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Preface

The study of astronomy has blossomed in a vari-
ety of ways in the last decade of the 20th century.
Every part of the electromagnetic spectrum has
seen a revolution in observing techniques. While
much of this has been on the ground, space-based
observing has come into its own, as we are seeing
the results of second and third generation space-
based telescopes. These have provided sensitivity
and clarity that have revolutionized all subfields
in astronomy and created some new ones. These
observational developments have been supple-
mented by massive improvements in computing
power, allowing for the processing of large
amounts of astronomical data, and the theoreti-
cal modeling of the results.

The most amazing aspect of all of this
progress is that we can still provide reasonable
answers to the naive question, ‘How does it all
work?’ As our astronomical horizon expands, we
can still use familiar physics to explain the
wealth of phenomena. Even when the explana-
tion at the research level requires a complex
application of certain physical laws, there is
usually still a way of understanding the phe-
nomena based on introductory level physics.
Perhaps this is just the realization that the laws
of physics are small in number but apply uni-
versally. There are a few exceptions, where the
astronomical problems help drive back the fron-
tiers of physics, but these can be explained in
more familiar terms.

This book is dedicated to the student who
would like more out of even a brief study of
astronomy than a list of what there is. It is for the
student who wants to understand why certain
phenomena occur, and how astronomical objects
work. In addition, it addresses the question of
how we collect and interpret information about
remote objects.

The primary audience of this book will be sci-
ence majors who have taken a year of college
physics (classical) with calculus. We therefore pre-
sume that the student has seen the classical
physics needed for the astronomy course, but do
not presume a knowledge of ‘modern’ physics.

This book is the successor to Astronomy: a Physical
Perspective, published by Wiley in 1986.1 am grate-
ful to the loyal audience that book developed,
and for their encouragement to work on this new
version.

I am grateful to Simon Mitton at Cambridge
University Press, who shared my view that a
‘higher level’ book could still be visually attrac-
tive. I am also grateful to Jacqueline Garget, who
believed in this project, seeing it through a few
rough early reviews to its completion. At every
stage, she always knew exactly how to answer my
email questions to keep me going.

Three professors, Stephen Boughn (Haverford),
James Houck (Cornell) and Judith Pipher (Rochester)
class-tested various versions of this manuscript. I
appreciate their patience and their feedback. I
also appreciate their students taking the time to
use a ‘book’ in a non-standard form, and to give
comments.

Special thanks go to Nadine Dinshaw, a friend/
colleague, who read the whole manuscipt in an
early form. Her comments and support were very
helpful at that early stage.

At every stage the manuscript benefited greatly
from the feedback from reviewers who read all or
various parts of the manuscript. Some were anony-
mous, and others were: Imke DePater (University of
California at Berkeley), Debra Elmegreen (Vassar),
Andrea Ghez (UCLA), Steven Gottesman (University
of Florida), Richard Griffiths (Carnegie Mellon),
David Helfand (Columbia), Lee Mundy (University
of Maryland), James Napolitano (Rensselaer), and
Heidi Newberg (Rensselaer).

Many astronomers and physicists have con-
tributed data and illustrations which I have used
directly. They are too numerous to mention here,
but are credited in the figure captions. My special
thanks go to those who were anxious for me to
have the most recent data or best pictures.
Gathering these figures proved to be frustrating
sometimes. However, the contact that I had with
the vast majority was very rewarding. I would
also like to thank an extraordinary copy editor,
Irene Pizzie, for always knowing what I meant to
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say, and production manager, Catherine Garland,
for keeping the project moving along, and always
keeping me in the loop.

This project started during my three-year stay
at the National Radio Astronomy Observatory, in
Tucson. I am thankful to Paul Vanden Bout (NRAO
director) for helping me settle into that position,
and to all the people in Tucson who provided a
stimulating atmosphere and a view of the Santa
Catalina Mountains. The project has finished dur-
ing my stay at the University of Texas, Austin. I
am grateful to Frank Bash (McDonald Observatory
director) for arranging that position and always
having an open door. I thank my colleagues here
in Austin for providing a stimulating environment
also.

On the personal level, I got my start in astron-
omy when my mother encouraged me to take
courses at the Hayden Planetarium, in New York.
I am also grateful to my two sons, Eric and Jeff,
who never stop asking questions.

Most important, at many levels, this book
would not be here without my best colleague and
best friend, Kathryn Mead. She encouraged me to
tackle hard tasks, from running marathons, to
biking centuries, to refereeing soccer, to writing
books. Her drive and curiosity led to our most
important discovery (molecular clouds in the
outer Milky Way). More immediately, she also
helped dress up those figures for this book that
needed it the most.



Chapter |

Introduction

I.1 | An understandable universe

Our curiosity about the world around us is most
naturally manifested when we look up at the night
sky. We don’t need any special instruments to tell
us something interesting is going on. However,
only with the scrutiny afforded by a variety of
instruments can these patches of light, and the
dark regions between them, offer clues about their
nature. We have to be clever to collect those clues,
and just as clever to interpret them. It is the total
of these studies that we call astronomy.

We are fortunate to live in an era of extraordi-
nary astronomical discovery. Some have even
called this the ‘Golden Era of Astronomy’. For cen-
turies astronomers were restricted to making
visual observations from the surface of the Earth.
We can now detect virtually any type of radiation
given off by an astronomical object, from radio
waves to gamma rays. Where necessary, we can
put observatories in space. For the Solar System,
we can even visit the objects we are studying.

For all of these capabilities, there is a major
drawback. We cannot do traditional experiments
on remote astronomical objects. We cannot
change their environment and see how they
respond. We must passively study the radiation
that they give off. For this reason, we refer to
astronomy as an observational science rather than
an experimental one. It is because of this differ-
ence that we must be clever in using the infor-
mation that we do receive. In this book, we will
see what information we can obtain and how the
clues are processed. We will see that, in exchange

for the remoteness of astronomical objects, we get
to study a large number of objects under a variety
of conditions.

One of the most fascinating aspects of astron-
omy is that many phenomena can be understood
in terms of relatively simple physics. This does not
mean that we can explain every detail. However,
we can explain the basic phenomena. In this
book, we emphasize the application of a few phys-
ical principles to a variety of situations. For this
purpose, some background in physics is needed.
We assume that the reader has had an introduc-
tory course in classical physics (mechanics, elec-
tricity and magnetism, thermodynamics). We
also use quite a bit of modern physics (relativity,
atomic and nuclear physics). The modern physics
will be developed as we need it. In addition, a
familiarity with the concepts of calculus is
assumed. While most of the material can be mas-
tered without actually taking derivatives and
working out integrals, the concepts of derivatives
as representing changes and integrals as repre-
senting sums are used. The reader may also note
a variation in the mathematical level from sub-
ject to subject. This is because the goal in writing
this book is to present each astronomical subject
at the simplest level that still provides for a rea-
sonable understanding.

In organizing an astronomy text, one impor-
tant question is where to put the material on the
Solar System. The traditional approach has been
to place the Solar System first. This allows the
student to start with familiar, nearby objects first
and work out from there. The disadvantage is
that we use techniques to study the Solar System



I INTRODUCTION

that we cannot use on more distant objects. In
this book we place the Solar System last. This
allows the student to form a better idea of how
astronomy is done on remote objects. We can also
use the physics that we develop in studying stars
and other astronomical objects to give us a better
appreciation for how the Solar System works.
Finally, putting the Solar System at the end
allows for a discussion of the formation of the
Solar System, utilizing things that we learn about
star formation.

We start with stars, those points of light in
the night sky. This allows us to develop physical
ideas (radiation, gravity, etc.) that we will use
throughout the book. We will see how we obtain
information about the basic properties of stars:
temperatures, sizes, masses, compositions. The
Sun will then be looked at as an example of a typ-
ical star. We will then put these stellar properties
together, and describe a theoretical picture of
how stars work. In Part IT we will develop the spe-
cial and general theories of relativity, to allow us
to understand better the unusual states that are
reached when stars die. We will discuss the nor-
mal lifetime of stars and stellar old age and death
in Part III. In stellar death, we will encounter a
variety of exotic objects, including neutron stars
and black holes.

In Part IV, we will look at the contents of our
own galaxy, the Milky Way. We will start by look-
ing at the interstellar medium and then at how
stars are formed. Finally, we will look at how
stars, gas and dust are organized into a galaxy.

In Part V, we will look at the overall structure
of the universe, including the arrangement of
galaxies and their motions. We will start by look-
ing at other galaxies. We will also study active
galaxies, which give off much more energy than
our own. We will follow the trail of active galax-
ies from starburst galaxies to quasars. The early
history of the universe (the big bang) will be
described, and we will see can how we look for
clues about the past and its ultimate fate. In talk-
ing about the early universe, we will encounter
one of the most fascinating recent developments,
the merging of physics on the largest and small-
est scales. This involves blending theories on the
ultimate structure of matter with theories of the
overall structure of the universe.

In the final part, Part VI, we will study the
Solar System. We will see how the formation of
the Solar System can be fit into ideas already
developed about star formation. We will encounter
a variety of surfaces, atmospheres and rings that
can be explained by using the physical ideas
already developed. We will also look at the origin
of life on the Earth and the search for life else-
where in the Solar System and in our galaxy.

Although the organization of the book is
around astronomical objects, the presentation of
the topics emphasizes the application of the
underlying physics. Almost all of the physical
tools will apply to several topics. A great strength
of physical theories is the great range of their
applicability. For example, orbital mechanics can
tell us about the masses of binary stars or help us
plan a probe to Mars. Radiative transfer helps us
understand the appearance of the Sun, the physi-
cal conditions in interstellar clouds or the tem-
peratures of planetary atmospheres. Tidal effects
help us explain the appearance of certain galax-
ies, rings around some planets and the internal
heating of Io, one of Jupiter’s moons.

Though understanding how astronomical
objects work is our goal, astronomy’s foundation
is observation. We will see how observations
often define a problem - the discovery of new phe-
nomena. Observations usually provide a check on
theories that are developed. In this book, we will
therefore emphasize the interplay between obser-
vation and understanding the physics. We will
see how some observations yield numbers with
great precision, while others only give order of
magnitude estimates, but both types can be
equally important for deciding between theories.

With the current pace of astronomical discov-
ery, there is an important caution to keep in
mind. When you read an introductory text on
classical physics, you are reading about theories
that were worked out and tested over a century
ago. No question is raised about the correctness
of these theories. In astronomy, new ideas or new
observations are constantly changing the think-
ing about various problems. Many of the topics
discussed in this book are far from being settled.
Sometimes, more than one explanation is pre-
sented for a given phenomenon. This is done
either because we don’t know which is correct, or
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to show how one theory was eliminated in favor
of another. Just because this is a “text” it doesn’t
mean that it has the final word. If you under-
stand where the problems lie, and the reasoning
behind the explanations, then you will be able to
follow future developments as they appear in sci-
entific magazines or journals.

This, then, is the plan. As you study the material
that follows, see how far you can go with a little bit
of physics and a lot of curiosity and ingenuity.

|.2 | The scale of the universe

The objects that we encounter in astronomy are,
for the most part, so large or distant that it is hard
to comprehend their size or distance. We will take
a brief look at the distances involved when we
study different astronomical objects. We will talk
about these sizes in more detail when we
encounter the objects in the rest of the book. In
Fig. 1.1, we show a selection of objects on the var-
ious scales.

We start by looking at the Earth and Moon
(Fig. 1.1a). Earth has a radius of about 6000 km. Its
mass is about 6 X 10?” grams. The Moon is about
4 X 10° km from the Earth. It takes about one

second for light to travel from the Moon to the
Earth.

We next look at the Sun (Fig. 1.1b). It is 1.5 X
10® km from the Earth, meaning it takes light
over eight minutes to get here from the Sun. We
call this distance the Astronomical Unit. Its mass
is 2 X 10%* g. This turns out to be average for a
star, and we even use it as a convenient measure.
The Sun’s radius is 6 X 10° km.

We see how far out the planets are by looking
at Pluto (Fig. 1.1¢). It is almost 40 astronomical
units from the Sun, meaning it takes light almost
six hours to reach us from Pluto.

By the time we reach the nearest stars, they
are so far away that it takes light years to reach
us. So we measure their distance in light years

(b)

(0

m Photographs to show different astronomical
scales. (a) The Earth and Moon from space. [NASA] (b) The

Sun. [NOAO/AURA/NSF] (c) Pluto and its moon, Charon.
[STScl/NASA]
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(e)

ISP (Continued) (d) Betelgeuse. [STSCNASA] (e) A
globular cluster. [NOAO/AURA/NSF] (f) The Andromeda
Galaxy. [NOAO/AURA/NSF] (g) A cluster of galaxies.
[NOAO/AURA/NSF]

(almost 10* km) or parsecs (one parsec is about
three light years). Fig. 1.1(d) shows a star about as
far away as we can take direct picture of its disk.
Itis the giant star Betelgeuse in the constellation
of Orion, some 500 parsecs away, meaning it took
the light for that image about 1500 years to
reach us.

The next largest scale are groupings of stars
called clusters, such as the globular cluster in Fig.

()

(g

1.1(e). These objects may contain 10° stars, and
have extents of tens of parsecs. Because of their
collective brightness, we can see them far away,
even on the other side of our galaxy. In fact, they
tell us that we are 8500 parsecs from our galactic
center. That means it takes light from the galactic
center 25 000 years to reach us.
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In Fig. 1.1(f), we leave the Milky Way Galaxy
and look at one of our neighbors, the
Andromeda Galaxy, which we think looks a lot
like our galaxy would look if we could view it
from outside. It is so far away that we measure its
distance in thousands of parsecs, kiloparsecs. It
is 700 kiloparsecs away, meaning it takes light
about 2100 years to reach us. It is about 20 kilo-
parsecs across. It has a mass equal to more than
10" Suns. When we look at larger scales, we will
see that galaxies are like the molecules of the
universe.

Our final step is to a cluster of galaxies, such
as the Virgo Cluster, which is shown in Fig. 1.1(g).
These clusters are groupings of thousands of
galaxies, and are typically millions of parsecs
across. We detect some clusters so far away that
their light has taken a significant fraction of the
age of the universe (which we think is about 14 X
10° yr) to reach us.

As we have said, this description is just to give
you a flavor of the sizes involved. The individual
objects will be discussed in detail throughout
this book.
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Chapter 2

Continuous radiation from stars

2.1 | Brightness of starlight

When we look at the sky, we note that some stars
appear brighter than others. At this point we are
not concerned with what causes these brightness
differences. (They may result from stars actually
having different power outputs, or from stars being
at different distances.) All we know at first glance is
that stars appear to have different brightnesses.
We would like to have some way of quantify-
ing the observed brightnesses of stars. When we
speak loosely of brightness, we are really talking
about the energy flux, f, which is the energy per
unit area per unit time received from the star.
This can be measured with current instruments
(as we will discuss in Chapter 4). However, the
study of stellar brightness started long before
such instruments, or even telescopes, were avail-
able. Ancient astronomers made naked eye esti-
mates of brightness. Hipparchus, the Greek
astronomer, and later Ptolemy, a Greek living in
Alexandria, Egypt, around 150 Bc, divided stars
into six classes of brightness. These classes were
called magnitudes. This was an ordinal arrange-
ment, with first-magnitude stars being the bright-
est and sixth-magnitude stars being the faintest.
When quantitative measurements were made,
it was found that each jump of one magnitude
corresponded to a fixed flux ratio, not a flux differ-
ence. Because of this, the magnitude scale is essen-
tially a logarithmic one. This is not too surprising,
since the eye is approximately logarithmic in its
response to light. This type of response allows us to
see in very low and very high light levels. (We say

that the eye has a large dynamic range; this range
is achieved at a sacrifice in our ability to discrimi-
nate small brightness differences.)

The next step was to make the scale continu-
ous, so that, for example, we could accurately
describe the brightness of a star that is between
second and third magnitude. In addition we would
like to extend the scale, so that the brightnesses
of stars that we can see only through telescopes
can be included. It was found that a difference of
five magnitudes corresponds to a factor of 100 in
brightness. In setting up the magnitude scale,
this relation is defined to be exact.

Let b, and b, be the observed brightnesses of
two stars, and let m; and m, be the corresponding
magnitudes. The statement that a five-magnitude
difference gives a flux ratio of 100 corresponds to

by/b, = 100~ m)/5 (2.1)

We can see that this equation guarantees that
each time m, — m,; increases by five, by/b,
decreases by a factor of 100. Remember, increasing
the brightness decreases the magnitude. This
point sometimes confuses even professional
astronomers. That is why you will often hear
astronomers talking about being so many magni-
tudes “brighter” or “fainter” than something else,
without worrying about whether that makes m
larger or smaller.

Equation (2.1) gives brightness ratios in pow-
ers of 100, but we usually work in powers of ten.
To convert this we write 100 as 102, so equation
(2.1) becomes

by/b, = 10(m ™23 (2.2)
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This equation can be used to calculate the
brightness ratio for a given magnitude difference.
If we want to calculate a magnitude difference for
a given brightness ratio, we take the logarithm
(base 10) of both sides, giving

My — My = 2.510810(bs/b2) (2.3)

To see how this works, let’s look at a few sim-
ple examples. On the original scale, the magni-
tude range for stars visible to the naked eye is 1 to
6 mag. This corresponds to a brightness ratio

byfb, = 10672 = 10

The largest ground-based telescopes extend
our range from 6 to 26 mag. This corresponds to
an additional brightness ratio

byfby = 10126-6)25 — 108

We can also find the magnitude difference,
Am, corresponding to a factor of 10° in brightness:

Am = 2.5 log,(10°) = (2.6)(6) mag = 15 mag

So, we have taken the original six magnitude
groups and come up with a continuous scale that
can be extended to fainter or brighter objects.
Objects brighter than magnitude 1 can have mag-
nitude 0 or even negative magnitudes.

2.2 | The electromagnetic spectrum

Thomas Young first demonstrated interference
effects in light, showing that light is a wave phe-
nomenon. If we pass light through a prism (Fig.
2.1), we can see that the light is spread out into

Red

Green
Blue
Violet

m The colors of visible light. When light passes
through a prism, the rays of different colors are deflected by

different amounts. The colors are listed, from top to bottom,

in order of decreasing wavelength.

Distance

>

Intensity

The wavelength A is the distance between the
corresponding points of a wave in successive cycles. For
example, it can be from peak to peak.

different colors. We call this range of colors the
visible spectrum. These colors have different wave-
lengths (Fig. 2.2). For example, the red light has a
wavelength around 650 nm (= 650 X 10" ° m =
6.5X 10 "m =6.5X 10 °cm). (We used to
express this in terms of angstrom units, after the
Swedish physicist A. J. Angstrom, but this is not
part of the official metric system. The angstrom
was a convenient unit, since it is about the size of
a typical atom.) At the opposite end of the visible
spectrum from red is violet, with a wavelength of
about 400 nm.

In a vacuum, all wavelengths of light travel at
the same speed ¢ = 3.0 X 10" cm/s (3.0 X 10® m/s,
3.0 X 10° km/s). At this speed light can travel a dis-
tance equal to the Earth’s circumference 7.5 times
per second. A light pulse take 1.3 s to reach the
Moon. The speed of light is so large that measur-
ing it requires the accurate measurement of time
over short intervals, or the passage of light over
long distances. Until late in the 19th century, the
large distances between astronomical objects
were used to provide reasonably long travel times.
More recently, accurate timing devices have made
laboratory measurements feasible.

All waves have a frequency associated with
them. The frequency tells us the number of oscil-
lations per second, or the number of crests that
pass per second. The product of the wavelength A
and the frequency v gives the speed of the wave.
That is,

v =c (2.4)
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Table 2.1. ‘ The electromagnetic spectrum.

Region Wavelength Frequency (Hz)

Radio > | mm <3x 10"

Infrared 700 nm—1 mm 3% 10"-43x 10"
Visible 400-700 nm 43 % 10"-75 % 10"
Ultraviolet 10-400 nm 75 % 10"-3 x [0'®
X-ray 0.1-10 nm 3% 10'%-3x 10"
Gamma-ray < 0.l nm >3x10'®

The higher the frequency, the shorter the
wavelength. For example, we can find the fre-
quency for light at a wavelength of 600 nm:

v =c/A

3.0 X 10®* m/s
600 X 10 °m

5.0 X 10™ cps

For 1 cycle per second (cps), we use the unit
1 hertz (Hz).

When we talk about light waves with the above
frequency, what is actually varying at 5 X 10™
cycles per second? This question was answered
more than 100 years ago by James Clerk Maxwell,
who pointed out the unity between electric and
magnetic fields. The behavior of these fields,
and their relationship to charged particles is
described by four equations known as Maxwell’s
equations.

In these equations, Maxwell was mostly sum-
marizing the work of others, but it was he who
put the whole picture together. For example, one
of Maxwell’s equations is Faraday’s law of induc-
tion, which describes how a changing magnetic
field can produce an electric field. (This is the
basis for the production of electricity in a gener-
ator.) Maxwell realized that if there is a symmetry
between electric and magnetic fields, then a vary-
ing electric field should be able to produce a mag-
netic field.

This realization serves as the basis for our
understanding of electromagnetic waves. An electric
field that varies sinusoidally (as a sine wave) pro-
duces a sinusoidally varying magnetic field,
which in turn produces a varying electric field,
and so on. These varying fields can propagate

through space, even empty space. All wavelengths
are possible. The speed of these waves can be pre-
dicted from Maxwell’s equations. The speed of
these waves in a vacuum is the same at all wave-
lengths, and turns out to be numerically equal to
¢, the speed of light. Light is just one form of elec-
tromagnetic wave. Other forms have wavelengths
that fall in different ranges.

The full set of electromagnetic waves is called
the electromagnetic spectrum (see Table 2.1). The vis-
ible spectrum is just a small part of the electro-
magnetic spectrum. At longer wavelengths are
infrared and radio waves. At shorter wavelengths
are the ultraviolet, X-ray and gamma-ray parts of
the spectrum. Even though there is no difference
between the waves in various parts of the spec-
trum, we use the divisions because different tech-
niques are used to detect electromagnetic waves
in various wavelength ranges. For example, our
eyes are sensitive to wavelengths between 400 nm
and 700 nm. This is not too surprising, since this
is where the Sun gives off most of its energy. It
makes sense that we have evolved with our eyes
able to make the best use of the illuminating
light.

We now know that astronomical objects give
off radiation in all parts of the spectrum.
However, the Earth’s atmosphere limits what we
can actually detect (Fig. 2.3). Ultraviolet and
shorter wavelengths are blocked by the atmos-
phere. Visible light passes through the clear
atmosphere (but is blocked by clouds). Most
infrared wavelengths are blocked by the atmos-
phere, but some wavelengths get through. For the
most part, radio waves pass through the atmos-
phere with little absorption. We speak of visible
and radio windows in the atmosphere, as well as
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some narrow windows in the infrared. A window
is simply a wavelength range in which the atmos-
phere is at least partially transparent.

Until relatively recently, astronomers could
only gather information in the visible part of the
spectrum, because of the lack of equipment.
Much of the development of astronomy was
biased by this handicap. In the middle of the 20th
century, the radio part of the spectrum was opened
for astronomical observations (taking advantage
of equipment developed for radar in WW II). Even
more recently, other parts of the spectrum have
become available to us, due in part to observato-
ries orbiting the Earth. Observing in various parts
of the spectrum will be discussed throughout this
book.

2.3 | Colors of stars

2.3.1 Quantifying color

When we look at a star, we would like to know how
much energy it gives off at various wavelengths.
We sometimes refer to a graph, or some equivalent
representation, showing intensity as a function of
wavelength (or frequency) as a spectrum. It is not
really proper to talk about the energy given off at
a particular wavelength. If we can specify a wave-
length to an arbitrary number of decimal places
then even a small wavelength range has an infinite
number of wavelengths. If there was even a little
energy “at” each wavelength, then there would be
an infinite amount of energy.

Instead, we talk about the energy given off
over some wavelength (or frequency) range. For
example, we define the intensity function I(A)
such that I(A) dA is the energy/unit time/unit sur-
face area given off by an object in the wavelength
range A to A + dA. Similarly, I(v) dv is the energy/
unit time/unit surface area given off by an object
in the frequency range v to v + dw.
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When we make a plot of I(A) vs. A for a star we
find that the graph varies smoothly over most
wavelengths. There are some wavelength ranges
at which there is a sharp increase or decrease in
I(A) over a very narrow wavelength range. These
sharp increases and decreases are called spectral
lines and will be discussed in the next chapter. In
this chapter, we will be concerned with the smooth
or continuous part of the spectrum. This is also
called the continuum.

When we look at stars we see that they have
different colors. Stars with different colors have
different continuous spectra. In Fig. 2.4, we look
at a cluster of stars, and note a wide range of col-
ors. If we took a continuous spectrum of various
colored stars, we would find that stars that
appear blue have continuous spectra that peak in
the (shorter wavelength) blue. The color of a star
depends on its temperature. We know that as we
heat an object, first it glows in the red, then turns
yellow/green, and then it turns blue as it becomes
even hotter.

We can therefore measure the temperature of a
star by measuring its continuum. In fact, it is not
necessary to measure the whole spectrum in detail.
We can measure the amounts of radiation received
in certain wavelength ranges. These ranges are
defined by filters that let a given wavelength range
pass through. By comparing the intensity of radia-
tion received in various filters, we can come up

Star cluster H and Chi
Persei. (We will talk more about
clusters of stars in Chapter 13.)
Notice the wide range of star
colors. [NOAO/AURA/NSF]

with a quantitative way of determining the color of
a star and therefore its temperature.

2.3.2 Blackbodies
We can understand the relationship between color
and temperature by considering objects called
blackbodies. A blackbody is a theoretical idea that
closely approximates many real objects in thermo-
dynamic equilibrium. (We say that an object is in
thermodynamic equilibrium with its surround-
ings when energy is freely interchanged and a
steady state is reached in which there is no net
energy flow. That is, energy flows in and out at
the same rate.) A blackbody is an object that
absorbs all of the radiation that strikes it.

A blackbody can also emit radiation. In fact, if
a blackbody is to maintain a constant tempera-
ture, it must radiate energy at the same rate that
it absorbs energy. If it radiates less energy than it
absorbs, it will heat up. If it radiates more energy
than it absorbs, then it will cool. However, this
does not mean that the spectrum of emitted radi-
ation must match the spectrum of absorbed radi-
ation. Only the total energies must balance. The
spectrum of emitted radiation is determined by
the temperature of the blackbody. As the temper-
ature changes, the spectrum changes. The black-
body will adjust its temperature so that its emitted
spectrum contains just enough energy to balance
the absorbed energy. When the temperature
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higher temperature. Note also that, at any frequency, a hot-
ter blackbody gives off more radiation than a cooler one.
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change in intensity with only a factor of three change in
temperature. For this reason, we often find it useful to make
a plot such as the set of curves in (b), which show the log of
the intensity as a function of the log of the frequency.

which allows this balance is reached, the black-
body is in equilibrium.

Figure 2.5 shows some sample blackbody spec-
tra. If we compare these spectra to those of actual
stars, we see that the actual spectra are very much
like blackbody spectra. Notice that in any wave-
length range, a hotter blackbody gives off more
energy than a cooler blackbody of the same size.
We also see that as the temperature increases the
peak of the spectrum shifts to shorter wavelengths.

The relationship between the wavelength at
which the peak occurs, A .y, and temperature, T,
is very simple. It is given by Wien’s displacement
law:

Amax] = 2.90 X 10 ' cm K = 2.90 X 10° nm K  (2.5)

In this law, we must use temperature on an
absolute (Kelvin) scale. (The temperature on the
Kelvin scale is the temperature on the Celsius
scale plus 273.1.)

Example 2.1 Using Wien’s displacement law
(a) Find the temperature of an object whose black-
body spectrum peaks in the middle of the visible

Log Frequency

part of the spectrum, A = 550 nm. (b) The Earth has
an average temperature of about 300 K. At what
wavelength does the Earth’s blackbody spectrum
peak?

SOLUTION
(a) Given the wavelength, we solve equation (2.5) for
the temperature:

2.9 X 10°nm K
T = ———— = 5270K
550 nm

This is close to the temperature of the Sun.
(b) Given the temperature, we solve equation (2.5)
for the wavelength:

29X 10°nmK
300 K

=1 X 10* nm

10 X 10 °m

=10 pm

This is in the infrared part of the spectrum.

Even though the Earth is giving off radiation, we
don’t see it glowing in the visible part of the
spectrum. Similarly, objects around us that are at
essentially the same temperature as the Earth
give off most of their radiation in the infrared
part of the spectrum, with very little visible light.
The visible light that we see from surrounding
objects is partially reflected sunlight or artificial
light.
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We could have solved (b) by scaling a known result,
such as the answer in (a):

/\Earth _ TA

/\A TEarth

Ty
A Earth — T A A
Earth

B (5270 K
300 K

)(550 nm)

=10 X 10° nm
= 10 pm

Scaling results can be useful because they show
how different physical parameters are related to
each other. It also provides us with a way of using
an equation even if we don’t remember the
constants.

Suppose we are interested in the total energy
given off by a blackbody (per unit time per unit
surface area) over the whole electromagnetic
spectrum. We must add the contributions at all
wavelengths. This amounts to taking an integral
over blackbody curves, such as those in Fig. 2.5.
Since a hotter blackbody gives off more energy at
all wavelengths than a cooler one, and is particu-
larly dominant at shorter wavelengths, we would
expect a hotter blackbody to give off much more
energy than a cooler one. Indeed, this is the case.
The total energy per unit time, per unit surface
area, E, given off by a blackbody is proportional to
the fourth power of the temperature. That is

E=0oT! (2.6)

This relationship is called the Stefan-Boltzmann
law. The constant of proportionality, o, is called
the Stefan-Boltzmann constant. It has a value of
5.7 X 107 ° erg/(cm? K* s). This law was first deter-
mined experimentally, but it can also be derived
theoretically. The T* dependence means that E
depends strongly on T. If we double the temperature
of an object, the rate at which it gives off energy
goes up by a factor of 16. If we change the tempera-
ture by a factor of ten (say from 300 K to 3000 K), the
energy radiated goes up by a factor of 10*,

For a star, we are interested in the total lumi-
nosity. The luminosity is the total energy per sec-
ond (i.e. the power) given off by the star. The

quantity oT* is only the energy per second per
unit surface area. Therefore, to obtain the lumi-
nosity, we must multiply it by the surface area. If
the star is a sphere with radius R, the surface area
is (47R* ), so the luminosity is

L = (4w R*)(0T? (2.7)

Example 2.2 Luminosity of the Sun

The surface temperature of the Sun is about 5800 K
and its radius is 7 X 10°> km (7 X 10*° cm). What is
the luminosity of the Sun?

SOLUTION
We use equation (2.7) to find the luminosity:

L = 4m(7 X 10™ cm)? [5.7 X 10> erg/(cm? K* s)]
X (5.8 X 10° K)*

=4 X 10> erg|s.

This quantity is called the solar luminosity, Lo, and
serves as a convenient unit for expressing the
luminosities of other stars.

2.4 | Planck’s law and photons

2.4.1 Planck’s law

The study of blackbody radiation plays an impor-
tant role in the development of what we refer to
as “modern” physics (even though these develop-
ments took place early in the 20th century).
When physicists tried to apply classical ideas of
radiation, they could not derive blackbody spec-
tra that agreed with the experimental results.
The classical calculations yielded an intensity
I(v, T) given by

I(v, T) = 2kTv%/c* (2.8)

This is known as the Rayleigh—Jeans law. The con-
stant k that appears in this law is the Boltzmann con-
stant (not to be confused with the Stefan-
Boltzmann constant). Its value is 1.38 X 10~ '® erg/K.
(The quantity kT is proportional to the kinetic
energy per particle in the gas.) The Rayleigh—Jeans
law agrees with experimental results at low fre-
quencies (long wavelengths), but disagrees at high
frequencies. In fact, you can see from equation
(2.8) that, as we go to higher and higher frequen-
cies, the energy given off becomes arbitrarily large.
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However, in looking at the blackbody curves (as in
Fig. 2.5) you see that there is a peak and then there
is less energy at higher frequencies. (The classical
prediction of arbitrarily large energies at high fre-
quencies was sometimes referred to as the “ultra-
violet catastrophe”.)

The first step in solving the problem of theo-
retically predicting blackbody curves was to
deduce an empirical formula for the observed
spectra. By “empirical” we mean a formula that is
arbitrarily put together to describe the observa-
tions, but which is not derived from any theory.
Once that is done, then we try to find a theory
that can be used to derive the formula.

In 1900, Max Planck, a German physicist, pro-
duced an empirical formula that accurately
describes the experimental blackbody spectra:

2h3 /¢

I(v,T) = P

(2.9)

In this equation, h is called Planck’s constant,
and has the numerical value 6.63 X 10~ %7 erg s.
This value was determined to provide the best
agreement with observed blackbody spectra.

Since the Rayleigh-Jeans law adequately
describes blackbody spectra at low frequencies,
the Planck law must reduce to the Rayleigh-Jeans
law in the limit of low frequencies. We can see
this if we take low frequencies to mean that hv
<< kT (or equivalently hy/kT << 1). In that case, we
can take advantage of the fact that for x << 1,
e* =1 + x. The Planck function then becomes

2h® kT

¢ h

I(v,T) =

_ 2kTv?

CZ

which is the Rayleigh—Jeans law.

Equation (2.9) gives the Planck function in
terms of frequency. How do we find it as a func-
tion of wavelength? Your first guess might be sim-
ply to substitute c/A for each occurrence of v in
equation (2.9). However, we must remember that
I(v, T) gives the energy per second per frequency
interval, whereas I(\, T) gives the energy per sec-
ond per wavelength interval. The functions must
reflect that difference (especially since they will
need different units). We therefore require that

IA, T)dx = I(v, T) dv
Solving for I(A, T) gives
IA, T) = I(v, T) (dv/dA)

To find I(A, T) we must be able to evaluate
dv/dA. We do this by remembering that » = c/A, so

that
dyfdr = —¢A? (2.10a)

We don’t care about the minus sign, which
just tells us that frequency increases when wave-
length decreases. Using this result gives

I, T) = I(». T) (c/A?)

Now we can substitute c/v for v to obtain the
final result:

(2.10b)

2hc?/A3

IA.T) = QAT _

(2.10¢)

Remember, the Planck function accurately
describes blackbody spectra, but it was origi-
nally presented as an empirical formula. There
was still no theoretical understanding of the ori-
gin of the formula. Planck continued his work
in an effort to derive the formula from some
theory. Planck found that he could derive the
formula from classical physics if he inserted a
mathematical trick. The trick amounted to tak-
ing a sum rather than an integral. The trick cor-
responds to the physical statement that a black-
body can only emit radiation at a frequency v in
multiples of the quantity hv. That is, the energy
could only be emitted in small bundles or quanta
(singular quantum). The quanta have energy hv.
Even though Planck was able to derive the black-
body formula correctly, he was still not satisfied.
There was no justification for the restriction
that energy must be quantized.

2.4.2 Photons

An explanation for why energy must be quan-
tized was proposed by Albert Einstein, in 1905. (It
was for this explanation that Einstein was later
awarded the Nobel Prize in physics.) Einstein
was trying to explain a phenomenon known as
the photoelectric effect, in which electrons can be
ejected from a metal surface if light falls on the
surface. (This is the basis for photocells, which
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are used in many applications.) Laboratory stud-
ies had shown that increasing the intensity of
the light falling on the surface increased the
number of electrons ejected from the surface,
but not their energy. Einstein said that all radia-
tion (whether from a blackbody or otherwise)
must come in small bundles, called photons. The
energy, E, of a photon with a frequency v is given

by

E=hv (2.11)

This explains the observed properties of the
photoelectric effect by stating that each electron
is ejected by a single photon striking the surface.
Increasing the intensity of light increases the
number of photons striking the surface per sec-
ond, and therefore increases the rate at which
electrons are ejected. Increasing the frequency of
the light increases the energy at which the elec-
trons are ejected. (This latter prediction was
finally tested by Robert Millikan in 1916.) A further
test of the photon hypothesis came in an analysis
of collisions between light (photons) and elec-
trons, by A. H. Compton. The fact that light is com-
posed of photons explains why Planck had to
assume that energy is quantized in deriving the
formula for blackbody spectra.

The assertion that light is essentially a parti-
cle went against the then accepted ideas about
light. The question of whether light is a particle
or a wave had been going on for centuries. For
example, Newton believed that it is a particle,
and he worked out a theory of refraction - the
bending of light when it passes, for example,
from air to glass - on the basis of light speeding
up when it enters the glass. (We now know, how-
ever, that as a wave it slows down.) The wave the-
ory became dominant with the demonstration of
interference effects by Young and the explana-
tion of electromagnetic waves by Maxwell. In
explaining the photoelectric effect, Einstein was
saying that the particle picture must be revived.
The explanation that, somehow, light can exhibit
both wave and particle properties is referred to as
the wave-particle duality. This concept is the
foundation of what we refer to as the quantum rev-
olution, since it was such a radical departure from
previous theories. We will discuss this point far-
ther in the next chapter.

2.5 | Stellar colors

We have seen that the color of a star can tell us
about the star’s temperature. However, we now
need a way of quantifying a color, rather than
just saying something is red, green or blue. For
example, if we compare two blue stars, how do we
decide which one is bluer?

We define two standard wavelength ranges,
centered at A; and A, and take the ratio of the
observed brightnesses, b(A;)/b(A,). We then con-
vert that brightness ratio into a magnitude dif-
ference (using equation (2.3)), giving

My — My = 2.5 10g10[b(A1)/b(A2)] (2.12)

We define the quantity m, — m, as the color,
measured in magnitudes, corresponding to the
wavelength pair, Ay, A,. For definiteness, let’s
assume that A, > A;. As we increase the tempera-
ture, b(A;)/b(A,) increases. This means that the
quantity m, — m, decreases, since the magnitude
scale runs backwards. If we know that an object is
radiating exactly like a blackbody, we need only
take the ratio of brightnesses at any two wave-
lengths to determine the temperature.

As we have said, we don’t really measure the
intensity of radiation at a wavelength. Instead, we
measure the amount of energy received in some
wavelength interval. We can control that wave-
length interval by using a filter that only passes
light in that wavelength range. When we use a
filter, we are actually measuring the integral of
I(A, T) over some wavelength range. Actually, the
situation is more complicated. The transmission of
any real filter is not 100% over the selected range,
and this must be factored in (see Problem 2.23).

Another complication is that continuous spec-
tra of stars do not exactly follow blackbody
curves. Therefore, observations through two fil-
ters are not generally sufficient to tell us the tem-
perature of the star. Over the years, a system of
standard filters has been developed, so that
astronomers at various observatories can com-
pare their results. The wavelength ranges of the
various filters are shown in Table 2.2. The most
commonly discussed filters are U (for ultraviolet)
B (for blue) and V (for visible, meaning the center
of the visible part of the spectrum). More recently,
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Table 2.2. ‘ Filter systems.

Filter  Peak wavelength (nm) ~ Width (nm)“
U 350 70
B 435 100
V 555 80
R 680 150
/ 800 150

“Full width at half maximum.

R (for red), and I (for infrared) have been added.
(There are actually a couple of filters in different
parts of the infrared.)

For example, the B — V color is defined by

B — V = 2.51o0gy [I(Ay) | I(Ap)] + constant

where I(Ay) and I(Ap) are the intensities averaged
over the filter ranges. (The constant is adjusted so
that B — V is zero for a particular temperature
star, designated AO. These designations will be
discussed in the next chapter.) As the tempera-
ture of an object increases, the ratio of blue to vis-
ible increases. This means that the B — V color
decreases (again because the magnitude scale runs
backwards.)

2.6 | Stellar distances

So far we have discussed how bright stars appear
as seen from Earth. However, the apparent bright-
ness depends on two quantities: the intrinsic
luminosity of the star and its distance from us.
(As we will see in Chapter 14, starlight is also
dimmed when it passes through clouds of inter-
stellar dust.) Two identical stars at different dis-
tances will have different apparent brightnesses.
If we want to understand how stars work, we
must know their total luminosities. This requires
correcting the apparent brightness for the dis-
tance to the star.

If we have a star of luminosity L, we can cal-
culate the observed energy flux at a distance d. If
no radiation is absorbed along the way, all the
energy per second leaving the surface of the star
will cross a sphere at a distance d in the same
time. It will just be spread over a larger area.
Therefore, the energy per second reaching d is

still L, but it is spread over an area of 4md? so the
energy flux, f, is

f=Lj4md® (2.13)

The received flux falls off inversely as the
square of the distance.

Unfortunately, distances to astronomical
objects are generally hard to determine. There is
a direct method for determining distances to
nearby stars. It is called trigonometric parallax, and
amounts to triangulation from two different
observing points. You can demonstrate parallax
for yourself by holding out a finger at arm’s
length and viewing it against a distant back-
ground. Look at the finger alternately using your
left and right eye. The finger appears to shift
against the distant background. Bring the finger
closer and repeat the experiment. The shift now
appears larger. If you could move your eyes far-
ther apart, the effect would be even greater.

Even the closest stars are too far away to
demonstrate parallax when we just use our eyes.
However, we can take advantage of the fact that
the Earth orbits the Sun at a distance defined to be
one astronomical unit (AU). Therefore, if we observe
a star and then observe it again six months later,
we have viewing points separated by 2 AU. The sit-
uation is illustrated in Fig. 2.6. We note the posi-
tion of the star against the background of distant
stars, and then six months later we note the angle
by which the position has shifted. If we take half
of the value of this angle, we have the parallax
angle, p.

Once we know the value of p, we can construct
aright triangle with a base of 1 AU and the other
leg being the length, d, the unknown distance to
the star. From the right triangle, we can see that

tan p = 1 AU/d (2.14)

Since p is small, tan(p) = p (rad), which is the
value of p, measured in radians. Equation (2.14)

then gives us
p(rad) = 1 AU/d (2.15)

It is not very convenient measuring such
small angles in radians, so we convert to arc sec-
onds (see Box 2.1):

p(") = 2.06 X 10°p(rad)
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m Geometry for parallax measurements. The figure

is not to scale. In reality the distance to the star, d, is much
greater than | AU, so the parallax angle, p, would normally

be very small.

where p(”) is the parallax angle measured in arc
seconds. Substituting this into equation (2.15)
gives

d/1 AU = 2.06 X 10°/p(") (2.16)

This gives the distance to the starin AU (1 AU =
1.50 X 108 km).

This method suggests a convenient unit for
measuring distances. We define the parsec (abbre-
viated pc) as the distance of a star that produces
a parallax angle p of 1 arc sec. From equation
(2.16), we can see that 1 pc = 2.06 X 10°> AU (or
3.09 X 10" km, or 3.26 light years). We rewrite
equation (2.16) as

d(pc) = 1/p(")

Remember, as an object moves farther away,
the parallax angle decreases. Therefore, a star at
a distance of 2 pc will have a parallax angle of
0.5 arc sec.

(2.17)

Box 2.1. | Angular measure

The natural unit for measuring angles is the radian. If we
have a circle of radius R, and two lines from the center

making an angle 6 with each other, then the length of the
arc bounded by the two lines is

L = 6(rad)R

where 6(rad) is the value of # measured in radians. Since
the full circumference of a circle is 2@R, the angle corre-
sponding to a full circle must be 271 radians. This tells us
that a full circle, that is 360° is equal to 2 radians, or
180° is equal to 7 radians. In astronomy, we often deal
with very small angles, and measurements in arc seconds
(") are convenient. We can convert measurements by

saying
180° 60" 60"

[ I

0(") = 6(rad) g

= 206 X 10°4(rad)

When we take the derivatives of trigonometric func-
tions (for example, d(sin 6)/d® = cos 6), it is assumed
that the angles are in radians. If not, a conversion factor
must be carried through the differentiation.

When angles expressed in radians have a value that
is much less than unity, we can use a Taylor series to
approximate them:

. . d(sing")
sin(6) = sin (0) + 0 a0 ‘ 0=0
= 6 cos(0)
=40
d(tan")
tan(f) = tan (0) + 0 T ‘ 0=0
=0 secz(O)
=0
d(cosf")
cos(6) = cos (0) + 6 T ‘ 6=0
=1 — 6 sin(0)

Note that for small 6, sin 8 and tan 6 are both approxi-
mately equal to 6, so they must be equal to each other.
(Remember; in each of the above expressions, # must be
expressed in radians.)
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Example 2.3 Distance to the nearest star

The nearest star (Proxima Centauri) has a parallax
p = 0.76 arc sec. Find its distance from Earth in
parsecs.

SOLUTION
We use equation (2.17) to give
d(pc) = 1/(0.76)

d =1.32pc

With current ground-based equipment, we can
measure parallax to within a few hundredths of
an arc second. Parallax measurements are there-
fore useful for the few thousand nearest stars.
They are a starting point for a very complex system
of determining distances to astronomical objects.
We will encounter a variety of distance determi-
nation methods throughout this book. The
trigonometric parallax method is the only one
that is direct and free of any assumptions. For this
reason, astronomers would like to extend their
capability for measuring parallax. The Hipparcos
satellite measures parallaxes to 10> arc sec.

2.7 | Absolute magnitudes

The magnitudes discussed in Section 2.1, based on
observed energy fluxes, are called apparent magni-
tudes. In order to compare intrinsic luminosities of
stars, we define a system of absolute magnitudes. The
absolute magnitude of a star is that magnitude
that it would appear to have as viewed from a stan-
dard distance, d,. This standard distance is chosen
to be 10 pc. From this definition, you can see that if
a star is actually at a distance of 10 pc, the absolute
and apparent magnitudes will be the same.

To see how this system works, consider two
identical stars, one at a distance d and the other
at the standard distance d,. We let m be the appar-
ent magnitude of the star at distance d, and M
that of the star at distance d,. (Of course, M will
be the absolute magnitude for both stars.) The
energy flux falls off inversely as the square of the
distance, therefore the ratio of the flux of the star
at d to that from the star at d, is (do/d)* . Equation
(2.3) then gives us

m — M = 2.5 log,o(d/do)*

Using the fact that log(x* ) = 2 log(x) gives

m = M + 5 logyo(d[10 pc) (2.18)

The quantity 5 logy,(d/10 pc), which is equal to
(m — M), is called the distance modulus of the star.
It indicates the amount (in magnitudes) by which
distance has dimmed the starlight. If you know
any two of the quantities (m, M or d) you can use
equation (2.18) to find the third. For any star that
we can observe, we can always measure m, its
apparent magnitude. Therefore, we are generally
faced with knowing M and finding d or knowing
d and finding M. In the next chapter we will look
at some ways of determining M.

Example 2.4 Absolute magnitude
A star is at a distance of 100 pc, and its apparent
magnitude is +5. What is its absolute magnitude?

SOLUTION
We use equation (2.18) to find
M = m — 5log (d[10 pc)
=5 — 51og (100 pc/10 pc)
=5 — 51log (10)

=0

We should note that changing the distance of
a star changes its apparent magnitude, but it
does not change any of its colors. Because colors
are defined to be differences in magnitudes, each
is changed by the distance modulus. For example,
using equation (2.18)

mg = Mg + 5 log (d/10 pc)
my = My + 5 log (d/10 pc)
Taking the difference gives
myg — my = Mp — My

Therefore, the distance modulus never appears in
the colors.

When we talk about determining an absolute
magnitude, we are really only determining it over
some wavelength range, corresponding to the
wavelength range of the observations. We would
like to have an absolute magnitude that corre-
sponds to the total luminosity of the star. This
magnitude is called the bolometric magnitude of



2 CONTINUOUS RADIATION FROM STARS

21

the star. (As we will see in Chapter 4, a bolometer
is a device for measuring the total energy received
from an object.) For any type of star, we can define
a number, called the bolometric correction (abbrevi-

ated BC), which relates the bolometric magnitude
to the absolute visual magnitude My. Therefore

Mgor = My + BC (2.19)

Chapter summary

We saw in this chapter what can be learned from
the brightness and spectrum of the continuous
radiation from stars.

We introduced a logarithmic scale, the mag-
nitude scale, for keeping track of brightness.
Apparent magnitude is related to the observed
energy flux from the star, and the absolute mag-
nitude is related to the intrinsic luminosity of
the star.

We saw how, even though stars are obvious to
us in the visible part of the spectrum, they, and
other astronomical objects, give off radiation in
other parts of the spectrum. The richness of infor-
mation in other parts of the spectrum is a theme
that we will come back to throughout the book.

We introduced the concept of a blackbody,
which is useful because the continuous spectrum
of a star closely resembles that of a blackbody.
Hotter bodies give off more power per unit sur-

Questions

face area than cooler ones (as described by the
Stefan-Boltzmann law), and also have their spec-
tra peaking at shorter wavelengths (as described
by Wien’s displacement law). We saw how
attempts to understand the details of blackbody
spectra (Planck’s law) contributed to the idea of
light coming in bundles, called photons, with
specific energies. With a knowledge of blackbody
spectra, we saw how stellar colors can be used to
deduce stellar temperatures.

We saw how finding the distances to astro-
nomical objects is very important, but can be
quite difficult. If we don’t know the distance to
an object, we cannot convert its apparent bright-
ness into a luminosity. We introduced one
method of measuring distances - trigonometric
parallax. It is the most direct method, but only
works for nearby stars. The problem of distance
determination will come up throughout the book.

2.1. Why is the magnitude scale logarithmic?

2.2. Are there any other types of measurements
that we encounter in the everyday world that
are logarithmic? (Hint: Think of sound.)

2.3. Why are astronomical observations potentially
useful in measuring the speed of light?

2.4. What are the factors that have resulted in
early astronomical observations being in the
“visible” part of the spectrum?

2.5. What do we mean by “atmospheric window”?
2.6. Why was Maxwell’s realization that a varying
electric field can create a magnetic field
important in understanding electromagnetic

waves?

2.7. (a) Estimate the number of people on Earth
who are exactly 2 m tall. (By “exactly” we
mean to an arbitrary number of decimal
places.) (b) How does this relate to the way we
define the intensity function I(A)?

2.8. What are the different ways in which the
word “spectrum” is used in this chapter?

2.9. Give some examples of objects whose spectra
are close to that of blackbodies.

2.10. How can we determine the temperature of a
blackbody?

2.11. If the peak of a blackbody spectrum shifts to
shorter wavelengths as we reach higher tem-
peratures, how can it be that a hotter black-
body gives off more energy at all wavelengths
than a cooler one?

2.12. What is the evidence for the existence of
photons?

2.13. Explain how we quantify the concept of color.

2.14. What is the value of using standard filters in

looking at stellar spectra?

Suppose you could communicate with an

astronomer on a planet orbiting a nearby

star. (The astronomer is native to that planet,

2.15.
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rather than having traveled from Earth.) You
determine the distance to the star (by
trigonometric parallax) to be 2 pc. The distant
astronomer says that you are wrong; the dis-
tance is only 1 pc. What is the problem?

Problems

2.16.

How would parallax measurement improve if
we could do our observations from Mars?

2.17. As we determine the astronomical unit more

accurately, how does the relationship
between the AU and the parsec change?

2.1.

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

What magnitude difference corresponds to a
factor of ten change in energy flux?

One star is observed to have m = —1 and
another has m = +1. What is the ratio of
energy fluxes from the two stars?

The apparent magnitude of the Sun is —26.8.
How much brighter does the Sun appear than
the brightest star, which has m = —1?

(a) What is the distance modulus of the Sun?
(b) What is the Sun’s absolute magnitude?
Suppose two objects have energy fluxes, f and
f + Af, where Af < f. Derive an approximate
expression for the magnitude difference Am
between these objects. Your expression should
have Am proportional to Af. (Hint: Use the
fact thatIn (1 + x) = x when x < 1))

Show that our definition of magnitudes has
the following property: If we have three stars
with energy fluxes, f; , f, and f; , and we
define

my — my = 2.5 logyo(f1/f2)

mz — my = 2.5 10g10(f2[f3)
then

mg — mq = 2.5 logqo(f1/f3)

Suppose we measure the speed of light in a
laboratory, with the light traveling a path of
10 m. How accurately do you have to time the
light travel time to measure c to eight signifi-
cant figures?

Let Ay and Ay(v4, v,) be the wavelength (fre-
quency) limits of the visible part of the spec-
trum. Compare (A; — A,)/(A; + A,) with (v

— vy)/(v; + v,). Comment on the significance.
(a) Calculate the frequencies corresponding
to the wavelengths 500.00 nm and 500.10 nm.
Use these to check the accuracy of equation
(2.10a). (b) Repeat the process for the second

wavelength being 501.00 nm and 510.00 nm.
What do you conclude?

*2.10.(a) Use equation (2.9) to derive v,,,, the fre-

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

quency at which I(», T) peaks. Convert this
Vmax ito a wavelength A ... (b) Use equation
(2.10c) to find the wavelength at which it
peaks. (c) How do the results in (a) and (b)
compare?

For a 300 K blackbody, over what wavelength
range would you expect the Rayleigh-Jeans
law to be a good approximation?

Derive an approximation for the Planck func-
tion valid for high frequencies (hv >> kT).

As we will see in Chapter 21, the universe is
filled with blackbody radiation at a tempera-
ture of 2.7 K. (a) At what wavelength does the
spectrum of that radiation peak? (b) What
part of the electromagnetic spectrum is this?
(a) We observe the blackbody spectrum from
a star to peak at 400 nm. What is the temper-
ature of the star? (b) What about one that
peaks at 450 nm?

Derive an expression for the shift AA in the
peak wavelength of the Planck function for a
blackbody of temperature T, corresponding to
a small shift in temperature, AT.

Calculate the energy per square centimeter
per second reaching the Earth from the Sun.
How does the absolute magnitude of a star
vary with the size of the star (assuming the
temperature stays constant)?

(a) What is the energy of a photon in the
middle of the visible spectrum (A = 550 nm)?
(b) Approximately how many photons per sec-
ond are emitted by (i) a 100W light bulb,

(ii) the Sun?

If we double the temperature of a blackbody,
by how much must we decrease the surface
area to keep the luminosity constant?

"An asterisk denotes a harder Problem or Question. The convention continues throughout the book.
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2.20. (a) How does the absolute bolometric magni-
tude vary with the temperature of a star
(assuming the radius stays constant)? (b) Does
the absolute visual magnitude vary in the
same way?

*2.21.For a star of radius R, whose radiation follows
a blackbody spectrum at temperature T, derive
an expression for the bolometric correction.

2.22. Suppose we observe the intensity of a black-
body, I,, in a narrow frequency range cen-
tered at v,. Find an expression for T, the tem-
perature of the blackbody in terms of I, and
vo. (a) First do it in the Rayleigh-Jeans limit
and (b) in the general case.

*2.23.Suppose we receive light from a star for
which the received energy flux is given by the
function f(A). Suppose we observe the star
through a filter for which the fraction of
light transmitted is t(A). Derive an expression
for the total energy detected from the star.
(Hint: Start by thinking of the energy
detected in a small wavelength range.)

2.24. What is the distance to a star whose parallax
is 0.1 arc sec?

2.25. Derive an expression for the distance of an
object as a function of the parallax angle seen
by your eyes?

2.26. (a) If we can measure parallaxes as small as
0.1 arc sec, what is the greatest distance that

Computer problems

2.27.

2.28.

2.29.

2.30.

can be measured using the method of
trigonometric parallaxes? (b) By what factor
will the volume of space over which we can
measure parallax change if we can measure
to 0.001 arc sec? (c) Why is the volume of
space important?

If we lived on Mars instead of the Earth, how
large would the parsec be?

Suppose we discover a planet orbiting a
nearby star. The distance to the star is 3 pc.
We observe the angular radius of the planet’s
orbit to be 0.1 arc sec. How many AU from
the star is the planet? (Hint: You can solve
this problem by “brute force”, converting all
the units. For an easier solution, think about
what the answer would be if the star were 1
pc from us and the angular radius of the
orbit were 1 arc sec, and then scale the result
accordingly.)

Derive an expression for the distance to a star
in terms of its distance modulus.

If we make a 0.05 magnitude error in measur-
ing the apparent magnitude of a star, what
error does that introduce in our distance
determination (assuming its absolute magni-
tude is known exactly)?

2.1. Make a fourth column for Table 2.1, showing the
range of photon frequencies for each part of the
spectrum. Make a fifth column showing the range
of photon energies for each part of the spectrum.
Make a sixth column showing the temperatures
that blackbodies would have to peak at the wave-
lengths corresponding to the boundaries between
the parts of the spectrum

2.2. Make a graph of the magnitude difference Mz — My,
as a function of temperature for a temperature
range of 3000 K to 30 000 K. To simplify the calcu-

2.3.

24.

lation you may assume that magnitudes are deter-
mined in a narrow range of wavelengths around
the peak of each filter.

For the Sun, plot the difference between the
Rayleigh-Jeans approximation and the Planck for-
mula, as a function of wavelength, for wavelengths
in the visible part of the spectrum.

For the Sun, calculate the energy given off over the
wavelength bands that correspond to the U, B and
V filters. Use this to estimate the colors U — B and
B—-V.






Chapter 3

Spectral lines in stars

In Chapter 2 we discussed the continuous spectra
of stars and saw that they could be closely
described by blackbody spectra. In this chapter,
we will discuss the situations in which the spec-
trum shows an increase or decrease in intensity
over a very narrow wavelength range.

3.1 | Spectral lines

We know that if we pass white light through a
prism, light of different colors (wavelengths) will
emerge at different angles with respect to the ini-
tial beam of light. If we pass white light through
a slit before it strikes the prism (Fig. 3.1), and
then let the spread-out light fall on the screen, at
each position on the screen we get the image of
the slit at a particular wavelength.

Both William Hyde Wollaston (1804) and Josef von
Fraunhofer (1811) used this method to examine
sunlight. They found that the normal spectrum
was crossed by dark lines. These lines represent
wavelengths where there is less radiation than at
nearby wavelengths. (The lines are only dark in
comparison with the nearby bright regions.) The
linelike appearance comes from the fact that, at
each wavelength, we are seeing the image of the
slit. It is this linelike appearance that leads us to
call these features spectral lines. If we were to make
a graph of intensity vs. wavelength, we would
find narrow dips superimposed on the continuum.
The solar spectrum with dark lines is sometimes
referred to as the Fraunhofer spectrum. Fraunhofer

gave the strongest lines letter designations that
we still use today.

The origin of these lines was a mystery for
some time. In 1859, the German chemist Gustav
Robert Kirchhoff noticed a similar phenomenon in
the laboratory. He found that when a beam of
white light was passed through a tube containing
some gas, the spectrum showed dark lines. The
gas was absorbing energy in a few specific narrow
wavelength bands. In this situation, we refer to
the lines as absorption lines. When the white light
was removed, the spectrum showed bright lines,
or emission lines, the wavelengths where absorp-
tion lines had previously appeared. The gas could
emit or absorb energy only in certain wavelength
bands.

Kirchhoff found that the wavelengths of the
emission or absorption lines depend only on the
type of gas that is used. Each element or com-
pound has it own set of special wavelengths. If
two elements which don’t react chemically are
mixed, the spectrum shows the lines of both ele-
ments. Thus, the emission or absorption spec-
trum of an element identifies that element as
uniquely as fingerprints identify a person. This
identification can be carried out without under-
standing why it works.

Whether we see absorption or emission depends
in part on whether or not there is a strong enough
background source providing energy to be absorbed
(Fig. 3.2). The strength of the spectral lines also
depends on how much gas is present and on the
temperature of the gas. Sample emission and
absorption spectra of stars are shown in Fig. 3.3.
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Screen

m If we allow white light to fall all over a prism, the

red from one part will overlap the blue from another part,

and we can't see a clear spectrum. Instead, we pass white
light through a slit first. The beam of light is then spread out
as it passes through the prism. On the screen, we are seeing
a succession of images of the slit in different colors. If there
is a color missing from the white light, this will show up as a
gap on the screen in the shape of the slit.

3.2 | Spectral types

When spectra were taken of stars other than
the Sun, they also showed absorption spectra.
Presumably, the continuous radiation produced
in a star passes through an atmosphere in which
the absorption lines are produced. Not all stars
have absorption lines at the same wavelength.
Astronomers began to classify and catalog the
spectra, even though they still did not understand
the mechanism for producing the lines. This points
out an important general technique in astronomy -
studying large numbers of objects to look for gen-
eral trends. In one very important study, over
200 000 stars were classified by Annie Jump Cannon
at the Harvard College Observatory. The benefactor
of that study was Henry Draper, and the catalog of
stellar spectra was named after him. The stars in
this catalog are still known by their HD numbers.
One set of spectral lines common to many
stars was recognized as belonging to the element
hydrogen. The stars were classified according to
the strongest hydrogen absorption lines. In this
system, A stars have the strongest hydrogen lines,

il
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Gas with
Atoms & Molecules
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Conditions for the formation of emission and

absorption lines. (a) We look at a cloud of gas with the
atoms or molecules capable of producing spectral lines. Since
there is no continuum radiation to absorb, we can only have
emission. (b) We now look through the gas at a background
continuum source. This can produce absorption lines.

B stars the next strongest, and so on. These letter
designations were called spectral classes or spectral
types. We now know that the different spectral
types correspond to different surface tempera-
tures. However, the sequence A, B, ... is not a
temperature-ordered sequence. For reasons we
will discuss below, hydrogen lines are strongest in
intermediate temperature stars.

The spectral classes we use, in order of decreas-
ing temperature, are O, B, A, F, G, K, M. We break
each of these classes into ten subclasses, identified
by a number from zero to nine; for example, the
sequence 07, 08, 09, B0, B1,B2,...,B9,A0,A1,....
(For O stars the few hottest subclasses are not
used.) For some of the hotter spectral types, we
even use half subclasses, for example, B1.5. It was
originally thought that stars became cooler as
they evolved, so that the temperature sequence
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’m Samples of stellar spec-

tra. These are high resolution
spectra, with the visible part of
the spectrum (400 to 700 nm)
broken into 50 slices. Wavelength
increases from left to right along

each strip and from bottom to

top. (a) Procyon, also known as

I L =

Alpha Canis Majoris (the brightest
star in Canis Major). It has spec-
tral type F5 (see Section 3.2),
making it a little warmer than the
Sun. (b) Arcturus, also known as
Alpha Bootes. It is spectral type
K1, being cooler than the Sun.
[NOAO/AURA/NSF]

was really an evolutionary sequence. Therefore,
the hotter spectral types were called early and the
cooler spectral types were called late. We now
know that these evolutionary ideas are not cor-
rect. However, the nomenclature still remains. We
even talk about a BO or B1 star being ‘early B’ and
a B8 or B9 as being a ‘late B’.

3.3 | The origin of spectral lines

The processes that result in atoms being able to
emit or absorb radiation at certain wavelengths

(b)

are tied to the nature of matter and light. In
Chapter 2, we saw the beginnings of the quantum
revolution with the realization that light exhibits
both particle and wave properties. We now see
how the ideas of quantization apply to the struc-
ture of the atom.

The modern picture of the atom begins with
the experiments of Ernest Rutherford, who studied
the scattering of alpha particles (helium nuclei)
off gold atoms. Most of the alpha particles passed
through the gold atoms without being deflected,
suggesting that most of the atom is empty space!
Some alpha particles were deflected through
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large angles, suggesting a concentration of posi-
tive charge at the center of each atom. This con-
centration is called the nucleus. A sufficient num-
ber of electrons orbit the nucleus to keep the
atom electrically neutral.

There were still some problems with this pic-
ture. It did not explain why electron orbits were
stable. Classical electricity and magnetism tells
us that an accelerating charge gives off radiation.
An electron going in a circular orbit is accelerat-
ing, since its direction of motion is always chang-
ing. Therefore, as the electrons orbit, they should
give off radiation, lose energy and spiral into the
nucleus. This is obviously not happening. The sec-
ond problem concerns the origin of spectral
lines. There is nothing in the Rutherford model
of the atom that allows for spectral lines.

The arrangement of spectral lines in a partic-
ular element is not random. For example, in 1885,
Johann Jakob Balmer, a Swiss teacher, realized that
there was a regularity in the wavelengths of the
spectral lines of hydrogen. They obeyed a simple
relationship which became known as the Balmer
formula:

1/]A= R(1/2* — 1/n?)

The constant R is called the Rydberg constant,
and its value is given by 1/R = 91.17636 nm. The
quantity n is any integer greater than two. By set-
ting n to 3, 4, ..., we obtain the wavelengths for
the visible hydrogen lines (also known as the
Balmer series). Of course, this was just an empirical
formula, with no theoretical justification.

Example 3.1 First Balmer line

Calculate the wavelength of the longest wavelength
Balmer line. This line is known as the Balmer-
alpha, or simply Ha.

SOLUTION
We let n = 3 in equation (3.1) to obtain

1A= R(1/2* — 1/3?)
Substituting for R and inverting gives
A= 65647 nm

This is the wavelength as measured in a vacuum.
We generally refer to the wavelength in air, since
that is how we measure it at a telescope. The wave-
length in air is that in vacuum divided by the

index of refraction of air, 1.000 29, giving

656.28 nm. (It is interesting to note that when spec-
troscopists tabulate wavelengths, those longer than
200 nm are given as they would be in air, since that
is how they usually will be measured. Radiation
with wavelengths less than 200 nm doesn’t pene-
trate through air, and its wavelengths are usually
measured in a vacuum, so the vacuum values are
tabulated.)

3.3.1 The Bohr atom

The next advancement was by the Danish physi-
cist Neils Bohr who tried to understand hydrogen
(the simplest atom), illustrated in Fig. 3.4. He pos-
tulated the existence of certain stationary states. If
the electron is orbiting in one of these states, the
atom is stable. Each of these states has a particu-
lar energy. We can let the energy of the nth state
be E, and the energy of the mth state be E,,. For
definiteness, let E,, > E,,.

Under the right conditions, transitions between
states can take place. If the electron is in the
higher energy state, it can drop down to the lower
energy state, as long as a photon is emitted with
an energy equal to the energy difference between

4th Orbit

3rd Orbit

2nd Orbit

1st Orbit

Nucleus

The Bohr atom. Electrons orbit the nucleus in

allowed orbits. The relative sizes of the orbits are correct,
but on this scale the nucleus should be much smaller.
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the two states. If the frequency of the photon is v,
this means that

hv =E, — E,

If the electron is in the lower energy state, it
can make a transition to the upper state if the
atom absorbs a photon with exactly the right
energy. This explanation incorporated Einstein’s
idea of photons.

Bohr pointed out that one could calculate the
energies of the allowed states by assuming that
the angular momentum J of the orbiting elec-
trons is quantized in integer multiples of h/2.
The combination h/27 appears so often we give it
its own symbol, h (spoken as ‘h-bar’). We apply
this to a hydrogen atom, with an electron, with
charge —e, orbiting a distance r from a nucleus
with charge +e. We assume that the nucleus is
much more massive than the electron, so we can
ignore the small motion of the nucleus, since
both the nucleus and electron orbit their com-
mon center of mass.

We first look at the kinetic energy

The potential energy, relative to the potential
energy being zero when the electron is infinitely
far from the nucleus, is given by

PE = —e?r

(By writing the potential energy in this form,
rather than with a factor of 1/4me,, we are using
cgs units. This means that charges are expressed
in electrostatic units, esu, with the charge on the
electron being 4.8 X 10~ *° esu.) The total energy
is the sum of kinetic and potential:

E = (1/2)mv* — &¥Jr (3.2)

We can relate v and r by noting that the elec-
trical force between the electron and the nucleus,
¢%/r*, must provide the acceleration to keep the
electron in the circular orbit, v?r. This tells us
that

mv2lr = e2r?

Multiplying both sides of the equation by r
gives

(3.3)

We put this into equation (3.2) to find the total
energy in terms of r:

E = —(1)2)ér (3.4)

The minus sign indicates that the total energy is
negative. To see what this means, remember that
we have defined the potential energy such that it
is zero when the electron and proton are infi-
nitely far apart. The electron and proton being far
apart with no motion is the minimal condition
for the electron being free of the proton. So, if the
electron is barely free of the proton, the total
energy would be zero. So, if the total energy is
negative, as in equation (3.4), then we must add
energy [(1/2)e?/r] if we want to bring it up to zero,
which would free the electron. So the negative
energy means that the electron is not free. In this
case we say that the system is bound.

We still have to find the allowed values of r.
The angular momentum is | = mvr. The quantiza-
tion condition becomes

mvr = nh|2
Solving for v gives
v = nh|27 mr
Squaring and multiplying by m gives
mv® = n*h?f4n? mr?
By equation (3.2), we have
e*lr = n*h?jam?® mr?
We now solve for r, giving the radius of the nth
orbit:
r, = n*h?4m*me* (3.5)

Substituting into equation (3.4) gives the energy
of the nth state:

E, = —(1/2)e*m(47?)n*h? (3.6)

Note that this has the 1/n* dependence that we
would expect from the Balmer formula.

One modification that we should make is to
account for the motion of the nucleus (since it is
not infinitely massive). We should replace the
mass of the electron, m, in equations (3.5) and
(3.6) by the reduced mass of the electron and pro-
ton. The reduced mass, m,, is defined such that
the motion of the electron, as viewed from the
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(moving) proton, is as if the proton were fixed
and the electron’s mass is reduced to m,. An
expression for m, is (see Problem 3.2)

mem,

m

me + m,

= 0.9995 m,

where m, and m,, are the masses of the electron
and proton, respectively.

Example 3.2 Hydrogen atom energy

Compute the energy of the lowest (ground) energy
level in a hydrogen atom. Also, find the radius of
the orbit of the electron in that state.

SOLUTION

We use equation (3.6) with n = 1 to give

—(1/2)(4.8 X 107 %esu)*(9.11 X 10~ g)(47?)
(1)%(6.63 X 10~ ¥ erg s)*

E, =

—22%X10 "erg

An erg is not a convenient unit to use to keep
track of such small energies, so we convert to
electron volts, eV (1 eV = 1.6 X 10~ '? erg, is the
energy acquired by an electron in being acceler-
ated through a potential difference of 1 volt),
giving

E, = —13.6 eV

The radius is given by equation (3.5):

B (6.23 X 10" *erg s)?
(911 X 107 %8g)(4.8 X 10 esu)*(47?)

61

=5.25X 10 °cm

= 0.0525 nm

Note that if we take n = % in equation (3.6) we
get E = 0. However, n = o corresponds to a free
electron. Therefore, to move the electron far from
the nucleus, we must add 13.6 eV. The energy that
we must add to an atom to break it apart is called
the binding energy. The energy goes to do work
against the electrical attraction between the elec-
tron and the nucleus as you try to pull the elec-
tron away.

Now that we have evaluated E,, we can rewrite
equation (3.6) as

E, = —13.6 eV/n? (3.7a)

It is then very easy to calculate the energies of
the other levels. For example, E, = —3.4 eV.
Therefore the energy difference, E, — E; is equal
to 10.2 eV. The energy levels are shown in Fig. 3.5.
This diagram is a convenient graphical representa-
tion of energy levels, called an energy level diagram.
In this diagram the levels are plotted as horizon-
tal lines with vertical locations proportional to
the energy. We can draw vertical arrows indicat-
ing possible transitions between the levels. The
length of the arrow would then indicate the
energy change associated with that transition.
Note that the levels are closer together as one
goes to higher values of n.

Since the zero of potential energy is arbi-
trarily defined, we sometimes choose to shift
the energy scale by the binding energy (13.6 eV
for hydrogen). This would make the energy of
the ground state (n = 1) zero, and for then = 2
state, +10.2 eV. A free electron would then have

n

0 - ------ 7

I 3

2

— Balmer

>
[5)
-’
>
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=
=

—-13.6 1

Lyman

m Hydrogen energy levels. The right hand column
gives the principal quantum number, n.The energies are rela-

tive to the state in which the electron and proton are infi-
nitely far apart, so the ground state energy is —13.6 eV.
Transitions (which can be either emission or absorption) are
grouped according to the lower level of the transition. For
example, the Balmer series consists of emissions with the
electrons ending in state n = 2, and absorptions starting in
the n = 2 state.
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an energy of +13.6 eV, or greater. The values of
the energy differences between these states are
unaffected by this shift in the zero point of the
energy.

We can use equation (3.6) to derive the Balmer
formula. First, we rewrite the equation as

E, = —hcR/n* (3.7b)
where
R = (1/2)e*m(4m?)[ch® (3.7¢)

The energy of an emitted or absorbed photon
must equal the energy difference between the
two states:

E,—E,=hv
= hc/A
Taking the energies from equation (3.7b) gives

1/A = R(1/m? — 1/n?) (3.8)

which looks very similar to the Balmer formula,
except that the Balmer formula has a 2 instead of
the m. This means that the Balmer series all have
the second energy level as their lower level.

We can use equation (3.8) to divide the hydro-
gen spectrum into different series. A given series
is characterized by having the same lower energy
state. For example, the Balmer series consists of
absorptions accompanying transitions from level
2 to any higher levels, and emissions accompany-
ing transitions from higher levels down to level 2.
The first Balmer transition (involving levels 2 and
3) has the smallest energy difference of the series.
(Clearly the energy difference between levels 2
and 3 is less than the energy difference between
levels 2 and 4, or between levels 2 and 5, and so
on.) The Balmer series is important because the
first few transitions fall in the visible part of the
spectrum. The series with the lower energy level
being level 1 is called the Lyman series. Even the
lowest transition in the Lyman series is in the
ultraviolet.

We have developed a labeling system for vari-
ous transitions. First we give the chemical symbol
for the element (e.g. H for hydrogen). Then we
give the m for the lowest level that characterizes
the series (1 for Lyman, 2 for Balmer, etc.). Finally,
we give a Greek letter denoting the number of
levels jumped. For example, if n = m + 1, we have

an alpha (a) transition; if n = m + 2, we have a
beta (B) transition. The first Balmer line is then
designated H2a. (Note that for the Balmer series
of hydrogen only, we sometimes drop the 2 and
just say Ho, HB, etc.)

3.3.2 Quantum mechanics

The Bohr model of the atom allowed physicists to
understand the organization of energy levels.
However, it was far from a complete theory. One
shortcoming was that it did not explain why
some spectral lines are stronger than others.
More fundamentally, it was an ad hoc theory. Bohr
had no explanation of why stationary states exist,
or why angular momentum must be quantized in
some particular way. These were just postulates.
A much deeper understanding was needed.

An important step was made by Louis de
Broglie, who proposed the revolutionary idea that
if light could exhibit a wave-particle duality,
then maybe all matter could. That is, an electron
orbiting a nucleus has certain wavelike proper-
ties, and it is those properties that determine the
states that are stable. One could think of the elec-
tron as having a certain wavelength. Stationary
states could be those whose circumference con-
tained an integral number of wavelengths, pro-
ducing a pattern that reinforced during each
orbit (like a standing wave). It was necessary to
have expressions for the wavelength and fre-
quency of a particle, and de Broglie noted that if
the wavelength was taken as h/p (where p is the
momentum of the particle) and the frequency as
Efh, then the orbits allowed by the standing wave
idea were the same as the orbits that Bohr found
from his postulates (see Problem 3.8).

This is clearly a departure from our normal
way of looking at matter around us, and we can-
not go through all of the ramifications here. To
this point, we have gone far enough to under-
stand stellar spectra. The picture as presented by
Bohr and de Broglie is quantum theory in its
most naive form. It was realized that if particles
behave, in some fashion, like waves then the
description of particle motions (mechanics) must
be changed from Newton’s laws of motion to laws
of motion involving waves. (Of course, in the
limit of large objects, such as apples falling to
Earth, these new laws of motion must reduce to
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Newton’s laws, because we know that Newton’s
laws work quite well for apples and planets.)
Theories that describe the mechanics of waves
are called wave mechanics or quantum mechanics.
One such theory was presented in 1925 by the
German physicist Erwin Schrodinger. In his theory
the information about the motion of a particle is
contained in a function, called a wave function.
Schrodinger’s interpretation of the wave func-
tion was that it is related to the probability of find-
ing a particle in a particular place with a partic-
ular momentum. This replaced the absolute
determinism of classical physics, with the state-
ment that we can only predict where a particle is
likely to be, but not exactly where it will be.
However, we can predict the average positions
and momenta of a large group of particles, and it
is these average properties that we see (and meas-
ure) in our everyday world. Many physicists
(including Einstein) were not comfortable with
this probabilistic interpretation, but quantum
theory has been very successful in predicting the
outcome of a wide variety of experiments. We
will pick up on some of the threads of the quan-
tum revolution later in this book.

3.4 | Formation of spectral lines

Now that we have some idea of how atoms can
emit or absorb radiation, we can return to stellar
spectra. The first point to realize is that in a star
we are not talking about the radiation from a sin-
gle hydrogen atom, but from a large number of
them. We see a strong Ha absorption line in stars
because many photons are removed from the con-
tinuum by this process. It is clear, however, that
having a lot of hydrogen does not assure us of a
strong Ha absorption. In order for such absorp-
tion to take place, a significant number of atoms
must be in level 2, ready to absorb a photon. If all
the hydrogen is in level 1, you will not see the
Balmer series, no matter how much hydrogen is
present.

3.4.1 Excitation

In general, the strength of a particular transition
(emission or absorption) will depend on the num-
ber of atoms in the initial state for that transi-

tion. The number of atoms per unit volume in a
given state is called the population of that state. In
this section we look at the factors that determine
the populations of the various states. We refer to
processes that can alter the populations as excita-
tion processes. We have already seen one type of
excitation process — the emission and absorption
of photons. Electrons can jump to a higher level
when a photon is absorbed or they can jump to a
lower level when a photon is emitted.

Populations can also be changed by collisions
with other atoms, as illustrated in Fig. 3.6. For
example, atom 1 can be in state i. It then under-
goes a collision with atom 2, and makes a transi-
tion to a higher state, j. In the process the kinetic
energy of atom 2 is decreased by the difference
between the energies of the two states in atom 1,
E; — E;. The reverse process is also possible, with
atom 2 gaining kinetic energy and atom 1 drop-
ping from state j to state i.

(a)

N

Before

(b)

Collisional excitation. In each case, the left frame
shows the atoms before the collision and the right frame
shows them after. In each frame, the occupied level is indi-
cated by a heavier line. (a) To a lower state. After the colli-
sion, atom | is in a lower state and atom 2 is moving faster.
(b) To a higher state. After the collision atom, | is in a higher
state and atom 2 is moving slower.
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The collisional excitation rates will depend on
the kinetic temperature of the gas. The higher
the temperature the faster the atoms are moving.
For atoms of kinetic temperature Ty the average
kinetic energy per atom is (3/2)kTy. As the tem-
perature increases more energy is available for
collisions. This makes higher energy states easier
to reach. Also, since the particles are moving
faster, they spend less time between collisions.
There are more collisions per second.

When a gas is in thermodynamic equilibrium
(which we discussed in the previous chapter),
with a kinetic temperature T, the ratios of the
level populations are given by a Boltzmann distri-
bution. If we let n; and n; be the populations of lev-
els i and j, respectively, their ratio is given by
il = & e ~LE—E)/KT] (3.9)
n &

In this equation g; and g; are called statistical
weights. They are needed because certain energy
levels are actually groupings of sublevels that
have the same energy. The statistical weight of a
level is just a count of the number of sublevels in
that level. Typically, g are small integers.

To help us understand the Boltzmann distri-
bution, Fig. 3.7 shows how the ratio of popula-
tions for an atom with just two levels depends on
temperature. When the temperature is zero, all
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Level populations as a function of temperature for
a two-level system. In this case we have put in energies and
statistical weights (3, 5) for the n = 2 and n = 3 states of
hydrogen (first Balmer transition).

the atoms are in the ground state, so the ratio is
zero. As the temperature increases, the quantity
in square brackets gets smaller, so the exponent
becomes less negative, and the ratio increases. If
we let Ty go to infinity the ratio of populations
approaches the ratio of statistical weights. For a
given temperature, increasing the energy separa-
tion between the two levels makes the exponent
more negative, lowering the ratio. This makes
sense, since the greater the energy separation, the
harder it is to excite the atom to the higher level.

The Boltzmann distribution provides us with a
convenient reference point, even for a system that
is not in thermodynamic equilibrium. For any
given population ratio n;n;, we can always find
some value of T to plug into equation (3.9) to make
the equation correct. We call such a temperature
the excitation temperature. When they are not in
equilibrium, each pair of levels can have a differ-
ent excitation temperature. In thermodynamic
equilibrium all excitation temperatures are equal
to each other and to the kinetic temperature.

3.4.2 lonization

If we know the temperature in the atmosphere of
a star, we can use the Boltzmann equation to pre-
dict how many atoms will be in each state, i, and
predict the strengths of various spectral lines.
However, there is still an additional effect that we
have not taken into account - ionization. If the tem-
perature is very high, some of the colliding parti-
cles will have kinetic energies greater than the
ionization energy of the atom, so the electron
will be torn away in the collision. Once a hydro-
gen atom is ionized, it can no longer participate
in line emission or absorption.

When the gas is ionized, electrons and posi-
tive ions will sometimes collide and recombine.
When the total rate of ionizations is equal to the
total rate of recombinations, we say that the gas
is in ionization equilibrium. If the gas is in thermal
equilibrium and ionization equilibrium, then the
Saha equation tells us the relative abundances of
various ions. We let n(X,) and n(X, ) be the densi-
ties of the r and r + 1 ionization states, respec-
tively, of element X. (For example, if r = 0, then
we are comparing the neutral species and the
first ionized state.) The ionization energy to go
from r to v + 1 is Ej,,. The electron density is 1,
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and the kinetic temperature is Ty. Finally, g, and
g.+1 are the statistical weights of the ground elec-
tronic states of X, and X, (assuming that most
of each species is in the ground electronic state).
The Saha equation tells us that

Me n(Xr+ 1) _ 28 ( 2mm, ka ) 3/Ze —[E/kTy]
nX) g\ R

(3.10)

The Saha equation has the same exponential
energy dependence as the Boltzmann distribution.
However, there is an additional factor of T}/2 This
comes from the fact that a free electron has more
states available to it at higher T, than at lower T.
In addition there is a factor of n. on the left. This
is because a higher abundance of electrons leads to
a higher rate of recombinations, driving down the
fraction of atoms that are ionized. Just as we did
with the excitation temperature in the Boltzmann
equation, we can define an ionization temperature T;,
which makes the Saha equation correct, even if
the gas is not in thermodynamic equilibrium.

In this equation n, is the number of electrons
from all sources, since any electron can combine
with a hydrogen ion (for example) no matter
where that electron came from (hydrogen,
helium, etc.) In many situations, virtually all of
the ions are hydrogen. That is because hydrogen
is by far the most abundant element, and because
the next most abundant element, helium, is very
hard to ionize. In that case, the number of elec-
trons is equal to the number of positive ions, 1,

TIonization Fraction
(=)
(9]
1
1

0 1
0 1x10*

Temperature (K)

FEE The ratio of electrons to the total number of
hydrogen atoms (neutral plus ion), for an electron density

2% 10%

appropriate to stars like the Sun.

Table 3.1. | Ionization energies (eV).

Atom Singly ionized Doubly ionized
H 13.6 -

He 24.6 544

C 1.3 244

N 14.5 296

O 13.6 35.1

Na 5.1 47.3

K 4.3 31.8

Ca 6.1 1.9

Fe 79 16.2

so the left side of equation (3.10) simplifies to
nZ/n,, where n, is the number of neutrals. This
extra factor of n. makes even this simpler form of
the Saha equation harder to solve for (n./ny ) than
the Boltzmann equation is to solve for the ratio of
level populations. In Fig. 3.8, we show the ratio
ne/ne as a function of temperature, for a value of
1. reasonable for stars like the Sun.

The ionization energies of some common
atoms are given in Table 3.1. This table is useful in
deciding which ions you are likely to encounter
at various temperatures. In designating ionized
atoms, there is a shorthand that has been adopted.
The roman numeral I is used to designate the
neutral species, II the singly ionized species, III
the doubly ionized species, and so on. For exam-
ple, neutral hydrogen is H(I), ionized hydrogen
(H™) is H(II), doubly ionized carbon is C(III).

3.4.3 Intensities of spectral lines

We are now in a position to discuss the intensities
of various absorption lines in stars. We will take
Ha as an example to see the combined effects of
excitation and ionization. At low temperatures,
essentially all of hydrogen is neutral, and most of
it is in the ground state. Since little H will be in
the second state, there will be few chances for Ha
absorption. The Ha line will be weak.

As we go to moderate temperatures, most of
the hydrogen is still neutral. However, more of
the hydrogen is in excited states, meaning that a
reasonable amount will be in level 2. Ha absorp-
tion is possible. As the temperature increases, the
Ha absorption becomes stronger.
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At very high temperatures, the hydrogen
becomes ionized. Since there is less neutral hydro-
gen, the Ha line becomes weaker. This explains
why the Ha line is strongest in middle-temperature
stars, and why the original scheme of classifying
by hydrogen line strengths did not produce a
sequence ordered in temperature.

We can apply a similar analysis to other ele-
ments. The details will differ because of different
energy level structures and different ionization
energies. It should be noted that, after hydrogen
and helium, the abundances of the elements fall
off drastically (see Appendix F for the abundances
of the elements). In fact, astronomers often refer
to hydrogen, helium and ‘everything else’. The
‘everything else’ are collectively called metals,
even though many of the elements don’t fit our
common definition of a metal.

We now look at the properties of different
spectral types, in order of increasing tempera-
ture. Sample spectra are shown in Fig. 3.9, and
the behaviors of a few spectral lines are shown in
Fig. 3.10.

M Temperatures in M stars are below 3500 K,
explaining their red color. The temperature
is not high enough to produce strong Ha
absorption, but some lines from neutral
metals are seen. The stars are cool enough
for simple molecules to form, and many
lines are seen from molecules such as CN
(cyanogen) and TiO (titanium oxide). If cool
stars show strong CH lines, we designate
them as C-type or ‘carbon stars’. If any M

HD 12993
HD 158859
HD 30584
HD 116608
HD 9547
HD 10032
BD 81 0367
HD 28099
HD 70178
HD 23524
SAO 76803
HD 260655
Yale 1755
HD 94028
SAD B1282
HD 13256

Samples of spectra from stars of different spectral
types. The name of the star appears on the right of each
spectrum, and the spectral type appears on the left. In each
spectrum, the wavelength increases from left to right. Hotter
stars are at the top. [NOAO/AURA/NSF]

Ionized Neutral
Hell Hel H metals metals

Molecules

Relative Intensity

| { i | | | 1
(o] B A F G K M

Spectral Type

m The relative strengths of spectral lines from

important species as a function of spectral type. Each species

shows the effects of excitation and ionization. For example,
the increase in H line strengths from K to A stars occurs
because the increasing temperature results in more hydro-
gen in the n = 2 (and higher) levels. However, the higher
temperatures of the B and O stars ionize much of the
hydrogen and the lines get much weaker.

star has strong ZrO (zirconium oxide) lines
as opposed to TiO lines, we call it an S-type.

