=20z + xz(z
=F= 3z + X%2% + X2,

[fo_an]2 =4z + X2+ X2,

[fi 32 =
)’3 : Ifls= %’ [fo- an]Z + ZfO nq|x—z xfo. nq]z

= 2%(4x%z + x222 + sz)

. (2Q;ly=y — XQy), (71.32)
zZ—-X

by (71.22) and (7.1.23) ,
== 9z + 4x*2? + 42 + 282" + 2,
and, for any integer n > 4,
xz
yn o fln= e [fo-an]n—l + ZTX[ZfO-nqlx:z

-2
- XfO»nq]n—l +Xx [finB]n—l

n-1
= F, :XzzQiFn—l—
1=0 (71.33)

2(n-1) / 2n-3 -
j m—j+
+ Z X Z Qun-12z

j=1 m(1,j-1)
+ z Xmam+2 n L
m=2

Lemma 7.1.9. Foranyintegern > 1, F, is a polynomial of x or y with both degrees neither
less than 1 nor greater than 2n — 1 on R {x, z}.

Proof. Similarly to the proofs of Lemma 7.1.1-Lemma 7.1.3. O

On the basis of this lemma, for any integer n > 1 and FS()") oy L f € R, we have

Fo= Y FOx7 Z FOx° = znzl Fz". (71.34)
1<s,t<2n-1 s=1 t=1
Theorem 7.1.10. Letf ., be the solution of equation (7.1.27), then, for any integern > 0,
[f misaln = F, we have
2(n-1) n-5

—XZZQMI Z n1x+Zx mi2n 1 (71.35)
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7.2 Quadrangulations on projective plane =— 177

where
2n-3 .
Apg= Y Quaaz™™, 1gj<2m-1). (71.36)
m=(1,j-1)
Proof. On the basis of (7.1.34), see Theorem 7.1.4 and Theorem 7.1.5. O

In Figure 7.1.2, a shows the root-classes of lack-1 planar near-quadrangulations
with size 1: xz, i. e., F; = xz obtained by (7.1.30). b and ¢ show the root-classes of lack-1
planar near-quadrangulations with size 2: 3x>z+xz>(b)+x°2(c) = 3x°z+x’2*+x2°> = F s
as given by (7.1.31).

a b c

Figure 7.1.2: Classes of lack-1 planar near-quadrangulations with sizes 1-2.

Similarly, in Figure 7.1.3, one might see that the root-classes of lack-1 planar near-
quadrangulations with size 3:
2xz(a) + xz(b) + X3z3(c) +5X°z + xzs(d) +5X°7 + xzs(e)
+3x°2° f) + 2 + 2xzz4(g)
=10z + 4x* 2% + 2 + 2%2* + 2x2° + 3xz = F;,

as given by (7.1.32).

7.2 Quadrangulations on projective plane
In Liu YP [51] (Section 4.5, 2009), one finds the system of equations for g and f

Xy(f +xL) - yx’g”
S Xy - uyf
e X*yfE = xPyf* + X2 - y (7.2.1)
xX2-y ’

f|x:y:0 =1 ng:y:0 =0,

wheref* = aff andg® = aﬁg. This is equation (24) in Introduction which is meaningful
in a classification for quadrangulations on the projective plane.
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178 —— 7 Partial differential equations

oo

f g

Figure 7.1.3: Classes of lack-1 planar near-quadrangulations with size 3.

In the system of equations, although the differential function of f occurs, because of
the independence of the second equation and its solution given in Section 7.1, this
equation is already known.

In fact, f = fo.quaq is determined by Q, = a;,'fo_quad, for n > 0, all of which are
shown in (7.1.22).

From (7.1.22), we have, for any integer n > 0,

ol G,
00,

=x—-", by(71.23),
X— y (7.1.23) (72.2)

2n ,
m
= z 2mQyp X7

m=1
Thus, equation (7.2.1) is equivalently transformed into
) *
Xy ex) -yist

x2—y-2x%f (7.2.3)
g|x:y:0 =0,

where f = f_quaq iS given in Section 7.1and g* = dlg € Riy}.
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7.2 Quadrangulations on projective plane =— 179

The first case of equation (7.2.3) is further transformed into a suitable equivalence:

of

x’g = x4y< + x&> - x*yg* +yg + "yfg

o (7.2.4)
= x4y<f -1 +x&> +y(g - x’g") + 2yfe.
Because of [f]y = Qp = 1and % = 0, for any integer n > 0,

d[flo
dx

—| =1Iflp+x
0

Moreover,

ox dg,

1, h =0;
[ +x%] _ whenn (72.5)
n Q, +x3¢, whenn>1

LetG, =[g], = a;'g, then from [g], = 0, [g"], = 0. Hence forn > 0,

0, whenn = 0;

[g-Xg"], = { (7.2.6)

(g], - x*[g*],, whenn>1,

and
[fg], = Z QiGpi. (727)

On the basis of (7.2.4)-(7.2.7),

Y Xglp =x" [y<f+xg—£>]0 +[y(g-x*g")],

+ 2" [yfgly =0
= Go=0and G, =0,

v Xg) :x4[f+x%]o + [g—ng*]o +2x"[fglo

(7.2.8)

dQ «
= x“(QO +XEO> +(Gy - x*Gy)
+2*Q, G,

(7.2.9)

— G, =X and G} =1,
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180 — 7 Partial differential equations

v Rlgh=x'[fxL] +lg-xl,+ 24Ul
1
= x4<Ql +x%> +(G, - x*G})
+2x*(Qy Gy + Q,Gy) (7.2.10)
= x*(? + %) + 28

= 5x°
— G,=5x"and G} =0,

and

v gl =xt{fexd | el + 2 gl

d x
= x4<Qz +x%) +(G, - x*G3)

+2¢*(QyG, + Q,G; + QyGy) (7.2.11)
= xl'(le' + 8xl‘) +5x% + 2x4(5xl‘ + xl')
=5x* +22x®
= G; = 5x% +22x° and G; =5.
As a matter of fact, for any integer n > 1,

dQn—l
dx

xX*G, = )<4<Qn_1 +X ) +(Gpg - XZG;_l)
n-1 (7.2.12)
+2" Y QiGyoyie
ic0

Lemma 7.2.1. For any integer n > 1, G, has no term with odd degree of x.

Proof. From (7.2.9)-(7.2.11), it is easily seen that G;, G, and G5 have no term of odd
degree. Furthermore, for n > 3, we proceed by induction on n. Assume it holds for all
G;, 1 < i < n - 1: there is no term of odd degree. Because of the parity, xdgj(*l has no
term of odd degree. By the assumption and (7.2.12), G,, has no term with odd degree

of x. O

Although all G, € R{x}, for n > 1 are even functions, it is still unknown whether
or not G, has a constant term for some n.

Lemma 7.2.2. For any integer n > 1, G, has terms with degree of x not less than 2.

Proof. From (7.2.9)-(7.2.11), it is seen that among G;, G, and G, the degree of x is not
less than 2. Further, for integer n > 3 we proceed by induction on n. Assume all of
G;for1 < i < n-1, do not have a term of x whose degree is less than 2. Because of
Gnq= aﬁan_l, the assumption leads to x*|G,,_,. By Lemma 7.2.1, x*|(G,,_; - sz;_l). By
(7.2.12), x*|G,,. Therefore, the conclusion is drawn. O
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7.2 Quadrangulations on projective plane =— 181

This lemma tells us that, for any integer n > 1, leGn.
Lemma 7.2.3. For any integer n > 1, G, has x? as a factor.

Proof. This is a direct result of Lemma 7.2.2. O

Next, an upper bound of term degrees among all terms of G,, for integer n > 1is
estimated.

Lemma 7.2.4. For any integer n > 1, G, is a polynomial of x with degree at most 2n.

Proof. From (7.2.9)-(7.2.11), it is found that all of G,, G, and G satisfy the conclusion. In
general, for n > 4, we proceed by induction on n. Assume for any integeri:1 <i < n-1,
that G; is a polynomial of degree at most 2i. We prove that G,, is a polynomial of degree
at most 2n.