K Temperatures range from 3500 to 5000 K. There
are many lines from neutral metals. The H
lines are stronger than in M stars but most
of the H is still in the ground state.

G Temperatures in the range 5000-6000 K. The
Sun is a G2 star. The H lines are stronger
than in K stars, as more atoms are in excited
states. The temperature is high enough for
metals with low ionization energies to be
partially ionized. Two prominent lines are
from Ca(Il). When Fraunhofer studied the
solar spectrum, he gave the strongest lines
letter designations. These Ca(Il) lines are the
H and K lines in his sequence.

F Temperatures range from 6000 to 7500 K. The H
lines are a little stronger than in G stars. The
ionized metal lines are also stronger.

A Temperatures range from 7500 to 10 000 K.
These stars are white-blue in color. They
have the strongest H lines. Lines of ionized
metals are still present.

B Temperatures are in the range 10 000-30 000 K,
and the stars appear blue. The H lines are
beginning to weaken because the tempera-
tures are high enough to ionize a significant
fraction of the hydrogen. The lines of neutral
and singly ionized helium begin to appear.
Otherwise there are relatively few lines in
the spectrum.
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O Temperatures range from 30 000 to over
60 000 K, and the stars appear blue. The ear-
liest spectral types that have been seen are
O3 stars and there are very few O3 and 04
stars. The hydrogen lines fall off very sharply
because of the high rate of ionization. The
lines of singly ionized helium are still pres-
ent, but there are very few lines overall in
the visible part of the spectrum. There are
several lines in the ultraviolet.

Some stars have emission as well as absorption
lines in their spectra. These stars are designated
with an ‘e’ after the spectral class, for example,
Oe, Be, Ae, etc. O stars with very broad emission
lines are called Wolf-Rayet stars. These stars proba-
bly have circumstellar material that has been
ejected from the star. (Wolf-Rayet stars are not the
only stars with such outflowing material.)

3.5 | The Hertzprung—Russell
diagram

Even though we cannot study any one star (except
for the Sun) in great detail, we can compensate
somewhat by having a large number of stars to
study. From statistical studies we learn about gen-
eral trends. For example, if we find that brighter
stars tend to be both hotter and larger, then any
theory of stellar structure would have to explain
that trend. Also, we think that any property that
is common to many stars must be telling us about
the laws of physics that are important in under-
standing the structure of stars.

One of the earliest statistical studies was car-
ried out in 1910 independently by the Danish
astronomer Enjar Hertzprung, and the American
astronomer Henry Norris Russell. They plotted the
properties of stars on a diagram in which the hor-
izontal axis is some measure of temperature (e.g.
color or spectral type) and the vertical axis is
some measure of luminosity. We call such a dia-
gram a Hertzprung-Russell diagram, or simply an
HR diagram.

If a random group of stars is chosen, all at dif-
ferent distances, a comparison of apparent mag-
nitudes is not very meaningful. The apparent
magnitude must be corrected to give the absolute

magnitude. However, if we find a group of stars
all at the same distance, we can plot their appar-
ent magnitudes, since the distance modulus
would be the same for all the stars. For this pur-
pose, we use clusters of stars.

An HR diagram for over 40 000 nearby stars is
shown in Fig. 3.11(a). These stars were studied by
the Hipparcos satellite, which was designed to
measure trigonometric parallaxes, so distances to
these stars are well known. So, apparent magni-
tudes can be converted into absolute magnitudes.
This allows us to compare, on the same basis, the
properties of stars that are not all in a cluster. The
first thing we notice is that stars appear only in
certain parts of the diagram. Arbitrary combina-
tions of temperature and luminosity are not
allowed. Remember, for a given temperature, the
luminosity depends on the radius of the star, so
the HR diagram is telling us that arbitrary combi-
nations of radius and temperature are not allowed.

Most of the stars are found in a narrow band,
called the main sequence. The significance of the
main sequence is that most stars of the same tem-
perature have essentially the same luminosity,
and hence essentially the same size. This close
relationship between size and temperature must
be a result of the laws of physics as applied to stars.
It gives us hope that we can understand stellar
structure by applying the known laws. It also gives
us a crucial test: any theory of stellar structure
must predict the existence of the main sequence.

Not all stars appear on the main sequence.
Some appear above the main sequence. This
means that they are more luminous than main
sequence stars of the same temperature. If two
stars have the same temperature but one is more
luminous, it must be larger than the other. Stars
appearing above the main sequence are therefore
larger than main sequence stars. We call these
stars giants. By contrast, we call the main
sequence stars dwarfs. We subdivide the giants
into three groups: subgiants, giants, supergiants.

To keep track of the size of a star of a given
spectral type, we append a luminosity class to the
spectral type. The luminosity class is denoted by a
roman numeral. Main sequence stars are lumi-
nosity class V. The Sun, for example, is a G2 V star.
Subgiants are luminosity class IV, giants are
luminosity class III. Luminosity class II stars are
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studied by the Hipparcos satellite, designed to measure
trigonometric parallaxes, so distances are known for all of
these stars. In this figure, the color represents the number of
stars in each category, with red being the most and blue
being the least. (b) A schematic HR diagram, showing the
main features of the actual diagrams. Luminosity classes are
indicated by roman numerals. [(a) Michael Perryman, ESA,
Hipparcos]

somewhere between giants and supergiants.
Supergiants are luminosity class I. We further
divide supergiants into Ia and Ib, with Ia being
larger. When we look at the spectral lines from a
star we can actually tell something about the
size. Stars of different sizes will have different
accelerations of gravity near their surface. The
surface gravity affects the detailed appearance of
certain spectral lines.

There are also stars that appear below the
main sequence. These stars are typically 10 mag
fainter than main sequence stars of the same
temperature. They are clearly much smaller than
main sequence stars. Since most of these are in
the middle spectral types, and therefore appear
white, we refer to them as white dwarfs. (Do not
confuse dwarfs, which are main sequence stars,
with white dwarfs, which are much smaller than
ordinary dwarfs.)

Example 3.3 Size of white dwarfs

Suppose that some white dwarf has the same
spectral type as the Sun, but has an absolute mag-
nitude that is 10 mag fainter than the Sun. What is
the ratio of the radius of the white dwarf, R4, to
that of the Sun, Rg?

SOLUTION
The luminosity is proportional to the square of the
radius, so

Lwd/LO = (Rwd/Ro)2

We use equation (2.2) to find the luminosity ratio
for a 10 mag difference:

Lya/Lo = 10Mo~Mua)/2:5
=10"*

Combining these two results to find the ratio of
the radii yields

Rwd/RO = (Lwd/L®)1/2
_ (10—4)1/2
=102

The radius of a white dwarfis 1% of the radius of
the Sun!

For any cluster for which we plot an HR dia-
gram, we only know the apparent magnitudes,
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not the absolute magnitudes. If we know the
absolute magnitude for one spectral type, then
we can find the distance modulus for stars of that
spectral type in the cluster. The distance modulus
is the same for all the stars in the cluster, so we
can calibrate the whole HR diagram in terms of
absolute magnitudes. To obtain a reliable calibra-
tion, we would like to carry it out for many stars.
We have already seen that there is a growing
group of nearby stars for which trigonometric
parallax can give us a good distance measure-
ment. In Chapter 13, we will see how we can
improve on this sample by looking at the motions
of clusters.

Once we know the absolute magnitude for a
given spectral type, we have a very useful way of
determining distances. For any given star, we
measure m, the apparent magnitude. We take a
spectrum of the star to determine its spectral
type. From the spectral type we know the
absolute magnitude, M. Since we know m and M,
we know the distance modulus, m — M, and there-
fore the distance. This procedure is called spectro-

scopic parallax. The word ‘spectroscopic’ refers to
the fact that we use the star’s spectrum to deter-
mine its absolute magnitude. The word ‘parallax’
refers to the fact that this is a distance measure-
ment (just as trigonometric parallax was a dis-
tance measurement using triangulation).

Example 3.4 Spectroscopic parallax
For a BO star (M = —3), we observe an apparent mag-
nitude m = 10. What is the distance to the star, d?

SOLUTION
The distance modulus is
m— M =10 — (—3) = 13 mag
We use equation (2.17) to find the distance:
5 log10(d/10 pc) = 13 mag
log0(d/10 pc) = 2.6
Solving for d gives
d/10 pc = 400
d = 4000 pc

Chapter summary

In this chapter we looked at how spectral lines
are formed, and how spectral lines can tell us
about the physical conditions in the atmosphere
of a star.

We saw that stars were originally classified
into spectral types before the nature of the tem-
perature sequence was understood.

We saw how an explanation of spectral lines,
in general, requires an atomic theory in which
the electrons can occupy only certain energy
states. An atom can go from one state to another
by emitting or absorbing a photon with the
appropriate energy. We saw that a relatively sim-
ple theory could explain the spectrum of the
hydrogen atom.

In a star, the strength of a spectral line depends
on the abundance of the particular atom, and on
the relative number in the appropriate ionization
and orbital states. The populations of orbital
states is described by the Boltzmann equation.

The distribution among ionization states is
described by the Saha equation. In general, the
higher the temperature, the higher the level of
ionization and the more we find electrons in
higher orbital states.

Finally, we saw what could be learned from a
Hertzprung-Russell diagram, in which the hori-
zontal axis is some measure of temperature and
the vertical axis is some measure of luminosity.
Most of the points representing stars on an HR
diagram fall along a narrow band, called the
main sequence. This tells us that, for most stars,
there is a simple relationship between size and
temperature. Stars that do not lie along the main
sequence are identified as being various classes of
giants, for the brighter ones, and white dwarfs,
for the fainter ones.

We saw how we can determine distances to a
star using its apparent magnitude and a spectral
type to deduce its absolute magnitude.
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Questions

3.1.

What is responsible for the linelike appear-
ance of spectral lines?

binding energy is 13.6 eV. What happens to
the binding energy if the electron is not in

3.2. Arrange the standard spectral sequence - O, the ground state?

B, A, F, G, K, M - in order of decreasing Ha 3.9. Explain how raising the temperature of the
strength. gas increases the rate of collisional excitations.

3.3. What are (a) the strong points (b) the weak 3.10. (a) Explain how the Ha absorption strength
points of (i) Rutherford’s atom and (ii) Bohr’s changes as we raise the temperature of a star.
atom? (b) Explain how the Lyman « absorption

3.4. What evidence supports the idea of photons? strength changes as we raise the temperature

3.5. What evidence supports the idea that elec- of a star.
trons behave as waves? 3.11. Why do we not see helium absorption lines in

*3.6. Consider a neutral carbon atom that has six stars like the Sun?
electrons orbiting the nucleus. Suppose that 3.12. Explain the advantage of studying the HR dia-
five of the electrons are in their lowest states, gram for a cluster, as opposed to a random
but the sixth is in a very high state. Why group of stars.
might the energy levels for the outermost 3.13. What is the significance of the main
electron be similar to those for the single sequence?
electron in hydrogen. (Hint: Think of what is 3.14. (a) How do we know that giants are larger
exerting an electrical force on the outermost than main sequence stars of the same tem-
electron.) perature? (b) How do we know that white

3.7. (a) What do we mean when we say that a sys- dwarfs are smaller than main sequence stars
tem is bound? (b) If you looked at a electron of the same temperature?
moving near a nucleus, how would you 3.15. (a) Explain how the method of spectroscopic
decide if the system is bound? parallax works. (b) What are its advantages

3.8. When we looked at the hydrogen atom, we and disadvantages relative to trigonometric
said that if it is in the ground state, the parallax?

Problems

3.1. Find the wavelengths of the Hla (Lyman- ence between this case and hydrogen is that
alpha), H18 and H2p transitions. the charge on the helium nucleus is twice

3.2. What is the wavelength of a photon that will that for hydrogen. Ignore the difference in
barely ionize hydrogen in the ground state? reduced masses.)

3.3. (a) How much energy is required to ionize 3.7. Using the de Broglie wavelength, hfp, show
hydrogen already in the n = 2 state? (b) At that orbits whose angular momentum is
what temperature would the average kinetic quantized according to the Bohr quantization
energy of the particles in the gas equal that condition (J = nh/2m) correspond to orbits
energy? whose circumference is an integer number of

3.4. Show that if we add a constant to all of the wavelengths.
energies in hydrogen, the energies of the vari- *3.8. Rederive equation (3.6) without making the
ous transitions are unaffected. assumption of an infinitely massive nucleus,

3.5. An electron in a hydrogen atom is in a high n and show that one obtains the same expres-
state. It drops down one state at a time. What sion except for the reduced mass replacing
is the first transition to give a visible photon? the electron mass. (Hint: This problem is the

*3.6. What is the wavelength of the 2« transition electrical analog of the gravitational problem

in singly ionized helium? (Hint: The differ-

in binary stars, discussed in Chapter 5.)
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3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

What are the radii of then = 2 and n =3
orbits in hydrogen?

Consider only the two lowest levels in hydro-
gen with g, = 2, g, = 6. (a) Find the ratio of
their populations at a temperature of 5000 K;
(b) at a temperature of 10 000 K.

Consider only the three lowest levels in hydro-
gen with g, = 2, g, = 6, g3 = 10. Find the three
population ratios at a temperature of 5000 K.
If the populations of two levels of energies E;
and E; and statistical weights g; and gj(E; < E))
are found to be n; and n;, respectively, find an
expression for the excitation temperature of
this transition.

Assuming that all the level populations are
given by equation (3.9), derive an expression
for f;, the fractional population in the ith
level, defined as

n;
fi=—x
L

j=1

where N is the highest populated level.

At what temperature will the average kinetic
energy of the gas be equal to the hydrogen
ionization energy?

For an atom whose populations are given by
equation (3.9), (a) in what temperature limit is

Computer problems

the ratio of the populations equal to the ratio
of the statistical weights, and (b) in what tem-
perature range would you expect the ratio of
the populations to be greater than the ratio
of the statistical weights?

*3.16.Assume that we are considering only the ion-

3.17.

3.18.

3.19.

ization of hydrogen, so that the electron den-
sity is equal to the positive ion density, and
the Saha equation simplifies to n/n, = F(T),
where F(T) is the right side of equation (3.10).
Assuming that the total amount of hydrogen,
fitotr = Me + Mg, is known and constant, find
an expression for n?[nror, the fraction of
hydrogen ionized, in terms of nror and F(T).
How much larger is an MOla star than an
MOV star? (See Appendix E for stellar
properties.)

For an A3 star, we measure an apparent mag-
nitude m = 12. How far away is the star
(assuming it is a main sequence star)? (See
Appendix E for stellar properties.)

We observe a cluster, in the constellation
Orion, whose distance is 500 pc. We find a
star whose spectrum is that of an A0, but we
cannot tell the luminosity class from the
spectrum. (a) If the apparent magnitude of
the star is +9, what is its luminosity class?
(b) What if the apparent magnitude is +4?

3.1. Tabulate the electron—nucleus reduced mass for

3.2.

3.3.

3.4.

the nucleus being H, He, C, Fe.

Find all of the Hna transitions that fall in the visi-
ble part of the spectrum.

Consider only the three lowest levels in hydrogen
with g; = 2, g, = 6, g3 = 10. Plot the fraction of
hydrogen in level 2, [n,/(ny + ny, + n3 )] vs. T, for T
covering the range from the coolest M to the
hottest O stars discussed in this chapter.

Make additional columns to Table 3.1 showing, for
each element in the table, the wavelength of a pho-
ton that would just (singly) ionize the atom, and
the temperature of the gas for which the average
kinetic energy is equal to the ionization energy.

3.5.

3.6.

3.7.

3.8.

Make a table showing, for the mid-range tempera-
ture of each spectral type, the wavelength at which
the blackbody spectrum peaks.

If we are limited to m = 6 or brighter for making
naked eye observations, make a table of the maxi-
mum distance we can see a star for the mid-range
of each spectral type (OS5, B5, etc) for main
sequence stars.

For the mid-range temperature for each spectral
type, draw a graph of log B(A, T) vs. A for wave-
lengths ranging from IR to UV.

For the mid-range temperature for each spectral
type, find the number of H ionizing photons emit-
ted per second.



Chapter 4

Telescopes

The past decades have seen dramatic improve-
ments in our observing capabilities. There have
been improvements in our ability to detect visible
radiation, and there have also been exciting
extensions to other parts of the spectrum. These
improved observing capabilities have had a major
impact on astronomy and astrophysics. In this
chapter we will first discuss the basic concepts
behind optical observations. We will then discuss
observations in other parts of the spectrum.

4.1 | What a telescope does

An optical telescope provides two important
capabilities:

(1) It provides us with light-gathering power. This
means that we can see fainter objects with a
telescope than we can see with our naked eye.

(2) It provides us with angular resolution. This
means that we can see greater detail with a
telescope than without.

For ground-based optical telescopes, light-gathering
power is usually the most important feature.

4.1.1 Light gathering

We can think of light from a star as a steady
stream of photons striking the ground with a cer-
tain number of photons per unit area per second.
If we look straight at a star, we will see only the
photons that directly strike our eyes. If we can
somehow collect photons over an area much
larger than our eye, and concentrate them on the
eye, then the eye will receive more photons per

second than the unaided eye. A telescope pro-
vides us with a large collecting area to intercept
as much of the beam of incoming photons as
possible, and then has the optics to focus those
photons on the eye, or a camera, or onto some
detector.

Example 4.1 Light-gathering power

Compare the light-gathering power of the naked
eye, with a pupil diameter of 5 mm, to that of a
1 m diameter optical telescope.

SOLUTION

Let d, be the diameter of the pupil and d, be the
diameter of the telescope. The collecting area is
proportional to the square of the diameter. The
ratio of areas is

() = Goxsomm)
d, 5.0 X 10 3m
=40 X 10*

This is the ratio of luminosities that we can see
with the naked eye and with the telescope. We can
express this ratio as a magnitude difference

my — my = —2.51og;0(4.0 X 10%)
= —11.5 mag

This means that the faintest objects we can see
with the telescope are 11.5 mag fainter than the
faintest objects we can see with the naked eye. If
the naked eye can see down to 6 mag, the telescope-
aided eye can see down to 17.5 mag. This illustrates
the great improvement in light-gathering power
with the telescope.




42

PART | PROPERTIES OF ORDINARY STARS

A major advantage of film or a photoelectric
detector over the eye is its ability to collect light for
a long time. In the eye, ‘exposures’ are fixed at
about 1/20 s. With modern detectors, exposures of
several hours are possible. Therefore, the limiting
magnitude for direct visual observing is not as
faint as for photography or photoelectric detectors.

4.1.2 Angular resolution

We now look at resolving power. Resolution is
the ability to separate the images of stars that
are close together. It also allows us to discern the
details in an extended object.

One phenomenon that affects resolution is
diffraction. Diffraction is the bending or spreading
of waves when they strike a barrier or pass
through an aperture. As they spread out, waves
from different parts of the aperture or barrier
interfere with one another, producing maxima
and minima, as shown in Fig. 4.1. As the aperture
size, relative to the wavelength, increases, there
are more waves to interfere, so the pattern is less
spread out. Most of the power is in the central max-
imum, whose angular width A6 (in radians) is
related to the wavelength of the wave A and the
diameter of the aperture, D, by

Af (rad) = A/D (4.1a)

Diffraction results in the images of stars being
smeared out by this angle. That means that if two
stars are closer than A@, their images will blend
together. We consider the images of two stars to
just be resolved when the maximum of one dif-
fraction pattern falls on the first minimum of the
other. This condition is called the Rayleigh crite-
rion. While equation (4.1a) is an approximation
good for all shapes of aperture, the actual size of
the diffraction pattern depends on the shape of
the aperture. You may remember that, for circu-
lar apertures, the resolution is given by

A6 (rad) = (1.22) A/D (4.1b)

Example 4.2 Angular resolution
Estimate the angular resolution of the eye for light
of wavelength 550 nm.

SOLUTION

We use a diameter D = 5 mm for the pupil. We use
equation (4.1a) to find the angular resolution in
radians. We convert from radians to arc seconds to

Intensity

Screen
A/D

Incoming Radiation

(b)

Diffraction. (a) A light ray enters from the bottom,
and passes through a slit of length D. Diffraction spreads the
beam out and it falls on a screen.The intensity as a function
of position on the screen is shown at the top. Most of the
energy is in the main peak, whose angular width is approxi-
mately A/D (in radians). Smaller peaks occur at larger angles.
The effect in a real image. (b) [ESO]
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convert the result to a convenient unit (1 rad =
2.06 X 10° arc sec; see Example 2.3).

(2.06 X 10°)(5.5 X 107 m)
B (5.0 X 103 m)

Ao(")

= 23 arc sec

The eye’s resolution is not quite this good, since
the full diameter of the pupil is not generally used.

From equation (4.1a) we can see that we can
improve the resolution if we use a larger aperture.
A larger telescope will give us better resolution. A
10 cm diameter telescope (20 times the diameter
of the pupil of the eye) will give an angular reso-
lution of 1 arc sec. However, diffraction is not the
only phenomenon that limits resolution. The
Earth’s atmosphere also distorts images.

When light passes through the atmosphere
from above, it is passing through increasingly
dense air. As the density of air increases, its
index of refraction increases. Therefore, the
light encounters an increasing index of refrac-
tion as it passes through the atmosphere. We
can think of the atmosphere as having a large
number of thin layers (as shown in Fig. 4.2) each
with a slightly different index of refraction. As
the light passes from one layer to the next it is
bent slightly towards the vertical. The star
appears to be higher above the horizon than it
actually is.

This would not be a problem if the atmos-
phere were stable. However, variations on time
scales shorter than a second cause changes in the
index of refraction in some places. The image
moves around. If we take a picture, we just see a
blurred image. This effect is called seeing and usu-
ally limits resolution to a few arc seconds. We
refer to the numerical value of the blurring as
‘the seeing’. At a good observatory site, on a good
night, the seeing might be as good as 1/3 arc sec
or better. This corresponds to the diffraction
limit of a 30 cm diameter telescope. Building a
larger telescope does not help us past the seeing
limitation on resolution, but it improves the light-
gathering power. Hence our earlier statement that
light gathering is the main purpose of large
ground-based optical telescopes. We will also see
later in this chapter that there are techniques for
overcoming the effects of seeing to produce dif-
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Seeing. (a) Bending of a light ray as it passes through
the atmosphere.We can think of the atmosphere as being
made up many thin layers, each with a slightly larger index of
refraction as you get closer to the ground. The amount of
bending is actually much less than in this picture. (b) Effect of

changes in the amount of bending on the image of a star.

fraction limited images for telescopes with diam-
eters from 1 to 2 m.

4.1.3 Image formation in a camera
To illustrate some basic points about the forma-
tion of images in optical systems, we look at the
operation of a simple camera (Fig. 4.3). For astro-
nomical situations, we are dealing with objects
that are ‘at infinity’, so the light rays from a
point on the sky are traveling parallel to each
other. In the figure, we show bundles of rays
coming from two different stars. The rays within
each bundle arrive at an angle with each other
equal to the angular separation of the stars on
the sky.

For a camera with a lens of focal length f, the
rays in each bundle are brought together at a
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Lens Film

m The optics of a camera. Bundles of rays from two
distant points enter, making an angle 6 with each other. The

focal length of the lens is f.

distance f behind the lens. (The image is one focal
length behind the lens when the object is at
infinity. That is the definition of the focal
length.) The images of all the stars in a field lie in
a plane, called the focal plane. The images of two
stars are at different points in the focal plane. We
can locate the image of each star by following the
chief ray of each bundle (the ray that passes
through the center of the lens, undeflected) until
it intersects the focal plane.

If stars have an angular separation 6 on the
sky, then, as viewed from the lens, the two images
have an angular separation 6 on the focal plane.
This is simply the angle between the two chief
rays. The camera provides no angular magnifica-
tion. As viewed from the lens, the angular separa-
tion between the stars is the same as the angular
separation of the images.

We can also find the linear separation x
between the two images. From the right triangle
in the figure, we see that

tan (6/2) = x/2f

If 6 is small, then tan (6/2) is approximately /2, in
radians. This gives us

Solving for x gives

X =fo (4.2)

This tells us that the linear size of the image
is proportional to the focal length. To obtain a
larger image, we use a longer focal length lens.
(This is what we are doing when we put a tele-
photo lens in a camera.)

Apart from image size, we are also concerned
with the brightness of the image. We can see that
the amount of light entering the camera is pro-
portional to the area of the lens. If D is the diam-
eter of the lens, then its area is 7D%/4. This means
that the image brightness is proportional to D?.
The brightness of the image also depends on the
image size. The more the image is spread out, the
less light reaches any small area of the film or
detector. The linear image size is proportional to
f, so the image area is proportional to f*. This
means that the image brightness is proportional
to 1/f%.

Combining these two results, we find that the
image brightness is proportional to (D/f)®. The
quantity f/D is called the focal ratio, so the bright-
ness is proportional to (1/focal ratio)>. We adjust
the focal ratio in a camera by changing f-stops.
Since the focal length of the lens is fixed, we
change the focal ratio by changing the diameter
of a diaphragm that controls the fraction of the
total lens diameter that is actually used. Each
f-stop corresponds to a factor of |2 in the focal
ratio, meaning that the image brightness
changes by a factor of 2.

The discussions so far on image formation are
really only appropriate for thin lenses, as well as
optical systems where all of the angles are small.
In real optical systems, rays that enter parallel do
not all leave parallel to each other. Imperfections
in the images formed by optical systems are
called aberrations. Some of the aberrations are
reduced by using the central part. The less we use
the edges of the lens the better the images. That
is why we might choose to use a diaphragm in a
camera to block out the outer part of the lens. In
a real optical system there is a tradeoff between
image brightness and image quality.

One type of aberration is called spherical aber-
ration. It arises from the fact that spherical curves
are the easiest to grind on glass surfaces. These
spherical shapes are close to the shapes required
for proper image formation, but differ slightly, so
the images are imperfect. Another type of aberra-
tion is called astigmatism. It occurs when the focal
length depends on where around the lens the
light strikes.

One aberration that occurs in lenses but not
in mirrors is called chromatic aberration (Fig. 4.4).
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e 8 Chromatic aberration. The focal length is different

Tuu vy

for different wavelengths.

This happens because a material’s index of refrac-
tion depends on the wavelength. The focal length
of a lens is therefore different at different wave-
lengths. The images at different wavelengths are
formed in different places. We can correct, some-
what, for chromatic aberration with a two-lens
system, called an achromat. The two lenses are
made of different materials, with different
indices of refraction, and different variations in
the indices of refraction with wavelength. An
achromat only brings the images at two wave-
lengths together, but images for intermediate
wavelengths are not far off.

Now that we have seen some of the basics of
optical systems, we can look at astronomical tele-
scopes. Most current astronomical research is
done on reflecting telescopes. However, the basic
ideas of image formation in reflecting and refract-
ing telescopes are the same. It is easier to visualize
refracting telescopes so we consider them first.

4.2 | Refracting telescopes

In a refracting telescope, the light first passes
through a large lens, called the objective lens. The
objective is the part that intercepts the incoming
light, so it determines the light-gathering power
of the telescope. The larger the objective is, the
greater the light-gathering power. The light pass-
ing through the objective is concentrated on a
second lens, called the eyepiece. The eyepiece is
used to inspect the image formed by the objec-
tive. The image formed by the eyepiece is viewed
either by the eye or by a camera. In practice,
either the objective or the eyepiece may be a
multiple lens, to correct for aberrations, but we
will treat each as a single optical element. It is
also possible to just have a film holder with no
camera lens.

Objective

\
Eyepiece
\ Camera
Lens
\
3]
0 T
— . D [
\
\
f()hj feye fecam

Image formation in a refracting telescope. Light
from a star enters from the left, making an angle 6 with the
axis, and leaves the eyepiece making a larger angle ¢ with the
axis. The focal lengths of the objective, eyepiece and camera
lens are indicated. For each lens, the ray that goes through
the center undeflected (the chief ray) is indicated as a heavier

line. In a real telescope, the angles would be much smaller.

The basic arrangement of the refracting tele-
scope is shown in Fig. 4.5. We follow the forma-
tion of the images of two stars, just as we did
with the camera. Let’s assume that the focal
length of the objective is f,y;. Since the stars are
at infinity, the objective forms their images this
distance behind the objective. The eyepiece has a
focal length f.,.. We place the eyepiece this dis-
tance behind the images formed by the objective.
(This means that the objective and eyepiece are
separated by a distance equal to the sum of their
focal lengths.) Since the initial images of the stars
are fey from the eyepiece, the eyepiece will focus
the light at infinity. This means that all of the
rays in a given bundle emerge from the eyepiece
parallel to one another.

If you now look through the eyepiece, and
focus your eyes at infinity (by relaxing the muscles
around your eye), the rays in each bundle will be
brought back together on your retina. Similarly, if
you use a camera, you focus the camera at infinity,
and the images of the stars will fall on the film.
The need to focus your eyes at infinity means that
the best way to look through the eyepiece is to
relax both eyes and cover the unused eye, rather
than squinting to close the unused eye.
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Lets’s go back to the two bundles of rays
emerging from the eyepiece. Even though the
rays within a given bundle are parallel to one
another, the bundles make some angle with each
other. If the two stars are an angle 0 apart on the
sky, then the two bundles will enter the objective,
making this angle with each other. The bundles
leave the eyepiece, making a larger angle ¢ with
each other. We can find the angle ¢ by following
the chief ray through the eyepiece. Note that the
chief ray at the eyepiece is not the same ray that
was the chief ray at the objective. However, all
rays in a given bundle will emerge from the eye-
piece parallel to the new chief ray.

From the two right triangles in the diagram
with the common side x, we see that

tan 0 = x[fop;
tan ¢ = X[feye

If the angles are small, we can replace the
tangent of the angle with the value of the angle
in radians. If we also eliminate x in the equations,
we find

@/9 = fobj/ eye (43)

This means that we have an angular magnifi-
cation equal to the ratio of the value of the focal
lengths of the two optical elements.

In general, when we want to do work with good
detail in the image, we use a telescope with a long
focal length objective. Of course, we can change the

angular magnification of a telescope by changing
the eyepiece. There is a practical limit. You don’t
want to magnify the image so much that you blow
up the blurring caused by atmospheric seeing.
There are some limitations in the use of a
refracting telescope. One problem is the chro-
matic aberration of the objective. Also, the objec-
tive must be made from a piece of glass that is
perfect throughout its volume, since the light
must pass through it. This is harder as you try to
make larger objectives. Larger objectives are also
harder to support. The objective can only be sup-
ported at its edges, since light must pass through.
Also, in many modern applications, we want to
place instruments near the eyepiece. However,
the telescope must be supported closer to the cen-
ter of mass, which means far from the eyepiece.
Any instrument hung at the eyepiece will exert a
large torque about the mount, limiting the weight
of the instrument. As a practical matter, the
largest refractors, such as that shown in Fig. 4.6,
have objectives with diameters of, at most, 1 m.

4.3 | Reflecting telescopes

Many of the difficulties with refracting telescopes
are avoided with reflecting telescopes. In reflec-
tors, the objective lens is replaced by an objective
mirror. With a mirror, there is no problem of chro-
matic aberration, since light of all wavelengths is

U2 H The | m refracting
telescope at the Yerkes
Observatory. Note the long
distance over which the observer
must move to keep up with the
eyepiece. [Yerkes Observatory
photograph]
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(b)

reflected at the same angle. The mirrors are made
by shaping and then polishing a large piece of
glass. While the polished surface has some reflec-
tive ability, it is not enough for a good mirror.
Therefore a thin layer of reflecting material (usu-
ally aluminum) is deposited on the surface. The
process of applying the reflective coating is called

(a)

Fig 4.7.
Mt Palomar (California). For almost four decades it was the

largest useful telescope in the world. The caged part is the tel-
escope. It has an equatorial mount.The solid piece in the fore-

(a) The 5 m diameter Hale telescope on

ground is part of the fork shaped support for the telescope.To
track an object, as the Earth rotates, the whole fork rotates in
the opposite direction. The prime focus cage is near the top of
the telescope. (b) The 4 m diameter Mayall telescope of the
National Optical Astronomy Observatory, on Kitt Peak,
Arizona. There is an identical telescope located on Cerro
Tololo, Chile.The Cassegrain focus is in a cage below the tele-
scope.The observer does not stay in that cage for observing;
that is done from a control room, where a television is used to
keep track of where the telescope is pointing. [(a) Palomar
Observatory/California Institute of Technology; (b)
NOAO/AURA/NSF]

aluminization. This is best done under very clean
conditions and under close to vacuum conditions,
to avoid impurities on the surface. The chamber
in which this is done is called an aluminization
chamber. Typically the effects of dust and oxida-
tion result in telescopes needing a new coating
every few years. So, large telescopes generally have
aluminizing chambers near the telescope.

Since the light doesn’t pass through the glass,
the requirements are for a good surface, not a good
volume. Moreover, the glass can be supported from
behind. It is therefore possible to make reflectors
larger than refractors. For many years the largest
reflector was the 5 m (200 inch) diameter Hale tel-
escope on Palomar Mountain (Fig. 4.7a).
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One advantage of the wave nature of electro-
magnetic radiation is that the radiation is essen-
tially unaffected by objects much smaller than
the wavelength. When electromagnetic waves
reflect off a metal surface, they do it by inducing
an oscillating current in the surface. This oscil-
lating current then produces the reflected wave.
If the surface is much smaller than the wave-
length, there will not be enough room to produce
a reflected wave at this wavelength. This means
that to have good image formation, the surface of
the mirror must be perfect to within approxi-
mately A/20, where A is the wavelength of the
light being observed. For example, if you are
observing with a wavelength of 500 nm, the sur-
face must be accurate to within 25 nm. (This is
about 250 atoms.)

Various shapes are possible for the mirror. It
turns out that spherical ones are the easiest to
grind. You may remember that a parabola
focuses to a single point all rays coming in par-
allel to the axis. This means that a paraboloid,
where any cross section of the mirror will be a
parabola, is a useful shape. Paraboloids are gen-
erally easy to grind, if you start with a spherical
shape and then make a slight adjustment (taking
a little glass off the center). Current grinding
technologies (discussed below) allow customized
shaping of the mirror to optimize for various
applications (e.g. better imaging over a wide
field).

We now look at what happens to the image
formed by the objective. Replacing the lens with
a mirror doesn’t change any of the basic ideas of
image formation. There is, however, a problem
caused by the reflection of the light back along
the direction from which it came. To examine the
image, the eyepiece (and observer) must be placed
between the stars and the mirror, blocking some
of the incoming light. If an eyepiece is put at this
location, we call the arrangement a prime focus.
The advantage of the prime focus is that no more
mirrors are required, so light is not lost (or
images distorted) in additional reflections. It pro-
vides for a ‘fast’ system (small focal ratio) with a
large field of view. However, there is some block-
age of the objective. If the telescope is very large,
this blockage is a small fraction of the total col-
lecting area of the objective.

Example 4.3 Blockage in prime focus

Consider a 5.0 m diameter telescope, with a 1.0 m
diameter prime focus cage. What fraction of the
incoming light is blocked by the cage?

SOLUTION

The ratio of the areas will be the square of the ratio
of the diameters. The fraction of the mirror
blocked is therefore

fraction blocked = (1.0 m/5.0 m)*
= 0.04

This means that only 4% of the incoming light is
blocked. If we make the telescope smaller, but keep
the cage the same size, the blockage worsens.
Clearly, prime focus arrangements are only suitable
in larger telescopes.

This problem was recognized by Newton, who
devised a mirror arrangement, called the Newtonian
focus, in which a flat diagonal mirror is used to
direct the image formed by the objective to the
side. This is shown in Fig. 4.8(a). The eyepiece is
then mounted on the side of the tube. There is
still some blockage but it can be kept small even
for small telescopes. For a larger telescope, the
Newtonian arrangement is difficult to use, since
the eyepiece is at the top end of the telescope.
Also, the eyepiece is farther from the mount’s
point of support, and equipment placed at the
focus exerts a large torque about the support.

An alternative solution is called the Cassegrain
focus, shown in Fig. 4.8(b). The prime focus cage is
replaced with a mirror that directs the rays back
through a hole in the center of the primary mir-
ror. Little light is lost by removing the center of
the mirror, since it would be blocked by the
prime focus cage or the secondary mirror. The
secondary mirror in a Cassegrain arrangement is
diverging (convex), so the telescope seems to have
a longer focal length than the objective. Since the
eyepiece is just behind the primary mirror, it is a
convenient arrangement. Also, if you want to
place a lot of equipment at the eyepiece position,
this is not too far from the point of support of the
telescope.

Sometimes an astronomer will want equip-
ment that cannot conveniently be mounted on a
telescope. It might be too large or it might require
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(a) Newtonian

(b) Cassegrain
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TR Focal arrangements in (a) Newtonian,
(b) Cassegrain and (c) coudé telescopes. In each case the
light enters the telescope from the left.

aroom in which the temperature can be kept con-
stant. It may also be necessary to have no mechan-
ical flexure of the instrument that moving it
would cause. For this purpose, some telescopes
have coudé focal arrangements (Fig. 4.8c). (The
term, pronounced coo-DAY, comes from the French
word for elbow, since the light beam is bent many
times.) A series of mirrors is used to direct the
image into a laboratory under the telescope
mount. One disadvantage of this arrangement is
the large number of mirrors that must be used.
No mirror is perfectly reflective, and a little light
is lost at each reflection (see Problem 4.10).

A general problem with any of these arrange-
ments is that they all involve some blockage of observation. Often the goal is to provide a large
the objective. In addition to reducing the light field of view that is relatively free of aberrations.
striking the objective, the blocking element must For example, a Schmidt camera incorporates a glass
also be supported. Starlight passing by the ele- plate shaped to provide corrections for some aber-
ment and its supports is diffracted, creating rations. This plate is placed at the front end of the
unusual stellar images (as shown in Fig. 4.9). telescope and the light passes through it before

Some telescopes follow the basic layout of the striking the primary mirror. Schmidt cameras
Cassegrain system, but have some differences in are very good for wide field photography. Many
their optics to optimize them for a certain type of newer telescopes are of the Ritchey—Cretien design

TR Stars act as true point sources, and their images
have a diffraction pattern resulting from the supports for the
secondary mirror.The pattern is evident as a cross on the
brightest stars. [NOAO/AURA/NSF/Co.WIYN Consortium].
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(named after the two telescope designers who
came up with the idea in 1910), which incorpo-
rates hyperbolic mirrors as an alternative way for
correcting for aberrations.

While the 5 m telescope was the largest for
many years, there have been a number of break-
throughs in telescope design and fabrication in the
past decade, and we have seen a progression of
larger and more sensitive telescopes. For example,
the old large telescopes are all equatorially
mounted. This means that they keep up with the
Earth’s rotation by rotating at a constant rate
about an axis parallel to the Earth’s rotation axis,
the polar axis. This is convenient, but requires a
large counterweight (Fig 4.6) or a fork to support
the telescope on both sides of the polar axis
(Fig 4.7a). The alignment of the polar axis is not per-
fect, and the motion of the telescope is not smooth.
It is therefore necessary to make small corrections
to the position of the telescope. This process, called

guiding, is done with the aid of a small auxiliary
telescope and a control to adjust the position of the
telescope about two axes to keep the object of
interest in the center of your field. With the advent
of computers to control telescopes in real time (and
television systems to fine tune the guiding), it is
now easier to use alt-azimuth mounts, which move
in azimuth and elevation, and are light and sym-
metric about the local vertical.

There has been a growing realization that
thermal currents in and just above the dome can
create bad seeing. Some telescopes built in the
1970s had designs that tried to reduce these
effects by using massive mirrors and large domes,
to assure that they change temperature slowly.
Newer designs have mirrors that are very light
with good airflow, and minimal domes, so that
the systems quickly equilbrate with the outside
conditions when the dome is opened. The New
Technology Telescope (Fig. 4.10) of the European

(b)

the shape of the mirror is adjusted with a grid of motors mounted on the back, visible in their casings in (a). The telescope is
placed in a small dome (b) that allows for quick equilibration with the outside air, reducing currents within the dome that pro-

duce bad seeing. [ESO]

FERIUR The 3.5 m New Technology Telescope of the European Southern Observatory, located at Cerro Paranal. It is
mounted in azimuth and elevation, and must move in two axes to track a source.As the telescope tilts to different elevations,
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Southern Observatory (Chile) was one of the first
to utilize that design. It is now becoming stan-
dard for new large telescopes.

One potential problem with large telescopes
is that, as they tilt at different angles, gravity
acts at different angles relative to the surface of
the telescope. This causes the surface to deform
as the tilt is changed. To get around this prob-
lem, some newer telescopes have a grid of
remotely controlled motors on the back of the
telescope. These motors turn screws that adjust
the shape of the surface, from the back, in a pre-
programmed way. The NTT was also one of the
first to utilize this concept. An even more ambi-
tious idea is to overcome some of the effects of
bad seeing by using real time signals from a
bright star to distort the third mirror in a coudé
arrangement. This reshapes the wavefronts, com-
pensating for the distortions induced by seeing.
These processes are called active optics and adap-
tive optics. Together they are producing diffrac-
tion limited images in telescopes up to 2 meters
in diameter.

Recently a group at the University of Arizona
has developed a technique for making high qual-
ity mirrors with diameters as large as 8 meters
(Fig. 4.11). It involves heating the glass and then
spinning the glass while it cools. The surface of
the spinning molten glass takes on the shape of a

paraboloid. The mirror is cast so that most of the
glass on the back side is missing, leaving a hon-
eycomb pattern. This means that the mirror can
be lighter than ones made using conventional
designs. Also, the honeycomb allows air to flow
through the back of the mirror meaning that the
mirror can quickly reach the temperature of the
outside. As we just saw, this cuts down on air
currents in the telescope, a major source of bad
seeing.

Even with the technology to build 8 m mir-
rors, astronomers need even larger telescopes. A
different approach was pioneered by the Multiple
Mirror Telescope (MMT), in Arizona. Instead of
one large mirror the telescope had six moderate
sized mirrors. The images from all six mirrors
are brought together to produce an image that is
six times as bright as the image from one mirror.
While the multiple mirror approach sounds like
an obvious idea, a number of technical obstacles
had to be overcome before it could work. Among
these are issues of aligning the mirrors, and
combining the images properly. In the last few
years a number of multiple mirror telescopes
have been developed with larger and larger col-
lecting areas.

The first of the newer generation multiple
mirror telescopes is the Very Large Telescope (VLT)
operated by ESO on Cerro Paranal (2635 m) in

Polishing an 8 m
mirror in the University of
Arizona Mirror Laboratory.
[Steward Observatory Mirror
Lab.]
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Chile (Fig. 4.12a, b). It has four telescopes, each
with an 8.2 m reflector. Eventually the light from
all four telescopes will be combined into a single
beam. Still under construction is the Large
Binocular Telescope, on Mt Graham in Arizona. It
uses two 8.4 m mirrors made in the Arizona
Mirror Laboratory (Fig. 4.11). It will have the reso-
lution of a single telescope with 23 m diameter,

in one direction. That direction changes as the
Earth rotates, just as for radio interferometers,
discussed in Section 4.8.

Another approach to large collecting areas is
a variation on the multiple mirror approach.
The mirror is broken into a number of smaller
segments, all on the same mount. This seg-
mented mirror approach allows all of the mirrors
to be pointed collectively, with fine tuning of
their positions as the telescope tilts. Located on
Mauna Kea (Fig. 4.12c, d) are the two Keck tele-
scopes, each 9.8 m, which utilize this design. The
Hobby-Eberly Telescope at McDonald Observatory,
also uses this design (Fig. 4.12e).

(b)

m (a) One element of

the Very Large Telescope (VLT) on

Cerro Paranal in Chile, built by
ESO. (b) Exterior view of the four
domes. The telesopes are named
after the Mapuche (a pre-
Columbian tribe in northern
Chile) words for Sun, Moon,
Southern Cross and Sirius. (c) The
Keck telescope, located on Mauna
Kea in Hawaii. Its mirror consists
of a number of individually con-
trolled segments. It is operated by
the California Association for
Research in Astronomy, which is a
partnership among the University
of California, the California
Institute of Technology and NASA.




4 TELESCOPES

53

(e)

(Continued) (d) An outside view of Keck. (e) The
Hobby-Eberly telescope at McDonald Observatory, also a
multisegment telescope. It is operated by the University of
Texas, Austin, and Pennsylvania State University. [(a), (b), ESO;
(c), (d) W. M. Keck Observatory; (€) McDonald Observatory]

(d)

4.4 | Observatories

4.4.1 Ground-based observing

In the past, the convenient location of observato-
ries was considered important. Observatories were
built near universities that had astronomers, and
those astronomers used whatever clear nights
were available. Today, the considerable investment
in large telescopes and sophisticated equipment
requires more regular utilization of the facilities.
Moreover, high quality telescopes are now built at
the sites that best allow them to take advantage of
their capabilities. Observatories are now built only
after there has been an extensive investigation of
the quality of the site.

Instruments have become more expensive; in
the 1960s and 1970s there was a trend away from
privately financed observatories to publically
financed national observatories. National observato-
ries are available to any qualified astronomer. An
astronomer who has a project will be required to
write a proposal, explaining the scientific justifica-
tion and the details of the observations. Generally,
there is not enough observing time for all of the
submitted proposals, and a panel of astronomers
decides which projects are to be done. More
recently, with developments to cut the cost of tele-
scopes, there has been a trend back to private obser-
vatories. Many of these are cooperative efforts by,
typically, two to four universities with some public
support. Keck is an example of such an effort.
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The selection of an observatory site depends
on a number of considerations. Obviously, good
weather is important. However, clear weather is
not enough. The air should be dry, since water
vapor can attenuate signals. This suggests a
desert. Also, the higher you go in altitude, the less
air you have to look through. An altitude of 3 km
(10 000 ft) puts you above a significant amount of
atmospheric water vapor. This suggests a moun-
tain in the desert. Even with a mountain in the
desert, good seeing is not guaranteed. Seeing
often varies with local conditions, depending on
air flow and terrain. Before an optical observa-

tory is built, seeing tests are done, with test obser-
vations being done over the course of a number
of years.

An additional consideration is light pollution.
Light from nearby cities is reflected up into the
sky, making the sky appear to glow. The brighter
this glow, the harder it is to see faint astronomi-
cal objects. Astronomers have found that certain
lights are better than others. For example, low
pressure sodium vapor lights, which have a yel-
low appearance, give off most of their light in a
narrow wavelength range, and this range can be
filtered out at the telescope. For any light, a hood

(a)

(b)

(c)

(d)

(14 000 ft), its summit is one of the best ground-based astronomical sites. (c) Cerro Tololo Interamerican Observatory
(operated by NOAO) in Chile.The largest dome is a twin to the 4 m telescope on Kitt Peak. (d) The European Southern
Observatory, located on La Silla in Chile, about 100 km from Cerro Tololo. [(a), (c) NOAO/AURA/NSF; (b) Richard Wainscoat,

Institute of Astronomy, University of Hawaii; (d) ESO]

Observatories. (a) Kitt Peak National Observatory (operated by NOAO), southwest of Tucson, Arizona. Notice the
large number of telescopes.The 4 m telescope is in the background. (b) Mauna Kea, on the island of Hawaii. At 4.3 km
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that reflects light back to the ground rather than
letting it into the sky is very helpful. Such hoods
also essentially double the brightness of the light
on the ground.

Once a good site is found, it is likely that
many telescopes will be built there. A good exam-
ple is Kitt Peak in Arizona, operated by the National
Optical Astronomy Observatory (NOAO), which is
shown in Fig. 4.13(a). This observatory has a num-
ber of different-sized telescopes, the largest being
the 4 m Mayall telescope (shown in Fig. 4.7a). To
make maximum use of the site, there are even tel-
escopes on Kitt Peak operated by individual uni-
versities or groups of universities, not directly
affiliated with NOAO.

Surprisingly, one of the best observing sites is in
the middle of the Pacific Ocean. It is on the island
of Hawaii, at an elevation of 4.3 km (14 000 ft) on a
dormant volcano, Mauna Kea (Fig. 4.13b). The
island often has clouds, but they are generally
below the altitude of the observatory, and the air
above the clouds is very dry. However, the lack of
oxygen at this altitude makes work very difficult.
Many astronomers report headaches and other
discomforts. Clear thinking is also difficult, and
there are many stories about simple mistakes
made by experienced observers. For that reason,
observing is conducted remotely, typically with
the observer at sea level.

The development of observatory sites in the
Chilean Andes has had a major impact on astron-
omy since the 1990s. First, it is important to have
telescopes in the southern hemisphere, since
there are large parts of the sky that cannot be
seen from the northern hemisphere. The north-
ern part of the Andes runs next to the Atacama
Desert, which is dry even as deserts go. (There are
places in the Atacama Desert, some not too far
from the Pacific, where there has been no
recorded rain in over a century.) There is precipi-
tation in the mountains, as is evidenced by the
snowy peaks, but a typical site in the Andes has
half the amount of water vapor overhead of a
comparable (in latitude and elevation) site in the
US. Three major observatories have been devel-
oped in the Andes. One is the Cerro Tololo
Interamerican Observatory (CTIO) (Fig. 4.13c), which
is operated by NOAO (in cooperation with the
University of Chile). Another is the European

Southern Observatory (ESO). ESO operates under a
treaty among member European countries. Its
primary location in Chile is on La Silla (Fig.
4.13d), which is about 100 km from Cerro Tololo.
La Silla is the site of the NTT (Fig. 4.7a). ESO has
recently gained another site, Cerro Paranal, fur-
ther into the desert. It is the site of the VLT (Fig.
4.12a). The third is Las Campanis, which is near La
Silla. All of these Chilean sites are quite far from
major population centers so that light pollution
is virtually non-existent.

The availability of spectacular sites in Chile
has driven astronomers to make the best use of
those sites, by getting the best possible seeing.
As we have said, an important part of this is in
the site selection. However, astronomers have
long known that, at good sites, where the seeing
is about 1 arc sec on a good night, about half of
that comes from air in and directly above the
telescope. Turbulence, caused by the ground,
dome and telescope are important contribu-
tions to seeing. As we mentioned above, new
telescope and dome designs are improving see-
ing. For example, seeing at the NTT is frequently
better than 1 arc sec and, on really good nights,
is better than 0.5 arc sec.

The lastest NOAO push to take advantage of
excellent sites in the northern and southern
hemispheres is Project Gemini (Fig. 4.14). Both tele-
scopes are 8.1 m in diameter. The northern tele-
scope is on Mauna Kea, and started operation in
1999. The southern telescope is on Cerro Pachon
(2715 m) in Chile.

There is one other place that has recently
been developed for astronomy. This is Antarctica.
It is more than 2000 m above sea level, so it is at
a good altitude. The air is so cold that it is very
dry. In fact, once you are more than 150 km from
the coast, you lose the ocean as a source of water
in the air, and there is very little precipitation.
The snow that you see far from the coast is
blown there. This brings up one of the major
problems, wind. Telescopes would have to be put
in protective domes. This is reasonable for the
infrared and millimeter parts of the spectrum.
There is also an international science station,
which is supported during the summer, so there
is logistical support. Astronomers are investigat-
ing various sites near the South Pole.
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GTER R Project Gemini of the NOAO will have twin tel-
escopes on Mauna Kea and in Chile. (a) The northern tele-
scope has a moving weight of 342 tons, and the shape of the
mirror surface is controlled in real time using 120 actuators
behind the mirror and 60 around the edge. (b) The southern
telescope dome on Cerro Pachon (2715 m) in Chile.
[NOAO/AURA/NSF]

4.4.2 Observations from space

One of the major advances in observational
astronomy has been the ability to place telescopes
in space. This is particularly important for observ-
ing in parts of the spectrum that don’t penetrate
the Earth’s atmosphere. However, a telescope in
space can even be important in the visible part of
the spectrum. It allows us to make observations
free of the blurring caused by atmospheric seeing
conditions.

Example 4.4 Diffraction-limited optical telescope
What is the resolution of a 1 m diameter telescope
in space for observations at a wavelength of 550 nm?

(b)

SOLUTION

We find the diffraction limit from equation (4.1a):
~ (2.06 X 10°)(5.5 X 10" m)

- (1m)

A6

1.1 X 10" ! arc sec

A 1 m diameter telescope on the ground will
never realize this resolution because of the see-
ing limitations (typically worse than 1 arc sec and
sometimes as good as 0.5 arc sec). By putting a
1 m telescope in space we can realize a factor of
5 improvement over the best ground-based condi-
tions. With a 2 m telescope, we would have a fac-
tor of 10 improvement.

This is the reason for the development, by the
National Aeronautics and Space Administration (NASA)
and the European Space Agency (ESA) of the Hubble
Space Telescope (HST), launched in 1990. HST, shown
in Fig. 4.15, has a 2.4 m diameter mirror providing
an angular resolution of about 0.05 arc sec. The
telescope is equipped with a full complement of
instruments so that it can carry out a full range of
astronomical observations: imaging, photometry,
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(b)

Views of the Hubble Space Telescope (HST).
(a) HST being deployed. (b) After deployment on service
mission. [STScI/NASA]

spectroscopy. It is an international facility, with
time available on the basis of proposals, just as
with ground-based national observatories. The
telescope is controlled from NASA’s Goddard
Spaceflight Center in Greenbelt, MD. The scien-

tific support comes from the Space Telescope Science
Institute (STSCI), in Baltimore, MD. Observers can
view data at computer work stations at their
home institutions.

Shortly after HST was launched, astronomers
discovered a serious flaw in the optics, which
degraded the images. An error in fabrication
had produced a severe spherical aberration. This
resulted in a server degradation in the image

(b)

S AN Images of a shell around a star; taken by HST
(a) before and (b) after servicing. [STScl/NASA]
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quality, and in the sensitivity. Astronomers were
excited about the successful completion of a serv-
icing mission that compensated for the error. We
will come back to HST results throughout this
book, but in Figs. 4.16 and 4.17, we show images
taken with HST before and after the servicing. In
2002 there was a scheduled servicing mission in
which many of the instruments were upgraded.

(b)

Images of the spiral galaxy M100 from HST
(a) before and (b) after servicing. [STScl/NASA]

Since the servicing, HST has been so success-
ful that astronomers are now planning a succes-
sor, the Next Generation Space Telescope (NGST).

4.5 | Data handling

In the previous sections we concentrated on
bringing as many photons to the eyepiece as pos-
sible. Now we will look at what we do with these
photons once they reach the eyepiece. We con-
sider three different types of observations:

(1) Imaging. This is probably the most familiar
type of observation. The goal of these obser-
vations is to obtain a picture of some part of
the sky.

(2) Photometry. The name implies the measure-
ment of light. The goal of the observations is
to measure the brightness of some object.
This may include measuring the brightnesses
through certain filters to measure colors. It
may also include measuring time variations
in brightness.

(3) Spectroscopy. The goal of these observations is
to obtain a spectrum of some object, generally
with sufficient detail to allow the study of
spectral lines.

4.5.1 Detection
Whatever the type of observation, the data must
be recorded in some way. In the past, the most
common way was to use a photographic plate.
These plates contain an emulsion with light sen-
sitive grains. Each grain serves as a little detector
of radiation, or picture element (pixel). One advan-
tage of photographic plates is that there are many
pixels. We say that the plate has a panoramic qual-
ity. This means that we can simultaneously
record many parts of the image. There are some
disadvantages to photographs. One is that a very
small fraction of the photons that strike the plate
are actually detected. We call the fraction of pho-
tons that are detected the quantum efficiency of the
detector. For most emulsions, this efficiency is
only a few percent.

A much higher efficiency can be obtained
with photoelectric devices. A photon strikes a sur-
face, causing an electron to be ejected. This is the
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photoelectric effect that we discussed in Chapter
3. The electron is accelerated towards another
surface, where more electrons are ejected. The
process is repeated many times, and eventually a
sufficient number of electrons are moving for a
current to be detected. In the past, these photo-
multiplier devices allowed only a single detection
element in the focal plane. That is, there is one
pixel. So, they provided higher efficiency, but at
the cost of the panoramic quality.

One problem with any detector is that it pro-
duces some background level. This is sometimes
called the dark current, because it is present even
when no light is shining on the detector. This
generally results from thermal emission from the
detector. For most astronomical observations,
this background is much stronger than the signal
you are trying to detect. The background has two
deleterious effects. The first is that it must be sub-
tracted from any measurement, to just give the
value of the astronomical signal. The second is
that it produces a random fluctuation in the
measurement. The stronger the background, the
higher the fluctuation. This fluctuation produces
an uncertainty (statistical error) in any result.

To see how this effect works, it is easiest to
think in terms of numbers of counts in a given
measurement. For a photomultiplier, the num-
ber of counts in the signal is the number of pho-
tons striking the detector, multiplied by the
quantum efficiency. For the background, we can
think of the number of photons that would be
equivalent to the emission from the background.
If the background is thermal emission, that
number would be kT/hv, where T is the tempera-
ture of your background emission and v is the
frequency at which you are measuring. From
this, you see that we can reduce the background
by cooling the detector.

The effect of this fluctuation is to cause a
scatter in the results of counting experiments. If
you want to determine the average rate at which
you are counting photons from a given source,
you might measure for some time, say ten sec-
onds. If you repeat this experiment many times,
you will find that the number of counts is not
always the same. If you plot a histogram of the
number of times each result comes out, you will
find a gaussian centered on some value. That

value is the best estimate of the number of pho-
tons detected in ten seconds, but the spread in the
gaussian — the standard deviation - tells you the
uncertainty. For a counting experiment, in which
you measure N events, that uncertainty is |N. So
the ratio of the signal to the uncertainty, some-
times called the signal-to-noise ratio, is |N. So, as
you increase N, the signal-to-noise ratio increases
but only as |N. For example, if you want to
improve the signal-to-noise ratio by a factor of
two, you would have to increase the number of
counts by a factor of four.

More recently, astronomy has been revolu-
tionized by the development of charge-coupled-
devices (CCDs). They provide a grid of detectors all
with high quantum efficiency (greater than 50%
and sometimes as high as 80% to 90%). Each ele-
ment of the grid is one pixel, and keeps an elec-
tronic record of the intensity of light striking its
position. The array is on a single silicon chip.
There are typically over 1 million pixels (1000 X
1000) on astronomical CCDs. (Commercial digital
cameras use CCDs.) Each pixel is a potential well
that traps electrons. For the most part, the elec-
trons are the result of photons striking the pixel.
In order to use the information on the chip, there
has to be some way of reading it into a computer.
This is illustrated in Fig. 4.18.

An advantage to a CCD is that it is nearly lin-
ear in its response. This means that the number of
electrons is proportional to the number of strik-
ing photons. This is true over a wide range of
intensities. As with photomultipliers, there is
some dark current. This can be reduced by cooling
the detector. The dark current is generally meas-
ured by taking exposures with no light entering.
There is also a variation in sensitivity from pixel
to pixel. This can be measured by making an expo-
sure of a uniform field, such as the twilight sky or
the inside of the dome. This process is called flat
fielding. CCDs are so stable that dark current meas-
urements and flat field measurements only need
to be done a few times a night.

If a cosmic ray (cosmic rays are charged parti-
cles that permeate interstellar space) strikes a
CCD during an exposure, it will make a few pixels
look very bright. These can easily be removed in
the computer processing of the image. To mini-
mize their effects, it is better to take a few short
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B How a CCD readout works. In this example, we
just look at 16 pixels, with rows numbered and columns let-

tered. The readout device is on the right. (a) An exposure is
finished. Each pixel has a value indicated by the label for that
pixel. The readout device has levels zero. (b) The numbers
are all shifted one pixel to the right. The first row is now
zeroed, and the readout device has the contents of the last
row. (c) The contents of the readout row are shifted down
one, as the first number (bottom right value) is read. (d) The
process continues until that whole row is read. (e) Everything
shifts one more to the right, and the readout process of the
last row repeats. This then continues until all values have
been read and pixels have been set to zero.

exposures and add them together (using a com-
puter) than one long exposure. There is also an
error introduced in the readout process, called
readout noise. This can put a limit on the faintest
signals CCDs can see.

Having the image in computer readable form
is actually very convenient, because many new
techniques are being used to computer enhance
very faint images. This provides a large dynamic

range, meaning that we can see faint objects in
the presence of bright ones.

When photometric observations are being
made, we generally compare the brightness of the
star under study with the brightnesses of stars
whose properties have already been studied. By
changing filters we can measure, for example,
the U, B and V magnitudes of a star, one after
another. Some method of recording the data is
still needed. One option is photographic. The
brighter the star is, the larger its image on a pho-
tographic plate. (This is an artifact of the photo-
graphic process and atmospheric seeing.) We can
measure the brightness of a star by measuring
the size of its image. (Remember the actual
extent of the star is too small to detect in our
images.) Photoelectric devices are well suited for
photometry. Almost all photometry is now done
using photomultipliers or CCDs. Some of the
standard colors even account for the wavelength
responses of various commercially available pho-
tomultipliers.

4.5.2 Spectroscopy

In spectroscopy we need a means of bringing the
image in different wavelengths to different phys-
ical locations on our detector. We have already
seen that this can be done with a prism. Since a
prism does not spread the light out very much,
we say that the prism is a low dispersion instru-
ment. Dispersion is a measure of the degree to
which the spectrum is spread out. Low dispersion
spectra are sometimes adequate for determining
the spectral type of a star. Sometimes a thin
prism is placed over the objective of the telescope
and a photograph is taken of the whole field.
Instead of seeing the individual stars, the spec-
trum of each star appears in its place. These objec-
tive prism spectra are quite useful for classifying
large numbers of stars very quickly.

When better resolution is needed, we gener-
ally use a diffraction grating, illustrated in Fig. 4.19.
For any wavelength A, the grating produces a max-
imum at an angle given by

dsin 6 = mA (4.4)

where d is the separation between the slits and m
is an integer, called the order of the maximum.
The higher the order is, the more spread out the
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ST AR A Diffraction grating. Light comes in from the upper
left. The beam reflected off each step spreads out due to dif-
fraction. However, interference effects result in maxima in the
indicated directions. The angles of the steps can be adjusted
(blazed) to throw most of the light into the desired order.

spectrum. Suppose our grating just lets us sepa-
rate (resolve) two spectral lines that are A\ apart
in wavelength. The resolving power of the grating is
then defined as

R =A/A (4.5)

If the grating has N lines in it, then in the
order m the resolving power is given by

R =Nm (4.6)

Some gratings have over 10 000 lines per cen-
timeter over a length of several centimeters.
This means that resolving powers of 10° can be
achieved. In general, light will go out into sev-
eral orders. It is possible to cut the lines of a
grating so that most of the light goes into a par-
ticular order. This process is called blazing.

It is possible to use interference filters such as
that shown in Fig. 4.20. There are two flat parallel
reflecting surfaces placed close to each other.
There is a maximum in the transmitted radiation
when twice the spacing between the surfaces, d,
is equal to an integral number of wavelengths.

That is
2d = mA (4.7)

One problem with this approach is that we
can only measure a small wavelength range at a

Incoming Destructive
Light Interference
I - - - ] Plates
d
[ L} 1
Constructive
Interference

SIS Operation of an interference filter.

time, and must keep changing the spacing, d, to
obtain a complete spectrum. Another problem is
that different orders (m) of different wavelengths
can get through at the same time. You can solve
this problem by adding a second filter with a dif-
ferent spacing, set to pass the desired wavelength
and remove the unwanted orders. A device with
multiple interference filters is called a Fabry-Perot
interferometer.

A major recent improvement has been the
development of devices that produce a Fourier
transform of the spectrum. These devices provide
astronomers with a great deal of flexibility and
sensitivity. Fig. 4.21 shows the operation of one
such device, called a Michelson interferometer. The
incoming radiation is split into two beams, which
are reflected off mirrors so that they come back
to the same location and interfere with each
other. The path length of one of the beams can be
altered by moving a mirror. This changes the
phase of the incoming beams. By seeing how the
intensity changes as we move the mirror, we form
an idea of the relative importance of longer and
shorter wavelength radiation.

According to Fig. 4.21, the total path length
difference is x. We look at the electric field for
each wave. In this case it is convenient to write
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Michelson interferometer. Light enters from the
left, and strikes a beam splitter. The split beams bounce off
mirrors and are brought back together to interfere with

each other. One of the mirrors has its position fixed, and the

other is movable.

the waves as E, exp[i(kx — wt)], where k = 277/A and
o = 27y, and E; is the electric field amplitude of
the wave. So, the two waves that will be recom-
bined can be written as

E; = Ey exp|[—iwt] (4.8a)

E, = E, expli(kx — wt)| (4.8b)

Taking the total electric field, E = E; + E,, and
the intensity, I = EE*, we can write (see Problem
434)

exp(ikx) + exp(—ikx)
2

I(k, x) = 2E3| 1 + (4.9)
For any position of the mirror, corresponding to a
path length x, we will receive the contributions
from all wavelengths (k). So, to find the total
intensity as a function of x, we integrate over all k:

I(x) = [I(k, x)dk

0 exp(ikx) + exp(—ikx
21y |1 + ERE) 2 Pk |
0

= ZTI(k)dk +71(k) exp(ikx)dk +71(k) exp(—ikx)dk

0 0 0

If we let

I = Tl(k)dk (4.10)
0

be the total power, and we define I(—k) = I(k), this
simplifies to

I(x) = 21, + | I(k)exp[—ikx] dk (4.11)

The integral in this expression is the Fourier
transform of I(x). So by measuring I(x), we are also
measuring the Fourier transform . This means
that we can find I(k), power as a function of wave-
length, from the inverse Fourier transfrom of I(x),
which is

Ojo I(x)exp[ikx] dk

In a real measurement, we don’t measure I(x)
for all values of x. There are two limitations. One
is the total range over which we move the mirror.
This limits our ability to do the integral from
minus to plus infinity. The other is that we can
only move the mirror in finite steps. This means
that we only measure I(x) at those positions, so
this limits our ability to approximate the inverse
transform integral as a sum. The closer together
we measure I(x), the shorter wavelengths (higher
frequencies) we are sensitive to. The greater the
largest value of x at which we measure I(x), the
more information we have on the longer wave-
lengths (lower frequencies), so this sets the limit
in the frequency resolution in the computed
spectrum.

4.6 | Observing in the ultraviolet

The visible part of the spectrum only gives us
access to a small fraction of the radiation given
off by astronomical objects. For centuries, how-
ever, this was the only information available to
astronomers. We will see throughout this book
that observations in other parts of the spectrum
have revealed entirely new types of objects or
provided us with information crucial to under-
standing objects that are already observed in the
visible. In discussing other parts of the spectrum,
we start with ultraviolet observations, because
the techniques are very similar to those in optical
observations.

In many ways, we can think of ultraviolet
observations as being short wavelength visible
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observations. The basic imaging ideas are the
same. Of course, since the wavelength is shorter,
mirror surfaces must be more accurate in the
ultraviolet than in the visible. The normal coat-
ings that we use to make mirrors reflective in the
visible do not work as well in the ultraviolet, and
different coatings are needed. Since ultraviolet
photons have more energy than visible photons,
the uv photons can easily be detected with pho-
tographic plates, photomultipliers or CCDs.

The major problem is that ultraviolet radia-
tion does not penetrate the Earth’s atmosphere.
If you don’t go too far into the ultraviolet, some
observations are possible at high altitudes.
However, we have become increasingly dependent
on ultraviolet satellites. Some pioneering satellites
were Copernicus (1972-1981) and International
Ultraviolet Explorer (IUE, 1978-1996). IUE had a
0.45 m mirror, 3 arc sec angular resolutions and
an R = 12 000 spectrograph. Currently, we can use
HST, whose mirror was designed to work in the
ultraviolet as well as the visible. Far Ultraviolet
Spectroscopic Explorer (FUSE) was launched in
1998, with a 0.64 m mirror and a high resolution
spectrograph.

4.7 | Observing in the infrared

In this section we briefly look at some of the
techniques for observing in the infrared part of
the spectrum. For some purposes we can simply
think of infrared radiation as being long wave-
length visible radiation. In fact, much of infrared
astronomy is done on normal optical telescopes.
The long wavelength means that surface accu-
racy of mirrors is not a problem. A surface accu-
rate enough for optical observations is certainly
accurate enough for infrared observations.
However, the longer wavelength makes diffrac-
tion more of a problem. For example, for a 1 m
diameter telescope working at a wavelength of
10 pm, the diffraction limit is 2 arc sec, slightly
worse than the seeing limit at a good site.

One problem with infrared observations not
common with optical observations is radiation
from the telescope itself. Parts of the telescope
that are not perfectly reflective radiate like black-
bodies at temperatures close to 300 K, with a peak

at 10 pm. This is not a problem for optical detec-
tors, but it is a problem for infrared detectors.
(See Problem 4.23.) In an infrared telescope, the
radiation paths must be carefully designed so
that the detector cannot ‘see’ any hot surface.
Some reduction in the problem can be obtained
by cooling surfaces that can radiate into the de-
tector. Such infrared optimization techniques are
being incorporated into the northern hemisphere
(Mauna Kea) part of Project Gemini (Fig. 4.14).

Detectors used in the infrared are generally
different from those used in the visible. Infrared
photons are not energetic enough to expose nor-
mal photographic emulsion. Recently, infrared
sensitive emulsions have been developed.
Infrared photons also have a hard time causing
electrons to be ejected from metals. One of the
great advances of the past few years has been the
development of efficient infrared arrays of detec-
tors. They read voltage, rather than the current in
a CCD, but have readout schemes similar to CCDs.
Infrared arrays also have a smaller number of pix-
els, typically 32 X 32. The detectors are cooled to
reduce background noise. (As an aside, these
arrays were first developed by the military to put
into satellites looking down at the Earth. With
the end of the cold war, this technology became
declassified.)

Originally, the most common type of infrared
detector was called a bolometer. A bolometer is a
device that heats up in a known way when radia-
tion falls on it. We generally use a material whose
electrical properties change with temperature. For
example, if the resistance of a bolometer changes
with temperature, we can measure temperature
changes by measuring resistance changes. By
measuring the temperature increase, we can
determine the total amount of energy striking the
bolometer. (Remember, in Chapter 2, we defined a
bolometric magnitude based on the total amount
of energy given off by a star.)

Spectroscopy in the infrared is different than
in the visible. One problem is that the longer
wavelength means that objects must be physically
larger to provide the same spectral resolution.
Another problem is the thermal emission from the
material used to construct the devices. If the sur-
faces can be cooled, then this problem is reduced.
Prisms are of some value for low resolution. Cooled
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gratings are used. It is possible to use tunable inter-
ference filters (Fabry-Perot interferometers) or
Michelson interferometers, as discussed earlier.

The major problem in the infrared is the
Earth’s atmosphere. The atmosphere is totally
opaque at some infrared wavelengths, and is, at
best, only partially transparent at all other
infrared wavelengths. The opacity of the atmos-
phere causes two problems: (1) the atmosphere
blocks the infrared radiation from the sources we
are studying; (2) the atmosphere emits its own
infrared radiation, which can be much stronger
than that received from the astronomical objects.
To observe with this atmospheric emission it is
generally necessary to compare the astronomical
source you are looking at with some empty sky
nearby, thereby canceling the effects of the
atmosphere. However, this limits you to studying
relatively small sources.
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Infrared windows. Transmission as a function of

wavelength is shown for an observatory at sea level. At low
altitudes good transmission (close to unity) is in only a few
narrow wavelength ranges, or windows. As one goes to
higher observing altitudes, the windows cover a wider range
of wavelengths. [NOAO/AURA/NSF]

We call the wavelengths at which some obser-
vations are possible from the ground infrared win-
dows in the atmosphere. Fig. 4.22 shows some of
the major infrared windows. At the very least, the
2 km altitude of many optical observatories is
required. In general, 2 km is only sufficient for
working in the near infrared, at wavelengths of a
few micrometers. If we want to work farther into
the infrared, higher altitudes are necessary. Some
observatories have been placed at altitudes as
high as 4.3 km (even though higher elevations
result in difficult working conditions). For exam-
ple, there are a number of infrared telescopes on
Mauna Kea (Fig. 4.13D).

For many studies, even higher altitudes are
needed. For 20 years NASA operated the Kuiper
Airborne Observatory (KAO). The KAO was a con-
verted military transport (a C141), that carries a
0.9 m infrared optimized telescope to altitudes
up to 45 000 ft, for 7 hour observing sessions. The
KAO was operated as a national facility, with qual-
ified astronomers submitting proposals for
observing time. It made approximately 80 flights
per year. It operated out of the NASA Ames
Research Center (Moffet Field, CA), but could
change its base when the astronomical need dic-
tated. For example, there were regular observing
sessions in the southern hemisphere from
Christchurch, NZ. There were also customized
flights to look at transient astrophysical phenom-
ena such as solar eclipses. The KAO was taken out
of service in 1997.

To replace KAO, NASA is building, in coopera-
tion with astronomers in Germany, the Stratospheric
Observatory for Infrared Astronomy (SOFIA), shown in
Fig. 4.23. To allow for a larger (2.6 m) telescope it
will be made from a converted Boeing 747 SP. This
aircraft is also capable of cruising at higher alti-
tudes and providing for longer (up to 16 hour)
flights. For even higher altitude work, balloons are
used up to 100 000 ft.

For some observations, even a minimal
atmosphere causes problems, and we carry out
observations from space. Fig. 4.24 shows two of
the primary infrared space missions. One of the
important early missions was the Infrared
Astronomy Satellite (IRAS), a joint American-
Dutch-British project launched in January 1983.
The 0.6 m diameter cooled telescope was primarily
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Artist’s impression of the Stratospheric
Observatory for Infrared Astronomy (SOFIA), which will be
made from a converted 747 SP. [NASA]

designed for imaging observations. It contained
arrays of detectors operating in four wavelength
ranges, centered roughly at 12, 25, 60 and 100
pm. From its high (560 mile) polar orbit, much of

IRAS’s lifetime was devoted to a systematic survey
of the sky. A certain fraction of the time was
devoted to specific objects. The large scale survey
revealed over 100 000 point sources and a network
of extended infrared emission. The whole set of
data is available as a resource to the general astro-
nomical community. An astronomer interested in

Fig 4.24.
(a) Artist’s conception of Infrared
Space Observatory (ISO)

Infrared satellites.

SUPERFLUID

HELIUM TANK
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(b)

Gl LA (Continued) (b) Space Infrared Telescope Facility
(SIRTF) in the laboratory for testing. [(a) ESA/ISO; (b) NASA]

a particular object can check the data at the
Infrared Processing and Analysis Center (IPAC), at
Caltech, which is not too far from the Jet
Propulsion Laboratory (JPL). IPAC has also become
the curator of other infrared data.

More recently, astronomers have been able to
utilize the Infrared Space Observatory (ISO), Fig.
4.24(a), a project of the European Space Agency.
ISO provides a wavelength coverage extending
farther into the infrared, a larger telescope,
arrays of more sensitive detectors for good imag-
ing, and for the first time the ability to make
high quality spectra. During the HST servicing
mission, NASA added an infrared camera and
spectrometer (NICMOS). NASA is now making
plans for the Space Infrared Telescope Facility (SIRTF),
Fig. 4.24(b).

Box 4.1. | Methods of displaying images.
When we look at a normal optical photograph of some
astronomical object, we have a sense of how our brains
should interpret that image. In a sense it is how the
object would look if we could view it through a large tel-
escope, or if we could somehow be transported close
enough to the object so we could see it with this detail
with the unaided eye. However, what does it mean when
we display a radio image like that in Fig. 4.25?

There is even a terrestrial analogy to this question.
You have seen ‘night vision glasses’, which allow you to
‘see’ even with no illuminating light. Remember, we nor-
mally see earthbound objects as they reflect sunlight or
roomlight, our eyes being sensitive to the range of wave-
lengths at which the Sun's emission is strongest. The night
vision glasses work differently: they actually detect the
infrared radiation given off by objects (most of which are
usually close to 300 K). So, the night vision glasses have
infrared detectors, but our eyes are not sensitive to that
infrared radiation. Therefore the glasses also convert that
infrared image into an optical image, usually with the
brightest part of the optical image corresponding to the
strongest infrared emission. So, the image you see is an
optical representation of the infrared image.

We can do the same thing with astronomical infrared
(or ultraviolet, radio, etc.) images. We can make a false
gray-scale image, by creating an optical image where
brighter regions correspond to stronger infrared emission.
[t is important to remember that, while such images are
often constructed to have a true-looking appearance, they
are just a particular representation for that image.
Sometimes our eyes are better at picking information out
of a color image than a black and white (or gray) image.
[t is therefore sometimes useful to make false color images.
In this case, we arbitrarily assign a color to each level of
infrared emission. Often the colors will run through the
spectrum from red to blue (or the other way). Often, a
sample bar will be placed next to the image, showing
what intensity level each color represents.

So far, we have been talking about what we do when
we have one piece of data at each location, say the aver-
age intensity in some particular wavelength band. Suppose
we have observed in more than one band (for example,
IRAS observed in four infrared bands).We could certainly
make a separate false gray or color image of each band
(and we often do this), but what if we want to compare
the bands, or simply display all the information together?
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Various representations of a radio image. In this
case it is a 6 cm wavelength image of the Orion Nebula (which
we will discuss in Chapter 15), made with the Byrd GBT
(which we will discuss in the Section 4.8). (a) Contour map.

(b) Gray-scale map. (c) False color image. (d) Color contours, in
which colors change where there would be a contour line.

[D. Shephard, R. Maddalena, J. McMullin, NRAO/AUI/NSF]

We then make a false gray-scale image of each band.We
then tint each band a different color, generally making the
longest wavelength band red and the shortest wavelength

(d)

band blue (mimicking what happens in the visible part of
the spectrum).VWe then have a false color image in which
the color has some intrinsic meaning (in that hotter
objects will appear bluer).

We should point out that this technique can also be
used to make a true color visible image.You might say that
if you want a color image you simply use color film and
take a picture. However, no two types of color film are the
same. Some are meant to enhance skin tones and are set
to emphasize reds, for example. Therefore the way to
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make a color photograph that looks like what you would
see with your eyes, we take a series of black and white
images, through red, green and blue filters. We then com-
bine the images, utilizing the various wavelength ranges in
the same proportion as the eye uses them.This technique
is well suited to making ‘true color’ images with CCDs.

There is another method of displaying two-dimensional
images, contour maps. You should be familiar with topo-
logical maps on Earth, which are normally displayed as
contour maps. All points within a given contour level have
a value (e.g. average intensity in a particular wavelength
range) greater than the value assigned to that level.
Contour maps give a good feel for how the quantity you
are displaying changes over some region. The closer
together the contours, the more rapid the variation in
the plotted quantity.

4.8 | Radio astronomy

Radio observations provide us with very different
information from optical observations and use
very different techniques. The long wavelength
means that the wave nature of the radiation is
very apparent in the observations. The long wave-
length also corresponds to low energy photons.
This means that radio regions can tell us about
cool regions. For example, we will see how radio
observations tell us about star formation in Part
IV. We will also see that there are high energy
sources that give off much of their energy at
longer wavelengths. Thus, radio observations also
give us a way of studying high energy phenomena.

Radio astronomy owes its origins to an acci-
dental discovery by Karl Jansky, an engineer at the
Bell Telephone Laboratories in New Jersey. In
1931, Jansky detected a mysterious source of radio
interference. He noticed that this interference
reached its peak four minutes earlier each day.
This timing suggests an object that is fixed with
respect to the stars. (This four minute per day
shift is caused by the Earth’s motion around the
Sun. This and other aspects of astronomical time-
keeping are discussed in Appendix G.) The time of
maximum interference coincided with the galac-
tic center crossing the local meridian. Jansky con-
cluded that he was receiving radio waves from

the galactic center. It was realized that astronom-
ical objects can be strong radio sources.

The discovery was not followed up immedi-
ately. In fact, for a long time there was only one
active radio astronomer. Grote Reber was an ama-
teur radio astronomer in Illinois, who carried out
observations on his back yard radio telescope in
the 1930s and early 1940s. (When Reber submit-
ted his first paper for publication in The
Astrophysical Journal, it was sent to a referee, a
normal procedure. To make sure that the data
were to be believed, the referee, Bart Bok, a Dutch
astronomer, then living in the US, took the
abnormal step of visiting Reber and his telescope,
and taking the editor along. Bok recommended
publication of the paper, and was the first tradi-
tional optical astronomer to understand the
importance of radio astronomy. Following WW II,
radio astronomers benefitted from the develop-
ment of radar equipment during the war. Radio
observations were pursued by the British, Dutch,
Australians, and a small group of Americans at
Harvard. A major advancement was the ability to
observe spectral lines in the radio part of the spec-
trum. We will discuss these lines in Chapter 14.

By the mid-1950s, it was clear that a major
radio observatory had to be a cooperative effort,
and the National Radio Astronomy Observatory
(NRAO) was founded. (This was the first US
national observatory, being formed a little before
the optical observatory on Kitt Peak.) Bart Bok
played a major role in the founding of the NRAO.
The first telescopes of the NRAO were in Green
Bank, West Virginia, far away from sources of
man made interference (in the National Radio
Quiet Zone). Since the Earth’s atmosphere is vir-
tually transparent through much of the radio
part of the spectrum, it is not necessary to place
radio observatories at high altitudes or clear
sites. We can even observe through clouds. We
can also observe day or night, since the sky does
not scatter radio waves from the Sun the way it
scatters light from the Sun, making the sky
appear bright (blue).

We now take a look at how a radio telescope
works. A radio telescope consists of some element
that collects the radiation and a receiver to detect
the radiation. Most modern radio telescopes have
a large dish to collect the radiation and send it to
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Flg Z 178 Resolution for a radio telescope. (a) The short
dashed lines show what would happen if there were no
diffraction. Only radiation traveling parallel to the telescope
axis would reach the focus.The solid lines show the effects of
diffraction. Radiation coming in at a slight angle with the tele-
scope axis can still be reflected on to the focus. This means
that when the telescope is pointed in one direction, it is sen-
sitive to radiation from neighboring directions. This is shown
in (b), as the telescope is sensitive to radiation coming from
within a cone of angle approximately A/D (in radians).

a focal point. (They are like optical reflectors.) The
long wavelength becomes important in this
process. We have already seen that the resolution
of a telescope depends on the size of the tele-
scope, relative to the wavelength (Fig. 4.26). (In
the radio part of the spectrum, atmospheric see-
ing is not a problem.) Since the wavelengths are
large, to achieve good resolution you need a large
collector. However, that surface doesn’t have to
be perfect. It can have imperfections as long as
they are smaller than approximately A[20. For
example, at a wavelength of 20 cm, 1 cm diame-
ter holes have no effect on the performance of
the telescope. We are hindered by the fact that it
is hard to make large telescopes with very accu-
rate surfaces. Most large telescopes are made up

of smaller panels that are easier to machine accu-
rately. The panels are then aligned to produce the
best surface. The alignment is at least adjusted
for the effects of gravity as the telescope tilts at
different angles, and techniques are being devel-
oped to control the surface actively by monitor-
ing the panels at all times during observations.
The best resolution for single radio telescopes is
about 30 arc sec, slightly better than the naked
eye for visible viewing.

Example 4.5 Strength of radio sources

We measure the strength of radio sources in a unit
called a Jansky (Jy). It is defined as 10~ *® W/m?*/Hz
reaching our telescope. For a 1 Jy source, calculate
the power received by a perfect antenna with an
area of 10> m?, using a frequency range (band-
width) of 10° Hz.

SOLUTION

The total power received is the power/area/Hz, mul-
tiplied by the frequency range (in Hz), and the sur-
face area of the telescope:

P = (10~ %® W/m?/Hz)(10° Hz)(10* m?)
=10 "®W.

This is 10 2° of the power of a 100 W light bulb.
Note that the larger the dish, the larger the total
power detected.

We have already seen that for making maps of
extended sources, larger dishes are important
because they provide us with better angular reso-
lution. The weakness of radio sources gives us
another reason for building large telescopes. A
larger telescope intercepts more of the radiation,
and allows us to detect weaker sources. A few
large telescopes are shown in Fig. 4.27. The largest
single dish is at the National Atmospheric and
Tonospheric Center in Aricebo, Puerto Rico (Fig.
4.27a). The dish is made of a mesh surface that is
set in a natural bowl. The holes in the surface are
large enough that we can only use this dish for
long wavelength observations. Also, the dish can-
not be steered in any direction; it looks straight
up. However, by moving the detectors around you
can actually view a reasonable amount of sky. For
many years, the largest fully steerable antenna
was at the Max Planck Institiit fiir Radioastromie in
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(c)

Effelsberg, Germany (Fig. 4.27b). That telescope is
100 m in diameter. The inner 80 m has a surface
made of solid panels so it can be used at wave-
lengths of a few centimeters. The outer 20 m is a
mesh and is used to make the dish larger at
longer wavelengths where diffraction is worse.
The newest large telescope is the Byrd telescope,
just being completed at the NRAO in Green Bank.
It is a fully steerable 100 m telescope (Fig. 4.27¢). It
is designed so that more of the collecting area is
used than in the German telescope. This is done
in part by reducing the blockage by the support

(b)

(@)

G A Large radio telescopes. (a) The 300 m (1000 ft )
dish in Aricebo, Puerto Rico.The dish always points straight

up, but moving the receiver to different off axis positions
allows looking away from overhead. (b) The 100 m diameter
telescope of the Max Planck Institiit fir Radioastronomie,
Effelsberg, Germany. It operates in azimuth and elevation.
Azimuth is controlled by moving the whole structure on the
circular track.As the telescope changes its elevation angle it
deforms under gravity. However, it is designed to deform from
one paraboloid into another, so only its focal length changes.
(c), (d) The 100 m Byrd Telescope at the NRAO in Green
Bank,WV. The offset arm to support receivers results in no
blockage of the dish. This optimizes sensitivity and imaging
quality. The telescope surface (c) and back-up structure (d) are
shown. [(a) The Aricebo Observatory is part of the National
Astronomy and lonosphere Center operated by Cornell
University under a cooperative agreement with the National
Science Foundation; (b) MPIFR; (c),(d) NRAO/AUI/NSF]

structure. All of the surface is accurate enough for
observations at wavelengths as short as 7 mm.
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The detection of the radio waves takes place in
a radio receiver. In general, the size of the receiver
limits us to only one receiver operating on a tele-
scope at a given time. This is equivalent to doing
optical observations with only one detector in
your CCD. At any given time, the telescope is
receiving radiation from a piece of sky determined
by the diffraction pattern of the antenna. If we
want to build up a radio image of part of the sky,
we must point the telescope at each position and
take a separate observation. Recently, improve-
ments in receiver technology have allowed limited
multireceiver systems.

The receivers in radio astronomy are similar in
concept to home radios. Like your home radio, the
incoming signal is first mixed with a signal from
a reference oscillator, and the resulting lower fre-
quency beat note is then amplified. We change
the frequency we are observing (like changing
radio stations) by changing the frequency of the
reference oscillator. However, the signals from
astronomical sources are so weak by the time they
reach us that receivers for radio astronomy must
be much more sensitive than your home radio.
Sometimes the receivers are cooled to a few
degrees above absolute zero to minimize sources
of background instrumental noise. Unlike bolome-
ters, they do not simply detect all of the energy
that hits them; they are also capable of preserving
spectral information.

Just as with optical observations, in radio
astronomy we can make continuum and spectral
line observations. Continuum studies are like opti-
cal photometry. We tune our receivers to receive
radiation over a wide range of frequencies, and we
measure the total amount of power received. From
this information, we obtain the general shape of
the continuous spectrum (intensity vs. frequency).

In spectral line observations the radiation is
detected in small frequency intervals, so the
shapes of spectral lines can be determined. The
spectrometers for radio observations have tradi-
tionally been large numbers of electronic filters,
tuned to pass narrow frequency ranges. More
recently, the ability of very fast computer chips
has allowed for very flexible digital spectrome-
ters. They measure the auto-correlation function
of the incoming signal, which is the result com-
paring the signal with a slightly delayed version

of the signal, and doing this for different delay
times. We can think of this as the digital analog
of the Michelson interferometer spectrometer
discussed above. It therefore produces a Fourier
transform of the spectrum. As with the
Michelson interferometer, it is limited by its abil-
ity to measure this Fourier transform at only a
finite range of time delays, with a step size lim-
ited by how fast we can run the computer. The
computer speed determines the total bandwidth
of the spectrometer, and the largest delay time
determines the frequency resolution. By chang-
ing one or the other, we can adjust the band-
width or the frequency resolution. That is why we
say this is a very flexible system.

With either technology it is relatively easy to
make high resolution spectral observations, with
up to a few thousand frequency channels
observed simultaneously. So, compared with opti-
cal observations, in radio observations we have to
work harder to build up an image, but it is easier
to make a spectrum at each position in our image.

One of the most important advances in radio
astronomy in the last three decades of the 20th
century has been the development of the millime-
ter (or shortest radio wave) part of the spectrum.
As we will see throughout this book there are cer-
tain observations which are only possible at mil-
limeter wavelengths. There also are some inherent
benefits in working at millimeter wavelengths. If
we can observe at 1 mm, for example, we can
achieve the same angular resolution as at 10 cm,
with a 100 times smaller dish! Of course, the dish
must have a surface that is 100 times more accu-
rate, meaning that it is hard to make a very large
dish. This has restricted the size of millimeter tel-
escopes to a few tens of meters in diameter, pro-
viding resolutions of ~10 to 20 arc sec at best.

At millimeter wavelengths the atmosphere
blocks some of the incoming radiation (being
somewhere between the totally clear radio and
totally blocked infrared). This means that it is
useful to put millimeter telescopes at high alti-
tudes and dry sites (just as with optical or
infrared telescopes). One of the first (and until its
closure, in 2000, one of the most heavily used)
millimeter telescopes was the 12 m telescope of the
NRAO, located on Kitt Peak, Arizona, just below
the site of the optical observatory (Fig. 4.28a). ESO
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A Millimeter telescopes. (a) The NRAO 12 m telescope on Kitt Peak, Arizona. (b) The Swedish—ESO Submillimetre
Telescope (SEST) on La Silla, Chile. (c) The 30 m telescope, Spain. (d) The Nobeyama 45 m telescope. [(a) Jeffrey Mangum,
NRAO/AUI/NSF; (b) ESO; (c) IRAM; (d) Nobeyama Radio Observatory/National Astronomical Observatory of Japan]

has operated the 15 m Swedish-ESO Submillimetre
Telescope (SEST) at their optical site on La Silla,
Chile (Fig. 4.28b). The largest millimeter tele-
scopes are the 30 m telescope operated by French
and German institutes, and located in Spain
(Fig. 4.28c) and the Nobeyama 45 m telescope in
Japan (Fig. 4.28d).

The problem of poor angular resolution for
radio observations has been solved, in part, by

using combinations of telescopes, called interfer-
ometers (Fig. 4.29). Interferometers utilize the
information contained in the phase difference
between the signals arriving at different tele-
scopes from the same radio source. Any pair of
telescopes provides information on an angular
scale approximately equal (in radians) to the
wavelength, divided by the separation between
the two telescopes in a direction parallel to a line
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Radio interferometer. Here only two telescopes
are shown, but an interferometer with any number of tele-
scopes can be treated as a number of pairs of telescopes.
The separation between the telescopes produces a phase
delay, which depends on the separation, d, and the position
of the source.The phase difference can be detected, provid-
ing information about source structures whose angular size
is approximately A/d (in radians). By using different telescope
spacings and the Earth’s rotation, information about struc-
tures on different angular sizes can be accumulated and
eventually reconstructed into a map of the source.

connecting the two telescopes. To obtain infor-
mation on different angular scales, it is necessary
to have pairs of telescopes with different spac-
ings. In addition, different orientations are
needed. For this reason, interferometers gener-
ally have a number of telescopes. The Earth’s rota-
tion also helps change the orientation of any pair
of telescopes, as viewed from the direction of the
source. Unlike single dish observations, you don’t
have to point the telescope at different parts of
the source to make a map.

To see some of the limitations of using inter-
ferometers to make images, we look a little more
at how they work. We again look at any pair of
telescopes, as indicated in Fig. 4.29. Before com-
bining the signals from the two telescopes, we
delay the signal from the nearer telescope by the
extra time it takes the waves to reach the second
telescope. That delay will change as we point the
telescope pair at different angles above the hori-
zon. This allows us to zero out the phase differ-

ence between signals from objects at the center
of each field of view. But objects off the field cen-
ter will have varying phase differences as we
track the source across the sky. To extract a map
of our field of view, we first multiply the two sig-
nals together (actually the delayed signal from
the first telescope times the complex conjugate
of the signal from the second telescope). This
product is called the visibility. When you work out
the details, the visibility turns out to be the
Fourier transform of the two-dimensional inten-
sity distribution on the sky, I(x, y). The visibility
is a function of two variables (u, v), where u =
(d/A)cosby and v is defined for the corresponding
angle in the perpendicular direction.

So, we measure the (2D) visibility at as many
(u, v) points as possible, and then calculate I(x, y)
by taking the 2D Fourier transform. Obviously,
the more (u, v) points we can measure, the better
we can estimate the visibility and the better we
can estimate its Fourier transform. This is similar
to the Michelson interferometer, discussed ear-
lier in this chapter, where the more mirror posi-
tions at which we could measure the interference
pattern, the more accurately we could compute
the spectrum, which is the Fourier transform.

How do we measure many (u,v) points? For
any pair of telescopes, we let the Earth’s rotation
change the elevation angle of the source, and also
the orientation on the sky, changing how much
of u and how much of v we are changing. So, if we
do a series of observations, of say, 5 minutes each,
and track a source for 8 hours, we can take many
measurements. It also helps to have many tele-
scopes. For N telescopes there are N(N—1)/2, inde-
pendent pairs of telescopes, so, for large N, the
number of pairs goes up roughly as N2 To make
optimum use of these pairs, we don’t simply have
equally spaced telscopes, since every pair of spac-
ing d will give redundant information. It is also
useful to not have all the telescopes in a
line,which would just give a lot of values of u or
v, but not both. In general the shortest spacings
give information on the large angular scales on
the sky, and the longest spacing provide informa-
tion on the smallest angular scales.

The most useful interferometer over the past
several years has been the Very Large Array or VLA,
near Socorro, New Mexico, operated by the NRAO
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(b)

Depending on the project, the spacings can be adjusted by moving the telescopes along railroad tracks. Moving all of the tele-
scopes takes a few days and is done four times a year.The VLA is operated by the National Radio Astronomy Observatory.
(2) The whole array. (b) The central section, showing a better view of the telescopes and the railroad tracks. (c) The transporter

used to move telescopes on the tracks. [NRAO/AUI/NSF]

IR Views of the Very Large Array (VLA), on the Plains of St Agustine (at an altitude of about 2.3 km) southwest of
Socorro, New Mexico. There are 27 telescopes, each 25 m in diameter. At any instant there are 351 pairs of telescopes.

(Fig. 4.30). The VLA has 27 telescopes, 351 pairs
(each 25 m in diameter), arranged in a ‘Y’ config-
uration, to allow a wide range of both (u, v) values.
Each arm of the Y is 21 km long. The telescopes
are placed alongside railroad tracks, so that the
telescope spacings can be changed, depending on
the resolution needed for a particular project.
These changes can take up to two weeks and are
only done a few times a year. The shortest wave-
length at which the VLA operates is 7 mm. It can
be used for both continuum and spectral line
observations. It has proved to be a powerful tool,
providing images of radio sources, with many
observing sessions ranging from a few minutes to

a few hours. (The amount of data taken is so large
that it takes the computers much longer to
process the data than it does to observe.)

For observations requiring the best possible
resolution, telescopes on opposite sides of the
Earth are used. This is called very long baseline
interferometry (VLBI). VLBI observations have pro-
vided angular resolutions of 10~ * arc seconds! In
regular interferometry, the signals from the vari-
ous telescopes are combined in real time, as the
data comes in. In VLBI, signals at each telescope
are recorded along with a time signal from a very
accurate atomic clock. Later, the records are
brought together, and the time signals are used
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Arrangement of telescopes for the Very Long
Baseline Array (VLBA), operated by the NRAO.There are
ten telescopes, each 25 m in diameter. It operates down to a
wavelength of | cm. [NRAO/AUI/NSF]

to coordinate the records from different tele-
scopes, and the interferometry is then done by
computer. To provide a dedicated group of tele-
scopes for VLBI, the NRAO has recently built the
Very Long Baseline Array (VLBA), which extends over
much of North America (Fig. 4.31).

The success of interferometry and the impor-
tance of millimeter observations have led
astronomers to begin working with millimeter
interferometers. Millimeter waves provide many
technical challenges for interferometry. For
example, the effects of the Earth’s atmosphere
on the millimeter signals are important.
Following the demonstration of successful mil-
limeter interferometers operated by Caltech and
Berkeley, the NRAO has started development of
the Atacama Large Millimeter Array (ALMA), shown
in Fig. 4.32. The final details are still being
worked out, but the array, which is being built in
collaboration with ESO and the Chilean govern-
ment, will have approximately 75 telescopes,
each approximately 12 m in diameter. They will
work down to a wavelength of 0.8 mm. In order
to get around atmospheric problems, a very high
(5000 m) dry site in the Atacama Desert in Chile

has been chosen. It is expected that operation
will start in 2010.

49 | High energy astronomy

X-ray astronomy is one of the youngest fields in
observational astronomy. Since X-rays do not
penetrate the Earth’s atmosphere, the history of
X-ray astronomy is the history of high altitude
(balloon) and space astronomy. Early X-ray obser-
vations were done with sounding rockets (which
provided very brief flights with only a few min-
utes of data taking) and high altitude balloons. Of
course, the balloons still do not rise above all the
atmosphere, and, in the X-ray part of the spec-
trum, even the little bit that is left matters.

One problem in observing X-rays is that it is
very hard to make a mirror that works for these
short wavelengths, less than 1 nm. That is
because the typical spacing between atoms in a
solid is about 0.1 nm. So the incoming radiation
sees a rough surface, with reflections off each
atom producing a scattering in some essentially
random direction. There is one possibility. If we
arrange for the X-rays to come in at a very shal-
low angle, only a degree or two, with the surface,
the atoms appear to be closer together, and we
achieve normal reflection. This is called grazing
incidence. Of course, being constrained to only graz-
ing angles makes it difficult to design a telescope
that will collect and focus a reasonable amount of
radiation. A diagram of the imaging system in one
X-ray satellite is shown in Fig. 4.33(b).

X-ray satellites are able to provide both con-
tinuous and spectral line observations. Originally,
the spectral information came from detectors
similar to those used by high energy physicists,
called proportional counters, which register the
energy of the photons as they hit. Better spectral
resolution was obtained by using a type of grating
called a Bragg crystal, in which the ‘slits’ are the
individual atoms in a solid. More recently, X-ray
astronomers have been able to use solid state
detectors that give good spectral resolution.

More recently a number of satellites have
opened our eyes to the X-ray sky. One of the satel-
lites is shown in Fig. 4.33(a). A number of the
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(b)

The Atacama Large Millimeter Array (ALMA).
(a) Views of the site. (b) Artist’s conception of the
arrangement of telescopes. (c) Artist’s conception of the
antenna appearance. [NRAO/AUI/NSF and ESO]

earliest satellites incorporated Xray detectors,
which shared space with other experiments. The
first satellite devoted entirely to X-ray observa-

(a)

tions was Uhuru (launched in 1970). It was also the
first to survey the whole sky, and, compared to
previous missions, had very sensitive detectors. It
found 339 objects, showing astronomers that
many different types of objects give off strong X-
ray emission. Following Uhuru, which was a rela-
tively small satellite, NASA launched a number of
larger satellites in the High Energy Astronomy
Observatory (HEAO) program. The second in the
HEAO series was the Einstein Observatory, which
was the first to utilize the grazing incidence
imaging, and so produced the first real X-ray
images. The Einstein images had a profound
impact on our thinking about many types of
astronomical objects. We went from being able
to probe small sections of objects to forming
whole images. In many ways it was like having a
blindfold removed. The next major jump in sen-
sitivity and angular resolution was the Roentgen
Satellite (ROSAT), launched in 1990 (Fig. 4.33a).
Chandra was launched in 1999, and provides
sub-arcsecond imaging (Fig. 4.33c) and grating
spectrometry, so it does high quality imaging
spectroscopy (Fig. 4.334d).

All of the telescopes that we have discussed so
far have been for electromagnetic radiation. High
energy phenomena also make their presence
known in other ways. One way is by the emitting
beams of cosmic rays, charged particles, often
with very high energies. They also give off neutri-
nos, subatomic particles that are very difficult to
detect. They also give off gravitational radiation,
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distortions in the fabric of spacetime, which Hyperboloid

again are very difficult to detect. We will talk £

fl

about detecting each of these in the chapters that  xaws —
discuss their astrophysical origin.

Focal Point
—
—_—
—_—
—
X-rays
(b)

(0

m X-ray satellites.

(a) ROSAT. (b) Imaging system in
the Chandra X-ray satellite, utiliz-
ing grazing incidence. (c) Chandra
image of the Crab Nebula showing
the great detail achievable in cur-
rent X-ray systems. (d) Chandra
test spectrum, showing the good
spectral resolution. [NASA]

(d)
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Chapter summary

In this chapter we saw how different types of tel-
escopes are used to collect data across the elec-
tromagnetic spectrum. We saw the differences
and similarities among the techniques used in
different parts of the spectrum. Much of the
progress in astronomy in the past few decades
has come from our ability to make high quality
observations in parts of the spectrum other than
the visible.

We looked at the important features of any
telescope, the collecting area and the angular res-
olution. The collecting area determines how sen-
sitive the telescope is to faint objects. The angular
resolution is limited by diffraction (especially in

Questions

the radio), and in other cases is limited by atmos-
pheric seeing (especially in the visible).

We saw the various techniques for extracting
information from the radiation collected by our
telescopes. Improving detector efficiency and
panoramic ability has been important in all parts
of the spectrum.

We saw the importance of site selection for an
observatory. As an ultimate site, we saw the
advantages of telescopes in space. In space, we
can observe at wavelengths where the radiation
does not penetrate the Earth’s atmosphere. Even
in the visible, we can achieve improved sensitivity
and angular resolution.

4.1. Describe the factors that limit the angular
resolution of an optical telescope. Include
estimates of the size of each effect.

4.2. What do we mean when we say that the
main reason for building large ground-
based optical telescopes is light-gathering
power?

*4.3. Explain how improving the seeing at a site
might allow you to detect fainter stars. (Hint:
Think of what happens to the photons on
your detector (film or CCD) when the image
is smeared.)

*4.4. Suppose you are observing two stars that are
2 arc sec apart. Draw a diagram illustrating
what you observe under conditions of 4, 2
and 1 arc sec seeing. Your diagram should be
a series of graphs showing intensity as a func-
tion of position on a detector.

4.5. Suppose two stars are 5 arc sec apart on the
sky. We clearly cannot resolve them with our
eyes, but the angular resolution of even a
modest sized telescope is sufficient to resolve
them. However, the light from the telescope
must still pass through the narrow pupil of
the eye. Why doesn’t the diffraction of the
light entering the eye smear the images too
much for us to resolve the two stars?

4.6. ‘Faster’ photographic emulsions can be made
by making the grains larger. Why do you

think this works? What are the possible draw-
backs to this?

4.7. What are the advantages of CCDs over photo-
graphic emulsions and photomultipliers?

4.8. Compare image formation (similarities and
differences) in the eye and in a camera.

4.9. Why is chromatic aberration a problem even
for black and white photographs?

4.10. If there is no angular magnification in a sim-
ple camera, how can using a longer focal
length lens give a larger image?

4.11. A higher quality (more expensive) camera
lens generally has smaller f-stops than an
inferior lens. Why is this?

4.12. Why do some people need to wear eyeglasses
while driving at night but not during the
day? (What is it about the lower light level
that degrades images?)

4.13. Compare the advantages and disadvantages
of reflecting and refracting telescopes.

4.14. Compare the advantages and disadvantages
of various focal arrangements in reflecting
telescopes.

4.15. What does it mean to focus the eye or a
camera ‘at infinity’?

4.16. If you want to photograph a planet you use
your long focal length telescope; if you want
to do photometry on a faint star, you use a
short focal length telescope. Explain.
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4.17. For many observations (both imaging and
spectroscopy) it is becoming important to
read the data into a computer. Briefly discuss
the techniques for doing this that we have
mentioned in this chapter.

What are the important considerations in
choosing an observatory site?

What are currently the best methods of
reducing seeing effects at a given site?

What advantages does HST have over
ground-based telescopes for optical
observations?

What are the similarities and differences
between ultraviolet and optical
observations?

What are the similarities and differences
between infrared and optical observations?
For infrared observations, we must still live
with the fact that parts of a telescope
radiate like blackbodies at about 300 K.
Why isn’t this a problem for optical
observations?

How does a bolometer work? How would you
use a bolometer to measure the power
received in a small wavelength range, for
example between 10 and 11 pm?

Why can’t balloons get above all of the
atmosphere?

4.18.
4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

Problems

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.

4.33.

4.34.

4.35.

Explain the similarities between trying to dis-
play astronomical images and displaying
things such as topographical maps.

Explain why simply using color film in your
camera does not give you a true color astro-
nomical photograph.

In what ways are radio observations similar
to and different from (a) optical and

(b) infrared observations?

Suppose we want to use a radio telescope
with a transmitter rather than a receiver of
radio waves. Draw a diagram (similar to Fig.
4.26) showing how the transmitted radiation
would be spread out on the sky.

Why is possible to observe with the Aricebo
dish even though the surface has holes in it?
Why is it possible to do radio observations
during the day, but not optical observations?
What are the advantages of observing in the
millimeter part of the spectrum? What are
the additional difficulties?

How would an image made by the VLA compare
with one made with a single telescope as large
as the VLA (assuming you could build one)?
How does VLBI differ from normal
interferometry?

What are the difficulties in making a mirror
to work for X-rays?

4.1. What is the limiting magnitude for naked eye
viewing with a 5 m diameter telescope?
Estimate the angular resolution of a 5 m
diameter telescope in space.

Compare the collecting areas of 5 and 8 m
diameter reflectors. Comment on the signifi-
cance of this comparison.

The full Moon subtends an angle of approxi-
mately 30 arc min. How large would the
image of the Moon be on your film if you used
a 500 mm focal length lens for your camera?
If we have two objects 6(") apart on the sky,
how far apart, x, are their images on the film
of a camera with a focal length f. (Assume
that we wish to express x and fin the same
units.)

The focal length of the objective on your tele-
scope is 0.8 m. You are using a 25 cm focal

4.2.

4.3.

44.

4.5.

4.6.

4.7.

4.8.

4.9.

length eyepiece. In the image you find that
the angular separation between two stars is
10 arc sec. What is the actual angular separa-
tion on the sky between the two stars?

The focal length of the objective on your tele-
scope is 0.5 m. (a) What focal length eyepiece
would you have to use to have the image of
the full Moon (whose actual size is 30 arc
min) subtend an angle of 2°? (b) If you then
took a photograph with a 500 mm focal
length camera lens, how large would the
image be on the film?

Scale the results in Example 4.1 to write an
expression for the limiting magnitude of a
telescope of diameter, assuming that you will
be viewing directly with your eye.

Suppose some star is at the limit of naked eye
visibility (m = 6). How much farther away can
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4.10.

*411.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

we see the same object with a telescope of

diameter D? Evaluate your answer for D = 5 m.

Suppose that we use a reflector in the coudé
focus, and each of the three mirrors reflects
95% of the light. What fraction of the light is
lost as a result of these three reflections?

(a) Using the fact that the limiting magnitude
of the eye is 6, derive an expression for the
limiting magnitude for direct viewing with a
telescope of diameter D. (Ignore the effects of
sky brightness.) (b) Use this result to derive an
expression for the farthest distance at which
a telescope of diameter D can be used to see
an object of absolute magnitude M.

(a) What is the diameter of a single telescope
with the same collecting area as the Multiple
Mirror Telescope? (b) Astronomers have pro-
posed a new telescope with a total collecting
area equal to that of a single 25 m diameter
telescope. How many 4 m diameter telescopes
would be needed to make up this new tele-
scope? (c) The Very Large Telescope, being
built by ESO in Chile, has four telescopes,
each with an 8 m diameter area. What would
be the diameter of a single telescope with the
same collecting area?

Suppose you have a Cassegrain telescope at
home, with a 0.25 m diameter primary
mirror and a secondary mirror with a diame-
ter of 5 cm. What fraction of the primary is
blocked by the secondary?

If we want to double the image size in a par-
ticular observation, by what amount would
we have to change the exposure length to
have a properly exposed photo?

Scale the results in Example 4.2 to write an
expression for the angular resolution, in sec-
onds of arc ("), of a telescope of diameter D for
viewing the middle of the visible part of the
spectrum.

What is the angular resolution of the HST at
200 nm wavelength?

Generally CCDs have fewer picture elements
(pixels) than do photographic plates, so if you
want to image a large field, a single photo-
graph might suffice, but you would need a
number of CCD images. Suppose you had to
make a 3 X 3 square of CCD images to cover
your single photographic field, and that your
photograph has a quantum efficiency of 5%

4.18.

4.19.

4.20.

4.21.

4.22.

while your CCD has an efficiency of 80%. How
long will the needed CCD images take relative
to the time for the photograph?

The sodium D lines in the Sun’s spectrum are
at wavelengths of 589.594 and 588.997 nm.

(a) If a grating has 10* lines/cm, how wide
must the grating be to resolve the two lines
in first order? (b) Under these conditions
what is the angular separation between the
two lines? (c) How would the results in (a) and
(b) change for second order?

A diffraction grating has N lines, a separation
d apart. The spectrum is projected on a screen
a distance D (>>d) from the grating. Two lines
are A and A + A apart. How far apart are
they on the screen?

If we want to observe at a wavelength of 10 pm,
what are the largest fluctuations that the
mirror surface can have?

What are the angular resolutions of the KAO,
SOFIA, IRAS, ISO and SIRTF at wavelengths of
100 pm?

Two infrared sources in the Orion Nebula are
500 pc from us and are separated by 0.1 pc.
How large a telescope would you need to distin-
guish the sources at a wavelength of 100 pm?

*4.23.Suppose we are observing an infrared source

4.24.

that is 500 pc away. It radiates like a 50 K
blackbody and is 1 pc in extent. (a) What is
the total energy per second per square meter
reaching the Earth from this source? How
does that compare with the total amount of
solar radiation reaching the Earth per second
per square meter. (b) Suppose we observe this
source using a satellite with a 1 m diameter
mirror, and we observe at a wavelength of
100 pm. What is the energy/s/Hz striking the
telescope? (c) Suppose the telescope radiates
like a blackbody at 300 K, but with an effi-
ciency of 1%. (That is, the spectrum looks like
that of a blackbody but with an intensity
reduced by a factor of 100.) What is the
energy/Hz/s given off by the telescope at this
wavelength? How does your answer compare
with that in (b). (d) Redo part (c), assuming
that we can cool the mirror to 30 K (still with
a 1% emission efficiency).

Suppose we are using an interference filter at
a wavelength of 10 pm. (a) How far do you
have to move the plates to go from one order
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4.25.

4.26.

4.27.

4.28.

4.29.

maximum to the next? (b) For any given
order, how far do you have to move the plates
for the peak wavelength to shift from 10.00 pm
to 10.01 pum?

What is the angular resolution (in arc
minutes) of (a) a 100 m diameter telescope
operating at 1 cm wavelength, and (b) a 30 m
telescope operating at 1 mm wavelength?
Two radio sources in the Orion Nebula are
500 pc from us and are separated by 0.1 pc.
How large a telescope would you need to dis-
tinguish the sources at a wavelength of

(@) 21 cm? (b) 1 mm?

We sometimes use as a measure of the quality
of a radio telescope the diameter d, divided by
the limiting wavelength A ;.. (a) Why is this
quantity important? (b) If a telescope has
surface errors of size Ax, give an expression
for this quantity in terms of d and Ax.

How large a collecting area would you need to
collect 1 W from a 1 Jy source over a band-
width of 10° Hz (1 GHz)?

If a radio source emits a solar luminosity

(4 X 10* erg/s) in radio waves, (a) what would
be the power per surface area reaching us if we
were (i) 1 AU away, (ii) 1 pc away? (b) If that
power is uniformly spread out over a frequency
range of 10" Hz, what is the flux density

Computer problems

4.30.

4.31.

4.32.

4.33.

4.34.

(power/surface area/Hz) in each case? (c) How
does this compare with the power you receive
from a 50 kW radio station 10 km from you?
What are the angular resolutions of (a) the
VLA in its largest configuration (baselines up
to 13 km) at a wavelength of 21 cm; (b) the
VLA in its most compact configuration (base-
lines up to 1 km) at a wavelength of 1 cm;

(c) the VLBA (with baselines up to 3000 km) at
a wavelength of 21 cm; (d) the Millimeter
Array (with baselines up to 1 km) at 1 mm
wavelength?

How many pairs of telescopes are there in

(a) the VLA with 27 telescopes, (b) the VLBI,
with ten telescopes, (c) the proposed
Millimeter Array, which may have 40 or 75
telescopes depending on the final design?
What is the total collecting area of (a) the VLA
(b) the ALMA with 75 10 m diameter tele-
scopes? (c) For ALMA, how many 12 m diameter
telescopes would you need to have the same
collecting area as 75 10 m diameter telescopes.
(a) Show that for an interferometer with N
telescopes, the number of independent pairs
of telescopes, at any instant, is N(N — 1)/2.

(b) Evaluate this for the VLA, the VLBA and
ALMA.

Derive equation (4.9).

4.1. Draw a graph of the angular resolution vs. wave-

length, over the infrared part of the spectrum, for
IRAS, KAO, SOFIA, ISO.

4.2. Suppose we have a radio telescope whose (one-

dimensional) beam pattern is a gaussian with a
full width at half maximum (FWHM) of 1 arc min.

Calculate the observed source intensity as a func-
tion of (one-dimensional) position on the sky,
assuming that the source has a uniform intensity
over a finite size of (a) 1 arc sec (b) 1 arc min
(c) 1 degree, and the source has zero intensity
outside that region.






Chapter 5

Binary stars and stellar masses

If we are to understand the workings of stars, it is
important to know their masses. The best way to
measure the mass of an object is to measure its
gravitational influence on another object. (When
you stand on a bathroom scale, you are measur-
ing the Earth’s gravitational effect on your mass.)
For stars, we are fortunate to be able to measure
the gravitational effects from pairs of stars, called
binary stars.

5.1 1 Binary stars

Many stars we can observe appear to have com-
panions, the two stars orbiting their common
center of mass. It appears that approximately half
of all stars in our galaxy are in binary systems. By
studying the orbits of binary stars, we can meas-
ure the gravitational forces that the two stars
exert on each other. This allows us to determine
the masses of the stars.

We classify binaries according to how the
companion star manifests its presence:

Optical double. This is not really a binary star.
Two stars just happen to appear along
almost the same line of sight. The two stars
can be at very different distances.

Visual binary. These stars are in orbit about
each other and we can see both stars
directly.

Composite spectrum binary. When we take a
spectrum of the star, we see the lines of two
different spectral type stars. From this we
infer the presence of two stars.

Eclipsing binary. As we observe the light from
such a system, it periodically becomes
brighter and fainter. We interpret the dim-
ming as occurring when the companion
passes behind or in front of the main star. For
us to see these eclipses, we must be aligned
in the plane of the orbit (Fig. 5.1). A famous
example of such a star is Algol (also known as
B Persei, indicating that it is the second
brightest star in the constellation Perseus).

Astrometric binary. Astrometry is the branch of
astronomy in which the positions of objects
are measured very accurately. In an astromet-
ric binary, we can only see the brighter star.
However, when we follow its path on the sky,
we see that, instead of following a straight
line, it ‘wobbles’ back and forth across the
straight line path. This means that the star is
moving in an orbit, so we can infer the pres-
ence of a companion (Fig. 5.2).

Spectroscopic binary. When we study the spec-
trum of a star we may see that the wave-
lengths of spectral lines oscillate periodically
about the average wavelength. We interpret
these variations as being caused by a
Doppler shift (discussed in the next section).
When the star is coming towards us in its
orbit, we see the lines at shorter wave-
lengths, and when the star is moving away
from us in its orbit, we see the lines at
longer wavelengths.

It is possible for a given binary system to fit
into more than one of these categories, depend-
ing on what we can observe.
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Primary

Orbit of Secondary

Secondary

Brightness
= <
a

Counts

Time (min)

(b)
m Eclipsing binary. (a) The binary system is shown

above; the light curve below. The fainter secondary passes

alternately in front of and behind the primary. Most of the
time, as at position C, we see light from both stars.When
the secondary eclipses the primary, part of the primary light
is blocked and there is a dip in the intensity, as at point A.
When the secondary passes behind the primary, as at B, its
light is lost. Since the secondary is not as bright as the pri-
mary, the loss of brightness is not as great as at A. (b) Part of
the light curve for the eclipsing binary, NN Ser, around the
eclipse part of the orbit. [(b) ESO]

5.2 | Doppler shift

A Doppler shift is a change in the wavelength (and
frequency) of a wave, resulting from the motion
of the source and/or the observer. It is most easily
visualized for a sound wave or a water wave,

= === Path of Unseen Companion

Path of
Center
of Mass

Path of Visible Star

Astrometric binary. Two stars orbit about a com-
mon center of mass, which in turn moves across the sky.The
fainter star is too faint to see, so we only see the brighter
star, moving back and forth across the path of the center of

mass.

where the waves are moving through a particular
elastic medium (Fig 5.3).

5.2.1 Moving sources and observers

We first look at the case of the moving observer.
If the observer is moving toward the source, then
the waves will be encountered more frequently
than if the observer were standing still. This
means that the observed frequency of the wave
increases. If the frequency increases, then the
wavelength decreases. If the observer is moving
away from the source then the situation is
reversed. Waves will be encountered less fre-
quently; the frequency decreases; the wave-
length therefore increases. It should be noted
that if the observer moves perpendicular to the
line joining the source and observer, no shift will
be observed.

We now look at the case of the moving source.
Each wavefront is now emitted in a different
place. If the source is moving toward the observer,
the waves will be emitted closer together than if
the source were standing still. This means the
wavelength decreases. The decreased wavelength
results in an increased frequency. If the source is
moving away from the observer, the waves will be
emitted farther apart than if the source were
standing still. The wavelength increases and the
frequency decreases. Again, if the source is mov-
ing perpendicular to the line joining the source
and observer, no shift results.
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Moving Observer

Lower v

(shortvn/ger A) (High@

(a)

Higher v sho\rt\er A

m Doppler shift for waves in an elastic medium, such
as sound waves. (a) Moving observer. On the left the

observer is moving toward the source, encountering wave
crests more frequently than for a stationary observer.The
frequency appears to increase (and the wavelength to
decrease). On the right, the observer is moving away from
the source, encountering waves at a lower frequency, corre-
sponding to a lower frequency, corresponding to a longer
wavelength. (b) Moving source. The motion of the source dis-
torts the wave pattern, so the circles are no longer concen-
tric. The observer on the left has the source approaching,
producing a shorter wavelength (and a higher frequency).
The observer on the right has the source receding, produc-
ing a longer wavelength (and a lower frequency).

It is possible for both the source and the
observer to be moving. If their combined motion
brings them closer together, the wavelength will
decrease and the frequency will increase. If their
combined motion makes them move farther
apart, the wavelength will increase, and the fre-
quency will decrease. If there is no instantaneous
change in their separation, there is no shift in
wavelength or frequency.

The shift only depends on the component of the
relative velocity along the line joining the source
and observer, since this is the only component that
can change the distance, , between them. We call
this component the radial velocity (Fig. 5.4). We refer
to the line joining the source and observer as the
line of sight. From our definition of radial velocity,
v,, we can see that it is given by

v, = dr/dt (5.1)

Note that if the source and observer are mov-
ing apart, r is increasing, and v, > 0. If the source
and observer are moving together, r is decreasing,
and v, < 0.

Moving Source

L(}nge;‘ A
(Lower v)

(b)

Suppose the source is moving with a speed v;
in a direction that makes an angle 6 with the line
of sight, and the observer is moving with a speed
Vv, in a direction making an angle ¢ with the line
of sight. Taking the components of the two veloc-
ities along the line of sight as v, cos 6 and v,, cos ¢,
and subtracting the get the relative radial veloc-

ity, gives
Vv, = V4 C0S 0 — v, cOS ¢ (5.2)

In astronomy we are interested in the Doppler
shift for electromagnetic waves. The underlying
physics is a little different, because there is no
mechanical medium for these waves to move
through. They can travel even in a vacuum. (We
will discuss this point further in Chapter 7.) For
sound waves, the actual amount of Doppler shift
depends on whether the source or observer (or

VO
VS
Vv, €OS 0 V, €OS ¢
Source Observer

Radial velocity. The horizontal line is the line of
sight between the source and observer.The radial velocity is
the difference between the line of sight components of the

observer and source velocities.
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both) is moving. For electromagnetic waves, only
the relative motion counts.

As long as the relative speed of the source and
the observer is much less than the speed of light,
the results for electromagnetic radiation are rela-
tively simple. If A is the wavelength at which a sig-
nal is received, and A, is the wavelength at which
it was emitted, called the rest wavelength, the
wavelength shift A\ is defined by

AN =X — A, (5.3)

The simple result is that the wavelength shift,
expressed as a fraction of the original wave-
length, is equal to the radial velocity, expressed
as a fraction of the speed of light. That is

AN/ = v, /c (v, <o) (5.4)

If v. > 0, then AA > 0. For a spectral line in the
middle of the visible part of the spectrum, a shift
to longer wavelength is a shift to the red, so this
is called a redshift. The name applies even if we are
in other parts of the spectrum. A positive radial
velocity always produces a redshift. If v. < 0, then
AX < 0, and we have a blueshift.

We now look at what happens to the fre-
quency. We remember that A = ¢/v, so

d\/dv = —c¢/v?
= —\v

This means that Av = (—v/A) AX. Substituting
into equation (5.4) gives

Av/vyg = —v/c (v, <K¢) (5.5)

The shift in frequency, expressed as a fraction of
the rest frequency, is the negative of the radial
velocity, expressed as a fraction of the speed of
light. (So Av/vy, = —AA/A,.)

Example 5.1 Doppler shift

The Ha line has a rest wavelength, Ay = 656.28 nm.
What is the observed wavelength for a radial veloc-
ity (a) v, = 10 km/s, and (b) v, = —10 km/s?

SOLUTION
(a) We use equation (5.4) to find the wavelength shift:
AN = Ag(v/c)

(656.28 nm)(10.0 km/s)
= S = 0.022 nm
(3.0 X 10° km/s)

We now add this to the original wavelength to find
the observed wavelength:

A=A, + AX

656.28 nm + 0.022 nm
= 656.30 nm

(b) If we take the negative of v,, we just get the neg-
ative of AA, so

AA = —0.022 nm
This gives a wavelength of

A = 656.26 nm

If we observe two spectral lines, their wave-
length shifts will be different, since each is
shifted by an amount proportional to its own rest
wavelength. Thus, the spacing between spectral
lines will be shifted.

5.2.2 Circular orbits

We now look at Doppler shifts produced by a star
in a circular orbit. The orbital speed is v, and the
radius is r. The angular speed of the star in its
orbit (in radians per second) is given by w = v/r.
The situation is shown in Fig. 5.5. Suppose the
star is moving directly away from the observer at
time t = 0. At that instant the radial velocity
v, = v. As the stars moves, the component of its

v(t =/2m) Vr

o v(t=0)

v(t = 31/20)

Doppler shift for a circular orbit. The speed v of

v(t = T/w)

the source remains constant, but the direction changes, so
the radial velocity v, changes.The angle 6 keeps track of how
far around the circle the source has gone.The source velocity

is shown for five different values of 6.
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m Radial velocity curve

for the spectroscopic binary
GRSI1915+ 105, which has an
orbital period of 33.5 days. The
horizontal axis is the fraction
through that orbit. Data points
and error bars are indicated. The
smooth curve is the best fit to
the data.[ESO]

Orbital Phase (33.5 days)

velocity along the line of sight is v cos 6. However,
0 = wt, so

v, = v cos(wt) (5.6)

The radial velocity changes sign every half-
cycle, and repeats periodically. This is shown in
Fig. 5.6. The period of the motion is the circum-
ference, 271, divided by the speed v, so P = 27/w.
If we substitute equation (5.6) into equation (5.4),
we find that the spectral lines shift back and
forth, with a shift given by

AX/Ay = (v/c) cos (wt)

So far we have been considering the situation
in which the observer is in the plane of the orbit.
If the observer is not in the plane of the orbit, the
Doppler shift will be reduced (Fig. 5.7). If i is the
angle between the plane of the orbit and the
plane of the sky, then the projection of any veloc-
ity in the plane of the orbit into the line of sight
is v sin i. The angle i is known as the inclination of

Line of Sight
-
Plane
of
Sky
Plane of Orbit

Inclination of an orbit. The orbit is an ellipse,
which lies in a plane.The plane makes some angle i with a
plane of the sky.The plane of the sky is defined to be per-
pendicular to the line of sight.

the orbit. This gives us a radial velocity for an
orbiting star

v, = vsin i cos(wt) (5.7)

5.3 | Binary stars and circular orbits

In this section we will see how Newton’s laws of
motion and gravitation can be applied to binary
stars in circular orbits. Circular orbits are not the
most general case of orbital motion, but the
analysis is most straightforward, and most of the
basic points are clearly illustrated. In the next
section we will go to the general case of elliptical
orbits.

We consider two stars, of masses m, and m,,
orbiting their common center of mass at dis-
tances r; and r,, respectively (Fig. 5.8). From the

V2

m
ry r z

Vi

FTAEIE A Binary system with circular orbits. Both stars orbit
the center of mass (CM).The more massive star is closer to
the center of mass. The center of mass must always be
between the two stars, so the stars lie on opposite sides of it.
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definition of center of mass, these quantities are
related by

myry = Myty (5.8)

The center of mass moves through space sub-
ject only to the external forces on the binary star
system. The forces between the two stars do not
affect the motion of the center of mass. We will
therefore ignore the actual motion of the center
of mass, and view the situation as it would be
viewed by an observer sitting at the center of
mass.

Since the center of mass must always be along
the line joining the two stars, the stars must
always be on opposite sides of the center of mass.
This means that the stars orbit with the same
orbital period P. In general, the period of the
orbit is related to the radius, r, and the speed,
v, by
P = 2mr/v (5.9)
Solving for v gives
v = 27r/P (5.10)

Since the periods of the two stars must be the
same, equation (5.9) tells us that

1/Vi = 1a/Vy (5.11)
Combining these with equation (5.8) gives
Vi/Vvy = 1i/1y = my/my (5.12)

(Note: We could have also obtained myv; = myv,
directly from conservation of momentum. This
is not surprising since the properties of the
center of mass come from conservation of
momentum.)

We now look at the gravitational forces. The
distance between the two stars is r; + 1, , so the
force on either star is given by Newton’s law of
gravitation as

my M,
F=G——1 (5.13)
(r +1p)?
This force must provide the acceleration associ-
ated with the change of the direction of motion
in circular motion, v*/r. For definiteness, we look
at the force on star 1, so

F = mvi/r, (5.14)

Combining equations (5.13) and (5.14) gives

2

my mym

= —— (5.15)
61 (r + 1)

Note that we can divide both sides by m,. If we
also use equation (5.10) to relate v, to P, we find
that

Gm,

471, B (5.16)
P? (r, + 1)? ’

This can be simplified if we introduce the total
distance R between the two stars:

R=r+n
=11 + ry/ry) (5.17)
Using equation (5.12), this becomes
R =r(1 + my/m,) (5.18)
= (r/my)(my + m,) (5.19)
Substituting this into equation (5.16) gives
47R*/G = (m; + m,)P> (5.20)

Let’s look at how equation (5.20) can be used
to give us stellar masses. For any binary system,
we can determine the period directly if we watch
the system for long enough. If the star is a spec-
troscopic binary, we can see how long it takes for
the Doppler shifts to go through a full cycle. If it
is an astrometric binary we can see how long it
takes for the ‘wobble’ to go through a full cycle. If
it is an eclipsing binary, we can see how long it
takes the light curve to go through a full cycle. If
we can see both stars, we can determine R. Once
we know R and P, we can use equation (5.20) to
determine the sum of the masses, (m; + m, ). We
can also obtain the ratio of the masses m,[m,,
either from r4/r,, if both stars can be seen, or v4/v,,
if both Doppler shifts are observed. Once we
know the sum of the masses and the ratio of the
masses, the individual masses can be deter-
mined. The situation we have outlined here is
the ideal one, however. Usually, we don’t have all
of these pieces of information (as we will see
below).

Example 5.2 Mass of the Sun
We can consider the Sun and Earth as a binary sys-
tem, so we should be able to apply equation (5.20) to
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find the mass of the Sun. It turns out that this is the
most accurate measure we have of the Sun’s mass.

SOLUTION
Since the mass of the Sun is so much greater than
that of the Earth, we can approximate the sum of
the masses as being the mass of the Sun, M.
Equation (5.20) then becomes
M. = 47°R?

¢ op

47%(1.5 X 10%* cm)®
(6.67 X 10® dyn cm?/g*)(3.16 X 10”s)?

=2 X 10%g

We call this quantity a solar mass. It becomes a con-
venient quantity for expressing the masses of other
stars.

From the Earth and Sun we know that for a
pair of objects orbiting with a period of 1 yr, at a
distance of 1 AU (defined in Section 2.6), the sum
of the masses must be one solar mass. This sug-
gests a convenient system of units for equation
(5.20). If we express masses in solar masses, dis-
tances in astronomical units, and periods in years,
the constants must equal one to give the above
result. We can therefore rewrite equation (5.20) as

R I? m, +my|[ P ?
[mu} - { 1Mo er}

For the Solar System, we write the sum of the
masses as one in these units, so the equation sim-
ply says that the cube of the radius (in AU) is
equal to the square of the period (in yr). This is
also known as Kepler’s third law of planetary motion.
The law was originally found by Kepler observa-
tionally, and Newton used it to show that gravity
must be an inverse square law force. (See Problem
5.10.) We will discuss planetary motions in more
detail in Chapter 22.

For a visual binary, we don’t directly measure
R, the linear separation. We actually measure the
angular separation on the sky, 6. If d is the dis-
tance to the binary, then R is equal to 6(rad)d,
where 6(rad) is the value of # measured in radi-
ans. When we use this relation, R and d will come
out in the same units. Therefore

(5.21)

R(AU) = d(AU)¢(rad)

The values of 6 are so small that radians are an
inconvenient quantity. We can convert to arc sec-
onds (equation (2.16)) to give

R(AU) = d(AU)6(")(2.06 X 10°)

The factor of 2.06 X 10° was to convert radians to
arc seconds, but it is also the factor to convert
astronomical units to parsecs, so we have

R(AU) = d(pc)6(")

If we use equation (2.17) to relate the distance in
parsecs to the parallax in arc seconds, this
becomes

R(AU) = 6(")/p(")

This can then be substituted directly into equa-
tion (5.21).

We will now look at the behavior of the Doppler
shifts. Applying equation (5.10) to both speeds, v,
and v,, and remembering that the period of the
orbit is the same for both stars, we have

(5.22)

ry + 1y = (P/27)(vy + vy)
Using this to eliminate R in equation (5.20) gives

(P/27G) (v, + v,)® = m; + m, (5.23)

If the orbit is inclined at an angle i, then the
Doppler shifts only measure the components
v, = vsin(i). In terms of the radial velocities v,
and v,,, equation (5.23) becomes

(P/27G)(vyy + vy )3/sin®i = m; + m, (5.24)

If a binary happens to be an eclipsing binary,
then we know that we are close to the plane of
the orbit, and i is close to 90°. Otherwise we don’t
know i. If a circular orbit is projected at some
angle on the plane of the sky it will appear ellip-
tical. We will see in the next section that there
are ways to determine i if we can trace that pro-
jected orbit on the sky. If i is unknown all we can
do is solve equation (5.24) with i = 90°. This will
give us a value of m; + m, that is a lower limit to
the true value. The true value would be this lower
limit divided by sin®i, and since sin®i is less than
or equal to unity, the value assuming i = 90° is
less than the true value. Finding lower limits is
not as useful as finding actual values. However,
ifwe study enough binary systems, we will
encounter a full range of inclination angles.
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These statistical studies can be used to relate
mass to spectral type.

Example 5.3 Binary star Doppler shifts

A binary system is observed to have a period of

10 yr. The radial velocities of the two stars are deter-
mined to be vy, = 10 km/s and v,, = 20 km/s, respec-
tively. Find the masses of the two stars (a) if the
inclination of the orbit is 90°, and (b) if it is 45°.

SOLUTION
From equation (5.24), we have

my + m,
My
(10 yr)(3.16 X 107 s/yr)[(10 + 20)(1 X 10° cm/s)
27(6.67 X 10~ ® dyn cm?/g*)(2 X 10% g)(sin’)

= 10.2 My/sin’i
This means that
m, + m, = 10.2 Mg/sin’%
Ifi = 90°, sin® = 1, so
m; + my, = 10.2 My

We find the ratio of the masses from the ratio of
the radial velocities

my/My = Vo/V,

= 2.0
This means that m,; = 2m,, so
2m, + m, = 10.2 My,

giving m; = 6.8 Mg and m, = 3.4 Mg. If i = 45°,
1/sin® = 2.8. The ratio of the masses does not change,
since the sin i drops out of the ratio of the radial
velocities. This means that we can just multiply each
mass by 2.8 to give 19.2 and 9.5 M, respectively.

It is often the case that only one Doppler shift
can be observed. Let’s assume that we measure v,
but not v,. We must therefore eliminate v, from
our equations. We can write v, as

vy = vy(my/m,)
The sum of the velocities then becomes
v+ vy = vi(1 + vy/vy)

= v (1 + my/m,)

(vi/my)(my + my)

If we now substitute into equation (5.24), we find

( P )(%)3 _ (m% sin® i

— 5.25
271G m, + m,)? (5.25)

The quantity on the right-hand side of equa-
tion (5.25) is called the mass function. If we can
measure only one Doppler shift, we cannot
determine either of the masses. We can only
measure the value of the mass function. We can,
however, obtain information on the masses of
various spectral types through extensive statisti-
cal studies.

We can also look at energy of a binary system
with circular orbits. It is the sum of the kinetic
energies of the two stars plus the gravitational
potential energy, which we take to be zero when
the two objects are infinitely far apart. The
energy is
E = (1/2)mvi + (1/2)m,v5 — Gm, m,/R (5.26)
From equation (5.15), we have

mym,
(R)?

mv? = Gr,

and, using equation (5.12), we obtain
mym,
(R)*

Substituting these into equation (5.26) and
simplifying gives

E = —(1/2) Gmym,/R

myv: = Gry

(5.27)

Compare this with equation (3.4), which has
the energy for circular orbits with electrical
(rather than gravitational) forces.

The negative energy means that the system
is bound. We would have to add at least
(1/2)Gmymy/R to break up the binary system. (We
can think of this as being analogous to the
binding energy of a hydrogen atom.) For any pair
of masses, as you make the orbits of the binary
system smaller, the energy becomes more
negative.

Example 5.4 Binding energy of a binary system.
What is the binding energy of a binary system with
two 1 Mg, stars orbiting with each 100 AU from the
center of mass?
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SOLUTION
Using equation (5.27)

1\Gmym
- _(7) iy
2) R
<1)(6.67 X 10~ 3dyn cm?/g*)(2 X 103 g)?
2 (200)(1.5 X 10"cm)

— 45X 10% erg

5.4 | Elliptical orbits

5.4.1 Geometry of ellipses

In general, orbiting bodies follow elliptical paths.
A circle is just a special case of an ellipse. In this
section, we generalize the results from the previ-
ous section from circular orbits to elliptical
orbits. The basic underlying physical ideas are the
same.

We first review the geometry of an ellipse, as
shown in Fig. 5.9. We describe the ellipse by its
semi-major axis a and semi-minor axis b. Each
point on the ellipse satisfies the condition that
the sum of the distances from any point to two
fixed points, called foci (singular focus), is con-
stant. If r and r’ are these two distances then

Major Axis

SIXY JOUIA]

\/

Geometry of an ellipse. The length of the semi-

major axis is a; the length of the semi-minor axis is b. The
two foci are at F and F'.The eccentricity is e, and the dis-
tances from the two foci to points on the ellipse are r and r'.

r + ' is a constant. We can see that for a point on
the semi-major axis (and the ellipse), this sum is
24, so it must be 2a everywhere. That is

r+r1r =2a (5.28)

The eccentricity of an ellipse is the distance
between the foci, divided by 2a. A circle is an
ellipse of eccentricity zero (both foci are at the
same point, the center of the circle). The eccen-
tricity of any ellipse must be less than unity. From
the point where the curve crosses the minor axis,
r=r1 =a,s0

b* = a® — (ae)?

= a*(1 — é?) (5.29)

In a binary system, the center of mass of the
two stars will be at one focus on the ellipse. The
farthest point from that focus is called the apas-
tron. From the figure, we see that the distance
from the focus to this point is

r(apastron) = a(1 + e) (5.30a)

The closest point to the focus is called the peri-
astron. Its distance from the focus is

r(periastron) = a(1 — e) (5.30b)

The average of these two values is a, the semi-
major axis. This is the quantity that replaces the
radius of a circular orbit in our study of binary
stars.

It is useful to have an expression for the
ellipse, relating the variables r and 6. From the
law of cosines, we see that

r'2 =12 + (2ae)* + 2r(2ae) cosh (5.31)
Using equation (5.28) gives
a(l — ¢
( ) (5.32)

r=——
1+ ecos6

5.4.2 Angular momentum
in elliptical orbits

The gravitational force between two objects always
acts along the line joining the two objects. The
center of mass also lies along this line. This means
that the force on either object points directly from
that object towards the center of mass. Therefore,
these forces can exert no torques about the center
of mass. If there are no torques about the center of
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F (CM)

m Angular momentum in an elliptical orbit. In this

case the object is a distance r from the focus F (which is also

the center of mass). Its velocity makes an angle ¢ with the
line from F to the object. (If this were a circle, ¢ would be
90°.) The time interval over which we mark the motion is dt.

mass, then the angular momentum about the cen-
ter of mass is conserved.

To consider the angular momentum of an
object in an elliptical orbit, we look at Fig. 5.10. For
an object of mass m, the angular momentum about
the center of mass (which corresponds to one of the
foci) is r times the component of its linear momen-
tum perpendicular to the direction of r. That is

L = mvrsin ¢ (5.33)

where ¢ is between the line from the center of
mass to the object (of length r) and its direction of
motion (the direction of the velocity vector, v).

We look at the area swept out by the line from
the center of mass to r, in the time interval dt. The
area is the thin triangle shown in the figure. The
long side of the triangle is r and the short side is
vdt. The small right triangle shows that the
height of the larger triangle is v(dt)sin ¢. The
area is then half the base X height, so

dA = (1/2) r(vdt) sin ¢
The rate at which the area is swept out is
dA/dt = (1/2)rvsin ¢

However, we can use equation (5.33) to eliminate
rvsin ¢, giving

dA/dt = (1/2) (L/m)

Since L is constant, the rate at which area is swept
out is constant. Equal areas are swept out in equal
times. (When applied to planetary motions, this is
known as Kepler’s second law, as we will discuss in
Chapter 22.)

The major consequence of angular momen-
tum conservation is therefore that the objects
move slower when they are farther apart and
faster when they are closer together. (As we will
see, the Earth’s orbit is only slightly eccentric but
it moves faster when it is closer to the Sun, in
January, and slower when it is farther away. This
results in winter and spring in the northern
hemisphere being shorter than summer and win-
ter. Check a calendar to see this.)

5.4.3 Energy in elliptical orbits

We next look at the total energy of the binary sys-
tem. Adding the kinetic energies of the two stars
and their gravitational potential energy (defined
as zero when the stars are infinitely far apart)
gives

E = (1/2)m v} + (1/2) m,v3 — Gm,m,/R (5.34)

In this expression v; and v, are the speeds relative
to the center of mass. Remember, from the defi-
nition of the center of mass, we found that
miv; = myv,. We introduce the relative speed of
the two stars

v=v; t v, (5.35a)

The two speeds are added because the two
stars are always moving in opposite directions, so
their relative speed will be the sum of the magni-
tudes of their individual speeds. In terms of v, the
two speeds are

MoV
V= ———— (5.35b)
my + m,
myv
v, = ——— (5.35c¢)
my + m,
Substituting into equation (5.32) gives
v? G
E=m,m, - — (5.36)

2(my; + my,) R

Since energy is conserved, we can evaluate it
at any point we want. For simplicity, we choose
apastron (speed v,) and periastron (speed v,). We
can relate the speeds v, and v, by conservation of
angular momentum. Angular momentum con-
servation is easy to apply at the apastron and peri-
astron because the velocities are perpendicular to
the line from the focus to the star. Since ¢ = 90°
at these points, the angular momentum (equa-
tion (5.33)) is just mvr. Using equations (5.30a) and
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(5.30b) we find that

a(l + e)v, = a(1 — e)v, (5.37)
Solving for the ratio v,/v, gives

v 1+e

R (5.38)
v, 1—e

Now that we have the ratio vp/v,, we need
another relation between them to be able to solve
for v, and v, individually. We can use conserva-
tion of energy to equate the energies at the apas-
tron and periastron. Using equation (5.36) gives

v2 G vE G
2(my + m,)

B a(l +e) 2(m; +my) - a(l —e)
(5.39)

Rearranging gives

=) 2) deo

1 Vi
2 (G)]
2 Vi

We can use equation (5.38) to eliminate the
ratio vp/v,. Solving for v, gives

e[

-2

If we put these into equation (5.36), the total
energy simplifies to

(5.40a)

(5.40D)

E = —Gmym,/2a (5.41)

We can now use this in the left-hand side of
equation (5.36). We can then solve for v at any
point r:

v: = G(m, + m,)(2/r — 1/a) (5.42)

5.4.4 Observing elliptical orbits

In studying the Doppler shifts of elliptical orbits
as compared with circular orbits, there are three
important differences:

(1) The speed along an elliptical orbit is not con-
stant.

(2) In an elliptical orbit the velocity is not per-
pendicular to the line from the center of mass
to the orbiting object.

(3) Even if you are in the plane of the orbit, the
radial velocity curve depends on where you
are relative to the major axis of the ellipse.

These points are illustrated in Fig. 5.11.

Vr

®

@®
(a)

To Observer

V4

(b)

m (a) Radial velocity vs. time, t, for an elliptical orbit.

(b) In contrast to the circular orbit both the magnitude and

direction of v change throughout the orbit. (We assume for
this figure that the observer is in the plane of the orbit, or
that i = 90°.) Four points are shown in the orbit and in the
radial velocity curve.At points 2 and 4 the motion is perpen-
dicular to the line of sight, so v. = 0. For point | the motion
is directly toward the observer, producing the maximum
negative v,, and, for point 3, the motion is away from the
observer, producing the maximum positive v, . The motion is
also faster at | than at 3. In addition, going from 4 to | to 2
takes less time than going from 2 to 3 to 4.This accounts for

the distorted shape of the radial velocity curve.
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As we said above, we must correct any Doppler
shift for the inclination of the orbit, i. If we take
a tilted ellipse and project it onto the sky, we still
have an ellipse. However, that ellipse will have a
different eccentricity than the true ellipse. When
we look at an elliptical orbit, how can we tell if it
is tilted or not? For a tilted orbit the foci will not
appear in the right place for the projected ellipse.
Therefore, if we see two stars orbiting a point dif-
ferent from the center of mass, we will know that
the orbit is inclined. We can determine the incli-
nation from the degree to which the foci appear
to be displaced. In this technique, we don’t actu-
ally know where the center of mass is, so a
process must be used in which we try one posi-
tion for the center of mass and try to match the
projected orbit, repeating the process until a
good fit is achieved.

5.5 | Stellar masses

As a result of studying many binary systems,
astronomers have a good idea of the masses of
main sequence stars. These results are summa-
rized in Table 5.1. Just as the Sun’s temperature
places it in the middle of the main sequence, its
mass is in the middle of the range of stellar
masses. The lowest mass main sequence stars
have about 0.07 of a solar mass, and the most
massive stars commonly encountered have about
60 solar masses. When we think of how large or
small stars might have turned out to be, the
observed range of stellar masses is not very large.
This range is an important constraint on theories
of stellar structure.

Table 5.1. | Mass and spectral type (MS).
Spectral type MIMg
o5 40.0

B5 7.1

A5 22

F5 | 4

G5 0.9

K5 0.7

M5 0.2

An even more stringent constraint is the rela-
tionship between mass and temperature on the
main sequence. The cooler stars are less massive
and the hotter stars are more massive. We have
already said that the existence of the main
sequence implies a certain relationship between
size and temperature. This means that if a star is
on the main sequence, once its mass is specified,
its radius and temperature are determined.
Another way of looking at this to say that a star’s
mass determines where on the main sequence it
will fall.

Since the mass determines the radius and
temperature of a main sequence star, it should
not be surprising that it also determines the
luminosity. The exact dependence of the lumi-
nosity on mass is called the mass-luminosity rela-
tionship. This relationship is also explainable
from theories of stellar structure. This relation-
ship is shown in Fig. 5.12. We can summarize it
by saying that the luminosity varies approxi-
mately as some power, «, of the mass. If we
express luminosities in terms of solar luminosi-
ties, and masses in terms of solar masses, this
means that

L/L@ = (M/M@)a (5.433.)
Intermediate
Mass
Low High
Mass Mass
106 N —
o 100 7 : 7
S L -
102 |- ' -

100

M/Mo

W Mass—luminosity relationship.
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A single value of a does not work for the full
range of masses along the main sequence. The
approximate values are:

a=18forM < 0.3 My (low mass)

a = 4.0 for 0.3 My < M < 3 M (intermediate mass)

(5.43b)

a=28for3My; <M (high mass)

In understanding how stars are formed
(Chapter 14) we would like to know the distribu-
tion of stellar masses. That is, we would like to
know the proportions of stars of various masses.
Since we now know how to relate mass and spec-
tral type, we can carry out such studies by look-
ing at the relative numbers of different spectral
types or luminosities. These studies are difficult,

because we can see brighter stars to greater dis-
tances than faint stars. This is called a selection
effect, because it makes it difficult to select an
unbiased sample.

It is of interest to study the number of stars in
different mass ranges. This is called the mass
function. This is a good check on various theories
of star formation, which we will discuss further
in Chapter 15. When we discuss stellar evolution
(Chapters 10 and 11), we will see that low mass
stars live longer than high mass stars. So, if we
study the mass function in a group of stars (usu-
ally clusters, as we will discuss in Chapter 13), it
will change with time. As the higher mass stars
die, they leave behind a cluster with a depleted
number of high mass stars. So, if we want to
really see what the mix of masses are when the
cluster forms, we need to look at young clusters.
This allows us to study what we call the initial
mass function (IMF). Data for some sample clusters
are shown in Fig. 5.13. Note: the number of low
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mass stars is so much greater than the number of
high mass stars, that we show the results on a
log-log plot. In general, we find that we can fit
the data with power laws of the form N(m) ~ m™”.
The best fit values of y are shown as slopes in the
figure. These figures don’t have much data for
stars much less massive than the Sun, but other
studies indicate that the function doesn’t rise as
fast as it does for the mass range shown in Fig. 5.13.

We can also look at the number of stars in dif-
ferent luminosity ranges, or the luminosity func-
tion. We find that there are also many more low
luminosity stars than high luminosity stars.
However, the luminosity of each high mass star is
so much greater than that for each low mass star,
that most of the luminosity of our galaxy comes
from a relatively small number of high mass stars.

5.6 | Stellar sizes

We have alluded so far to stellar sizes, but we have
not discussed how they are determined. In this
section, we will look at various methods for meas-
uring stellar radii.

The star whose size is easiest to measure is the
Sun. This is actually quite useful. We have seen
that the Sun is intermediate in its mass and tem-
perature, so its radius is probably a fairly repre-
sentative stellar radius. The angular radius of the
Sun, A#, is 16 arc min. The Sun is at a distance
d = 1.50 X 10® km, so its radius, Ro, is given by

Rp = dtan A6
= 6.96 X 10° km

The Sun is the only star whose disk subtends
an angle larger than the seeing limitations of
ground-based telescopes. We therefore need
other techniques for determining radii. If we
know the luminosity (from its absolute magni-
tude) and the surface temperature (from the
spectral type) of a star, we can calculate its radius
using equation (2.7). Solving for the radius gives

R = (L/4m oT) "2 (5.44)

Example 5.5 Luminosity radius
Estimate the radius of an AO star. (Use Appendix E
for the stellar properties.)

SOLUTION
We can express the various quantities in solar units.
Taking ratios, we can use equation (5.44) to give

R/Ro = (L/Lo)VA(T/T5) ~?
= (80)"*(1.69) 2

= 3.1

Eclipsing binaries (such as in Fig. 5.1) provide
us with another means of determining stellar
radii. This method involves analysis of the shape
of the light curve and a knowledge of the orbital
velocities from Doppler shift measurements. (In
an eclipsing binary, we don’t have to worry
about the inclination of the orbit.) Particularly
important is the rate at which the light level
decreases and increases at the beginning and
end of eclipses.

We can also estimate the radii of rotating
stars. If there are surface irregularities, such as
hot spots or cool spots, the brightness of the star
will depend on whether these spots are facing us
or are turned away from us. The brightness varia-
tions give us the rotation period P. From the
broadening of spectral lines, due to the Doppler
shift, we can determine the rotation speed v. This
speed is equal to the circumference 27R, divided
by the period. Solving for the radius gives

R =Pv/27 (5.45)

Sometimes the Moon passes in front of a star
bright enough and close enough for detailed
study. An analysis of these lunar occultations tells
us about the radius of the star. The larger the star
is, the longer it takes the light to go from maxi-
mum value to zero as the lunar edge passes in
front of the star. Actually, since light is a wave,
there are diffraction effects as the starlight
passes the lunar limb. The light level oscillates as
the star disappears. The nature of these oscilla-
tions tells us about the radius of the star.

There is another observational technique,
called speckle interferometry, that has been quite
successful recently. If it were not for the seeing
fluctuations in the Earth’s atmosphere, we would
be able to obtain images of stellar disks down to
the diffraction limits of large telescopes. However,
the atmosphere is stable for short periods of



5 BINARY STARS AND STELLAR MASSES

97

I |
Size of Star
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Size of Earth’s Orbit
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Size of Jupiter’s Orbit

Hubble Space Telescope image of the red giant
star Betelgeuse.You can see that it is barely resolved, but by
understanding how the telescope response smears the

image, we can achieve a very accurate estimate for the size
of the star. [STScl/NASA]

time, of the order of 0.01s. The blurring of
images comes from trying to observe for longer
than this. If an image were bright enough to see
in this short time, we could take a picture with
diffraction-limited resolution. Unfortunately,
0.01 s is not long enough to collect enough pho-
tons from a star. However, we can collect a series
of 0.01 s images, observing interference between

(b)

Stellar sizes for different spectral types. (a) The

largest, down to GO. (b) The smaller ones, from GO down,
but blown up.The GO circle is repeated to give the relative
scale for the two parts of the figure.

light coming through slightly different paths in
the atmosphere. The final images must be recon-
structed mathematically.

Even more recently, work on stellar sizes has
been done on the Hubble Space Telescope, as
shown in Fig. 5.14. The results of these various
techniques are shown in Fig. 5.15. We can see
that, on the main sequence, stars become larger
with increasing surface temperature. This is why
the luminosity of stars increases with increasing
surface temperature at a rate greater than T

Chapter summary

We saw in this chapter how the gravitational
interactions in binary systems can be studied to
determine the masses of stars.

We saw how the Doppler shift can be used to
determine the radial velocities of objects. In
binary systems, we can observe the wavelengths
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of spectral lines varying periodically as the stars
orbit the center of mass. We saw what informa-
tion could be obtained even if we don’t know the
orbital inclination.

We saw how the masses of orbiting objects are
related to the orbital radii and speeds, and the
period of the system for circular orbits. We
extended these ideas to elliptical orbits. For ellip-
tical orbits, we saw how conservation of angular
momentum means a change in the speed with
distance from the center of mass, and how this
affects the Doppler shift we see in different parts
of the cycle. We also found the total energy for

Questions

elliptical orbits, and saw how the kinetic energy
varied as the speed varies.

We saw that the range of masses for stars
along the main sequence is much less than the
range of luminosities. There is also a close rela-
tionship between mass and luminosity for main
sequence stars.

We saw how eclipsing binaries can be used to
tell us something about stellar sizes. We also
looked at other techniques for determining stel-
lar sizes, including knowing the luminosity and
temperature, using lunar occultations and
speckle interferometry.

5.1. Under what conditions can we determine the
masses of both stars in a binary system?
Think of as many combinations of situations
as you can.

5.2. For a binary that is only detected as an astro-
metric binary, what are the conditions under
which we can determine the masses of both
stars?

5.3. If you observe two stars close together on the
sky, how would you decide if they were an
optical double or a true binary?

5.4. If we see an eclipsing binary, how do we
know the inclination of the orbit?

5.5. Describe situations in which a source and/or
observer are moving and no Doppler shift for
electromagnetic waves is observed.

5.6. When you hear the Doppler shift in a train
whistle, the effect is most obvious as the
train goes by you. Why is that?

5.7. For the following situations, indicate whether
the radial velocity is positive, negative or zero:
(a) Observer moving towards (stationary) source.
(b) Source moving towards (stationary)
observer.

(c) Source moving away from (stationary)
observer.

(d) Source and observer moving towards each
other.

(e) Source and observer moving away from
each other.

(f) Source moving away from observer at

10 km/s; observer moving towards source at
5 km/s.

(g) Source moving perpendicular to line of
sight. Observer moving towards source.

(h) Source moving and observer moving per-
pendicular to line of sight but in opposite
directions.

5.8. Why must the center of mass of two stars be
along the line joining the two stars?

5.9. Why is it not possible for the orbits of the
two stars in a binary system to have different
periods?

5.10. Is the Earth-Sun center of mass closer to the
center of the Earth or the center of the Sun?

*5.11. Suppose that a binary system is moving
under the external influence of other stars
(in a cluster for example) and we observe the
center of mass to be accelerating as a result.
Can we still apply the analyses in this chapter
to such a system?

5.12. Why do we say that for the Earth-Sun system,
the sum of the masses is approximately equal
to the mass of the Sun?

5.13. In a binary system, the gravitational force that
star 1 exerts on star 2 must produce an accel-
eration. How is that acceleration manifested?

5.14. Discuss how the Sun is a ‘typical’ main
sequence star.

5.15. How would you measure the mass of the
Earth?

5.16. Use a calendar to find out how much longer
it takes to go from the first day of Spring to
the first day of Autumn than from the first
day of Autumn to the first day of Spring (in
the northern hemisphere).
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5.17. What is the relationship between Kepler’s sec-
ond law and angular momentum?

temperatures and the range of
luminosities?

*5.18. As an object approaches periastron in an 5.21. What do we mean when we talk about a
elliptical orbit, it is moving faster and faster. selection effect?
This means that there must be a force in the 5.22. If high mass stars are more massive than low
direction of motion (in addition to the force mass stars, how can most of the mass in our
that is perpendicular to the direction of Galaxy be in the form of low mass stars? If
motion, which is responsible for the curving most of the mass is in low mass stars, how
of the path). What is the source of the force can most of the luminosity come from high
that makes the object go faster? Use a dia- mass stars?
gram, showing the forces and components, to  5.23. When we study stellar structure, in Chapter
illustrate your answer. 9, we will see that once we know the mass of

5.19. At apastron the objects in elliptical orbits are a main sequence star all of its other proper-
moving slower than at periastron, so their ties (size, temperature, luminosity) are deter-
kinetic energy must be lower. What happens mined. How does that show up in the obser-
to the ‘missing’ energy? vational results of this chapter?

5.20. How does the range of masses for main 5.24. Why is it difficult to measure stellar sizes?
sequence stars compare with the range of

Problems

5.1. A police radar, operating at a frequency of 5.7. You are standing a distance d from a railroad

5 GHz, detects a Doppler shift of 2.5 MHz as
you approach. How fast are you going?

(a) A source is moving away from an observer
with a speed of 10 km/s, along a path that
makes a 30° angle with the line of sight. At
what wavelength will the Ha line be
observed? (b) If the observer is also moving
directly away from the source at a speed of
20 km/s, at what wavelength will the Hp line
be observed?

Some source is moving away from an observer
along a line making a 30° angle with the line
of sight at a speed of 80 km/s. The observer is
moving towards the source along a line mak-
ing a 20° angle with the line of sight, at a
speed of 10 km/s. (a) What is the radial veloc-
ity? (b) By how much is the Ha line shifted?
(c) How would the answer be changed if the
observer were moving in the opposite
direction?

We observe a source with a radial velocity of
—25 km/s. By how much is the separation
between the Ha and Hp lines changed?

If the Ha line in a source is shifted by

+0.01 nm, by how much is the Hp line shifted?
If the Ha line in a source is shifted by —0.10 nm,
what is the radial velocity of the source?

5.2.

5.3.

54.

5.5.

5.6.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

track. A train comes past you at a constant
speed v, passing you at time t = 0. (a) What is
the radial velocity of the train as a function
of time? (b) Draw a graph of your result for
both positive and negative times.

By how much can the Ha line in some object
be shifted as a result of the Earth’s motion
around the Sun?

Show that, if we had taken the force on the
second star in equation (5.13), we would still
have obtained the result in equation (5.20).

In deriving the law of gravitation, Newton
actually started with Kepler’s third law as
being observationally given and worked
backwards (from the derivation in this chap-
ter). Show how that derivation would be
done.

For a binary system with stars of equal masses
m, in circular orbits, with a total separation r,
what is the orbital speed v?

For a binary system with stars of masses 5
and 10 My, , in circular orbits with a period of
3 yr, what is the total energy of the system?
For a binary system with stars of masses m;
and m,, in circular orbits, with a total separa-
tion 1, find an expression for the ratios of the
kinetic energies of the two stars.
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5.14. Let M = m, + m,, and x = m,/m,. (a) Find
expressions for m; and m, in terms of M and
x. (b) What is the significance of your result?

5.15. We observe a binary system in which the two
stars are 1 and 2 arc sec, respectively, from
the center of mass. The system is 10 pc from
us. The period is 33 yr. What are the masses
of the two stars, assuming that i = 90°?

5.16. Suppose we can measure the positions of
stars to 0.01 arc sec. How far away could we
detect an astrometric binary where the sepa-
ration is 100 AU?

5.17. A star in a circular orbit has a speed of
30 km/s. The period is 10 yr. The star is 2 arc
sec from the center of mass. How far away is
this star from us?

5.18. Derive a form of equation (5.23) that relates
mass, in solar masses, period, in years, and
velocity, in kilometers per second.

5.19. The Ha lines from two stars in a binary sys-
tem are observed to have Doppler shifts of
0.022 and 0.044 nm, respectively. The period

Computer problems

5.20.

5.21.

5.22.

of the system is 20 yr. What are the masses of
the two stars (a) if i = 90° (b) if i = 30°?

An astrometric binary is 10 pc from the Sun.
The visible star orbits 2 arc sec from the cen-
ter of mass with a period of 30 yr. What is the
mass of the unseen companion?

An eclipsing binary system has a period of
days. One star has a Doppler shift of 100 km/s.
What is the mass of the companion?

Derive equations (5.40a) and (5.40b).

*5.23.A star moves in an elliptical orbit of eccentric-

5.24.

5.25.

ity e. The plane of the orbit makes an angle i
with the plane of the sky. The orbit is ori-
ented so that the line joining the foci is per-
pendicular to the line formed by the intersec-
tion of the plane of the orbit and the plane of
the sky. Show that the projected orbit is an
ellipse.

What is the luminosity (in solar luminosities)
of (a) a 0.5 M and (b) a 5.0 M, star?

For an elliptical orbit, calculate the angular
momentum L in terms of G, my, m,, a and e.

5.1. Plot ellipses with the same major axes, but with
eccentricities from 0.1 to 1.0 in steps of 0.1.

5.2. Consider a binary system with stars of masses 5 and
10 My, in elliptical orbits, with eccentricity e = 0.8.
The period is 8 yr. Assume that the more massive
star is at periastron at angle 6 = 0. (a) Plot the speed
of the more massive star as a function of position in
the orbit, 6. (b) If this system is viewed from along
the major axis, such that the more massive star is
closer to the observer when it is at periastron, plot
the radial velocity v, as a function of 6. *(c) Plot v, as
a function of time t, taking t = 0 when 6 = 0.

5.3. For the system in the previous problem, draw the
orbit and draw an arrow showing the force on the
more massive star at positions every 45° around
the orbit.

5.4. Suppose that many binary star systems, with ran-
domly distributed inclinations, are observed.

(a) Draw a graph showing the relative probabilities
of finding values of sin® in various small ranges
from zero to one. (b) The average value of some
function f{x) over the interval 0 to L is

g = (1) eoas

What is the average value of sin®i over the angle
range 0 to 72 radians? (c) What does this tell you
about the lower limits on masses and the actual
masses of binary systems?

5.5.

5.6.

For stars in the middle range of each spectral type
(05, B5, etc.), calculate the average density, and
express it as a ratio to that for the Sun.

For stars in the middle range of each spectral type
(05, B5, etc.), calculate the luminosity, and express
it as a ratio to that for the Sun.



Chapter 6

The Sun: a typical star

The Sun (Fig. 6.1) is the only star we can study in
any detail. It therefore serves as a guide to our pic-
tures of other stars. Any theory of stellar struc-
ture must first be able to explain the Sun before
explaining other stars. As we have seen, the Sun’s
spectral type places it in the mid-range of main
sequence stars. If we understand the Sun, we have
the hope of being able to understand a signifi-
cant number of other types of stars.

6.1 | Basic structure

We have already seen that the mass of the Sun is
2.0 X 10*® g and that its radius is 7 X 10’ cm (7 X
10° km). Its average density is
T 3R

2 X 10%g
(47/3)(7 X 10'°cm)?

=14g/cm?

For comparison, the density of water is 1 g/cm®.
The Sun is composed mostly of hydrogen (94% by
the number of atoms), with some helium (6% by
number of atoms), and only 0.1% other elements.
The abundances of the elements are given in
Appendix G. Our best measurement of the effective
temperature of the Sun is 5762 K. The solar lumi-
nosity is 3.8 X 103 erg/s. (The effective temperature
is the temperature that we use in the Stefan-
Boltzmann law to give the solar luminosity.)

When we look at the Sun, we see only the out-
ermost layers. We have to deduce the internal

structure from theories of stellar structure
(which we will discuss in Chapter 9). The basic
structure of the Sun is shown in Fig. 6.2. The cen-
ter is the core. It is the source of the Sun’s energy.
Its radius is about 10% of the full solar radius. The
outermost layers form the atmosphere. We divide
the atmosphere into three parts. Most of the light
we see comes from the photosphere, the bottom
layer of the atmosphere. Above the photosphere
is the chromosphere, named because it is the source
of red light seen briefly during total eclipses of
the Sun. The chromosphere is about 10* km thick.
The outermost layer is the corona, which extends
far into space. It is very faint, and, for most of us,
can only be seen during total solar eclipses.
Beyond the corona, we have the solar wind, not
strictly part of the Sun, but a stream of particles
from the Sun into interplanetary space.

6.2 | Elements of radiation
transport theory

Radiation is being emitted and absorbed in the
Sun in all layers. However, we see radiation
mostly from the surface. Most radiation from
below is absorbed before it reaches the surface.
To understand what we are seeing when we look
at the Sun, we need to understand about the
interaction between radiation and matter. For
example, much of what we know about the solar
atmosphere comes from studying spectral lines
as well as the continuum. In studying how radi-
ation interacts with matter, known as radiation
transport theory, we see how to use spectral lines
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@ The Sun. [NOAO/AURA/NSF] ‘

to extract detailed information about the solar
atmosphere.

We first look at the absorption of radiation by
atoms in matter. We can think of the atoms as act-
ing like small spheres, each of radius r (Fig. 6.3).
Each sphere absorbs any radiation that strikes it.
To any beam of radiation, a sphere looks like a cir-
cle of projected area 7. If the beam is within that
circle, it will strike the sphere and be absorbed. We
say that the cross section for striking a sphere is o =
mr*. The concept of a cross section carries over into
quantum mechanics. Instead of the actual size of
an atom, we use the effective area over which some
process (such as absorption) takes place. So then r
would be how close the photon would have to be to
the atom in order to be absorbed.

We consider a cylinder of these spheres, with
the radiation entering the cylinder from one end.
We would like to know how much radiation is
absorbed, and how much passes through to the
far end. We let n be the number of spheres per
unit volume. The cylinder has length I and area A,
so the volume is Al. The number of spheres in the
cylinder is

N=nAl (6.1)

We define the total cross section of all the
spheres as the number of spheres multiplied by
the cross section per sphere:

Convection
Zone

Chromosphere .
Core

E Basic structure of the Sun. ‘

Ot = No (6.2)

Owt = NAlo (6.3)

In making this definition, we have assumed
that the incoming beam can “see” all the spheres.
No sphere blocks or shadows another. We are
assured of little shadowing if the spheres occupy
a small fraction of the area, as viewed from the
end. That is

Tlror) < A (6.4)

Under these conditions, the fraction of the
incoming radiation that will be absorbed, f, is
just that fraction of the total area A that is cov-
ered by the spheres. That is

f= O'(tot)/A (6.5)
Using equation (6.3), this becomes
f=nol (6.6)

Absorption of radiation. Radiation enters from the
left. Any beam striking a sphere is absorbed.
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We define the optical depth to be this quantity:

T = nol (6.7)

Our requirement in equation (6.4) reduces to 7
<< 1. Under this restriction, the optical depth of
any section of material is simply the fraction of
incoming radiation that is absorbed when the
radiation passes through that material. (For
example, if the optical depth is 0.01, then 1% of
the incoming radiation is absorbed.)

In general, o will be a function of wavelength.
For example, we know that at a wavelength corre-
sponding to a spectral line, a particular atom will
have a very large cross section for absorption. At a
wavelength not corresponding to a spectral line,
the cross section will be very small. To remind us
that o is a function of A (or v), we write it as o, (or
o,). This means that the optical depth is also a
function of A (or v), so we rewrite equation (6.7) as

TN — 1110',\ (6.8)

In our discussions, the quantity nl occurs
often. It is the product of a number density and a
length, so its units are measured in number per
unit area. It is the number of particles along the
full length, I, of the cylinder per unit surface
area. For example, if we are measuring lengths in
centimeters, it is the number of particles in a col-
umn whose face surface area is 1 cm?, and whose
length is I, the full length of the cylinder. We call
this quantity the column density.

We can see that the optical depth depends on
the properties of the material - e.g. cross section
and density of particles — and on the overall size
of the absorbing region. It is sometimes conven-
ient to separate these two dependencies by defin-
ing the absorption coefficient, which is the optical
depth per unit length through the material,

)

Ky = T (6.93)

(6.9b)

= 1o,

If k), gives the number of absorptions per unit
length, then its inverse gives the mean distance
between absorptions. This quantity is called the

mean free path, and is given by
L, = 1/k, (6.10)

= 1/no, (6.11)

In terms of these quantities, the optical depth is
given by
1

T =

6.12a
L (6123)

(6.12Db)

= K,l

In the above discussion, we required that the
optical depth be much less than unity. Our inter-
pretation of 7 as the fraction of radiation
absorbed only holds for << 1. What if that is not
the case? We then have to divide our cylinder into
several layers. If we make the layers thin enough,
we can be assured that the optical depth for each
layer will be very small. We then follow the radi-
ation through, layer by layer, looking at the frac-
tion absorbed in each layer (Fig. 6.4).

Iy D[ PI,

> € <>

dt|de| de|de|de

> Iout

PR B Radiation passing through several layers. Each layer
has an optical depth dr.The bottom of the figure is for

calculating the effect of each layer.
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Let’s look at the radiation passing through
some layer with optical depth dr. Since dr < 1,
it is the fraction of this radiation that is
absorbed. The amount of radiation absorbed in
this layer is I d7. The amount of radiation passing
through to the next layer is I(1 — d7). The change
in intensity, dI, while passing through the layer,
is

dar = Iout - Iin (613)

= —1Idr (6.14)

Notice that dI is negative, since the intensity
is decreased in passing through the layer.

Now that we know how to treat each layer, we
must add up the effect of all the layers to find the
effect on the whole sample of material. We can
see that we have formulated the problem so that
we are following I as a function of 7. We let 7’ be
the optical depth through which the radiation
has passed by the time it reaches a particular
layer, and I’ be the intensity reaching that layer.
Then 7' ranges from zero, at the point where the
radiation enters the material, to 7, the full optical
depth where the radiation leaves the material.
Over that range, I' varies from I,, the incident
intensity, to I, the final intensity. Using equation
(6.14),

arp = —dr (6.15)

In this form, all of the I’ dependence is on the
left, and the 7' dependence is on the right. To add
up the effect of the layers, we integrate equation
(6.15) between the limits given above:

rqar T ,
| S = —jar
Io

0

In(l) — In(lp) = —7 (6.16)

Using the fact that In(a/b) = In(a) — In(b), this
becomes

In(jly) = —7 (6.17)

Raising e to the value on each side, remembering
that e * = x, and multiplying both sides by I,
gives

I=Iye " (6.18)

We can check this result in the limit 7 << 1,
called the optically thin limit, using the fact that

e " vs. 7, showing the fall-off in transmitted
radiation as the optical depth increases. Note that the curve
looks almost linear for small 7. For large 7, it approaches

zero asymptotically.

e®*=1 + x, for x << 1. In this case, equation (6.18)
becomes

I=I,(1—1) (6.19)

This is the expected result for small optical
depths, where 7 again becomes the fraction of
radiation absorbed.

As shown in Fig. 6.5, e " falls off very quickly
with 7. This means that to escape from the Sun,
radiation must come from within approximately
one optical depth of the surface. This explains
why we only see the outermost layers. Since the
absorption coefficient k, is a function of wave-
length, we can see to different depths at different
wavelengths. At a wavelength where «, is large,
we don’t see very far into the material. At wave-
lengths where «, is small, it takes a lot of mate-
rial to make 7, = 1. We take advantage of this to
study conditions at different depths below the
surface.

So far we have only looked at the absorption
of radiation passing through each layer. However,
radiation can also be emitted in each layer, and
the amount of emission also depends on the
optical depth. In general, we must carry out
complicated radiative transfer calculations to
take all effects into account. To solve these prob-
lems, we use powerful computers to make math-
ematical models of stellar atmospheres. In these
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calculations, we input the distribution of tem-
perature, density and composition and predict
the spectrum that we will see, including emis-
sion and absorption lines. We vary the input
parameters until we find models that produce
predictions that agree with the observations.
The results of these calculations are not unique,
but they do give us a feel for what processes are
important in stellar atmospheres. The more
observational data we can predict with the mod-
els, the more confident we can be that the tem-
peratures, densities and compositions we derive
are close to the actual ones.

6.3 | The photosphere

Most of the visible photons we receive from the
Sun originate in the photosphere. One question
you might ask is why we see continuum radiation
at all. We have already seen how atoms can emit
or absorb energy at particular wavelengths, pro-
ducing spectral lines. However, we have not dis-
cussed the source of the emission and absorption
of the continuum. It turns out that the contin-
uum opacity in the Sun at optical wavelengths
comes from the presence of H™ ions. An H™ ion is
an H atom to which an extra electron has been
added. As you might guess, this extra electron is
held only very weakly to the atom. Very little
energy is required to remove it again. H™ ions are
present because there is so much hydrogen, and

there are a large number of free electrons to col-
lide with those atoms.

If we have an H™ ion and a photon (vy) strikes
it, the photon can be absorbed, and the electron
set free:

H +y>H+e

The H™ ion is a bound system. The final state
has an H atom and a free electron. We call this
process a bound—free process. In such a process,
the wavelength of the incoming photon is not
restricted, as long as the photon has enough
energy to remove the electron. The electron in
the final state can have any kinetic energy, so a
continuous range of photon energies is possible.
This process then provides most of the contin-
uum opacity of the photosphere. The continuum
emission results from the inverse process.

6.3.1 Appearance of the photosphere

We have said that the Sun is the one star that we
can study in great detail. To do this, we try to
observe the photosphere with the best resolution
possible. When we observe the Sun, the light-
gathering power of our telescope is not usually a
problem. Therefore, we can try to spread the
image out over as large an area as possible, mak-
ing it easier to see detailed structure. We there-
fore want a telescope with a long focal length to
give us a large image scale. The solar telescope
shown in Fig. 6.6 provides this type of detailed
picture.