For a polynomial p of x, denote by d(p) the degree of p. From (7.2.12),

d<Qn_1 + xd(j;"l > +2

d(G,) = max 3 d(Gpq - XzG;—l) -2 1 , by assumption,
n-1
d( D Q,.Gn_l_,.> +2
i-0
. o, R
d<Qn_1 +X d;1>+2
n-1
d( D QiGn1i> +2
L \i-0
n-1
= d( D Q,.Gn_l_,.> +2
i-0

=d(G,_4) +2, byassumption,
=2(n-1)+2=2n.

= max Ao

Therefore, the conclusion is drawn. O

This theorem enables us to evaluate a solution g determined by G,, (n > 1) of equa-
tion (7.2.3) such that all coefficients on G, are in Z,..

Theorem 7.2.5. Equation (7.2.3), and hence equation (7.2.1), is well-defined on R{x, y}.

Proof. First, from the equivalency between equation (7.2.4) and equation (7.2.3) and
Gy = 0 as the initial condition of equation (7.2.3), on the basis of the above lemmas,
g : Gy, for n > 0 as determined by (7.2.8)-(7.2.11) and (7.2.12) provides a solution of
equation (7.2.3) on R{x, y}.
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182 — 7 Partial differential equations

Then, by considering the uniqueness of the procedure to evaluate a solution g on
R{x,y} under the initial condition of equation (7.2.3), the solution of equation (7.2.3) is
the only one. O

On the basis of Theorem 7.2.5, one more structure of the solution g has to be men-
tioned.

Lemma 7.2.6. For any integer n > 1, the polynomial G,, € R, {x}.

Proof. From (7.2.9)-(7.2.11), it is seen that all of G;, G, and G; are in R, {x}. In general
for n > 4, we proceed by induction on n. Assume for any integeri (1 < i < n - 1),
G; € R,{x}. We prove G,, € R, {x}.

From Theorem 7.1.5 it can be deduced that, for any integer n > 0, Q, € R, {x}, and

hence xdd%" € R, {x}. Furthermore,

dQn—l
dx

Qg +x € R,{x}.

By assumption, G,_; - x*G;_, € R,{x} and
n-1
Z QiGn—l—i € R+{X}.
i

By (7.2.12), G, € R, {x}. O

Lemmas 7.2.2, 7.2.4 and 7.2.6 enable us, for any integer n > 1, to write
n
G, = Z G2i,n (7.2.13)
i=1

where G,;,, € R.
From (7.1.22),

(2m + 1)QZm’n,1x2m>

. (7.2.14)
= z (2m - l)QZm_Z)n_lxzm.
m=2
Because of G, = 902G, = G,,, forn>1,
2 v 2
Gpoy =X "Gy = z Gomn-1X "
" (72.15)
2 2
=X Z Gomn-1X ™.
m=1
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7.2 Quadrangulations on projective plane = 183

From (7.1.22) and (7.1.23),

n-1

2t
zQiGn—l—i: Z Qi Gty n-1-iX
i=0

Ist<(n-1-1)+l
o<l<i
O<isn-1

n

1
2t
= < Z + Z )QZI,iGZ(t—l),n—l—iX

o<i<t t—(n-i-1)<l<i
O<t<n-i-2 n-i-1<t<n-1

T
)

1
Z l/)zm-xzr, Py ; in (7.2.17) below,
t=0

S
|

i=0
n-1 o
=) Wynx
t=0
where
n-1
Wotn1 = Z Yo (7.2.16)
i=t
and
t .
Yops = {Zho QZl,iGZ(t—l),n—l—b whenO0O<t<n-i-2 (7217)
20 = i . 2.
Z;:t—(n—i—l) QZl,iGZ(t—l),n—l—b whenn-i-1<t<n-1
Therefore,
n
2 2
X UrO-quaclg Ino1 = z ‘Pz(m—l),n—ﬂf " (7.2.18)
m=1

Theorem 7.2.7. Let g = fi_qyqq determined by P, = O)f; qiaq € R.{x}, for n = 0 be the
solution of equation (7.2.1). Then

'O, whenn = 0;
X2, whenn = 1;
P, = {5x%, whenn = 2; (7.2.19)
5x% + 22xé, whenn = 3;
| Yt PomnX™™, whenn > 4,

where
Pypq+2¥ 515 whenm=1;
2m -1 + Pyt + 2¥Ym-1yne1>, When2<m<n-12
P2m,n — ( )Qz(m—l),n—l 2m,n-1 2(m-1),n-1 (7.2.20)
(2n = 3)Qyn-2n-1 + 2%¥2(n-2)n-1> whenm=n-1;
2n - 1DQypn-1)n-1 + 2¥2(n-1)n-1> whenm = n.

Proof. When n = 0,1,2 and 3, the results are, respectively, clear from the initiation of
equation (7.2.1), (7.2.9), (7.2.10) and (7.2.11). For n > 4, by (7.2.12),
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184 — 7 Partial differential equations

dQ P - X2P* n-1
_ 2 n-1 n-1 n-1 2
P,=x (Qn_l + o ) + 2 +2x i;) Q;G,_1-i
n , n-2 ,
= z 2m = 1)Qyngy X + z | a—
m=2 m=1
< 2
m
+ z Z\I'lz(m_l))n_lx .
m=1
After rearrangement, the conclusion is drawn. O

This theorem enables us to get the solution of equation (7.2.1) in the form of a sum
with all terms positive.

Example 1. From Ren H-Liu YP [65] (1999), one finds the equation for f and g,

xyzf? + (z - XO)f + (X —z - X*2f*) = 0;

o(x _ .
g =2Cyzfg + xzzg—xf) +x%z(g - Xg%); (7.2.21)

flx:y:z:o =1, glx:y:z:O =0,

where f* = 9Xf and g* = d’g.

Because 07g € R{x,y}, n > 1, are polynomials of x and y, the issue of being well-
defined of this partial differential equation and the solution in the form of a finite sum
with all terms positive can be addressed by following the procedure described in the
context of this section. Some explicisions derived from Lagrange inversion are very
simple. However, the result obtained in this section is very favorable for use of a com-
puter. Moreover, the inversion can also be treated as a functional from the function
space to itself. On this topic, it is absolutely necessary to do further research.

Example 2. Consider the system of equations about g and f

Xy(f +xL) - x'y’(1+g°)
8- x* -y = 2yf
fo XX Xy (72.22)
X’ -y
flx:y:O =1 g|x:y:0 =0,

>

where f* = 92f and g° = dlg.
The issue of being well-defined of equation (7.2.22) can be addressed in a similar

manner to the context in this section.

Lemma 7.2.8. For any integern > 0,

when n = 0(mod 2), P2,n}

whenn =1(mod 2), P,,
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7.3 Quadrangulations on torus =— 185

Proof. The proof is similar to the proof of Lemma 7.1.6. On account of (7.2.12), we pro-
ceed by induction. O

Lemma 7.2.9. For any integern > 1, Pyn-1yn = 0.

Proof. The proof is similar to the proof of Lemma 7.1.7. On account of (7.2.12), we pro-
ceed by induction. O

Lemma 7.2.10. For any integern > 1, P, , = P, ,,; in (7.2.20).

Proof. We proceed on the basis of Lemma 7.2.8 and Lemma 7.2.9, by employing (7.2.12),
inductively, or directly evaluating by (7.2.20). O

Via Lemma 7.2.10, the equivalence between equation (7.2.22) and equation (7.2.1
can be directly derived.

Example 3. Root-isomorphic classification of near-quadrangulations by size and root-
face valency on projective plane. The solution g = f; -quad of equation (7.2.1) provides
the classes of near-quadrangulations by size and root-face valency on projective plane.