AL Solar telescope on Kitt

Peak (operated by NOAO).The
telescope has a very long focal
length, so that two can produce a
large image and study the detailed
appearance. Since the tube is so
long, it is not reasonable to move
it. Instead, the large mirror at the
top (the objective) is moved to
keep the sunlight directed down
the tube. [NOAO/AURA/NSF]
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[x 1000 km]

0 5 10 15 20 25
[x 1000 km]

Granulation in the Sun. Remember, the darker

areas are not really dark.They are only a little cooler than
the bright areas. [NOAO/AURA/NSF]

When we look on a scale of a few arc seconds,
we see that the surface of the Sun does not have
a smooth appearance (Fig. 6.7). We see a struc-
ture, called granulation, in which lighter areas are
surrounded by darker areas. The darker areas are
not really dark. They are just a little cooler than
the lighter areas, and only appear dark in compari-
son to the light areas. The granules are typically
about 1000 km across. The pattern of granulation
also changes with time, with a new pattern appear-
ing every 5 to 10 min.

We interpret this granulation as telling us
about the underlying structure we cannot see
directly. The granulation can be explained by cir-
culating cells of material, called convection zones
(Fig. 6.8). (Convection is the form of energy trans-
port in which matter actually moves from one
place to another. Strong convection on the Earth
is responsible for the updrafts that produce thun-
derstorms. A pot of boiling water also has energy
transport by convection.) The brighter regions are
warmer gas rising up from below. The dark
regions are cooler gas falling back down.

In addition to the granulation variations,
there is also a variation called the five minute oscil-
lation, in which parts of the photosphere are mov-
ing up and down. We think this convection results

Bright
Dark
Bright
Dark

G Granulation and convection zone. This is a side
view to show what is happening below the surface. Hotter
gas is being brought up from below, producing the bright
regions. The cooler gas, which produces the darker regions,
is carried down to replace the gas that was brought up.

from sound waves in the upper layers of the con-
vection zone. This type of oscillation is one of many
that are studied for clues to the Sun’s interior
structure. This area of research is called solar seis-
mology. (On the Earth, seismologists study motions
near the surface to learn about the interior.)

One interesting question about the photos-
phere concerns the sharpness of the solar limb. The
Sun is a ball of gas whose density falls off contin-
uously as one moves farther from the center.
There is no sharp boundary (like the surface of
the Earth), yet we see a definite edge on the Sun.
In Fig. 6.9, we see some lines of sight through the

S AY Lines of sight through the

solar limb. For clarity, we think of the
Sun as being composed of a series of
spherical shells. The density in each shell

decreases as we move farther from the
center. This decreasing density is
indicated by the shading; two lines of
sight are indicated. Note that most of
each line of sight is in the densest layer
through which that particular line passes.
Even though line 2 is not shifted very far
from line 1, line | passes through much

more material.

12
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photosphere. As the line of sight passes farther
from the center of the Sun, the opacity decreases
because (1) the path length through the Sun is
less, and (2) it passes through less dense regions.
Since the amount of light getting through is pro-
portional to e 7, the effect of 7 changing from
line of sight to line of sight is enhanced by the
exponential behavior. Therefore the transition
from the Sun being mostly opaque to being
mostly transparent takes place over a region that
is small compared with our resolution, and the
edge looks sharp.

6.3.2 Temperature distribution

Another interesting phenomenon near the solar
limb can be seen in the photograph in Fig. 6.1.
The Sun does not appear as bright near the limb
as near the center. This limb darkening is also an
optical depth effect, as shown in Fig. 6.10. We
compare two lines of sight: (1) toward the center
of the Sun from the observer, and (2) offset from

Base of
Photosphere

1 2

ST Limb darkening. Line of sight | is directed from
the observer toward the center of the Sun, so it takes the

shortest path through the atmosphere.This line allows us to

see the deepest into the photosphere, and the base of the
photosphere is defined to be where the optical depth 7
along this line reaches unity. Line of sight 2 is closer to the
edge, so it doesn’t allow us to see as deep into the photos-
phere. If the temperature decreases with increasing height in
the photosphere, then line of sight | allows us to see hotter
material than does line of sight 2, and the edge of the Sun
appears darker than the center.

the center of the Sun. In each line of sight, we can
only see down to 7 = 1. Line of sight 1 is looking
straight down into the atmosphere, so it gets
closer to the center of the Sun before an optical
depth of unity is reached than does line of sight
2, which has a longer path through any layer. We
see deeper into the Sun on line of sight 1 than we
do on line of sight 2. If the temperature decreases
with increasing height in the photosphere, we
are seeing hotter material on line of sight 1 than
on 2, so line of sight 1 appears brighter than line
of sight 2. Since line of sight 1 takes us the deep-
est into the Sun, we define the point at which 7
reaches unity on this line as being the base of the
photosphere. When we talk about the temperature
of the Sun, we are talking about the temperature
at the base of the photosphere.

When we look at the Sun, it appears brighter
along line of sight 1 than it does along line of
sight 2. This means that the Sun is hotter at the
end of 1 than at the end of 2. From this, we con-
clude that the photosphere cools as one moves
farther from the center of the Sun. If the photos-
phere became hotter as one moves farther from
the center, we would see limb brightening.

We obtain more useful information about the
photosphere by studying its spectral lines (Fig. 6.11).
The spectrum shows a few strong absorption lines
and a myriad of weaker ones. The stronger lines
were labeled A through K by Fraunhofer in 1814.
These lines have since been identified. For exam-
ple, the C line is the first Balmer line (Ha); the D
line is a pair of lines belonging to neutral sodium
(Nal); and the H and K lines belong to singly ion-
ized calcium (Call). Sodium and calcium are much

W The solar spectrum. [NOAO/AURA/NSF]
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less abundant than hydrogen but their absorption
lines are as strong as Ha. We have already seen in
Chapter 3 that this can result from the combined
effects of excitation and ionization.

6.3.3 Doppler broadening of spectral lines
When we study the lines with good spectral reso-
lution, we can look at the details of the line pro-
file. The lines are broadened by Doppler shifts due
to the random motions of the atoms and ions in
the gas (Figs. 6.12 and 6.13). If all the atoms were at
rest, all the photons from a given transition would
emerge with a very small spread in wavelength.
However, the atoms are moving with random
speeds in random directions. We therefore see a
spread in the Doppler shifts, and the line is broad-
ened. This process is called Doppler broadening. If
the gas is hotter, the spread in speeds is greater,
and thus the Doppler broadening is also greater. If
in addition to these random motions all the objects

é//? ?é/T/

rA T

5

62 4911 1287 10

31
Radial Velocity

m Doppler broadening. The top shows the (ran-

dom) motions of a group of particles. The purple vectors are

the actual velocities; the green vectors are the radial com-
ponents, which produce the Doppler shift. For each particle,
identified by a number, the radial velocities are plotted
below.The line profile is the sum of all the individual
Doppler shifted signals, and with many more particles it

would have a smooth appearance.

P | i
) U
X

Line profile.We plot intensity as a function of
wavelength.

containing the particles have some overall motion
that just shifts the center wavelength of the line,
the broadening would still be the same.

We can estimate the broadening as a function
of temperature. If (v?) is the average of the square
of the random velocities in a gas, and m is the
mass per particle, the average kinetic energy per
particle is (1/2)m<v2>. If we have an ideal
monatomic gas, this should equal (3/2)kT, giving

(1/2)m{v?) = (3/2)kT (6.20)
Solving for (v?) gives
(v*) = 3kTjm (6.21)

Taking the square root gives the root mean square
(rms) speed

3kT\ V2
Vims = | —_—
m

This gives us an estimate of the range of speeds
we will encounter. (The range will be larger, since
we can have atoms coming toward us or away
from us, and since some atoms will be moving
faster than this average, but the radial velocity is
reduced since only the component of motion
along the line of sight contributes to the Doppler
broadening.) To find the actual wavelength range
over which the line is spread out, we would use
the Doppler shift expression in equation (5.4).

(6.22)

Example 6.1 Doppler broadening
Estimate the wavelength broadening in the Ha line
in a gas composed of hydrogen atoms at T = 5500 K.
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SOLUTION
Using equation (6.22) gives

{(3)(1.38 X 10~ erg/K)(5.5 X 10°K) ]2
Vrms = 1.7 X 10 *g

= 1.2 X 10° cm/s

From equation (5.4), we estimate the linewidth as

vrms
et
c

3 <(656.28 nm)(1.2 X 10°cm/s) )1/2
; (3 X 10 cm/s)

= 0.03 nm

including the relative strengths of various lines
and the details of certain line profiles.

From observations of various spectral lines, the
temperature profile for the photosphere has been
derived. It is shown in Fig. 6.14. Note that the tem-
perature falls as one goes up from the base of the
photosphere. This is what we might expect, since
we are moving farther from the heating source.
However, an interesting phenomenon is observed.
The temperature reaches a minimum at 500 km
above the base of the photosphere, and then begins
to rise with altitude. We will see below that this
temperature rise continues into the higher layers.

In any spectral line, smaller Doppler shifts
relative to the line center are more likely than
larger ones. Therefore, the optical depth is great-
est in the line center, and falls off to either side.
At different Doppler shifts away from the line
center, we will see different distances into the
Sun. The farther we are from the line center, the
deeper we see. By studying line profiles in detail
we learn about physical conditions at different
depths. Also, each spectral line has a different
optical depth in the line center, so different lines
allow us to see down to different depths in the
photosphere. When we perform model stellar
atmosphere calculations, we try to predict as
many of the features of the spectrum as possible,
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6.4 | The chromosphere

At most wavelengths the chromosphere is optically
thin, so we can see right through it to the photos-
phere. Under normal conditions the continuum
radiation from the photosphere overwhelms that
from the chromosphere. However, during a total
eclipse of the Sun, just before and after totality, the
Moon blocks the light from the photosphere, but
not from the chromosphere. For that brief
moment, we see the red glow of the chromosphere.
The red glow comes from Ha emission. The optical
depth of the Ha line is sufficiently large that we
can study the chromosphere by studying that line.
At the center of the Ha line we see down only to
1500 km above the base of the photosphere.

We can also study the large scale structure of
the chromosphere by taking photographs through
filters that only pass light from one line. One such
photograph is shown in Fig. 6.15. In this picture
we see granulation on an even larger scale than
in the photosphere. This is called supergranulation.
The supergranules are some 30 000 km across. As
with the granules in the photosphere, the matter
in the center of the supergranules is moving up
and the matter at the edges is moving down.
These motions can be determined from Doppler
shifts of spectral lines. We also see smaller scale
irregularities in the chromosphere, called spicules.
These are protrusions from the surface some
700 km across and 7000 km high. An Ha image of
the chromosphere is shown in Fig. 6.16.

When the chromosphere is visible just before
and after totality, we see only a thin sliver of light.
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This spectroheliogram shows large scale motions

at the solar surface based on the Ha emission.
[NOAO/AURA/NSF]

The effect is the same as if the light had been
passed through a curved slit. If we then use a prism
or grating to spread out the different wavelengths,
we will obtain a line spectrum, though each line
will appear curved. This spectrum is called a flash
spectrum because it is only visible for the brief
instant that the Moon is covering all of the photos-
phere but not the chromosphere. Note that the

‘ GIECHEE Ha image showing the chromosphere. [NASA] ‘

spectrum shows emission lines. This is because
there is no strong continuum to be absorbed.
When we study the spectra of the chromos-
phere we find that it is hotter than the photos-
phere. The chromospheric temperature is about
15000 K. (The Sun doesn’t appear this hot
because the chromosphere is optically thin and
doesn’t contribute much to the total radiation we
see.) We are faced with trying to explain how the
temperature rises as we move farther from the
center of the Sun. We will discuss this point in
the next section, when we discuss the corona.

6.5 | The corona

6.5.1 Parts of the corona
The corona is most apparent during total solar
eclipses (Fig. 6.17), when the much brighter light

(b)

Two views of total solar eclipses, showing the
corona. [(a) NOAO/AURA/NSF; (b) NASA]
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from the photosphere and chromosphere is
blocked out. The corona is simply too faint to be
seen when any photospheric light is present. You
might think that we can simulate the effect of an
eclipse by holding a disk over the Sun. If you try
this, light that would come directly from the pho-
tosphere to your eye will be blocked out. However,
some photospheric light that is originally headed
in a direction other than directly at you will scat-
ter off the atoms and molecules in the Earth’s
atmosphere, and reach you anyway (Fig. 6.18).
This scattered light is only a small fraction of the
total photospheric light, but it is still enough to
overwhelm the faint corona. This is not a prob-
lem during solar eclipses, because the Moon is
outside the atmosphere, so there is nothing to
scatter light around it.

Therefore, solar eclipses still provide us with
unique opportunities to study the corona. For this
purpose, we are fortunate that the Moon subtends
almost the same angle as the Sun, as viewed from
the Earth. The Moon can exactly block the photo-
sphere and chromosphere, but not the corona.
Unfortunately, we do not have an eclipse of the
Sun every month. We would if the Moon’s orbit

Direct
Scattered

Light
g Light
Occulting Earth's
Disk Atmosphere

Observer

Effects of scattered light on corona studies.We
can use an occulting disk, but sunlight can scatter off
particles in the Earth’s atmosphere and reach our telescope.
Since the corona is very faint, and the Earth’s atmosphere is
very efficient at scattering, especially for blue light, this
scattered light can overwhelm the direct light from the

corona.

were in the same plane as the Earth’s orbit
around the Sun. However, the Moon’s orbit is
inclined by about 5° so total eclipses of the Sun
are rare events. The average time between total
solar eclipses is about one and a half years. Even
when one occurs, the total eclipse is observable
from a band not more than 300 km wide, and
totality lasts only a few minutes.

Solar astronomers take advantage of eclipses
whenever possible, but also look for other ways to
study the corona. It turns out that some ground-
based non-eclipse observations are possible.
Telescopes, called coronagraphs, have disks to
block out the photospheric light, and reduce as
much scattered light as possible. They are placed
at high altitude sites, with very clear skies. For
example, the Haleakala Crater on the island of
Maui (operated by the University of Hawaii) is at
an altitude of 3000 m (10 000 ft).

One way to get around the scattering in the
Earth’s atmosphere is to put a coronagraph in
space. This is not quite as good as a solar eclipse,
since space probes are not totally free of escaping
gases. Some photospheric light is scattered by
these gases. However, the results are much better
than for a ground-based telescope. They also have
an advantage over eclipse studies in that they
allow for continuous study of the corona. For
example, the Orbiting Solar Observatory 7 (OSO
7) provided observations of the corona for the
period 1971-4.

There is an additional technique for studying
the corona. It involves studying radio waves.
Radio waves pass through the Earth’s atmosphere
and are not appreciably scattered. We therefore
don’t have to worry about the radio waves behav-
ing like the visible light in Fig. 6.18.

In discussing what we have learned so far about
the corona, we divide it into three parts:

(1) The E-corona is a source of emission lines
directly from material in the corona. These
lines come from highly ionized species, such
as Fe XIV (13 times ionize iron). If we look at
the Saha equation, discussed in Chapter 3, we
see that highly ionized states are favored
under conditions of high temperature and
low density. The high temperature provides
the energy necessary for the ionization.
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The low density means that collisions leading
to recombinations are rare.

(2) The K-corona (from the German Kontinuierlich,
for continuous) is the result of photospheric
light scattered from electrons in the corona.

(3) The F-corona (for Fraunhofer) is not really part
of the Sun. It comes from photospheric light
scattered by interplanetary dust. Since we
are just seeing reflected photospheric light,
the light still has the Fraunhofer spectrum.
Both the F- and K-coronas appear at approxi-
mately the same angular distance from the
center of the Sun, but there are experimental
ways of separating their contributions to the
light we see.

6.5.2 Temperature of the corona

When we analyze the abundance of highly ion-
ized states, the Doppler broadening of lines and
the strength of the radio emission, we find that
the corona is very hot, about 2 X 10° K. As we have
stated, the density is very low, approximately 10 °
times the density of the Earth’s atmosphere.

Again, we must explain why a part of the
atmosphere farther from the center of the Sun is
hotter than a part closer to the center. We should
note that it is not necessarily hard to keep some-
thing hot if it can’t lose heat efficiently. For exam-
ple, in a well insulated oven, once the required
temperature has been reached, the heat source can
be turned off and the temperature of the oven still
stays high. An ionized gas (plasma) like the corona
can lose energy only through collisions between
the particles. For example, an electron and an ion
could collide, with some of the Kkinetic energy
going to excite the ion to a higher state. The ion
can then emit a photon and return to its lower
energy state. The emitted photon escapes and its
energy is lost to the gas. If the lost energy is not
replaced, the gas will cool.

Since collisions play an important role in the
above process, the rate at which the gas can lose
energy will depend on the rate at which colli-
sions occur. The rate of collisions should be pro-
portional to the product of the densities of the
two colliding species. However, the density of
each species is roughly proportional to the total
gas density p (each being some fraction of the
total). This means that the collision rate is pro-

portional to p®. Of course the amount of gas to be
cooled is proportional to p. We can define a cool-
ing time which is the ratio of the gas volume to be
cooled (which is proportional to p) to the gas cool-
ing rate (which is proportional to p?). The cooling
time is then proportional to 1/p. Therefore, low
density gases take longer to get rid of their stored
heat.

Further, if the density is very low, a very high
temperature doesn’t necessarily mean a lot of
stored energy. The energy is (3/2)kT per particle.
Even if the quantity kT is very large, if the total
number of particles is very small, the energy
stored is not as large as if the density were much
higher.

Example 6.2 Energy density in the corona and
the Earth’s atmosphere

Compare the energy density (energy per unit
volume) in the corona with that in the Earth’s
atmosphere.

SOLUTION

For each, the energy density is proportional to the
density of particles n and the temperature T. (All
other constants will drop out when we take the
ratio.) Therefore

energy density (corona) {n(corona) } {T(corona) }

energy density (Earth) n(Earth) T(Earth)

[1X 10‘9]{2X7106}

3 X 10?
=7X%X10°

Even though the corona is so hot, its very low den-
sity gives it a lower energy density.

We must still come up with some explanation
for getting energy into the corona. Some have
suggested mechanisms in which oscillations near
the surface of the Sun send supersonic sound
waves (shock waves) into the Sun’s upper atmos-
phere. In addition, there are mechanisms for
heating that involve the Sun’s magnetic field.
These theories are still under study, and we still
do not have a definitive picture of the energy bal-
ance in the corona.

When we study photographs of the corona,
we find its structure is very irregular. We often
see long streamers whose appearance varies with
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time. We think that these phenomena are related
to the Sun’s magnetic field, as are other aspects
of solar activity (to be discussed in the following
section).

6.6 | Solar activity

6.6.1 Sunspots

When we look at photographs of the Sun (Figs. 6.1
and 6.19) we note a pattern of darker areas. As
with the granulation, the dark areas are not really

FEACHE A Sunspot images. The darker inner area of each
spot is the umbra and the lighter outer area of each spot is
the penumbra. The spots appear dark because the surround-
ing areas are brighter. [(a) NOAO/AURA/NSF; (b) NASA]

dark. They are just not as bright as the surround-
ing areas. The gas in these darker areas is probably
at a temperature of about 3800 K. A closeup of
these sunspots shows that they have a darker inner
region, the umbra, surrounded by a lighter region,
the penumbra.

The number of sunspots on the Sun is not
even approximately constant. It varies in a regu-
lar way, as shown in Fig. 6.20. It was realized in
the mid-19th century that sunspot numbers fol-
low an 11-year cycle. The number of sunspots in a
peak year is not the same as in another peak year.
However, the peaks are easily noticeable.

We see more regularity when we plot the
height of each sunspot group above or below the
Sun’s equator as a function of when in the
sunspot cycle they appear. This was done in 1904
by E. Walter Maunder. An example of such a dia-
gram is shown in Fig. 6.21. Early in an 11-year
cycle, sunspots appear far from the Sun’s equator.
Later in the cycle, they appear closer to the equa-
tor. This results in a butterfly-like pattern, and in
fact these diagrams are sometimes called “but-
terfly diagrams”.

When Maunder investigated records of past
sunspot activity, he found that there was an
extended period when no sunspots were observed.
This period, from 1645 to 1715 is known as the
Maunder minimum. This minimum has recently
been reinvestigated by John A. Eddy, who found
records to indicate that no aurorae were observed
for many years during this period. Also during
this time, weak coronae were reported during
total solar eclipses. An unusual correlation was
also found in the growth rings in trees, suggest-
ing that altered solar activity had some effect on
growth on Earth. The mechanism by which this
takes place is poorly understood, but we can use
the growth rings as an indicator of solar activity
farther into the past than other records. A study
of growth rings in old trees indicates that the
Maunder minimum is not unique. There may have
been several periods in the past with extended
reduced solar activity.

Sunspots appear to be regions where the mag-
netic field is higher than on the rest of the Sun. In
discussing sunspots, we should briefly review prop-
erties of magnetic fields and their interactions
with matter. Magnetic fields arise from moving
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(including spinning) charges. Magnetic field lines
form closed loops (Fig. 6.22). This is equivalent to
saying that there are no point sources of magnetic
charge, magnetic monopoles. (We will discuss the
implications of the possible existence of magnetic
monopoles in Chapter 21.) We call the closed loop
pattern in Fig. 6.22 a magnetic dipole.

The magnetic field strength B is defined such
that the magnetic force on a charge g, moving
with velocity v, is (in cgs units)
F=qvxBc (6.23)

where the x indicates a vector cross product.
There is no magnetic force on a charge at rest, or

Latitude

1995 2000

Year

m Butterfly diagram.This shows the distribution of
sunspots in solar latitude as a function of time in the

1990

sunspot cycle. Early in a cycle, spots appear at higher lati-
tudes; late in a cycle, they appear close to the equator. Note
that a new cycle starts before the old cycle completely ends.
[Roger Ulrich, UCLA, Mt Wilson.This study includes data
from the synoptic program at the 150 ft Solar Tower of the
Mt Wilson Observatory. The Mt Wilson 150 ft Solar Tower is
operated by UCLA, with funding from NASA, ONR and NSF,
under agreement with the Mt Wilson Institute]

on a charge moving parallel to the magnetic field
lines. The force is maximum when the velocity is
perpendicular to the magnetic field. The force is
perpendicular to both the direction of motion
and to the magnetic field, and its direction is
given by the so-called “right hand rule”. This
means that the component of motion parallel to
the field lines is not altered, but the component
perpendicular to the field lines is. So, charged
particles will move so that they spiral around
magnetic field lines.

Through the forces that it exerts on moving
charges, a magnetic field will exert a torque on a
current loop. We can think of a current loop as
having a magnetic dipole moment (as in Fig.
6.22), and the torque will cause the dipole to line
up with the field lines. In this way, the dipole
moment of a compass needle lines up with the
Earth’s magnetic field.

How do we measure the Sun’s magnetic field?
For certain atoms placed in a magnetic field, energy

m Field lines for a dipole magnetic field.
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(a)

levels will shift. This is known as the Zeeman effect
(Fig. 6.23). Different energy levels shift by differ-
ent amounts. Some transitions that normally
appear as one line split into a group of lines. The
amount of splitting is proportional to the strength
of the magnetic field. (We can check the amount
of splitting in different atoms in various mag-
netic fields in the laboratory.) An image of the
magnetic field strength over the whole Sun is
shown in Fig. 6.24.

Measurements by George Ellery Hale in 1908
first showed that the magnetic fields are stronger
in sunspots. He also found that sunspots occur in
pairs, with one corresponding to the north pole
of a magnet and the other to the south pole. In
each sunspot pair, we can identify the one that
“leads” as the sun rotates. In a given solar hemi-
sphere, the polarity (i.e. N or S) of the leading spot
of all pairs is the same. The polarity is different in
the two hemispheres.

This polarity reverses in successive 11-year
cycles. During one cycle all of the leading sunspots
in the northern hemisphere will be magnetic
north, while those in the south will be magnetic
south. In the next cycle all the leading sunspots
in the northern hemisphere will be magnetic
south. The Sun’s magnetic field reverses every 11
years! This means that the sunspot cycle is really
a 22-year cycle in the Sun’s magnetic field.

If the Sun’s magnetic field arose in the core,
as the Earth’s does, we would expect it to be quite
stable. (There is geological evidence that the Earth’s
magnetic field reverses periodically, but on geo-
logical time scales, not every 11 years.) We now

m Zeeman effect in

sunspots. (a) The placement of the
spectrometer slit across a
sunspot. (b) The spectrum at vari-
ous positions along the slit. In the
spectrum, away from the spot, the
spectral lines are unsplit. In the
center, near the spot, some of the
spectral lines are split into three.
The stronger the magnetic field
the greater the splitting.
[NOAO/AURA/NSF]

(b)

think that the Sun’s magnetic field arises below
the surface, rather than in the core, as the Earth’s
does. We also know that the Sun does not rotate
as a rigid body. By following sunspot groups (Figs.
6.25 and 6.26), we see that material at the equator
takes less time to go around than material at
higher latitudes. For example, it takes 25 days for

SRS Solar magnetic field. This shows the result of
observations of the Zeeman effect. Brighter areas corre-
spond to stronger fields. [NOAO/AURA/NSF]
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North material at the equator to make one circuit, while
it takes 28 days at 40° latitude.

As the Sun rotates differentially, the magnetic
field lines become distorted. This is because the
charged particles in the matter cannot move
across field lines, so the field lines are carried
along with the material. We say that the mag-
fooo netic field is frozen into the material. The devel-
opment of the magnetic field is shown in Fig.
6.27. As the field lines wind up, the field becomes
very strong in places. Kinks in the field lines
break through the surface. The sunspots appar-
ently arise through some, as yet poorly under-
stood, dynamo motion, involving convective

.
amus®®

Equator feseeisece@ ===

;o motion and the magnetic fields.
After P
One SEEEEERERTCEEE 6.6.2 Other activity
Rotation . : ° : Sunspots are just one manifestation of solar activ-
Er ity related to the Sun’s magnetic field. Another

form of activity is the solar flare, shown in Fig.
6.28. A flare involves a large ejection of particles.
Differential rotation of the Sun, as traced out by Flares develop very quickly and last tens of min-
sunspots. Since the Sun rotates faster at the equator than at utes to a few hours. Temperatures in flares are
high, up to 5 X 10° K. They also give off strong Ha
schematic diagram, a selection of sunspots starts at the same emission, and flares are seen V_Vhen the Sun is
meridian, but, after one rotation of the Sun, they are on dif- photographed through an Ha filter. Flares have
ferent meridians. been detected to give off energy in all parts of the

higher latitudes, sunspots at the equator take less time to
make one rotation than do those at higher latitudes. In this

MARCH 7 MARCH 8 MARCH 9 MARCH 10 MARCH 13 MARCH 14 MARCH 15 MARCH 16 MARCH 17, 1989

RIS Differential rotation of the Sun, as traced out by sunspots. This sequence of images shows this effect on the Sun.
[NOAO/AURA/NSF]




6 THE SUN: ATYPICAL STAR

17

PR A This shows how the solar magnetic field is
twisted and kinked by the differential rotation of the Sun. It

takes about 8 months for the field to wrap around once.The
kinked parts of the field lines represent places where these

loops come outside the Sun, allowing charged particles to
follow those looped paths. [NASA]

electromagnetic spectrum. The cause of flares is
not understood, but they appear to be related to
strong magnetic fields and the flow of particles
along field lines.

Solar activity is also manifested in plages (from
the French word for “beach”). Plages are bright
regions around sunspots. They show up in Ha
images of the Sun. They remain after sunspots
disappear. Plages are apparently chromospheric
brightening caused by strong magnetic fields.

Filaments are dark bands near sunspot regions.
They can be up to 10° km long. Filaments appear
to be boundaries between regions of opposite
magnetic polarity. When filaments are projected
into space at the limb of the Sun, they appear as
prominences (Fig. 6.29). Some prominences vary on
short times scales while others evolve more slowly.

The solar wind is a stream of particles that are
emitted from the Sun into interplanetary space.
We can see the effects of the solar wind when we
look at a comet that is passing near the Sun
(Chapter 26). The tail of the comet always points
away from the Sun. This is because the material
in the tail is driven out of the head of the comet
by the solar wind. The rate at which the Sun is
losing mass is 10~ ™ Me|yr. The wind is still accel-
erating in its five- to ten-day trip from the Sun to
Earth. At the Earth’s orbit, the speed is about
400-450 km/s, and the density of particles is 5 to
10 cm 3. The particles in the solar wind are posi-
tive ions and electrons. It is thought that the

solar wind originates in lower density areas of the
corona, called coronal holes.

The solar wind can have an effect on the
Earth. Most of the solar wind particles directed
at Earth never reach the surface of the Earth. The
Earth’s magnetic field serves as an effective
shield, since the charged particles cannot travel
across the field lines. Some of the particles, how-
ever, travel along the field lines and come closest
to the Earth near the magnetic poles. These
charged particles are responsible for the aurora
displays. This explains why aurorae are seen pri-
marily near the magnetic poles. When solar
activity is increased, the aurorae become more
widespread. The increased abundance of charged
particles in our atmosphere also creates radio
interference.

(b)

FERCWE R Images of solar flares. (a) Looking obliquely as
the flare stands out from the surface. (b) In this photograph,

taken through an Ha filter; we are looking down on a large
solar flare from the side. This flare appears brighter than its
surroundings in the Ha line. [NOAO/AURA/NSF]
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SRR Images of large prominences. (a) This shows the
large loop structure. (b) This Ha image shows an eruptive
prominence, where some of the material may actually escape
from the Sun. (c) The X-ray image of the Sun gives another
view of regions of activity. [(a), (b)) NOAO/AURA/NSF;

(c) NASA]

(b)
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Chapter summary

We looked in this chapter at the one star we can
study in detail, the Sun.

Most of what we see in the Sun is a relatively
thin layer, the photosphere. In studying radiative
transfer, we saw how we can see to different
depths in the photosphere by looking at different
wavelengths. The distance we can see corresponds
to about one optical depth.

The photosphere doesn’t have a smooth
appearance. Instead, it has a granular appearance,
with the granular pattern changing on a time
scale of several minutes. This suggests convection
currents below the surface. Supergranulation sug-
gests even deeper convection currents.

Questions

The chromosphere is difficult to study. In the
chromosphere the temperature begins to increase
as one moves farther from the center of the Sun.
This trend continues dramatically into the
corona. The best studies of the corona have come
from total solar eclipses or from space.

We saw how sunspots appear in place of inten-
sified magnetic fields, as evidenced by the
Zeeman effect. The number of spots goes through
a 22-year cycle, which includes a complete rever-
sal in the Sun’s magnetic field. The structure of
the magnetic field is also related to other mani-
festations of solar activity, such as prominences.

6.1. In Fig. 6.3, what would be the effect on the
total cross section of (a) doubling the density
of particles, (b) doubling the length of the
tube, (c) doubling the radius of each particle?

*6.2. (a) What does it mean to say that some sphere
has a geometric cross section of 10~ ¢ cm??
(b) Suppose we do a quantum mechanical cal-
culation and find that at some wavelength
some atom has a cross section of 10~ '® cm?.
What does that mean?

6.3. In studying radiative transfer effects, we let 7
be a measure of where we are in a given sam-
ple, rather than position x. Explain why we
can do this.

6.4. What does it mean when we say that some-
thing is optically thin?

6.5. Suppose we have a gas that has a large optical
depth. We now double the amount of gas.
How does that affect (a) the optical depth,

(b) the amount of absorption?

6.6. Why do we need the “mean” in “mean free
path™?

6.7. (a) Explain how we can use two different opti-
cal depth spectral lines to see different dis-
tances into the Sun. (b) Why is Ha particu-
larly useful in studying the chromosphere?

6.8. What other situations have you encountered
that have exponential fall-offs?

6.9. Explain how absorption and emission by the
H™ ion can produce a continuum, rather
than spectral lines?

6.10. Explain why we see a range of Doppler shifts

over a spectral line.

6.11. How does Doppler broadening affect the sepa-
ration between the centers of the Ha line and
the Hf line in a star?

6.12. What do granulation and supergranulation

tell us about the Sun?

If the corona has T = 2 X 10° K, why don’t

we see the Sun as a blackbody at this

temperature?

6.14. Why can’t you see the corona when you cover
the Sun with your hand?

6.15. What advantages would a coronagraph on
the Moon have over one on the Earth?

6.16. (a) Why does the F-corona still show the
Fraunhofer spectrum? (b) Would you expect
light from the Moon to show the Fraunhofer
spectrum?

6.17. Why is the low density in the corona favor-
able for high levels of ionization?

6.18. (a) Why are collisions important in cooling a
gas? (b) Why does the cooling rate depend on
the square of the density? (c) How would you
expect the heating rate to depend on the
density?

6.19. Explain why charged particles drift parallel
to magnetic field lines.

6.20. How are the various forms of solar activity
related to the Sun’s magnetic field?

6.13.
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Problems

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

*6.7.

6.8.

Appendix G gives the composition of the Sun,
measured by the fraction of the number of
nuclei in the form of each element. Express
the entries in this table as the fraction of the
mass that is in each element. (Do this for the
ten most abundant elements.)

Calculate the effective temperature of the Sun
from the given solar luminosity, and radius,
and compare your answer with the value
given in the chapter.

Assume that for some process the cross sec-
tion for absorption of a certain wavelength
photon is 10~ ' cm?, and the density of H is
1 g/em?®. (a) Suppose we have a cylinder

that is 1 m long and has an end area of

1 cm?. What is the total absorption cross
section? How does this compare with the
area of the end? (b) What is the absorption
coefficient (per unit length)? (c) What is the
mean free path? (d) How long a sample of
material is needed to produce an optical
depth of unity.

Suppose we have a uniform sphere (radius Re)
of 1 Mg of hydrogen. What is the column den-
sity through the center of the sphere?

How large must the optical depth through a
material be for the material to absorb: (a) 1%
of the incident photons; (b) 10% of the inci-
dent photons; (c) 50% of the incident photons;
(d) 99% of the incident photons?

If we have material that emits uniformly over
its volume, what fraction of the photons that
we see come from within one optical depth of
the surface?

Suppose we divide a material into N layers,
each with optical depth dr = 7/N, where 7 is
the total optical depth through the material
and dr << 1. (a) Show that if radiation I, is
incident on the material, the emergent
radiation is

I=1,(1 —dn)¥

(b) Show that this reduces to I = Ipe™ " (equa-
tion 6.19) in the limit of large N. (Hint: You
may want to look at various representations
of the function e*.)

For what value of x does the error in the
approximation e* = 1 + x reach 1%?

*6.9.

Suppose we have a uniform sphere of radius R
and absorption coefficient k. We look along
various paths, passing different distances p
from the center of the sphere at their points
of closest approach to the center. (a) Find an
expression for the optical depth 7 as a func-
tion of p. (b) Calculate dr/dp, the rate of
change of 7 with p. (c) Use your results to dis-
cuss the sharpness of the solar limb.

*6.10.Consider a charge Q near a neutral object. If

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

the object is a conductor, charge can flow
within it. The presence of the charge Q
induces a dipole moment in the conductor,
and there is a net force between the dipole
and the charge. (a) Show that this force is
attractive. (b) How does this apply to the pos-
sible existence of the H™ ion?

What is the thermal Doppler broadening of
the Ha line in a star whose temperature is
20 000 K?

We observe the Ha line in a star to be broad-
ened by 0.05 nm. What is the temperature of
the star?

Compare the total thermal energy stored in
the corona and photosphere.

(a) At what wavelength does the continuous
spectrum from sunspots peak? (b) What is the
ratio of intensities at 550 nm in a sunspot
and in the normal photosphere? (c) What is
the ratio of energy per second per surface
area given off in a sunspot and in the normal
photosphere?

How long does it take before material at the
solar equator makes one more revolution
than that at 40° latitude?

Calculate the energy per second given off in
the solar wind?

*6.17. (a) What is the pressure exerted on the Earth

by the solar wind? (Hint: Calculate the
momentum per second on an object whose
cross sectional area is that of the Earth.)

(b) How large a sail would you need to give an
object with the mass of the space shuttle an
acceleration of 0.1 g at the distance of the
Earth from the Sun?

*6.18.To completely describe the radiative transfer

problem, we must take emission into account
as well as absorption. The source function S is
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defined so that S dr is the increase in
intensity due to emission in passing through
a region of optical depth dr. This means that
the radiative transfer equation should be
written

dijdr = -1+ §

Computer problems

(a) If S is a constant, solve for I vs. 7, assuming
an intensity I, enters the material. (b) Discuss
your result in the limits << 1 and 7> 1.

6.1. Consider the situation in Fig. 6.4 with 1000 layers.
Draw a graph of the fraction of the initial beam
emerging from each layer, for total optical depths
(@) 0.1, (b) 1.0, (c) 10.0. Show that the fraction
emerging from the final layer agrees with equa-
tion (6.18).

6.2. Estimate the Doppler broadening for the Ha lines
from the atmospheres at the mid-range of each
spectral type (e.g. 05, B5, etc.). (Hint: Scale from the
result in example (6.1).)






Part 1l

Relativity

Einstein’s theory of relativity caused us to rethink the meaning of both
space and time, concepts that had been taken for granted for centuries.
The foundation of this revolution is the special theory of relativity, which
Einstein published in 1905.The general theory of relativity, published in 1916,
is really a theory of gravitation set in the foundations of the special
theory; it also allows us to analyze the properties of frames of reference

that are accelerating.






Chapter 7

Special relativity

7.1 | Foundations of special relativity

7.1.1 Problems with electromagnetic
radiation

The problems that lead to special relativity start
with Maxwell’s theory of electromagnetic radia-
tion. Maxwell’s equations, presented in 1873,
allow for the existence of waves of oscillating
electric and magnetic fields. All waves known
before electromagnetic waves required a medium
in which to travel. For example, sound waves can
travel through air, but not through a vacuum.
There is no obvious medium necessary for the
propagation of electromagnetic waves. Physicists
postulated a medium that is difficult to detect,
called the luminiferous ether, or simply the ether.
The ether supposedly fills all of space. Once we
have a medium, then we have a reference frame
for the motion of the waves. For example, the
speed of sound is measured with respect to the air
through which it is moving. An observer moving
through the medium will detect a different speed
for the waves than an observer at rest in the
medium.

Einstein’s questions about Maxwell’s equations
involve the appearance of electromagnetic waves
to different observers, who are moving at differ-
ent speeds. Einstein started with the postulate of
special relativity, that, the laws of physics, properly
stated, should be independent of the velocity of the
observer. It may be that the values of certain quan-
tities change with the motion of the observer, but
the relationships among the physical quantities
do not change.

Einstein examined Maxwell’s equations to see
if they obeyed this simple rule. His reasoning is
illustrated in Fig. 7.1. The solution of Maxwell’s
equations gives us waves that vary sinusoidally in
both space and time. That is, the waves vary with
position, repeating each wavelength and, with
time, repeating each cycle. How would an elec-
tromagnetic wave appear to an observer moving
along with the wave at the speed of light? The
wave would appear sinusoidal in space but con-
stant in time, since the observer is moving along
with the wave (crest for example). However, there
is no mathematical solution to Maxwell’s equa-
tions that is constant in time, but which varies
sinusoidally. (Remember, it is precisely the time
variation of electric and magnetic fields that
allows the propagation of the waves.) This seems
to be a contradiction.

Two possibilities were left: (1) Maxwell’s equa-
tions were correct in only one reference frame,
that of the ether, or (2) there was something
wrong with the basic concepts of space and time.
The first possibility violates Einstein’s postulate
of special relativity, so he chose the second, say-
ing that, for some reason, it must be impossible
to move at an arbitrary speed relative to an elec-
tromagnetic wave. He concluded that the speed of
light in a vacuum is the same for all observers, indepen-
dent of their motion. This suggests that electromag-
netic waves must be different from the familiar
mechanical waves. There must also be something
wrong with the concept of the ether.

When Einstein was working on this problem,
experiments had already been done which cast the
existence of the ether into doubt. An experiment,
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t=0
(a)
--:A— A t=t,
(b)
—-n% A t=t,
(c)
Moving Observer
t1 /\ /
- ¥»  Time
N/
\étionary Observer
(d)

4 AlF Observers of electromagnetic waves. One
observer is stationary and the other observer is moving

with the wave. (a) The moving observer is at a crest, and the
stationary observer is at a null. (b) The moving observer is
still at a crest, and the stationary observer sees a negative
value. (c) The moving observer is still at the crest and the
stationary observer is at a dip. (d) We plot what each sees as
a function of time. The moving observer sees a constant
value while the stationary observer sees a sinusoidally

varying value.

originally done by A. A. Michelson in 1881, and in
an improved fashion by Michelson and Morley in
1887, was designed to measure the motion of the
Earth through the ether by measuring the speed
of light in two directions perpendicular to each
other. No change was found. This meant that the
Earth could not be moving through the ether. If
the ether existed, it must be dragged along with
the Earth. However, there is another observation
which rules out the dragging of the ether by the
Earth. It is illustrated in Fig. 7.2, and is called aber-

Incoming

Starlight
_> _»

Motion
of
Telescope
hsg hsg

(@
(b)

B Aberration of starlight. (a) Assume that the tele-

scope is moving to the right as the beam of light enters, with
the telescope tube lined up with the beam of light. Since the
speed of light c is finite, the telescope moves as light passes
through, and the light strikes the side. (b) To observe the
light, we must tilt the telescope slightly. Thus, as the tele-
scope moves over, the beam is always centered in the tube.
We must tip the telescope in the direction in which it is

moving.

ration of starlight. (This has nothing to do with
aberrations in optical systems.) It is a slight
change in the angle at which light from stars
appears to be arriving due to the motion of the
observer, in this case the motion of the Earth
about the Sun. (It is analogous to the change in
the apparent angle at which rain is falling when
you start to move.) The shift is always in the direc-
tion of the motion of the Earth, so it changes
throughout the year. The positions of some stars
are shifted by as much as 20 arc seconds from
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their true positions. (This effect has been used in
the past to measure the speed of light.) In the
ether theory there is no way for aberration to be
observed if the Earth is dragging the ether.

The fact that the speed of light is independent
of the velocity of the observer contradicts our
everyday experience, in which relative velocities
are additive. Einstein began to look at the under-
lying cause for the speed appearing to be constant.
In measuring a speed, we measure a distance and
a time interval. Einstein suspected that the problem
lay in our traditional concepts of space and time.
Physicists such as Newton simply assumed that
space and time were given. Einstein suggested that
they might not be absolute but might depend on
the motion of the observer. Einstein examined the
idea of an absolute time and looked at whether
time might actually be a quantity that depends on
the motion of the observer.

7.1.2 Problems with simultaneity

Einstein realized that an absolute time was tied
to the concept of absolute simultaneity. By absolute
simultaneity we mean that if two events appear
simultaneous to one observer, they appear simul-
taneous to all other observers. This is important
because telling time is actually noting the simul-
taneity of two events. For example, if we say the
train left the station at 7:00, we are saying that
two events are simultaneous. The first event is
the train leaving the station, and the second
event is the clock showing 7:00. If those events are
simultaneous for one observer, but not for all
observers, then the concept of absolute time has
no meaning.

An experiment depicted in Fig. 7.3 shows that
two events can be simultaneous for one observer,
but not another. The two observers are at the cen-
ters of identical railroad cars. One car is at rest
with respect to the station. The other is moving
past at some speed. When the two observers are
opposite each other, two flashes go off at the ends
of one car. The flashes are judged to be simulta-
neous by the observer at rest. How are they seen
by the other observer? The figure shows that the
flashes that the observer is moving toward is seen
first. The flashes are not simultaneous for the
moving observer. Simultaneity is not absolute.
Therefore, time is not absolute.

()

(b)

(o)

Ty H Flashes in railroad cars and simultaneity. The top
car is moving past the bottom car. (a) When the observers

at the centers of each car are closest to each other, flashes
go off at opposite ends of the lower car. (b) The motion of
the top car means that the observer in that car sees the
right flash first. (c) The observer in the bottom car sees both
flashes at the same time.

With this as a starting point, we now go on to
investigate how different types of situations
appear to observers with different velocities. In
special relativity, we deal only with reference
frames that are not accelerating with respect to
each other or in which there are no external
gravitational forces. Such a reference frame is
called an inertial reference frame. An inertial frame
might be provided by a space station far from
any mass and with the engines off so there is no
acceleration. Einstein’s postulate about the laws
of physics being the same in different reference
frames only applies to inertial frames. (We know
that accelerating frames must be different,
because they have pseudoforces, such as centrifu-
gal force.) Another way of stating Einstein’s pos-
tulate is that There is no experiment we can perform
to tell us which inertial frame is moving and which is at
rest. There is no ‘preferred’ inertial frame. All we can
talk about is the relative motion of two inertial
frames.
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7.2 | Time dilation

Now that we know that time is relative, we can see
how a clock appears to two different observers.
One observer is at rest with respect to the clock,
and the other observer sees the clock moving. The
time viewed in the frame in which the clock is at
rest is called the proper time for that clock. The
word ‘proper’ does not denote anything superior
about this frame; it just happens to be the frame
in which the clock is at rest. We can think of
proper time as being the time interval between
two events at the same place.

A simple clock is shown in Fig. 7.4. In this clock
alight beam bounces back and forth between two
mirrors, separated by a distance L. We would keep
time by counting the light bounces. The time for
the light pulse to make a round trip is

to = 2Ljc (7.1)

In the frame in which the clock is moving, the
light beam takes a longer path. Since the speed of
light is the same in both frames, the beam must
take longer to make the round trip. From the fig-
ure, we see that the distance traveled is 2[* +
(vt/2)?]"2, so the time is

t = (2)c) [L* + (vt[2)*]'

Squaring this gives

t* = (4L%c®) [1 + (vt/2L)?]

We use equation (7.1) to eliminate L, giving

t2 =t + (V¥ £
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Light clock. (a) In the rest frame of the clock, the
light bounces back and forth. (b) In the laboratory frame,

with the clock moving, the light beam travels a longer path.

(c) Calculating the extra distance traveled.

We want to solve for t in terms of £y:
1 — (vj)’] = to”

Taking the square root of both sides and solving
for t, we have

tO
YT e 7

The significance of this result is that the time
interval measured in the frame in which the
clock is moving is greater than that measured in
the frame in which the clock is at rest. Suppose
we have two identical clocks. If we keep one at
rest (with respect to us) and let the other one
move, the moving clock appears to run slow. It is
important to realize that the situation is per-
fectly symmetric. If there is an observer traveling
with each clock, each observer sees the other clock run-
ning slow. This effect is called time dilation.

From equation (7.2), we can see that the amount
of time dilation depends on the quantity 1/[1 —
(v/c)*]*. This quantity is generally designated 7y
and is plotted as a function of (v/c) in Fig. 7.5. Note
that this quantity is close to unity for small veloci-
ties, and only becomes large when v is very close to
c. This confirms our intuition that the results of

0 0.2 04 0.6 0.8 1
v
B= c

The quantity y vs. v/c. For v/ic small, y is close to
unity.As v/c approaches unity, y approaches infinity.
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special relativity should reduce to familiar everyday
results when speeds are much less than c.

Time dilation is not an artifact of the light
clock that we have depicted in Fig. 7.4. It applies
to all clocks. For example, it applies to the decay
of unstable elementary particles. Particles mov-
ing close to the speed of light should appear to
live longer than the same particles at rest. This is
tested almost daily in particle accelerators around
the world. A dramatic example is in cosmic rays,
which contain unstable particles which can decay
as they pass through the Earth’s atmosphere. If
we measure the flux of cosmic rays at high alti-
tude and near the ground, we find that many
more survive this trip than we would expect,
unless we account for the effect of time dilation.

Example 7.1 How fast must a particle be travel-
ing to live ten times as long as the same particle
at rest?

SOLUTION
We simply set

o
(1= (v/e)*]'"?

Squaring gives

10 =

Solving for (v/c)* gives
(vjc)* = 0.99

Taking the square root gives v/c = 0.995. The parti-
cle must be within one-half of one percent of the
speed of light!

Time dilation applies to biological clocks. A
person traveling at a high speed will not age as
fast as a person at rest. Of course, the situation
must be symmetric. Each person sees the other
age slower. This leads to a puzzle known as the
twin paradox. Two twins are on Earth. One is an
astronaut who goes on a trip at a speed close to c.
The other stays on the Earth. From the point of
view of the one that stayed on Earth, the astro-
naut is moving and will not age as fast as the one
on Earth. The astronaut will appear younger upon
returning. However, the astronaut sees the one on
Earth moving away at high speed. Therefore the

one on Earth should appear younger. It is alright
for two moving observers to see each other age
slower. However, we have a problem if we try to
bring the twins together - both at rest. We can
see which one is really younger and decide which
was really moving. This would seem to violate
Einstein’s postulate. However, if the twins start
and end together at rest, then one twin must accel-
erate to get to very high speeds. That acceleration
produces pseudoforces which can be felt by only
one twin. This breaks the symmetry of the prob-
lem without any logical contradiction. (Remember,
a pseudoforce is really an inertial response to an
acceleration of the reference frame.)

7.3 | Length contraction

Once the concept of time becomes suspect, the
concept of length must also be reinvestigated.
Think of how we measure the length of an object.
We measure the positions of the two ends and
take the difference between the two positions.
For this procedure to have any meaning, the
measurements must be carried out simultane-
ously. (If  measure the position of the front of an
airplane, when it is in NY, and the position of the
tail 6 hours later when it is in LA, I should not
conclude that the airplane is 5000 km long.)
Unfortunately, we have seen that observers in dif-
ferent inertial frames cannot agree on the simul-
taneity of events separated in space.

It is therefore not surprising that lengths will
appear different to observers in different inertial
frames. In fact, physicists had been playing with
this idea before Einstein’s 1905 paper. H. Lorentz
had proposed it as a way around the results of the
Michelson-Morley experiment. He said that the
ether could be saved if the lengths of objects
depended in a particular way on their state of
motion.

In considering changes in length, we look sep-
arately at lengths perpendicular to and parallel
to the direction of motion. We can first show that
there can be no length changes perpendicular to
the direction of motion. Let’s assume that there
were such a change and that moving objects
shrink. We now consider an experiment. Two peo-
ple of identical height are standing, as in Fig. 7.6.
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AP The effect of possible length contraction perpen-
dicular to the direction of motion. Assume that objects

shrink perpendicular to the direction of motion. A and B are
the same height when both are at rest. Both hold swords
parallel to the ground, and B moves past. If B shrinks, A’s
sword will miss B, but B’s sword will cut A. However, from
B’s point of view, as shown in the right figure, A is moving,
and it is A who shrinks.That would result in an injury to B
not A.

Each has a sword held out at the level of the top
of the head. Now person B is carried past person
A at a high speed. According to A, B is moving,
and B gets shorter. B’s sword cuts A’s head while
A’s sword passes safely over B. According to B, A is
moving and the situation is reversed. We have a
true contradiction. Each person is wounded in
their own rest frame but not in the other. The
only way out of this is to say that there can be no
length change perpendicular to the direction of
motion, and no one gets hurt. (A similar argu-
ment would rule out expansion perpendicular to
the direction of motion as well as contraction.)
We can think of no such examples to rule out
changes parallel to the direction of motion. Here,
there is actually a change of length. Moving
objects appear to shrink. We call this effect
Lorentz contraction. To see this we use Fig. 7.7 to
show how we might measure the length of a mov-
ing object. The length of an object, measured in
the frame in which it is at rest, is called the proper
length, L, . This can be measured in the usual way,
since its ends are not going anywhere. We now
measure its length in a frame in which it is mov-
ing. We can tell its speed v by having two markers
at rest in our frame, and measuring the time for
the front of the object to travel from one marker
to the other. We can then measure its length by

A E— | (a)

/
vV ~— (b)

FE A The effect of length changes parallel to the direc-
tion of motion. (a) To measure the length of a stick, we must

first measure its speed.We do this by measuring the time
for one point on the stick to go a known distance between
two stationary clocks. In the upper frame, the front of the
stick starts at the right clock. In the lower frame it reaches
the left clock. The time difference is noted, and the speed is
calculated. (b) Knowing the speed of the stick, we measure
its length by seeing how long it takes the stick to pass a sin-
gle stationary clock. In the top half of the frame the front of
the stick is at the clock, and the measurement starts. In the
bottom half of the frame, the back of the stick reaches the

clock and the measurement ends.

timing the passage of the object past one marker.
The time interval between the two measurements
at the one marker At, as measured in the frame of
the object, is

At = Lo/v

In our frame the time interval is different
because of time dilation, so the interval is

At = At/y
We now say that the length of the object is
L=vAt

v At/y
Finally, substituting At = Ly/v gives
L= Loly

Not surprisingly, the length contraction has the
same dependence on v/c as does the time dilation.

(7.3)
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As with time dilation, length contraction is
symmetric. If A and B are carrying meter sticks
parallel to the direction of their relative motion,
A will see B’s stick shrink, and B will see A’s stick
shrink. There is no contradiction here since we
cannot compare the ends of the sticks simultane-
ously for both observers. This symmetry has pro-
vided some interesting puzzles that start with
seeming contradictions, but end up with logical
resolutions. (See Problem 7.5.)

7.4 | The Doppler shift

With lengths and times appearing different to dif-
ferent observers, it is also necessary to take a
closer look at the Doppler shift, since wavelengths
obviously involve length, and frequencies obvi-
ously involve time. Since there is no ether, the
Doppler shift for electromagnetic waves can only
depend on the relative motions of the source and
observer. This is different from the case of sound
waves, for which the shift depends on which is
moving. We can show that the result for electro-
magnetic waves doesn’t depend on which is mov-
ing by considering separately the case of the
moving source and the moving observer. In both
cases, we denote quantities measured in the rest
frame of the receiver as primed (').

7.4.1 Moving source

Let’s assume the source is moving towards the
receiver at a speed v. The source emits N waves in
time At’, as measured by the receiver. In this time,
the first wave travels a distance ¢ At" and the source
travels a distance v At’. The wavelength will then be
the distance between the source and the first wave,
divided by the number of waves. That is

_ At — vAY
N

A/

The frequency is then given by

T c—vAY (7:4)

We would like to relate this to the frequency
in the source frame, v. It is given as the number

of waves, N, divided by the time interval, At, as
measured in the source frame:

v = N/At

We can use the time dilation formula, At" = y At,
to make this

v = N y/At’

This can now be used to eliminate At’ in equation
(7.4), giving

1 v
v 1—v/cy
[1 = (v/e)*]"?
[1 - (v/0)]
[ = /o)1 + v/e)?]
U - )

If we multiply the numerator and denominator
by (1 + vjc)*?, this simplifies to

v(1 + v/c)
(1= (/o))

v
= V(l +;)’y (7.5)

This is like the classical Doppler shift formula,
except for the extra factor of y which comes from
time dilation.

7.4.2 Moving observer

We now consider the receiver moving towards the
source. In the source’s frame, in time At, the receiver
will receive all waves in a length (¢ + v)At. This
number is the length divided by the wavelength:

(1 + v/c)At
At

(1 +v/cyw
[1 = (v/e)*]"?

(1+3)
CY

This is identical to equation (7.5), proving that the
Doppler shift is independent of whether the
source or the receiver is moving.
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7.4.3 General result

We will now generalize the result. If we had con-
sidered the source and observer moving apart, we
would have 1 — v/c in the numerator of equation
(7.5). The vin the 1 = v/c is just the radial velocity,
the component of the velocity along the line of
sight. We should therefore replace that v in equa-
tion (7.5) with v, . However, the other v in equation
(7.5), in the vy, comes from time dilation, which is
independent of the direction of motion. It must
remain as the total relative speed of the source
and receiver. This means that it is possible to have
a Doppler shift, even when the motion is perpen-
dicular to the line of sight. This is simply a result
of time dilation, and is not important until v is
close to c. With these generalizations, equation
(7.5) becomes

v =1 = o)y (7.6)

We can derive a corresponding expression for
wavelength, remembering that A’ = ¢[v/,

A =A1+v/c)y (7.7)

Later in this book, we will encounter objects
moving away from us at speeds close to c. For
these, the radial velocity is very close to the total
speed v. This allows us to make the simplification

. A1+ p]
-
A1 + B]

(1= p)a + )"

which simplifies to

(1 + v/c)l/z

A=A

1—v/c

Example 7.2 Relativistic Doppler shift
Find the wavelength at which we will observe the

Ha line if it is emitted by an object moving away
with v/c = 0.3.

(7.8)

SOLUTION
From equation (7.8), we find that

A (1 + 0.3)1/2
A 1-03

= 1.36

This means that
A" = (1.36) (656.28 nm)
= 892.54 nm

The line is shifted from the visible into the near
infrared!

7.5 | Space-time

Phenomena such as time dilation and length con-
traction are not simply illusions. They are real
effects. Our failure to appreciate this previously
comes from a failure to appreciate the true nature
of space and time. Classical physicists assumed
that space and time were simply there, just like a
blank piece of graph paper, and that the laws of
physics were laid down on top of them. Einstein
realized that the laws of physics were intimately
entwined with space and time. We can understand
the nature of this relationship by abandoning our
normal three-dimensional world and replacing it
with the four-dimensional world of space-time.

7.5.1 Four-vectors and Lorentz
transformation

In space-time we simply treat time as another
coordinate. To remind us that time is just another
way of measuring distance, we sometimes write
the time coordinate as ct, so that it has the same
dimensions as the other coordinates. In this way,
we could measure time in meters. What is a time
of one meter? It is the time that light takes to
travel one meter. (Note that we have previously
used time as a measure of distance when we
introduced the light-year.)

An interesting aside to this has come from the
organizations that set international standards such
as the meter and the second. It used to be that such
units were defined independently, and ¢ was just a
measured quantity. The speed of light is now taken
to have a defined value, where all decimal places
beyond the most accurate measured value are
taken to be zero. It now gives the conversion from
meters to seconds. This means that we only need a
standard for the second or the meter, but not both.

In space-time we speak of fourvectors to dis-
tinguish them from ordinary three-dimensional



7 SPECIAL RELATIVITY

133

vectors. Any event is characterized by the four
coordinates (ct, X, y, z). Observers in different iner-
tial frames will note different coordinates for
events, but the coordinates are related. If one
inertial system is moving with respect to another
at a speed v, in the x-direction, the coordinates in
the transformations between the two coordinate
systems are found by assuming they are linear in
the coordinates, and must give the correct results
for length contraction and time dilation. The
result is (letting B8 = v/c)

ct =y (ct' + Bx')

X =y (x' + Bct')

y=y

z=17 (7.9)
The reverse transformation is given by

ct' = vy (ct — Bx)

X' =y (x — Bct)

y=y

7' =z (7.10)

These relationships together are called the Lorentz
transformation.

We interpret the Lorentz transformation as
telling us that the rules of geometry are different
in space-time than they are for ordinary space. To
illustrate this point, we use a space-time diagram,
like that shown in Fig. 7.8. For simplicity, we plot

ct ct'
A

Y
e

JE B Lorentz transformation on a space-time diagram.
The transformation looks like a rotation of the axes except
that the time and space axes rotate in opposite directions.

only one space coordinate, x, as well as the time
coordinate. We can keep track of events in such a
diagram by plotting the coordinates of the event.
By convention, we have time running vertically.
The effect of the Lorentz transformation is to
rotate the axes through an angle whose tangent
is v/c. The unusual feature is that the x-axis and
t-axis rotate in opposite directions, so that the
axes are no longer perpendicular to each other.
Note that v = ¢ puts both axes in the same place.
It should not surprise us that something funny
happens when v = ¢, because this is where the
quantity y becomes infinite.

We know that in ordinary three-dimensional
space, a rotation changes the coordinates of an
object, but the lengths of things are unchanged.
That is, if we have two objects, as shown in Fig.
7.9, whose separations are given in one coordi-
nate system by (Ax, Ay, Az) and (Ax', Ay’, Az’) in
another, then the distance between the two, which
is the square root of the sum of the squares of the
coordinate differences, doesn’t change. That is

(Ax)* + (Ay)* + (A2)* = (AX)* + (Ay')* + (AZ')* (7.11)

We say that the length is invariant under rotation.
Since the Lorentz transformation has proper-
ties of a rotation, is there a corresponding concept

y
y A

Y
e

(Ax)? + (Ay)* = (Ax")? + (Ay')?

Invariance of lengths under rotation. The dark line
represents the distance between points A and B.The compo-
nents of this length with respect to the x- and y-axes are Ax
and Ay, respectively, and with respect to the x'- and y’-axes
are Ax" and Ay’, respectively. Independent of the compo-
nents used, the length of the dark line is the same.
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in space-time? The answer is yes, but the invari-
ant quantity is slightly different, because the
time axis rotates in the opposite direction to the
space axes. We define the space-time interval as

(As)? = (c At — (Ax)* — (Ay)* — (Az)? (7.12)

This is the quantity that is invariant under a
Lorentz transformation. Note that the Lorentz
transformation can be derived by assuming that
this quantity is invariant, and that the transfor-
mations be linear in the coordinates. When this is
done, time dilation and length contraction can be
derived from the Lorentz transformation rather
than the other way around. This reinforces the
idea that length contraction and time dilation are
not artifacts of some particular measurement, but
are an integral part of the nature of space-time.

To get a feeling for the physical meaning of As,
consider an observer moving from one place to
another in time At, as measured in the observer’s
rest frame. This means that At is the proper time
interval. In the observer’s rest frame, there is no
change in position, so Ax = Ay = Az = 0. This
means that As = cAt. Therefore, As is just the
proper time interval (in units of length). Moreover,
since it is an invariant, for any two events and any
inertial reference frames As will always equal the
proper time interval between the two events.

We can define three types of space-time inter-
vals (Fig. 7.10a), depending on whether (As)* is
zero, positive or negative. Suppose our two events
are the emission and absorption of a photon. A
photon will move on the sphere whose surface is
given by, (Ax)? + (Ay)® + (Az)*> = (c At)>. This means
that (As)* is zero for a photon traveling any dis-
tance in any direction. We call such intervals
lightlike. Intervals for which (As)* is positive are
called timelike. The positions are close enough in
space that a photon would have had more than
enough time to travel from the first event to the
second. This means that the first event could
have caused the second. In the opposite case,
when (As)” is negative, we call the interval space-
like. A photon cannot traverse the distance in the
time given. Unless a signal can be sent faster than
the speed of light, there is no way the one event
could have caused the other.

If we extend our space-time diagram to more
dimensions, we call the surface defined by (As)* = 0

A Timelike
sV=C¢
-~ Lightlike
Spacelike
— > X
(a)
ct
L, vy=a
Light
Cone / y
X
(b)

W (a) Space-time intervals. (b) Light cone. ‘

the light cone (Fig. 7.10b). Events that could have
caused the event at the origin of the cone are
inside the past light cone. Events that could be
caused by events at the origin of the cone are
inside the future light cone. Events that are out-
side the light cone can have no causal connection
with the event at the origin.

It should be noted that in our discussion of a
space-time interval we could have defined it to be
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the negative of what it was in equation (7.12), and
not changed any of the interpretation (apart from
carrying through the minus sign). It is just a mat-
ter of convention to do it one way or the other,
and you will find some authors who do it one way
and some who do it the other. As long as they are
internally consistent there is no problem. People
who use one convention or the other then also
differ in how they ‘count’ the time coordinate.
That is, we can write (x, ¥, z) as (X4, X,, X3). If we use
the space-time interval as given in equation (7.12),
then we write ct as x, and think of time as the
‘zeroth coordinate’; if we use the space-time
interval as the negative of that given in equation
(7.12), then we write ct as x4, and think of time as
the ‘fourth coordinate’.

7.5.2 Energy and momentum

The space-time coordinates of an event are not
the only quantities that transform according to
the Lorentz transformation. For example, another
important four-vector involves energy and
momentum. To see the analogy with (ct, x, y, z),
remember that for a photon moving in the x-
direction, x = ct. The energy and momentum of a
photon are related by E = cp, so, for a photon mov-
ing in the x-direction, E = cp,. This suggests that
the energy-momentum four vector should be (E, cp,,
py, cp,). These should then obey the Lorentz
transformations:

E=y(E + Bepy')

px =y (epx" + BE')

cpy = cpy’

cp, = cp,’ (7.13)

The reverse transformation is given by
E' =y (E — Bepy)

px’ = v (cpx — BE)

!

pr = pr
. = cp, (7.14)

If we let the (') reference frame be one in which
the particle is at rest, so that px’ = 0, then the first
thing we note is that E = y E’, so, if the energy of
the particle at rest, E’, were equal to zero, then the
energy, E’, would always be zero. This is obviously

not the case, since we know that moving particles
must have some energy. This means that the rest
energy, Eo, cannot be zero. So, this gives us an
expression for the relativistic energy:

E=1yE, (7.15)

We can then find the relativistic momentum as

px = vB Eo (7.16)

In the non-relativistic (y close to one) limit, the
momentum must give the classical expression, p, =
mv, . From equation (7.16) this can only occur if

EO = m0C2 (717)

where m, is the rest mass of the particle.
We can rewrite the expressions for relativistic
energy and momentum:

E = b% mocz (718)

p=ymev (7.19)

We can also define a kinetic energy as the differ-
ence between the total energy and the rest
energy:

Eie = (y — 1) moc® (7.20)

In the limit v << ¢, we can write
y=[1- ey
=1+v2¢7

where we have used the fact that, for x < 1,
(1 +x)" = 1 + nx. The kinetic energy for v < ¢
then becomes

Ex = moc® (1 + v?[2¢* — 1)
= (1/2)mov*

which is the classical expression.

Since the energy-momentum four-vector obeys
the Lorentz transformations, it must have an invari-
ant length associated with it. It is

E* — (cp)* = (ep))* — (cp.) (7.21)

To give this quantity a physical meaning, we eval-
uate it in the rest frame of some particle. In that
case, the momentum is zero and the energy is the
rest energy. So the invariant length is simply
mec®. Since this quantity is invariant, its value
must be myc? for any observer. (We just choose to
work it out in an easy frame.)
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Example 7.3 Rest energy of a proton

What is the rest energy of a proton?

SOLUTION
By equation (7.20)

Eo = (1.67 X 107 ** g)(3.0 X 10 cm/s)?
=15%x 10 %erg

To form an idea of how large this is, we express the
answer in eV, to get 939 MeV (as compared, for
example, with the 13.6 eV needed to ionize a hydro-
gen atom).

Note that, as v/c approaches unity, y approaches
infinity. This means that it takes an infinite amount

of energy to accelerate an object with non-zero
rest mass to the speed of light. This means that
the speed of light is a limiting speed.

Some physicists have speculated on particles
that can travel faster than light. These particles
have been given the name tachyons. The trick is
that these particles, if they exist, can never go
slower than the speed of light. The speed of light
would seem to be a barrier for them as well, only
from above. If tachyons do exist they can interact
with photons, and make their presence known.
All experiments to look for tachyons have indi-
cated that they do not exist.

Chapter summary

In this chapter we saw how the special theory of
relativity has changed our thinking about the
nature of space and time.

We saw how the requirement that the laws of
physics be the same in all inertial frames leads to
the idea that the speed of light is the same for all
observers. This, in turn, leads us to the phenom-
ena of time dilation and length contraction. The
phenomena are only large when the speeds
involved are close to c.

Questions

We saw that we can no longer think of space
and time as being separate entities, but must con-
sider a four-dimensional coordinate system,
called space-time. We defined a space-time inter-
val which is invariant under the Lorentz trans-
formation (and is equal to the proper time).

We saw that energy and momentum must be
treated like space and time. This leads to a rela-
tivistic energy E = ymyc* and the idea of a rest
energy, myc>.

7.1. What are the differences between sound waves
and electromagnetic waves?

7.2. How does the speed of light being independent
of the velocity of the observer eliminate the
problem that Einstein found with Maxwell’s
equations?

7.3. What is the relationship between simultaneity
and absolute time?

7.4. What do we mean by the terms ‘proper length’
and ‘proper time’?

*7.5. A painter’s assistant is carrying a 10 m ladder
parallel to the ground. The assistant is moving
at 0.99c. The painter is up on a high ladder
and drops a cloth with a 5 m diameter hole in

it, parallel to the ground. From the point of
view of an observer on the cloth, the ladder
shrinks to less than 5 m in length and fits
through the hole. From the point of view of
the assistant, the hole shrinks, so it is even
smaller than the ladder. Yet we know that the
ladder must get through in all reference
frames if it gets through in one. How does it
get through as viewed by the assistant? (Hint:
Think of how the cloth appears to the
assistant.)

7.6. How is the geometry of space-time in special
relativity different from the geometry of three-
dimensional space?
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Problems

7.1. The angular displacement of an image (in
radians) due to aberration is approximately
v/c, as long as v << ¢. Use the fact that the
Earth orbits the Sun once per year at a dis-
tance of 1.50 X 10® km to find the maximum
displacement of a star’s image due to the
motion of the Earth. Express your answer in
arc seconds.

7.6.

7.7.

stick appear to you? How long does your stick
appear to your friend, assuming the sticks are
parallel to each other.

How fast does an object have to be going so
that it is found to be 10% of its original
length?

A source of radiation is moving away from
you at 10% of the speed of light. At what

7.2. You and your friend carry identical clocks. wavelength is the Ha line seen?
Your friend passes by in a rapidly moving 7.8. We define the redshift, z, as the shift in wave-
train. As your clock ticks off 1.00 s, you see length, A divided by the rest wavelength A,.
your friend’s clock tick off 0.50 s. How much On the assumption that only radial motions
time would your friend see your clock tick off are involved, find an expression for z as a
in the time it takes your friends clock to tick function of v/c.
off 1.00 s? 7.9. Show that equation (7.8) reduces to the classi-
7.3. How fast must a clock be moving to appear to cal result when v << c.
run at half the rate of an identical clock at 7.10. Think about how the length of an object is
rest? determined and show that the Lorentz trans-
7.4. Some radioactive particles are traveling at formations give Lorentz contraction.
0.999c. If their lifetime is 107 2° s when they 7.11. Suppose we have two events that take place at
are at rest, what is their lifetime at this (ctq, X1, Y1, Z1) and (cty, X2, Yo, Z5) in one refer-
speed? How far do they travel in that time (as ence frame and at (ct'y, x'q, ', 2'1) and (ct',,
viewed in the frame at which they are moving X'y, ¥'2, Z'5) in the other reference frame. The
at 0.999¢? coordinates in the two frames are related by
7.5. You and your friend carry identical meter the Lorentz transformations. Show that the
sticks and identical clocks. Your friend goes space-time interval between the two events is
by on a fast moving train, holding the meter the same in both reference frames.
stick parallel to the direction of motion of the 7.12. Show that if tachyons exist, their rest mass
train. If in the time it takes your clock to tick must be an imaginary number if the energy
off 1.00 s you see 0.5 s tick off on your is to be real for v > c. (An imaginary number
friend’s clock, how long does your friend’s is the square root of a negative number.)
Computer problems
7.1. Make a table showing the speeds (v/c) for which  7.3. For the relativistic Doppler shift, make a graph of

time dilation is a 1%, 10%, 50%, 90%, 99%, 99.9%
effect.

7.2. Make a graph of 1/y vs. (v/c) for (v/c) ranging from
0to 1.

7.4.

(A'/A) vs. (v[c) for (v[c) ranging from O to 1.
For the relativistic Doppler shift, make a graph of
(v[c) vs. (A'/A) for (A'/A) ranging from 1 to 10.






Chapter 8

General relativity

General relativity is Einstein’s theory of gravita-
tion that builds on the geometric concepts of space-
time introduced by special relativity. Einstein was
looking for a more fundamental explanation of
gravity than the empirical laws of Newton.
Besides coming up with a different way of think-
ing about gravity (in terms of geometry), general
relativity makes a series of specific predictions of
observable deviations from Newtonian gravita-
tion, especially under strong gravitational fields.
These predictions provide a stringent test of
Einstein’s theory (e.g. Fig. 8.1).

8.1 | Curved space-time

A central tenet of general relativity is that the
presence of a gravitational field alters the rules of
geometry in space-time. The effect is to make it
seem as if space-time is “curved”. To see what we
mean by geometry in a curved space, we look at
geometry on the surface of a sphere, as illus-
trated in Fig. 8.2. The surface is two-dimensional.
We need only two coordinates (say latitude and
longitude) to locate any point on the surface.
However, it is curved into a three-dimensional
world, and that curvature can be detected.

To discuss the geometry of a sphere, we must
first extend our concept of a straight line. In a
plane, the shortest distance between two points is
a straight line. On the surface of the sphereitis a
great circle. Examples of great circles on the
Earth are the equator and the meridians. (A great
circle is the intersection of the surface of the
sphere with a plane passing through the center of

the sphere.) In general, on any surface, the shortest
distance between two points is called a geodesic.

People on the surface of the Earth can tell
that it is curved, and can even measure the
radius, without leaving the surface. For example,
two observers can measure the different position
of the Sun as viewed from two different places at
the same time. (Thus, even the ancient Greeks
knew the Earth was round. When Columbus
sailed the only issue being seriously debated was
how big the Earth is, since there was some confu-
sion in interpreting the Greek results, which had
been given in “stadia”. Columbus believed the
“small Earth” camp, explaining why he thought
he had reached India.)

Surveying the surface will also tell you that
the rules of geometry are different. For example,
consider the triangle in Fig. 8.2. In a plane, a tri-
angle has three sides, each made up of a straight
line. The sum of the angles is 180°. On the surface
of a sphere, we replace straight lines by great cir-
cles. A triangle should therefore be made up of
parts of three great circles. In the figure we use
sections of two meridians and a section of the
equator. Each meridian intersects the equator at
a right angle, so the sum of those two angles is
180°. When we add the third angle, between the
two meridians, that makes the sum of the angles
greater than 180°. The results of Euclidean (flat
space) geometry no longer apply. The greater the
curvature of the sphere, the more non-Euclidean
the geometry appears. On the other hand, if we
stick to regions on the surface that are much
smaller than the radius of the sphere, the geom-
etry will be very close to Euclidean.



140 PART Il RELATIVITY

even more distant galaxy is bent into an arc (Einstein ring) by
the severe curving of the geometry of space-time. This curva-
ture is caused by the large mass of an intervening galaxy. [ESO]

We now look at what we mean when we say
that gravity curves the geometry of space-time.
This is illustrated in the space-time diagram in

G A Geometry on the surface of a sphere.The short-
est distance between two points is along a great circle.We
look at the triangle bounded by the equator and two meridi-
ans. The meridians cross the equator at right angles, so the
sum of the angles in the triangle is greater than 180°.

Fig. 8.3.In the absence of gravity, objects move in
straight lines at constant speeds. If we throw a
ball straight up with no gravity, the world line
for the ball is a straight line. If we turn on grav-
ity, the world line looks like a parabola. We can

(a)

(b)

TR Space-time diagram for a ball thrown up from the

ground. (a) With no gravity, the space-time trajectory is a
straight line. (b) With constant gravity, the trajectory is a
parabola.
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say that it follows this path because the space-
time surface on which it must stay is curved.
Ultimately, to represent fully the trajectory of the
ball we would have to consider all of the four
space-time dimensions. The effect of gravity is
then to curve that four-dimensional world into a
fifth dimension. It is hard to represent that
dimension in pictures, but we can still measure
the curvature by doing careful geometric meas-
urements.

In this geometric interpretation of gravita-
tion, we need two parts to a theory. The first is to
calculate the curvature of space-time caused by
the presence of a particular arrangement of
masses. The second is to calculate the trajectories
of particles through a given curved space-time.
Einstein’s theory of general relativity provides
both. However, the mathematical complexity
goes well beyond the level of this book.
(Supposedly, even Einstein was upset when he
realized the area of formal mathematics into
which the theory had taken him.) However, we
can still appreciate the underlying physical
ideas, and we can even carry out some simple cal-
culations that bring us close to the right
answers.

8.2 | Principle of equivalence

The starting point for general relativity is a
statement called the principle of equivalence,
which states that a uniform gravitational field in
some direction is indistinguishable from a uniform
acceleration in the opposite direction. Remember, an
accelerating reference frame introduces pseudo-
forces in the direction opposite to the true
acceleration of the reference frame. For exam-
ple, if you are driving in a car and step on the
brakes, the car has a backward acceleration.
Inside the car, you have a forward acceleration
relative to the car.

We can illustrate the principle of equivalence
by looking at the forces on a person standing on a
scale in a elevator, as illustrated in Fig. 8.4. In the
first case, we have the elevator being supported so
there is no acceleration, but there is gravity. We
take the acceleration of gravity to be —g. (Upward
forces and accelerations are positive; downward
forces and accelerations are negative, and we have

Real Forces Gravity  Acceleration
g
a
Fg
mg g a
F ST
TR B Person in an accelerating elevator. When gravity is
present it is indicated by a downward arrow, marked g.
When the elevator is accelerating it is indicated by an arrow
marked a.

take g as a positive number.) We now want to add
up all of the forces on the person, and equate
them to ma, where m is the person’s mass and a is
the person’s acceleration. The forces are the per-
son’s weight, —mg, and the upward force of the
scale on the person’s feet, Fs. The acceleration is
Zero, so

Solving for Fs gives us
Fs = mg

By Newton’s third law, the force the scale
exerts on the person has the same magnitude as
the force the person exerts on the scale. Therefore,
Fg also gives the reading of the scale. In this case it
is simply the weight of the person - the expected
result.
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We now look at the case of no gravity, but
with an upward acceleration a. The only force on
the person is Fs. Applying F = ma gives

Fs = ma

If we arrange for the acceleration so its value is
equal to g, we have

Fg = mg

This is the same result we had in the first case. As
far as the person in the elevator is concerned,
there is no way to tell the difference between a
gravitational field with an acceleration g down-
ward and an upward acceleration g of the refer-
ence frame.

To illustrate the point farther, we look at a
third case, in which there is gravity, but the ele-
vator is in free-fall. The forces on the person are Fg
upward and mg downward, and the acceleration
is mg downward. This gives us

Fg —mg = —mg

This tells us that Fs is zero. The person is “weight-
less”. The acceleration of the elevator has exactly
canceled the gravitational field. For the person
inside the elevator, there is no way to distinguish
this situation from that of a non-accelerating ele-
vator and no gravitational field. This is the same
weightlessness felt by astronauts in orbiting
space vehicles (Fig. 8.5). Orbiting objects are also
in free-fall, but the horizontal component of
their velocity is so great that they never get closer
to the ground; they just follow the curvature of
the Earth.

If you look carefully at the above discussion,
you will see that we have really used the concept
of mass in two different ways. In one case we said
that a body of mass m, subjected to a force F, will
have an acceleration F/m. In this sense, mass is
the ability of an object to resist the effects of an
applied force. We call this resistance inertia.
When we use mass in this sense, we refer to it as
inertial mass. The second use of mass is as a meas-
ure of the ability of an object to exert and feel a
gravitational force. In this context, we speak of
gravitational mass. In the same sense, we use elec-
tric charge as a measure of an object to exert and
feel electrical forces. (So, we should think of gravi-
tational mass as being like a gravitational charge.)

TR Pseudo-force in an accelerating space station. In
this case the station is accelerating towards Earth (like the
free-falling elevator) so the astronaut appears weightless.
[NASA]

The principle of equivalence is really a state-
ment that inertial and gravitational masses are the
same for any object. If the two masses are equal
then they do cancel in the above examples, as we
have done. This also explains why all objects have
the same acceleration in a gravitational field, a point
first realized by Galileo. It is not obvious on the
surface of the Earth, since air resistance affects
how objects fall. However, a hammer and a feather
fall with the same acceleration on the surface of
the Moon, where there is no air resistance.

It is important to remember that just because
we call both quantities “mass” there is no obvious
reason for gravitational and inertial mass to have
the same numerical value. In the same way, we
expect no equality between the electric charge
of an object and its inertial mass. If inertial and
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gravitational mass are the same, this tells us that
gravity must somehow be special. As we will see
in the next section, considerable effort has gone
into verifying the principle of equivalence.

8.3 | Tests of general relativity

Over the years since Einstein’s publication of gen-
eral relativity, a number of exacting tests have
been carried out to test observational predictions
of the theory. Some of the tests are really only
tests of the principle of equivalence, while others
are true tests of the full theory.

A direct test of the principle of equivalence
involves the measurement of the attraction of
two different objects by some third body. A class
of such experiments are called Eotvos experiments,
after the person who devised the original experi-
ment around the turn of the 20th century. The
most accurate recent versions of the experiment
were carried out by a group at Princeton University
in the 1960s and a group at Moscow University in
the 1970s. Their findings indicate that the princi-
ple of equivalence is accurate to one part in 10™.

The equivalence principle we have discussed
applies strictly to objects that are so small that
we can ignore the differences from one side to
the other in the gravitational field they feel. We
can treat them as point objects. However, there is
a stronger form of the principle of equivalence
that says that it also applies to objects with sub-
stantial gravitational binding energy, such as
planets or stars. This has been tested by closely
measuring the motion of the Moon (Fig. 8.6). A
series of mirrors have been left on the Moon by
the Apollo astronauts. Laser signals can be sent
from Earth, bounced off these small mirrors, and
then detected as very weak return signals. By tim-
ing the round trip we can measure the distance
to the Moon very accurately, to within a few cen-
timeters. These studies have indicated that the
Earth and Moon fall towards the Sun with the
same acceleration to within seven parts in 102

8.3.1 Orbiting bodies

One series of tests of general relativity involves
the behavior of orbiting bodies. The paths are
slightly different than predicted by Newtonian

SR The 2.7 m telescope of the McDonald
Observatory, Texas, has been used to fire a laser beam at a
reflector on the Moon, then they detect the weak return. By
timing the round trip, the distance to the Moon is very accu-
rately determined. [McDonald Observatory]

gravitation. An important feature involves ellipti-
cal orbits. In an elliptical orbit, the distance of
the orbiting body from the body exerting the
force is changing. The orbiting body is therefore
passing through regions of different space-time
curvature. (See Fig. 8.7, which may help in visual-
izing this.) The effect of the changing curvature is
to cause the orbit not to close. After each orbit,
the position of perihelion (closest approach) has
moved around slightly.

The effect will be greatest for orbits of highest
eccentricity, since the widest range of curvatures
will be covered. Also, the smaller the semi-major
axis, the greater the effect. This is because the
gravitational field changes faster with distance
when you are closer to the object exerting the
force. In the Solar System, both of these points
make the effect most pronounced for Mercury.
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Orbit of Mercury

Aphelion

(a) (b)

#T-A (a) Curved space-time for Mercury’s orbit around
the Sun.The closer to the Sun you get, the greater the cur-

vature of space-time. Since Mercury’s orbit is elliptical, its
distance from the Sun changes. It therefore passes through
regions of different curvature. (b) This causes the orbit to
precess.We can keep track of the precession by noting the
movement in the perihelion, designated P,, P, and P; for
three successive orbits. (The amount of the shift is greatly
exaggerated.)

It is closest to the Sun, and, except for Pluto, has
the most eccentric orbit.

The perihelion of Mercury’s orbit advances by
some 5600 arc seconds per century. However, of
this, all but 43 arc seconds per century can be
accounted for by Newtonian effects and the per-
turbations due to motions of other planets. The
Newtonian effects could be calculated accurately
and subtracted off. Einstein was able to explain
the 43 arc seconds per century exactly in his gen-
eral relativity calculations. This was considered
to be an interesting result for general relativity,
but not a crucial test, since Einstein explained
something that had been observed. A crucial test
involves predicting things that haven’t been
observed yet.

In recent years a controversy has grown out of
this test of general relativity. A group at Princeton
in the 1960s measured the shape of the Sun and
found a slight flattening. A flattened Sun would
also have an effect on the orbit of Mercury, reduc-
ing the general relativistic effects by enough to
say that Einstein’s calculation is wrong. Further
measurements have indicated that the original
experiment on the Sun’s shape was in error, but
some experiments suggest that there is some flat-
tening. While some of this research is continuing,

at this point it appears that there is not enough
solar flattening to challenge Einstein’s results.

8.3.2 Bending electromagnetic radiation
Einstein’s chance to predict an effect that had not
been seen came in the bending of light passing by
the edge of the Sun. He said that the warping of
space-time alters the path of light as it passes
near the source of a strong gravitational field.
According to general relativity, photons follow
geodesics. The light will then appear to be com-
ing from a slightly different direction. If the light
is coming from a star, the position of the star will
appear to be slightly different than if the bending
had not taken place, as indicated in Fig. 8.8.

According to Einstein, the angle 6 (in radians)
through which the light passing a distance b
from an object of mass M is given by

6 = 4GM/bc* (8.1)

If we set b equal to the radius of the Sun (6.96 X
10" cm) we get an angle of 8.47 X 10~ ° rad, which
is equal to 1.74 arc seconds. This is a very small
angle and is hard to measure.

The measurement is made even more difficult
by the fact that we cannot see stars close to the

Actual Apparent
position * position
of star of star
Y
CH
Observer

PR Bending of starlight passing by the Sun.The
observer thinks that the star is straight back along the
received ray.




8 GENERAL RELATIVITY

145

Sun on the sky. Therefore, the test must be made
during a total eclipse of the Sun, when the sky is
photographed, and then the same part of sky is
photographed approximately six months later.
The positions of the stars on the two photographs
are then compared. The first attempt to carry this
out was by a German team trying to get to a
Russian viewing site for a 1914 eclipse. They were
thwarted by the state of war between the two
countries. The next try was in 1919, in an effort
headed by Sir Arthur Eddington. In the intervening
years, Einstein had found an error in his calcu-
lations, so it is probably just as well that the
observations weren’t done until the theoretical
prediction was finalized. The result was a confir-
mation of Einstein’s prediction. The recognition
of the magnitude of Einstein’s contribution was
immediate, both among physicists and the gen-
eral public.

The solar eclipse experiment is a hard one,
and the original one had a 10% uncertainty asso-
ciated with it. More recent tries have reduced the
uncertainty to about 5%. Different types of exper-
iments are needed for greater accuracy. A major
improvement can be made by using radio waves.
The bending applies equally to electromagnetic
radiation of all wavelengths. The advantage of
radio waves is that the Earth’s atmosphere does
not scatter them. We can observe any radio
source as the Sun passes in front of it and watch
the position of the source change. These tests
have confirmed Einstein’s predictions to greater
accuracy than the eclipse experiments.

There is another effect related to the bending
of light. The longer path that results from the
curvature of space-time around the Sun causes a
delay in the time for a signal to pass by the Sun.
Two types of observations have been done to test
this. One involves the reflection of radio waves
from Mercury and Venus as they pass behind the
Sun. We know the positions of the planets very
accurately, so we know how long it should take
for the signal to make a round trip. The other
type of experiment involves spacecraft that have
been sent to various parts of the Solar System,
especially Mariners 6, 7 and 9, and Viking orbiters
and landers on Mars. We simply follow the signals
from the spacecraft. Since we know where the
spacecraft should be, we can determine the time

delay as the spacecraft pass behind the Sun.
Using this technique, Einstein’s predictions have
been confirmed to an accuracy of 0.1%.

There is another interesting result related to
the bending of the paths of electromagnetic
waves. A massive object can bend rays so well that
it can act as a gravitational lens. Physicists have
speculated on this possibility for some time.
Recent observations of quasars, to be discussed in
Chapter 19, have revealed a number of sources in
which double images are seen as a result of this
gravitational lens effect (e.g. Fig. 8.1).

8.3.3 Gravitational redshift

The wavelengths of photons change as they pass
through a gravitational field. This effect is called
the gravitational redshift (Fig. 8.9). It is really a con-
sequence of the principle of equivalence.

We can make a plausibility argument to esti-
mate the magnitude of the effect. We have already
seen in the previous section that the gravitational
effect of some mass is to alter the trajectories of
photons (i.e. they follow geodesics that are not
straight lines). This makes it plausible that the
gravitational field can do work on the photon,
changing its energy. In order to estimate the grav-
itational potential energy of a photon (—GMm/r) we
assign an “effective mass”, E/c?, and since E = h/A,
this effective mass is h/cA. So if a photon moves

A Gravitational redshift. As

the photon moves farther from

the mass its wavelength increases.

r

Iy
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from r; out to r,, conservation of energy would
give us

he  GMh _ he  GMh
Ay Oy Ay TeA,

(8.2)

Solving for the ratio of the wavelengths gives

GM
-]
A, T5C

=~ 8.3
Ay { GM} (®:3)
=73
1€
As we have said, this derivation should not be
considered rigorous - it is more of a dimensional
analysis. However, it gives a result that agrees

with the full general relativistic calculation for
shifts that are not too large. The actual result is

2GM | 1/2
1- 2
N | e 54
Aq 2GM (8
1- 2
T4C

If we use the fact that (1 — x)'> = (1 — x/2) for
x < 1, equation (8.4) gives the same result as
equation (8.3).

If we use equation (8.4) and take r, = e, and
use the approximation for small shifts, we obtain
Ay GM
12 + 2

2

8.5
Aq 74C (8:5)

If we compute the wavelength shift, A\, we find

M oM

8.6
A rc? (8.6)

Example 8.1 Gravitational redshift

Find the gravitational redshift for radiation emit-
ted from the surface of the Sun and for radiation
emitted from a 1 My white dwarf, whose radius is
1% that of the Sun.

SOLUTION
For M = 2.0 X 10** g we use equation (8.5) to get
Ay (6.67 X 10~%dyn cm?/g*)(2 X 10% g)

=1+
A r (3 X 10" cm/s)?

1.48 X 10° cm
+ - 00
.

=1

Forr =7 X 10* cm,

Ay e
—=1+212X 10
Ay

Forr = 7 X 10% cm,

A
2 14212x1074
Ay

The shift for spectral lines in the Sun is very
small. The shift for white dwarfs is measurable.
The two best cases so far are Sirius B (3 X 10~ %
and 40 Eridani (6 X 10~°).

There is an interesting way to measure the
gravitational redshift on Earth. It utilizes a phe-
nomenon known as the Mdssbauer effect (Fig. 8.10).
This involves the emission of a gamma-ray by a
nucleus held firmly in place by a solid crystal. In
a free nucleus, the gamma-ray would lose a little

Nucleus
[ ]
Photon
(yray)
< VN \ NN
Recoiling
nucleus

(a)

O@O Nucleus

in atom

8%8 in crystal

Recoiling 888 VW
Crystal OOQ

(b)

FERHEE The Mossbauer effect. (a) Emission of a gamma-

ray by a free nucleus.To conserve momentum, the nucleus
recoils. The recoiling nucleus carries away some energy.
Therefore, the energy of the gamma-ray is less than the
energy difference between the two levels involved in the
particular transition. (b) If the nucleus is part of an atom,
which is, in turn, part of a crystal, the whole crystal must
recoil. Since the crystal is much more massive than the
nucleus, its recoil is negligible. This means that the energy of
the gamma-ray is always equal to the difference between the

two levels involved in the transition.
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energy due to the recoil of the nucleus. (The recoil
is to conserve momentum.) When the nucleus is
in a crystal, the whole crystal takes up the recoil.
It moves very little because of its large mass, and
the energy loss by the gamma-ray is small. This
means that the gamma-ray energy is well defined.

If the gamma-ray is emitted by a nucleus in
one crystal, it can be absorbed by a nucleus in an
identical crystal, as long as there is no wave-
length shift while the photon is in motion. A
group of physicists tried an arrangement in
which the gamma-rays were emitted in the base-
ment and absorbed on the roof. The small gravi-
tational redshift was enough for the gamma-rays
to arrive at the roof with the wrong wavelength
to be absorbed. The gamma-rays could be
blueshifted back to the right wavelength by
moving the crystal on the roof towards that in
the basement. By seeing what Doppler shift is
necessary to offset the gravitational redshift,
the size of the gravitational redshift can be
measured. The result agrees with the theoretical
prediction.

A phenomenon related to the gravitational
redshift is gravitational time dilation. All oscillators
or clocks run slower in a strong gravitational
field than they do in a weaker field. If we have
two clocks at r; and r,, the times they keep will be
related by the same expression as the gravita-
tional redshift. That is

2GM /2
1- 2
b_| e 57)
t 1 2GM (®.
ric*

From this we see that t, > t;. This effect has
been tested by taking identical clocks, leaving one
on the ground and placing the other in an airplane.
(Of course, you must first correct for the special rel-
ativistic effect due to the motion of the airplane.)
The airplane experiments have yielded results that
agree with theory. Even more recently, tests on
rockets have yielded even more accurate results.

8.3.4 Gravitational radiation

Just as the classical theory of electricity and mag-
netism predicts that accelerating charges will give
off electromagnetic radiation, general relativity
predicts that certain types of systems should give
off gravitational radiation. Gravitational radiation
is more complicated than electromagnetic radia-
tion. When a gravity wave passes by the geometry
of space-time briefly distorts. The types of systems
that might produce gravitational radiation are
orbiting systems with objects close together or
collapsing objects.

Some groups have attempted to detect gravi-
tational radiation directly from astronomical
sources, hoping to detect small changes in very
large detectors. None of these has been successful
yet. More recently, an ambitious program involv-
ing laser interferometers to detect small changes
is being developed (Fig. 8.11).

The best evidence for gravitational radiation at
the time of writing has been indirect. Astronomers
have been studying a binary pulsar system (to be dis-
cussed in Chapter 12), in which the system appears
to be losing orbital energy at exactly the rate that
would be predicted for gravitational radiation.

SERHEE To detect gravity

waves, physicists are hoping to

measure very small changes in
very large objects. This shows a
view of one station of the Laser
Interferometer Gravity
Observatory (LIGO), in Hanford,
WA A passing gravity wave would
cause a small shift in the interfer-
ence patterns in the laser. [Photo
courtesy of Caltech/LIGO]




148

‘ PART Il RELATIVITY

8.3.5 Competing theories

One of the reasons that there has been so much
interest in testing general relativity as accurately
as possible is that there are some competing the-
ories to Einstein’s. These theories generally have
the same starting point, but differ in their
details. The result of the tests of these competing
theories is that the experimental foundations of
Einstein’s theory are now much stronger than
they were when the theory was initially studied.

8.4 | Black holes

One of the exciting aspects of astronomy is the
possibility of studying a variety of fascinating
objects. By our earthly standards, even a normal
star contains extreme conditions. However, there
are other objects that make the conditions on
stars seem commonplace. Among these objects
are black holes, objects from which no light can
escape.

8.4.1 The Schwarzschild radius

Shortly after Einstein published his general the-
ory of relativity, Karl Schwarzschild worked out the
solution for the curvature of space-time around a
point mass. He found that there is a critical
radius at which a singularity occurs. A singularity
is a place where some quantity becomes infinite.
This critical radius is called the Schwarzschild
radius. For a mass M this radius, Rg, is given by

Rs = 2GM/c* (8.8)

Real objects are not pointlike, but have some
finite extent. An interpretation of Schwarzschild’s
result is that if an object is completely contained within
its Schwarzschild radius, the singularity will occur.

We can understand the significance of this
critical radius by recalling the discussion of grav-
itational redshift in Section 8.2. We saw that if a
photon is emitted at a wavelength A, at a distance
r; from a mass M, and is detected at r,, its wave-
length A, is given by

2GM |12
1- 2
Ay T5C 89
Ay 2GM (89)
1- 2
74C

If we set r; = 2GM/c* (the Schwarzschild
radius), we find that A, is infinite, even if r, is
only slightly greater than r;. This means that no
electromagnetic energy can escape from within
the Schwarzschild radius. We call an object that
is contained within its Schwarzschild radius a
black hole.

Example 8.2 Schwarzschild radius
Find the Schwarzschild radius for an object of one
solar mass.

SOLUTION
From equation (8.8) we have

~ (2)(6.67 X 10" * dyn cm?/g?)(2 X 10% g)
S (3 X 10'° cm/s)?

3.0 X 10° cm

= 3.0 km

Since the Schwarzschild radius varies linearly
with mass and has a value 3 km for a 1 M, object,
we can write an expression for Rg for an object of
any mass. It is

Rg = (3.0 km)(M/Mg) (8.10)

Remember, every object has its Schwarzschild
radius. However, it can only be a black hole if it is
contained within this radius. For example, the Sun
is much larger than 3 km, so it is not a black hole.

The density of a 1 Mg black hole would be
quite high, almost 10" g/cm®. It is higher than
the density of the nucleus of an atom. However, as
we consider more massive black holes, the density
goes down. This is because the radius is propor-
tional to the mass, but the volume is proportional
to the radius cubed (and therefore to the mass
cubed). This means that the density will be pro-
portional to 1/M?. Since we know the density for a
1 M, black hole, we can write the density for any
other mass black hole as

p = (1 X107 g/ecm?®)(M/M) ~? (8.11)

By the time the mass reaches 10* M, , the den-
sity is only a few grams per centimeter cubed,
just a few times the density of water.

We would expect the region just outside a
black hole to be characterized by a large change
in gravitational force over a small distance.
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On the Earth the tides result from the changing
of the gravitational forces exerted by the Sun and
Moon from one side of the Earth to the other. By
extension, we refer to any effect of the variation
of a gravitational force as a tidal effect. Near a
black hole, the gravitational force should fall off
very quickly with small changes in distance from
the surface. We write the acceleration of gravity
as a function of radius

g(r) = GMJr* (8.12)
Differentiating with respect to r gives
dg(r)/dr = —2GMJr* (8.13)

Though the gravitational force falls off as 1/r?,
the tidal effects fall off as 1/r*, meaning that they
are most important for small values of r.

Example 8.3 Black hole tidal forces

Find the difference between the acceleration of
gravity at the feet and head of an astronaut just
outside a 1M, black hole.

SOLUTION
The change in g, Ag, is given by

Ag = (dg/dr) Ar

where Ar is the distance over which the change is
to be found. In this case, Ar is the height of the
astronaut, which we will take to be 2m. We find
dg/dr from equation (8.13) to be

dg/dr = —(2)(6.67 X 10~ % dyn cm?/g?)(2.0 X 10%* g)/
(3 X 10° cm)®
= —1 X 10" cm/s*/cm
(Note that the minus sign means that gravity is

stronger at the feet than at the head.) For Ar = 2 X
102 cm, we have

Ag = — 2 X 10" cm/s?

This is two billion times the acceleration of gravity
at the surface of the Earth. The astronaut would be
pulled apart with a force of over a billion times the
astronaut’s weight!

The tidal force, dg/dr, is proportional to M/r’,
just as is the density. Therefore, the tidal force
will be less for more massive black holes, falling
to more tolerable values for very massive black
holes (see Problem 8.9.)

8.4.2 Approaching a black hole

What is it like to fall into a black hole? We con-
sider two astronauts. One approaches the black
hole, and the other stays a safe distance away. The
various steps are indicated in Fig. 8.12.

We assume that the astronaut approaching
the black hole can send out signals in various
directions, including back to the other astronaut.
As the first astronaut approaches the black hole,
the first thing the distant astronaut would notice
is the redshift in the signals received. The magni-
tude of the redshift increases as the first astro-
naut becomes closer to the Schwarzschild radius.

Before the Schwarzschild radius is reached,
another effect becomes noticeable. The paths of
photons sent out by the first astronaut are not
straight lines. They bend. The only direction in
which the astronaut can aim a beam and not have

\NVV‘?' VAVAVAVA
W

W@

FE R A Approaching a black hole. Astronaut |
approaches the black hole while astronaut 2 stays behind. In

each frame, the emitted and received wave correspond to a
beam sent from | to 2.




150

PART Il RELATIVITY

it bend is straight up. If the beam is not aimed
sufficiently close to the vertical, the bending will
be so great that the light will not escape. Only
light aimed into a cone about the vertical, called
the exit cone, will escape. As the first astronaut
moves closer to the Schwarzschild radius, the exit
cone becomes smaller. At a distance equal to
(3/2)Rs, photons aimed horizontally go into orbit
around the black hole. The sphere of orbiting
photons is called the photon sphere. If you were to
look straight out, along the horizon, you would
see the back of your head.

The second astronaut never actually sees the
first astronaut reach the Schwarzschild radius.
The gravitational time dilation is so great that, as
Rg is approached, the second astronaut thinks that
it takes the first astronaut an infinite amount of
time to reach Rg. The time dilation makes the first
astronaut appear to slow down as Rg is approached.

From the point of view of the first astronaut,
there is no such respite. The Schwarzschild radius
is reached very quickly. If the black hole is of suf-
ficiently small mass, the tidal forces would tear
the first astronaut apart. However, if the black
hole is massive enough, the tidal forces might be
survived and the astronaut crosses Rg. When this
happens, we say that the astronaut has crossed
the event horizon. If the black hole is massive
enough, the astronaut might not notice anything
unusual, except that escape is impossible!

Once inside the black hole, the inevitable jour-
ney to the center continues. The gravitational time
dilation is so great that time passes slowly.
However, the headlong rush through space con-
tinues. Outside the black hole, it is time that
rushes on while distance is covered slowly. It is as
if crossing the event horizon has interchanged to
roles of space and time.

The second astronaut can tell nothing about
what is going on inside the black hole. In fact, the
only properties of a black hole that can be deduced
are its mass, radius, electric charge and angular
momentum. (So far, we have assumed zero angular
momentum. We will discuss rotating black holes
below.) The external simplicity of black holes is
summarized in a theorem that states that black
holes have no hair.

So far we have been discussing non-rotating
black holes. The structure of a rotating black hole

Plane perpendicular to
axis of rotation through
rotating mass

Ergosphere

Infinite redshift
surfaces

FERHER Rotating black hole. The structure of the surface
is complicated, so we show two cuts. In the upper figure, we

see the intersection of various surfaces with the plane per-
pendicular to the axis of rotation. At the center is a disk sin-
gularity. (This is just a disk and doesn’t extend above or
below the plane.) There are two infinite redshift surfaces and
two event horizons. Between the event horizons, the roles
of space and time are reversed. The region between the
outer infinite redshift surface and the outer event horizon is

called the ergosphere.The lower figure shows a side view.

is somewhat more complicated than that of a
non-rotating black hole, and is depicted schemat-
ically in Fig. 8.13. The situation shown is for the
case in which the angular momentum per unit
mass, J/M, is less than GM/c. For the case shown,
there are two infinite redshift surfaces instead of
a single event horizon. Between the two surfaces,
the roles of space and time are reversed, just as
inside the event horizon in the non-rotating case.
The region between the outer infinite redshift
surface and the event horizon is called the ergos-
phere. The name results from the fact that there is
a way to extract energy from the black hole by
moving particles through the ergosphere in the
correct trajectory.

8.4.3 Stellar black holes

In Chapter 11 we will see that some types of stars
evolve to a point were nothing can support them.
Such a star will collapse right through the
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Schwarzschild radius for its mass, and will
become a black hole. Black holes would be a nor-
mal state for the evolution of some stars. How
would we detect a stellar black hole? We obvi-
ously could not see it directly. We could not even
see it in silhouette against a bright source, since
the area blocked would be only a few kilometers
across. We have to detect stellar black holes indi-
rectly. We hope to see their gravitational effects
on their surrounding environment. This is not a
hopeless task, since we might expect to find a rea-
sonable number in binary systems. We will dis-
cuss the probable detection of black holes in
binary systems in Chapter 12.

8.4.4 Non-stellar black holes

Black holes that have masses much less than a
solar mass are called mini black holes. We think
that mini black holes might have formed when
the density of the universe was much higher than
it is now. (The conditions in the early universe
will be discussed in Chapter 21.) These may still
exist. The British physicist Stephen Hawking has
found that there is a mechanism by which mini
black holes could actually evaporate. Hawking is
studying the relationship between gravity and
quantum mechanics, and the process he has pro-
posed is a quantum mechanical one.

This mechanism involves a different concept
of a vacuum than we are accustomed to seeing. In
classical physics, a vacuum is simply nothing. In
quantum mechanics it is possible to make some-
thing out of nothing, if you don’t do it for long. It
amounts to borrowing energy for a brief time
interval. The more energy you borrow, the less
time you can borrow it for. It is related to the
uncertainty principle (which we discussed in
Chapter 3). We have talked about the uncertainty
principle as it relates to momentum and position.
However, it also relates to energy and the lifetime
of a state. It says that if the state has a lifetime At,
then the energy of the state is uncertain by an
amount AE, given by

At AE = hj2m (8.14)

The longer lived a state, the more accurately its
energy can be determined. Since the energy of a
state is uncertain by AE, it is possible for us to have
this extra amount of energy and not detect it.

©) Travel Briefly ‘

®\\_J/ Annihilated

Electron-Positron
Pair Created

(a)

® /'/_\L\ Free
®

Event

..

(b)
SRR Pair production. (a) The process in free space. An
electron and positron are created out of nothing, but quickly

come back together to annihilate. (b) Near a black hole, one

of the particles can be captured before they can annihilate,
and the other escapes, carrying energy away from the black
hole.

As a result of the uncertainty principle, a quan-
tum mechanical vacuum is a very busy place. At any
place it is possible to create a particle-antiparticle
pair (Fig. 8.14). (We will discuss antiparitcles in
Chapter 21.) It requires an energy equal to 2mc?,
where m is the mass of the particle (and the
antiparticle). The pair can exist for at most a
time h/[(27)mc?|. Before the time is up, they must
find each other and annihilate. Since electrons
have masses that are much less than protons, an
electron-positron (antielectron) pair will live
longer than a proton-antiproton pair. We can
therefore think of a vacuum as being made up of
continuously appearing and disappearing elec-
tron-positron pairs (with a small contribution
from heavier particle-antiparticle pairs). The phe-
nomenon is called vacuum polarization.

When an electron-positron pair is created
just outside a black hole, it is possible for one of
the particles to be pulled into the black hole
before the two recombine. The other particle will
continue moving away from the black hole. The
two cannot recombine. The particles then exist
for much longer than the time limit for violating
conservation of energy. We must therefore make
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up the energy from somewhere. This process
actually reduces the mass of the black hole. The
black hole shrinks slightly. For mini black holes
this energy loss can be a significant fraction of
the mass of the black hole. Eventually, the black
hole shrinks to the point where it disappears in a
small burst of gamma radiation. The more mas-
sive a black hole is when it starts out, the longer
it will live. An estimate for the lifetime of a black
hole of mass M (in grams) is (10~ 2° s)(M>). So, a
black hole of about 10" g would have a liftime of
about 10" yr, a little less than the age of the uni-

verse. In the lifetime of the universe, black holes
smaller than some given mass should have disap-
peared. Those at that mass should just be dying
now. Some physicists have suggested that when
this happens we should be able to see the burst of
gamma radiation.

At the other end of the mass scale, much larger
than stellar black holes, are maxi black holes. They
probably result from large amounts of material
gathering together in a small region. In Chapter 19,
we will see evidence for 10® to 10° My, black holes
being present in the centers of many galaxies.

Chapter summary

In this chapter we saw how the general theory of
relativity has changed our thinking about the
nature of space and time.

We then saw how the ideas of space-time carry
over to a theory of gravitation — general relativity.
The interpretation of gravitational fields is that
they alter the geometry of space-time, causing it
to behave like that on a curved surface. The start-
ing point for general relativity is the principle of
equivalence, which tells us that inertial and grav-
itational masses are the same.

Questions

We saw that there are several effects of general
relativity that can be tested. These include the
advancement of the periastron of orbiting bodies,
the bending of electromagnetic radiation, gravita-
tional redshift and time dilation, and gravitational
radiation.

We also saw how the gravitational redshift
leads to a concept of black holes, objects from
which nothing can escape.

8.1. What do we mean when we say that gravity
alters the geometry of space-time?

8.2. Re-do the analysis of the person on a scale in
the elevator (all three cases) explicitly noting
the uses of inertial mass and gravitational
mass.

8.3. Why don’t you need a solar eclipse to measure
the bending of radio waves past the edge of
the Sun?

8.4. Briefly describe the tests of general relativity
discussed in this chapter.

8.5. Since we cannot run a rule from the center of
a black hole to the Schwarzschild radius, how

Problems

would you “measure” the radius of a black
hole? (Hint: Think in terms of a measurement
that doesn’t involve crossing the event
horizon.)

8.6. (a) What is the exit cone? (b) When the exit
cone closes, what happens to photons aimed
straight up?

8.7. Is there a place near a black hole where you
could look straight ahead and see the back of
your head? Explain.

8.8. If the Schwarzschild radius of the Sun is 3 km,
does that mean that the inner 3 km of the Sun
is a black hole?

8.1. Consider an object with the same density as
the Sun. Find an expression for the bending

of starlight past the edge of this object as a
function of the size of the object.
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8.2. For a neutron star (to be discussed in
Chapter 11) with 1 My and a radius of 10 km,
through what angle is light bent as it passes
the edge?

For a white dwarf with 1 Mg and a radius of
5 X 10° km, find the wavelength to which the
Ha line will be shifted by the time it is seen
by a distant observer.

(a) For the test of the gravitational redshift
involving the Mdossbauer effect, calculate
the shift in going from the Earth’s surface
to 50 m above the Earth’s surface. (b) How
fast would the receiver have to move toward
the source to compensate for the redshift?
(c) Compare your answer in (b) with the
speed that an object falling from the roof
would acquire just before striking the
ground.

Show that the Schwarzschild radius can also
be found by taking the escape velocity from
an object of mass M and radius R, and setting
it equal to c.

8.3.

8.4.

8.5.

Computer problems

8.6. (a) Compute your Schwarzschild radius.

(b) What would the density be for a black hole
of your mass?

For what mass black hole does the density
equal 1 gjcm?®?

For what mass black hole does the difference
between the acceleration of gravity at an
astronaut’s feet and head equal the accelera-
tion of gravity on the Earth (1000 cm/s* )?
Find an expression for dg/dr at the surface of
a black hole as a function of the mass of a
black hole. Your expression should be a scal-
ing relationship as in equation (8.10).

How does the rate of a clock 1.5 Rg from a
3M,, black hole compare with the rate of a
clock far from the black hole?

How close must you be (in terms of Rg) to a
3M,, black hole to find that a clock runs at
10% the rate it runs when it is far away?

If an electron-positron pair forms from the
vacuum, how long can they live before they
must annihilate?

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8.1. For stars in the mid-range of each spectral type
(05, B5, ...), make a table showing the angle of
bending of starlight just passing the limb of that
star. Also include in your table a white dwarf
which has 1 solar mass in an object the size of the
Earth.

8.2. For gravitational redshift, make a graph of AA/A
vs. 1, for an interesting range of r (assuming 1 Mg).

8.3. Make a table showing the Schwarzschild radii and
average density for black holes of 10" My where n
goes from 0 to 10. Also include a column showing
the acceleration of gravity at the surface.
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Stellar evolution

Now that we know the basic properties of stars, we look at how the laws
of physics determine those properties, and then how stars change with
time — how they evolve. Stars go through a recurring full life cycle. They
are born, they live through middle age, and they die. In their death, they
distribute material into interstellar space to be incorporated into the next
generation of stars.

In describing the life cycle, we can start anywhere in the process. In
Chapter 9, we discuss the most stable part of their life cycle, life on the
main sequence — stellar middle age. In Chapters 10, || and 12 we will look
at the deaths of different types of stars. After discussing the interstellar
medium in Chapter 14, we will look at star formation in Chapter 15.






Chapter 9

The main sequence

In this chapter we look at the inner workings of a
star once it has settled into a main sequence exis-
tence. We start by looking at the sources of stellar
energy, and then we look at the physical processes
that govern stellar structure.

9.1 | Stellar energy sources

When material collapses to form a star, there is
gravitational potential energy stored from the (neg-
ative) work done by gravity in bringing the mate-
rial together. We might wonder how long this
energy supply will last. We start by calculating the
gravitational potential energy in a uniform sphere.

9.1.1 Gravitational potential energy
of a sphere

We are dealing with systems of large numbers of
particles. Therefore, rather than thinking in
terms of individual particles of mass m, we can
think of a fluid of average density p. (The density
is simply the mass per particle, multiplied by the
number of particles per unit volume.) In this sec-
tion, we will evaluate the potential energy for a
uniform (constant density) sphere. Even though
real objects might not be exactly uniform or
spherical, the results will generally only change
by numerical factors of order unity.

We begin by calculating the gravitational poten-
tial energy of a uniform sphere of mass M, radius R,
and density p. These quantities are related by

M = (47/3) R’p (9.1)

The gravitational potential energy is the work
required to bring all of the material from far
away (infinity) to the final configuration. The
final result does not depend on the order in
which the various parts of the sphere are assem-
bled, so we do the calculation in the easiest way
that we can envision. We can think of the sphere
as being made up of shells (Fig. 9.1). We can
assemble the sphere one shell at a time, starting
with the smallest.

Let’s assume that we have already assembled
shells through radius r. We now want to calculate
the work done to bring in the next shell. The
thickness of the shell is dr. The volume of the
(thin) shell is its surface area multiplied by its
thickness:

dV = 4mr?dr (9.2)

The mass contained in the shell is the volume
multiplied by the density:

dM = 47r?pdr (9.3)

The total mass of material already assembled is

M(r) = (4m/3)R%p (9.4)

The quantity M(r) is important since the shell that
ends up at radius r will only feel a net force from
material inside it. Even after we bring in more
material outside this shell, the net force exerted
on any particle in the shell by any matter outside
radius r is zero. Also, for mass in the shell, the
mass M(r) exerts a force equal to that which
would be exerted by the same mass all located at
the center of the sphere.
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m We model stars by studying spherical shells. ‘

For any two point masses, remember the grav-
itational potential energy (relative to infinity) is

given by
U = —Gmym,/r (9.5)

We let my = M(r) and m, equal the mass of the
shell, dM. The work to bring this shell is

du(r) = —GM(r) dM/r

—G(4m/3)(4m)p*r* dr (9.6)

To find the effect of all the shells, we integrate
the quantity dU fromr =0 tor = R:

U= ?dU(r)

0

= —G(4m/3)(4m) p* }}1’4 dr
0

= —G(4m/3)(4m) p* (1/5) R® (9.7)

—(3/5)G[(47/3) p R*J*/R

~(z)er
-~ \5/)R
For other shaped objects, the gravitational
potential energy is generally proportional to
—GM?[R, where R is some average length. The con-
stant of proportionality is generally close to unity.

The thermal energy is (3/2)kT per particle. The
total thermal energy is then

K = (3/2)NKT (9.8)

where N is the total number of particles in the
cloud. If the mass per particle is m, and the total
mass of the cloud is M, then

N = M/m (9.9)

or

K = (3/2)(M/m)kT (9.10)
9.1.2 Gravitational lifetime for a star

It is possible for stars to use their stored gravita-
tional potential energy to power the star. In this
section, we calculate how long this process can go
on. For example, could the Sun be powered in this
way even now? To see, we estimate the gravita-
tional lifetime, t,. This lifetime is the stored
energy divided by the rate at which the energy is
being lost. The rate at which the energy is being
lost is the luminosity. That is

. E
& dE/dt

== (9.11)

where L is the luminosity.
We estimate E as the negative of the Sun’s cur-
rent gravitational potential energy:

(3/5)GM?
R

E

[l

(0.6)(6.67 X 10 dyn cm?/g?)(2 X 10%3g)?
(7 X 10" cm)

=2 X 10¥ erg (9.12)

This gives a lifetime, called the Kelvin time,

. (2 X 10*® erg)
£ (4 X 10% erg/s)

5% 10"s

2 X 107 yr

This is a lifetime of 20 million years. It may sound
like a long time. However, we know from geological
evidence that the Earth has been around for over
four billion years. This means that the Sun must be
at least that old. Therefore, the Sun (and presum-
ably other stars) cannot exist in a stable configura-
tion on stored gravitational energy.

9.1.3 Other energy sources

An alternative source of energy could be chemical
reactions. After all, we use chemical reactions to
make automobiles go on Earth. We can estimate
the amount of energy stored in the Sun, capable
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of being released in chemical reactions. Typical
energies of these chemical reactions should be
equivalent to some fraction of the binding energy
of molecules that might be formed and destroyed
in these reactions. This means that we might
expect something like 1 eV per atom in the Sun.
The total chemical energy is then 1 eV multiplied
by the total number of atoms in the Sun, M/m.
The energy available is then

(1eV)(1.6 X 10" 2erg/eV)(2 X 10* g)
(1.67 X 10" g)

=2 X 10¥ erg

This is much less than is stored in gravitational
potential energy, so chemical reactions clearly
cannot provide a longer term energy source for
the Sun.

You might wonder if we have not been too
casual in our dismissal of chemical reactions as a
possible energy source for the Sun. After all, we
didn’t even say what chemical reactions might be
involved. The important point is that any chemi-
cal reaction involves moving electrons from atom
to atom, and the energies associated with this are
a few eV, independent of what the reaction is.
Suppose there were some very energetic reaction
that produced 10 eV per atom, that would
increase the chemical energy by a factor of ten
but it would still be many orders of magnitude
short of the required amount. If our estimate had
shown that chemical reactions might work, then
we would have to worry about the details, figure
out what reactions were important and then do a
more accurate calculation of the stored energy.
However, our estimate tells us that it is not worth
wasting our time on the details. These types of
calculations, called order of magnitude calculations,
are very important in astronomy. They help us
eliminate processes that obviously don’t work
and allow us to focus our attention on possibili-
ties that might.

The answer to the problem of stellar energy
sources is nuclear reactions. The typical energies
available in nuclear reactions are about 1 MeV
per atom, instead of 1 eV. This is an improvement
of a factor of 10°. To see how nuclear reactions
provide energy for the Sun, we look at some of
the elements of nuclear physics.

9.2 | Nuclear physics

9.2.1 Nuclear building blocks

We have already seen that the positive charge in
atoms is confined to the small nucleus (10 *cm
across). The nucleus is composed of protons and
neutrons. Because they are the building blocks of
the nucleus, we call them nucleons. The proton
has charge +e (where —e is the charge on the elec-
tron). Since atoms are neutral, the number of
electrons orbiting the nucleus equals the number
of protons in the nucleus. The chemical proper-
ties of an atom depend on the number of orbiting
electrons. Therefore, the number of protons in
the nucleus ultimately determines the identity of
the element. We designate the number of protons
by the symbol Z, called the atomic number. The
charge on the nucleus is +Ze. The highest natu-
rally occurring value of Z is 92 (uranium), with
approximately a dozen “man-made” elements
with higher values of Z.

Neutrons are electrically neutral. The mass of
the neutron is slightly greater than the mass of
the proton. Nuclei with the same numbers of pro-
tons can have different numbers of neutrons N.
The total number of nucleons in the nucleus is
called the mass number, A = Z + N. The mass of a
given nucleus is approximately Am,,. Two nuclei
with the same number of protons but different
numbers of neutrons are called isotopes of the
same element. We generally designate an ele-
ment by a letter symbol (e.g. H for hydrogen), pre-
ceded by a superscript giving A, followed by a sub-
script giving Z. (This subscript is redundant since
the symbol tells us Z, and is sometimes left out.)
For example, the three known isotopes of hydro-
gen are 'H,, °H;, *H; or simply 'H, *H, *H.

For any given number of protons, we do not
find an arbitrary number of neutrons. In general,
we find that the stable elements have approxi-
mately equal numbers of protons and neutrons.
For larger values of Z the stable nuclei have a
slightly larger number of neutrons than protons.

We now look at the force that holds nuclei
together. We generally refer to four forces in
nature. In order of decreasing strength, they are
strong nuclear, electromagnetic, weak nuclear and
gravity. The nuclear forces are shorter ranged, as
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m Properties of the nuclear and electrical forces

between neutrons and protons. (a) The nuclear force, Fy , is
the same for a proton and a proton, a neutron and a
neutron, or a proton and a neutron. The electrical force only
acts between the proton and the proton.The magnitude of
the electrical force is the same as that between a proton
and an electron. (b) How the forces vary with distance.As
the two protons are brought closer together, the electric
repulsion becomes stronger, but the nuclear attraction
becomes stronger faster.

opposed to the electromagnetic and gravitational
forces that can be felt at very large distances. For
example, we look at the force between two pro-
tons. When they are far apart, the electric force
dominates, and the protons repel each other.
When they are close together, the attractive
nuclear force dominates. The strong nuclear
force between two protons is the same as between
two neutrons and is the same as between a neu-
tron and a proton (Fig. 9.2).

This gives us an idea of the role of a neutron
in a nucleus. If we just have protons, the electric
repulsion will be appreciable, and the nucleus
will not be stable. If we add neutrons, we have
additional binding from the nuclear force but no
additional electrical repulsion. (The electric
repulsion is actually reduced, since the neutrons

keep the protons farther apart.) This explains why
a nucleus needs approximately as many neutrons
as protons.

9.2.2 Binding energy

Since the nuclear force is attractive, we must do
work to move two nucleons apart. The work
required to disassemble a nucleus is the binding
energy of the nucleus (Fig. 9.3). The binding
energy is analogous to the binding energy of an
atom - the energy required to separate an elec-
tron from the rest of the atom, doing work
against the electrical attraction. Since the
nuclear force is so strong, nuclear binding ener-
gies are greater than atomic binding energies by
a factor of about 10°. We measure nuclear bind-
ing energies in MeV, rather than eV. The greater
the binding energy of a nucleus, the more work
we must do to get the nucleus apart. Therefore, a
larger binding energy means a more stable
nucleus.

The binding energies of nuclei are so large
that we can measure them directly by comparing
the mass of a nucleus with the masses of its com-
ponents. This follows from Einstein’s relationship
between mass and energy (E = mc®) and conserva-
tion of energy

M (9.13)

nucleus'

> + BE = Zm,* + Nm,c*

O S 2,

8.0 .7

Binding energy/nucleon (MeV)

We must do work to break a nucleus apart. This
work is the binding energy. Shown here are nuclear binding
energies for nuclei that are found in nature.The horizontal
axis is the mass number A, and the vertical axis the binding
energy, divided by the number of nucleons in the nucleus

(BE/A). Nuclei with higher binding energies per nucleon are

more stable.
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where BE is the binding energy. This means that
the mass of a nucleus is less than the masses of its
components by BE/c>. This is also true for atoms.
However, the binding energy for atoms is so small
that the mass difference is negligible (about 10 °
of the nuclear binding energy).

Example 9.1 Proton rest energy
Compute the rest energy of a proton and express
the result in MeV.

SOLUTION

E = (1.67 X 107**g)(3.0 X 10" cm/s)?

1.5 X 10 3 erg

1.5 X 102 erg
1.6 X 10 % erg/eV

=94 x 10%eV
= 940 MeV

Example 9.2 Deuteron binding energy

Calculate the binding energy of the deuteron, an
isotope of hydrogen containing one proton and one
neutron, given the following data:

16726 X 10 % g

3
Il

1.6749 X 10 *# ¢

3
Il

myg = 3.3436 X 107 ** g

SOLUTION
The binding energy is given by

BE = (m, + m, — my)c®

(3.9 X 107%g)(2.9979 X 10" cm/s)?
=3.6 X 10 ®erg
= 2.2 MeV

By comparing the result of this example with the
previous example, we see that the nuclear binding
energy is a few tenths of a percent of the total rest
energy. This mass difference is relatively easy to
measure.

9.2.3 Nuclear reactions

We have seen that there are large amounts of
energy involved in holding a nucleus together.
However, we must still have a way of liberating

that energy. If we hope to power stars by liberat-
ing nuclear energy, a nuclear reaction in which
the products have a greater binding energy than
the reactants must be found. Then, the difference
in energy will be available to heat the surround-
ings. Before we discuss the particular nuclear
reactions that work in stars, we look at the types
of nuclear reactions that can take place.

The first type of reaction is a decay. In a decay,
anucleus emits a particle. Depending on the type
of particle that is emitted, the result is either a
different nucleus, or the same nucleus in a lower
energy state. We identify three types of decay,
depending on the type of particle that is emitted.
The three types are called alpha («), beta (8), and
gamma (7).

An alpha particle is the nucleus of the most
common form of helium, *He. This means that an
alpha particle has two protons and two neutrons.
This particular combination is very stable and
can be emitted as a single group. The final
nucleus has two fewer protons and two fewer neu-
trons than the original nucleus. This means that
the element changes as the atomic number Z
decreases by two. The mass number A decreases
by four. This process can only take place if the
resulting nucleus is more stable than the original
nucleus. This means that the binding energy of
the final nucleus must be greater than that of the
original nucleus. Once the alpha particle is far
enough from the nucleus, it no longer feels
the nuclear attraction. However, since it has a
charge of +2e, it feels the Coulomb repulsion of
the remaining nucleus. The alpha particle accel-
erates away from the nucleus. The energy liber-
ated in the reaction is carried away in the form of
the kinetic energy of the alpha particle.

A gamma-ray is simply a high energy photon.
Since it carries away neither mass nor charge, nei-
ther A nor Z change. The identity of the nucleus
does not change in gamma decay. The photon
does carry away energy. The protons and neu-
trons in a nucleus must also be treated quantum
mechanically as being waves. This means that
there are allowed states for the motions of the
nucleons within the nucleus. A gamma-ray is
emitted when a transition is made from a higher
energy state to a lower energy state. The energy of
the gamma-ray is equal to the energy difference
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between the states. We can learn a lot about the
internal structure of nuclei by studying the ener-
gies of gamma-rays that are emitted, just as opti-
cal spectroscopy tells us about the structure of
atoms.

A beta particle is an electron or a positron. A
positron is the antiparticle to the electron. Every
particle has a corresponding antiparticle. A parti-
cle and its antiparticle have identical masses, but
all other properties, such as charge, are the nega-
tive of each other. When a particle and an
antiparticle come together, they can convert all
of their mass into energy — in other words they
annihilate each other - without violating any
conservation laws. In a beta decay, an electron or
a positron is emitted. The charge of the nucleus
increases by +e (or —e if a positron is emitted),
but the mass number A remains unchanged. The
net result is to change a neutron into a proton.
(The reverse, changing a proton into a neutron is
also possible, but requires a source of energy,
because the neutron is more massive than the
proton.) When a neutron changes to a proton, Z
increases by one, but N deceases by one, again
leaving A unchanged.

In beta decays, an additional particle, called a
neutrino, is emitted. Neutrinos were originally
postulated because an analysis of beta decays
indicated that some energy and angular momen-
tum were being lost in the process. It was there-
fore assumed that a massless neutral particle was
carrying away this energy and angular momen-
tum. If neutrinos are truly massless (and we will
have more to say on this point in Part VI of this
book), then they travel at the speed of light. The
existence of the neutrino was verified experi-
mentally in the 1950s. Neutrinos do not interact
with matter via the strong nuclear or electro-
magnetic forces. This means that a reaction in
which a neutrino is involved must proceed by the
weak nuclear force. The weak force is so weak
that neutrinos rarely interact with matter. Weak
decays also proceed at much slower rates than do
strong decays.

The basic beta decay reaction is
n—>pt+e +v (9.14)

The bar over the v indicates an antineutrino. In
free space, the average time for this reaction to

take place is 11 min. In nuclei, the reaction can
take place only if the resulting proton ends up in
a lower energy state than the original neutron.
This places an upper limit on the number of neu-
trons that a nucleus with a given Z can have and
still be stable. If we have too many neutrons,
some will beta decay and become protons in
lower energy states.

Another type of nuclear reaction is called fis-
sion, in which a nucleus breaks into smaller
parts. The controlled fission of uranium provides
the energy in current nuclear power plants.
Generally, in fission, a very heavy nucleus breaks
into a form that is of more stable, middle mass
nuclei. From Fig. 9.3, we see that the most stable
nuclei are the ones with intermediate masses,
with iron being the most stable. The fission of
uranium or plutonium has been used in “atomic
bombs”.

The final type of nuclear reaction we will con-
sider is fusion, in which lighter nuclei can come
together to build heavy nuclei. Fusion is impor-
tant in stellar energy generation, because there is
an ample supply of lighter elements. One prob-
lem with fusion is that it is hard to start. When
two nuclei are far apart the nuclear force
between them vanishes. They feel only the elec-
trical repulsion. To bring nuclei close enough
together for the nuclear force to take over, we
must do work against the electrical repulsion.
This requires accelerating the particles to high
energies and letting them collide. Since they have
high energies, they will be slowed by the electri-
cal repulsion, but not stopped. On the Earth, we
can accomplish this acceleration for small quan-
tities of matter in particle accelerators, but this is
impractical for large quantities of material. This is
the major problem that must be overcome before
we can realistically think about using fusion as an
economical source of energy on the Earth.

9.2.4 Overcoming the fusion barrier

One way to increase the energies of particles is to
raise their temperature. If the temperature is high
enough, particles will be moving fast enough to
overcome the electrical repulsion, and fusion
reactions can take place. On the Earth this poses
problems, since we have trouble containing a gas
at the required temperature, tens of millions of
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kelvin. However, in stars the material is confined
by gravity. If sufficiently high temperatures are
reached, the nuclear reactions can take place. If
the temperatures are not high enough to support
nuclear reactions, then we don’t have a star.

We can estimate the temperature required for
nuclear fusion to take place. Let’s consider the
case of two protons. Their electric potential
energy when they are a distance r apart is

U=eéYr (9.15)

Suppose we start with two protons far apart,
so we can take their potential energy to be zero.
We let K be the kinetic energy of the particles at
this point. We would like the particles to come to
rest (zero kinetic energy) a distance r,, the radius
of the proton, apart. From conservation of energy,
the kinetic energy when the protons are far apart
must be

K= é/r,

(48 X 10 esu)’
(1 X107 cm)

=2 X 10 %erg

If we divide this by the Boltzmann constant, k,
we have an estimate of the temperature at which
the average kinetic energy of the particles in the
gas is equal to this energy. This gives a tempera-
ture of 2 X 10'° K, a very high temperature. If we
had considered the case of nuclei with charges
+Zie and +Z,e, the potential energy becomes
Z,Z,¢[r. This means that even higher temperatures
are needed for the fusion of higher charged nuclei.

Actually, the temperature doesn’t have to be as
high as our calculation suggests. If the tempera-
ture is as high as we calculate, then the energy of
the average particle will be high enough for it to
participate in fusion. We have already seen that
not all particles in a gas have the average energy.
Even at lower temperatures there will be some
particles with a high enough energy to undergo
fusion. For particles with a Maxwell-Boltzmann
velocity distribution, the probability of finding a
particle with an energy between E and E + dE is
proportional to a term like the exp(—E/kT) in the
Boltzmann equation. That is

P(E)AE oc EY2 e PM GE (9.16)

A
Electrical
repulsion
>
=]
h -
g >
= Distance

Nuclear
attraction

F BB The potential energy for two protons as a func-
tion of distance. This includes the electrical force and an esti-
mate of the nuclear force.

There is another effect which allows nuclear
reactions to take place at a lower temperature
than we have calculated. Fig. 9.4 shows the poten-
tial energy of two protons as a function of dis-
tance between them. For the most part, the force
is repulsive (electrical), but if the protons are
brought close enough together the force would
be attractive. Suppose E, is the minimum energy
for a particle to be able to overcome the Coulomb
repulsion. We can see that this energy E, is the
“height” of the potential energy barrier. Particles
with energies greater than E, will pass through
the barrier. However, according to classical
physics, particles with energies less than E, will
reach a point at which their energy equals the
height of the barrier at some distance r,. At this
point all of the energy is in the form of potential,
so the kinetic energy is zero. The particle has
stopped and is about to head back in the other
direction. The point at which the particle turns
back is called the turning point.

Quantum mechanically, we should talk about
the probability of finding a particle in various
places. Let’s look again at the particle with energy
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less than E,. Initially, the particle has a high prob-
ability of being found farther from the proton
than the classical turning point. As the classical
turning point is approached, the probability can-
not suddenly go from some finite value to zero,
because that probability is related to a wave phe-
nomenon. So, as we go into the barrier, the prob-
ability of finding the particle falls off gradually.
This means that there is some probability of find-
ing the particles closer together than the classi-
cal turning point. This phenomenon is called bar-
rier penetration or tunneling.

In general, a particle can penetrate a distance
approximately equal to its wavelength, hjmv. More
precisely, the probability of penetrating a distance
x is related to the wavelength by

P(x)dx oc e ™ dx

= e @M/l qy (9.17)

where a is some constant. Suppose we have to tun-
nel a distance x, equal to the classical turning point
7o, defined by the initial kinetic energy being equal
to the electrostatic potential energy at ry, or

1,

7,7, €
—my? = ——
2

To

Substituting into equation (9.17), we have the
probability of penetrating r,:

P(TO) o efaZIZZeZ/Zhv

_L/E2
x e b/E

where b is a constant. The effective area of the
nucleus for a reaction is approximately A% and is
proportional to 1/E. When we combine this with
the Maxwell-Boltzmann velocity distribution, we
find the probability of a reaction by nuclei of
energy E is proportional to

o (~EAT—b/E)

This means that at a given T there will be a most
likely value of E for reactions to take place. This is
known as the Gamow peak shown in Fig. 9.5. It
turns out that most reactions involve particles
that are on the low energy side of the velocity dis-
tribution. These lower energy particles have
longer wavelengths and can penetrate farther
into the barrier. The exponential behavior of the
reaction rates also makes them very sensitive to

E/KT

The probability of a nuclear fusion, as a function
of the particle energy E, at a given gas temperature T.This
shows the combined effects of the location of the classical

turning point and the quantum-mechanical tunneling.

temperature. That is, small changes in T will pro-
duce large changes in the reaction rates.

9.3 | Nuclear energy for stars

When a star is on the main sequence, its basic
source of energy is the conversion of hydrogen
into helium. We start with four protons and end
up with one *He nucleus. However, it is unlikely
that four protons will get close enough to directly
form a *He nucleus in a single reaction. There are
different series of reactions that achieve this net
result, and they will be discussed below.

We can calculate the energy released by con-
verting four protons to one *He by comparing
their masses. We find that

4m, — m(*He) = 0.007(4m,) (9.18)

This means that 0.007 of the mass of each pro-
ton is converted into energy. (The 007 will be
familiar to James Bond fans.)
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Example 9.3 Lifetime of the Sun
Estimate the lifetime of the Sun for producing
energy at its current rate from nuclear fusion.

SOLUTION

If 0.007 of the mass of each proton in the Sun is
converted into energy, and if we assume that most
of the mass of the Sun was originally in the form
of protons, then 0.007 of the Sun’s total mass is
available for conversion into energy. The total
energy available is therefore

E = 0.007 M, c?
= (0.007)(2.0 X 10** g)(3.0 X 10'° cm/s)*
=13 X 10*%erg

The lifetime is this energy divided by the
luminosity:

t, = E/L

(1.3 X 10*% erg)
(4 X 10* erg/s)

3.2 X 10'%s

=1X10"yr

However, we think that only 10% of the mass of

the Sun is in a region hot enough for nuclear
reactions - the core, so we must lower our estimate
by a factor of ten. This leaves us with a lifetime of
ten billion years. We think that the Sun has already
lived half of this time.

We now look at actual nuclear reactions, the
net result of which is to convert four protons in a
“He nucleus, plus energy. The basic series of
reactions in stars like the Sun is called the proton-
proton chain, because it starts with the direct com-
bination of two protons:

ptrp—od+e +v (9.19)

which we can also write as
H+'H—>2H+e" +v

This process requires a temperature of 107 K.
In this reaction the e” is a positron, the antiparti-
cle to the electron. We can see by the presence of
the neutrino that this process is a weak interac-
tion, and therefore goes very slowly.

Once the deuteron has been created, it can
quickly react with another proton:

d+p —>°%He+ vy (9.20)

which we can also write as
H + 'H—°He + y

If each of these reactions takes place twice,
then we have started with six protons, and we
now have two *He nuclei. (*He is an isotope of
helium with two protons and one neutron. It is
one of the few stable nuclei with fewer neutrons
than protons.) The *He nuclei combine to give

*He + *He — *He + 'H + 'H (9.21)

Note that we have two of the protons back. The
net result is that we have converted four protons
into a *He nucleus, along with two positrons, two
gamma-rays and two neutrinos. The energy given
off in this chain is carried away by the positrons,
gamma-rays and neutrinos. The positrons will
immediately scatter off (or annihilate) particles in
the gas, resulting in heating of the gas. The gamma-
ray will travel a small distance before being
absorbed, also heating the gas. The hot gas will
emit new photons, which are absorbed. This
process of absorption and re-emission of the pho-
tons takes place until photons are close enough to
the surface to escape. The neutrino interacts so
weakly that it will escape from the star completely.

Stars more massive than the Sun have higher
central temperatures than the Sun. This means
reactions involving higher charged nuclei are
possible. One such process is responsible for the
buildup of elements heavier than helium. It is
called the triple-alpha process, because the net
result is to convert three alpha particles into a *2C
nucleus. The repulsion between two alpha parti-
cles is four times that between two protons, so
higher temperatures, about 10° K, are needed.
The first step in the chain is

“He + “He — ®Be + y (9.22a)

We should note that the binding energy of two
“He nuclei exceeds that of the ®Be because the
“He is such a stable nucleus. This tells us that the
8Be should be unstable and break up. However,
there will be so many alpha particles around
that some of the ®Be nuclei will capture an alpha
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A The CNO cycle. Solid arrows represent reactions.
Symbols over these arrows indicate emitted particles.

Dashed lines indicate when a created particle participates in
another reaction.

particle before breaking up. If this did not hap-
pen, the buildup of heavier elements would be
blocked. The combination of the *He and ®Be gives

‘He + ®Be — >C + vy (9.22b)

The triple-alpha process is also important as
solar mass stars age and leave the main sequence
(discussed in Chapter 10).

In massive stars, there is another scheme that
is important in converting four protons into one
*He nucleus. It is called the CNO cycle. The cycle is
indicated graphically in Fig. 9.6, and the steps are:

2C+™H->BN+ vy (strong force)  (9.23)
BN —BC+e"+v (betadecay) (9.24)
BC+™H ->"N+vy (strong force)  (9.25)
N+ 'H— "0 + vy (strong force)  (9.26)
50 — BN +e" +v  (beta decay) (9.27)
N + 'H — '2C + “He (strong force)  (9.28)

We see that the net result is the conversion of
four protons into one *He nucleus plus two
positrons, two neutrinos, and three photons. All
nuclei created as intermediate products are used
in the next step. In addition, the last step returns
the 'C we need to start the cycle, so the cycle can
go again. In a sense, we can think of the '*C as a

catalyst for this cycle. (A catalyst helps something
happen, but is not itself changed in the process.)
There are more complicated versions of this cycle
involving even heavier elements, but the basic
ideas are the same.

As we try to build up heavier and heavier ele-
ments through fusion, the electrical repulsion
becomes stronger. This becomes an effective barrier
to the formation of heavier elements. However, no
matter how high the Z a nucleus has, we can always
get a neutron near it with no electrical repulsion. If
the neutron is moving slowly, it can be captured by
the nucleus. This can be important in stars,
because some reactions provide free neutrons, so
there are generally some free neutrons available.
We can schematically represent what happens
when the nucleus (Z, A) captures a neutron:

(Z,A) +n— (Z,A+1) (9.29)

What happens next depends on whether the
rate of neutron capture is slow or rapid, com-
pared to the rate of beta decay. If neutron capture
is slow, we call the sequence of reactions an s-
process (Fig. 9.7). In this situation the new nucleus

+n = neutron capture
e~ = beta decay

4
=
—
R T T

r-process
P+
15
*
4

s-process =——p-

7z —>

F-8 A The r- and s-processes. The horizontal axis indi-
cates increasing proton number Z, and the vertical axis indi-

cates increasing neutron number N.In an r-process, a neu-
tron is captured, and in an s-process the capture is followed
by a beta decay.The +n next to an arrow indicates neutron

capture.The e next to an arrow indicates a beta decay.
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(Z, A+ 1) will beta decay before it can capture
another neutron:

ZA+1)>(Z+1,A) +e +v (9.30)

If the neutron capture is rapid we call the
sequence of reactions an rprocess (Fig. 9.7). The
nucleus (Z, A+1) will capture another neutron
before it beta decays:

(Z,A+1) +n—(Z,A + 2) (9.31)

In either case, the resulting nucleus can
either beta decay or capture a neutron, depend-
ing on the relative rates. When we have a string of
nuclei for which neutron capture is favorable, the
r-process allows the buildup of neutron rich
nuclei. This will go on until so many neutrons
are added that a beta decay breaks the chain. The
- and s- processes can explain the abundances of
many of the heavier nuclei. (It should be noted
that these are not equilibrium processes.)

The various nuclear processes that we have dis-
cussed are responsible for the presence of the heavy
elements around us. We will see in later chapters
how this material is spread into interstellar space.
The net result is to produce the abundances shown
in Fig. 9.8. Nuclear physics determines which ele-
ments are the most abundant.

When we discuss stellar structure in the next
section, we will treat the nuclear physics as some-
thing that is known. We assume that once we know
the composition of some region and the tempera-
ture, we can specify which nuclear reactions are
important. Moreover, we assume that we know how
the reaction rates depend on temperature. This is a
very important point. We have already seen in this
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2 Cosmic abundances of the elements as a function
of atomic number Z.

section that tunneling by those nuclei with higher
than average energy leads to a strong temperature
dependence on the reaction rates. For example, the
rates of some important reactions depend on tem-
perature as T’ or even higher powers.

We say that a collapsing object makes a tran-
sition from protostar to star when its primary
source of energy generation is fusion via the p-p
chain, rather than gravitational collapse. The
changeover is not a sudden one, as the material
closer to the center heats faster. Eventually,
enough energy is generated internally for the col-
lapse to halt. When this happens, the star reaches
a stable condition. It is on the main sequence.

As nuclear reactions take place in the star, the
composition of the star is actually changing. This
change could affect the spectral type and lumi-
nosity of the star, while the basic structure doesn’t
change very much. These changes result in a main
sequence that is a band on the HR diagram rather
than a thin line. However, there is a line that we
can identify as connecting the points on the HR
diagram where stars of each spectral type first
appear on the main sequence. We call this line the
zero-age main sequence, or ZAMS. This line is shown
relative to the main sequence band in Fig. 9.9.
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VA Zero-age main sequence. The main sequence on
this HR diagram appears as a band, since stars on the main

sequence become slightly brighter as their composition
changes. The lower edge of this band represents the points

where stars first appear on the main sequence, the ZAMS.
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9.4 | Stellar structure

The basic philosophy of stellar structure studies
is that stars obey the laws of physics, so we
should be able to predict and explain their struc-
ture by applying those laws. To do this, we must
identify the basic physical processes that are
important in stars, such as nuclear physics for
energy generation. We must also be able to per-
form large numbers of intricate calculations.
This latter facility is provided by modern com-
puters.

Once we carry out stellar structure calcula-
tions, we can compare the predictions of the the-
ories with observations. For example, if we put
1 M, of material into model calculations, we
should come out with a star whose radius, tem-
perature and luminosity match those of the Sun.
If we put in different amounts of material,
our calculations should reproduce the main
sequence. We should also find stars in the same
mass range as those on the main sequence.
Stellar models should allow us to predict stellar
evolution. They should also be able to tell us
how changes in composition lead to changes in
structure.

Stars are easier to analyze than some other
astronomical objects because they have simple
shapes. They are spheres. We also assume that
their structure is spherically symmetric. That is,
the conditions - temperature, density and com-
position - only depend on distance from the cen-
ter, not the direction in which you are going away
from the center. We can rotate the star through
any angle about any axis through the center and
not change the result. (This is not strictly true if
the star is rotating or has a strong magnetic
field.) To study a star we divide it into spherical
shells, each of thickness dr, as shown in Fig. 9.1. If
the density a distance r from the center is p(r),
then the mass contained in a shell of radius r and
thickness dr is

dM = p(r) dV (9.32a)

where dV (= 471* dr) is the volume of the shell.
This gives

dM = 4mr? p(r) dr (9.32b)

Dividing both sides by dr gives us the rate at
which we add mass as we go farther out from the
center of the star:

dM/dr = 4ar? p(r) (9.33)

This condition is called mass continuity, and
simply tells us how the rate of change of M(r),
mass interior to r, is related to the density at r.
M(r) is important because, for a spherical object,
the gravitational force on an object a distance r
from the center only depends on M(r).

9.4.1 Hydrostatic equilibrium

The material in a shell of radius r is pulled toward
the center of the star by the gravitational attrac-
tion of all the mass interior to that shell.
Something must support the matter in the shell
or else the star will collapse. That something is
the pressure difference between the bottom of the
shell and the top of the shell. This condition is
called hydrostatic equilibrium (Fig. 9.10). Hydrostatic
equilibrium applies to the Earth’s atmosphere as
well as in the oceans and in a glass of water. The
weight of each layer of the fluid is supported by
the pressure difference between the bottom and
the top.

We can see how much of a pressure difference
is needed by considering a small cylinder, of
height dr and area dA, as shown in Fig. 9.10. The
mass of the cylindrical element is

dm = p(r) dr dA (9.34)

P(r+dr)dA

P(r)dA

FER A ) Hydrostatic equilibrium. The distance from the
center of the star is r, and the thickness of the shell is dr.The
density in the shell is p(r). We consider the forces on a cylin-

der of height dr and end area dA.The pressure at r is P(r).
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The gravitational force depends on M(r). In any
particular model, we can find M(r) by integrating
equation (9.33):

r

M(r) = 47 [p(r')r'*dr’ (9.35)
0

The gravitational force is given by

Fg = —GM(r) dm/r* (9.36)

We use the minus sign (—) to indicate that the
force is directed downward. Taking dm from
equation (9.34) gives

Fg = —[GM(r)/r*]p(r) dr dA (9.37)

We now look at the force exerted on the top
and bottom of the cylinder by the pressure of the
fluid. The difference between the upward force
on the bottom and the downward force on the
top is called the buoyant force, F. If P(r) is the pres-
sure at the bottom of the cylinder and P(r + dr) is
the pressure at the top, then

Fz = P(r) dA — P(r + dr) dA

— [P(r) — P(r + dr)] dA (9.38)

We have wused the fact that force is
pressure X area. We define the pressure differ-
ence between the top and the bottom, dP, as

dP = P(r + dr) — P(r) (9.39)

We see that the pressure will decrease as r
increases (since the pressure at the bottom of the
shell must be greater than the pressure at the
top), so dP is a negative number. Equation (9.38)
then becomes

Fy = {P(r) — [P(r) + dP]} dA
= —dPdA (9.40)
The condition for hydrostatic equilibrium is
Fo+F=0 (9.41)

Substituting from equations (9.37) and (9.40)
gives
—[GM(r)/r*] p(r) drdA — dPdA = 0 (9.42)

We are interested in the rate at which the
pressure changes with radius dP/dr, so we divide

both sides by dA, add dP to both sides, and then
divide both sides by dr to give

dp/dr = —[GM(r)/7*] p(r) (9.43)

This is sometimes called the equation of hydrostatic
equilibrium. We can rewrite it more simply by not-
ing that the quantity GM(r)/r* is equal to the local
acceleration of gravity g(r), so

dpr/dr = —p(r) g(r)

The equation of hydrostatic equilibrium tells
us that the denser the fluid is, the more rapidly P
changes with r. This is because a denser fluid
means a higher mass shell, and a stronger gravi-
tational force pulling it in. This requires a larger
pressure difference between the top and the bot-
tom to support it. Also, the greater g(r) is, the
greater the gravitational force is pulling the shell
in. This means that a larger g(r) also requires a
faster rate of change in the pressure.

(9.44)

Example 94 Central pressure of the Sun

Use the equation of hydrostatic equilibrium to
estimate the central pressure of the Sun by consid-
ering the whole Sun as one shell.

SOLUTION
If we consider a whole star to be one shell, then
dR = R, the radius of the star, and dP=P., the cen-
tral pressure (taking the pressure at the surface to
be zero). The equation of hydrostatic equilibrium
then gives
Pc = (GM/R?) pR
where p is the average density, and is approxi-
mately M/R?, so
Pc= (GM/R)(M/R?)

= GM?*/R*
Substituting for the Sun gives
(6.67 X 107% dyn cm?/g*)(2 X 10* g)?

(7 X 10" cm)*

Pc =

=1 X 10'® dyn/cm?

The actual value, obtained from stellar models, is
about 20 times this value

Another equation that we use in modeling
stars is the equation of state. The state of a gas is
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described by the pressure, density and tempera-
ture. The equation of state relates those three
quantities. We can write it in the general form

P=f(pT)

The actual form of the function depends on the
nature of the gas. For an ideal gas, the equation of
state has the simple form

(9.45)

P = (p/m) kT (9.46)

where m is the mass per particle. For a gas of rel-
ativistic particles, the equation of state is differ-
ent, and we will discuss it in Chapter 10.

Example 9.5 Central temperature of the Sun
Use the result of the previous example and the
equation of state for an ideal gas to estimate the
central temperature of the Sun.

SOLUTION

To use the ideal gas law, we need to estimate the
density. We simply use the average density, which
is the mass divided by the volume. Since the hydro-
gen is completely ionized, there are an equal num-
ber of electrons and protons, so the average mass
per particle is (1/2)m,,.

the energy entering any shell per second must
equal the energy leaving that shell per second.

If radiation transport dominates, we can calcu-
late the required temperature distribution, T(r). We
let f{r) be the flux of radiation through a surface at
radius r. If the surface emits like a blackbody, then

flr) = o T(r)*

We can find the rate at which f(r) changes with
T(r),

df/dT = 40 T(r)?

(9.47)

(9.48)

If we interpret df as the small change in f due to
a small change in T, dT, then

df = 40 T(r)*dT (9.49)

However, the change in flux passing through a
given layer of the star must depend on the ability
of the layer to absorb radiation. In Section 6.2 we
saw that this is given by the absorption coeffi-
cient k. In stellar structure it is more convenient
to deal with the absorption coefficient per den-
sity of material. We therefore let «'(r) be the opac-
ity per unit mass at r. This means that «'(r) p(r)
gives the fraction of radiation absorbed per cen-
timeter. Using these definitions

df = —«'(r)p(r)fir)dr

The minus sign (—) tells us that the flux is
decreased by the absorption.

(9.50)

~ (0.5)(1.67 X 10 **g)(1 X 10'°dyn/cm?)(47/3)(7 X 10'°cm)’

(2 X 10%¥¢)(1.38 X 10 **erg/K)
=44 X 10’K

This is a little larger than the model results, with
T~1.5 X 10’ K.

9.4.2 Energy transport

In making a stellar model we must also consider
how energy gets from the inside of the star to the
outside. In general, energy can be transported by
conduction, convection and radiation. In stellar
interiors conduction is not generally important.
The energy transport must be such that the tem-
perature T(t) does not change with time. If it did,
the star would not be stable for the multibillion
year lifetime for stars like the Sun. For the tem-
perature distribution to be constant with time,

We define the luminosity of a given layer as
the flux f multiplied by the surface area of the
layer,

L(r) = 47> f(r) (9.51)

If we use equations (9.49) and (9.50) to eliminate
df and equation (9.51) to eliminate f{r), we have

_K’(r) p(r) L(r) dr

40T(r)* dT = 52
oT(r)* d i (9.52)
Solving for the luminosity gives
1670 T(r)? 1dT
= —|—— |- (9.53)
k'(r) p(r) Jdr
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This tells us how the rate of energy flow
depends on the rate at which the temperature
changes with r. In general, dT/dr is negative (the
temperature drops with distance from the cen-
ter), so the luminosity is positive. A more exact
calculation gives essentially the same result as
equation (9.53), but with the 16 replaced by 64/3.

From equation (9.53) we can see that the opac-
ity per unit mass «'(r) is very important in deter-
mining the energy transfer, and therefore the
structure of the star. The opacity depends on the
composition of the star. Accurate stellar structure
calculations require good knowledge of the opac-
ity as a function of composition and temperature.

In addition to energy transport, we must also
consider energy generation. If energy is gener-
ated in a particular shell, then the energy leaving
that shell will exceed the energy entering the
shell by the amount of energy generated. We let
&(r) be the energy generated per unit mass within
the shell at radius r. The increase in luminosity in
that layer, due to energy generation, is then

dL = 47r? p(r)e(r) dr (9.54)

The rate at which the luminosity changes
with radius is then

dL/dr = 4mr* p(r)&(r) (9.55)

To carry out model calculations we must be
able to specify &(r) as a function of composition
and temperature. This is where the input from
nuclear physics is important.

If, at any r, the radiative temperature gradient
becomes too large, then convection will set in.
The quantitative effect of convection is discussed
in Section 23.3.2. Convection is an adiabatic
process, no energy is lost from parcels of material
as they move outward. At that point the tempera-
ture gradient becomes the one appropriate for
adiabatic processes. This is called the adiabatic
lapse rate.

We might wonder why stars don’t explode
with all the energy they produce. The answer is
that their stability comes from their negative
heat capacity. (Heat capacity is the energy required
to raise the temperature by a given amount.) To
see this, we look at the total energy E=U + K
(where K is now the kinetic energy of the thermal
motions of particles in the gas). In Chapter 13, we
will derive a relationship between total, kinetic

and potential energies for bound systems, called
the virial theorem, which tells us that E = —K.
Suppose we now add energy. This increases E,
making it less negative. This makes K less positive,
so the total thermal kinetic energy decreases. The
gas cools. Therefore, if the star produces too
much energy for its equilibrium configuration, it
can expand and cool to adjust. The above argu-
ment doesn’t apply to degenerate gases, since
their thermal energy is essentially independent
of the temperature. Therefore, as we encounter
degenerate stars, or parts of stars, we will see that
explosions are possible.

9.5 | Stellar models

In the previous section we saw a group of equa-
tions that describe the physics that governs stel-
lar structure: (1) mass continuity, (2) hydrostatic
equilibrium, (3) equation of state, (4) energy
transport, and (5) energy generation.

The inputs to stellar models are the mass of
the star and the composition. We must also spec-
ify the nuclear physics, which gives the energy
generation as a function of these conditions. We
must also put in the information about the opac-
ities. For the purposes of calculation, we break
the star into spherical shells. We must solve for
the distribution of density p(r) and temperature
T(r) which satisfy the conditions imposed by the
equations of stellar structure. This is such a com-
plicated process that realistic stellar models are
all calculated on computers.

Stellar model calculations can also be used to
predict stellar evolution. As nuclear reactions
take place in the hot central core of the star, the
composition changes. This changes the energy
generation rate and the opacity, meaning the
structure will change. We do a model calculation
for the initial composition. We then determine
the rate at which various nuclei are produced or
destroyed. We then know what the composition
will be some time, say 50 000 years, later. We
now calculate a model with the altered composi-
tion, and then repeat the process. We follow the
evolution of the star in these time steps. We
choose the time steps so that the composition
changes somewhat, but not too much, during
each time step.
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relatively low energy, and this makes it particu-
20 8.0 larly hard to detect.
There is, however, a source of higher energy
%‘ 1.0 7.0 neutrinos. Once >He is formed, most of it reacts
5 =  toform *He, as discussed in Section 9.2. However,
Eo 0.0 602 in a small fraction of cases, the following reac-
< =~ tion can take place:
= 10 5.0 P
*He + *“He —"Be + vy (9.56)
-2.0 4.0
The “Be then captures a proton:
0 ! 7Be + p—>*B + y (9.57)

R/ RSUN

m Temperature and density as a function of distance
from the center of the Sun, as calculated from the solar

model which best agrees with the global properties (radius,
surface temperature) of the Sun.

To see the results of a model calculation, we
look at a model for the Sun. The distribution of
temperature and density is shown in Fig. 9.11.

9.6 | Solar neutrinos

Though our model for the Sun gives the correct
radius and temperature, there are certain aspects
we cannot check directly. Almost all of the direct
information we receive from the Sun comes from
photons emitted in the solar atmosphere. We can-
not directly observe photons that are emitted in
the nuclear reactions in the center. Those pho-
tons are quickly absorbed and their energy takes
about 107 years to reach the surface. We have no
direct observations of the solar core now.

There is one opportunity to make a direct
observation of the solar core. Neutrinos created
in nuclear reactions in the core escape at the
speed of light, virtually unattenuated. They reach
us 8.5 min after they are created. We could use
our stellar models to predict the rate at which
neutrinos are emitted, and then try to measure
the flux of neutrinos at the Earth. This would be
a direct test of the solar model. The problem is
that neutrinos are very hard to detect. If the
whole Sun cannot absorb many neutrinos, a
detector on Earth will absorb even fewer. The
neutrino produced in the first reaction of the
proton-proton chain (p + p—d +e* + v) has a

The boron then beta decays, emitting a neutrino
in the process:

5B—%Be + e +v (9.58)

The ®Be then breaks apart into two alpha
particles:

8Be — *He + *He (9.59)

The neutrino emitted in the beta decay of the *B
has enough energy to provide us with some
chance of detecting it.

We can detect this neutrino using an isotope
of chlorine, *’Cl. About 25% of all naturally
occurring chlorine is in the form of this isotope.
When struck with a sufficiently high energy neu-
trino, it can absorb the neutrino:

Cl+ v —>YAr + e (9.60)

This particular isotope of argon is radioactive,
and its decay can be detected in normal particle
detectors in the laboratory. If we start with a tank
of chlorine (and no radioactive argon), and we end
up with a small amount of 3’Ar, we can determine
the rate at which neutrinos were hitting the tank.

This is the basic idea behind an experiment
conducted by R. Davis of the Brookhaven National
Laboratory. The source of liquid chlorine is per-
chloroethylene (cleaning fluid). Since neutrinos
interact infrequently, a large quantity of “detec-
tor” is used - about 10° gallons. The argon is pro-
duced as an inert gas, so it will form bubbles in
the fluid, allowing it to be removed. The experi-
ment is run for some period of time, typically a
month. The gas is then collected, and is measured
to gauge *’Ar activity.

Even if some radioactive argon is found, we
don’t know that it results from solar neutrinos.
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There are also high energy particles in the Earth’s
atmosphere, called cosmic rays, which can pro-
duce a similar result. The Earth can shield the
tank from cosmic rays but not from neutrinos.
The tank is therefore placed 1.5 km underground
in the Homestake gold mine, near Lead, South
Dakota. Another source of possible contamina-
tion is natural radioactivity from the rocks in the
mine. For this reason, the tank is surrounded by
a larger tank containing water. The water blocks
the high energy particles from radioactive decays
in the mine, but doesn’t block neutrinos. You can
see from this brief description that this experi-
ment is a very difficult one.

The results of the experiment from some 20
years observing have been astounding. It is con-
venient to express the rate of detections in solar
neutrino units or SNU. The standard model of the
Sun predicts that we should be measuring 8 SNU.
The experiment, which detects about one event
every two days, yields 2.6 SNU, a number that is
only about one-third of this value. This leads
to what we call the solar mneutrino problem.
Astrophysicists have so much faith in our under-
standing of stellar interiors that such a large dis-
crepancy is an indication of a severe problem.

A number of solutions have been suggested.
One possibility is that there is something wrong
with the experiment itself. Possibly, the detector
is not as sensitive to neutrinos as originally
thought. However, various aspects of the experi-
ment have been checked and refined over the
years, and there is a general feeling that the
experiment is correct.

If the experiment is correct, then the solar
model must be examined. It is possible that some
of the inputs are not correct. For example, the
nuclear reaction rates have a very strong temper-
ature dependence. If we have that dependence
slightly wrong, then significant changes can
occur in the solar model. It is also possible that
the opacities (as a function of composition and
temperature) are slightly off. The solar neutrino
problem has stimulated work in these areas. We
now have improved nuclear physics data and
opacity data. A better solar model has been calcu-
lated, with a much smaller uncertainty, but the
predicted neutrino flux remains essentially the
same. There is an additional check on the solar

model. It comes from helioseismology (discussed
in Chapter 6), in which the oscillations of the Sun
are studied. The solar model (temperature, den-
sity and composition vs. radius) can be used to
predict the details of these oscillations. The
agreement between theory and experiment is
very good, meaning that the solar model is prob-
ably not the cause of the solar neutrino problem.
It has been suggested that the Sun may go
through a cycle in its energy generation, and that
right now it is generating less than the average
amount of energy. In this cycle, at some point the
core cools, reducing the rate of nuclear reactions.
The pressure decreases and the core contracts. As
the core contracts, it converts gravitational
potential energy into kinetic energy, and begins
to heat. As the core becomes hotter the rate of
nuclear reactions increases. The pressure increases
and the core expands. The cycle then starts again.
If this is the answer, then the neutrino observa-
tions are giving us a good view of what is happen-
ing in the Sun now. In this picture, it is possible for
the cycle to take place with very little variation in
the solar luminosity. Since photons are scattered
many times before they can go from the center to
the photosphere, the light from the photosphere
reflects the average energy production over the
Kelvin time. It should be pointed out that no
mechanism for such oscillations has been found.
It has been suggested that we don’t know as
much as we thought we did about neutrino
physics. We now know that there are three differ-
ent neutrino types, each with its own antineu-
trino. (We’ll discuss particle physics more in
Chapter 21.) The type of neutrino that we have
been discussing is called the electron neutrino,
because it always appears in reactions with elec-
trons (or positrons). This is the type of neutrino
produced in the Sun, and the type that will inter-
act with *’Cl. However, some theories have sug-
gested that neutrinos can change their identities.
If this is the case, then a neutrino can be created as
an electron neutrino in the Sun, but change its
identity by the time it reaches the Earth.
According to this idea, as few as one-third of the
neutrinos produced in the Sun might be capable of
being absorbed by the *’Cl. These identity changes,
or neutrino oscillations, are also related to the sug-
gestions that neutrinos have a very small (but not
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zero) mass. The experimental evidence for this is
being studied, and new experiments are underway.

In the meantime two new types of solar neu-
trino experiments are being done. The first
involves gallium as a detector. Since the ®B neu-
trino comes from a relatively unimportant
branch in the Sun’s nuclear reaction chain, it
may be that there is a small error in our calcula-
tions that just happens to be magnified for this
minor branch. There is another reaction that also
produces a detectable neutrino. The reaction is
not as important as the proton-proton chain, but
it is more significant than the branch involving
8B. This reaction is called the p—e—p reaction:

pte +tp—>d+v (9.61)

It occurs once for every 400 direct p—p reac-
tions. It is rare because it is much harder to bring
three particles together at the same time than it
is to bring two particles together.

The neutrino produced by the p—e-p reaction
is not as high in energy as the ®B decay neutrino,
and is not absorbed by ’Cl. However, it has a
higher energy than the p—p neutrino. The p—e-p
neutrino can be absorbed by gallium. As with
chlorine, large quantities of gallium are needed
for the experiments. Two such experiments are
being carried out, a European-Israeli-USA collab-
oration known as GALLEX (30 tons of gallium),
and a Russian—USA collaboration known as SAFE
(60 tons of gallium). These experiments yield
about one event per day. The measured rates are
about half of the predicted values.

The second set of new experiments involves
larger versions of traditional detectors used in ele-
mentary particle physics experiments. These
involve large amounts of water as detectors, with
each reaction producing a small flash of light, and
that light is detected by an array of photomultipli-
ers. The first set of experiments was carried out by
a Japanese group at Kamiokande. The experiment
was originally set up as a particle physics experi-
ment, but it turned out that it was also capable of
detecting solar neutrinos. An important feature of
this detector is that it can measure the direction
from which the neutrinos are arriving, and the
group were able to verify that the neutrinos are,
indeed, coming from the Sun (and not, for exam-
ple, from some background contamination).
Following their original success, they built a sec-
ond version, known as SuperKamiokande, more
closely designed for observing solar neutrinos. The
results of these observations is that observed flux
is about half the theoretical predictions. For their
work on this problem, Davis and M. Koshiba, who
headed the Japanese project, shared the 2002
Nobel Prize in Physics.

At this point, it appears that the best solu-
tion to the solar neutrino problem involves the
neutrinos. If they have a very small mass, and
can change identities, then the theory and
experiment can be brought into agreement. In
2002, a group in Sudbury, Canada (Sudbury
Neutrino Observatory, SNO, shown in Fig. 9.12),
provided strong evidence that neutrino oscilla-
tions are the answer. An analysis of their results

The large detector of
the Sudbury (Canada) Neutrino
Observatory (SNO). [Photo
courtesy of Sudbury Neutrino
Observatory]
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suggests that the neutrino mass is in the 10~ eV
range. (Remember, for comparison, the mass of
the proton is almost 10° eV.) The analysis also
shows that there is a significant chance (of the
order of 50% with a large uncertainty) for neutri-

nos created in the Sun to change their identity by
the time they reach our detectors. The next major
test of these ideas would be an experiment to
detect directly the p—p neutrinos (by far the most
abundant, and lowest energy).

Chapter summary

In this chapter we looked at the processes respon-
sible for the structure of main sequence stars.

We started by looking at energy sources.
Nuclear reactions are the only source capable of
giving stars their inferred lifetimes. We saw that
the temperatures required for nuclear reactions
to take place are in excess of 107 K, even with tun-
neling to help bring the nuclei together.

The basic source of energy on the main
sequence is the conversion of hydrogen to
helium. In low mass stars this takes place prima-
rily via the proton-proton chain. In more massive
stars, with higher central temperatures, other
cycles, such as the CNO cycle, are important.

We also looked at the basic processes that
govern stellar structure. We saw that normal stars
are in hydrostatic equilibrium, with each layer

Questions

supported by the pressure difference between its
bottom and top. We also saw that the temperature
distribution is determined by the requirement
that the temperature of each layer be constant.

Once the basic laws of stellar structure are
outlined, stellar models can be computed, gener-
ally using computers. In a model, we start with a
certain mass and composition, and calculate the
equilibrium configuration.

We saw how much of stellar structure seems
to be understood, but encountered the puzzle of
the solar neutrino experiment. The neutrinos
allow us to see what the core of the Sun is doing
now, and it does not appear to be doing as much
as models predict. The answer to this problem
seems to lie in neutrons changing their identity
in their trip from the Sun.

9.1. (a) Why is 1 eV/atom a reasonable estimate
for the energy available in chemical reac-
tions? (b) Is the estimate likely to be wrong by
more than a factor of ten in either direction?
Explain. (c) If the estimate is wrong by a fac-
tor of ten in either direction, will it change
the conclusion that the Sun cannot exist on
chemical reactions?

9.2. It has been said that if we did not know that
E = mc?, then we would not know about
nuclear energy. Discuss this.

9.3. Explain the factors that place upper and lower
limits on the number of neutrons that go into a
nucleus with some specific number of protons.

9.4. Why can’t a free proton beta decay into a
neutron?

9.5. What are the similarities between gamma
emission by nuclei and visible light emission
by atoms?

9.6. Why is there no Coulomb barrier to fission if
there is one to fusion?

9.7. Why are the rates of certain fusion reactions
very sensitive to temperature?

9.8. Why are the r- and s-processes important?

9.9. (a) What are the parameters that we put into
a stellar model? (b) What calculations do we
perform? (c) How do we test the results?

9.10. (a) What do we mean by spherical symmetry?
(b) Why will a rotating star not be spherically
symmetric?

*9.11 In equation (9.26) we have used the form of
the gravitational force between two point par-
ticles. These particles have masses M(r) and dm
and are a distance r apart. However, M(r) rep-
resents an extended mass and dm represents a
shell, so neither represents a point. How can
we use the simple formula? (Hint: Treat the
justification for M(r) and dm separately.)

*9.12 What effect would a slight increase in opac-
ity at all layers have on the structure of a
star?

9.13 Explain how we simulate stellar evolution.
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9.14 Why is the solar neutrino problem so

important?

9.15 When we considered explanations of the

solar neutrino experiment, we said that the
Sun may be generating some energy now
through gravitational collapse. However, ear-
lier in the chapter, we ruled out gravitational

Problems

collapse as a stellar energy source. Why isn’t
this a contradiction?

*9.16 The equilibrium structure of a star is

ultimately determined by its mass and com-
position. Show that the structure of a star
determines the rate of energy generation and
not the other way around.

9.1.

9.2.

*9.3.

9.4.

9.5.

9.6.

9.7.

9.8.
9.9.

What is the gravitational potential energy of
(a) the Sun, (b) a 1 M black hole?

(a) What is the gravitational potential energy
of an interstellar cloud, with a density of 1000
H atoms/cm® and radius of 10 pc? (b) What is
its kinetic energy if its temperature is 10 K?
Find the gravitational potential energy of a
sphere with a 1/r* density distribution. Take
the total mass of the sphere to be M, and let
the density p(r) = po/r* out to a radius, R.
Express your final answer in terms of M and R.
Estimate the lifetime of a 10 M, star on the
main sequence to give off energy stored from
gravitational collapse.

Calculate the mass corresponding to the bind-
ing energy of an H atom. What fraction of the
mass of the atom is this?

What is the rate at which the Sun is convert-
ing mass to energy?

(a) What is the difference in mass between
the neutron and the proton, expressed in
MeV? (b) How does this relate to the energy
available in the beta decay of a neutron?
Calculate the binding energy of a *He nucleus.
How much energy per proton is given off in
the p—p chain? (Express your answer in MeV.)

Computer problems

*9.10.Suppose we have Z protons and have to distrib-

9.11.

ute them into two nuclei, one with Z; protons
and the other with Z, protons (Z = Z; + Z,).
(a) What arrangements give the maximum
and minimum Coulomb repulsion between
the two nuclei? (b) What does this tell you
about the types of fusion that are most likely
to take place in stars?

(a) How close can two protons get if one is at
rest and the other has a kinetic energy equal
to the average energy at T = 107 K? (b) What is
the wavelength of the moving proton, and
how does it compare with the minimum sepa-
ration between the two protons? (c) Repeat
the calculations for a proton with ten times
the average energy at this temperature.

*9.12.Suppose the density of a star is given by

9.13.

Po r<t,
p(r) = 4 po(ro/1)? 1o <r <R
0 R<r

(a) Find an expression for M(r). (b) If the mass
of the staris 1 My and R = Ry, and 15 = 0.1 R,
what is the value of py?

For the density distribution in the previous
problem, find P(r).

9.1.

9.2.

9.3.

Calculate the gravitational potential energies for
stars in the middle of each spectral class on the
main sequence (05, B5, .. ).

Write a routine that will calculate the gravita-
tional potential energy for uniform density ellipti-
cal objects which have two axes the same. Evaluate
the potential energy for the two following cases,
both clouds with 100M of material: (a) an oblate
(flattened) ellipsoid with semi-axes 10, 10 and 5 pc;
(b) a prolate (elongated) ellipsoid with semi-axes 5,
5, and 10 pc.

Estimate the nuclear reaction lifetime of a star as a
function of its mass. Assume that 10% of the mass

94.

9.5.

is in the core and available for nuclear reactions.
(Hint: Use the mass-luminosity relationship.) Plot
your results for the range of masses encountered
on the main sequence.

Make a table showing the Kelvin time for stars in
the mid-range of each spectral type (05, B5, .. .).
Make a graph of the electrical potential energy
between two protons as a function of their separa-
tion, r. Let r range from the size of a nucleus to ten
times that.



Chapter 10

Stellar old age

We have already seen that the mass of a star is the
most important property in determining a star’s
structure. For a main sequence star the mass
determines the size and temperature. The life-
time of a star on the main sequence depends on
the available fuel and the rate at which that fuel
is being consumed - the luminosity. Both of these
quantities depend on the star’s mass, so the life-
time on the main sequence also depends on the
mass. When the star uses up its basic supply of
fuel, its ultimate fate also depends on its mass. In
fact, the mass and the initial composition of a
star completely determine its structure and evo-
lution. This can be proven mathematically on the
basis of the physical equations involved. This
result is known as Vogt’s theorem.

0.1 | Evolution off the main
sequence
10.1.1 Low mass stars

We first look at stars whose mass is less than
about 5 M. Eventually a star will reach the point
where all the hydrogen in the core has been con-
verted to helium. For a low mass star, the central
temperature will not be high enough for the
helium to fuse into heavier elements. There is
still a lot of hydrogen outside the core, but the
temperature is not high enough for nuclear reac-
tions to take place. The core begins to contract,
converting gravitational potential energy into
kinetic energy, resulting in a heating of the core.
The hydrogen just outside the core is heated to
the point where it can fuse to form helium, and

this takes place in a shell at the outer edge of the
core (Fig. 10.1). We refer to this as a hydrogen-
burning shell, where the word “burning” refers to
nuclear reactions, rather then chemical burning.
As the core contracts, the rate of energy genera-
tion in the shell increases. The shell can easily
give off energy at a greater rate than the core did
during the star’s normal lifetime.

While all of this is happening in the interior,
the outer layers of the star are changing. Energy
transport from the core is radiative, and is limited
by the rate at which photons can diffuse through
the star. The outer layers of the star become hotter
and expand. As the gas expands, it cools. The star’s
radius has increased, but its temperature has
decreased, so the luminosity increases slightly.
The behavior of the star’s track on the HR diagram
is shown in Fig. 10.2. The track moves to the right
(cooler), and the star appears as a subgiant.