In Figure 7.2.1, we have the classes of near-quadrangulations on projective plane
by sizes: 1-3. For example, 1a represents that the quadrangulations of size 1 have only
1 class and the root-face valency of them is 2. This is P, = x°. Near-quadrangulations
of size 2 on projective plane have 4b + 1c, i.e., 4 + 1 = 5 classes. Because of them all
coming with root-face valency 4, P, = (4 + Dx* = 5x*. Near-quadrangulations of size
3 on the projective plane have two parts. One part of them with root-valency 2 has
2d +2e + 1f,i.e., 2+ 2 + 1 = 5 classes. The other part of them with root-valency 6 has
68 +3h + 6i + 6j + 1k, i.e., 3x 6 + 3+ 1 = 22 classes. Therefore, P; = 5x2 + 22x5.

7.3 Quadrangulations on torus

Consider the partial differential system of equations for f, g and h
— 52 2 .
= X2(1- 2YR)f ~ Vf, 24

ag>
4 —_—

1°2y8, (uhl, ) = (° - 2 yh)g - yg; o5 (73.)

x*yh? + (y = x*)h - xzthX +x2-y=0;
\flx:y:O =0; glx:z:y:O =1 h|x:y:0 =1

where f; ., and g; 5 are, respectively, obtained by deleting the terms of degrees for x
not greater than 4 and 3 from the functions f and g.

This is equation (25) in Introduction, which is meaningful in a classification for
quadrangulations on the torus.
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186 —— 7 Partial differential equations

1

1
1 J k

Figure 7.2.1: Classes of near-quadrangulations on projective plane with sizes 1-3.

We proceed on the basis of the equivalence between the system composed of the sec-
ond and third equations of equation (7.3.1) and the system equation (7.1.27). Their so-
lutions g = fisq and h = f._quad- are, respectively given by (7.1.2)-(71.4) and (7.1.35)-
(71.36). It is only necessary to consider the first of equation (7.3.1).

For convenience, equation (7.3.1) is transformed into a suitable equivalence:

0, _
f= x2y<Z£> + 2CYhf +X7Yf 24
of = (73.2)
= x@(z%“) + 2CYf o quadf + X Vi 24

Z=X
Let f be determined by [f] ,,a;’f = F,, forn > 0. We proceed on the basis of equation
(7.3.2). Because y has a factor on the right hand side,
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7.3 Quadrangulations on torus =— 187

¥*: [flo=0 = F, =0, hence Foli»4 = 0. (7.3.3)

This is the initial condition of equation (7.3.1): fl,y—o = O.
For any integer n > 1,

n., _ 2 afmis-l]
y [f]n =X [Z aZ el

+X_2[f,-X24]n,1
00
F. = 2 n—l)
= F,=x <Z_az

-2
+X Fn—1|ixz4'

+ ZXZ [fO-quadf]n—l

Z=X

. (7.3.4)
+2¢ Y FiQu 1

z=x i=0

By employing Theorem 7.1.4 and Theorem 7.1.10,
+ 2 QoFo + X *Foli 24

F, = X <28&>
0z /lz=x (7.3.5)

=x°(0) + 2*(0) +x 2(0) =0, Fyl; 54 =0,
F, = x2<z%>
+X 7Bl 54 (73.6)

= xz(x4) +2%%(0) + x2(0) = x*,
4

hence leiX24 =X,
00

F3 = X2<Za—Z2> + 2X2(Q()F2 + QlFl + QZFO)

Z=X

X Pz (73.7)
= xX*(8x*) + 2 (x*) + x2(x*) = x* + 10x5,

+ 2¢%(QyF, + QF,)

Z=X

hence Fs|; 54 = 105,
20

F, = x2<za—z3> + 2X%(QuF; + Q,F,

Z=X

+ QF; + Q3F,) + X_2F3|ixz4

= )(2(10)(6 +8x% +12x% + 8x% + 10x° + 3x2) (73.8)
+ 2% (x% +10x°) + x2(10x°)

= (48x% + 3x*) + (20x® + 2¢*) + 10x%,

hence F,, = 15x" + 68x°.

Via evaluating the root-isomorphic classes of near-quadrangulation of at most 4
edges on sphere, the results are the same as those obtained by (7.3.5)-(7.3.8).

Lemma 7.3.1. For any integer n > 1, F,, is a polynomial of x with maximum degree not
greater than 2n without term of odd degree and a constant term on R, [x].
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188 —— 7 Partial differential equations

Proof. From (7.3.5)—-(7.3.8), the conclusion is true for 1 < n < 4. In general, we proceed
by induction on n for n > 5. Assume for any integer i (1 < i < n-1), F; is a polynomial of
degree 2i without a term of odd degree and a constant term, to prove the conclusion for
i = n.In (7.3.4), it is found that O, and Q,, are a polynomial of x with degree 2n without
term of odd degree and constant term in R, [x]. From the assumption and that the
minimum degree is x in F,_,|; >4 is at least 4, F), is a polynomial of x with degree 2n
without term of odd degree and constant term in R, [x]. This is the conclusion. O

Based on this lemma, F,,, n > 1, can be expressed as

n
Fy=Y BypyyX™™, By € R,. (73.9)
m=1
Thus,
2 S ma o 2
X Fn|ixz4 = Z BymnX = Z BZ(m+1),nX ™. (7.3.10)
m=2 m=1
By (7.3.4),
20 5 n-1
Fn :X2<Z#> +2X2 zFiQn—l—i
z=x iz
=0 (73.11)
n-2 m
+ Z Bz(m+1),n—lx .
m=1

Theorem 7.3.2. The system of partial differential equations (7.3.1) is well-defined on
R {xy}.

Proof. Because a function determined by (7.3.11) satisfies equation (7.3.2), from equiv-
alency, this function provides a solution of equation (7.3.1).

Furthermore, from the uniqueness of the procedure to evaluating the function
(F,,n > 0)by (7.3.11) on R, [x] based on the initiation, this solution is the only one. [

On the basis of this theorem, let the solution of equation (73.1) bef = f1.n,§ = ferq
and h = fO-nq’ then, for any integer n > 0,

a;'fl_nq =F,, aQ g = 0, and a;‘fo_nq =Q, (7.3.12)
are, respectively, determined by (7.3.11), Theorem 7.1.10 and Theorem 7.1.4.

Theorem 7.3.3. For the solution f of the partial differential system of equations equation
(7.3.1), write oy f 1-nq = In» then, for any integer n > 1, T,, has the form of a finite sum with

all terms positive,
aO B n-1
T, - x2<z#> N

- (73.13)
n-2 m
+ Z TZ(m+1),n—1X
m=1
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7.3 Quadrangulations on torus =— 189

where

2m
Tz(m+1)’n_1 = ax Tn—1> 1 <m<n- 1

Proof. From Theorem 7.3.2, it is known that, for any integer n > 1, T,, = F,,. By (7.3.11),
the conclusion is drawn. O

Example 1. Root-isomorphic classes of near-quadrangulations on torus. In Figure 7.3.1,
classes of near-quadrangulations with size 3 on torus are shown: la = x*> and
6b+3c+1d = 10x°, i.e., T; = x* +10x° (F3). This is the result given in (7.3.7). These are
listed in Table 7.3.1.

Figure 7.3.1: Classes of near-quadrangulations on torus of size 3.

Table 7.3.1: Vertices, faces and classes in Figure 7.3.1.

Order Vertices Faces Classes
a (1,2,y1,3,y2,¥3) (1,3)(y1,2,¥3,y2) {1,B1,3,B83}
b GL2yLy2p3) (Ly2y123y3) 03h LA ey

{2,B1},{a2,y1},{y2, B3}
{3,a3,2,a2},{1, a1,
y1, 81} {y3,83,y2, B2}
d (3,1,2)(¥3,v1,¥2) (3,71,2,¥3,1,¥y2) {K1+K2+K3}

c (3,1,2,y1)(y2,¥3) (1,3,¥2,¥1,2,y3)

In this table, from the column of order (First, or Order), it is seen that the maps in
the alphabetical order are marked by a, b, c, . ... From the column of faces (Third, or
Faces), it is seen that all the faces in the face set of the map are marked by the letter at
the corresponding entry of first column. The same for the column of vertices (Second,
or Vertices) and the column of classes (Fourth, or Classes).