There is a mechanism that keeps the surface
temperature from becoming too low. The rate of
photon diffusion increases as the absolute value
of dT/dr increases. Remember, dT/dr is negative,
so we are saying that the greater the temperature
difference between some point on the inside and
the surface, the greater the energy flow between
those two points. (In winter, the larger tempera-
ture difference between the inside and outside of
your house results in a faster heat loss, and higher
fuel bills.) If the surface temperature of the star
falls too much, the photon diffusion is faster,
delivering more energy to the surface, raising
the surface temperature. Therefore, as the radius
continues to increase, the surface temperature
remains approximately constant. The luminosity



178 PART Il STELLAR EVOLUTION
H Envelope H Envelope
106 -
30M,,
H S
105 -
A
AN
. 2__/_—_—
104 - 15m,0 —
TN
\
10° - AN
\\
Q)
3 NS
S 10 \OETA
U
(UBN
Regions of 10 - N
Nuclear AN M,
"Burning" 1L \\\
(a) (b) N\,
Star with an H-burning shell. (a) The temperature 107" \\\
in the star is not hot enough to fuse the helium in the \
center, but is hot enough to keep the H in the shell burning. L S '4 L .
(b) In this star, the temperature is hot enough to keep both 3x10 10 3x10
burning. (Remember, by “burning” we are talking about T(K)

nuclear reactions.)

therefore increases, and the evolutionary track
moves vertically. The star is then a red giant.

By the time the star becomes a red giant, the
energy transport in the envelope is convective.
This is because of the large value of —dT/dr. The
analogous situation on Earth involves the heating
of the atmosphere. Sunlight heats the ground,
and then infrared radiation from the ground heats
the air. (This explains why the air is cooler at high
altitudes; it is farther from the direct heat source,
the ground.) In this situation, we say that the
energy transport is radiative. However, if —dT/dr
becomes larger, then —dP/dr, the rate at which the
pressure falls, also becomes large. The air that is
heated near the ground expands slightly, and
becomes very buoyant, being driven upward by
the pressure difference between the bottom and
top of any parcel of air. The hot air rising, being
replaced by cool air falling, known as convection,
becomes the dominant mode of energy transport.

We now look at the evolution of the core while
the star is becoming a red giant. The temperature
of the core climbs to 10® K. This is hot enough for
the triple-alpha process to take place (equations
9.11 and 9.12), fusing the helium into carbon. The
density is so high that the material no longer
behaves like an ideal gas. This is called a degenerate

Evolutionary tracks away from the main
sequence on an HR diagram. Each track is marked by the
mass for the model. The dashed line is the zero-age main
sequence (ZAMS).

gas. We will discuss degenerate gases in Section
10.4, but for now we note that the equation of
state is very different for a degenerate gas. In an
ideal gas, when the triple-alpha process starts, the
extra energy generated causes an increase in pres-
sure, which causes the gas to expand, slowing the
reaction rate. This keeps the reactions going
slowly. In a degenerate gas the pressure doesn’t
depend on temperature and no such safety valve
exists. The conversion of helium to carbon takes
place very quickly. We call this sudden release of
energy the helium flash. The energy released causes
a brief increase in stellar luminosity.

Following the helium flash the energy produc-
tion decreases. The core is no longer degenerate,
and steady fusion of helium to carbon takes place.
This region is surrounded by a shell in which
hydrogen is still being converted into helium. At
this point the star reaches the horizontal branch
on the HR diagram. The outer layers of the star
are weakly held to the star, since they are so far
from the center. The star begins to undergo mass
loss. The subsequent evolution depends on the
amount of mass that is lost.
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Eventually all the helium in the core is con-
verted into carbon and oxygen. The temperature
is not high enough for further fusion, and the
core again begins to contract. A helium-burning
shell develops, and the rate of energy production
again increases. The envelope of the star again
expands. On the HR diagram the evolutionary
track ascends the giant branch again, reaching
what is called the asymptotic giant branch. Stars on
the asymptotic giant branch are more luminous
than red giants. The star can briefly become large
enough to become a red supergiant at this stage.
The star can also undergo oscillations in the rate
of nuclear energy generation.

10.1.2 High mass stars

More massive stars live a shorter lifetime on the
main sequence than do lower mass stars. As with
the lower mass stars, the main sequence lifetime
for higher mass stars ends when the hydrogen in
the core is used up. The core then begins to con-
tract, and the temperature for helium fusion to
heavier elements is quickly reached. The helium
fusion takes place before the core can become
degenerate. Therefore, in contrast with the helium
flash in lower mass stars, the helium burning in
more massive stars takes place steadily. At this
point, the star has a helium-burning core with a
hydrogen-burning shell around it (Fig. 10.3).

When the helium in the core is exhausted, the
temperature is high enough for the carbon and
oxygen to fuse into even heavier elements. At this
time, we have a carbon- and oxygen-burning core,
surrounded by a helium-burning shell, which in
turn is surrounded by a hydrogen-burning shell.
As heavier elements are built up, the core devel-
ops more layers.

As the luminosity of the core increases, the
outer layers of the star expand. The atmosphere
cools with the expansion, but the size increases
sufficiently for the luminosity to increase. At
this point the envelope is convective, and the
temperature gradient is limited by the adia-
batic lapse rate. So the envelope must grow to a
large size to accommodate the large tempera-
ture difference between the core and the sur-
face. Eventually, the radius of the star reaches
about 10° Re. At this point the star is called a
red supergiant.

(Not to Scale)

Core (102R,)

(a)

H Burning
He Burning
C Burning
Ne Burning
O Burning
Si Burning
[Fe Burning

(b)

Shells in the core of a high mass star as it
evolves away from the main sequence. (a) The core is only a
small fraction of the total radius. (b) In the core, there is a
succession of shells of different composition. Each shell has
exhausted the fuels that are still burning in shells farther out.

10.2 | Cepheid variables

10.2.1 Variable stars
If we monitor the brightnesses of certain stars,
we find that many oscillate with time. These are
known as variable stars. The periods of variability
range from seconds to years. We have already
seen that eclipsing binaries appear as variables.
However, many stars have luminosity variations
associated with physical changes in the stars them-
selves (rather than simply by eclipsing one another).
Since we will be using specific stars as exam-
ples, we will briefly mention systems for naming
normal and variable stars. The bright stars are
named, in order of brightness within their con-
stellation, by a Greek letter, followed by the Latin
genitive form of the constellation name. An exam-
ple is a Orionis (abbreviated as « Ori). Some of the
brightest stars are also known by their ancient
names. For example, a Ori is Betelgeuse. Variable
stars are listed in order of discovery within a
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given constellation. The first is designated R (e.g.
R Ori), the next S, and so on to Z. After that, two let-
ters are used, starting with RR, RS to RZ, then SS to
SZ, and so on, until ZZ is reached. Then comes AA
through AZ, BB through BZ, and so on to QZ. (The
letter ] is never used because of possible confusion
with 1) This gives a total of 334 variable stars per
constellation. Beyond that, numbers starting with
335, preceded by a V (for variable), are used (e.g.
V335 Ori, V336 Ori, etc.)

For any particular star, we are interested in pro-
ducing a light curve, a graph of its magnitude as a
function of time. Studies of variable stars often
require very long term monitoring. In some cases,
it is possible to recover information on a star’s vari-
ability from plate archives. When photographic
plates are taken at an observatory, the astronomer
who took them is often required to return the
plates when that astronomer’s work has been com-
pleted. The astronomer may be interested in only
one star on the plate, but it contains a record of
many stars. With the advent of CCD observations,
archives are no longer being kept in the same man-
ner. Observations of many variable stars can be so
time consuming that it has become an area of
astronomy where amateur observers have been
able to make major contributions, generally coor-
dinated by the American Association of Variable
Star Observers (AAVSO). (In measuring light curves,
we often measure time in Julian days, the number
of days since noon on January 1 4713 B¢, or modi-
fied Julian days, the number of days since the
beginning of the Besselian year 1950 (see Appendix
F for a further discussion of timekeeping).

We distinguish different types of variable stars
by such things as their period and the magnitude
range. A particular class of variable is generally
named after the prototype of the class, either the
first or most prominent star with the distinguish-
ing properties of the class. In this section, we look
at a few examples of the most important types of
variables. Different types of variables appear in
different parts of the HR diagram, as shown in Fig.
10.4. These bright stars were named before their
variable nature was known, so they do not follow
the naming convention discussed above.

Mira variables are named after the prototype
(a star also known as O Ceti). These stars have
periods of about three months to two years, or even
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longer, and are called long period variables. Any indi-
vidual Mira variable may show fluctuations in its
period. The stars change their brightness by about
6 mag, or over a factor of 250 in brightness. For
example, the apparent magnitude of Mira ranges
from 9 mag to 3 mag. These changes in brightness
are accompanied by changes in spectral type. Mira
changes from M9 to M5. This means that a tem-
perature change is accompanying the luminosity
change.

Cepheid variables are named after the prototype
6 Cephei. Its period is 54 days and its apparent
magnitude varies from 3.6 to 4.3 mag. In general,
Cepheids have periods from 1 to 100 days. We know
of more than 1000 in our galaxy. Another familiar
Cepheid is Polaris (the North Star), which changes
by only 0.1 mag, from 2.5 to 2.6. (For a long time,
astronomers did not know that Polaris is a variable,
and it was used as a reference for measuring the
magnitudes of other stars.) Cepheids have masses
of approximately 6 M, and radii of about 25 R.

10.2.2 Cepheid mechanism

When we study the spectral lines in Cepheids, we
can detect Doppler shifts that vary throughout the
light cycle (Fig. 10.5). The Doppler shifts go through
a cycle in the same period as the light. This means
that the surface of the star is moving. The size of
the star changes as the luminosity changes. The
spectral type also changes throughout the cycle.
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prototypical Cepheid. (a) Apparent magnitude as a function
of time within the period. (b) Temperature as a function of

time. (c) Radius, relative to the minimum radius, as a function
of time. (d) Radial velocity of the surface as a function of
time. Note that the radial velocity is one quarter cycle (90°)

out of phase with the radius.

The luminosity change is then associated with
changes in the surface temperature and in the
radius.

A star may become a Cepheid variable when it
reaches the stage described at the end of the pre-

ceding section. To see how a Cepheid oscillates,
lets consider the oscillations of a normal star.
These oscillations are radial. They involve inward
and outward motions of the outer layers of the
star. Suppose we are able to perturb a star by
decreasing its radius R. The density then increases,
and the pressure increases. The excess pressure
will make the outer layers expand back. However,
just as a swing overshoots its lowest point as it
returns from its maximum height, the star can
overshoot its equilibrium radius R,. Now the star
is larger than its equilibrium radius, and the
pressure decreases, allowing material to fall back.
This process then repeats itself.

In the above analysis, we have ignored the
effects of opacity. In a normal star, the opacity
decreases as the temperature increases. Now, we
again start the perturbation by reducing R below
Ry. This causes P and T to increase. The increase in
T decreases the opacity. The reduction of the opac-
ity allows some of the excess pressure to be relieved
by allowing heat to flow out of the denser regions
as radiation. This reduces the tendency of the star
to overshoot. If we had started with a perturbation
in which R > R, P and T would have decreased. The
opacity would have increased, and the tendency to
fall back too fast would be reduced. The result of
the opacity is to quench the oscillation.

For a narrow range of conditions, the opacity
increases as the temperature increases. The source
of the opacity is the ionization of He* to form
He™ . If we now start with a perturbation in which
R <Ry, the pressure and temperature increase. Now
the opacity also increases, so the excess pressure
is not relieved, except by driving the star back.
The tendency to overshoot is enhanced. Similarly,
with R >R,, the pressure and temperature
decrease. The opacity also decreases, reducing
the pressure even further. The material falls back
quickly and overshoots. This oscillation can con-
tinue indefinitely, rather than being quenched.
These are the conditions that produce a Cepheid
variable.

10.2.3 Period—luminosity relation

An important feature of Cepheids is that they pro-
vide us with a method of measuring distances.
The method involves a period-luminosity relation
(Fig. 10.6). This relation was discovered by Henrietta



182 PART Il STELLAR EVOLUTION
P-L relation
St
_6 - 2
£
Cepheids £
2 | ep
=4 type I E
=
%)
-2+ Type II ~
cepheids
0k _— RRlyrae
I I I L L
1 10 100 1 10

Period (days)

FESE TS Period—luminosity relation for Cepheids. ‘

Leavitt, who was studying Cepheids in the Large
and Small Magellanic Clouds, two small galaxies
near the Milky Way. The advantage of studying
Cepheids in either of these galaxies is that the
Cepheids are all at the same distance. For the
Small Magellanic Cloud it was found that there is
a relationship between the period of the Cepheid
and its mean apparent magnitude. Since all of
the stars are at essentially the same distance, this
means that there is a relationship between the
period and the mean absolute magnitude.

If we know the exact relationship between
period and absolute magnitude, then, when we
observe a Cepheid, we can measure its period and
convert that into an absolute magnitude. We can
always measure the apparent magnitude. The dif-
ference m — M is the distance modulus, and gives
us the distance. This technique is important
because Cepheids are bright enough to be seen in
other galaxies, providing us with distances to
those galaxies.

However, before we can use the period-
luminosity relationship, it must be calibrated. We
need independent methods of measuring dis-
tances to some Cepheids. This is difficult, since
there are none nearby. Statistical studies have been
used to achieve this calibration. More recently, the
Hiparcos satellite, which was designed to provide
more accurate trigonometric parallaxes than had
previously been available, made great strides on
this problem.

If we plot a histogram indicating how many
Cepheids have various periods (Fig. 10.7), we find

Period (days)
Distribution of periods for Cepheids. Note that
there are two distinct groupings.

an interesting result. The distribution has two
peaks in it. This suggests that there are actually
two different types of Cepheids. The group with
the shorter periods are typical of those studied in
the Magellanic Clouds, and are called classical
Cepheids. The group with longer periods are called
type II Cepheids or W Virginis stars (named after their
prototype). Type II Cepheids are found in globular
clusters in our galaxy (see Chapter 13 for a discus-
sion of clusters). In general, a type II Cepheid is
1.5 mag fainter than a classical Cepheid of the
same period. Also, the period-luminosity relation
is slightly different for the two types.

The original calibration of the Cepheid dis-
tance scale was carried out for type II Cepheids,
since we can study them in our galaxy. However,
when we look at a distant galaxy, we can more
easily study the brighter classical Cepheids.
Therefore, the Cepheids studied in other galaxies
were 1.5 mag brighter than assumed. This means
that the galaxies are farther away than originally
assumed.

Example 10.1 Cepheid distance scale

By how much does the calculated distance to a
galaxy change when we realize that we are looking
at classical, rather than type II, Cepheids?

SOLUTION

We have already seen that the Cepheids originally
studied are 1.5 mag brighter than assumed. This
increases the distance modulus, m — M, by 1.5 mag.
By equation (2.18), this increases the distance by a
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factor of 10°® = 2. Thus, these galaxies are twice
as far away as originally thought. The difference
between the two types of Cepheids was realized in
the 1950s, and people talked about the size of the
universe doubling.

Another type of variable star that is useful in
distance determinations is the RR Lyrae variable.
These are found in globular clusters and are
sometimes called cluster variables. They have short
periods, generally less than one day. The absolute
magnitudes of all RR Lyrae stars are very close to
zero. Actually, they fall between zero and unity,
and obey a weak period-luminosity relation of
their own. The absolute magnitudes were estab-
lished by using clusters whose distances were
known from other techniques. Once the absolute
magnitudes are calibrated, we can use RR Lyrae
stars as distance indicators.

It should not be surprising that stars with
pulsations have period-luminosity relations.
For radial oscillations, we expect the period to
be roughly equal to (Gp) /%, where p is the aver-
age density of the star. We can understand this
qualitatively by noting that a star pulsating
under its own gravity is like a large pendulum.
The period of a pendulum is 27 (L/g)"/*. For a star,
L = R and g = GM/R?, so the period is approxi-
mately (GM/R®) ', and MJR® is approximately the
density. Therefore, since the period is related to p
(which is approximately M/R®), and the luminos-
ity is related to the radius, the period should be
related to the luminosity (see Problem 10.4).
(Gp)~'*is also approximately the period of a satel-
lite orbiting near the surface of a mass M, or the
period of a small mass dropped through a hole in
a larger mass. In short, if gravity dominates,
(Gp) ' is the time scale.

10.3 | Planetary nebulae

We have already said that the outer layers of a red
giant are held together very weakly. Remember,
the gravitational force on a mass m in the outer
layer is GmM|R?, where M is the mass of the star and
R is its radius. As the star expands, M stays con-
stant, so the pull on the outer layer falls off as 1/R?.
Since the outer layer is weakly held, it is subject to

being driven away. The actual mechanism for driv-
ing material away is still not fully understood. It may
involve pressure waves moving radially outward. It
may also involve radiation pressure. Photons carry

(b)

Fig 10.8.
the Ring Nebula (M57), in the constellation Lyra. It is at a

Images of planetary nebulae. (a) HST image of

distance of | kpc, and is about 0.3 pc across. This image
reveals elongated dark clumps of material at the edge of the
nebula. (b) The Dumbbell Nebula (M27), in a ground-based
image. This is 300 pc away and is 0.5 pc across, in the con-

stellation of Vulpecula.
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(d)

SRS (Continued) (c) HST image of the Helix Nebula,
which is a little more than 100 pc away. Notice the dark
knots with glowing edges. These knots may be the result of
faster clumps overtaking the main part of the nebula. (d) The
Hourglass Nebula, in an HST image. This is approximately
2.5 kpc away. This picture was from three separate images,
taken in the light of ionized nitrogen (represented in red),
hydrogen (green) and doubly ionized oxygen (blue). (e) HST
image of NGC 3132, at a distance of 0.8 kpc with a diameter
of 200 pc. The gases are expanding from the central star at a
speed of |5 km/s. (f) HST image of the Egg Nebula (CRL
2688) which is about 0.1 pc across, and is believed to be a
star making the transition to a planetary nebula (a proto-
planetary nebula). [(a), (c)—(f) STScl/NASA; (b) ESO]

(e)

®)

energy and momentum. (Remember, the momen-
tum of a photon of energy E is E/c.) When photons
from inside the star strike the gas in the outer lay-
ers, and are absorbed, their momentum is also
absorbed. By conservation of momentum, the shell
must move slightly outward.

We do observe shells that are ejected. They are
fuzzy in appearance in small telescopes, just like
planets; when originally observed, they were
called planetary nebulae (Fig. 10.8). (Their name has
nothing to do with their properties, but with
their appearance as viewed with small telescopes.)
From the photograph in Fig. 10.8, we see that
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where the lines of sight pass though the shell. The line of
sight near the edge passes through more material than that
through the center. This is responsible for the ringlike
appearance. (b) Doppler shifts. Material on the near side is
moving toward the observer, producing a blueshift, and

material on the far side is moving away, producing a redshift.

some planetary nebulae have a ringlike appear-
ance. However, they are spherical shells. We see
them as rings because our line of sight through
the edge of the shell passes through more mate-

A 5007

rial than the line of sight through the center (Fig.
10.9). Thus, the center appears to be quite faint.
When we look at spectral lines in planetary nebu-
lae, we see two Doppler shifts. One line is red-
shifted and the other is blueshifted. The
blueshifted one comes from the part of the shell
that is moving towards us, and the redshifted line
comes from the part of the shell that is moving
away from us. From the Doppler shifts we find
that the shells are expanding at velocities of a few
tens of kilometers per second.

The physical conditions in planetary nebulae
are determined from observations of various spec-
tral lines. Different lines are sensitive to different
temperature and density ranges. For example, Fig.
10.10 shows photographs of a planetary nebula,
taken at wavelengths of certain emission lines.
Different lines reveal different aspects of the neb-
ula structure. Information is also obtained from
studies of radio waves emitted by the nebulae.

From these studies, we find that masses of
planetary nebulae are of the order of 0.1 M. The
temperatures are about 10* K. The mass tells us
that up to 10% of the stellar mass is returned to
the interstellar medium in the ejection of the
nebula. This material will be included in the next
generation of stars to form out of the interstellar
medium. (This is in addition to mass lost through
stellar winds.)

FESOEE The Ring Nebula,
shown in Fig. 10.8(a), is shown
here in four different colors of
light, highlighting gas with different
physical conditions. The wave-
lengths are indicated below each
frame. [NOAO/AURA/NSF]

A 4686
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10.4 | White dwarfs

10.4.1 Electron degeneracy

The material left behind after the planetary neb-
ula is ejected is the remnant of the core of the
star. It is mostly carbon or oxygen, and its tem-
perature is not high enough for further nuclear
fusion to take place. The gas pressure is not high
enough to support the star against gravitational
collapse. This collapse would continue forever if
not for an additional source of pressure when a
high enough density is reached. This pressure
arises from electron degeneracy.

Electron degeneracy arises from the Pauli
exclusion principle, which states that no two elec-
trons can be in the same state. For two electrons
to be in the same state, all of the quantum num-
bers describing that state must be the same. For
example, in an atom, there is a quantum number
describing which orbit the electron is in, and
another describing how that orbit is oriented (by
giving the component of the angular momentum
along some axis). In addition, we must take into
account the fact that the electron has intrinsic
angular momentum, called “spin”. The spin can
have two opposite orientations. For convenience,
we call them “up” and “down” (depending on the
direction of the angular momentum vector). An
up electron and a down electron in the same
energy level are considered to be in different
states. However, two is the limit. We can only put
two electrons into each energy level.

We can see how this affects the properties of
atoms with many electrons. Suppose we build the
atom by adding electrons one at a time. The first
electron goes into the lowest energy level. The
second also goes into the lowest level, but with
the opposite spin orientation. The first level is
now full. The third electron must go into the next
level. After we have added all of the electrons, we
can add up the excitation energies of all of the
electrons. We will find that the average excita-
tion energy of the electrons in the atom is much
greater than kT. This means that electrons are in
higher levels than we would guess by just consid-
ering the thermal energy available. The problem
is that the electron cannot jump into the filled
lower states.

We can apply the same idea to a solid, which
we can think of as a structure with many energy
levels. The electrons fill the lowest energy levels
first, but as they fill the electrons end up in
higher and higher levels, as shown in Fig. 10.11.
The average energy of the electrons is, again,
much greater than kT. In fact, the distribution of
energies of electrons in a solid at room tempera-
ture is negligibly different from that in a solid
at absolute zero. We call an electron gas in
which all of the electrons are in the lowest
energy states allowed by the exclusion principle
a degenerate gas.

In a degenerate gas, most of the electrons
will have energies much greater than they
would in an ordinary gas. These high energy
electrons also have high momenta. They can
therefore exert a pressure considerably in excess
of the pressure exerted by an ideal gas at the
same temperature. The higher pressure is called
degeneracy pressure. We have everyday examples
of this pressure. For example, it is responsible
for the hardness of metals. (Metals consist of a
regular arrangement of positive ions, held
together by many shared electrons. The exclu-
sion principle results in those shared electrons

= —
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Energy levels in a degenerate gas. The energies
of the levels are indicated on the right. In each level an
upward arrow represents an electron with its spin in one
sense, and a downward arrow represents an electron with
its spin in the opposite sense.The dashed line indicates the
average thermal energy per particle. The total energy is the
sum of the energies of the individual electrons.
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being in higher states than one would expect
just based on temperature.)

We can also describe this pressure in terms of
the uncertainty principle. In Chapter 3, we saw
that we must think of electrons as having wave
properties. We can only talk about the probability
of finding an electron in a given place, or moving
with a given speed. As a result of this wave prop-
erty, we cannot simultaneously describe the posi-
tion and momentum of the electron. If we can
determine the momentum with an uncertainty
Ap, and the position with an uncertainty Ax, the
uncertainty principle tells us that

Ap Ax = h/2m (10.1)

For a given Ax, the uncertainty in the momentum
is

Ap = h/2m Ax (10.2)

When the density becomes very high, we are
trying to force the electrons close together. This
means that we are trying to confine them to a
small Ax. Therefore, the uncertainty principle tells
us that the uncertainty in the momentum is large.
This means that large momenta are possible. These
high momentum electrons are responsible for the
increased pressure. Fig. 10.12 shows a container
with density n and particles moving with speed v,
in the x-direction. The number of particles hitting
a wall per second per unit surface area is n v,.
The momentum per second per unit surface area
delivered to the wall is then n v, p,, where p, is the

m Pressure in a degenerate gas.VWe consider the

force on the section of area A of the right-hand wall of the
box, due to the x-component of the motions of the
particles.

x-component of the momentum. The momentum
per second per unit surface area is just the pres-
sure exerted by the gas on the wall:

P =nv,p, (10.3)

If we have n, electrons per unit volume, then
there is one electron per box with volume 1/n..
The side of such a box is (1/n.)", so the average
spacing between electrons is

Ax = (1/n,)"? (10.4)

If we say that the average momentum is of the
order of the momentum uncertainty, then

py=h/2m Ax

= (h/2m)n. (10.5)

The speed of each electron is its momentum
divided by its mass, so

Vi = D/ (10.6)

This gives a pressure, using equation (10.3), of

P = (h/2m)? n"/m, (10.7)

This is just an estimate of the pressure. A more
detailed calculation yields a pressure thatis a fac-
tor of about two higher than that given in equa-
tion (10.7).

Equation (10.7) gives the pressure in terms of
electron density. We would like to express it in
terms of the total mass density p. If the density of
positive ions with charge Ze is ny, then in a neu-
tral gas the density of electrons must be

Nn. = Zny (10.8)

Each positive ion has a mass of Am,, if we ignore
the difference between the proton and neutron
masses. The total density of the gas is then
p = Amyn, + men,

= Am,n, (10.9)

In going to the second line we have ignored the
mass of the electrons relative to the mass of the
nucleons. Using equations (10.8) and (10.9), the
electron density is related to the total density by

ne = (Z/A) (p/my)

Substituting this into equation (10.7) and adding
the factor of two to account for the difference

(10.10)
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between our estimate and the detailed calculation,
we have

P = 2(h/2m)? (2/A) (p/my)*/m, (10.11)

Note that, in a degenerate gas, the pressure
depends on the density, but not on the tempera-
ture. We have already seen that this point is
important in deciding whether the triple-alpha
process will take place in a controlled way (nor-
mal gas) or in a flash (degenerate gas).

10.4.2 Properties of white dwarfs

A star supported by electron degeneracy pressure
will be quite small, since it must collapse to a
high density before the degeneracy pressure is
high enough to stop the collapse. These objects
are quite hot, being the remnant of the core of a
star. These objects are the stars that appear on
the HR diagram as white dwarfs.

Example 10.2 White dwarf density

Estimate the density of a white dwarfif it has a
solar mass packed into a sphere with approxi-
mately 10”2 Ry, (approximately the size of the
Earth) as found in Section 3.5.

SOLUTION
We find the density by dividing the mass by the
volume:

(2 X 10%¥g)
47/3)(7 X 10, cm)?

P

=1 X 10°g/cm?

(Remember, the density of water is only 1 g/cm?®, so
a white dwarf'is very dense.)

Example 10.3 White dwarf degeneracy pressure
For a white dwarf of density 1.0 X 10° g/cm®, and
Z|A = 0.5, estimate the degeneracy pressure and
compare it with the thermal pressure of a gas at a
temperature of 1.0 X 107 K.

SOLUTION
We find the pressure from equation (10.11):

(1.05 X 10~ * erg s)*
911 X 10 %# g }
(0.5)(1.0 X 10°g/cm?) 153
{ 167 X 10" % g

= 3.2 X 10** dyn/cm?

For an ideal gas, the pressure is given by
P = (n. + ny) kT

where n. + n, represents the total density.
However, each atom of atomic number Z con-
tributes Z electrons, so

Ne = Zny,

We therefore have

P=(Z+ 1)nkT
=Zn.kT

We can now relate this to the density p. If A is
the mass number of the nuclei, then (ignoring the
difference between proton and neutron masses)

p=An;m,
This gives
P = (Z/A)(p/my KT

1.0 X 10° g/cm

=05 ———
1.67 X 10" %g

X (1.0 X 107K)

) (1.38 X 107" erg/K)

= 4.1 X 10*° dyn/cm?

The degeneracy pressure is a factor of about 100
higher than the normal thermal pressure, even at
this very high temperature.

We can also use the expression for degeneracy
pressure (equation 10.11) to relate the mass and
radius of a white dwarf. We saw in Example 9.4
that we could use hydrostatic equilibrium to

approximate the central pressure by
P = GM*/R* (10.12)

If we put this into equation (10.11), and substitute
M/4R?® for the density, we find

MZ h2 7 5/3 M 5/3
oo EYEIV(EY o
R 4mm, ) \ Am,, 4R
Rearranging gives
h2 7 5/3
GM'Y*R = 2( )(—) (10.14)
4mm, ) \ 4Am,

The right-hand side is all constants, so for a given
R a mass can be calculated (Problem 10.12).

A degenerate gas has a very low opacity to
radiation. For a photon to be absorbed, an elec-
tron would have to jump to a higher energy state.
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Even if we cannot see a white dwarf in a binary
system, we can detect its presence. The visible star will
appear to wobble as it and the white dwarf orbit their
common center of mass.

However, such a transition would have to be an
already empty state, and may require more
energy than is carried by an optical photon. In
addition, degenerate gases are good heat con-
ductors, which explains why metals are good
heat conductors. The low opacity and high ther-
mal conductivity mean that a degenerate gas
cannot support a large temperature difference.
The internal temperature of a white dwarf is
approximately constant across that star, at about
107 K. The outermost 1% is not degenerate, and it
is in that thin layer that the temperature falls
from 107 K to roughly the 10* K indicated by its
spectral type. These conditions make a white
dwarf very different from a normal star. In addi-
tion, Zeeman splitting measurements suggest
very strong magnetic fields, about 10”7 gauss in
some cases.

What happens to a star after it becomes a
white dwarf? As it radiates it must get cooler. This
is because it is giving off energy, but has no
source of new energy. The degeneracy pressure
does not depend on the temperature, so the star
will maintain its size as it cools. Eventually, it will
be too cool to see. It will take tens of billions of
years for a star that is now visible as a white
dwarf to become that cool. We can understand
the long lifetime when we realize that a white
dwarf radiates like a 10* K blackbody, but has
more energy than a thermal reservoir at 107 K
(see Problem 10.13).

Even at their current temperatures, their small
sizes make white dwarfs difficult to see. We some-

times detect their presence in binary systems by
measuring their gravitational influence on a star
that we can see. We deduce the mass of the white
dwarf from its influence on the visible compan-
ion’s orbit (Fig. 10.13).

10.4.3 Relativistic effects

The treatment of degeneracy pressure must be
modified by considerations introduced in the
special theory of relativity (Chapter 7). This was
first realized by S. Chandrasekhar (who shared the
1983 Nobel Prize in physics for his work on stellar
structure). Chandrasekhar found that these cor-
rections reduce the degeneracy pressure. This
provides an upper limit to the mass that can be
supported by electron degeneracy pressure.

The modification arises from the fact that
electrons cannot travel faster than the speed of
light. In using equation (10.5), we can still say
that p, is (h/27)(n.)""®. However, we can no longer
say that v, = p,/m.. We have to use the correct rel-
ativistic expression, as discussed in Chapter 7. To
find the maximum degeneracy pressure, we take
v, = c¢. This gives

Pray = (/27) ¢ (ne)*? (10.15)

A more detailed calculation gives approximately 0.8
times this. Using this, the expression analogous
to equation (10.11) is

P = (0.8)(h/2m) c (Z/A)*? (p/m,)*? (10.16)

If we use the same assumptions to find the
mass-radius relation (equation 10.14), we find
that the radius drops out, and we simply have an
expression for the mass (Problem 10.14):

M = (0.05)(hc/27wG)**(Z/A m,,)> (10.17)

This mass corresponds to the maximum
pressure, so it is the maximum mass that can be
supported by electron degeneracy pressure. A
more accurate calculation, which takes into
account variations in pressure and density with
distance from the center of the star, gives a
mass that is a factor of about 60 higher. The
resulting mass, called the Chandrasekhar limit, is
1.44 Mg. A star whose nuclear processes have
stopped, and whose mass is greater than 1.44 Mg,
will continue to collapse beyond the white
dwarf phase. The fate of such stars will be dis-
cussed in Chapter 11.
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Chapter summary

In this chapter we saw what happens to stars that
use up their supply of hydrogen fuel in their cores.
Low mass stars evolve into red giants. Higher mass
stars evolve into red supergiants.

We saw how some stars at this stage are unsta-
ble to pulsations and become Cepheid variables.
The Cepheids are particularly important because
of a period-luminosity relation. This relation
allows us to use Cepheids as important distance
indicators.

Questions

In the red giant or supergiant phase, the outer
layers are loosely bound to the star. Mass loss
takes place. One form of mass loss is ejection of a
planetary nebula.

We saw how the remnant of a low mass star is
a white dwarf, a star supported by electron degen-
eracy pressure. There is a limit, the Chandrasekhar
limit, on the mass that can be supported by elec-
tron degeneracy pressure. Best estimates of this
limit are 1.44 M.

10.1. In which aspects of post-main sequence
evolution does the mass enter into
consideration? How are low mass stars really
different from high mass stars?

10.2. Why is there hydrogen left in a shell around
the core after it has been used up in the core?

10.3. For the surface oscillations of a Cepheid,
show how the energy goes from kinetic to
potential throughout the stellar oscillation
cycle, as in the analogy of a swing.

Problems

10.4. How does electron degeneracy pressure sup-
port a white dwarf?

10.5. (a) If we try to confine an electron to within an
atom, Ax = 1 A, what is Ap, the uncertainty in
its momentum? (b) What velocity would the
electron need to have this momentum?

10.6. List the distance measurement techniques
that we have encountered so far in this book,
and estimate the distance range over which
each is useful.

10.1. Suppose we observe a classical Cepheid with
a period of 10 days and an apparent magni-
tude of +6. How far away is it?

10.2. Suppose we observe a classical Cepheid with
a period of 8 days and m = +7. What is the
period of a type II Cepheid at the same dis-
tance with the same apparent magnitude?

*10.3. Suppose a classical Cepheid has a period
P = 10 days, and assume that the surface
oscillates sinusoidally with a maximum
amplitude ARy, = 10% km. (a) Write an
expression for AR vs. t, assuming that
AR = 0 at t = 0, and that the star is
expanding at t = 0. (b) Find an expression
for the speed of the surface, v(t). (c) Find
the wavelength observed for the Ha line
vs. L.

*10.4. Use the fact that P o p~ %, p « MJR® and
L = R*T* to derive a relationship between
period and luminosity.

*10.5. The momentum of a photon is E/c. (a) Calculate
the momentum per second delivered to the
outer layers of a 10 L, star if all the photons
are absorbed in that layer. (b) How does the
force on the layer compare with the gravita-
tional force on the layer if the layer has a
radius R = 100 Ry and a mass M = 0.1 My and
the rest of the star has a mass of 1 M.

10.6. (a) What is the kinetic energy in a 0.1 Mg
planetary nebula, expanding at 10° km/s?
(b) Compare that with the gravitational
potential energy of the shell when it was at
R =100 Ry, assuming that there is 1 Mg of
material left behind.

10.7. Suppose a planetary nebula is a spherical
shell whose thickness is 10% of its radius.
Compare the length of the longest line of
sight with that through the center, and
relate your answer to the appearance of the
planetary nebula.
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10.8.

10.9.

10.10

Suppose a planetary nebula expands at a
speed v, determined from Doppler shift
observations. The angular size 6 is observed
to be increasing at the rate d6/dt. In terms of
these quantities, find an expression for the
distance to the planetary nebula.

Suppose we observe the Ha line in a planetary
nebula. The maximum wavelength is

656.32 nm, and the minimum wavelength is
656.24 nm. How fast is the nebula expanding?
. Calculate the escape speed from a 1 M
white dwarf. Compare it with that of a main
sequence star of the same mass.

10.12.

10.13.

is their momentum uncertainty Ap?

(c) What is the velocity corresponding to
that momentum?

(a) Use the mass-radius relationship for
white dwarfs to calculate the radius of a

1 Mg, white dwarf. (b) Use this result to
rewrite equation (10.14) in a form that gives
R in kilometers when M is expressed in solar
masses.

(a) What is the thermal energy stored in a
107 K white dwarf of 1 My? (b) Assuming
that it radiates like a 10* K blackbody, esti-
mate its lifetime as a luminous object.

10.11. (a) At white dwarf densities, what is the aver-  10.14. Derive equation (10.17).
age separation between electrons? (b) What
Computer problems
10.1. Suppose a planetary nebula is a spherical shell masses ranging from 0.1 M to the Chandrasekhar

10.2.

whose thickness is 10% of its radius. Find the
length of a line of sight through the material as a
function of position across the nebula.

Use the mass-radius relationship for white
dwarfs to calculate the radii of white dwarfs with

10.3.

limit, and make a graph of size vs. mass over that
range.

Tabulate the radii of white dwarfs with masses
corresponding to the mid-range of each spectral
type (05, B5, .. .).






Chapter |1

The death of high mass stars

In Chapter 10 we saw how stars evolve to the red
giant or red supergiant stages, and how low mass
stars (less than 5 M) lose enough mass to leave
behind a white dwarf as the final stellar remnant.
We also saw that electron degeneracy pressure
can only support a 1.44 Mg remnant. In this chap-
ter we will see what happens to higher mass stars.

Itis important to remember that stars lose mass
as they evolve. This mass loss can be through winds,
or the ejection of planetary nebulae. (In the next
chapter, we will see that stars in close binary sys-
tems can transfer mass to a companion.) Though
we only have estimates for the total amount of
mass loss, it seems likely that massive stars can lose
more than half of their mass by the time they pass
through the red supergiant phase. A star’s evolu-
tion will depend on how much mass it starts with,
and how much mass it loses along the way.

|1.1 | Supernovae

[1.1.]1 Core evolution of high mass stars
In the core of a high mass star the buildup of
heavier elements continues. If we look at nuclear
binding energies (Fig. 9.3) we see that the isotope
of iron °°Fe has the highest binding energy per
nucleon. This makes it the most stable nucleus.
This means that any reaction involving *°Fe, be it
fission or fusion, requires an input of energy.
When all of the mass of the core of the star is con-
verted to *°Fe (and other stable elements, such as
nickel), nuclear reactions in the core will stop.
At this stage, the core will start to cool and the
thermal pressure will not be sufficient to support
the core. As long as the mass of iron in the core is

less than the Chandrasekhar limit, the core can
be supported by electron degeneracy pressure.
However, once the core goes beyond that limit,
there is nothing to support it, and it collapses. In
the collapse, some energy, previously in the form
of gravitational potential energy, is liberated.
Since that energy is available, the *°Fe can react
by using up the energy. This means that the core
does not get any hotter. It continues to collapse.
A runaway situation develops in which the iron
and nickel consume liberated energy. As the iron
is destroyed, protons are liberated from nuclei.
The electrons in the star can combine with these
protons to form neutrons and neutrinos. This
reaction can be written

e +p—->n+tv (11.1)

The core is driven to a very dense state in a short
time, about one second. What happens next is not
completely understood, but the collapse results in
an explosion in which most of the mass of the star
is blown away. The neutrons created in reaction
(11.1) probably play a role in this. They also obey the
exclusion principle, and exert a degeneracy pres-
sure (the details of which we will discuss in the next
section). This pressure can stop the collapse and
cause the material to bounce back. In addition, so
many neutrinos are created, and the material is so
dense, that a sufficient number of neutrinos inter-
act with the matter forcing the material outward.

Such an exploding star is called a supernova.
This type of supernova is actually called a type II
supernova. Another type of supernova, type I, seems
to be associated with older objects in our galaxy.
(The mechanism for type I supernovae probably
involves white dwarfs in close binary systems,
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and is discussed in Chapter 12.) During the explo-
sion, nuclear reactions take place very rapidly,
and elements much heavier than iron are cre-
ated. This material is then spread out into inter-
stellar space, along with the results of the normal
nucleosynthesis during the main sequence life of
the star. This enriched material is then incorpo-
rated into the next generation of stars.

The light from a supernova explosion can
exceed that of an entire galaxy (Fig. 11.1). The
energy output in a type II supernova is about
10°° erg. About 1% of this shows up as kinetic
energy of the shell, and 0.1% as light. (Most of the
energy is in the escaping neutrinos.) After a rapid
increase in brightness, the supernova fades grad-
ually, on a time scale of several months (Fig. 11.2).

SNII M,, light curves

A supernova in
another galaxy can be almost as
bright as the whole galaxy. This
shows a supernova in the spiral
galaxy NGC4603. [STScl/NASA]

[1.1.2 Supernova remnants

The material thrown out in a supernova explosion
is called a supernova remnant. It contains most of the
material that was once the star. In young super-
nova remnants we can actually see the expansion
of the ejected material. These remnants are
important because they spread the products of
nucleosynthesis in stars throughout the interstel-
lar medium. There, this material enriched in
“metals” will be incorporated into the next gen-
eration of stars. This explains why stars that
formed relatively recently in the history of our
galaxy have a higher metal abundance than the
older stars. In the later stages of a supernova rem-
nant’s expansion, we still see a glowing shell, like
those in Fig. 11.3. These shells also serve to stir up

m Light curves for type

Il supernovae. [Craig Wheeler,
University of Texas, Austin]

_8I|IIII|IIII|IIII|IIII|
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m Views of supernova remnants. (a) An optical image of a portion of the Veil Nebula supernova remnant. (b) A (false
color) radio image (6 cm wavelength) of the source known as Cas A (the brightest radio source in Cassiopeia), taken with the VLA,
providing an angular resolution of 0.1 arc sec. (c) A far infrared image of Cas A, taken with the ISO satellite. (d) An X-ray image of
Cas A, made with the Chandra Observatory. (¢) HST image of the region of SN1987A in the LMC.The small bright ring shows the
interaction of the expanding supernova remnant with the surrounding medium. [(a) NOAO/AURA/NSF; (b) NRAO/AUI/NSF;

(c) ESA/ISO,ISOCAM/CEA and P, Lagage et al. (d) NASA; (e) STScl/NASA]
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m Synchrotron radiation. (a) Electrons spiral

around magnetic field lines. (b) In their circular motion, they
are constantly accelerating, and therefore give off radiation.

At any instant, most of the radiation is emitted in a small
cone centered on the velocity of the electron. The beaming
of the radiation is a relativistic effect.

the interstellar medium. This point will be dis-
cussed further in Chapter 15.

Supernova remnants generally have mag-
netic fields that are strong by interstellar stan-
dards, and a supply of high energy electrons. In
Chapter 6, we discussed the motion of charged
particles in a magnetic field. The component of
the electron’s velocity along the field lines is not
changed, since the force is perpendicular to the
field direction and to the electron’s velocity. The
electron traces out a helix as it circles around
the field lines, and drifts along the direction of
the field, as shown in Fig. 11.4. Since the velocity
of the electron is changing (in direction), the
electron must be accelerating. Classical electro-
magnetic theory tells us that accelerating
charges must give off radiation. This radiation is
called synchrotron radiation.

One of the best studied supernova remnants is
the Crab Nebula in the constellation of Taurus.
(This supernova was observed as a bright object in
1054 AD.) Some optical images are shown in Fig.
11.5. An X-ray image is shown in Fig. 4.33(c). All of
the radiation is synchrotron radiation.

Synchrotron radiation has a number of distin-
guishing characteristics. One is that the radiation
is polarized. If we have a radio telescope receiver
that detects only one direction of linear polariza-

(b)

The Crab Nebula, a young supernova remnant.
(a) In normal light from the ground. (b) From HST showing
great detail. For comparison, an X-ray image is shown in
Fig. 4.33(c). [() NOAO/AURA/NSF; (b) STScl/NASA]

tion, and we change the orientation of the detec-
tor, we see an intensity of radiation that varies
with the angle of the detector. This means that the
electric field vector of the incoming radiation is
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Spectrum of the Crab Nebula, from radio to
gamma-rays.

preferentially aligned along some direction. Even
the visible light is polarized.

The spectrum of synchrotron radiation is also
quite distinctive. Most of the radiation is given off
at long wavelengths. The intensity of radiation
falls off as the wavelength raised to some power.
This is called a power law spectrum. Fig. 11.6 shows
the spectrum of the Crab Nebula. The intensity of
radiation is much greater in the radio part of the
spectrum than in other parts of the spectrum,
but the source is so strong that we are able to
detect synchrotron radiation in all parts of the
spectrum, even at gamma-ray energies. So much
energy is given off in synchrotron radiation that
the high energy electrons should be losing their
energy over a very short time. However, they are
still radiating strongly some 1000 years after the
supernova explosion. Until recently, it was a prob-
lem for astronomers to explain where the energy
comes from to maintain the high energy elec-
trons in the Crab Nebula.

I'1.2 | Neutron stars

In this section we look at what happens to the
core that is left behind in the supernova explo-
sion. The core is compressed so that normal gas
pressure cannot support it. We have already seen

that if the mass is more than 1.44 M electron
degeneracy pressure cannot support it. The col-
lapse of the core continues beyond even the high
densities associated with a white dwarf. As the
density increases, electrons and protons are
forced together to make neutrons. The resulting
object is called a neutron star.

[1.2.1 Neutron degeneracy pressure
Neutrons have spin properties similar to those of
electrons. They therefore also obey the Pauli
exclusion principle. (We have already seen how
this affects the energy levels of neutrons in a
nucleus, in Chapter 9.) Neutrons are therefore
capable of exerting a degeneracy pressure if the
density is high enough. We can estimate the neu-
tron degeneracy pressure as we did the electron
degeneracy pressure in the preceding chapter.
The result corresponding to equation (10.7),
including the factor of two, is

P = 2(h/2m)*1, 2P m, (11.2a)
Since the star is all neutrons, p = n,m,, so
P = 2(h)27)? p°PIm, 2P (11.2b)

In comparing this with equation (10.7), we see
that at a given density electron degeneracy pres-
sure will be greater by a factor of m,/m., or about
2000. However, in a neutron star there are no free
electrons, so neutron degeneracy pressure is all we
have to support the star. Because the density of a
neutron star is so much higher than that of a
white dwarf, the neutron degeneracy pressure in a
neutron star is greater than the electron degener-
acy pressure in a white dwarf. The neutron degen-
eracy pressure will halt the collapse of the core.

Let’s consider some properties of neutron stars.
We can estimate the radius from a mass-radius
relationship, like that for white dwarfs (Problem
11.3). Neutron stars will be smaller than white
dwarfs by a factor of about m./m,. We find the
radius to be about 15 km for a mass of 1 Mg, This
means that a neutron star concentrates more
than a solar mass in a sphere smaller than the
island of Manhattan.

Example 11.1 Density of a neutron star

Estimate the density of a neutron star and compare
it with that of a neutron. Take the mass of the star
to be 1.4 M.
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SOLUTION

The density is the mass divided by the volume:
(1.4)(2 X 10¥g)

47/3)(1.5 X 10°cm)?

p=
(
=2 X 10" g/cm?

The density of a neutron is

(1.7 X 10" *#g)
47/3)(1.0 X 10" ¥ cm)?

=

=4 X 10" g/cm?

So we see that the density of a neutron star is very
close to that of a neutron. This means that the neu-
trons in a neutron star must be packed very close
together, with very little empty space.

Example 11.2 Neutron degeneracy pressure
Compare the neutron degeneracy pressure in a
neutron star with the electron degeneracy pressure
in a white dwarf.

SOLUTION
Using equations (11.2b) and (10.11),

()
Pyq Pwd my

2 X 10"\ 1
(2 X 105) (2000)

1% 10"

Example 11.3 Acceleration of gravity on a
neutron star

For the star in the above example, find the acceler-
ation of gravity at the surface

SOLUTION
M
Y

(6.67 X 10~8dyn cm?/g*)(1.4)(2 X 10°3g)
(1.5 X 10°cm)?

= 8.3 X 10" cm/s?

This is almost 10" times the acceleration of gravity
at the surface of the Earth! (With such strong gravi-
tational fields, we should really use general relativ-
ity to calculate particle motions.) You can calculate
your weight on the surface of a neutron star.

Another interesting effect comes from the
fact that g changes very quickly with radius R.
Differentiating the expression for g gives

dg/dr = —2GM|R®

If we use the numbers in the above example,
we find dg/dR = —1.1 X 10® (cm/s?)/cm. This is
equal to a change of 10° times the acceleration of
gravity on the Earth per centimeter. If you were
floating near the surface, your feet would be
pulled in with a much greater acceleration than
your head. Your body would be pulled apart by
these tidal forces. By tidal forces, we mean effects
that depend on the difference between forces on
opposite sides of an object. Some astrophysicists
have jokingly noted that if an astronaut visits a
neutron star, it should be in a prone position to
minimize the tidal effects.

The large acceleration of gravity also has
another interesting effect. The equation of hydro-
static equilibrium (equation 9.44) tells us that the
rate at which the pressure in the atmosphere of a
neutron star falls off, dP/dR, is proportional to g.
The atmospheric pressure on a neutron star thus
falls off very quickly. This leads to an atmosphere
that is only about 1 cm thick. (The thin atmos-
phere is another reason for an astronaut to stay
in a prone position.)

I1.2.2 Rotation of neutron stars

In the process of the collapse of a core to become
a neutron star, any original rotation of the core
will be amplified. If the angular momentum of
the core is conserved, the core must rotate faster
as it becomes smaller. Since the core shrinks by a
large amount, the rotation speed is increased by
a large amount.

The angular momentum is given by

J=Iw (11.3)

where I is the rotational inertia and w is the angu-
lar speed. If we put in the rotational inertia for a
uniform sphere, we find

J = (2/5)MR%w (11.4)

To get a feel for how fast a neutron star can
rotate, let’s assume that the angular momentum
of a neutron star is equal to that of the Sun. (This
is probably a conservative estimate since the Sun
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is not rotating very rapidly compared with other
stars we see.) Using equation (11.4), we have

weRp? = 0R? (11.5)
Solving for (w/wg), we have

= [(7 X 10'%)/(1.5 X 10%)]*
=2 x 10°

The rotation period of the Sun is about 30 days.
The period of a neutron star is therefore

Pos = (2.6 X 10°5)/(2 X 10°)
=13%X103s

In addition to its other extreme properties, a
neutron star might be rotating 1000 times per
second!

[1.2.3 Magnetic fields of neutron stars

We might also expect a neutron star to have a
strong magnetic field. This is a consequence of
Faraday’s law, which can be written as

$E - dl = — ddp/dt

In this expression @®p is the magnetic flux
through a surface. (For a small surface element,
the flux is the dot product of the magnetic field
and a vector whose magnitude is the surface area
and whose direction is perpendicular to the sur-
face.) The integral on the left is performed around
a closed path that forms the boundary of the sur-
face. E is the electric field induced by the change
in flux. The integral on the left is the induced
electromotive force (emf) around the closed path.
If there is an induced emf around the path, and if
the material has some conductivity, currents will
flow to oppose the change in flux. When the flux
through the surface stays constant, we say that
the flux is frozen into the material.

The flux is proportional to the strength of the
magnetic field and the surface area. This means
that the quantity

BR? = constant (11.7)

The magnetic field should therefore be propor-
tional to 1/R?, just as the rotation rate is. If the
neutron star started off with a solar magnetic
field, it will end up with a magnetic field of about

Crust

104
1011

p (g/em?)

4x10M

|

1 km

Superfluid
Neutrons

GESRR AR Structure of a neutron star.

2 X 10° times that of the Sun. It should be noted
that, even though flux conservation arguments
give us what might be an order of magnitude for
B, there is some disagreement over the actual
mechanism for the buildup of large fields in neu-
tron stars. Some theories involve dynamo mecha-
nisms, in which rotation plays an important role.

Most of the interior of a neutron star is
thought to be a fluid. Because of certain quan-
tum mechanical properties, this fluid can flow
with no frictional resistance or viscosity. A fluid
with no viscosity is called a superfluid. (This is
analogous to a superconductor which allows the
flow of electricity with no resistance.) Actually,
the existence of vortices (such as whirlpools) in
the rapidly rotating fluid leads to some viscosity.
This is what couples the fluid to the outside layers.
Outside the fluid is a solid crust made up of heavy
elements, such as iron. The crust is probably less
than 1 km thick (Fig. 11.7). We have already seen
that the atmosphere is even thinner.

The possibility of the existence of neutron
stars was first realized in the 1930s. However,
they were objects that existed in theory only. It
was felt that their small size would make them
hard to see. In 1967 an accidental discovery in
radio astronomy revived interest in neutron stars.

|'1.3 | Pulsars

[1.3.1 Discovery
In 1967, Antony Hewish and his graduate student,
Jocelyn Bell Burnell, were looking for the twinkling
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1855+09

1913+16

1831-00 45 1509-58

of radio sources. This twinkling, called scintillation,
is analogous to the twinkling of stars. However, it
is not caused by the Earth’s atmosphere. It is
caused by charged particles in interplanetary
space. The observations required very good time
resolution. For most radio observations, the
sources are so weak that we have to observe for a
long time to detect a signal. There is generally no
call to see how fast things are changing. However,
Hewish and Burnell were looking for changes on
time scales that were much shorter than for typi-
cal radio observations. This good time resolution
is what allowed them to make an unusual acci-
dental discovery. Hewish received the Nobel Prize
in physics for this work.

Hewish and Burnell found a rapidly varying
source. When they looked at it in more detail,

(a) B0031—07

.

(d) BO525+21

(b) B0O329+54

(e) J1012+5307

5
=

(e) B1937+21

1

(h) J2124—3358

=
-

0950+08

SRR Distribution of pulsars

on a galactic coordinate system.
Their tendency to concentrate
near the galactic plane indicates

that they are within our own
galaxy. We will talk more about

galactic structure in Chapter 16.

0529-66

they noted that the signal was a string of pulses,
with a very regular separation. By counting a large
number of pulses, they determined the period to
be 1.337 301 1 s. A few other pulsars were found,
suggesting a general phenomenon. Since then,
hundreds of pulsars have been discovered. Most
of them are close to the plane of our galaxy, as
shown in Fig. 11.8. This suggests that they are in
the galaxy. If they were extragalactic, their distri-
bution would not correlate with anything within
our galaxy.

We see some properties of pulsar signals in
Fig. 11.9. Note that each pulse is not exactly the
same as the previous one. The period may even
vary slightly from one pulse to the next. However,
if we take the average of 100 pulses and compare
it with the average of the next 100 pulses we find

m Selection of pulsar

pulse profiles. Each curve is an

(c) J0437-4715

average over many cycles. They
are plotted as intensity vs. frac-

%

tion of a cycle. Periods in sec-
onds: (a) 0.94295 s; (b) 0.71452 s;
(c) 0.0057575 s; (d) 3.74552 s;
(e) 0.0052557 s; (f) 0.2901 1 s;

(g) 0.0015578 s; (h) 0.0049311 s;
(i) 0.016052 s. [Dunc Lorimer

& Michael Kramer (Jodrell Bank
Obs.)]

(f) B1831-04

(i) J2145-0750
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that the two averages agree quite well. We can see
that the pulsar is actually “off” most of the time.
The pulse is on for only a small fraction of the
period. We define the duty cycle as the fraction of
the pulse period in which the pulse is actually on.
For most pulsars the duty cycle is about 5%. This
means that the peak brightness is about 20 times
the average brightness (Problem 11.9). Notice that
there may also be a small pulse somewhere in the
middle of the cycle. This is called an interpulse,
and fewer than 1% of pulsars have one.

I1.3.2 What are pulsars?

When the discovery of pulsars was announced,
astronomers immediately attacked the problem
of what they are. Initial guesses even included
the possibility that they were signals sent by
intelligent civilizations (called LGM theories, for
little green men). However, as more pulsars were
discovered in different parts of the galaxy, it
seemed that a more natural explanation was
needed. Efforts were concentrated on trying to
find the clock mechanism. Three basic mecha-
nisms were tried: (1) pulsation, (2) orbital motion,
and (3) rotation. Three different types of objects
were considered: (1) normal stars, (2) white
dwarfs, and (3) neutron stars.

Pulsation of stars is reasonably well under-
stood. In Chapter 10, we saw that, for radial oscil-
lations, the period is roughly proportional to
(Gp)~*?, where p is the average density of the star.
Pulsations of normal stars have periods of hours
to days, and would not explain pulsars. For a
period of 0.1s, a density of about 10° g/cm® is
required. This is about 10° times the density of a
white dwarf, but only 10> of the density of a
neutron star. No stellar object has a density even
close to the right range. Therefore, the radial pul-
sations in stars are ruled out.

We next consider orbital motion. The period
and radius of an orbit are related by (equation 5.20)

47°R3|G = (m, + m,)P? (11.8)
Solving for the radius gives
R = [(G]4?) (my + my)P]'° (11.9)

For a period of 1 s, the radius is 2000 km; for
a period of 0.1 s, the radius is 400 km; for a period
of 0.01 s, the radius is 100 km. For the range of

pulsar periods, the orbital radii would have to be
smaller than a normal star, or even a white dwarf.
If we have orbiting objects, we would need two
neutron stars.

There is a problem with orbiting systems. The
energy of the orbit is (by equation 5.41)

E = —Gmym,[2R

As the pulsar gives off radiation, to conserve
energy, the orbital energy must decrease. This
means that E becomes more negative, or the
absolute value of E becomes larger. For this to
happen, R must become smaller. As R becomes
smaller the period must decrease, since P ~ R*?
(equation 11.8). However, we observe pulsar peri-
ods to increase, rather than decrease (see below).
There is an additional problem with orbiting neu-
tron stars. We saw in Chapter 8 that the general
theory of relativity predicts that such a system
would lose energy very quickly by giving off grav-
itational radiation. We would be able to detect this
as a significant decrease in the orbital period.
(We will discuss a binary pulsar system, in which
this effect has been studied, in the next chapter.)

This leaves rotation as the mechanism for
producing the regularity in the pulses. For any
rotating star the rotation must not be so fast that
objects on the surface lose contact with the sur-
face. The gravitational force must be greater than
the force required to keep a point moving in a
circular path. If not, an object on the surface will
go into orbit just above the surface. This gives the
same constraint on the size of an object as equa-
tion (11.9), with the sum of the masses replaced
by the mass of the single rotating star. This again
rules out a rotating normal star and a rotating
white dwarf. (White dwarfs might actually work
for some of the slower pulsars, but not for the
fastest.) This leaves rotating neutron stars as the
best candidates for pulsars.

In describing the emission from pulsars, an
analogy has been drawn with a lighthouse. The
light in the lighthouse is always on, but you can
only see it when the beam points in your direc-
tion. If you stay in one place, you will see the light
appear to flash on briefly once per cycle. In this
model of neutron stars, there is some emission
point or “hot spot” on the surface of the star, pro-
ducing a beam of radiation, like a lighthouse beam.
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We can only see the radiation when the beam is
pointed in our direction.

The emission mechanism may be related to the
strong magnetic field that we think many neutron
stars must have (Fig. 11.10). The magnetic axis of
the star is probably not aligned with the rotation
axis. (This is not unusual; it also happens on the
Earth.) If the beam of radiation is somehow colli-
mated along the magnetic axis, we only see it when
the beam points in our direction. We may even see
two pulses as opposite magnetic poles pass by.

The details of the mechanism are not clear. One
possibility is that the rotation and strong magnetic
field result in an observer near the surface seeing a
rapidly changing magnetic field. Faraday’s law tells
us that a rapidly changing magnetic field can accel-
erate charged particles to large energies. These par-
ticles then spiral around the magnetic field lines,
producing synchrotron radiation. This is only a
very general outline of what might be taking place.
A considerable effort is still going on to understand
the emission of radiation under the extreme con-
ditions that exist near the surface of a neutron star.

The lighthouse nature of the pulsar mecha-
nism has another consequence. The beam only
traces out a cone on the sky. If the observer is not

Rotation
Axis

Radiation
Beam

Radiation
Beam

Role of a magnetic field in a pulsar emission
mechanism. If the magnetic axis is not aligned with the
rotation axis, then the magnetic axis can act like a searchlight
beam. [NRAO/AUI/NSF]

on that cone, the pulsar will never be visible. This
is also true for a lighthouse. If you are directly
above the lighthouse, you will never see the light.
Any given pulsar will only be seen by about 20%
of the potential observers. This means that our
galaxy contains many more pulsars than the few
hundred that we actually observe. This is espe-
cially true since we cannot survey the whole
galaxy for pulsars. Current estimates place the
number of pulsars in the galaxy at about 200 000.
Probably the most extensively studied pulsar
is one in the center of the Crab Nebula, the rem-
nant of the supernova explosion observed in
1054. We have already seen that the emission
from the Crab Nebula is polarized, suggesting
synchrotron radiation, and that it gives off most
of its energy in the radio part of the spectrum.
We have also seen that the energy loss via syn-
chrotron radiation is so great that the nebula
should have faded considerably. Something is
replacing the energy that is radiated away. The
total energy loss rate of the nebula is about 3 X
10%® ergfs, or about 10° L, It is known that there
is a star with an unusual spectrum at the center
of the nebula. This star is known as Baade’s star
after Walter Baade who first noted its peculiarity.
A very rapid pulsar was discovered at the posi-
tion of this star. Its period is 0.033 s. This pulsar
was very important in ruling out rotating white
dwarfs as the source of pulsars. After the radio
pulsar was discovered, it was suggested that it
might be possible to observe optical pulses from
the star. However, to catch the star in different
parts of the cycle would require exposures of
about 10~ % s, much too short to see anything. An
interesting technique was used to get around this
problem. The star was observed for many cycles,
but the image was recorded only during a small
part of each cycle. The part of the cycle was the
same cycle after cycle. For example, we expose the
same 10~ s every period until we can see a good
image. We then shift our exposure by 10> s and
repeat the process. We use the radio signals to
synchronize our observing with the pulsing star.
Optical pulses from the Crab pulsar are shown
in Fig. 11.11. The optical pulsations are clearly vis-
ible. When the star is “on” it is the brightest star
in the field. When it is “off” we cannot see it at
all. If we just take a normal photograph of the
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nebula, we see just the average brightness of the
star. If the duty cycle is 5%, then the average
brightness is about 5% of the peak brightness.

[1.3.3 Period changes
Just as astronomers were becoming used to the idea
of pulsars as dependable clocks in the sky, it was dis-
covered that all pulsars are slowing down. Some
sample data are shown in Fig. 11.12. It was also found
that the fastest pulsars were slowing down with the
greatest rate of change of the period. This suggests
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m Period changes for the Crab pulsar.The general

slowdown is clear. Glitches, brief period increases, are indicated
by the locations of the arrows. [Michael Kramer/Lyne & Smith,
Pulsar Astronomy, 2nd edn, CUP]

The Crab Pulsar (NP
0532) in visible light. Each frame
shows an image of the field at
equally spaced points in the cycle.
When the pulsar is on, it is the
brightest object in the field.When
it is off, we cannot see it.
[NOAO/AURA/NSF]

that the fastest ones must be younger. The increase
in pulse period means that the star is not rotating as
fast as it once was. This means that the kinetic
energy of the star is decreasing. This is not surpris-
ing, since the star is giving off energy in the pulses.

The energy of a rotating sphere is given by
E = (1)2)lw?* (11.10)

The rate of change of the energy is found by dif-
ferentiating both sides with respect to time:
dE/dt = (lw) (dw/dt) (11.11)
We can relate the fractional change in energy,
using equation (11.10):
(1/E)(dE/dt) = (2/lo*)|w) (dw/dt)
= 2(1/w) (dw/dt) (11.12)

The fractional change in energy is therefore equal
to twice the fractional change in the frequency.
We can relate the change in frequency to the
change in period:
® = 2m[P (11.13)
Differentiating, we obtain

dw/dt = (—2m[P?)(dP|dt)

Using equation (11.13) to eliminate one of the
factors of P on the right-hand side gives

(1/o) (dw/dt) = —(1/P)(dP/d1) (11.14)
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The fractional rate of energy change then
becomes

(1/E)(dE/dt) = —2(1/P)(dP/dt) (11.15)

Thus, when we observe the rate at which the pul-
sar is slowing down, we can directly relate it to
the energy loss.

Example 11.4 Pulsar energy loss

Consider a rotating neutron star with a mass M = 2
Mg, and a radius R = 15 km, a period P = 0.1 s, and
a rate of change of the period dP/dt = 3 X 10 ° sfyr.
Find (a) the kinetic energy, (b) the rate at which the
kinetic energy is decreasing, and (c) the lifetime of
the pulsar if it loses energy at this rate.

SOLUTION

We find the energy from equation (11.10), remem-
bering that the rotational inertia for a sphere is
(2/5)MR?. We also use the fact that the frequency is
w = 2|P:

E = (1/2)(2/5)MR?*w?
= (1/5)(4 X 103 g)[(1.5 X 10° cm)(27/0.1 s)]*
=7 X 10" erg

To find the rate at which is energy is changing, we
find the fractional rate at which the period is
changing. We first convert dP/dt into more useful
units:

dP 33X 10 ®s/yr

dt 3 X 107s/yr

=1x10 "
The fractional rate of change is
(1/P)(dP/dt) = (1/0.1 s)(1 X 10 *3)
=1Xx10""s

This means that each second the period increases
by 10~ % of a period. We use equation (11.15) to find
the rate of change of the energy:

(1/E)(dE[dt) = —2(1/P)(dP/dt)

=-2X10 s
Multiplying both sides by E gives
dE/dt = (—2 X 107 "%/s)E

= —1.4 X 10*” erg/s

The lifetime of the pulsar, At, is just the energy,
divided by the rate at which it is being lost:

At = EJ(dE/dt)
1/(2 X 107 %s)

5% 107 s

1.7 X 10* yr

This means that pulsars have very short lifetimes
by astronomical standards. (Actually, the loss rate is
not constant, so the above calculation actually
gives an upper limit to the lifetime.)

We should note that the rate at which the pul-
sar in the Crab Nebula is losing energy is equal to
the rate at which the nebula itself is losing
energy via synchrotron radiation. This solves the
long-standing problem of the source of energy for
the nebula. As the pulsar loses energy, somehow
that energy ends up in the nebula. The connection
between the pulsar and the nebula is probably the
strong magnetic field. When we see radiation
from the Crab Nebula, it is being indirectly fueled
by the slowing down of the Crab pulsar.

Pulsars show another variation in their peri-
ods. These are sudden decreases in the period,
called glitches (also shown in Fig. 11.12). After each
glitch, the normal slowdown resumes. If the angu-
lar momentum is conserved, the rotation of the
star can only speed up if the size of the star
decreases. We think that the fast rotation and
extreme conditions at the surface put a tremen-
dous strain on the solid crust. Periodically, this
strain is relieved by a quake, and the crust then
settles into a more stable configuration. (Actually,
this explanation of glitches may work for the Crab
pulsar, which has small glitches, but it cannot
explain the larger glitches seen in some other pul-
sars. It is thought that these larger glitches may
involve a transfer of angular momentum from the
superfluid interior to the crust.)

We can relate the change in period to the
change in radius. The angular momentum is given
by

J=Ilw
= I(2m/P)
= (2/5)MR*(2m/P)

= (47/5)MR?*/P (11.16)
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Solving for P gives
P = (4m/5)MR?*/]
Differentiating with respect to R gives
dP/dR = (4/5)2MR/]
= (47/5)2MR/(5/4m)P
= 2(P/R) (11.17)

This means that a small change in period, dP, will

be caused by a small change in radius,
dR/R = (1/2)(dP/P) (11.18)

The fractional change in radius is one-half the
fractional change in period.

Example 11.5 Pulsar glitch
For the pulsar in the above example find the
change in radius for a period change of 10~ 7 s.

SOLUTION
We find dR by multiplying both sides of equation
(11.18) by R to give

dR = (1/2)(dP/P)R
= (1/2)(1 X 1077/0.1)(1.5 X 10° cm)
= 0.75 cm

This is not a very large change.

On top of slowdown and glitches, there are
additional irregular variations, such as those
shown in Fig. 11.13. Understanding these tran-
sients is a current problem in pulsar studies.
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of the slowdown and glitches have been removed. [Michael
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| 1.4 | Pulsars as probes of

interstellar space

Let’s look at what happens to pulsar signals as
they propagate through interstellar space. The
speed of the radiation depends on the index of
refraction n, which is a function of wavelength A.
The speed of the radiation is given by

c(n) = c/n (11.19)

where c is the speed of light in a vacuum (where
n = 1). We can write the speed as a function of
wavelength

c(A) = ¢/n(A)

Suppose we have two signals at wavelengths
A1 and A,. Their speeds will be different. Their
times t; and t, to travel a distance d are

(11.20)

t, = dn(ry)/c

t, = dn(r,)/c (11.21)

The difference between the two times is
At = (d/c)[n(A;) — n(Az)]

This time delay for signals at different wavelengths
is called dispersion (Fig. 11.14). If we know n(A), then
we can measure At and find out the distance d that
the signals have traveled. If d is known, measuring
t tells us about the index of refraction.

For radio waves passing through interstellar
space, the index of refraction results from the
interaction of the radio waves with electrons, and

(11.22)

Emitted Received
vV vV
W

Ax = c At

Dispersion. Pulses are emitted at the same time
at two different wavelengths on the left. They are received at

different times on the right.
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is proportional to the interstellar electron density
. That is,

nA) =1 x n, (11.23)
Then the time delay must be given by
At o dn, (11.24)

When we observe a pulsar at two wavelengths,
the signals will not arrive at the same time.
However, we know they left the pulsar at the same
time. We can attribute the time difference to inter-
stellar dispersion. By measuring the time delay At,
we can derive the quantity dn.. If we observe
objects for which we have another estimate of dis-
tance, we can derive the average interstellar elec-
tron density. This turns out to be 0.03 cm > on
average. Once we know this average n,, we can
measure At for other pulsars, which gives us d n..
Since we know n. we can estimate d. This gives us
a way of estimating the distances to pulsars that
we cannot otherwise measure distances to.

| 1.5 | Stellar black holes

Just as special relativistic effects put a limit on
the mass that can be supported by electron

degeneracy, they put a limit on the mass that can
be supported by neutron degeneracy pressure.
There is some uncertainty about this limit.
Neutron degeneracy alone can support about 2
Mgy. Neutron—neutron interactions raise this to
about 3 Mg, and this is the number that has been
regularly used. However, some calculations show
that this mass might be as large as 8 M. Whatever
the limit, if a neutron star is more massive than
this limit, it cannot be stable. We know of no
other source of pressure that will halt the col-
lapse. The star will eventually be small enough to
be contained within its Schwarzschild radius. It
will become a black hole, as described in Chapter
8. Therefore, unless all neutron stars are formed
with masses less than about 3 Mg, black holes
appear to be a normal stellar final state. Though
this can happen for individual stars, or stars in
binary systems, it is not likely that we can detect
isolated stellar black holes. We have to detect its
presence by its gravitational effects on another
star. We will therefore discuss attempts to detect
stellar black holes in the next chapter, where we
discuss close binary systems.

Chapter summary

In this chapter we saw what happens to stars of
higher mass after they leave the main sequence.
The higher mass of the core means a higher tem-
perature. This means that nuclear reactions can
proceed farther (formation of heavier elements)
in high mass stars than in low mass stars. A shell
structure develops, with each layer closer to the
center fusing heavier nuclei than the layer out-
side it.

When an iron core is built up, there is no
longer a source of energy. The core begins to col-
lapse. When a high enough density is reached,
the star explodes in a supernova. We see the
blown off material as a supernova remnant.

Questions

The left-over core of the star becomes a neu-
tron star, supported by neutron degeneracy pres-
sure. Neutron stars are observed as pulsars. We
discussed the accidental discovery of pulsars, and
the chain of reasoning to make the connection
between pulsars and neutron stars. The condi-
tions on neutron stars are quite extreme, often
involving enormous magnetic fields. These strong
fields are involved in the pulse emission mecha-
nism. As pulsars give off energy, they slow down.

If the mass of a neutron star is greater than
roughly 3 M, then neutron degeneracy pressure
will not support it and it will become a black hole.
Such objects must be detected in binary systems.

11.1. Why is the stability of *°Fe important in the
steps that lead to a supernova?

11.2. What are the distinguishing characteristics of
synchrotron radiation?
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11.3. At a given density, for equal numbers of
electrons and neutrons, electrons will exert a
greater degeneracy pressure. Why, then, are
neutron stars supported by neutron degener-
acy pressure?

(a) Suppose you have a drumhead vibrating at
10® Hz. You want to “freeze” its motion at

11.4.

Problems

different parts of the cycle. Explain how you
would use a strobe light to obtain a sequence
of photographs, each showing the drumhead
at a slightly different point in the cycle.

(b) How is this like the technique for studying
optical pulses from pulsars?

11.1. Suppose a supernova explosion throws off
5 M, of material at an initial speed of

10° km/s. (a) Calculate the initial kinetic
energy of the shell and the sum of the mag-
nitudes of the momenta of all the pieces in
the shell. (b) Suppose the shell slows down
by conservation of momentum in sweeping
up interstellar material. How much mass
will be swept up before the shell slows to

10 km/s? (c) If the average density of inter-
stellar material is 1 H atom/cm?, what is the
radius of the shell when it reaches 10 km/s?
Estimate the pressure in a 1.5 My neutron
star with a radius of 15 km.

We have already seen that hydrostatic
equilibrium allows us to estimate the
central pressure of a star as Pc = GM*R*.

(a) Show that this provides the following
mass-radius relation for neutron stars:

11.2.

11.3.

M = )14 47°G)1jmy)

(b) Use this expression to find the radius of a
1.5 Mg neutron star.

(a) If E(r) is the force on an object as a
function of radius r, show that the “tidal”
force on an object of length Ar is

11.4.

AF = (dF/dr) Ar

(b) Calculate the tidal force on your body
near the surface of a neutron star. (Do the
calculations for standing and prone
positions.)

For a 1.5 Mg neutron star with R = 15 km,
rotating 100 times per second, compare the
gravitational force on an object at the
surface with the force required to produce
the circular motion for that object (at the
star’s equator). In other words, compare the
weight of an object with the centripetal
force on it.

11.5.

11.6.

11.7.

A uniform density sphere of mass M has
initial radius r and an angular speed w,. It
collapses under its own gravity to a radius r,
conserving angular momentum. (a) How do
the initial and final kinetic energies com-
pare? (b) Account for any difference.

(a) What is the escape speed from a 1.5 Mg
neutron star of radius 10 km? (b) How does
it compare with the speed of light?

*11.8. Suppose we can measure the arrival time of

pulses to within 102 s. (a) Explain how we
can measure a pulsar period more accu-
rately than this by timing a large number of
pulses. (b) How many pulses do you have to
measure to measure a period of 0.1 s with
an accuracy of 10 % s?

*11.9. Explain why the average brightness of an

object is approximately equal to its duty
cycle multiplied by its peak brightness. Use
the fact that if b(t) is the brightness as a
function of time, then the average of b(t)
over some time interval T is given by

1 T
b) = T [b(t) dt
0

11.10. (a) Examine the stability of a rotating object

against centrifugal disruption. Show that,
for a rotating object, the requirement that
the gravitational force must at least balance
the centrifugal force, produces an expres-
sion for the minimum radius like equation
(11.9). (b) Using this result, what is the mini-
mum rotation period for a white dwarf?

*11.11. Suppose we approximate the rate of change

of a magnetic field for a stationary observer
near a neutron star as the field strength
divided by the rotation period. (a) Taking
the magnetic field to be 10'* gauss, calcu-
late the magnitude of the induced electric
field. (b) Over what distance will an electron
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*11.12.

have to travel in this field to reach a speed
of 0.1¢?

Suppose that, as a pulsar slows down, the
quantity (1/P)(dP/dt) stays constant (say at a
value of —b, where b is a positive number).
(a) If the initial period (t = 0) of the pulsar is
Py, find an expression for P(t), the period as a
function of time. (b) If the initial rotation
energy is Ey, find an expression for E(t), the
energy as a function of time. (c) If the pulsar
is formed with P, = 103 s, how long will it
take to reach P = 3 s?

Computer problem

*11.13.

*11.14.

11.15.

(a) For a pulsar of mass M, radius R, and
period P, slowing at a rate dP/dt, at what rate
is its angular momentum changing?

(b) What provides the torque for this change
in angular momentum?

Find an expression, analogous to that for
the Chandrasekhar limit, discussed in
Chapter 10, for the maximum mass star
that can be supported by neutron degener-
acy pressure.

Compare the radius of a 1.4 M neutron star
with its Schwarzschild radius.

1. Construct a table showing neutron star sizes for
masses 1, 2, 3 and 10 M. Also include columns for
average density, the acceleration of gravity at the

surface, and the rate of change of that acceleration,
dg/dr.



Chapter 12

Evolution in close binaries

12.1 | Close binaries

If the two stars in a binary system are very close
to each other, each has the effect of altering the
structure of the other star. When this occurs we
call the system a close binary system. The surface
of a star can be distorted by the stronger gravita-
tional force that the companion exerts on the
near side than on the far side. Remember, we said
that any effect that depends on variations in the
gravitational force from one position to another
is called a tidal effect. (A similar situation applies
as the Sun and Moon distort the Earth’s ocean
surface, raising the tides.)

The distortion of stars results in internal dis-
sipation of energy. As a star rotates, different
material is incorporated in the bulge. Different
layers of material rub against each other, in a
fluid friction. This lost energy has to come from
somewhere. It comes from both the orbital
energy and the rotational energy of the star. As a
result, eventually the orbits circularize and the
two stars always keep the same sides towards
each other. This is the lowest energy arrangement
for the system (see Problem 12.1). We say that the
spins are synchronized. (The Moon’s spin and
orbital motion around the Earth are synchro-
nized, and the Moon keeps the same side towards
the Earth.)

In certain situations, it is possible for material
from one star to be pulled off the surface onto the
other star. To see how this can happen, we look at
a binary system from a coordinate system rotat-
ing with the same period as that of the orbits. If

we look at the energy of a particle in this system,
the rotation of the coordinate system introduces
a term in addition to the gravitational potential.
This term is equal to J*/2mr?, where J, m and r are
the angular momentum, mass and distance,
respectively, from the origin of some particle. (We
can think of it as the term in the potential energy
which gives rise to the pseudo “centrifugal force”
in the rotating system.) When we add this term to
the gravitational potential, we have an effective
potential that can be used to describe the motions
of particles. We can draw surfaces of constant
effective potential, as in Fig. 12.1. The effective
force (gravity plus “centrifugal”) at any point on
one of these surface is perpendicular to the sur-
face. (This is analogous to contour maps of gravi-
tational potential - elevation - on Earth. The
gravitational force is perpendicular to the con-
tour lines, and you don’t have to do any work to
move along an equipotential line.)

There are five points, called Lagrangian points,
where the effective gravitational force is zero.
These points are designated L,, L,, L3, L, Ls. (Note
that the Ls Society wants to place a space station
at the Ls point for the Earth/Moon system.) The
point L, lies between the two stars, at the inter-
section point of the “figure eight” shaped surface.
L, is the dividing point between material being
attracted to one star or the other. The two sides of
the figure eight are called Roche lobes (Fig. 12.2).

The equipotential surfaces in a fluid must be
surfaces of constant pressure. If they were not,
there would be pressure differences forcing
fluid along the surface, and these forces could
not be balanced by any gravitational forces,
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which must be perpendicular to the surfaces. The
equipotential surfaces must therefore also be sur-
faces of constant density. (Again, this is analo-
gous to the situation on Earth. By the equation of
hydrostatic equilibrium, we can only have a pres-
sure gradient in the direction of the gravitation
force. That would be perpendicular to the poten-
tial lines.)

The sizes of the two Roche lobes depends on

the mass and separations of the orbiting systems. This figure
shows the Roche lobes for three mass combinations. The
masses are the best estimates for the mass in three

observed close binary systems.

In discussing the evolution of close binary sys-
tems, we divide them into three classes (Fig. 12.3):
(1) detached, in which each star is totally con-
tained within its own Roche lobe; (2) semidetached,
in which the photosphere of one star exactly fills
its side of the Roche lobe; and (3) contact binaries,
in which both stars are at or over the Roche lobe.

So far in this book, we have discussed the evo-
lution of isolated stars. However, we have already
seen that approximately half of all stars are in
binary systems. If the binaries are completely
detached, and there is no mass transfer, then the
evolution will not be altered by the presence of
the companion. However, mass transfer in semi-
detached or contact systems can influence stellar
evolution.

In general, the more massive star in a binary
system will evolve off the main sequence first.
When that star becomes a red giant, it may
become large enough to fill its Roche lobe. In that
case mass transfer to the companion will take
place. This can alter the evolution of the compan-
ion. The degree to which it alters the evolution
depends on the nature of the companion. As the
more massive star continues to lose mass, its
Roche lobe shrinks, but the Roche lobe for the
companion grows. This means that mass transfer
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Classification of close binary systems. Shaded
areas are filled with material.

will take place until the masses of the stars are
about equal. Some slow mass transfer may con-
tinue after that point.

At some point the star that was losing mass
will become a white dwarf or some other col-
lapsed object. In the following sections we look at
examples of each type of collapsed object that we
have discussed - white dwarf, neutron star and
black hole.

12.2 | Systems with white dwarfs

We first consider systems in which the first star to
evolve off the main sequence becomes a white
dwarf. Eventually, the white dwarf’s companion
goes through its evolution off the main sequence.
The companion becomes a red giant and fills its
Roche lobe. At this point mass transfer starts back
in the other direction from the original mass
transfer. Now mass is falling in on the white dwarf.
Not all the infalling matter strikes the white
dwarf. Because of its angular momentum, some of
the material goes into orbit around the white
dwarf. This orbiting material forms a disk, called
an accretion disk (Fig. 12.4). The disk forms because
material can fall parallel to the axis of rotation but
not perpendicular to that axis. (We will discuss
disk formation in more detail in Chapter 15.)

As material falls in, its potential energy
decreases, so its kinetic energy increases. The
increase in kinetic energy will not equal the
potential energy decrease, because some energy
will be radiated away. We can expect roughly half
of the change in potential energy to show up as
kinetic energy. But this increase in kinetic energy
will not produce much radiation on its own. This
is where the accretion disk helps. As the faster
moving gas strikes the accretion disk, it slows
down, but its temperature increases. The now
heated gas can then radiate.

Artist’s conception of

mass transfer leading to an
accretion disk. [STScI/NASA]
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We can estimate the energy available from the
change in potential energy as mass falls in. If the
mass starts at distance r; from the white dwarf,
and ends up a distance r, from it, the luminosity
is given by (see Problem 12.5)

L= () (00 o)

T\ dt T, 2

;GM(LM)G,l)
dt r, 1

In this equation dM/dt is the rate at which
mass is falling in, and M is the mass of the white
dwarf. We should think of equation (12.1) as the
upper limit to the actual luminosity. That is
because all of the energy gained in the infall is
not converted into outgoing radiation. In fact, the
formation of the accretion disk is crucial in this
process. The accretion disk provides a place where
the energy from the infalling material can be con-
verted into heat. The heated disk then radiates.

(12.1)

Example 12.1 Mass accretion luminosity
Calculate the luminosity for a mass infall rate of
10~® Mg/yr, onto a 1 My, white dwarf. Assume that
the material starts 1.0 X 10" cm away from the
white dwarf, and ends up 1.0 X 10° cm away.

SOLUTION
We first convert the mass loss rate into gJs:

dM (1.0 X 10" 8 Mg/yr)(2.0 X 10¥g/Mg)
dt (3.1 X 107s/yr)

=6.5 X 107 gfs
The luminosity is then

L = (6.67 X 10~ % dyn cm?/g® )(2.0 X 10> g)
X (6.5 X 10" gJs)
X {[1/(1.0 X 10° cm)]— [1/(1.0 X 10" cm)]}

= 8.6 X 10** erg/s

This is approximately 20 times the luminosity of
the Sun.

Occasionally we observe a star that suddenly
brightens by 5 to 15 magnitudes. These objects
are called novae (Fig. 12.5). The name suggests the
appearance of a new star where one was not pre-
viously seen. Some of these novae appear to be
recurrent, on time scales of up to hundreds of

m HST image of the shell around recurrent nova

T Pyxidis. This is at a distance of 2000 pc. The shell is a little
less than | parsec across. This image shows that it is made

up of a large number of small objects. This is the material
that has collected from the various nova outbursts. (Note
that Fig. 4.16 shows an HST image of the shell expanding
around Nova Cygni 1992, taken 467 days after that
outburst.) [STScl/NASA]

years. There is evidence that mass is ejected in
the process. In some cases this material can be
seen expanding away from the star. The amount
of mass ejected is about 10> M.

We think that novae are the result of ther-
monuclear explosions on the surfaces of white
dwarfs with mass falling in from a companion. The
mass falling in is from the envelope of a red giant,
and therefore contains hydrogen. (Remember, the
white dwarf has used up all of the hydrogen in
the core and has expelled the rest in its planetary
nebula.) The surface of the white dwarf is hot
enough for fusion of the hydrogen to take place.
It takes place rapidly in a small explosion, which
probably stops the mass transfer for a while.
When the transfer resumes, another explosion
can take place. Shells of material left around
novae are shown in Figs. 12.5 and 4.16.
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We think that mass transfer onto a white
dwarf can also account for type I supernovae.
Sometimes enough mass falls onto the white dwarf
to make its mass greater than the Chandrasekhar
limit, Mcy. In this case, electron degeneracy no
longer supports the star, and it collapses. The
energy from the collapse drives nuclear reactions,
which eventually build up *°Ni (with an even
number of *He nuclei). The *°Ni beta decays to
form °°Co, which, in turn, beta decays to >°Fe.
Type I supernovae have light curves with double
exponential behavior. The time scales of the two
exponentials turn out to be characteristic of these
two beta decays. We think that this process
accounts for most of the iron in the universe,
since the iron created in more massive stars is
destroyed in the type II supernova, as discussed in
Chapter 11. Light curves for type I supernove are
shown in Fig. 12.6. There is little variation in the
peak brightness of type I supernovae. We will see
in Chapter 18 that this makes them very good
“standard candles” in distant galaxies.

The nuclear energy released in these reactions
is greater than the binding energy of the white
dwarf, and the star is destroyed, leaving no rem-
nant. This explanation accounts for the light
curves of type I supernovae, their spectra and lumi-
nosities, and their occurrence in what are thought
to be old systems (as we will discuss in Chapter 13).

300 350 400

12.3 | Neutron stars in close
binary systems

In the preceding section we saw how mass transfer
in semidetached systems can alter the evolution of
a star. In this section we consider a neutron star
and a normal star in orbit around their common
center of mass. As the normal star evolves
towards a red giant, it fills its Roche lobe and
matter starts to fall onto the neutron star.

At first it was thought that this situation
could not develop. It was not clear how such a
system could form. The problem is that, for a
neutron star to be present, there must have been
a supernova explosion in the past. The first star
to go supernova in a binary is the more massive
star. The supernova explosion drives away most
of the mass of the more massive star, meaning
that more than 50% of the original mass of the
system was blown away. If this happens far too
quickly for the system to adjust the orbit
radius/period, it becomes unbound. To see this
for circular orbits, we assume that the system
starts with stars of mass m; and m, and a separa-
tion R, with speeds appropriate for a circular
orbit, given by equation (5.15). Assume that star
1 explodes and is left with a mass m, but that R
and the orbital speeds don’t change. The new
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energy is then given by equation (5.26), with m
substituted for m,. For the new system to be on
the boundary of being bound, its energy would
be zero, so we can find the value of m that makes
E = 0. It is (see Problem 12.6)

1
m ml[z n (mz/m1):| (12.2)

Note that for m; being much greater than m,
this approaches m;/2, meaning the massive star
would have to lose half'its mass. Note that, by the
discussion in Section 5.4, this result doesn’t
change for elliptical orbits, since the equation for
the energy is the same, with R replaced by the
semi-major axis.

Therefore, the explosion should break up the
binary system. This scenario explains the exis-
tence of “runaway stars”. These are individual
stars moving through space with much higher
than average speeds.

X-ray observations have been made of sys-
tems in which it appears that a neutron star is
still in orbit with a normal star. This means that
there must be some way of forming such a sys-
tem, and eventually theoreticians have come up
with a number of plausible scenarios. Different
scenarios might work in different types of sys-
tems that are found. (1) Theoretical simulations
have shown that, while most systems in which
the more massive star goes supernova first will
become unbound, there are some combinations
of initial conditions that will lead to bound sys-
tems after the supernova explosion. (2) Before
the supernova explosion, the more massive star
might have filled its Roche lobe and transferred
mass to the less massive star. If enough mass is
transferred before an explosion, the system can
stay bound. (3) An alternative explanation is
that the compact star may have originally been
a white dwarf, not a neutron star. However,
mass transfer from the companion may have
pushed the mass of the white dwarf beyond the
1.44 M, limit. The electron degeneracy pressure
could no longer support the star and it would
collapse until it became a neutron star. So, the
neutron star would have formed without a
supernova explosion. (It is interesting to note
that a 1.44 M, white dwarf that suddenly col-
lapsed to form a neutron star would, according

to general relativity, appear to exert the gravi-
tational force of a 1.3 My star. Thus, there may
be stars we think are white dwarfs, but which
are really neutron stars.)

We now suppose that we have a binary system
with a neutron star and a normal star, with mass
being transferred from the normal star to the
neutron star. The mass falling in is heated and
gives off irregular bursts of X-ray emission. To see
how this works, we look at the case of a well stud-
ied Xray source, Her X1 (Fig. 12.7a). (The name
implies the brightest X-ray source in the constel-
lation Hercules.) It is also coincident with a vari-
able star HZ Her. The star is a binary with a period
of 1.7 days. The mass of the unseen companion is
estimated to be in the range 0.4 to 2.2 M. The
X-rays are observed to pulse with a period of1.24 s.
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(a) X-ray emission from HZ Her.The intensity
is plotted as a function of time into the period. (b) X-ray
emission from a burster. [(a) Alan M. Levine, MIT Center for
Space Research; (b) MIT Center for Space Research]
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The period changes regularly throughout the
1.7 day cycle. This can be interpreted as a Doppler
shift (see Problem 12.7). We can think of the X-
rays as a signal being emitted with a period of
1.24 s. When the source is moving away from us
the period appears longer, and when the source is
coming toward us the period appears shorter. The
X-ray source also appears to be eclipsed every
1.7 days.

The mass transfer rate, estimated from the
X-ray observations, is about 10~° My/yr. The lumi-
nosity is about 10°” erg/s. The temperature is esti-
mated to be 10® K. At this temperature, we can
estimate the frequency of a photon with energy
kT. The frequency, v, is kT/h, or 2 X 10'® Hz. This
corresponds to a wavelength of 0.14 nm, clearly
in the X-ray part of the spectrum.

Theoreticians have speculated on the future
evolution of such a system. The mass transfer rate
may become so large that the X-ray emission is
quenched. The outgoing Xrays are effectively
blocked by the infalling material. This system
may eventually end up as two compact objects.

Mass transfer in a system with a neutron star
can also explain the existence of pulsars with
very short periods, as short as a few milliseconds,
known as millisecond pulsars. One of the intrigu-
ing features of these objects is that their periods
are not decreasing as rapidly as those for normal
pulsars. Some of them have values of P/(dP/dt) as
large as 10" per year. That is, in one year, the
change in the period is only 10~ '° (one-ten-bil-
lionth) of the period. This means that they are
extraordinarily stable clocks (something which
had originally been hoped for normal pulsars
until their period changes were observed, as dis-
cussed in Chapter 11).

To see how mass transfer can explain millisec-
ond pulsars, remember that if transferred material
is not aimed directly at the center of the neutron
star, it has a large amount of angular momentum.
This explains the formation of an accretion disk, as
material goes into orbit rather than falling onto
the neutron star surface. As material leaks inward
from the accretion disk onto a (normal) pulsar, it
transfers a lot of angular momentum to the pulsar,
causing a large increase in the rotation rate
(decrease in the period). This explains how a nor-
mal pulsar can be “spun up” into a millisecond pul-
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[Joseph Taylor, Princeton University]

sar. Also, as long as there is mass transfer, the rota-
tion rate can be kept very high, explaining why the
slowdown of millisecond pulsars is very small.

While discussing neutron stars in binary sys-
tems, we should mention one other interesting
object. This is a radio pulsar discovered in 1974 by
Joseph Taylor and Russel Hulse , then of the University
of Massachusetts. This pulsar has a period of 0.059 s
but the period varies periodically, suggesting that
the pulsar is in a binary system. The variation in
the period is like a Doppler shift (Fig. 12.8), with
the period appearing longer when the pulsar is
moving away from us and shorter when it is com-
ing towards us. This system provides us with an
interesting test of a prediction of general relativ-
ity-gravitational radiation. For their studies of
this binary pulsar, Taylor and Hulse were awarded
the Nobel Prize in physics in 1993.

Since the gravitational radiation carries away
energy, the total energy of the orbit should be
decreasing. In hopes of seeing this, Taylor and his
co-workers have monitored this binary pulsar for
several years. Some results are shown in Fig. 12.9.
They have found that the orbital period is chang-
ing by —2.3 X 10~ '*s/s. The change in energy of
the orbit corresponds to the energy that would be
given off by gravitational radiation from the
orbiting bodies. This may provide us with the
first indirect observational confirmation of grav-
itational radiation.
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predictions from general relativity include gravitational
radiation as the mechanism for energy loss. [Joseph Taylor,
Princeton University]

12.4 | Systems with black holes

In Chapter 11, we saw that neutron stars are sup-
ported by neutron degeneracy pressure. However,
if the neutron star is too massive, neutron degen-
eracy pressure is insufficient to support the star.
We think this limit is about 3 M. We know of no
other source of pressure that will stop the col-
lapse of the star. It will collapse right through the
Schwarzschild radius for its mass, and will
become a black hole. Black holes would be a nor-
mal state of evolution for some stars.

How would we detect a stellar black hole? We
obviously could not see it directly. We could not
even see it in silhouette against a bright source
since the area blocked would be only a few kilo-
meters across. We have to detect stellar black
holes indirectly. We hope to see their gravita-
tional effects on the surrounding environment.
This is not a hopeless task, since we might expect
to find a reasonable number of binary systems
with black holes. By studying a binary with a sus-
pected black hole, the problem would be to show
the existence of a very small object (as inferred
from orbits) with a mass in excess of 3 M.

How do we find a candidate binary to study? In
Section 12.3, we saw that a neutron star in a binary
system can give rise to strong X-ray sources. The
importance of the neutron star is that its radius is
so small that infalling material acquires enough
energy to give off Xrays. A stellar black hole would
be smaller than a neutron star, so material falling

in would also emit X-rays (before crossing the event
horizon). We could start searching for stellar black
holes by looking for irregular X-ray sources.

One interesting possibility is known as Cyg X-1
(Fig. 12.10), the brightest X-ray source in Cygnus.
The Uhuru satellite showed this to have both
short and long term variability. Until the Einstein
observatory was launched in 1978, the positions
of X-ray sources were not accurately determined.
However, there is also a radio source associated
with the X-ray source. We know that the X-ray and
radio sources are associated because they have
the same pattern of variability. The position of
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the radio source is determined accurately from
radio interferometry. Once the radio position was
known, optical photographs were studied to see if
there is an optical counterpart. This optical coun-
terpart was found to be a ninth magnitude star
HDE226868. A study of the star’s spectrum shows
that is an 09.7Ib (blue supergiant) star. This places
its mass at about 15 Mg,

This star is also a spectroscopic binary. Its
orbital period is 5.6 days. The star also varies in
brightness with this period. The amount of varia-
tion is 0.07 mag. The source of the variation is
thought to be a distortion in the shape of the
blue supergiant due to thee strong tidal effects of
the unseen companion. The distortion results in
the star appearing as different sizes at different
points in its orbit. From the amount of brightness
variation, it was concluded that the inclination
of the orbit is 30°.

We now look at what can be deduced about the
companion. From the analysis of the Doppler shift
data, the mass function (discussed in Chapter 5)
can be found. Since we know the mass of the blue
supergiant and have an estimate of the inclination
angle of the orbit, we can derive the mass of the
unseen companion from the mass function. The
best estimate for this is 8 M. There is some uncer-
tainty, but it seems very likely that the mass of the
unseen companion is a least greater than 4 M.

The X-ray observations tell us that the com-
panion must be very small. This is because the
X-ray emission varies significantly in intensity on
time scales of about 5 ms. This requires that the
emitting region be less than 1500 km in extent
(see Problem 12.9). Thus, we have an object that is
definitely smaller than a normal star, but which
has a mass greater than 4 M, (and probably closer
to 8 Mp). It would therefore seem likely that the
object is a black hole!

It is interesting that such an astonishing con-
clusion rests on the foundation of some “stan-
dard” observational techniques. These include
using the spectrum of HDE226868 to find its
mass, and the classical analysis of spectroscopic
binary orbits, using the mass function.

Though most astronomers probably accept the
black hole explanation for Cyg X-1, the argument
is not airtight. For example, our knowledge of the
mass of the visible star comes from assuming that

it is like another 09.7Ib star. However, we know
that it is in a close binary system, and is tidally dis-
torted. We are only now beginning to understand
stellar structure and evolution in close binary sys-
tems. It may be that the spectrum we classify as
09.7Ib is really produced by a star of a different
mass. We are also not sure of the inclination of the
orbit, and it enters in the mass function as sin®i. It
is also possible to avoid an 8 M companion if we
postulate the triple-star system, but searches for a
third component have not been successful.

For ten years, Cyg X-1 was the only strong stel-
lar binary black hole candidate. Astronomers
have studied large numbers of possible candi-
dates. The starting points are generally X-ray
sources for which optical counterparts can be
identified. In the last few years, a few more solid
possibilities have emerged.

One is an X-ray source in the Large Magellanic
Cloud (a companion to our own galaxy), known as
LMCX-3. Based on Einstein positional observations,
an optical counterpart to the X-ray source was
identified. It turns out to be a 17th magnitude B3V
star. The star is a spectroscopic binary with an
orbital period of 1.7 days, and an orbital Doppler
shift of 230 km/s. The system does not eclipse, so
this puts some constraints on the orbital inclina-
tion. An inital analysis put the most likely mass
range of the compact object as 4 to 11 M. A more
detailed analysis showed that it is more than 6 M.
One uncertainty in studies of this object is that it
seems that some of the optical light comes from
the accretion disk, making analysis of the optical
variability more difficult. (This is not a problem in
Cyg X-1, where the optical light appears to all come
from the visible star.) Even with these uncertain-
ties, it seems that 4 M, is a reliable lower limit.

The third strong candidate that has emerged is
different from Cyg X-1 or LMCX-3 in that it is a
transient X-ray source. Depending on what cata-
loge it is found in, it has numerous names: 0620-00,
V616 Mon, Nova Mon 1975, 1917. It has been identi-
fied with an optically recurrent nova (with 1917
and 1975 being the two most recent outbursts).
The identification of the X-ray and optical novae
allowed for the secure identification with the
X-ray source with an optical source that could be
studied in detail. The optical star is a K5/7 dwarf.
The properties of low mass dwarfs are better
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known than the more massive stars found in Cyg
X-1 and LMCX-3. This K dwarf was found to be a
spectroscopic binary with a period of 7.8 hr, and
a large orbital Doppler shift (470 km/s). Analysis
of the mass function places a lower limit of 3 M,
on the mass of the compact companion. An analy-
sis of the mass ratio of the two objects placed the
mass of the compact object between 4 and 9 M.
Many objects have been studied in detail, but
there are always problems in the chain of reason-
ing. For example, a promising source, LMCX-1, has
two possible optical counterparts. Of the three
objects mentioned here, Nova Mon 1975 probably
has the best evidence for the presence of a black
hole. It is amazing to contemplate how far
astronomers have come when we can calmly say
that the most likely explanation for some observed
phenomenon is the presence of a black hole!

12.5 | An unusual object: $5433

To form an idea of the fascinating range of phe-
nomena encountered in close binary systems, we
take a look at an object best known by its desig-
nation in a particular catalog, S5433. (It was cata-
loged long before is unusual nature was realized.)
The object is a binary at the center of a supernova
remnant. It is therefore not surprising that one of
the members of the binary system is a neutron
star or black hole. The period of the binary sys-
tem is 13.087 days. The system is also a periodic
X-ray source.

Optical observations reveal absorption and
emission lines with very large Doppler shifts. The
required speeds are up to 0.26¢. At any time, both
blueshifted and redshifted components are pres-
ent. The magnitude of the Doppler shift goes
through a 164 day cycle, as shown in Fig. 12.11.
There is an interesting asymmetry in the Doppler
shifts. The redshift is always larger than the
blueshift. The maximum redshift corresponds to
about 50 000 km/s, and the maximum blueshift
corresponds to about 30 000 km/s. If we take an
average of the redshifted velocity and blueshifted
velocity at any instant (remembering that blueshift
corresponds to a negative radial velocity), we
obtain a fairly constant value of about 12 000 kmy/s.

The basic model to explain this behavior is
shown in Fig. 12.12. It involves a binary system in
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Margon (University of Washington)/Margon, B. Astrophys. J.
Lett, 230, L41, 1979, Fig. 3]

which one member is either a black hole or a neu-
tron star. The period of the binary is 13.087 days.
The compact object is a source of two jets, mov-
ing in opposite directions. The jets are emitted in
a cone with a half-angle of about 20°. The cone is
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A model for SS433, showing the twin jet geom-
etry. [Bruce Margon (University of Washington)]

inclined by 80° to the line of sight. The compact
object precesses with a period of 164 days. (By

precession we mean the changing of the orienta-
tion of the axis of rotation caused by an external
torque. This is like the precession of the Earth,
under the combined effects of the Sun and Moon,
as discussed in Chapter 23.) This causes the pro-
jected angle of the jets to go through a 164 day
cycle, giving the variations in the Doppler shifts.

In this model there is a natural explanation
for the 12 000 km/s offset in the Doppler shifts. It
comes from a transverse Doppler shift arising
from the fact that the jet is moving at an appre-
ciable fraction of the speed of light. (We discussed
the transverse Doppler effect in Chapter 7; it is
essentially a time dilation effect.) At v/c = 0.26,
v = 1.036. According to equation (7.5) this pro-
duces a wavelength which is 1.036 times the rest
wavelength. If we interpret this shift as arising
from a normal Doppler shift, it corresponds to
v[c = 0.036, or about 11 000 km/s. Since this is just
a time dilation effect, this is added in as a con-
stant to any radial Doppler shift. Since it always
increases the wavelengths, it make the redshifts
larger and the blueshifts smaller.

In this general model, the X-rays come from
material falling into an accretion disk around the
compact object. The binary is an eclipsing binary,
so we can estimate the masses of the components.
The best estimate for the mass of the companion
is about 4 Mg. This would make it a black hole.
However, there are enough uncertainties in the
estimate to allow it to be either a black hole or a
neutron star. Theoreticians are still working on
the mechanisms for the collimating of the jets,
and for generating the energy for getting the jets
moving so fast.

Chapter summary

We saw in this chapter how the evolution of stars
is altered by placing them in close binary sys-
tems. The change in evolution arises mainly from
strong tidal effects and from mass transfer.

If the component receiving mass is a compact
object — white dwarf, neutron star or black hole -
infalling material can acquire enough energy to
emit X-rays as it falls in to form an accretion disk.

We saw how mass transfer onto white dwarfs
can account for novae. If mass transfer is large
enough, it can account for type I supernovae.

We saw how mass transfer onto neutron stars
can produce strong X-ray emission, such as from
HZ Her. We also saw how mass transfer can spin
up the pulsar, making it into a millisecond
pulsar. We also saw how studies of a binary pul-
sar have provided evidence for gravitational
radiation.

We saw how studies of Cyg X-1, LMCX-3 and
Nova Mon 1975 have provided us with evidence
for the existence of a stellar black hole.
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Questions

12.1.

12.2.

12.3.

12.4.

Explain why surfaces of constant effective
potential must be surfaces of constant density.
Why is the formation of an accretion disk a
likely event when we have mass transfer onto
a compact object in a binary system?

Why is the first star in a binary to go super-
nova usually the more massive one?

Why is it unusual to find a neutron star in a
binary system?

Problems

12.5. How does mass transfer explain the existence

and stability of millisecond pulsars?

12.6. Why is the binary pulsar so important?

12.7. Explain the steps leading to the conclusion
that Cyg X-1 is a black hole. Which are the
most suspect? Compare the problems in the
reasoning for LMCX-3 and Nova Mon 1975.

12.1.Show that, for a fixed total angular momen-

tum, the “synchronized” spins situation is
the lowest energy state for an orbiting system.
(Hint: Consider the sum of the orbital and
rotation energies.)

12.2.The radial force F, is related to a potential

V(r) by
F. = —dV(r)/dr

Show that the “centrifugal” force can be
derived from the term J?/2mr? in the effective
potential.

*12.3.Suppose we have a pulsar in orbit around

another object. The pulse period, as emitted by
the pulsar, is Py. The orbit is circular with a
speed v. We are observing in the plane of the
orbit. Find an expression for the observed pulse
period as a function of the position of the pul-
sar in the orbit. (Hint: Consider the advance
and delay in the arrival time of pulses as the
pulsar moves toward us and away from us.)

12.4.For the rate of change in the orbital period

for the binary pulsar discussed in Section

Computer problems

12.3, what is the fractional change in the
orbital energy AE[E per second?

12.5.Derive the first line of equation (12.1).

12.6.Derive equation (12.2), following the outline
given in the discussion.

12.7.For the system HZ Her, how large a shift in
the pulsar period would be observed if the
visible star has a mass of 3.0 M, the com-
pact object has a mass of 2.0 My, and the
orbital period is 1.7 days? The pulsar period
is 1.24 s.

12.8.For HZ Her, assuming that the material falls
in from far away at the given rate, how close
must it come to the star to provide the given
X-ray luminosity?

12.9.For Cyg X-1, the most likely value of the mass
function is

(M sin i)*/(My + Mop)® = 0.25 Mo.

For an inclination angle of 30°, and an optical
star mass of 33 Mg, find the mass of the com-
pact object.

12.1.

12.2.

Draw a graph showing mass accretion luminosity
for material falling onto a neutron star (at a rate
of 10~ ® My/yr) for neutron star masses ranging
from 1 to 3 My. For each neutron star mass,
assume the radius as given by the mass-radius
relation discussed in Chapter 11.

Construct a table showing how much mass would
have to be lost in a supernova explosion to unbind

the system, using equation (12.2), for combina-
tions involving m; = 2, 5, 10, 20 and 50 Mg and
m, = 1,2 and 5 Me.

12.3. Repeat Problem 12.9, showing the effects of
changing the inclination angle to 15° and 45°, and
the optical star mass to 28 M and 38 M.



Chapter 13

Clusters of stars

When we look at the spatial distribution of stars
in our galaxy, we find that most of the light is
concentrated in a thin disk. We are inside this
disk, so we see it as a band of light on the sky,
called the Milky Way. We will discuss this farther
in Part III, but we will see in this chapter that
location of stars in the galaxy can tell us some-
thing about those stars. In particular, some stars
are confined to the thin disk of the Milky Way,
while others form a more spherical distribution.
In this chapter, we will discuss groupings of stars,
called clusters, and see how they vary in size, con-
tent and galactic distribution.

13.1 | Types of clusters

We distinguish between two types of star clusters —
galactic clusters and globular clusters.

Galactic clusters are named for their confine-
ment to the galactic disk. A selection of images of
galactic clusters is in Fig. 13.1. A familiar galactic
cluster, the Pleiades, is shown in Fig. 13.1(a). Note
the open appearance in which individual stars
can be seen. Because of this appearance, galactic
clusters are also called open clusters. Galactic clus-
ters typically contain <10° stars, and are less than
~10 pc across. Recent sensitive near IR surveys are
showing more members than we had previously
thought in many clusters. In the photograph, we
see some starlight reflected from interstellar
dust. Galactic clusters are sometimes associated
with interstellar gas and dust.

Globular clusters are named for their compact
spherical appearance (Fig. 13.2). They have 10* to

10° stars, and are 20 to 100 pc across. They seem to
have no associated gas or dust. Some do have plan-
etary nebulae, though. Globular clusters are not
confined to the disk of the galaxy. Harlow Shapley
used RR Lyrae stars and Cepheids to find the dis-
tances to globular clusters. This placed the globu-
lar clusters in three dimensions. It was found that
the globular clusters form a spherical distribution
with the Sun being about 10 kpc from the center.
(This is still one of the best techniques for finding
the distance to the galactic center.)

Before we look at the properties of the clusters
themselves, we will look at an important tech-
nique for determining distances to relatively
nearby galactic clusters.

13.2 | Distances to moving clusters

Let’s assume that we have a star (or cluster) mov-
ing through space with a velocity v. The velocity
makes an angle A with the line of sight. We can
break the velocity into components parallel to
the line of sight and perpendicular to the line of
sight. The component parallel to the line of sight
is the radial velocity v, and is responsible for the
Doppler shift we observe. The component per-
pendicular to the line of sight is the transverse
velocity vr. It is responsible for the motion of the
star across the sky, called the proper motion.

From the right triangle in Fig. 13.3, we can see

that these quantities are related by
v =2 + v (13.1)

V. = Vv cos A (13.2)
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(b)
m Open clusters. (a) The Pleiades (M45) in Taurus.

The nebulosity seen here is starlight reflected from interstel-
lar dust. (b) M6, also known as the Butterfly Cluster. (c) M7
in Scorpius. Its distance is about 300 pc, and it is about 8 pc

across. (d) M37 in Aurigi, at a distance of 1.5 kpc.
[(a) Courtesy of 2MASS/UMASS/IPAC/NASA/JPL/Caltech;
(b)—(d) NOAO/AURA/NSF]

v = vsin A (13.3)

tan A = vqfv, (13.4)

The relationship between proper motion and
tangential velocity is shown in Fig. 13.4. The
proper motion u, expressed in radians per sec-

(d)

ond, is just the transverse velocity divided by the
distance to the star d:

p(rad/s) = vp(km/s)/d(km) (13.5)

The greater the transverse velocity, the faster the
star will appear to move across the sky. Also, the
closer the star is, the greater the motion across
the sky. In general, proper motions are very small,
amounting to a few arc seconds per year, or less.
(The largest proper motion is 10.3 arc secfyr for
Barnard’s star.) For this reason, we would like to
rewrite equation (13.5), expressing u in arc sec-
onds per year, v in kilometers per second, and d in
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(b)

Globular clusters. (a) M3, in Canes Venatici. (b) M5,
at a distance of 0.8 kpc, is one of the most massive clusters in
our galaxy. (c) M15 in Pegasus, at a distance of | kpc. (d) M80.
[(@), (b) NOAO/AURA/NSF; (c), (d) STScl/NASA]

parsecs. We can then rewrite equation (13.5) as

Vr o d
[1km/s] N [1rad/s] [1km]
[1rad]
[2.063 X 10° arc sec/rad ]
1yr " [3.086 X 10" km ]
[3.156 X 107s/yr] [1pc]
vy(km/s) = 4.74u(arc seclyr)d(pc) (13.6)
In general, we can measure the radial velocity (d)
(from the Doppler shift) and we can also measure
the proper motion. If we know the transverse If, instead of vy, we know A, then we can use
velocity, we can find the distance from equation (13.4) in equation (13.7) to give

d = vpl4.741 (13.7) d =v,tan A[4.74u (13.8)
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Observer

Space velocity. The velocity of the star is v, which
makes an angle A with the line of sight. The radial and tan-
gential components of the velocity are v, and v, respectively.

With a cluster of stars, we can compare the
proper motion with the rate at which the angular
size of the cluster changes to find A. To see how
this works, let us consider the case of a cluster
moving away from us (positive radial velocity). As
the cluster moves away (Fig. 13.5), A becomes
smaller and approaches zero. As the cluster moves
farther away, the proper motion approaches zero
(by equation 13.5). Thus, the cluster appears to be
heading toward a particular point in the sky. We

vr (At) The depend-
ence of the proper motion
on the distance d and tan-
gential speed vy.We follow
the motion of the star for a
time At.
dl wa

Observer Convergent

Point

Convergent point.As the cluster moves farther
away, the angle A between v and the line of sight approaches
zero.That is A| > A, > As.As this happens, the cluster
approaches one line of sight, the convergent point. Note that
this figure is exaggerated to show the effect. Real clusters do

not move that much over the times we could observe them.

call this point the convergent point of the cluster.
We can see from the figure that the angle
between the current line of sight and the line of
sight to the convergent point is the current value of
A. Similar reasoning applies to clusters that are
moving toward us. They are moving away from
their convergent point, so we find it by extrapo-
lating their motion backwards in time.

To apply these ideas, we take a series of
images a number of years apart. From the proper
motion, and the change in angular size, we can
find the convergent point, and therefore we
know A. This is shown schematically in Fig. 13.5.

N ‘0’ Lot 4
0 o o
e . *
' . R
. o .°
. 0:¢ i
0
o
Convergent
Point

Schematic representation of motions of stars
within a cluster. Arrows represent total motions.
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We measure the radial velocity v, and proper
motion u. Since we know A, v, and u, we can find
d from equation (13.8). The best determination of
a distance to a moving cluster is the Hyades. This
determination is an important cornerstone in
our determination of distances to more distant
objects in our galaxy and in other galaxies.

13.3 | Clusters as dynamical entities

In this section we look at the internal dynamics
of star clusters. If the gravitational forces between
the stars are sufficient to keep the cluster together,
we say the cluster is gravitationally bound. (We
have already discussed the idea of gravitational
binding when we talked about binary stars, in
Chapter 5 and Chapter 12.) However, gravity does
more than assure the overall existence of the
cluster. As stars move around within the cluster,
pairs of stars will pass near each other. The gravi-
tational attraction between the two stars in the
pair will alter the motion of each star. The momen-
tum and energy of each star will change in this
gravitational encounter. Thus, these encounters
alter the distribution of speeds, the number of
stars traveling at a given speed. If there has been
sufficient time for many encounters to occur, the
distribution of speeds will reach some equilib-
rium. For every star that suffers a collision chang-
ing its speed from v, there is another collision in
which some other star has its speed changed to
v;. (We refer to these gravitational encounters as
collisions, even though the stars never actually
get close enough for their surfaces to touch.)
When a cluster has reached this stage, we say that
it is dynamically relaxed.

13.3.1 The virial theorem

In a dynamically relaxed system, the kinetic and
potential energies are related in a very specific
way. This relationship is known as the virial theo-
rem. In this section we derive it.

We begin with a collection of N particles. (We
can think of each star in a cluster or each atom in
a gas cloud being represented by a particle.) To
simplify the calculation we assume that all parti-
cles have the same mass m. The final result would
be the same if we allowed for different masses.

(See Problem 13.10.) We let the position of the ith
particle, relative to some origin, be r;. If we have
two particles, i and j, the vector giving their sepa-
ration is r; — r;, as shown in Fig. 13.7. We let F; be
the net force on the ith particle. We can therefore
write the equation of motion for this particle as
d’r;
E=m ae

(13.9)

We are looking for a relationship between vari-
ous types of energy. The vector dot product between
force and distance will give us an energylike
quantity. We therefore take the dot product of r;
with both sides of equation (13.9) and then sum
the resulting quantities over all the particles to
give

N N d*r;
Sr-E=m>r- (dtz)
i=1

i=1

(13.10)

We can rearrange this by using the following:

di(r?) 4 < dri>
=—|2r; - —
dt? dt dt
=2(G) = (&)
N\ ar e

where we have used the fact that for any vector
X,

(13.11)

xX(=x-x = x*

This gives

> nen= (3 Jaal Zm) - 2ol
F=(-)— 2 ) —

;rl ! (2 dr? i;mn Zm dt

(13.12)

m Position vectors r; from the origin to the ith par-
ticle and r; from the origin to the jth particle.
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We now introduce the velocity of the ith par-
ticle, v;, defined as

v; = dry/dt (13.13)

We also introduce the quantity I, defined as
N
= > mr} (13.14)
i=1

If r; were the distance of particle i from some
axis, then I would be the moment of inertia about
that axis. However, an axis is a line, and r; is
measured from a point (the origin). Therefore, I is
a quantity similar to, but not the same as, the
familiar moment of inertia. (For most normal
shaped objects it has a numerical value close to
the moment of inertia.) We also set the total
kinetic energy K equal to the sum of the kinetic
energies of the individual particles,

1 N
K= (*) > mv?
2/

In terms of these quantities, equation (13.12)
becomes

(13.15)

EN:r -F = 14T EN:mV-Z (13.16)
= =
1 4%
—— — 2K 13.17
2 d¢? ( )

We evaluate 3, 1; - F; for the F; being the gravi-
tational forces between particles. We let

l‘ij = I'j b ¥l (1318)

be the vector distance between the two particles.
The net force on a given particle is the sum of the
forces exerted on it by all of the other particles.
Therefore

N mZGr,.

(13.19)

‘rg‘

which gives us

N N N I T
DUREED ) Gm2< )

(13.20)

3
i=1 i=1j ‘I‘U‘

Since the i and j both go over the full range, 1
to N, we could interchange the i and j on the
right-hand side of equation (13.20) without really
changing anything. If we rewrite the right-hand
side, interchanging i and j, and then adding it to

the right-hand side, we will have a quantity equal
to twice the original right-hand side. This gives us

EN:ri-Fi=( )EE ( : +rj"3 )(1321)

‘rg ‘ ]1

i#]

(13.22)

where we have also used the fact that [r| = [rj].
This procedure actually allows for a simplifica-
tion. To see this, we first multiply out the numer-
ator on the right-hand side to obtain

N

Soor=(1)3 Som

i=1 i=1j=1
i#j

IUEBVIES (R iR S
X ( . (13.23)
‘rij‘
We also note that
|rij|2 =@ — ) (r — 1)
=1+ —rer - I (13.24)
Substituting into equation (13.23) gives
v r?
Eri-Fi=< )EEG ( 3) (13.25)
i=1 i=1j=1 ‘ ij‘
i#j
which simplifies to
N N N 2
Er,--F;—( >22< ) (13.26)
i=1 i=1] ‘rg‘

=1
i#]

The term on the right-hand side is the sum of
the gravitational potential energies of each pair
of particles. Note that each pair appears twice in
the sum, since the energy of the pair is inde-
pendent of which particle in the pair we count
first. For example, for particle 1 and 2, both the
quantities Gm?/|r;,| and Gm?/|r,,| appear. This
means that the double sum on the right-hand
side of equation (13.26) gives us twice the gravita-
tional potential energy, but there is also a factor
of one-half in front, so the right-hand side is
equal to the gravitational potential energy U. We
can therefore rewrite equation (13.17) as

(1)@ = 2K+ U
2/)d

If we take the time average of these quantities
over a sufficiently long time, the left-hand side

(13.27)
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approaches zero. This leaves

0=2(K)+ (U) (13.28)

where the () represents the time average of the
enclosed quantity. Equation (13.28) is the sim-
plest form of the virial theorem.

The virial theorem applies to any gravitation-
ally bound system that has had sufficient time to
come to equilibrium. Even simple systems, like
binary stars, obey the virial theorem (see Problem
13.11). If the orbits are circular then K = —U/2 at
all points. For elliptical orbits, r and v are chang-
ing, so K and U are changing, while their sum E is
fixed. This means that we have to average over a
whole orbit to get (K) = —(U)/2.

Remember, for any system, the total energy is

E=K+U (13.29)

So for a system to which the virial theorem, in
the form of equation (13.28) applies, we set (K) =
—(U)/2, to give

E = [U/2 (13.30)

(We don’t have to take the time average of E, since
E is constant.) Remember, the gravitational poten-
tial energy, defined so that it is zero when the
particles are infinitely far apart, is negative.
Therefore, the total energy of a bound system is
negative. This means that we have to put energy
in to break up the system.

13.3.2 Energies

We now look at the kinetic and potential energies
of a cluster. In Section 9.1, we saw that the gravi-
tational potential energy for a constant density
sphere of mass M and radius R is

U= —(3/5)GM?*/ R

Example 13.1 Potential energy for a globular
cluster

Find the gravitational potential energy for a spheri-
cal cluster of stars with 10° stars each of 0.5 M.
The radius of the cluster core is 5 pc.

SOLUTION
We use the above equation to give

(0.6)(6.67 X 10~*dyn cm /g?)[(0.5)(2 X 10% g)(10%) ]*
(5 pc)(3.18 X 10"cm/pc)

= —25 X 10°' erg

If the virial theorem applies, then the total energy
isE=-U/2=1.2 X 10 erg.

We now look at the kinetic energy. In a cluster
of stars, the kinetic energy is in the random
motions of the stars. If the cluster has N stars,
each of mass m, the kinetic energy is

1 N
K= (E) > mv?

i=1

1 N,
- (3)m 2

The total mass of the cluster is M = mN; so

(o2

If we take the sum of N quantities and then divide
by N, the result is the average of that quantity.
Therefore (1/N) X v2 is the average of the quantity
v*. We write this average as (v*). Remembering that
mN = M, equation (13.31) becomes

K = (13.31)

K = (1/2)MW?% (13.32)

If we put this and the potential energy into the
virial theorem, we find

My? = (3/5)GM*/R (13.33)
Dividing both sides by M gives
w* = (3/5)GM/ R (13.34)

The quantity (v%) is the mean (average) of the
square of the velocity. If we take the square root
of this quantity, we have the root mean square veloc-
ity or rms velocity. It is a measure of the internal
motions in the cluster.

Example 13.2 The rms velocity in a cluster
Find the rms velocity for the cluster used in the
previous example.

SOLUTION
We use equation (13.34) with the given quantities:

(0.6)(6.67 X 10~ 8dyn cm?/g*)(0.5)(10°)(2 X 10**g)
(5 pc)(3.18 X 10*¥ cm/pc)

WA

= 2.5 X 10" (cm/s)?
Taking the square root gives
Vims = 1.6 X 10° cm/s

= 16 km/s
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We can relate the gravitational potential energy
to the escape velocity v., the speed with which an
object must be launched from the surface to
escape permanently from the cluster. Consider a
particle of mass m, moving outward from the sur-
face at speed v,. If the object escapes, it must get
so far away that the potential energy is essen-
tially zero. Since the kinetic energy is always
greater than or equal to zero, the total energy of
the object far away must be greater than or equal
to zero. Since the total energy is conserved, the
total energy for an escaping object must be zero
or positive when it is launched. The kinetic
energy of the particle is

KE = (1/2)mv? (13.35)

Since it is at the surface of the sphere of mass M
and radius R, its potential energy is just

PE = —GmM/R (13.36)

For the total energy to be zero (the condition that
the particle barely escapes), KE = —PE, giving

v2 = 2GM/R (13.37)

Note that the escape velocity is approximately
twice the rms speed. For a gravitationally bound
system, we would expect v, > v,,.. If it were the
other way around, many particles would have
speeds greater than the escape velocity and would
escape. The cluster would not be gravitationally
bound.

I3.3.3 Relaxation time

In any given cluster, stars will be in orbits about
the center of mass. Pairs of stars can exchange
energy and momentum via gravitational encoun-
ters. (By exchange, we just mean that some energy
and momentum is transferred, not that each one
acquires the other’s energy and momentum.) As
we have said, if there are enough collisions, an
equilibrium velocity distribution will be reached.
Not all are moving at the average speed. Some
move faster and others move slower. In a cluster,
there will be some stars with speeds greater than
v.. They will escape. This alters the velocity distri-
bution by removing the highest velocity stars. The
remaining stars must adjust, re-establishing the
equilibrium velocity distribution. (This is equiva-
lent to the evaporation of a puddle of water on the

n stars/volume

4 o
o

V trel

SRR Calculation of relaxation time.

Earth. The highest speed molecules escape, leav-
ing the water a little cooler.)

In discussing cluster dynamics, it is important
to remember that we are studying the motions of
the stars in a cluster relative to the center of mass
of the cluster. We are not concerned with the
overall motion of the cluster through space.

We call the time it takes to re-establish equi-
librium the relaxation time, t..;. We can estimate
t..; by following a single star as it moves through
the cluster (Fig. 13.8). We assume that there are n
stars per unit volume in the cluster. We would
like to know how long our star will go between
collisions with other stars. That depends, in part,
on how we define a collision. We would like to
define a distance r and say that if two stars pass
within this distance we will count it as a colli-
sion. We define r so that the potential energy of
the star is equal in magnitude to the Kkinetic
energy of our star. If our star is moving with
speed v, this means that r is defined by

Gm?/r = mv*/2 (13.38)

We can think of our star as sweeping out a
cylinder in a given time t.;. The radius of the
cylinder is r, and the length is vt,.;. Therefore, the
volume swept out is 7r’vt,.,. The number of stars
in this volume is n multiplied by the volume. If
we define t, so that it is the time for one colli-
sion, we have the condition

n(mrvie) = 1 (13.39)
Solving for t,. gives
t = 1/nar’v (13.40)

Substituting for r from equation (13.38) gives

t = V2 /4TG*m*n (13.41)
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The number of stars per unit volume is simply

N
(47/3)R?

13.42
M/m (13.42)

(47/3)R?

Substituting into equation (13.41) gives

v’R3
trel = 2
3G*'mM
(13.43)
(R/v)v*RA(M/m)

3G*M?

Using the virial theorem to eliminate two factors
of v?, and ignoring numerical factors that are
close to unity (since this is just an estimate), this
simplifies to

trel = (R/V)(M/m)

= NR/v (13.44)

Equation (13.44) is just an estimate in which
the effects of a few close encounters dominate.
However, for every close encounter that a star has,
it has many more distant encounters. This is
because the effective area for an encounter at dis-
tance r is proportional to 1%, The effect of any one
distant encounter is small. However, because there
are so many of them, they actually dominate the
relaxation process and speed it up. A more detailed
calculation shows that the effect of many distant
encounters is to reduce t..; by a factor of 12 In(N/2).

Example 13.3 Relaxation time
Estimate the relaxation time for the cluster dis-
cussed in the two previous examples.

SOLUTION
We use equation (13.44). For the speed v, we use the
calculated v p:

(10%)(5 pc)(3.18 X 10 cm/pc)

rel 1.6 X 10°cm/s
=1.0 X 10”s

=3 X 10" yr
= 300 Gyr

If we apply the correction for distant encounters,
12 In(NJ2) = 1.6 X 107, t,¢ is reduced to 2 Gyr. For
comparison, we will see in Chapter 21, that the

approximate age of the universe is 15 Gyr. So, if we
don’t include the correction for distant encounters,
then the relaxation time would be longer than the
age of the universe, but, with that correction, that
is not a problem.

We can also define an evaporation time, which
is the time for a significant number of stars to
leave the cluster. The evaporation time is approx-
imately 100 times the relaxation time. For the
cluster in the above example, the evaporation
time would be 200 Gyr, much more than the age
of the universe. So, that cluster has had enough
time to become relaxed, but not evaporate.

Once relaxation takes place, the velocity distri-
bution will evolve toward a Maxwell-Boltzmann
distribution, given for a gas in equation (9.16). For
a cluster of stars, we let kT become (1/3)mv2.,s, the
number of stars in the velocity range vtov + dv is
given by:

v 312
n(v) dv « (ﬁ) exp (— ngms) dv

Calculations show that a core denser than the
outer parts of the cluster will develop. It has been
speculated that, at some point, the core can become
so massive that it collapses to form a large black
hole. Recent observations of some globular clus-
ters have revealed the existence of a luminous
extended object in the center. The size of these
objects are in the 0.1 pc range. In each case the
object is bluer than the rest of the cluster, mean-
ing that it is not an unresolved group of red stars.

(13.45)

13.3.4 Virial masses for clusters

For dynamically relaxed clusters, we can use the
virial theorem to estimate the mass of the cluster.
For a uniform cluster, with N stars, each of mass
m, and the total mass of the cluster M = mN, the
cluster potential energy is

o (2)
5 R

where R is the radius of the cluster. The kinetic
energy is (equation 13.32)

K= (1/2)MW»%
Substituting these into the virial theorem gives

My* = 3 GM?/5R (13.46)
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Solving for M, we have

( 5 ) (v R
M= =
3 G

It is important to understand which motions
we are talking about. The cluster has some overall
motion of its center of mass, shared by all the
stars in the cluster. The stars have individual
motions within the cluster (with respect to the
center of mass of the cluster). The net motion of
each star is the vector sum of these two motions,
and that is what we observe. In equation (13.47)
the quantity (v? is the average of the square of the
star velocities with respect to the center of mass
of the cluster.

The best way for us to measure the velocities of
individual stars is through their Doppler shifts.
However, this only gives us the component of the
velocity along the line of sight. This means that
we are measuring (v2) rather than (v%). However, if
the internal motions of the stars are random, we
can relate these two quantities.

Suppose we resolve the motion of any star into
its components in an (x, y, z) coordinate system.
The velocity can then be written in terms of its
components as

(13.47)

V=vX+ vy +v,2 (13.48)

where X, § and Z are the unit vectors in the three
directions, respectively. To be definite, we can let
the x-direction correspond to the line of sight.
The square of v, which is v - v, is simply the sum
of the squares of the components,

V=it v+ v (13.49)
If we then take the average of both sides of the

equation, we have

Wh = i) + ) + v

However, if the motions are random, the averages
of the squares of the components should be the
same for all directions. This means that

Wy = (v = vl

(13.50)
Using this, equation (13.49) becomes
WA = 3w

and since the x-direction is the one corresponding
to the line of sight, v, = v,, so

(13.51)

If we substitute this into the virial theorem (equa-
tion 13.47), the mass is given by
5w R

M= 13.52
. (13.52)

Example 13.4 Virial mass of cluster
Find the virial mass of a cluster with (v,) = 10 km/s
and R = 5 pc.

SOLUTION
From equation (13.52) we have

(5)(1.0 X 10° cm/s)?(5 pc)(3.18 X 10" cm/pc)
6.67 X 10~ ® dyn cm?/g?

=12 X 10¥g

6 X 10° My

When we talked about binary stars (Chapter
5), we noted that the best way to measure the
mass of an object, or a group of objects, is to
measure their gravitational effects on other
objects. The gravitational effects are independent
of how bright the objects are; they depend only
on how massive they are. Using virial masses is an
extension of these ideas. The more massive the
cluster, the greater the internal motions that we
will observe. To determine (v;) it is not even
necessary to measure radial velocities for all the
stars in the cluster. We just need a representative
sample.

What are the limitations of this method? An
important one is that we don’t know if any par-
ticular cluster is dynamically relaxed, or even
gravitationally bound. We may measure large
internal motions in an unbound system and mis-
take them for bound motions in a more massive
system. This can introduce errors that are off by
as much as a few orders of magnitude. Our calcu-
lation of the relaxation time suggests that all but
the youngest clusters should be relaxed. We will
talk about indicators of age of a cluster in the
next section. Another limitation can be from geo-
metric effects. We may observe clusters that are
elliptical, rather than spherical. Or we may
observe clusters that don’t have a uniform den-
sity. The most likely variation is having a higher
density in the center. The effect of these geo-
metric effects can be to produce errors of order
unity (see Problem 13.16). For most applications,
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astronomers use the virial theorem, knowing that
it is a technique that may be off by a factor of two
or three. But this can be very useful for measur-
ing the masses of a variety of astronomical sys-
tems. We will look more at virial masses when we
talk about the masses of interstellar clouds
(Chapter 14) and the masses of clusters of galaxies
(Chapter 18).

13.4 | HR diagrams for clusters

By studying the HR diagram for a cluster, we are
studying a group of stars with a common dis-
tance. We can study their relative properties
without knowing what their actual distance is. If
we do know the distance to the cluster, we plot
directly the absolute magnitudes on the HR dia-
gram. If we don’t know the distance, we plot the
apparent magnitudes. We then see how many
magnitudes we would have to shift the diagram
up or down to calculate the right absolute mag-
nitudes for each spectral type. The amount of
shift gives the distance modulus for the cluster,
and therefore the distance. This procedure is
known as main sequence fitting. It is like doing a
spectroscopic parallax measurement, but it uses
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m Schematic HR diagrams for various galactic clusters.

the information from all of the main sequence
stars in the cluster. This is more accurate than
studying a single star.

The HR diagram for a group of galactic clus-
ters is shown schematically in Fig. 13.9. Note
that the lower (cooler or later) part of the main
sequence is the same for all the clusters shown.
For each cluster, there is some point at which
the main sequence stops. Beyond that point, no
hotter stars are seen on the main sequence. The
hotter stars all appear to be above the main
sequence. The point at which this happens for a
given cluster is called the turn-off point. Stars of
earlier spectral type (hotter than) the turn-off
point appear above the main sequence, meaning
that they are more luminous, and therefore
larger than main sequence stars of the same
spectral type. Each cluster has its turn-off point
at a different spectral type. Data for one cluster
are shown in Fig. 13.10, to see the scatter in the
points.

We interpret this behavior as representing stel-
lar aging, in which stars use up their basic fuel
supply, as described in Chapter 10. Hotter, more
massive, stars evolve faster than the cooler, low
mass stars, and leave the main sequence sooner.
We assume that the stars in a cluster were formed

12 -

ITY

J-K

Color—-magnitude diagram for a galactic cluster
H and Chi Persei (the double cluster shown in Fig. 2.4).
[Courtesy of 2MASS/UMASS/IPAC/NASA/JPL/Caltech]
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at approximately the same time. As a cluster ages,
later and later spectral types evolve away from
the main sequence. This means the turn-off point
shifts to later spectral types as the cluster ages.
We can tell the relative age of two clusters by
comparing their turn-off points. If we know how
long different spectral type stars actually stay on
the main sequence, we can tell the absolute age
of a cluster from its turn-off point.

We note that there are some galactic clusters,
not shown in Fig. 13.9, that are missing the lower
(cooler) end of the main sequence. We think that
these clusters are very young. The lower mass
stars are still in the process of collapse, and have
not yet reached the main sequence. (We think
that lower mass stars take longer to collapse than
higher mass stars.)

An HR diagram for a composite of globular
clusters is shown in Fig. 13.11. These appear to
be different from the HR diagrams for galactic

10 -

15 |- B

(V-D),

m A composite color—magnitude diagram for a

“metal-poor” globular cluster, constructed from real photo-
metric data from several Milky Way globular clusters includ-
ing M3, M55, M68, NGC 6397 and NGC 2419. [William
Harris, McMaster University, STScI/NASA 10th Anniversary
Symposium Proceedings (STScl, Baltimore), May 2000]

clusters. For globular clusters, only the lower
(cooler) part of the main sequence is present.
All earlier spectral types have turned off the
main sequence. This tells us that globular clus-
ters must be very old. Globular clusters contain
a large number of red giants. In Chapter 10 we
saw that the red giant state is symptomatic of
old age in a star.

13.5 | The concept of populations

There is another important difference between
the stars in galactic and globular clusters. It con-
cerns the abundances of “metals”, elements heav-
ier than hydrogen and helium. Many globular
clusters have stars with very low metal abun-
dances, while galactic cluster star are higher in
metal abundance. We refer to high metal stars as
population I stars and low metal stars as population
II stars. We have a general sense that population I
stars represent younger, more recently formed
stars. We interpret the metal abundance differ-
ences as reflecting the conditions in our galaxy at
the time each type of star was formed. When the
older stars were formed, our galaxy had only
hydrogen and helium. When the newer stars were
formed, the galaxy had been enriched in the met-
als. This enriched material comes from nuclear
processing in stars, followed by spreading into the
interstellar medium, especially through supernova
explosions.

The differences between galactic and globular
clusters start us thinking about old and new
material in our galaxy. The globular clusters are
older, and form a spherical distribution, while
the galactic clusters are newer and are confined
to the galactic disk. This suggests that, a long
time ago, star formation took place in a large
spherical volume, but now it only takes place in
the disk. This is supported by the fact that globu-
lar clusters are free of interstellar gas and dust,
the material out of which new stars can form,
while galactic clusters are sometimes associated
with gas and dust.

The concept of stellar populations is impor-
tant in our understanding of the evolution of our
galaxy. This will be discussed farther in Chapters
14-16.
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Chapter summary

In this chapter we saw what could be learned
from studying clusters of stars. Clusters are use-
ful in studying a variety of astronomical prob-
lems because they provide us with groupings of
stars all at the same distance.

We looked at an important technique for
determining the distances to nearby clusters. It is
free of any assumptions about luminosities, and
serves as an important cornerstone in our dis-
tance determination scheme.

We looked at the dynamical properties of clus-
ters. Clusters have internal motions which eventu-
ally reach some equilibrium velocity distribution.

Questions

This distribution is brought about by star-star grav-
itational encounters, and the effects of many dis-
tant encounters are important. We saw that it is
possible for gravitationally bound clusters to evap-
orate by losing the stars that are moving the fastest.

We developed the idea of stellar populations,
signifying old and new material in the galaxy.
Globular clusters seem associated with the old
material, and galactic (open) clusters seem associ-
ated with the newer material. Some of these dif-
ferences are very evident in comparing HR dia-
grams, as well as in comparing the metal content
of the stars in the two types of clusters.

13.1. Suppose you had photographs of a cluster
taken ten years apart. How would you use
those photographs to find the convergent
point of the cluster?
List the distance measurement techniques
that we have encountered so far in this book,
and estimate the distance range over which
each is useful.
13.3. What is the relationship between main
sequence fitting and spectroscopic parallax?
13.4. What is the significance of the main
sequence turn-off point of a cluster?

13.2.

Problems

13.5. Construct a table, contrasting the properties

of globular clusters and galactic clusters.

If a cluster is moving through space at

50 km/s, how should this motion be

included in (v*), which appears in equation

(13.34)?

13.7. In a cluster for which v, > v, SOme stars
can still escape. How does this happen?

13.8. What are the advantantages and disadvan-
tages of using the virial theorem to deter-
mine the mass of a cluster?

13.6.

13.1. The Hyades has a proper motion of 0.07 arc
sec/yr and appears 26° from its convergent
point. The radial velocity is 35 km/s. (a) How
far away is the cluster? (b) What is the actual
speed of the cluster?

Suppose we can detect proper motions down
to 0.1 arc sec/yr. How far away can we detect
a transverse velocity of 10 km/s?

Suppose we have two photographs of a clus-
ter, taken ten years apart. In the second pho-
tograph the cluster has moved over by

1.0 arc sec. Two stars that were originally
20.0 arc sec apart are now 19.5 arc sec apart.
What is the angle between the current line
of sight to the cluster and the line of sight
to the convergent point?

13.2.

13.3.

*13.4. In Chapter 4, we discussed the resolving
power of gratings. How is the minimum
radial velocity shift we can measure related
to this resolving power?

*13.5. For the globular cluster treated in the exam-

ple in this chapter, estimate the average

time between collisions in which the stars
actually hit.

Compare the rms speeds in a typical globu-

lar cluster with those in a typical galactic

cluster.
13.7. Verify that equation (13.44) can be obtained,
as outlined, from equation (13.43).

13.8. The crossing time for a cluster is the average
time for a cluster to move from one side of
the cluster to the other. (a) What is the

13.6.
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relationship between the crossing time and
the relaxation time? (b) How would you
explain that relationship?

*13.9. Calculate the relaxation time for the typical

galactic cluster discussed in this chapter,
and compare it with that for the typical
globular cluster.

*13.10. Show that the derivation of the virial theo-

rem gives the same result if we allow the
masses of the stars to be different.

13.11. Show that binary stars obey the virial

theorem.

13.12. Suppose we have a gravitationally bound

object in virial equilibrium. Show that if
more than half of the mass of the system is
lost, with no change in the velocities of the
remaining material, then the system will be
unbound.

Computer problem

13.13.

13.14.

13.15.

*13.16.

Find an expression that gives the virial mass
in solar masses, when rms velocity is in km/s
and the size is in pc.

(a) Find the virial mass of a cluster for which
the rms radial velocity dispersion is 5 km/s
and the radius is 15 pc. (b) What are U, K and
E for this cluster?

Compare the evaporation times for typical
galactic and globular clusters discussed in
this chapter. Include the correction for the
effects of distant collisions.

Find an expression for the gravitational
potential energy for a spherical cluster of
mass, M, and radius, R, where the density
falls as 1/r*. (Hint: Integrate equation (9.6)
with a variable density.) How does your
result compare with the case of a uniform
density sphere?

13.1. Find the virial masses, and U, K and E for clusters

with the properties shown in Table 13.1.

Table 13.1.
Vims (km/s) R (po)
2 2
2 5
2 10
5 2
5 5
5 10
10 2
10 5

10 10




Part IV

The Milky Way

Most of the light we can see from our galaxy appears as a narrow band
around the sky. From its appearance, we think that we are in the plane of
a disk, and that this disk looks something like the Andromeda galaxy.
However, our location within our own galaxy makes its structure very
difficult to study. In this part we will see both how we learn about our
galaxy and what we have learned about it so far.

Most of the light that we see comes directly from stars. Among all the
objects we can see, the stars provide most of the mass. Averaged over the
whole galaxy, the gas and dust between the stars — the interstellar
medium — contains only about % as much mass as the stars themselves.
Of the interstellar medium, 99% of the mass is in the form of gas, and
I% of the mass is in the form of dust. However, this small amount of dust
is very efficient at blocking light, making optical observations of distant
objects difficult.

We expect that stars form out of interstellar material. Since most of
the mass of the interstellar material is in the form of gas, it is the gas that
will provide the gravitational attraction for the star formation process. In
this part, we will first look at the contents of the interstellar medium.We
will then look at how stars are born. Finally, we will see how the stars and
interstellar medium are arranged in the galaxy as a whole.






Chapter 14

Contents of the interstellar medium

14.1 | Overview

When we look at photographs of the Milky Way
(see Fig. 16.1), we note large regions where no
light is seen. We think that these are due to dust
blocking the light between us and the stars. We
can see the same effect on a smaller scale (Fig. 14.1).
Note that there is a high density of stars near the
edges of the image. As one moves close to the cen-
ter, the density of stars declines sharply. Near the
center, no stars can be seen. This apparent hole in
the distribution of stars is really caused by a
small dust cloud, called a globule. The more dust
there is in the globule, the fewer background
stars we can see through the globule. We can use
images like this to trace out the interstellar dust.
We find that it is not uniformly distributed.
Rather, it is mostly confined to concentrations or
interstellar clouds.

We detect the presence of the gas by observing
absorption or emission lines from the gas. By
tracing these lines, we find that the gas also has
an irregular distribution. Often the gas appears
along the same lines of sight as the dust clouds.
From this apparent coincidence we form the idea
that the gas and dust are generally well mixed,
with the gas having about 99% of the mass in a
given cloud. In this chapter, we will see how the
masses of different types of clouds are deter-
mined.

One of the reasons that the interstellar
medium is so interesting is that it is the birth-
place of stars. How do we know that stars are still
forming in our galaxy? We have seen that stars

are dying, and we know that there is still a large
number of stars in the galaxy. We therefore pre-
sume that stars are being created at a rate that
approximately offsets the rate at which they are
dying. This is not an airtight argument, because
it could be that many stars were formed early in
the history of the galaxy and we are just seeing
the ones that haven’t died yet. However, we know
that O stars live only about 107 years or less on
the main sequence. Since we see O stars today,
there must have been O star formation in the last
107 years. We think that the galaxy is ten billion
years old. Compared with this, ten million years
is almost like yesterday. If the conditions were
right for star formation in the last 107 years, they
must be right for star formation now. The actual
star formation process will be discussed in
Chapter 15.

14.2 | Interstellar extinction

If we want to see direct emission from the dust,
we have to look in the infrared, as we will discuss
in the next section. In the visible part of the spec-
trum the dust is generally evidenced by its block-
ing of starlight. The blocking arises from two
processes, scattering and absorption. In scattering,
the incoming photon is not destroyed, but its
direction is changed. In absorption, the incoming
photon is destroyed, with its energy remaining in
the dust grain. The combined effects of scattering
and absorption are called interstellar extinction. In
Fig. 14.2 these two processes are depicted schemat-
ically. A dark nebula, in which background light
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is being blocked, and a reflection nebula, in which
scattered starlight is being sent in our direction,
are depicted in Fig. 14.3.

14.2.1 The effect of extinction

We quantify interstellar extinction as the number
of magnitudes by which a cloud dims starlight
passing through it. For example, if a particular
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An image of a globule
at various wavelengths. The
globule is the region with the
fewest number of stars per unit
area. The dust in the globule is
blocking the light from the
background stars. [ESO]

star would have an apparent magnitude m with-
out extinction, but its light passes through a cloud
with A magnitudes of extinction, then the star will
be observed to have a magnitude m' = m + A.
(Remember, extinction dims the starlight, so the
magnitude increases.)

We can relate the extinction, in magnitudes,
to the optical depth 7 of the dust. This is useful,
since it is the extinction in magnitudes that will
be directly measurable, but it is the optical depth
that is directly related to the dust properties. If we
have light of incident I, passing through the cloud
of optical depth 7, and intensity I emerges, then

these are related by (as we saw in equation 6.18)
I=Iye " (14.1)

From the definition of extinction and the magni-
tude scale

A=m'—m

= 2.5 logyo (Io/]) (14.2)
Using equation (14.1), this becomes
A = 2.51og, (")

= 2.5 71ogy (€)

= (2.5)(0.4343) 7

= (1.086) T (14.3)

This means that one magnitude of extinction cor-
responds approximately to an optical depth of
one.
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(b)

m The Horsehead Nebula, in Orion’s belt, is formed

by the dust blocking the light from the glowing gas in the
background. In this image, north is to the left. (a) A wider
view. The fuzzy blue patch at the lower left of the Horsehead
is a reflection nebula, where dust is scattering light from a
hidden background star towards us. Just off the left (north)
of the image is the southwestern most star in Orion’s belt.
(b) A closer view from HST. This shows the intricacy in the
structure in both the glowing gas and the absorbing dust.
[(a) NOAO/AURA/NSF; (b) STScl/NASA]

If we have a star of known distance and spec-
tral type, we can determine the extinction
between the star and us. The spectral type gives
us the absolute magnitude M. We can measure

the apparent magnitude m. In the presence of A
magnitudes of extinction, the star will appear A
magnitudes fainter than without extinction, so

m =M + 5log (1/10 pc) + A (14.4)

Since we know m, M and r, we can find A.
Obviously the presence of interstellar extinction
will affect distance measurements by spectro-
scopic parallax. If we don’t correct for extinction,
then a star will appear to be farther away than it
actually is. You can see that if both r and A are
unknown, then equation (14.4) only gives us one
equation with two unknowns. We will see below
that there is a way of obtaining additional infor-
mation by observing at different wavelengths.

Example 14.1 Interstellar extinction

Suppose we observe a B5 (M = —0.9) star to have an
apparent magnitude of 9.2. The star is in a cluster
whose distance is known to be 400 pc. What is the
extinction between us and the star?

SOLUTION
We solve equation (14.4) for A to give
A=m— M — 5log (r/10 pc)

=9.2 + 0.9 — 51log(40)

= 2.1 mag

14.2.2 Star counting
If we record an image of a field which has some
interstellar extinction, fewer stars will appear
than if the extinction were not present. This is
because the light from each star is dimmed by
the extinction. Some stars that would have
appeared on the image if there were no extinc-
tion are now too dim to appear with extinction.
We can estimate the extinction in a cloud by com-
paring the number of stars we can see through
the cloud with the number we can see in an
unobscured region of the same size. Suppose an
image is exposed to a threshold magnitude m,.
All stars with apparent magnitude less than m,
(that is, stars that are brighter than mg) will
appear on the image. If the light from each star is
dimmed by A magnitudes, only stars that have
undimmed magnitudes of my, — A will appear.
There are two ways of applying this idea. In
one, we measure the number of stars per unit area
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log N'(m)

TS B EE Effect of extinction on star counts. The plot gives
the number of stars per magnitude interval, as a function of
magnitude m.The distribution is such that when the vertical
axis is logarithmic, the curve is close to a straight line. The
effect of a cloud with A magnitudes of extinction is to make
each star A magnitudes fainter, shifting the curve to the right

by A magnitudes.

in each magnitude range. In the more common
way, we measure just the total number of stars per
unit area. We define the function N'(m) such that
N’(m) dm is the number of stars per unit area with
magnitudes between m and m + dm in the
absence of extinction. We measure N'(m) for a
region we think is partially obscured by dust and
for a nearby region we think is unobscured. If we
plot graphs of these two quantities, as shown in
Fig. 14.4, we see that the two curves look like each
other, except that one is shifted by a certain num-
ber of magnitudes. The amount of the shift is the
extinction in the partially obscured region.

Often we don’t have enough stars in each
magnitude range to obtain a good measure of
N'(m), In that case we must use integrated star
counts. We let N(m) be the number of stars per
unit area brighter than magnitude m. This is
related to N'(m) by

(14.5)

If a photographic plate has a limiting magnitude
mg, then the number of stars per unit area, with-
out extinction, is

N(my) = n}n N'(m") dm’

—00

(14.6)

If we now look at a region with extinction A,
only the stars that would have had magnitude
my — A without extinction will show up. We
therefore count

Nim— A) = [ N(m') dm’

—00

(14.7)

Therefore, if we know N'(m), we can predict
N(my — A) for various values of A. If we use plates
with a limiting magnitude of 20, then we can gen-
erally obtain good star count data for A in the
range 1 to 6 mag. For A much less than 1 mag, the
difference between an obscured and an unob-
scured region is hard to detect. For A much greater
than 6 mag, there are very few stars bright enough
to shine through, and the obscured region will
appear blank, a situation in which 6 mag of extinc-
tion is indistinguishable from 20 mag.

14.2.3 Reddening

If we measure interstellar extinction we find that
it is not the same at all wavelengths. In general,
the shorter the wavelength is, the higher is the
extinction. This means that blue light from a star
is more efficiently blocked than red light. In the
presence of extinction, the images of stars will
therefore appear redder than normal, as shown
in Fig. 14.5. This is called interstellar reddening. You
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can see the effect of reddening in the various
wavelength images of the globule in Fig. 14.1.
More stars shine through at longer wavelengths.

Suppose we measure the magnitude of a star
in two different wavelength ranges, say those cor-
responding to the B and V filters. Then, from
equation (14.4) we have

my = My + 5 log (r/10 pc)+ Ay (14.8a)

mp = Mp + 5 log (r/10 pc) + Ap (14.8b)

If we take the difference my — my, the distance
r drops out, giving

(mg — my) = (Mg — My ) + (Ag — Av) (14.9)

In equation (14.9), the quantity on the left-
hand side is directly observed. The first quantity
on the right-hand side depends only on the spec-
tral type of the star. It is simply the B — V color of
the star. We know it because we can observe the
star’s absorption line spectrum to determine its
spectral type. Since the spectral type determina-
tion depends on the presence of certain spectral
lines, it is not greatly influenced by interstellar
extinction. We can therefore determine the quan-
tity (A — Ay ).

Since both Ay and Ay are proportional to the
total dust column density Np, their difference is
also proportional to Np. If we define a quantity

R = AJ/(A; — AY) (14.10)

it will not depend on Ny, since N, appears in both
the numerator and denominator. We call this
quantity the ratio of total-to-selective extinction.
Extensive observational studies have shown that,
in almost all regions, R has a value very close to
3.1. (There are a few special regions where R is as
high as 6.) This has a very important consequence.
It means that if we can measure (Ag — Ay), we need
only multiply by 3.1 to give Ay. We have already
seen that the difference can be determined by
knowing the spectral type of a star and measur-
ing its B and V apparent magnitudes, and then
using equation (14.9). Note that we have not made
use of knowing the distance to the star r. We can
still go back to equation (14.8a) to find the dis-
tance to the star. So, the method of spectroscopic
parallax works even in the presence of interstel-
lar extinction. We just need to do an extra obser-
vation at a different wavelength.

Example 14.2 Spectroscopic parallax with
extinction

Suppose we observe a B5 star (My, = —0.9,B — V =
—0.17) to have mp = 11.0 and m, = 10.0. What is the
visual extinction between us and the star, and how
far away is the star?

SOLUTION

From equation (14.9) we have

(Ap — Av) = (mp — my) — (Mp — My)
= 1.00 + 0.17
=117

We can now use the ratio of total-to-selective
extinction to convert this to Ay:

Ay = R (Ap — Ay)
= 3.6 mag
We can now find the distance from
5 log (1/10 pc) = my — My — Ay
=73
This gives

r = 280 pc

14.2.4 Extinction curves

If we study how extinction varies with wavelength,
we can learn something about the properties of
interstellar dust grains. We try to measure the
A(X) in the directions of several stars, to see the
degree to which grain properties are the same or
different in different directions. Since the dust
column densities are different in various direc-
tions, we do not directly compare values of A.
Instead, we divide by Ay or (A — Ay), to get a quan-
tity that is independent of the column density. It
is conventional to plot the following function to
represent interstellar extinction curves:

AQ)
Ay

fia) = (14.11)

A typical curve is shown in Fig. 14.6. One gen-
eral feature is that in the visible part of the spec-
trum f(A) is roughly proportional to 1/A. In the
ultraviolet there is a broad ‘hump’ in the curve.
The size of this hump varies from one line of
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since it is approximately linear in 1/A near the visible. The V
filter would be at 1/A = 1.8.The solid line is for most
normal regions, with R (ratio of total-to-selective extinction,
defined in equation 14.10) = 3.1.The dashed line is for
regions with an unusually high value of R = 5. [John Mathis,

University of Wisconsin]

sight to another. In the infrared there are absorp-
tion features of various strengths. We will see
that these infrared features tell us a lot about the
grain composition.

[4.2.5 Polarization

Sometimes the light we receive from celestial
objects is polarized. We can detect this polariza-
tion by placing a polarizing filter in front of our
detector. Such a filter only passes radiation whose
electric field vector is parallel to the polarization
direction of that filter. As we rotate the filter, dif-
ferent polarizations of the incoming light are
passed. If the incoming light is unpolarized, then
the amount of light coming through will not
depend on the angle through which the filter has
been rotated. If the incoming light is completely
linearly polarized, there will be one position of
the filter for which we see the image at full
brightness and another position, 90° away, for
which we see no light. If the incoming light is
partially polarized, we will see a maximum
brightness in one position and a minimum

brightness when the filter is rotated by 90°. The
greater the amount of polarization, the greater
the contrast between maximum and minimum.
When unpolarized starlight passes through
interstellar dust clouds, it can emerge with a
slight degree of linear polarization. This means
that the polarization must be caused by the dust
itself. The amount of polarization is very small,
only a few percent at most. We find that there is
a weak wavelength dependence on the amount of
polarization. We also find that the amount of
polarization generally depends on the visual
extinction Ay. When Ay is low, the polarization is
low. When Ay, is high, the polarization can be low
or high. Dust is necessary for the polarization, but
something else must be necessary. There must be
a mechanism of aligning non-spherical dust
grains (at least partially) to produce the polariza-
tion. We will discuss this in the next section.

14.2.6 Scattering vs. absorption

We have said that extinction is the combined
effect of scattering and absorption. The relative
importance of these two effects depends on the
physical properties of the grains and the wave-
length of the incoming light. The fraction of the
extinction that results from scattering is called
the albedo a, of the dust grains. If a, is the fraction
scattered, then 1 — g, must be the fraction
absorbed.

The albedo is much harder to measure than
the extinction. Studies of reflection nebulae are
particularly useful, since they provide us with
light that we know is scattered by the dust. It
appears that the albedo is quite high, about
50-70%, at most wavelengths. (The albedo is
lower in the range of the ultraviolet bump in the
extinction curve, meaning that the bump is due
to a strong absorption feature.) The high albedo
also means that a photon may be scattered a few
times before it is actually absorbed.

If a photon is scattered by a dust grain, we
would like to know the directions in which it is
most likely to travel. Studies indicate that about
half of the scattered photons move in almost the
same direction as they were going when they
struck the grain. The rest of the photons have
almost an equal probability for being scattered in
any direction.
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14.3 | Physics of dust grains

In this section we will see how we use observa-
tions and theory to deduce a number of proper-
ties of interstellar dust grains. We will also see
how grains interact with their environment.
Some of the things we would like to know about
interstellar dust are:

(1
(2
(3
(4
(
(

size and shape;

alignment mechanism for polarization;
composition;

temperature;

electric charge;

formation and evolution.

5
6

S ===

14.3.1 Size and shape

We try to deduce grain sizes from the observed
properties of the interstellar extinction curve,
the variation of extinction with wavelength. If
the grain size r is much greater than the wave-
length A, then we are close to the situation in
which geometric optics applies. The wavelength
is unimportant, and A(A) is roughly constant. If
r << A, the waves are too large to ‘see’ the dust
grains, and A()) is very small (explaining the low
extinction at long wavelengths). If r is compara-
ble to A, then diffraction effects in the scattering
process are important. Hence the wavelength
dependence is strongest in this range.

We compare the observations with theoreti-
cal calculations of scattering and absorption by
grains of different sizes and composition to see
which gives the best agreement. We find that
interstellar grains are not all the same size.
There is some spread about an average (just as
people are not all the same height, but have
some spread of heights about some average
value). In fact, the situation is more complicated
than that. Observations of extinction curves
indicate that there are probably at least two dif-
ferent types of grains with distinctly different
average sizes (just as men and women are differ-
ent types of people with different average
heights).

We can deduce something about the shapes of
interstellar grains from their ability to polarize
beams of light. If the grains were perfect spheres,
there would be no preferred direction, and there

would be no way of producing the polarization.
Therefore, some significant fraction of the grains
must either be elongated, like cigars, or flat-
tened, like disks.

There must also be a mechanism for actually
aligning the asymmetric grains. This mechanism
probably involves the interstellar magnetic field.
The grains are probably not ferromagnetic. This
means that a collection of grains cannot make a
permanent magnet. However, they may be para-
magnetic. In a paramagnetic material the indi-
vidual particles have magnetic moments. These
can be aligned by a magnetic field. The tendency
to align is offset by the random thermal motions
of the grains. We think that a partial alignment
arises from a combination of two effects: (1) the
tendency of elongated grains, shaped like cigars,
to rotate end-over-end rather than about the long
axis, since less energy is required for end-over-end
motion; and (2) the tendency for the magnetic
moment of the grain to align with the rotation
axis.

14.3.2 Composition

We can deduce the composition of the larger
grains from infrared absorption features. This is
not as exact as using optical absorption spectra
to tell us about the compositions of stellar atmos-
pheres. Because the dust grains are solids, cer-
tain motions of atoms within the grains are
inhibited by the close bonding to neighboring
atoms, so the spectra consist of a few smeared
out features instead of many sharp spectral lines.
We observe absorption features at 10 pm and
12 pm, which correspond to the wavelengths for
vibrational transitions (stretching of bonds) in
silicates (SiO and SiO,) and water ice. Since sili-
cates are an important component of normal dirt
on Earth, we sometimes talk of grains as being
‘dirty ice’.

The extinction in the ultraviolet (including
the hump) cannot be explained by dirty ice. For
that, carbon is probably needed. Therefore, inter-
stellar grains are probably a combination of large
dirty ice grains and small graphite grains.

At the smallest end of the size distribution,
probably only 1 nm across, are grains consisting of
20 to 100 C atoms in an aromatic hydrocarbon form.
These are called polycyclic aromatic hydrocarbons,
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PAHs. They can be identified through some of
their emission lines, like those shown in Fig. 14.7.
They are stable at high temperatures, and were
originally proposed to explain diffuse emission
from hot extended clouds.

It also seems likely that many grains, especially
the larger ones, are not of uniform composition.
Rather, they have layers, like the schematic grain
in Fig. 14.7. There could be a core of silicates and
carbon. Outside of that are various mantles, one
with water and ammonia ice and another with O,
N and CO (carbon monoxide) all in solid form.
There may even be a thin outer layer of hydrogen.

Inner Mantle

Outer Mantle
Silicates Oxygen
Carbon Water Carbon Monoxide
Ammonia Nitrogen

‘ SRR ER A multilayered interstellar grain.

14.3.3 Electric charge

We can deduce the electric charge for grains
from theoretical considerations. There are two
ways for grains to acquire charge: (1) Charged
particles (both positive and negative) from the
gas can strike the grains and stick to the sur-
face. (2) Photons striking the grain surface can
eject electrons via the photoelectric effect. The
grain is left with one unit of positive charge for
every electron ejected. In an equilibrium situa-
tion the net charge on the grains must be
constant.

We first consider the situation in which the
photoelectric effect is not important. This would
be the case in regions of high extinction. For
particles striking the grains, the negative charges
are mostly carried by electrons, and the positive
charges are mostly carried by protons. At any
given temperature the average speed of the elec-
trons, which have lower mass, will be greater
than that of the protons. Therefore, electrons
will hit grains at a greater rate than protons or
C™, ionized carbon. If the grains are initially
neutral, this will tend to build up negative
charge. However, once the grains have a small
negative charge, the electrons will be slowed
down as they approach the grains, while the pos-
itive charges will be accelerated. Therefore, if the
grains have a net negative charge it is possible to
have protons and electrons striking the grain at
the same rate, keeping the charge on the grain
constant. Note that, if the grains have a net neg-
ative charge, the gas must have a net positive
charge if the interstellar medium as a whole is to
be neutral.

Example 14.3 Charge on dust grains

Estimate the electric charge (in multiples of e)
required to keep the charge on dust grains con-
stant. Take the radius of the grain to be 10> cm
and the gas kinetic temperature to be 100 K.

SOLUTION

We estimate the grain charge for which the electric
potential energy of an electron at the grain surface
is equal in magnitude to the average kinetic energy
of the electrons in the gas. If the net charge on the
grain is —Ne, the potential energy for an electron
on the surface, a distance r from the center, is

U = Ne¥/r
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The average kinetic energy is (3/2)kT. Equating
these and solving for N gives

<3>kT1’
N=(2)5
2) e

~ (3)(1.38 X 10" "°erg/K)(100 K)(10 °cm)
(2)(4.8 X 10~ %esu)?

=09

This says that each grain should have a net charge
of about —e. However, the actual charge is about a
factor of ten larger because we have only consid-
ered electrons of the average energy. Electrons mov-
ing faster than average contribute significantly to
the charge buildup. Also, the charge becomes more
negative at higher temperatures.

If the photoelectric effect is dominant, the
grains will have a positive charge. There must be a
balance between the rate at which electrons are
being ejected and the rate at which they strike the
grain. For positively charged grains, the electrons
in the gas are attracted, meaning the tendency for
the electrons to strike the grains at a greater rate
than positively charged particles is enhanced.

14.3.4 Temperature
The temperature of a large dust grain is deter-
mined by the fact that, on a time average, it must
emit radiation at the same rate as it receives radi-
ation. This keeps the temperature constant. The
temperature of a dust grain will therefore depend
on its environment. If it is very close to a star it
will be hot. If it is far from any one star it is cool,
receiving energy only from the combined light of
many distant stars.

Let’s look at the case of a dust grain a distance
d from a star whose radius and temperature are R-
and T.. We will assume that the albedo is the same
at all wavelengths. (If the albedo varies with wave-
length, as in more realistic cases, the fraction of
incoming radiation absorbed is different at differ-
ent wavelengths, and the calculation is harder.
See Problem 14.11.) The luminosity of the star is

L« = 47RZ o T4 (14.12)

The fraction of this power striking the grain is
the projected area of the grain wrgz, divided by the
area of a sphere of radius d. That is

fraction striking grain = 7r;/4md> (14.13)

If a is the albedo, then (1 — a) is the fraction of
incoming radiation absorbed by the grain.
Therefore the rate P at which energy is being
absorbed by the dust grain is

(1 — a)(47R?)(oT%) ()
s = 2 (14.14)
(4md?*)
(1 — a)moR?*T'ry
d2

The quantity 7 R?/d* is the solid angle sub-
tended by the star as seen from the dust grain. We
say that the star acts like a dilute blackbody. It has
the spectrum of a blackbody at a temperature T-,
but the intensity is down by a factor of (solid
angle/4r).

We now look at the rate at which the grain
radiates energy. Since it can only absorb (1 — a)
of the radiation striking it, it can only emit
(1 — a) of the radiation that a perfect blackbody
would emit. (A perfect blackbody has an albedo of
zero, by definition.) If the grain temperature is T,
the power radiated is

Prg = (1 — a)4mryoT, (14.15)

Equating the power radiated and the power
received, and solving for T, gives

Ty = Ts (Ref2d)"? (14.16)

Note that the final result does not depend on
the size of the grain or the albedo. That is because
both enter into the emission and absorption
processes. (See Problem 14.10 for a discussion of
what happens if the albedo is a function of wave-
length.) This result is the same as that derived for
a planet in Section 23.2.

Example 144 Temperature of a dust grain near
a star
What is the temperature of a dust grain a distance
5000 stellar radii from a star whose temperature is
10* K?

SOLUTION
Using equation (14.16), we have

4 R« 1/2
r=(Qo K)[(z)(sooo)RJ

= 100K

When dust is sufficiently warm (T; > 20 K), it
is a good emitter in the infrared, and we can
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determine its temperature directly from infrared
observations.

[4.3.5 Evolution

We still know very little about the evolution of
dust grains. Fig. 14.9 indicates, schematically, the
life cycle of a typical dust grain. The densities in
interstellar clouds are probably too low for the
grains to be formed directly where we see them.
We think that most dust grains are formed in the
envelopes of red giants undergoing mass loss. As
material leaves the surface, it is hot enough to be
gaseous. However, as it gets farther from the sur-
face, it cools. When the temperature is low
enough, about 1000-2000 K, many of the materi-
als, such as silicates, can no longer exist as a gas.
They form small solid particles. These particles
are blown into the interstellar medium either via
the effects of stellar winds, or as part of a plane-
tary nebula. This is another example of the cycli-
cal processing of material between stars and the
interstellar medium.

Once the grains are in clouds, they can collect
particles from the gas and grow. There are some
limits. For example, once a layer of molecular
hydrogen (H,) one molecule thick forms on the
grains, no more hydrogen will stick. Grains will
be destroyed, or diminished in size by a number

of processes. Sometimes molecules can simply
sublime from the surface. (Sublimation is a phase
change directly from the solid phase to the gas
phase.) Collisions with atoms in the gas can break
up grains. Collisions between grains can also
destroy the grains.

14.4 | Interstellar gas

14.4.1 Optical and ultraviolet studies

Early studies of cold interstellar gas utilized opti-
cal absorption lines. When light from a star
passes through a cloud, as shown in Fig. 14.10,
some energy is removed at wavelengths corre-
sponding to transitions in the atoms and mole-
cules in the cloud. These studies revealed the
existence of trace elements such as sodium or
calcium. (These elements happen to have conven-
ient spectral lines to study.) In addition to these
atoms, some simple molecules were discovered:
CH (in 1937), CN (in 1940), and CH" (in 1941).

Starlight passing
through cloud
|- ¥
Background
Star
Interstellar Cloud with
Atoms & Molecules
Wavelength

FERERE On top is the arrangement for doing optical or
uv absorption spectroscopy on an interstellar cloud. Below is

a schematic absorption spectrum.
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These simple molecules are not generally stable in
the laboratory. CH" is charged and would combine
with a negative ion or electron under laboratory
conditions. CH and CN have an outer electronic
shell with only one electron (as does H), making
them chemically reactive. The presence of these
unstable molecules in the interstellar gas sug-
gests densities much lower than in the typical
laboratory.

In these early studies no hydrogen absorption
lines were observed. This is not because there was
no hydrogen present. The temperatures in inter-
stellar clouds are generally low, and most of the
hydrogen is in the ground state. Therefore, the
only H absorption lines possible are the Lyman
lines in the ultraviolet. Now that ultraviolet obser-
vations are possible from satellites, astronomers
can study these absorption lines.

You might wonder how we know that the
absorption lines are coming from the interstellar
gas and not from the stars themselves. After all,
we have already seen the large number of absorp-
tion lines present in stars. One distinguishing
feature is that the interstellar lines are much
narrower than the stellar absorption lines. By
narrower we mean they cover a smaller range of
frequency (or wavelength). Interstellar lines have
Doppler broadenings that correspond to a few
kilometers per second. If the Doppler broadening
is produced by random thermal motions, this
suggests a temperature of about 100 K. Also, sys-
tematic studies show that, on the average, the
absorption lines are stronger when detected in
the light of more distant stars. The more distant
the star is, the more interstellar material there is
between us and the star. The narrow interstellar
lines do not appear in the spectra of all stars. This
suggests that the interstellar gas is clumpy, just
as the interstellar dust is clumpy.

14.4.2 Radio studies of atomic hydrogen

Much of what we know about the interstellar
medium comes from radio observations. We have
already seen that supernova remnants, plane-
tary nebulae and pulsars are sources of radio
emission. These are generally hot sources, or
sources with high energy electrons that produce
a high radio luminosity. However, most of the
interstellar gas is cool and does not produce a

strong radio continuum emission. The cool inter-
stellar gas must be observed via radio spectral
lines.

The first interstellar radio line to be observed
was from atomic hydrogen, but it was not a tran-
sition in which an electron jumps from one orbit
to another. As we have said, these transitions are
in the visible and ultraviolet parts of the spec-
trum. For the radio transition, the hydrogen stays
in the ground electronic state. This is illustrated
in Fig. 14.11. Both the electron and proton have
intrinsic angular momentum, called spin. We
have already seen that this spin can have two

Spins Opposite Spins Aligned
(a)
n=2
T v =2.5x 10° MHz
(A =121.6 nm)

——— - 120 Mz
_T_l_ (A=21cm)

(Expanded by
factor of 105)

(b)

m (a) Origin of the 21 cm line. The splitting comes

from a magnetic interaction which depends on the spin

directions of the electron and the proton.The energy is
higher when the spins are parallel and lower when they are
antiparallel. (b) Energy level diagram showing the splitting of
the hydrogen ground state (n = 1).The splitting is greatly
exaggerated in this figure.
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possible orientations. We refer to them as ‘up’
and ‘down’. This means that the electron and pro-
ton spins can be either parallel or antiparallel.
The relative orientation of the spins affects the
magnetic force between the electron and the pro-
ton. The state with the spins parallel has slightly
more energy than the state with the spins
antiparallel. The atom can undergo transitions
between these two states. The energy difference
corresponds to a frequency of about 1400 MHz, or
a wavelength of 21 cm. This is generally referred
to as the 21 cm line.

If we take the energy of the transition hv
and divide by Boltzmann’s constant, the quan-
tity hv/k gives the temperature necessary to see
collisional excitation of the hydrogen upper
state. This is about 0.07 K. This means that even
at the low temperatures of interstellar space
there will be sufficient energy to excite transi-
tions between these two states in hydrogen. The
21 cm line is easily observable under interstellar
conditions. The possibility of detecting this line
was discussed in Leiden (Netherlands) in the
early 1940s by Henk van de Hulst. After that there
was a race among Australian, Dutch and
American groups to detect the line. The first
detection of the 21 cm line from interstellar
hydrogen was in the early 1950s by a group at
Harvard, led by Edwin Purcell, who won the Nobel
Prize in physics for his work.

Since that time there have been extensive
observations of the 21 cm line by radio astro-
nomers all over the world. It is probably fair to say
that it was the dominant tool for studying the
interstellar medium and galactic structure
through the 1960s, and continues to be very use-
ful. In these studies, the line was observed in both
emission and absorption. The conditions for
emission or absorption lines are shown in
Fig. 14.12. In order for the line to be in absorp-
tion, there must be a background continuum
source whose brightness temperature at 21 cm is
greater than the excitation temperature of the
atoms in the particular cloud being observed.
Under most conditions the excitation tempera-
ture of the 21 cm line is close to the kinetic tem-
perature of the clouds.

By studying both absorption and emission
lines in a given region it is possible to deduce
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lines. If a radio continuum source is viewed through an inter-
stellar cloud, then radio absorption lines can be seen against
the continuum source. (This also requires the continuum
source to appear hotter than the cloud at the wavelength of
observation.) If there is no background continuum source,

then only emission lines can be seen.

both the excitation temperature and the optical
depth. The excitation temperature enables us to
calculate the kinetic temperature of the gas, an
important quantity. The optical depth can be con-
verted into a column density for atomic hydro-
gen. If we know the column density and size of a
cloud, we can also find the average local density
of hydrogen. So you can see that the 21 cm line
observations provide astronomers with an impor-
tant tool for studying the physical conditions in
many interstellar clouds.

One important feature of the radio observa-
tions is that interstellar dust is transparent at
radio wavelengths. Therefore we can use radio
telescopes to detect objects across the galaxy, far
beyond what we can see optically in the presence
of dust. Since we can use it to observe clouds any-
where in the galaxy, the 21 cm line is a very use-
ful tool for studying galactic structure. Also, since
it is a spectral line, we can observe its Doppler
shift and learn about motions throughout our
galaxy. We will see how these studies are used in
Chapter 16.
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m Zeeman effect in atomic hydrogen. (a) Idealized

situation. The line shift is a very small fraction of the linewidth.

However, opposite polarizations are shifted in opposite direc-
tions.When we subtract one polarization from the other, we
are left with a very distinctive pattern. (Note that the differ-
ence curve is approximately the derivative of the original
curve.This follows directly from the definition of a derivative.)
(b) Spectra from a real source. In this figure, the two smooth
curves that have very little noise are the spectra for opposite
polarizations. The difference is shown on an expanded scale,
so it looks noisy. The dashed line is the best fit to that differ-
ence spectrum. [(b)Carl Heiles (University of California at
Berkeley)/Heiles, C., Astrophys. J., 336, 808, 1989, Fig. l1a]

We have already seen (in Chapter 6) that some
energy levels shift in the presence of a magnetic
field, the Zeeman effect. The levels involved in
the 21 cm line fall into this category. The stronger
the magnetic field, the greater the shift. This
means that we can use the Zeeman shift in the
21 cm line to measure the strength of interstellar
magnetic fields. The experiment is difficult
because the Zeeman shift is much less than the
width of the normal 21 cm line. However, oppo-
site polarizations are shifted in opposite direc-
tions. Since we can detect different polarizations
separately, we can subtract one polarization’s
spectrum from the other, leaving a very small sig-
nal, as shown in Fig. 14.13. The experiment is also
difficult because a small difference in the
response of the telescope to the two polarizations
can mimic the effects of a Zeeman shift. Despite
these difficulties, recent experiments have suc-
ceeded in measuring fields of the order of tens of
microgauss in a growing number of interstellar
clouds. Fields of this strength may sound very
weak, but they are strong enough to influence
the evolution of these clouds, as we will discuss
in the next chapter.