The number of root-isomorphic classes of a map is the number of hollows in the
map shown in Figure 7.3.1.

For example, in the first column, all near-quadrangulations of size 3 on torus are
listed as a, b, c and d.
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190 — 7 Partial differential equations

In each entry of the second column, the first pair of parentheses shows the root-
vertex with its valency.

In each entry of the third column, the first pair of parentheses shows the root-face
with its valency.

In each entry of the fourth column, a pair of braces represents a root-isomorphic
class in which each symbol (quadricell) produces an automorphism of the correspond-
ing map.

In the Faces column, from the first pair of parentheses in the first entry, it is seen
that the root-face valency of map ais 2 (i. e., xz). In the Classes column, from the num-
ber of brace pairs in the first entry, it is seen that the number of root-isomorphic classes
is 1. Thus, aﬁT3 =1.

The first symbol (or quadricell) in the Classes column is chosen to be its represen-
tative denoted by a hollow as shown in Figure 7.3.2. The first quadricell in the root-
vertex and the first quadricell in the root-face are the same. This quadricell is the root
of the corresponding map. See also Table 7.3.2.

In Figure 7.3.2, root-isomorphic classes of near-quadrangulations on torus of size
4 are shown as 1a + 4b + 8c + 2d = 15x%, i.e., T,, = 15x4(F4,4) which is the same as
af{‘F4 = 15x*, obtained by (7.3.8).

2 2
1
P— —
° 1 o 1
D ;
3 Ay
2 2
a b c d

Figure 7.3.2: Classes of near-quadrangulations on torus of size 4.

Table 7.3.2: Vertices, faces and classes in Figure 7.3.2.

Order Vertices Faces Classes
(4,1,2,3) (1,y2,3,y4)

a (v y1,72,73) (1,273, 4) {K1+K2+ K3+ K4}

b (4,1) (1,y2,3,r4) {4,a4,1,a1}, {y4, B4,y1,B1},
(r4,2,3,y1,y2,y3) (y1,4,2,y3) {2,a3,y2,B3},{02,3,B52,y3}

c (4,1,2,y1,3,y2,¥3) (1,3,4,r4) {4,a4},{1,B3},{al,y3},{2, B2},
(ré) (¥1,2,y3,y2) {a2,y2},{y1,03} {1, 3}, {y4, B4}

d (4,1,2,y1) (1,4,3,r4) {4,04,2,a2,y4,B4,y2, B2},
(r4,3,y2,y3) (y1,2,¥3,¥2) {1,a01,y1,B1,3,0a3,y3,B3}
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7.4 Quadrangulations on Klein bottle =— 191

7.4 Quadrangulations on Klein bottle

Consider the partial differential system of equations about f, g, h and p

a;g %] > — 2f _ 4 2 _ 2526,
X y<XaX " [Z aZ zZ=X - f X y(g * g + zpf) y(f X aXf)’
X“y<p + xg—i) =x*(x* -y - 2x"yp)g + x*ydlg
) (74.1)
2y Z2 5, uplyey) = 221 - 23yp)h - y(h - X3

xX*yp? + (y =X )p - xX*ydip + X -y = 0;

f|x:z:y:0 = glx:z:y:O = h|x:z:y:0 =0 plx:z:y:O =1

This is equation (26) in Introduction, which is meaningful in a classification for
quadrangulations on the Klein bottle.
From the system of equations (7.1.2), equation (7.1.27) and (7.2.1),

b :fO-nq> h= fcrq and g :fi-nq' (74.2)

Their expressions in the form of a finite sum with all terms positive are, respectively,
given by (7.1.2)-(7.1.4), (7.1.35)-(7.1.36) and (7.2.19)—(7.2.20). Thus, it is only necessary
to determine f via F,, = a;'f =[flpn=1

First, the first equation in (7.4.1) is transformed into one of its equivalences:

el ) e e
f= xy(xa + Zaz . +xy(g +g8° +2pf)
+x y(f 282)

Since y is a factor of the part on the right hand side with the equal sign,

(7.4.3)

[fl.=Fy=0. (74.4)

This is the initial condition to equation (7.4.3) from equation (7.4.1).
For any integer n > 1,

2 og oh ) 5
[f]n X [Xa—+< az> _Xj|n71+X [g+g +2Pf]n,1
+x72[f - X231, by (74.2),

_ 2 aPrl—l < aOn 1> )
=X <X ox oz 7ex (7.4.5)

n-1 n-1
2
+X <Pn—1 + Y PPy i+2) QiFn—l—i>

i=0 i=0
+X ( 262 n 1)
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192 — 7 Partial differential equations

On the basis of this, by (7.2.19), (7.1.35) and (7.1.2),

oP 00
-G (7))
1 X<Xax+ Zaz .

+X2(Py + PPy + 2QuF,)
+ Xﬁz(FO - XzaiFo)
=0, hence F; - xzaﬁF1 =0,

oP 00
e (2) )
y x(xax+ z— L

+x*(P, + 2PyP; + 2(QuF, + Q,F,)

+ X 2(F, - X°02F,)

= X227 + X)) + X (x°) = 4x®,

hence F, - xzasz =0=4x",

oP 00
e (2) )
3 X<Xax+ z— .

2 2
+ x2<P2 + Y PP, +2Y QF,;

i=0 i=0
+x %(F, - X’3’F,)

= x*(20x* +3x* + 2x¢* + 3x%)

+°(5x" + x* + 8x*) + x 7 (4x")

= 4% + 428,
hence F; - xzaﬁF3 = 42%5,

oP 00
F - 2< _3 < _3) >
=X X2+ {2 L

3 3
+X2<P3 + zpipz—i +ZZ QiFZ—i

i=0 i=0
+ X 2(F; - X’02F;)
= x*(13x* + 180x°)
+x*(13%% + 124x°)
+x2(42x%)
= 68x" +304x%,

hence F,, - xza,fF4 = 68x" +304x°,

(74.6)

(74.7)

(74.8)

(7.4.9)

By directly classifying near-quadrangulations of size 4 on the Klein bottle into
root-isomorphic classes via joint trees shown in Liu YP [46] (2003, pp. 14-18), or [62]
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7.4 Quadrangulations on Klein bottle =— 193

(Liu, YP, 2017, pp. 197-201), it is seen that the results are the same as those in (7.4.5)-
(74.8).

Lemma 7.4.1. For any integer n > 1, F,, is a polynomial of x with degree at most 2n with
neither a term of odd degree nor a constant term on R, [x].

Proof. From (7.4.6)—(7.4.9), it is found that the conclusion is true for 1 < n < 4. For
n > 5, we proceed by induction on n. Assume for any integer 1 <i < n-1, that F;isa
polynomial of x with degree 2n with neither a term of odd degree nor a constant term.
We prove the conclusion for i = n. On the basis of the last three sections, P,_;, 0,1
and Q,_; in (7.4.5) are all polynomials of degree at most 2(n—1) on R, [x] with neither a
term of odd degree nor a constant term. By the assumption and knowing that all terms
in F,_41; >4 are with degree of x at least 4, F, is deduced to be a polynomial of degree at
most 2(n — 1) + 2 = 2nin R, [x] with neither a term of odd degree nor a constant term.
This is the conclusion. O

Based on this lemma, F,, for n > 1, can be expressed in the form of

n
Fy=Y KppX™™, Kpp € R, (74.10)
m=1
Thus,
n n-1
X (Fy = X°00F,) = Y KX 2 = Y Ky ™™ (74.11)
m=2 m=1
From (7.4.5),
P,
F,= x2<x—a nloy (zaO'H) )
0x 0z /),y
) n-1 n-1
+X <P o1+ ) PPy +2) QiFn—l—i> (74.12)
i=0 i=0
n-1
+ Y Ky M
m=1

Theorem 7.4.2. The system of partial differential equations (7.4.1) is well-defined on
R.[x, z].

Proof. Itis easily shown that the function evaluated from (7.4.12) is a solution of equa-
tion (7.4.3), and hence equivalently of equation (7.4.1).

Furthermore, by considering the uniqueness of the evaluation procedure based on
(7.4.12) from the initial condition of equation (7.4.1), the solution is the only one. [

On the basis of this theorem, let f = fi-nq g=f ing h = fcxq P = fo.nq b€ consisting
of the solution set of the system of equations (7.4.1), then, for any integer n > 0,

Oyfing = Pp Oferq=0n and 0yfonq = Qy (74.13)
are determined by (7.4.12), Theorems 7.1.10 and 7.1.4.
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Theorem 7.4.3. In the solution set of system of equations (7.4.1), write a;'fi_nq = K,
then, for any integer n > 0, K,, has an expression in the form of a finite sum with all

terms positive,
P,
K, = x2<xa nl oy (ZaO'H) )
ox 0Z /),y

n-1 n-1
+ x2<Pn1 + ) PPy +2) Q,~I<n“) (74.14)

i=0 i=0

n-1 )
m
+ Y KpyipX
m=1

wheren > 1and K, = 0.

Proof. From Theorem 7.4.2, it is known that, for any integer n > 1, K,, = F,,. By (7.4.12),
the conclusion is drawn. O

Example 1. Root-isomorphic lasses of near-quadrangulations on Klein bottle. Only
the case of size not greater than 3 is allowed. Because maps of size 1 only are allowed
on the sphere, near-quadrangulations on the Klein bottle come with at least 2 edges.
Figure 7.4.1 shows near-quadrangulations of size 2. Figures 7.4.2 and 7.4.3 show those
of size 3, with, respectively, 1 and 2 vertices.

o o

; 5501 2 5502

2 1
a b

Figure 7.4.1: Classes of near-quadrangulations of size 2 on Klein bottle.

Table 7.4.1: Vertices, edges and classes in Figure 7.4.1.

Order Vertices Faces Classes
a (1,B1,2,B82) (1,a1,2,02) {1,a1,2,a2}then we proceed by induction {81,y1,52,y2}
b (1,2,81,y2) (1,a2,01,2) {1,a1,B1,yl}then we proceed by induction {2, a2, 82,y2}

In Table 7.4.1, vertices, faces and root-isomorphic classes of near-quadrangulations of
size 2 in Figure 7.4.1 are listed (cf. the explanation of Table 7.3.1).
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7.4 Quadrangulations on Klein bottle =— 195

As a matter of fact, all these near-quadrangulations are only quadrangulations.
In Table 7.4.2, vertices, faces and root-isomorphic classes of near-quadrangulations
of size 3 and order 1 in Figure 7.4.2 are listed (cf. the explanation of Table 7.3.1).

o

3 1 3

a b C

Figure 7.4.2: Classes of near-quadrangulations of size 3 and order 1 on Klein bottle.

Table 7.4.2: Vertices, edges and classes in Figure 7.4.2.

Order Vertices Faces Classes

a (1,B1,2,3,82,83) (1,01,2,a3)(3,y2) {3,v2}, {a2, 83}
(1,2,3,B1,B2,y3) (1,a3,y2,3)(a1,B2) {al,2,y1,B2}

c (1,2,y1,2,B2,¥3) (1,3)(01,a2,B3,B2) {1,B1,3,B3}

In Table 7.4.3, vertices, faces and root-isomorphic classes of near-quadrangulations
of size 3 and order 2 in Figure 7.4.3 are listed (cf. the explanation of Table 7.3.1).

where {Ki} = {i}, {ai}, {Bi}, {yi}, i = 1,2,3, and K = {1, a,8,y} is the Klein group (see
Liu YP [44]).

Example 2. Root-isomorphic classes of quadrangulations on Klein bottle (contin-
ued!).

In Table 7.4.4, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 74.4 are listed (cf. the explanation of Table 7.3.1).

In Table 7.4.5, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.5 are listed (cf. the explanation of Table 7.3.1).

In Table 7.4.6, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.6 are listed (cf. the explanation of Table 7.3.1).

In Table 7.4.7, vertices, faces and root-isomorphic classes of quadrangulations of
size 4 and order 2 in Figure 7.4.7 are listed (cf. the explanation of Table 7.3.1).

From Figures 7.4.4-74.7, it is seen that quadrangulations of size 4 and order 2 on
a Klein bottle have 12 + 16 + 8 + 32 = 68 root-isomorphic classes in all.
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e

Figure 7.4.3: Classes of near-quadrangulations of size 3 and order 2 on Klein bottle.

Table 7.4.3: Vertices, edges and classes in Figure 7.4.3.

Order Vertices Faces Classes
T
b (3.1,81,2,62)¥3) (1,a1,2,a2,3,y3) &a;}z}{y{zgigzy;}n
c G.1.2,8L,y2)(y3) (Laz,yL2.3.y3) (K1}, (K2}, (K3}

4 GLADY3,2.82) (1,a1,3,2,02,y3) {23)/‘2{";1/3;1}212";2}
e G.1,2,81)(3,v2)  (1,a2,83,y1,2,y3) ;32‘;32}2{?221{?1!; 3;’}

f (3,1,2,y)(¥3,82) (1,3,82,a1,a2,y3) ;3320;32}2{1712;1{;2;;31}
;o e AR
h G L203.BLy2) (LB3a2yl2y3) C02r3:p2 05,2

B3,y2},{1,a1,B81,y1}
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o

a b c

Figure 7.4.4: Classes of quadrangulations of size 4 and order 2 on Klein bottle I.

Table 7.4.4: Vertices, edges and classes in Figure 7.4.4.

Order Vertices Faces Classes
a (4,1,2,3) (1,B4,03,y4)  {4,04,2,02,y4,B4,y2, 32},
(y4,B1,y2,B3) (a1,y2,3,82) {1,a1,3,a3,B1,y1,B3,y3}
b (4,1,2,3) (1,B3,a2,y4) {4,01,2,03,y4,B1,B3,y2},
(y4,y1,B3,B2) (2,y3,4,y1) {a4,1,a2,3,B4,y1,y3, B2}
c (4,1,2) (1,B4,a2,y4) {4, a4}, {y4, B4}, {1,a2},{al, 2},
(v4,B81,3,83,82) (al,3,a3,B2) {B1,y2},{y1,B2},{3,y3}{a3,B3}
1 2 2 3
2 2 o )
o o o
M\° © o 3  ° \ °
1 “o o o 1 A /0\1 1 o 1
o
3 3
3 5 3 9
d e f

Figure 7.4.5: Classes of quadrangulations of size 4 and order 2 on Klein bottle II.

Table 7.4.5: Vertices, edges and classes in Figure 7.4.5.

Order Vertices Faces Classes

d (4,1) (1,a2,a3,y4) {4,1}, {a4, al}, {B4, B1}, {y4,y1},
(y4.2,B1,3,y2,B3) (al,3,B82,4)  {2,a2},{y2,B2},{3,y3},{a3,B3}

e (4,1) (1,3,0a3,y4) {4,a4,1,a1},{y4, B4,y1, 51},
(y4,2,B82,y1,3,83) (a1,y2,B82,B4) {2,y2,3,y3},{02,B2,a3, B3}

f (4,1) (1,B3,a2,y4) {4,a4,1,a1},{y4, B4,y1,B1},
(

¥4,2,3,y1,B3,82) (al,a3,B82,B4) {2,a3,B3,y2},{a2,3,y3,B2}
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198 — 7 Partial differential equations

Y h [}

Figure 7.4.6: Classes of quadrangulations of size 4 and order 2 on Klein bottle IlI.

Table 7.4.6: Vertices, edges and classes in Figure 7.4.6.

Order Vertices Faces Classes

(4,1,B1,2) (1,a1,2,y4) {4,02,y4,B2},{a4, 2, B4,y2},
(v4,3,B83,y2) (a2,y3,B3,B4) {1,y1,3,y3},{al1,B1,a3,B3}
(4,1,2,y1) (1,4,3,y4) {4,a4,2,a2,y4,84,52,y2},
(y4,3,B2,y3) (a1,a2,y3,B2) {1,a1,y1,B1,3,a3,y3,83}
(4,1,2,B1) (1,02,a3,y4) {4,a4,2,a2,y4, B4,y2, B2},
(y4,3,y2,B83) (01,4,3,B2) {1,a1,B1,y1,3,03,83,y3}

g

h

2 3
J k

Figure 7.4.7: Classes of quadrangulations of size 4 and order 2 on Klein bottle IV.

Table 7.4.7: Vertices, edges and classes in Figure 7.4.7.

Order Vertices Faces Classes

. (4,1,2,y1,3,B2,¥3) (1,3,4,y4) {4, a4}, {y4, B4}, {1, B3}, {al,y3},

/ (ys) (a1,02,y3,B2) {2,y2},{a2,B2},{3,B1},{a3,y1}
(4,1,2,B1,3,B3,52) (1,02,4,y4)

k r4) (1,3, 03, 2) {K1},{K2},{K3}, {K4}

| (4,1,2,3,b1,r2,b3) (1,a3,4,y4) {4, a4}, {y4, B4}, {1,y3}, {al, B3},
(ré) (a1,y2,3,2)  {2,B2},{a2,y2},{3,y1},{a3,B1}
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7.5 Surface loopless model —— 199

7.5 Surface loopless model

Consider the partial differential equation for f € R{x, y}

0 0
axy<2ya—f—x—f() A - le)f ~

flx:o.y:O =1

(75.1)

where a € R,, a # 0. This is equation (27) in Introduction when ¢ = d = 1 because it
is meaningful in a classification for loopless maps on orientable surfaces and whole
(orientable and non-orientable) surfaces according asa = 1and a = 2.

Equation (7.5.1) is transformed on R{x, y} into one of the equivalences as

of of
f= axy(Zya - x&) +xYfltf + 1. (75.2)
For convenience, let us write
f=Y Fy", Fp=Ifl,eRx. (753)

n20
From the initial condition of equation (7.5.1),
[flx=0lo = L. (7.5.4)
On the basis of (7.5.3), for any integer n > 0,

o) o) dF
Fleth=Faber [v3| =nha and [xZ] 2T as9)

Let H, = F,|,;, for n > 0, then from (7.5.3) and (7.5.5) we have, for any integer
n=>0,

[flx:lf]n = z HiFn_i- (75.6)
i=0

We proceed on the basis of (7.5.3)-(7.5.6). From (7.5.2),

yO: flo=1 = Fy=1;

(75.7)
- FO = 1, HO = 1,
. _ of o
Yo Il = ax[Zyay Xax]o xlflyiflos
by (7.5.5)-(7.5.6), (7.5.8)
= X(H()Fo) =X

:>F1:X, lel,
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200 — 7 Partial differential equations

2 _ of o
y: [f]z-ax[Zyay Xax]1+x[f|":1f]1’

by (7.5.5)-(7.5.6),
= ax(2x — x) + x(HyF; + HiFy), (75.9)
by (7.5.5)-(7.5.8),
=ax(2x-x)+x(1+x)=x+(a+ l)x2
:F2=x+(a+1)x2, Hy=a+2,

2 9
Vi o Ifls= aX[Zyé —xa—i]z +x[fly=flo

by (7.5.5)-(7.5.6),

dF 2
= ax<2(2F2) - xﬁ) +X Z H;F,
i=0

by (7.5.5)-(7.5.9), (75.10)
= ax(3x +2(a + 1)x2) +x((a+?2)
+ 20+ (@ + )x°)
. {F3 = (a+2)x + (Ba+2x* + 2a® +3a + x>,
H; =2a’ +7a+5,

and, for any integer n > 4,

5) )
Vi a5 x| +xlfhafls
by (7.5.5)~(75.6),
=F, = ax<2(n - DF, ;- xdFd';‘l > (75.11)
n-1
+X Z H;F, ;.
i=0

Lemma 7.5.1. For any integer n > 1, F,, is a polynomial of x with degree n without con-
stant term.

Proof. From (7.5.8)-(7.5.10), for n = 1, 2 and 3, the conclusion is true. For n > 4 in
general, we proceed by induction on n. Assume F; is a polynomial of x with degree
without a constant term for any integer i: n > i > 1. We prove the conclusion for i = n.
Because x is a factor of the part on the right hand side of (7.5.11), F,, has no constant
term. Denote by d the degree of a polynomial of x. From (7.5.11),

d(F,) =1+d(F,_;), by theassumption,
=1+(n-1)=n.

Therefore, the conclusion is proved. O
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7.5 Surface loopless model =— 201

Based on Lemma 7.5.1, F,, can be expressed in the form of

Fy X (7.5.12)

™M=

]
—_

F, =

where F;, e R, forn>i>1.

Lemma 7.5.2. In (7.5.11), the polynomial

dF,_
2n-1)F, ;- x dil >0
forn = 2if,and only if, F,_; = 0.

Proof. From (7.5.12),

dF n-1 . n-1 .
2n-1)F,_, - x dj(*l =2(n-1) ) Fyx' = ) iFy, )
i=1 i=1

n-1

=Y (@M -1) - )F X

1l
[uN

Becauseofn >2,2(n-1)-i> 0foranyi:1<i < n. This leads to the conclusion. [

This lemma enables us to write

dF,_
Ay =2n-1)F, ;-x d’)’( !

as a polynomial of x with degree not greater than n — 1 determined only by F; (1 < i <
n - 1) such that, for any integer1 <i<n-1,

Ai,n—l = a)i(An—l(e R+)
- Qn-i-2F;,,

Lemma 7.5.3. Foranyintegern > 1, F, € R, [x] (i. e., the set of all polynomials of x with
every coefficient non-negative).

Proof. Based on Lemmas 7.5.1-7.5.2 and a € R,, we proceed by induction on n, F;,, =
0,F, € R, for1<i<nandthenF, € R,[x] is found. O

This lemma shows the probability of equation (7.5.1) to have a solution whose coef-
ficient can be expressed as either a finite sum of positive terms or it is summation-free.

Theorem 7.5.4. Equation (7.5.1) is well-defined on R [x,y}.

Proof. Let fy, 0yfny = Fy, forn > 0, be evaluated by (75.7)-(7.5.11). Because fy, satisfies
equation (7.5.2) and equation (7.5.2) is equivalent to equation (7.5.1), f;;; is also a solution
of equation (7.5.1). From Lemma 7.5.3, f;;; € R, [x,y}.

By considering the procedure to evaluate f;,; from (7.5.7) to (7.5.11) on R, [x,y}, the
uniqueness of f; is seen for the initial condition of equation (7.5.1). This solution is the
only one. O
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202 — 7 Partial differential equations

On the basis of the three lemmas mentioned above, we are allowed to construct
the solution of equation (7.5.1) in a form preferable to automatic production.

Theorem 7.5.5. The solution f = f,; of equation (7.5.1) on R [x,y} are determined by
F, = a;’fnl,for n > 0, in the form of

{a;,’fnl =x(F,_; +ah,_, +Z,,), whennz1; 75.13)
a;,’fnl =1, whenn = 0,
where
n-1 .
Apy =) (n-i-2)F;, X}
= (7.5.14)

o= Z Filye1Froasi
i=1

Proof. On the basis of Theorem 7.5.4 and Lemma 7.5.2 with their proofs, via rearrange-
ments, (7.5.13) is then found. O

Because F,_;, A,_; and %,,_; all are of the form of a finite sum with all terms positive
in R, [x], the F,, for n > 1 are all of the form of a finite sum with all terms positive in
R, [x].

In addition, it is also seen that all coefficients in F,, forn > 1, arein Z,..

Example 1. Given root-vertex valency and size, determine the root-isomorphic classes
of loopless maps on orientable surfaces. Consider the equation

of L F\_q_ -1
(2 -xL) - a-nflef -1 (7515
f|x:0.y:0 =1

found in Liu YP [48] (p. 211, (8.4.8)). Its solution is the enufunction of loopless rooted
maps on orientable surfaces with root-vertex valency and size as parameters in which
the coefficient of x™y" in Z, provides the number of root-isomorphic classes of such
maps with root-vertex valency m and size n.

Whena = 1, equation (7.5.1) becomes equation (7.5.15). Hence, the solution of equa-
tion (7.5.15) is just (7.5.13) and (7.5.14) in the case of a = 1.

Theorem 7.5.6. Let ¢ € R{x,y} be determined by ®,, = a;¢, forn > 0, be the enufunc-
tion of loopless rooted maps on orientable surfaces with root-vertex valency m(x™) and
size n(y") as two parameters, then

O, =x(Qp_ +A,_;+% ), n>1;
HO = 1, n= 0,
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7.6 Surface endless model =—— 203

where
n-1
A= Z(Zn—z—Z)CD”, lx,
1
nl
nl_z®|x I(Dnll
i=1
Proof. This is a result of Theorem 7.5.5 when a = 1. O

Example 2. Given root-vertex valency and size, determine the root-isomorphic classes
of loopless maps on all (orientable and non-orientable) surfaces. Consider the equa-
tion

29(2 % -x L) = - x9fl,f -1

flx:O.y:O =1

found in Liu YP [48] (p. 213, (8.4.17)).

Its solution is the enufunction of loopless rooted maps on all surfaces with root-
vertex valency and size as parameters in which the coefficient of x™y" in Z, provides
the number of root-isomorphic classes of such maps with root-vertex valency m and
size n.

When a = 2, equation (7.5.1) becomes equation (7.5.16). Hence, the solution of
equation (7.5.16), is just (7.5.13) and (7.5.14) in the case of a = 2.

(7.5.16)

From the two examples, we see the reason that equation (7.5.1) is called a surface
loopless model.

7.6 Surface endless model

Consider the equation for f € R{x,y} as

o= (e
3 1- XY\ 1
axcys- = ax’y *1 f flx 1 Xy (76.1)
f|x:0,y:0 =1

where a € R,, a # 0. This is equation (28) in Introduction when b = ¢ = d = 1 because
it is meaningful in a classification for endless maps on orientable surfaces and whole
(orientable and non-orientable) surfaces according asa = 1and a = 2.

On R{x,y}, equation (7.6.1) is transformed into a suitable one of its equivalences:

5]
f= ax3y£ + axzyf + %(xflx:1 -fH+xy+1 (76.2)

Letf € R{x,y} be determined by F,, = [f],, = a;,‘f € R{x},n > 0. This is

f= Z Fnyn’ Fp = [f], € R{x}. (76.3)

n=0
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204 —— 7 Partial differential equations

By the initial condition of equation (7.6.1),

[flx:O]O =1

From (7.6.3), it is seen that, forn > 0,

of dF.
[flycily = Fulye; and [xa = XEH.
Write H,, = F,|,_;, n > 0. By (7.6.5),
H, =Y dF,
i>0
forn>0.
On the basis of (7.6.4)-(7.6.6). By (7.6.2),
¥°:  [flo = 1(all terms but constant term with y
on the right hand side of equation (7.6.2));
B FO = 1, HO = 1,
of X[Xfly=1 = f]
v Ifl = axz[xa]o +ax’[f], + % +X,
by (7.6.5)-(7.6.6),
=ax® - x+x = ax?
=F = ax’, Hy=a,
Vi Iflh= axz[x%]l +ad’[f]; + X—[Xfl"ilx_fh,

by (7.6.5)-(7.6.6),
=2a%" + X" + ax® = ax® + 3d%X*

=F,= ax’ +3a’x", Hy,=a+ 3d,
and, for any integer n > 3,

n _ 2. of 2
vy [flp=ax [Xax]n,lﬂlx [l

+ X[Xflle _f]n—l’
1-x
by (7.6.5)-(7.6.6),

dF,_
=F, = ax3wnl +ax’F,,

+ X(XHn—l B Fn—l)
1-x '

(7.6.4)

(7.6.5)

(7.6.6)

(7.6.7)

(76.8)

(7.6.9)

(7.6.10)
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Lemma 7.6.1. For any integer n > 1, F, is a polynomial in x with terms of degrees be-
tween 2 and 2n.

Proof. From (7.6.8)-(7.6.9), the lemma is true for n = 1 and 2. For n > 3 in general,
we proceed by induction on n. Assume, for any integeri (n -1 > i > 1), that F; is a
polynomial of x with all terms of degrees between 2 and 2i. We prove the lemma for
i = n. Letd(p) is the degree of polynomial p of x. Because x* is a factor on the right hand
side of (7.6.10), the minimum degree of all terms of F,, is not less than 2. By (7.6.10),

d(F,) =2+d(F,_,), by theassumption,
=2+2(n-1) <2n.

Therefore, the lemma is true. O

On the basis of this lemma, it is seen that, for n > 1, F, has the form

2n 2n
F,=)F,x' and H,=) F, (76.11)
i=2 i=2

This lemma shows that, for any integer n given, F,, is of the form of a finite sum of
terms not greater than 2n.

Lemma 7.6.2. For any integern > 1,

xH, - F,

(1-x)|(xH, -f,) and # > 0. (76.12)
Proof. From (7.6.11),
XH, —Fy Y Fialx - X))
1-x 1-x
(76.13)

2n i-1
1-x
=X E F; .
i Ln( 1-x >

Because of (1-x)|(1- xi‘l) for any integer i > 2, the first conclusion is true. Because of

i1 i-2
1-x' ;
1 =2
p— X )':0
for any integer i > 2, the second conclusion is true. O

From the proof of the lemma, it is seen that

xH, - F i
ﬁ = ) Fx. (7.6.14)

jHl1<i<2n
1sj<2n-2

Lemma 7.6.3. For any integern > 1, F, € R, [x].
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Proof. Because a € R, on the basis of two lemmas mentioned above, (7.6.10) and the
inductive principle lead to F,, € R, [x) if, and only if,

(XHn _Fn)/(l - X) € R+[X)-

By (7.6.13), the conclusion is drawn. O

As a matter of fact, the conclusion of this lemma can be strengthened to all coef-
ficients of polynomial F,, being in Z, whenevera € Z,.

Theorem 7.6.4. Equation (7.6.1) is well-defined on R, [x,y}.

Proof. Letf = fi4,0)fna = Fp,n = 0. They are evaluated from (7.6.7)-(7.6.10). Because of
fna satisfying the equation (7.6.2), the equivalence between equation (7.6.2) and equa-
tion (7.6.1) shows that f, 4 is a solution of equation (7.6.1) as well. From Lemma 7.6.3,
fnd € R, [xy}

By considering the procedure to get f,4 by employing (7.6.7)-(7.6.10) on R, [x,y},
it is seen that f,4 is unique for the initial condition. Therefore, f, 4 is the only solution
of equation (7.6.1). O

This theorem shows that it only is necessary to investigate f, 4 for exploiting more
useful structures on any general solution of equation (7.6.1).

Theorem 7.6.5. The solution f, 4 of equation (7.6.1) on R_[x,y} obeys an expression of
the form of a finite sum with all terms positive like, for any integer n > 0,

1, whenn = 0;
(foaln = § ax?, whenn =1; (7.6.15)

ax®N,_; +xI1,,_;, whennz>2,

where

2n-2 .
Ny =Y (i+DF,x;

i=2
i
I,y = Z Fj,n—lx :

i+1<j<2n-2
1<i<2n-4

(7.6.16)

Proof. By substituting (7.6.11) and (7.6.14) into (7.6.10), (7.6.15) can be found after rear-
rangement. O

Example 1. Root-isomorphic classes of Endless maps on orientable surfaces with root-
vertex valency and size given. Consider the equation for f € R{x,y}

of Xy > X’y

3 9 _ 42 A _ Ay _ 1.

XVox (1 AR wd Uy LS Rab (76.17)
flx:O,y:O =1
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A special case of the first in equation (7.6.17) might be seen in [48] (2008, p. 180,
equation (7.5.12)). One of its solution is the enufunction of determining the number of
root-isomorphic classes of end-cutless maps on all orientable surfaces with root-vertex
valency and size given.

When a = 1, equation (7.6.1) becomes equation (7.6.17). Because of it being well-
defined, the solution of equation (7.6.17) is just the case of @ = 1 in the solution of
equation (7.6.15).

Theorem 7.6.6. The solution f = f,, € R.[x,y} of equation (7.6.17) determined by O,, =
a;'felo, forn > 0, is of the form of a finite sum with all terms positive,

1, whenn = 0;
0, = 1x%, whenn = 1; (7.6.18)

X*A,_y +xIT,_;, whenn =2,

where
2n-2 .
Apg = ) (i +1)0;, x5
it (7619)
M= 3 (3 0 )¢
j=i+1
Proof. This is a direct result of Theorem 7.6.5 O

Example 2. Root-isomorphic classes of endless maps on all (orientable and non-
orientable) surfaces with root-vertex valency and size given. Consider the equation
for f € Rix,y}

of
2X3ya_ — <1 2x2y + >f— flx 17 (7.6.20)
f|x:0,y=0 =1

When a = 2, equation (7.6.1) becomes equation (7.6.20). From the fact of it being
well-defined, the solution of equation (7.6.20) is just the case of a = 2 in the solution
of equation (7.6.1).

Theorem 7.6.7. The solution f = f,, € R.[x,y} of equation (7.6.17) as determined by
A, = a}'}fela, forn > 0, is in the form of a finite sum with all terms positive,

1, whenn = 0;
A, =12, whenn =1; (7.6.21)

2N,y +xI,_;, whenn>2,
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where
2n-2 .
Npg= ) (i+1DA;, x5
ot 2 (7622
n 1= z < z A}n 1)
j=i+1
Proof. This is a direct result of Theorem 7.6.5. O

The two examples above suggest us to call equation (7.6.1) a surface endless model.

7.7 Surface Euler model
Consider the equation for f € R{x,y}

of 2, XY Xy
e S ) e MR

f|x:0,y:0 = 1>

2ax*
y (7.71)

where a € Z,, a # 0. This is equation (29) in Introduction when b = ¢ = d = 1 because
it is meaningful in a classification for Eulerian maps on orientable surfaces and whole
(orientable and non-orientable) surfaces according asa = 1and a = 2.

Equation (7.7.1) is on R{x% y} (because of only x* occurring in the equation!) ¢
R{x,y} transformed into the suitable one of equivalences as

2af>

2
forrady(r+e L) gy, -p, (772)

Letz = x°. For f € Riz,y} instead of f € R{x% y} € R{x,y}, let f be determined by
F,=1[fl,= a;’f € Riz},forn>0,i.e.,

f=Y Fy", F,=I[fl,eRiz. (773)

n=0

From the initial condition of equation (7.7.1),

[fly=0lo = 1. (7.7.4)

By (7.7.3), it is seen that, forn > 0,

of dF,
[f|z:1]n =Fyl;a and [Za]n = ZEH' (7.7.5)
Write H, = F,|,_;, for n > 0. By (77.5), it is known that, forn > 0,
H,=Y 3F, (7.76)

i=0
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On the basis of (7.7.4)-(7.7.6). By (7.7.2),

¥’ [flo = 1(all terms but constant term on right

side of equation (7.7.2) with y as factor); 777)
= F, = 1(the initiation of equation (7.7.1)),

Hy=1,
Z[flyer = flo

1-z

>

0z
by (7.7.5)-(7.7.6), (7.7.8)

=ax2(1+0)+0=az

v I =az[f+2za—g]o+

=F =az, H =aq,

f+225§] +Z[f|z:1_f]1,
0z |4 1-z

by (7.7.5)-(7.76),

y: [flh=az

(779)
=az(az +2az) + z(clz;gz) =3d’2’ + az

=F, = 3a°z* + az, H, = 3d’ +a,
and, for any integer n > 3,

n., _ a_g Z[f|z:l _f]n—l
Yy [f]n—az[f+2282]n_l+—l_z ,

by (77.5)-(7.76),

(7.710)
dF,_
—F, = aZ(F,,_l + 22?"1)

z
+ E(Hn_l — Fn—1)°

Lemma 7.7.1. For any integer n > 1, F,, is a polynomial of x with degree of each term at
least 1 and at most n.

Proof. On the basis of (7.7.8)—(7.7.9). For n = 1 and 2, the conclusion is true. For n > 3
in general, we proceed by induction. Assume, for any integer i: n > i > 1, F; is a poly-
nomial of z with the degree of each term at least 1 and at most i. We prove the case of
i = n. Because z is a factor on the right hand side of (7.7.10), F,, has no constant term
with degree of each term at least 1. Let d(p) be the degree of a polynomial of z. From
(7.710),

d(F,) =2+d(F,_,), by theassumption,
=2+2(n-1)=2n.

Therefore, the conclusion is drawn. O
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210 — 7 Partial differential equations

On the basis of this lemma, we are allowed to write F,, for n > 1 in the form of

) n
F,z and H,=) F, (7.7.11)
i=1

F =

n

U

|
—_

Lemma 7.7.2. For any integern > 1,

(1-2)(H, ~f). and ’%zo (7712)

if,and only if, F, € R, [z].

Proof. From (7.7.11),

H -F nF (1-7
n=Fy _ ZiaFinl22) (7.7.13)
1-z 1-z
Because of (1 - z)|(1 - z!) for i > 1, the first conclusion is true. Because of
1 i
Z_Vds0
-z =
fori > 1, the second conclusion is true. O
In the proof of this lemma, it is seen that
H,-F ;
%Z" = Y F,Z7. (7.714)

j+l<isn
1<j<n-1

Lemma 7.7.3. Foranyintegern>1,F, ¢ R [z].

Proof. We proceed on the basis of the two lemmas above. Because a € Z,, (7.7.10) and
induction principle show that F,, € R, [z) if, and only if, H, - F,,/1-z € R,[z). From
(7.713), the conclusion is drawn. O

This lemma enables us to evaluate the solution of equation (7.7.1)) in the form of a
sum with all terms positive.

Theorem 7.7.4. Equation (7.7.) is well-defined on R [z, y}.

Proof. Thef,, in which a;‘feu = F,, forn > 0, are determined by (7.7.7)-(7.7.10). Because
the f,4 satisfy equation (7.7.2), the equivalence between equation (7.7.2) and equation
(7.71) shows that f,, is a solution of equation (7.7.1) as well. From Lemma 7.7.3, f,, €
R.lz.y}

By considering the procedure for getting f,,, by (7.7.7)-(7.710), it is seen that f,,, is
unique from the initial condition of equation (7.7.1) on R_[z,y}. This solution is the
only oneon R, [z,y}. O
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7.7 Surface Euler model =— 211

This theorem enables us to evaluate the solution of equation (7.7.1) in a form favor-
able to the use of computers

Theorem 7.7.5. The solution f,, of equation (7.7.1) on R, [z,y}(z = x*!) determined by
F,=feuln = a;feu obeys an expression of the form of a finite sum with all terms positive
as, for any integern > 0,

1, whenn = 0;
2
ax’, whenn = 1;
(feul (7.715)
e 3a?x* + ax?, whenn =2
221:1 A2m,n—1X2m) whenn = 3,
wherefor2<m<n-1,
n-1
Yic1 Fain-s whenm = 1;
Apmn-1=1@m—1)aFypm_1)nq + Z;’;ﬁ Fyin1, when2<msn-1 (7716)
(2n - VaFyp_1) n-15 whenm = n.

Proof. By s