By making maps of the 21 cm emission
astronomers have been able to form a good pic-
ture of the cloud structure in the interstellar gas.
These maps show an irregular cloud structure,
similar to that shown in the dust clouds. Typical
clouds have the following physical parameters:
temperature, 100 K; hydrogen density ny ~
1-10 cm 3, lengths of tens of parsecs; hydrogen
column densities up to ~10?! cm ™2 The clouds
fill about 5% of the volume of interstellar space,
meaning that the average density of atomic
hydrogen in interstellar space is of the order of
0.1 cm™%; One interesting recent finding is the
presence of large HI shells, which stir up the
interstellar medium throughout the galaxy
(Fig. 14.14).

The regions between the clouds are not empty.
Studies of the line profiles of the 21 cm line show
very broad, faint wings. This is interpreted as
coming from a small amount of very hot gas.
Temperatures of about 10* K have been estimated
for this low density gas between the clouds. We
will see later in this chapter that the low density
means it is very hard for the gas to lose energy
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FESERES Images made from 21 cm observations, showing

the large scale structure, projected in a galactic coordinate
system, with the plane of the Milky Way acting as the equator.
The map shows the locations of the largest HI shells, called
‘supershells’. The larger circles indicate larger shells. To give
an idea of galactic scale, these are superimposed on estimates
of where pieces of spiral arms may lie.We will talk more
about the spiral structure of the galaxy in Chapter 16. [Naomi
McClure-Griffiths, Australia Tel. National Facility/McClure-
Griffiths, N. M. et al,, Astrophys. J., 578, 189, 2002, Fig. 18]

and cool (a situation somewhat similar to the
solar corona). It has been noted that if we com-
pare the pressure within a cloud P, with the pres-
sure in the intercloud medium P;., we find

P cd ncchl

P, MiTie

_ (10 cm ?)(10%K)
(0.1 cm®)(10*K)

=1

The pressure in the clouds and intercloud
medium is approximately the same. Some theo-
reticians have proposed a picture of the interstel-
lar medium known as the two-phase model, in
which this equality of pressures is not a coinci-
dence, but follows from the ways in which the gas
can cool. The two-phase model is now considered
overly simplified and has been replaced by more
dynamic pictures of the interstellar medium.
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m Hydrogen column density Ny, as a function of

visual extinction Ay .Though there is some scatter, there is a
good correlation in the two quantities as long as Ay is less
than one magnitude.

For clouds that are near enough to be seen
optically, it was found that the 21 cm emission
often follows the optical obscuration of the
dust. This suggests that the gas and dust are
well mixed. This idea was tested in detail by see-
ing the degree to which the hydrogen column
density Ny correlates with the visual extinction
Ay. The results of these studies are shown in
Fig. 14.15. There is some scatter in the data, but
it is clear that Ny and Ay are related. The gen-
eral ratio Ny/Ay is approximately 10*' atoms
cm 2/1 mag.

This ratio was found to hold as long as the
extinction is less than 1 mag. When the extinc-
tion becomes higher, the relationship no longer
holds. This was a mystery for many years. Two
possible solutions were proposed. One was that
with a lot of dust, very little radiation can pene-
trate to heat the cloud. It is possible that the
hydrogen is so cold that the emission lines are
just very weak. The other possibility is that under
the higher extinction conditions, pairs of hydro-
gen atoms combine to form molecular hydrogen,
H,. Molecular hydrogen obviously has a very dif-
ferent structure than atomic hydrogen, and has
no equivalent of the 21 cm line. In fact, cold
molecular hydrogen has no emission or absorp-
tion lines in the radio or visible parts of the spec-
trum. The recent discovery of a large number of
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interstellar molecules, including H,, tells us that
the latter explanation is correct.

14.5 | Interstellar molecules

[4.5.1 Discovery

The discovery of optical absorption lines of CH,
CH™ and CN raised the possibility that molecules
might be an important constituent of the inter-
stellar gas. However, it was thought that the
densities were too low for chemistry to proceed
very far. In fact, the existence of these three
unstable species supported that general notion. If
chemistry had proceeded very far, these species
would have been incorporated into more complex
molecules.

To see how these arguments worked, we can
estimate the rate at which molecules form in a
cloud. Let’s take the example of C and O coming
together to form the simple molecule CO. The
rate of formation of CO per unit volume is
given by

Rform = nchoVo (14-17)

where n¢ and ng are the C and O densities, respec-
tively, v is the relative speed of the atoms, and o
is the cross section for a collision. We take o to be
the geometric cross section (the approximate size
of an atom, 10 '° cm ™ ?) and v to be the average
thermal speed at a temperature of 100 K (about
10° cm/s). Finally, since both C and O have cosmic
abundances of about 10 > that of H, we take each
of their densities to be 103 ny. This will give us a
factor of nj in the rate, so the density is very
important. If ny; = 10 cm™°® the rate becomes
10 ® cm3Js.

We have to compare this with the rate at
which CO is destroyed. One destruction mecha-
nism is photodissociation. An ultraviolet pho-
ton strikes the molecule with a sufficient
energy to break it apart. An unprotected CO
molecule can live an average of 10° years
(3 X 10" s) in the interstellar radiation field.
The dissociation rate per molecule is the inverse
of the lifetime. The dissociation rate per unit
volume is the density of CO molecules divided
by the lifetime:

Rais = Nicoltais (14.18)

If we equate the formation and destruction
rates, we can solve for the equilibrium CO
abundance:

o = (1 X 107 cm™3/s) g,

=3X10 %cm 2

Since ny = 10 cm 2 the fractional abundance
of CO, ncofny, is about 3 X 10, This is low enough
that it did not raise the hopes of finding very
complex molecules. We have even been very opti-
mistic by assuming that every collision between
C and O leads to a CO molecule.

However, radio searches for small molecules
were carried out, with some of the initial candi-
dates being chosen by the availability of conven-
ient radio transitions. In the 1960s three simple
molecules were found, OH (at a wavelength of
18 cm), H,O (at a wavelength of 1 cm), and NH; (at
a wavelength of 1 cm). The abundances of these
molecules were surprisingly high, and astronomers
were encouraged to carry out searches for other
molecules. In 1969 one of the most important
molecular discoveries took place. CO was found
at a wavelength of 2.6 mm, by a group at Bell
Laboratories, led by Arno Penzias and Robert Wilson
(who shared the Nobel Prize in physics for their
earlier discovery of the cosmic background radia-
tion, to be discussed in Chapter 21). They used the
NRAO millimeter telescope shown in Fig. 4.28(a).
This was the first molecule to be found at mil-
limeter wavelengths. Remember, at shorter wave-
lengths we can produce good angular resolution
with modest sized telescopes. (Of course, the tele-
scope surfaces require greater precision and must
be placed at dry sites.) The abundance of CO is
also very high, with CO densities of about 1 cm 2,
much higher than our previous estimate. As we
will see, the 2.6 mm line of CO has taken its place
alongside the 21 cm line as one of the important
tools in studying the cool interstellar gas.

Following these initial discoveries, a large
number of interstellar molecules were found.
Over 100 have been discovered to date. They are
listed in Table 14.1. There are many familiar
molecules, such as formaldehyde (H,CO), methyl
alcohol (CH30H), and ethyl alcohol (CH,CH;OH).
There are some unfamiliar molecules. Some of
these are charged species, such as HCO™, and
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others have unpaired electrons and are chemi-
cally active in the laboratory, such as CCH. Even
carbon chain molecules of moderate length (such
as HC{;N) have been found. There are even some
simple ring molecules. Many of these molecules
were discovered by observations at millimeter
wavelengths on telescopes such as that shown in
Fig. 4.28(a).

The discovery of so many interstellar mole-
cules was obviously a surprise. How could the pre-
dictions that molecules could not form have been
so wrong? One answer is that the clouds in which
the molecules have been found are not the same
clouds that were studied at 21 cm. They have
higher densities and visual extinctions, and
lower temperatures. The higher densities mean
that chemical reactions take place faster (remem-
ber the formation rate goes roughly as the square
of the overall density). The higher visual extinc-
tions provide shielding from the ultraviolet radi-
ation that dissociates the molecules.

We don’t see 21 cm emission from these
clouds because the atomic hydrogen has been
converted to molecular hydrogen. As we have
already seen, the molecular hydrogen has no
radio or optical spectrum. Since hydrogen is the
most abundant element, we classify interstellar
clouds by the form in which the hydrogen is
found. For example, clouds in which the hydro-
gen is mostly atomic are called HI clouds. Clouds
in which the hydrogen is mostly ionized are
called HII regions (to be discussed in the next chap-
ter). Clouds in which the hydrogen is mostly
molecular are called molecular clouds.

14.5.2 Interstellar chemistry

Since the discovery of so many interstellar mole-
cules, considerable effort has gone toward a bet-
ter understanding of interstellar chemistry. It
appears that some of the chemical reactions take
place on grain surfaces. The grain surface pro-
vides a place for two atoms to migrate around
until they find each other. They also provide a
sink for the binding energy of a molecule. The
example of molecular hydrogen is shown in Fig.
14.16. If two H atoms formed in the gas phase, the
particular properties of the H, molecule would
keep it from radiating away the excess energy
before the molecule flew apart. On a grain
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Dust Grain A B
C D
—_—

H, Molecule

FERER T Formation of Hy on a grain surface.

surface, the energy can be efficiently transferred
to the grain, resulting in a slight increase in grain
temperature. The fact that the dust plays an
important role in the formation of H, and the
protection of H, once it is formed, results in an
interesting situation. When a cloud has a visual
extinction of less than one magnitude, almost all
of the hydrogen is atomic. When the extinction is
greater than 1 mag, almost all of the hydrogen is
molecular. This explains the breakdown in the
relationship between Ny and Ay above 1 mag.

Despite the important role that dust plays in
the formation of the most abundant molecule H,,
most of the interstellar chemistry cannot proceed
in this way. Many of the molecules are formed in
the gas. At the beginning of this section we cal-
culated a very low rate for two atoms to collide in
the gas to form a molecule. However, the densi-
ties in molecular clouds are at least 10° times
those we used for our estimate, and the reaction
rates go as the square of the density. Therefore,
the reaction rates in molecular clouds are much
faster than our initial calculation suggests. There
is also another factor that increases the cross sec-
tion for collisions if one of the reactants is an ion
and the other is a neutral. Such a reaction is
called an ion—molecule reaction.
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SIS ERFA Dipole in an electric field. In this case, the

electric field is provided by the positive charge, and weakens

with distance from that charge. The negative end of the
dipole is closer to the positive charge, so an attractive force
felt by the negative end is greater than the repulsive force felt
by the positive end.The dipole is thus attracted to the
charge. (The same thing would happen with a negative charge.)

To see how the rate is enhanced, let’s consider
the case of a positive ion (as shown in Fig. 14.17). We
have already said that the grains must be nega-
tively charged, so the gas must be positively
charged. In addition, Table 14.1 shows that many
positive ions have been detected. The neutral atoms
can still have an electric dipole moment, even
though it has no net charge. The dipole will tend to
line up with the electric field of the ion. Since the
ion is positive, the negative end of the dipole will
end up closer to the ion. The negative end of the
dipole will therefore feel an attractive force which
is slightly greater than the repulsive force felt by
the positive end, which is farther away. The dipole
will feel a net attractive force. This attractive force
significantly increases the effective cross section of
the reactants and speeds the reaction.

Theoreticians have tried to identify the chem-
ical reactions that might be important in the
interstellar medium. They then carry out model
calculations in which they calculate the equilib-

rium abundances of various molecules. These are
the abundances for which the rates of destruc-
tion and formation are equal. These theories have
been quite successful at predicting the abun-
dances of most of the simpler (especially two- and
three-atom) molecules. More work is still needed
for the heavier molecules. In addition, it may be
that many interstellar clouds are not old enough
to have reached an equilibrium situation. If that is
the case, the abundances should still be changing.

14.5.3 Observing interstellar molecules
When we observe interstellar molecules, we are
not observing transitions in which electrons jump
from one level to another. Such transitions do
exist for molecules, as they do for atoms. However,
they require energies of the order of at least a few
electron volts and are in the visible part of the
spectrum. These transitions are not easily excited
in the cool interstellar medium. Another type of
transition in molecules, involving lower energies,
is vibrational. We can think of a molecule as con-
sisting of a number of balls connected by springs.
The springs can stretch and bend at certain fre-
quencies, with certain energies. Transitions
between vibrational states are possible. The ener-
gies associated with vibrational transitions usu-
ally place the resulting photons in the infrared.
This is still too energetic for the cool clouds.
There is another type of transition, with even
lower energies. It involves the rotation of the mole-
cules. The rotational motion is also quantized and
transitions among rotational states can take place.
The photons associated with these transitions are
generally in the radio part of the spectrum. To see
what the energy levels look like in this case, we con-
sider a diatomic molecule (such as CO), rotating
end-over-end about its center of mass. The rota-
tional inertia is I. If the molecule is rotating with

an angular speed w, the energy is given by
E= (1/2)] * (14.19)

The angular frequency can be expressed in terms
of the angular momentum L as

o =1L/ (14.20)
Using this, equation (14.19) becomes
E=1%21 (14.21)
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The condition for the quantization of angular
momentum is different than the one we saw for
electrons in an atom. If ] is an integer, called the
rotational quantum number, then L* is related to ] by

1> =]J(J + 1)(h/27)? (14.22)

(Note: for large values of ] this is not very dif-
ferent from the condition L = Jh/27 for orbiting
electrons.) If we put equation (14.22) into equa-
tion (14.21), the energy becomes

o U+ Dw/2my?

14.23
21 (14.23)

For any given molecule, the energy levels are
determined by the rotational inertia. If I is large,
the energy levels will be close together. If I is
small, the energy levels will be farther apart. The
levels for CO and CS are shown in Fig. 14.18. The
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SESERES Rotational energy levels for two diatomic
molecules, CO and CS.The states are designated by the

rotational quantum number J. The differences between the
two molecules arise from the differences in rotational inertias
resulting from different masses for O and §, and different

bond lengths for the two molecules.

major difference between I(CO) and I(CS) are from
the difference in the masses of the O and S. In
addition, the bond lengths are slightly different in
the two molecules. Note that the closest spacing is
for the first two energy levels (] = 0 and | = 1). As
we go to higher values of ], the energy levels are
farther apart. This means that at low tempera-
tures only a few of the lowest energy levels are
populated. For example, the 2.6 mm transition in
which CO is most commonly observed is the
J =1 — 0. The values of rotational inertia for
many simple molecules are such that the lowest
transitions lie in the millimeter part of the radio
spectrum. That is why so many molecules were
discovered at millimeter wavelengths.

Adding more atoms to a molecule can compli-
cate the spectra. If we still have a linear molecule
(for example, in HCN the three atoms are in a
line), then the energy levels are essentially the
same as the diatomic case, with the appropriate
value for I. If molecules are not linear, then the
spectra are more complicated, since we have to
allow for rotation about more than one axis, but
there are similarities to the linear case.

If we want to look at a new interstellar mole-
cule, we need to know the wavelengths at which
it can emit. For the most part, we rely on accurate
laboratory measurements of molecular spectra.
Once the wavelengths of a few transitions have
been measured, those of other transitions can be
calculated very accurately (using expressions
such as equation (14.23)). There are some mole-
cules that have been found in interstellar space
without prior laboratory study. These were found
accidentally, in the course of searches for other
molecules. In some cases the interstellar medium
provides us with a unique opportunity to study
molecules that are not stable in the laboratory.

The most important feature of interstellar
molecules is that they provide us with a way of
obtaining information about the physical condi-
tions in the molecular clouds. If we take the
energy corresponding to the 2.6 mm photon, and
divide by k, we find an equivalent temperature of
5.5 K. This means that rotational transitions in
molecules are excited even at low temperatures.
Also, the factor e ¥4 in the Boltzmann equation
is most sensitive to changes in temperature and
density when E is of the order of kT.
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SR ER B Types of interactions between radiation and

matter. (a) Absorption. A photon is absorbed, leaving the

atom or molecule in an excited state. In this case the
excited state is denoted by a larger symbol for the atom or
molecule. (b) Emission. The atom or molecule starts in the
excited state, and spontaneously makes a transition to the
lower state, giving off a photon of the appropriate energy.
(c) Stimulated emission. The atom or molecule is in the
excited state. A photon whose energy would be right to
produce an absorption if the atom or molecule were in the
lower state, strikes the atom or molecule, inducing a down-
ward transition and the emission of a photon. There are now
two photons. They are at the same frequency, traveling in the
same direction and in phase.

To see how we use molecules as probes of the
physical conditions in interstellar clouds, we
must first know the ways in which a molecule
can go from one rotational state to another. One
set of processes involves the interaction with radi-
ation, either by emission or absorption of pho-
tons. Radiative processes are illustrated in
Fig. 14.19. We are already familiar with absorp-
tion and emission of photons. For absorption, the
photon must have the energy corresponding to a
transition between the molecule’s initial state to
a higher energy state. For emission, the molecule
goes from a higher energy state to a lower energy

state. The emitted photon has an energy equal to
the energy difference between the states.

There is an additional radiative process that is
important - stimulated emission. This is emission of
a photon, stimulated by the presence of another
photon. Suppose we consider only two energy
states. The molecule starts in the higher energy
state. When the molecule is struck by a photon,
whose energy is equal to the energy difference
between the states, the molecules cannot absorb
the photon, since the molecule is already in the
higher state. However, the presence of that pho-
ton can cause the molecule to drop to the lower
state, emitting a second photon. In the process of
stimulated emission one photon comes in and
two photons go out. The two photons have the
same wavelength, are in phase with each other,
and travel in the same direction. As will see
below, it is stimulated emission that is responsi-
ble for amplification in masers and lasers.

Molecules can also be induced to make tran-
sitions by collisions with other particles. In a
molecular cloud most of the matter is in H,,
which we don’t usually directly observe.
However, this H, makes its presence felt by forc-
ing transitions in other molecules, as illustrated
in Fig. 14.20. The process works in both direc-
tions. An H, molecule can strike a CO molecule,
for example. In the process, the H, can lose
kinetic energy, while the CO is excited to a
higher energy state, or the H, molecule can gain
kinetic energy with the CO going to a lower
energy state.

In order to use observations of interstellar
molecules to tell us about cloud physical condi-
tions, we must be able to calculate the rates at
which these various processes occur under differ-
ent conditions. It is then necessary to carry out
large calculations to model the conditions in a
cloud. In these models we require that the popu-
lation of each level stays constant. The rate at
which molecules can reach any state must equal
the rate at which they leave that state. We use the
model calculations to predict the strengths of
various molecular lines. We then compare those
predictions with observations. The models are
adjusted until agreement is found. The model is
then used to predict the results of new observa-
tions, and the process continues.
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SRR Excitation of a CO molecule via a collision with

an H, molecule. (a) In this case the H, strikes the CO.

(b) The H; is moving slower, having lost some kinetic energy,
and the CO is rotating faster with energy that it gained in
the collision. (c) The CO emits a photon (spontaneously)
and drops back to the lower state. (A transition to the
lower state could have also been caused by a collision with a
different H, molecule, causing that H, molecule to speed up,
taking away the rotational energy of the CQO.)

In studying molecular lines we can also learn
about the velocities within a cloud by studying
the line profiles. An interesting feature of molec-
ular lines is that they are almost always wider
(cover a wider frequency range) than would be
expected for a line in which the only Doppler
broadening is from random thermal motions.
This implies that we are seeing the effects of
other internal motions in the cloud. These
motions can include collapse, expansion or rota-
tion. We may also be seeing the effects of turbu-
lent stirring of the gas. This stirring may be
driven by mass loss from both old and young
stars.

Probably the most usefully studied interstellar
molecule is carbon monoxide, CO. It is very abun-
dant. Its abundance is about 10~ * to 10> times

that of hydrogen, while most other molecules
have abundances that are about 10 ° times that
of hydrogen (a part per billion) or less. The CO is
easy to excite and to observe. It is particularly use-
ful in tracing out the extent of molecular clouds.
Also, observations of CO allow us to estimate
cloud masses and kinetic temperatures. Some
other molecules that are very useful are carbon
sulfide (CS) and formaldehyde (H,CO). These
other molecules are rarer and harder to excite
than CO. We only see them in very dense parts of
clouds. Therefore, we can use these molecules to
tell us about the densities in these clouds.

Determining the masses of molecular clouds
is more difficult than for atomic clouds. When
we look at atomic clouds through the 21 cm line
we are looking at the primary constituent of
those clouds - HI. So, when we measure HI col-
umn densities from the strength of the 21 cm
line, we can convert those column densities
directly into cloud masses. Also, since the optical
depth of that line is generally small, the strength
of the line is close to proportional to the column
density. When we look at molecular clouds, say
by observing CO, we are observing a trace con-
stituent, something present in a part per million
relative to H,, and that abundance may vary
according to local chemical conditions. So, even
if we could measure the total mass of CO in a
molecular cloud, we wouldn’t know by what fac-
tor to multiply that to determine the H, mass. In
addition, for the most part, the transitions that
we observe in CO are not optically thin, so it is
hard to relate their intensity directly to the CO
column density.

Analyzing molecular excitation to give H,
densities in different parts of a cloud can be use-
ful in studying local conditions within a cloud.
These do work, but involve extensive observa-
tions, making maps of different lines and differ-
ent molecules, taking advantage of the fact that
different transitions are excited in different tem-
perature and density regimes.

There is one technique that is potentially use-
ful. In the last chapter, we discussed using the
virial theorem to determine the masses of clus-
ters of stars. This might also work for molecular
clouds. Even though the H, is mostly invisible,
the CO in the cloud still feels its gravitational
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effects. So, a more massive cloud would be able
to support larger internal motions and still
remain bound. We can use the CO emission to
measure both the extent of the cloud and the
internal motions, from the widths the spectral
lines. There is always the problem that we don’t
know if a cloud is dynamically relaxed, or even
bound. After all, we have seen earlier in this
chapter that the interstellar medium is a very
turbulent place. If we want to use virial masses,
we need to find clouds that seem to be in rela-
tively quiet regions.

Example 14.5 Virial mass of a molecular cloud
Find the virial mass of a molecular cloud with
(vyy= 3.0 km/s and R = 10 pc.

SOLUTION
From equation (13.52) we have

~ (5)(3.0 X 10°cm/s)*(10 pc)(3.18 X 10'*cm/pc)
(6.67 X 108 dyn cm?/g?)

21 X 10%g

1.0 X 10° My

Objects this massive are called giant Molecular
clouds and will be discussed more in the next
chapter.

Another interesting aspect of interstellar mol-
ecules involves the substitution of various iso-
topes. For example, the most common form of
carbon is "*C and most of the CO is in this form.
However, some CO is formed with the rarer
species *C. Making such a substitution changes
the rotational inertia, I, for the molecule, shift-
ing the spectral lines. The shifts are quite large,
and are easy to detect. By contrast, the wave-
lengths of electronic transitions (in C atoms for
example) depend on the electron nucleus
reduced mass, and the shift is very small when
we go from *2C to **C. We can therefore measure
the amounts of different isotopes in the interstel-
lar medium. Since all of the heavy elements come
from stars, these measurements can tell us about
the ways in which earlier generations of stars
have enriched the interstellar medium. It also
turns out that changing isotopes changes the
chemical reaction rates. This is particularly true

for ion-molecule reactions in cool clouds.
Therefore, observing the same molecule with dif-
ferent isotopic substitutions can tell us about
how that molecule was made.

14.6 | Thermodynamics of the
interstellar medium

The temperature of any object is determined by
the balance between heating and cooling. There is
generally some temperature for which the rates of
heating and cooling will be the same, allowing the
temperature to stay constant. In this section we
will look at the heating and cooling processes.
When we talk about a heating process we mean
one that tends to increase the kinetic energy of the
gas. When we talk about a cooling process we
mean one that tends to decrease the kinetic
energy.

One way for an interstellar cloud to be heated
is by the absorption of photons. These photons
come from a nearby star, or from the combined
light of many distant stars. A photon entering a
cloud is not, by itself, a mechanism for heating
the cloud. We must have a way of converting the
energy of the photon into kinetic energy in the
gas. The most important mechanisms for photon
heating are as follows.

(1) Heating the dust. A photon strikes a dust grain
with the photon energy going towards increas-
ing the grain temperature. The hot grain is
then struck by an atom or molecule in the gas,
and it transfers some of its energy to that atom
or molecule.

(2) Excitation of atoms or molecules. A photon
strikes an atom or molecule, leaving it in an
excited state. The excited atom or molecule
undergoes a collision with another atom or
molecule. The first atom or molecule drops
back to the lower energy state, and the energy
shows up as an increased kinetic energy for
the second atom or molecule. It is important
that the collision takes place before the first
atom or molecule has had time simply to emit
a photon and drop to the lower state, since the
photon can escape, leaving the cloud with no
additional energy.
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(3) Ionization. The incoming photon strikes an
atom or molecule, ejecting an electron. The
electron can then transfer its kinetic energy
to the rest of the gas through collisions.
These collisions must take place before the
electron recombines with an ion, releasing a
photon.

Photoelectric effect. In the process, an incom-
ing photon strikes a grain surface, causing the
ejection of an electron. The electron’s kinetic
energy is then available to heat the gas.

=

The above processes also work for heating by
streams of high energy particles, known as cosmic
rays, which permeate the interstellar medium.
The sources of cosmic rays will be discussed in
Chapter 19.

The interstellar medium can also be heated by
the direct injection of mechanical energy from
high velocity flows. For example, a supernova
remnant, traveling at high speeds, will transfer
some of its kinetic energy to material it overruns.
Stellar winds can accomplish the same things.
When we look at large scale maps of interstellar
clouds, we see evidence for many loops and ‘bub-
bles’. These suggest that the interstellar medium
is constantly being stirred up by processes such as
supernova explosions.

We now look at cooling processes. We must
remember that a cooling process must take
kinetic energy from the gas and remove that
energy from the cloud. These processes are just
the inverse of the heating processes.

(1) Emission from grains. An atom or molecule
strikes a grain, with the atom or molecule
losing kinetic energy and the grain becoming
hotter. The grain can then radiate this excess
energy away. It must radiate away before it is
struck by another atom or molecule that
might take back the energy.

(2) Excitation. One atom or molecule strikes
another, with the first losing kinetic energy
and the second being driven into an excited
state. The second one then emits a photon
and drops back to its lower state. Of course,
the emission of the photon must take place
before another collision forces the second one
back to the lower state.

(3) Ionization. One atom or molecule strikes
another, with the second being ionized. The
electron then recombines, accompanied by
the emission of a photon, before it can collide
with another particle in the gas.

In the heating and cooling processes, differ-
ent atoms and molecules play important roles in
different density and temperature regimes. For
example, in the cool molecular clouds, much of
the cooling comes from radiation by CO. In very
hot regions the cooling can come from unusual
emission lines in certain ions (discussed in
Chapter 15). This multitude of processes allows us
to have a wide variety of temperatures in the
interstellar medium, ranging from cool (10 K)
high density regions to hot (10* K) low density
regions.

Chapter summary

In this chapter we looked at various components
of the interstellar medium. We saw how they are
observed, and we looked at the physical processes
that are important in their current state and
evolution.

Though only 1% of the interstellar mass, the
dust is the most easily visible part of the interstel-
lar medium. We detect dust by its blocking of
starlight, known as extinction. Warm dust can be
detected by emission in the infrared. The extinc-
tion consists of both scattering and absorption. The

extinction is wavelength dependent, producing
interstellar reddening. We saw what could be
deduced about grain sizes from extinction curves.
We obtain information on grain composition from
infrared spectra. We saw how the equilibrium tem-
peratures of grains are determined by a balance
between radiation absorbed and radiation emitted.

The interstellar gas can be observed in the
optical and ultraviolet parts of the spectrum, but
radio observations are most useful in studying
the cool gas. Extensive studies have been made
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using the 21 cm line of hydrogen. However, the
clouds revealed by these studies do not have high
enough densities for them to be the likely sites of
star formation.

Star formation probably takes place in cooler,
denser, molecular clouds. In these clouds most of
the hydrogen is in the form of H,. We cannot
observe the H, from the ground, except when it is
heated in a few small regions. Instead, we study
molecular clouds by emission from trace mole-
cules, such as CO. At these low temperatures

Questions

(10-50 K), we are usually observing transitions
from one rotational state to another. At these low
temperatures and densities, most of the chemical
reactions are probably between ions and neutral
species.

We also looked at how interstellar clouds are
heated and at how they cool. In heating, any
energy input must eventually be converted into
kinetic energy in the gas. In cooling, the kinetic
energy of the gas must be converted into energy,
such as radiation, that can leave the cloud.

14.1. When we look at an image like Fig. 14.1,
how do we know that something is blocking
the light of distant stars, rather than there
simply being fewer stars in one direction?
How will scattering affect the temperature of
the struck dust grain? How will absorption?
If we look at a bright nebula, how might we
know that it is a reflection nebula?

14.4. What does counting stars tell us about the
extinction in a cloud?

14.5. When we use star counts, what are the
relative advantages of looking in magnitude
ranges and taking total numbers of stars?

14.6. What is the significance of the constancy of
the ratio of total-to-selective extinction?

14.7. What is the evidence that there is more
than one type of interstellar dust grain?

14.8. Why is it not likely that interstellar dust
grains are all spherical?

14.9. What do we mean by a dilute blackbody?
*14.10. How would the equilibrium temperature of
a dust grain change if the albedo were less
in the infrared than in the visible?

Why do we not see Ha absorption from

interstellar HI clouds?

14.12. What is the explanation for the disappear-
ance in the correlation between HI column
density and visual extinction above one
magnitude?

14.13. What is the evidence that interstellar gas

and dust are well mixed?

How can we study the Zeeman shift in

interstellar HI when it is only a small

fraction of the linewidth?

14.2.

14.3.

14.11.

14.14.

14.15. What are the advantages of using radio
observations (as opposed to optical) in
studying the interstellar gas?

What are the mechanisms that we have
discussed for broadening interstellar lines?
What does the two-phase model of the
interstellar medium try to explain?
Compare the advantages of studying the

21 cm line of H with the 2.6 mm line of CO.
Discuss both the observational advantages
and the differences in the physical informa-
tion that we obtain.

Why did early molecular discoveries (CH,
CH™, CN) discourage further searches?
How do ion—-molecule reactions help in
interstellar chemistry?

Why is it hard to make H, directly in the
gas phase?

As you increase the mass of the atoms in a
diatomic molecule, what happens to the
rotational energy levels?

Explain how we use observations of a mole-
cule such as CO to tell us about conditions
in molecular clouds.

In studying molecular clouds, what are the
advantages of studying a variety of mole-
cules?

Explain how CO can act to cool molecular
clouds. Go through the steps of how the
energy would transform from the kinetic
energy of the gas to a form where it can
escape the cloud.

Why do low density gases have difficulty
cooling?

14.16.

14.17.

14.18.

14.19.

14.20.

14.21.

14.22.

14.23.

14.24.

14.25.

14.26.
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Problems

(For all of these problems, where necessary assume the
normal ratio of total-to-selective extinction.)

14.1. Suppose we observe an A0 V star to have an
apparent (visual) magnitude of 15.7. The star
is in a cluster whose distance is known to be
950 pc. (a) What is the extinction between us
and the star? (b) If we had not known the
distance to the cluster, and not taken the
extinction into account, by how much would
our distance calculation have been off?

14.2. We observe a star that is 1000 pc away. How
much extinction would there be if we
calculated a distance of 2000 pc when we
didn’t take extinction into account?

14.3. Suppose we observe an A0 V star to have my,
= 16.0, mp = 17.0. (a) What is the extinction
between us and the star, and how far away is
the star? (b) What are the extinction and
distance if my = 18.0?

14.4. Suppose we observe a KO V star to have
my = 16.0, mg = 17.0. (a) What is the extinction
between us and the star, and how far away is
the star? (b) What are the extinction and
distance if mp = 18.0?

14.5. We are observing a cluster whose distance is
known to be 850 pc. The visual extinction
between us and the cluster is 2 mag. What
would be the my and mg for (a) an OS5 star
and (b) a G5 star?

14.6. Prove that, for the same angular momen-
tum, end-over-end rotation for a cigar-
shaped object has a lower energy than rota-
tion about the long axis.

14.7. Suppose we have a grain with a radius of
107° cm and a charge of +e. An electron
starts from far away at rest. It is attracted
and eventually hits the surface. (a) How fast
is it going when it hits the surface? (b) How
does this compare with the the average
thermal speed of the electrons if they are at
100 K?

14.8. Use the results of Example 14.4 to give a
scaling relationship that can be used to
calculate the dust temperature (in Kelvin)
when the stellar temperature is given in units
of 10* K, and the distance from the star is
given in stellar radii.

14.9. How far must a dust grain be from a 10* K
star for it to have a temperature of 1000 K?

*14.10. Suppose the albedo of a dust grain is constant
in the infrared (where it will emit most of its
energy), at a value a(IR), and is constant over
the visible and ultraviolet (where it will absorb
most of its energy), with a value a(V). It is near
a star whose spectrum is that of a blackbody
at temperature T+, and whose radius is Rx. The
grain is a distance d from the star. Derive an
expression for the dust temperature.

*14.11. Suppose a dust grain has an albedo a(A). It is
near a star whose spectrum is that of a
blackbody at temperature T, and whose
radius is R« The grain is a distance d from
the star. Derive an expression for the dust
temperature. (You will have to leave your
answer in terms of an integral, since the
form of a(A) is not given.)

14.12. What is the range of distances from a BOV
star for which the dust temperature is
between 50 and 1000 K?

*14.13.1In our discussion of the temperature of a
dust grain near a star, we did not account
for the fact that the dust grains near the star
would block some light from reaching dust
grains far from the star. Show how this
effect modifies the results.

14.14. Show that, in a gas, the number of particles
hitting a surface per second per unit surface
area is nv, where n is the number density of
particles per volume and v is the speed of
the particles.

14.15. Compare the width (both in km/s and nm) of
the Na D line (589.6 nm) for thermal broad-
ening in an interstellar cloud (50 K) and a
stellar atmosphere (5000 K).

14.16. What frequency resolution would be needed
to observe the 21 cm line with a velocity
resolution of 0.1 km/s?

14.17. For an excitation temperature of 100 K, what
is the ratio of populations for the two levels
in the 21 cm transition? (Take the statistical
weight of the lower level to be 1 and the
upper level to be 3.)

14.18. How does the angular resolution of a 100 m
diameter telescope at 21 cm compare with
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that of a 12 m diameter telescope at 2.6 mm?
What is the significance of these numbers?

*14.19.Estimate the rate at which two H atoms can

form an H, molecule on a grain surface.
Assume that all atoms hitting a grain stick,
and that as soon as two H atoms are on the
grain surface, they immediately form a
molecule.

14.20. Suppose we have an electric dipole made up

14.21.

of two charges, +q and —q, a distance d apart.
The dipole is placed a distance r from a charge
+Q. (a) Find an expression for the net force on
the dipole. (b) How is this related to chemical
reactions in the interstellar medium?

For the CO, ] =1 — 0 transition (just
considering the two lowest levels), what is
the ratio of the populations of the two levels
for temperatures of 10, 20, 30 K? The statistical
weights of the two states are 1 and 3.

14.22. For scattering of light by interstellar grains

we define the phase function as the average

Computer problems

value of cos 6, where 6 is the angle through
which the light is scattered, and 6§ = 0 for
forward scattering. Find the value of the
phase function in the following limiting
cases: (a) all forward scattering, (b) all rear-
ward scattering, (c) random scattering with
all directions equally likely.

14.23. For rotational energy levels of diatomic

molecules the most likely transitions are
those for which J changes by *+1. Find an
expression for the energies of these allowed
transitions, as a function of J and L.

14.24. Calculate the mass of an HI cloud with a

circular appearance, with a radius of 10 pc
and an average H column density of
10*" cm ™2,

14.25. Calculate the virial mass for a molecular

cloud with (v;) = 5 km/s and R = 20 pc.

14.26. For a 30 pc radius molecular cloud to have a

virial mass of 10° M, what must be the
value of (v,)?

14.1.

14.2.

14.3.

14.4.

If we are far from an individual star, we can treat
the interstellar radiation field as a dilute black-
body of temperature 10* K, with a dilution factor
of 10~ ™, This means that the spectrum of the radi-
ation looks like that of a 10* K blackbody, with the
intensity reduced by a factor of 10™ ', Use this to
estimate the temperature of an interstellar grain
in such an environment.

Plot the graph of the temperature of a dust grain
vs. distance from an OS5 star, with the graph cov-
ering distances from 1000 AU to 1 pc.

Draw diagrams like Fig. 14.13(a) where the split-
ting between the two components is a smaller and
a larger fraction of the linewidth. (The red and
blue curves are both gaussians with the same
peak intensity and linewidth.)

Assume that the populations of the 21 cm transi-
tion, in a gas of temperature T, are described by

14.5.

14.6.

14.7.

14.8.

the Boltzmann equation with statistical weights
1. Plot the graph of the fraction in the upper state
vs. T for T ranging from 0 to 1000 K.

For CO and CS, what rotational transitions
would be observable in the visible part of the
spectrum?

For the CO, ] = 1 — 0 transition (just consider-
ing the two lowest levels), make a graph of the
ratio of the populations of the two levels for tem-
peratures ranging from 0 to 1000 K. The statistical
weights of the two states are 1 and 3.

For the lowest three energy levels of CO, draw a
graph of the fraction in the ] = 1 state vs. T for T
ranging from 0 to 1000 K. The statistical weights
of the three states are 1, 3 and 5.

Calculate virial masses for molecular clouds
with R = 1, 3, 5 and 10 pc, and (v,) = 1, 2 and
5 km/s.



Chapter |5

Star formation

In Chapter 14, we discussed the contents of the
interstellar medium, the material out of which
new stars must be formed. In this chapter, we will
identify those parts of the interstellar medium
that are involved in star formation, and see what
we know, and what we have to learn, about the
star formation process.

15.1 | Gravitational binding

In Chapter 13, we talked about gravitational
binding for clusters of stars. The same concepts
apply to interstellar clouds, with the stars in the
cluster being replaced by the particles that
make up the cloud (either H or H, ). The gravita-
tional potential energy is now due to the inter-
action among all of the particles in a cloud. For
a uniform spherical cloud, the gravitational
potential energy is—(3/5)GM?R. The kinetic
energy is still related to the rms velocity disper-
sion, but with a large number of particles,
which can easily be related to the cloud temper-
ature, so the Kkinetic energy is (3/2)(M/m)kT,
where M is the total mass of the cloud and m is
the mass per particle.

The clouds are kept together by the gravita-
tional attraction amongst all of the particles in
the cloud. If the gravitational forces that hold the
cloud together are greater than the forces driving
it apart, we say the cloud is gravitationally bound.
We can think of the random thermal motions in
the gas as resisting the collapse.

The condition for gravitational binding (total
energy negative) is then

(3/5)GM?*/R = (3/2)(M/m)kT

Dividing both sides by GM and multiplying by
(5/3) gives

(M/R) = (5/2)(kT/Gm) (15.1)

The mass and radius of a cloud are not inde-
pendent, since they are related to the density
p = M/(4m/3)R®>. We might therefore like to use
equation (15.1) to estimate the smallest size cloud
of a given p, m and T for which the cloud is grav-
itationally bound. This quantity is called the
Jeans length, R;. James Jeans obtained essentially
the same result with a more sophisticated analy-
sis. We therefore eliminate M in equation (15.1),
and change the inequality to an equality, since
we are looking for the value of R that is on the
boundary between bound and unbound. This
gives
(47/3)R}p/R; = 5KT/2Gm
Solving for Ry,

R; = (15kT/87Gmp)"/> (15.2)

Note that (15/87)% = 0.77, which is close to
unity. As the geometry of the cloud changes, the
exact value of the constant will change, but it
will still be close to unity. We then write

R, = (kT/Gmp)*/* (15.3)
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We can rewrite this in terms of n, the number of
particles per unit volume (n = p[m), as

Ry = (kT/Gm*n)"/? (15.4)

We can also use equation (15.1) to give us the
minimum mass for which a cloud of given p, T
and m will be bound. This minimum mass is
called the Jeans mass. It is the mass of an object
whose radius is Ry, so

M; = (4m/3)R{p
= (4m/3)(KT/Gmp)*?p
= 4(kT/Gm)*? p~ 1/

= 4(kT/Gm)**(nm)~ /2 (15.5)

Example 15.1 Jeans length and mass

Find the Jeans length and mass in a cloud with
10° H atoms per centimeter cubed and a tempera-
ture of 50 K.

SOLUTION
We use equation (15.4) to find R;:

(1.38 X 10 *® erg /K)(50 K) 1/2
(6.67 X 10~%dyn cm?/g?)(1.67 X 10~*g)*(10°cm)

R =

6.1 X 107 cm

= 0.2 pc

We find the mass by multiplying the density by the
volume:

M; = (47/3)(1.67 X 10"*g)(10°cm?)(6.1 X 107 cm)?
=15 X 10®g
= 76 Mg

We could have obtained the same mass directly
from equation (15.5).

As we will see below, not all the mass will end up
in the star.

Once a cloud becomes gravitationally bound,
it will begin to collapse. We would like to be able
to estimate the time for the collapse to take place.
We begin by considering a particle a distance r
from the center of the cloud. It will accelerate
toward the center under the influence of the
mass closer to the center than r. The acceleration

is given by
a(r) = GM(r)|r*
= G(4m[3)rp|r*
= (4m[3)Grp (15.6)

If the acceleration of this particle stayed con-
stant with time, then the free-fall time, the time
for it to fall a distance r, would be

w=la)

e

Note that the constant (3/2m)'? = 0.7, which
we can approximate as unity, since we are mak-
ing an estimate of the time. This gives

t = 1/(Gp)""?

The free-fall time is independent of the starting
radius. Therefore, all matter in a constant density
cloud has approximately the same free-fall time.
However, as the cloud collapses, the density
increases. The collapse proceeds faster. The free-
fall time for the original cloud is therefore an
upper limit to the actual collapse time. However,
the result is not very different, since most of the
time will be taken up in the early stages of the col-
lapse, when the acceleration is not appreciably dif-
ferent from the one we have calculated. Therefore,
we use the free-fall time as a reasonable estimate
of the time it will take a cloud to collapse.

There is one important difference between our
idealized cloud and a real cloud. A real cloud will
probably have a higher density in the center. We
can see this as follows. If the cloud is initially of uni-
form density, all points will have the same inward
acceleration. This means that all particles will cover
the same inward distance dr (where dr < 0), in
some time interval dt. We can see how this changes
the density for different volume spheres. If the ini-
tial density is p,, then the density of a constant
mass collapsing sphere that shrinks from r, to r is

(15.7)

(15.8)

P = Po (7'0/7‘)3

The change in density dp is found by differentiat-
ing to give

dp = —3po(rg /) dr
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The fractional change in density, dp/p, is

dplp = =3 drr (15.9)

This means that the smaller the initial sphere we
consider, the faster its density will grow.

With a higher density at the center, the free-
fall time for material near the center will be less
than for material near the edge. The material
from the edge will lag behind the material closer
in. This will enhance the density concentration
in the center. The net result is that we end up
with a strong concentration in the center. The
concentration will eventually become the star,
but the material from the outer parts of the
cloud will continue to fall in on the star for quite
some time.

Example 15.2 Free-fall time
Calculate the free-fall time for the cloud in the
above example.

SOLUTION
Using equation (15.8) gives

tee = [(6.67 X 10 dyn cm®jg” )(1.67 X 10~ ** g)
(10° cm 312
=95 X 1025
=3 X 10°yr

While almost a million years might sound like a
long time, it is short compared with the main
sequence lifetime of the star that will be formed,
or the age of the galaxy.

If the cloud is rotating, then the collapse will
be affected by the fact that the cloud’s angular
momentum must remain constant. The angular
momentum L is the product of the moment of
inertia I and the angular speed w,

L=Iw (15.10)

For a uniform sphere, the moment of inertia is

I = (2/5)Mr? (15.11)

If I, and w, are the original moment of iner-
tia and angular speed, and I and w are their val-
ues at some later time, conservation of angular
momentum tells us that

Ipwo=Tw (15.12)

Using equation (15.11) to eliminate I and I,, we
have

(@]wo) = (ro [ 1) (15.13)

(This explains why a figure skater rotates faster as
she brings her arms in. The 1/r* dependence of
the angular speed has a dramatic effect.)

To see what effect this has on collapse, we
again look at a particle a distance r from the cen-
ter of a collapsing cloud. The acceleration at that
point is still GM(r)/+*. However, the radial acceler-
ation now has two parts: (1) a(r) is associated with
the change in magnitude of the radius, and (2)
the acceleration associated with the change of
direction, rw®. Therefore,

GM()|r* = a(r) + ro* (15.14a)
Solving for a(r) gives
a(r) = GM(n)jr* — re* (15.14b)

In comparing this with equation (15.6), we see
that the acceleration a(r) is less for a rotating
cloud than for a non-rotating cloud. The effect of
the rotation is to slow down the collapse perpen-
dicular to the axis of rotation.

The effects of rotation will be most significant
when the second term on the right-hand side of
equation (15.14a) is much greater than the first
term, in which case

GM(r)|r* = rw*
Multiplying both sides by r* gives
GM(r) = r*w?

= g (rolr)*

= (woro)” (ro1) 1o (15.15)
Noting that v, = wq 1o , Where v, is the speed of a
particle a distance r, from the center,

GM(r) = V3 7o (rolr)

We now solve for r/ry, the amount by which the
cloud collapses before the rotation dominates:

Tre = va 1of GM(r) (15.16)

For the cloud given in the two previous exam-
ples, with an initial rotation speed v, = 1 km/s,
r/ro = 0.6. This means that, by the time the cloud
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m Fragmentation of a collapsing interstellar cloud.

(2) The cloud is initially rotating as shown.As it collapses, the
angular momentum } is conserved. (b) As the cloud becomes
smaller, its angular speed w must increase to keep the
angular momentum fixed. The rotation inhibits collapse
perpendicular to the axis of rotation, and the cloud flattens.
(c) Unable to collapse any further, the cloud breaks up, with
the total angular momentum being divided between the spin

and orbital angular momenta of the individual fragments.

reaches half its initial size, the rotation can
completely stop the collapse perpendicular to the
axis of rotation. Motions parallel to the axis of
rotation are not affected by this, so collapse par-
allel to the axis of rotation can proceed unim-
peded, and the cloud will flatten. (We will see
that the tendency of rotating objects to form
disks will reappear in many astrophysical situa-
tions.) Since the collapse is then only in one
dimension, it is harder to reach stellar densities.
Thus, the effect of rotation is to keep much of the
material from becoming a star.

More of the material can end up in stars if
the cloud breaks up into a multiple star system.
The angular momentum can be taken up in the
orbital motion, but individual clumps can con-
tinue contracting. This fragmentation process is
probably responsible for the high incidence of
binary systems. If a cloud shrinks to half its ini-
tial size, the average density will go up by a factor
of eight. (The density is proportional to 1/volume,
and the volume is proportional to r°.) From equa-
tion (15.5), we see that the Jeans mass of the
denser cloud will be approximately one-third of
the original Jeans mass. This means that it is pos-
sible for the less massive clumps to be bound and
continue their collapse. The fragmentation
process (Fig. 15.1) may be repeated until stellar
mass objects are reached.

15.2 | Problems in star formation

We would like to know the conditions under
which stars will form. We would like to know
which types of interstellar clouds are most likely
to form stars, and which locations within the
clouds are the most likely sites of star formation.
We would also like to know whether star forma-
tion is spontaneous or whether it needs some
outside trigger. When we say a trigger is neces-
sary, we mean that the conditions in a cloud are
right for star formation, but something is neces-
sary to compress the cloud somewhat to get the
process started. Once started, it continues on its
own. Sources for triggering star formation that
have been suggested are the passage of a super-
nova remnant shock front, or the compression
caused by a stellar wind. (Later in this chapter we
will see how expanding HII regions might act as
triggers, and in Chapter 17 we will discuss density
waves associated with galactic spiral structure.
These might also induce star formation.)

Once the collapse to form stars starts, we
would like to know how it proceeds, and what frac-
tion of the cloud mass ends up in stars. This is
sometimes referred to as the efficiency of star forma-
tion. We would also like to know how much of the
mass that goes into stars goes into stars of various
masses. This is called the initial mass function. By
“initial” we mean the distribution of stellar
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masses at the time that a cloud gives birth to stars.
The actual mass distribution in the galaxy is
altered by the fact that stars of different masses
have different lifetimes.

An important problem in understanding the
evolution of star forming clouds comes from the
angular momentum of the cloud. In the previous
section, we saw that the collapse can be slowed
down or even stopped in a rotating cloud. How a
cloud distributes and loses its angular momentum
probably affects the efficiency of star formation
and the initial mass function. In addition, it may
account for the high fraction of multiple star sys-
tems and for the formation of planetary systems.

An interesting set of problems is posed by
groupings of stars called OB associations. These are
groups of stars in which it has been suggested
that all O stars form. We refer to these groupings
as associations rather than clusters because asso-
ciations are not gravitationally bound. They are
expanding, and eventually dissolve into the back-
ground of stars. We would like to know how an
initially bound cloud can give birth to an
unbound grouping of stars. In Chapter 13 we saw
that, if a system in virial equilibrium loses more
than half of its mass without the velocity distri-
bution changing, then the system becomes
unbound. It is clear that the clusters have lost
more than half their mass.

Another interesting feature of OB associations
is the existence of subgroups. Some associations
have as many as three or four distinct groupings of
stars. The subgroups have different ages, as deter-
mined from their HR diagrams. Also, the older
subgroups seem to be larger, which makes sense
if they are expanding. A major question in star
formation is explaining what appears to be a
sequential wave of star formation through an
association. It is in this context that triggers have
been most actively discussed. OB associations are
often near molecular clouds, as shown in
Fig. 15.2. The younger subgroups tend to appear
closer to the molecular clouds.

We would also like to know whether low and
high mass star formation take place in different
ways or in different environments. It has been
suggested, for example, that low mass stars are
being made all the time, whereas high mass star
formation takes place in bursts. We would also
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* * T
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Molecular
Cloud

OB associations and molecular clouds. These
associations often have a few subgroups.The older subgroups
are more extended, since the associations are unbound and
are expanding. Younger subgroups tend to be more closely
related to molecular clouds.

like to know how an interstellar cloud knows
what distribution of stellar masses it is supposed
to make.

15.3 | Molecular clouds and
star formation

We discussed the properties of molecular clouds
in Chapter 14. They are important for star forma-
tion because they are both cool and dense, rela-
tive to the rest of the interstellar medium. In
Section 15.1, we discussed the conditions under
which an interstellar cloud is gravitationally
bound, and expressed the result as a Jeans length.
For a cloud of a given temperature T and number
density n, the Jeans length is the minimum size
of a gravitationally bound cloud. We approxi-
mated the Jeans length (equation 15.4) as

Ry = (KT/Gm®n)'?

Example 15.3 Jeans length for atomic and
molecular clouds

Compare the Jeans length for an atomic cloud
(T=100K, n =1 cm ) and a molecular cloud
(T=10K,n = 10%> cm™°).
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SOLUTION

We simply take the ratios, noting also that the
mass per particle in molecular clouds is twice that
in atomic clouds.

Ry(at)/Ry(mol) = [(10°)(10)(4)]"
= 200

This means that a much smaller piece of a molecu-
lar cloud can become gravitationally bound than
for an atomic cloud. It is therefore much easier to
get a bound section in a molecular cloud than in
an HI cloud. This comes about because of both the
higher density and lower temperature.

We find a number of different types of molec-
ular clouds. Their basic properties are summa-
rized in Table 15.1. The simplest are the globules,
as shown in Fig. 14.1. These are sometimes called
Bok globules, after Bart Bok, who suggested that
they were potential sites for star formation.
Globules are typically a few parsecs across. They
generally have a simple, round appearance. This
simplicity makes them attractive to study. Their
visual extinctions fall in the range 1—10 mag,
which can be determined by star counting. From
CO observations, we find their kinetic tempera-
tures are about 10 K. From observations of CO and
CS we estimate their densities at 10°> cm > and up
to 10* cm 3, and masses in the range 10 to 100 M
. We think that they are in a state of slow gravita-
tional contraction.

The dark clouds, such as those shown in Fig. 15.3,
have local conditions (density, temperature) similar

Dark clouds blocking the light from background
stars. Note the intricate shapes.This is a near infrared image
of the star forming region RCW108.We see a few bright

young stars, but mostly irregular dark clouds. (Compare this
with the simple shape of the globule in Fig. 14.1.) [ESO]

to those in globules, but the dark clouds are larger.
Typical sizes for the dark clouds are in the tens of
parsecs range. Often a size is hard to define because
dark clouds appear to consist of a number of small
clouds in an irregular arrangement. There is evi-
dence that they contain low mass stars.

The largest molecular clouds are called giant
molecular clouds or GMCs. They are generally elon-
gated, with a length of about 50 to 100 pc. Their

Table 15.1. | Interstellar molecular clouds.

Tk n(H>) R M Av
Type (K) (crrf3 (po) Meo) (mag) Probes

Dark cloud 10 10° 5-10 107 ) CcO

Globule 10 10°-10" | 10%-10°  5-15 COCS

GMC envelope I5 300 50 10° [-5 CcO

Dense core 30100 10°—-10° | 10° 100 CO, CS, H,CO, NH;
and many others

Protostellar cores 100-200 107 high | transitions of
various molecules

Energetic flows 1000 CQO, SiIO, H,

Envelope of evolved 2000 SiO masers

stars
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m Molecular clouds in the Orion region. Giant

molecular clouds are indicated by their contours of emission
from the CO molecule at 2.6 mm.This was done with a | m

telescope, providing an angular resolution of 12 arc min,
which, as the black dot at lower left shows, is quite adequate
for this map. This was part of a survey of CO emission in
our galaxy (which we will talk about more in the next
chapter), so this is plotted in galactic coordinates, which are
tilted with respect to the celestial equator, which is shown in
a red dashed line in this figure.The Orion Nebula (shown in
Fig. 15.28) is at the intersection of the two black arrows in
the lower right corner of the figure. At the 500 pc distance
of Orion, 100 pc would subtend || degrees. So, the cloud
containing the Orion Nebula is some 80 pc long. There is an
OB association around the region of the nebula. There is
another equally large cloud that extends to the north across
the celestial equator. This contains the association connected
to Orion’s belt and includes (as a very small part) the
Horsehead Nebula (Fig. 14.3). Note that there are some
other clouds which extend to the west, into Monoceros,
containing yet another OB association. [Thomas Dame, CFA]

densities are about 300 cm 3, a little lower than
for globules or dark clouds. They are also warmer,
with T = 15 K. Their extent can be traced using
CO observations, like those shown in Fig. 15.4. By
observing CO in nearby GMCs, where we can see
the dust, we gain confidence in the fact that the
CO tells us where the dust (and molecular hydro-
gen) is. We therefore use the CO to trace out
GMCs that are so far away that foreground dust

log| T dv (K km s~ . - " TN _ y
1

205°

blocks our view of them. GMCs typically have
masses of a few times 10° M, and seem to come
in complexes whose masses exceed 10° Mg, These
complexes are among the most massive entities
in the galaxy. There seems to be a close connec-
tion between giant molecular clouds and OB
associations. It therefore appears that O and B
stars form in GMCs. GMCs also have lower mass
stars in addition to the O and B stars.

Within the giant molecular clouds we find
denser regions, called dense cloud cores. These are
denser and warmer than the surrounding cloud.
Their temperatures are above 50 K. Their densities,
determined from studies of a number of different
molecules, are in the range 10° to 10° cm >, (Even
though we call these clouds “dense”, their densi-
ties are comparable to the best vacuums we can
obtain in the laboratory!) These cores are small,
only a few tenths of a parsec across, and have
masses of a few hundred Mg, Our ability to study
them is limited by the angular resolution of our
telescopes, but that is helped by the development
of interferometers working at millimeter wave-
lengths. We think that these cores are the places
in the GMCs where the star formation is taking
place. (Some dense cores are also found in dark
clouds and globules.)

One of the observational challenges in study-
ing dense cloud cores is to find cores in which
there is unambiguous evidence for collapse. After
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all, if these are in the process of forming stars,
there should be large inward motions that
should be detectable via Doppler shifts. Material
on the side of the core closest to us should be
moving away from us, and we should see red-
shifted spectral lines. Material on the far side of
the core should be moving towards us, and we
should see blueshifted spectral lines. We do see
objects with both large red- and blueshifts. The
problem is that the Doppler shift measurements
cannot tell us which side of the cloud each part
of the emission is coming from. So, an expanding
cloud could have the same spectra as a collapsing
cloud. The trick lies in having high angular reso-
lution and seeing how the Doppler shift changes
with position. Studies of possible collapsing
clouds using millimeter interferometers are just
beginning to yield results.

In our discussions, it is important to remem-
ber that, while we think in terms of spherical
clouds for simplicity, real clouds have irregular
shapes. Most of the larger clouds (GMCs) appear
elongated, part of larger filamentary structures.
It has even been suggested that the geometry of
interstellar clouds may be better represented by
fractals. However, we can still form a good insight
into the physical processes that govern star for-
mation using our simplified models.

I5.4 | Magnetic effects and

star formation

Astronomers are becoming increasingly aware of
the fact that magnetic fields can have an impor-
tant effect on the star formation in an interstellar
cloud. Work in this area has been slow for two
reasons. (1) As we have seen, measurements of the
interstellar magnetic fields are very difficult. Until
we have a good idea of field strengths, it is hard
to estimate their effects. As we mentioned in the
last chapter, observations of the Zeeman effect in
HI yield field intensities of tens of microgauss in
a number of clouds. (2) Theories that include
magnetic fields are much harder to work out
than those that don’t. However, computer simu-
lations of gravitational collapse in clouds with
substantial magnetic fields are being carried out
more routinely.

We would expect the magnetic effects to be
important when the energy associated with the
presence of the magnetic field is comparable to
the gravitational energy in magnitude. In cgs
units, the energy density (erg/cm?) associated with
a magnetic field B is

u = B? 87 (15.17)

Example 15.4 Magnetic energy

For what magnetic field strength B does the mag-
netic energy of a cloud equal the absolute value of
the gravitational potential energy? Assume a spher-
ical cloud with a radius R = 10 pc, and a density of

molecular hydrogen n(H,) = 300 cm >.

SOLUTION
The magnetic energy Uy is the energy density, mul-
tiplied by the volume of the cloud:

B? 4\,
Up= (- ) )R
8w 3
B%R®
6

The magnitude of the (negative) gravitational
potential energy is

_ 3GM
¢ 5 R

s (5w Jaoem, |
R

==¢
5

= ( 1?5 )GRS(n(HZ)(ZmP) )2
= 10 GR® (n(H,)(2m,))*
Equating these and solving for B, we have
B = (60 G)'"* (2n(H,)m, R)
=6 X 107° gauss
=60 pnG

This is of the order of strengths of fields that have
been measured from HI Zeeman measurements.

As a molecular cloud collapses, the magnetic
field strength will increase, as illustrated in
Fig. 15.5. This is because of the flux freezing, dis-
cussed in Chapter 11. (Remember, Faraday’s law
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Flux freezing in a collapsing interstellar cloud.

Graphically, Faraday’s law tells us that the number of field
lines crossing the cloud’s surface stays constant as the cloud
collapses. This means that the field lines are closer together,
signifying a stronger field in (b).

requires that the flux through a conducting sur-
face be constant.) This only takes place if the
cloud is a good conductor. Most interstellar
clouds have sufficient ionization for this to be
the case. The ionization in cold clouds probably
results mostly from cosmic rays. Most of the mass
of the cloud is in the form of neutral atoms or
molecules. There are roughly 10’ neutrals for
every ion. However, as the cloud collapses, these
neutral particles carry the charged particles
along with them. The charged particles, in turn,
provide the conductivity to insure the flux freez-
ing. This process allows the magnetic field effec-
tively to exert a pressure which can inhibit the
collapse.

Example 15.5 Flux freezing

For a spherical cloud with the magnetic flux con-
stant as the cloud collapses, find how the magnetic
energy varies with the cloud radius R. Compare
this with the gravitational energy.

SOLUTION

For a uniform cloud, the magnetic flux is the
product of the field B and the projected area of the
cloud 7R?. This means that the flux is proportional

to BR?. If the flux is constant, then BR® must be
constant. This means that

B x 1R?

From the previous example, we see that the mag-
netic energy Uy is proportional to B>R®. This means
that

Up o (1/R??*R®

x 1/R
The gravitational potential energy is
Ug o< GM?R
Since the mass of the cloud stays constant as it
collapses,
UG x 1/R
Therefore, the magnetic and gravitational energies
have the same dependence on R as the cloud col-
lapses. If the magnetic field cannot prevent the
initial collapse, then it cannot prevent the further
collapse. However, if the magnetic field is impor-

tant in the initial collapse, it will continue to be
important.

As a cloud evolves, the ions and neutrals do
not always stay perfectly mixed. The ions drift
with respect to the neutrals. If this happens,
some of the magnetic flux will escape from the
cloud, meaning that the field is not as high as
one would calculate from flux freezing. The
process, called ambipolar diffusion, has another
effect. As the ions move past the neutrals some
collisions occur. This converts some of the drift
motion into random motions of the neutrals,
meaning an increase in the cloud temperature.
Therefore, ambipolar diffusion can serve as a gen-
eral heat source in a cloud.

The current picture that has emerged suggests
that there are two ways in which the magnetic
support of clouds is overcome. One is by ambipo-
lar diffusion. This occurs in clouds where the
magnetic energy is comparable to the gravita-
tional energy. Ambipolar diffusion allows for the
gradual contraction of the cloud. It is thought that
this process produces low mass stars at a roughly
steady rate throughout the galaxy. In the alterna-
tive situation enough material is gathered together
so that the absolute value of the gravitational
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energy is much greater than the magnetic energy,
and star formation takes place rapidly. It is
thought that this process makes a mixture of high
and low mass stars.

15.5 | Protostars

[5.5.1 Luminosity of collapsing clouds
As a cloud collapses the gravitational potential
energy decreases. This is because the particles
within the cloud are moving closer to the center.
The decrease in potential energy must be offset
by energy radiated away or by an increase in the
kinetic energy. This increased kinetic energy can
show up in two forms: (1) it can go into the faster
infall of the particles in the collapsing cloud; or
(2) it can go into heating the cloud.

Let’s see what happens to the energy in a col-
lapsing cloud. From the virial theorem, we know

E=—(K) (15.18)

This tells us that as the cloud collapses its inter-
nal kinetic energy K will increase. However, only
half the potential energy shows up as increased
kinetic energy. We can therefore see that the total
energy of the collapsing cloud is decreasing. This
means that the cloud must be radiating energy
away. The virial theorem tells us that half of the
lost potential energy shows up as kinetic energy,
and half the energy is radiated away.

We can relate the luminosity of a contracting
cloud to its total energy. The total energy is

E = (—3/10)GM*R (15.19)

The energy lost in radiation must be balanced by
a corresponding decrease in E. The luminosity, L,
must therefore be equal to dE/dt. Differentiating
equation (15.19) gives

ol e (&)
dt 10\ R? /\dt
We can solve for dR/dt to find the collapse rate for
a given luminosity:

5w (&)
dt 3 \GM*/\adt

(Remember, for a collapsing cloud, both dR/dt
and dE/dt are negative numbers.) If we solve

(15.20)

(15.21)

equation (15.19) for R, and substitute that solu-
tion for one of the R’s in equation (15.20) or
(15.21), we find that

1dE 1 (dR)
Edt R\dt

This tells us that, in any time interval dt, the frac-
tional change in the energy dEJE is equal to the
fractional change in the radius dR/R. These
results tell us that the rate of collapse can be lim-
ited by the rate at which energy can be radiated.

We now look at the luminosity in various
stages of the collapse. As the collapsing cloud
heats, it is still well below normal stellar temper-
atures, so most of the radiation is given off in the
infrared. Therefore, the opacity of the cloud in
the infrared plays an important role in determin-
ing the nature of the collapse.

When the collapse begins, the material is
mostly atomic and molecular hydrogen and
atomic helium. As the collapse continues, half the
liberated energy goes into the internal energy of
the gas. However, this doesn’t increase the temper-
ature. Instead, the energy goes into the ionization
of these neutral species. Following this, the liber-
ated energy goes into heating the gas, and the gas
pressure can eventually slow the collapse. For a
1 Mg, protostar, the free-fall phase ends when the
radius is about 500 Re. (The radius varies approxi-
mately with mass.) During the free-fall stage, the
luminosity increases and |dR/dt| increases.

(15.22)

Example 15.6 Luminosity of a collapsing cloud
For a 1 M, protostar that has collapsed to a radius
of 500 Re, (a) calculate the energy that has been lib-
erated to this point; (b) use this to calculate the
average luminosity if most of the energy is liber-
ated in the last 100 years of the collapse.

SOLUTION

From the virial theorem, the energy radiated will
be one-half times the current gravitational poten-
tial energy:

=

B ( 3 )(6.67 X 1078 dyn cm?/g?)(2 X 10* g)?
-~ \10 (500)(7 X 10 cm)

2 X 10¥erg
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The average luminosity is this energy divided
by the time over which it is radiated:

L _ 2X10%erg
(avg) = (100)(3 X 107s)

7 X 10%¥ erg/s

170 L,

This is the average luminosity over the 100 year
period, but the actual luminosity at the end of the
period is higher, since |dR/dt| is greatest then.

Once a cloud is producing stellar luminosities
by gravitational collapse, we call it a protostar.
Once the cloud becomes opaque the radiation can
only escape from near the surface. (When the
opacity is low a photon can escape from anywhere
within the volume.) Since energy escapes slowly,
the temperature rises quickly. Also, a large tem-
perature difference can exist between the center
and the edge. Under these conditions, the most
efficient form of energy transport from the center
to just outside is by convection. This point was
first realized in 1961 by the Japanese astrophysi-
cist Chushiro Hayashi. During this stage the sur-
face temperature stays roughly constant at about
2500 K. Since the radius is decreasing, and the
temperature is approximately constant, the lumi-
nosity decreases.

During this stage the central temperature is
still rising. When it is high enough, nuclear reac-
tions start. The contraction goes on for some time
in the outer parts, as the pressure builds up in
the core. Eventually the pressure in the core is
sufficient to halt the collapse, and the star is
ready to settle into its main sequence existence.

For a protostar, the continuous spectrum
peaks in the near infrared. The dust in the col-
lapsing cloud surrounding the protostar will
absorb some of the radiation. The dust will be
heated, but will not be the same temperature as
the star. The emission from the dust will be in the
far infrared. From this we see that protostars are
best observed in the infrared part of the spectrum.

15.5.2 Evolutionary tracks for protostars

When we plot an HR diagram with stars we see
now, we are plotting the distribution of L and T
as they are now. However, as a star evolves, its

luminosity and temperature change. Therefore,
its location on an HR diagram changes. If L(t) is
the luminosity of a star as a function of time and
T(t) is the temperature as a function of time, we
can plot a series of points and connect them to
follow the evolution of a star. Such a series of
points is called an evolutionary track. Stars evolve
so slowly compared with human lifetimes that
we cannot deduce the evolutionary track by
observing one star. However, by observing many
stars, each at a different stage, we can infer the
evolutionary tracks. (We have already used evolu-
tionary tracks in our discussion of post main
sequence evolution, in Chapters 10 and 11.)

We can also predict evolutionary tracks from
theoretical models of protostars and stars. We use
basic physics to calculate the physical conditions,
and see how the star’s radius and temperature
change with time. Since the luminosity is given
by L = (47R%)(0'T*), we can relate changes in R and
T to changes in L and T. When we calculate model
tracks, we find that the evolutionary track of a
protostar depends on its mass. This is not surpris-
ing, since we have already seen that the mass
determines where a star will appear on the main
sequence.

Some evolutionary tracks for protostars and
pre-main sequence stars are shown in Fig. 15.6.
Note that the protostars appear above the main
sequence. This means that for a given tempera-
ture, T, protostars are more luminous than main
sequence stars of the same temperature.
Protostars are also larger than main sequence
stars of the same temperature. This is not sur-
prising since protostars are still collapsing. Once
the accretion phase stops, but before the main
sequence is reached, we call these objects pre-
main sequence stars.

Fig. 15.7 shows a model for the collapse of an
interstellar cloud into a 1 Mg protostar. At first
the cloud is cool, and then it contracts and heats.
As discussed above, the T* increase is greater than
the R? decrease, and the luminosity of the proto-
star increases. The peak luminosity is reached
when the temperature reaches 600 K. As the pro-
tostar becomes denser, its opacity increases.
Eventually, it is harder for the radiation from the
center to escape, and the luminosity begins to
decrease. During this stage energy transport in
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Evolutionary tracks for pre-main sequence stars
on an HR diagram.Tracks are marked by the mass used in
the model. The dashed line represents the zero age main
sequence (ZAMS), the place where stars first join the main
sequence.

the star is mostly by convection. The part of the
evolutionary track at which the luminosity is
decreasing quickly while the temperature
increases slightly is called the Hayashi track. After
this collapse slows, the star begins to approach
the main sequence. Eventually, it reaches the
luminosity of a main sequence star, though it
may vary somewhat before settling down.

Regions of recent

15.6
star formation

When we study star formation, we find that there
are some very obvious signposts of recent or
ongoing star formation. Regions of recent star
formation are important for a number of reasons.
First, they call our attention to places where star
formation might still be taking place. Second, the
newly formed stars have some effect on their
immediate vicinity, which might promote or
inhibit further star formation. In this section we
will look at some of the most prominent: (a) HII
regions, (b) masers, (c) energetic flows, and
(d) protostellar cores. In each case the object
becomes prominent either because of the unique
conditions that accompany star formation or
because of the effect of newly formed stars on the
cloud out of which they were born.

15.6.1 HIl regions
When a massive star forms it gives off visible and
ultraviolet photons. Photons with wavelengths
shorter than 91.2 nm, in the ultraviolet, have
enough energy (> 13.6 eV) to ionize H. The stars
that give off sufficient ultraviolet radiation to
cause significant ionization are the O and early B
stars. When most of the hydrogen is ionized, we
call the resulting part of the cloud an HII region,
as shown in Fig. 15.8.

In equilibrium in an HII region there is a bal-
ance between ionizations and recombinations.

100
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sequence star.
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FESFCH HII regions. (a) The Lagoon Nebula (M8), in
Sagittarius, at a distance of 2 kpc. It is 20 pc across. Notice

the cluster of bright blue-white stars, which produce ionizing
radiation. The ionized gas glows red.The name comes from
the dust lane that cuts across the front, blocking our view of
the gas behind. (b) HST image view of M8. (c) The Eagle
Nebula (M16), in Serpens. (d) HST image of the dust lanes in
M16.The bright edges are regions of recent ionization.

(e) HST image of the Omega Nebula (M17), in Sgr;at a
distance of 2 kpc. Here the ionizing stars are not as obvious,
and are embedded deep within the nebula.
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(f)

(2

(Continued) (f) The Trifid Nebula (M20), in Sgr. It
is named for the three-part appearance produced by the
dust lanes. The blue part on top is starlight reflected from
associated dust, a reflection nebula. (g) HST image of M20
(h) The Rosette Nebula (NGC 2244) in Monoceros, named
for its red color and petal-like appearance.The cluster of
blue stars in the center has created a cavity in the center of
the cloud. It is 1.3 kpc away and |5 pc across. (i) The Eta
Carina Nebula (NGC 3372), named for the bright star that
illuminates it. It is 3 kpc from Earth. (i)
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(k)

Free electrons and protons collide, forming neu-
tral hydrogen atoms. However, the ultraviolet
photons from the star are continuously breaking
up those atoms to form proton-electron pairs.
The balance between these two processes deter-
mines how large a particular HII region can be.
Within the HII region, almost all of the hydrogen
is ionized. There is a rapid transition at the edge,
from almost entirely ionized gas to almost
entirely neutral gas. The theoretical reasons for
this sharp transition were first demonstrated by
the Swedish astrophysicist, Bengt Stromgren. For

(Continued) (j) The
central region of the Eta Carina
Nebula. (k) HST image of the
immediate vicinity of Eta Carina.
[@), (), (), (h)=())
NOAO/AURA/NSF; (b), (d), (g),
(k) STScI/NASA; (e) ESO]

0))

this reason, HII regions are often referred to as
Stromgren spheres, and the radius of an HII region
is called the Stromgren radius, ts.

We can see how the balance between ion-
izations and recombinations determines the
Stromgren radius. If N, is the number of ultravi-
olet photons per second given off by the star capa-
ble of ionizing hydrogen, then this is the number
of hydrogen atoms per second that can be ion-
ized. That is, the rate of ionizations R; is given by

R; = Ny (15.23)

The higher the density of protons and elec-
trons, the greater the rate of recombinations. The
recombination rate is given by

R; = ane nyV (15.24)

where V is the volume of the HII region and « is a
coefficient (which depends on temperature in a
known way). For the volume, we can substitute
the volume of a sphere with radius rs. If the only
ionization is of hydrogen, the number density of
electrons must equal that of protons, since both
come from ionizations of hydrogen. Equation

(15.24) then becomes
R, = anj (4mrs)3) (15.25)

Equating the ionization and recombination rates
gives

Ny = a n? (4mr[3) (15.26)
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Solving for rg gives

rs = (3/4ma)' P (Ny)'® n, 2P (15.27)

From equation (15.27) we can see that the size
of an HII region depends on the rate at which the
star gives off ionizing photons and the density of
the gas. If the gas density is high, the ionizing
photons do not get very far before reaching their
quota of atoms that can be ionized. The rate at
which hydrogen ionizing photons are given off
changes very rapidly with spectral type, as indi-
cated in Table 15.2, so the HII region around an
O7 star is very different from that around a BO
star. Often, O and early B stars are found in very
small groupings. In these groupings, the HII
regions from various stars overlap, and the region
appear as one large HII region.

The ultraviolet radiation from stars can also
ionize other elements. For example, after hydro-
gen, the next most abundant element is helium.
However, the ionization energy of helium is so
large that only the hottest stars produce significant
numbers of photons capable of ionizing helium.
On the other hand, the ionization energy of carbon
(for removing one electron) is less than that of
hydrogen. There are many photons that are capable
of ionizing carbon that will not ionize hydrogen.
This, combined with the lower abundance of C rel-
ative to H, means that CII regions are generally
much larger than HII regions (see Problem 15.20).

There are actually two conditions under
which the boundary for an HII region can exist.
One is that which we have already discussed. The
cloud continues beyond the range of the hydrogen-
ionizing photons. When this happens, we say that
the HII region is ionization bounded. The other pos-
sibility is that the cloud itself comes to an end
while there is still hydrogen-ionizing radiation.
In this case, we say that the HII region is density
bounded, since its boundary is determined by the
place where the density is so low that we no
longer think of the cloud as existing. When an
HII region is density bounded, hydrogen-ionizing
radiation can slip out into the general interstellar
radiation field. This is an important source of
ionizing radiation in the general interstellar
medium (i.e. not near HII regions).

The temperature of HII regions is quite high -
about 10* K. HII regions are heated by the ionization

Table 15.2. | Rates of H-ionizing photons
for main sequence stars.

Spectral type Photons/s (X 10%)

05 51

06 174
o7 7.2
o8 39
09 2.1

BO 0.43

Bl 0.0033

of hydrogen. When an ultraviolet photon causes
an ionization, some of the photon’s energy shows
up as the kinetic energy of the free proton and
electron. Cooling in an HII region is inefficient,
since there are no hydrogen atoms and no mole-
cules. Cooling can only take place through trace
constituents, such as oxygen. Transitions within
these constituents are excited by collisions with
protons and electrons. The collisions transfer
kinetic energy from the gas to the internal energy
of the oxygen. The oxygen then radiates that
energy away. Since the heating is efficient and the
cooling is inefficient, the temperature is high.
HII regions can give off continuous radiation,
which can be detected in the radio part of the
spectrum. This radiation results from collisions
between electrons and protons in which the two
do not recombine. Instead, the electron scatters
off the proton. In the process the electron
changes its velocity. When a charged particle
changes it velocity, it can emit or absorb a pho-
ton. This radiation is called Bremsstrahlung (from
the German for “stopping radiation”). It is also
called free—free radiation, because the electron is
free (not bound to the proton) both before and
after the collision. The spectrum of free-free
radiation (Fig. 15.9) is characterized by the tem-
perature of a gas. The spectrum is not that of a
blackbody because the gas is not optically thick.
The spectrum is a blackbody curve multiplied by
a frequency dependent opacity. Because the
radiation can be described by the gas tempera-
ture, it is also known as thermal radiation. This
radiation is strongest in the radio part of the spec-
trum. Therefore, we can use radio continuum
observations to see HII regions anywhere in our
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Free-free

log 1

>

log v

Schematic spectra of synchrotron radiation and
free—free emission. The vertical axis is intensity and the
horizontal axis is frequency, both on a logarithmic scale. The
log-log representation emphasizes the power-law behavior
of the synchrotron radiation

galaxy. A map of continuum emission from an
HII region is shown in Fig. 15.10. (Note: In the
encounter between the electron and proton, the
proton also accelerates and gives off radiation.
However, the acceleration of the proton is much
less than that of the electron, by the ratio of their
masses. This means that the radiation given off
by the protons is not very important.)

HII regions also give off spectral line radia-
tion, called recombination line radiation. When an
electron and proton recombine to form a hydro-
gen atom, the electron often ends up in a very
high state. The electron then starts to drop down.
It usually falls one level at a time. Larger jumps
are also possible, but less frequent. With each
jump, a photon is emitted at a frequency corre-
sponding to the energy difference for the partic-
ular jump. (The energies are given by equation
3.6.) For very high states, the energy levels are
close together and the radiation is in the radio
part of the spectrum. As the electron jumps to
lower states the lines pass through the infrared
and into the visible. Generally, the electron can
go all the way down to the ground state before
the atom is re-ionized. We even see Ha emission
as part of this recombination line series. This
gives HII regions a red glow. (This red glow allows
us to distinguish HII regions from reflection neb-
ulae, which appear blue.)
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m Radio image (made with the VLA) of free—free

emission from an HIl region, the Orion Nebula (for which
optical images appear in Fig. 15.28).This is a higher resolu-
tion image than the single dish version in Fig. 4.25. It shows

the fine scale structure in the core of the nebula. The image
was made with the VLA in D (smallest) configuration at

8.4 GHz, providing 8.4 arc sec resolution. This is a nine-field
(3 X 3) mosaic.The interferometer picks up less than one-
half of the total flux density because it is insensitive to the
extended emission. Of course, it also gives beautiful detail of
the structure in the nebula. [D. Shephard, R. Maddalena,

J. McMullin, NRAO/AUI/NSF]

HII regions expand with time. When an HII
region first forms (Fig. 15.11), it must grow to its
equilibrium radius. Even after it reaches this equi-
librium size, it will continue to expand. This is
because the pressure in the HII region is greater
than that in the expanding cloud. The higher
pressure results from the higher temperature in
the HII region. Remember, the temperature in an
HII region is about 10* K, while that in the sur-
rounding cloud is less than 100 K. The densities in
the HII region and surrounding cloud are similar.

As the HII region expands, it can compress the
material in the surrounding cloud, possibly initiat-
ing a new wave of star formation, as illustrated in
Fig. 15.12. This is one possibility that has been dis-
cussed for the triggering of star formation. The gas
compressed by an expanding HII region will not
automatically form stars. That is because the gas
will be heated as it is compressed. If that heat is not
lost, the temperature of the cloud will increase.
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HII Region

HII region in a molecular cloud. HII regions
usually form near the edge.

The pressure will increase and the gas will expand
again. The re-expansion of compressed gas can only
be avoided if the gas can cool as it is compressed.
Radiation from molecules such as CO in the sur-
rounding cloud can help with this cooling process.

15.6.2 Masers
We have already seen how the process of stimu-
lated emission can lead to a multiplication - or

Compressed
Gas

Expanded
HII Region

The HIl region expands, compressing gas
deeper within the cloud. If this gas can cool quickly, then it

can collapse to form more stars.

amplification - in the number of photons passing
through a material. In the stimulated emission
process, one photon strikes an atom or molecule,
and two photons emerge. The two photons are in
phase and are traveling in the same direction. The
fact that they are in phase means that their inten-
sities add constructively. Stimulated emission can
only take place if the incoming photon has an
energy corresponding to the difference between
two levels in the atom or molecule, and the atom
or molecule is in the upper of the two levels.

If only a few atoms or molecules are in the cor-
rect state, there will not be a significant increase
in the number of photons. Suppose we designate
the two states in the transition as 1 and 2. The
population of the lower state is n, and the popu-
lation of the upper state is n,. The requirement
for amplification is that n, [n; be greater than g,
/g1, where the g are the statistical weights. The sit-
uation is called a population inversion, since it is
the opposite to the normal situation. Formally, it
corresponds to a negative temperature in the
Boltzmann equation (see Problem 15.22). This is
clearly not an equilibrium situation. The popula-
tion inversion in a particular pair of levels must
be produced by a process, called a pump. The
pump may involve both radiation and collisions.
The net effect of the pump process is to put
energy into the collection of atoms or molecules
so that some of that energy can come out in the
form of an intense, monochromatic, coherent (in
phase) beam of radiation.

This was first realized in the laboratory, in the
1950s, by Charles Townes (then at Columbia
University). Townes won the Nobel Prize in physics
for this work. Since microwaves were being ampli-
fied in the process, the device was called a maser
(Fig. 15.13), an acronym for microwave amplifi-
cation by stimulated emission of radiation.
Subsequently, lasers were developed for the ampli-
fication of visible light. In any laser or maser, two
things are necessary: (1) a pump to provide the
population inversion, and (2) sufficient path
length to provide significant amplification. In
interstellar space, the path length is provided by
the large side of interstellar clouds. In the labora-
tory that path length is provided by mirrors.
(Laboratory masers are used as amplifiers in some
radio telescope receivers.)
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m Maser amplification. In each frame, a molecule in

the upper level of the maser transition is indicated by a large
circle, and one in the lower level is indicated by a small circle.
(a) All of the molecules are in the upper state, and a photon
is incident from the left. (b) The photon stimulates emission
from the first molecule, so there are now two photons, in
phase. (c) These photons stimulate emission from the next
two molecules, resulting in four photons. (d) The process
continues with another doubling in the number of photons.

Shortly after the development of laboratory
masers, an interstellar maser was discovered. It
involved the molecule OH. Four emission lines of
OH were observed, but their relative intensities
were wrong for a molecule in equilibrium. As
radio telescopes were developed with better angu-
lar resolution, the emission was observed to
become stronger and stronger. This means that
the emission is probably very intense, but coming
from a very small area. This behavior was sugges-
tive of an interstellar maser. The next maser dis-
covered was in the water (H,O) molecule, at a
wavelength of 1 cm. As observations with better
resolution became possible, it was clear that the
objects were giving off as much energy as a 10'° K
blackbody over that narrow wavelength range in
which the emission was taking place.

At=R/c

Time variability and source size. The signal from
the farthest point the eye can see must travel an extra
distance R over that from the nearest point the eye can see.

A small size for these sources was also
deduced from rapid variations in their intensity.
Suppose we have a sphere of radius R, as shown
in Fig. 15.14. If the sphere were suddenly to
become luminous, then the first photons to leave
each point on the surface would not reach us
simultaneously. The photons from the edge of
the sphere have to travel a distance R farther
than the photons from the nearest point. These
photons will arrive a time At = R/c later than the
first photons. Therefore, it will take this time for
the light we see to rise from its initial low level
to the final high value. A similar analysis holds
for the time it would take for us to see the light
turning off.

The above analysis tells us that an object’s
brightness cannot vary on a time scale faster
than the size of the emitting region, divided by
c. If we see variations in intensity over a time
scale of a year, the source cannot be larger than
a light year across. Interstellar masers were
found to vary in intensity on an even shorter
time scale, of the order of a month, indicating
an even smaller size.

Example 15.7 Maser size

Estimate the maximum size of a maser that varies
on the time scale of one month. What is the angu-
lar size of this object at a distance of 500 pc?

SOLUTION
The time scale for the variations is
At = (24 h/day)(3600 s/h)(30 day)

=26X10°%s
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This corresponds to a size of
R = ¢/At

7.8 X 10" cm

=52 X 10° AU

The angular size (in arc seconds) is related to R (in
AU), and the distance d (in pc) by (equation 2.16)

6(") = R(AU)/d(pc)
= 5.2 X 10° [ 500

= 10 arc sec

In fact, masers are even smaller than this size,
and have angular extents much less than 1 arc
second. This means that we need radio interfer-
ometers to study masers. Very long baseline inter-
ferometry has been used to study masers.

When we try to understand interstellar
masers we must explain both the pump and the
path length for the gain. Many of the theories
require very high densities. For example, we
think that the presence of water masers suggests
densities in excess of 10® cm™>. This is much
denser than even the dense cores that we nor-
mally see in molecular clouds. We therefore
think that masers are associated with objects col-
lapsing to become protostars. We take the pres-
ence of H,0 or OH masers in a region to indicate
the possibility of ongoing star formation.

When we observe masers, we often see them
in clusters, such as that depicted in Fig. 15.15.
With radio interferometry, we can measure the
positions of the masers very accurately. We can
even measure their proper motions. We can use
Doppler shifts to measure their radial velocities.
However, we expect the motions of a cluster to be
random, so the average radial velocity should

Expanding
Gas Shell

m Cluster of masers in an expanding shell.

equal the average transverse velocity vy. From
equation (13.6) we see that the distance is related
to the proper motion and transverse velocity by

d(pc) = vi(km/s)/4.74u(arc secfyr)

Therefore, an accurate study of the motions of
masers allows us to determine the distance to a
cluster of masers. It is hoped that this will
develop into a very powerful distance measuring
technique. This technique works equally well for
random motions or for the masers being in an
expanding shell. The only requirement is that the
average velocity along the line of sight is the
same as the average velocity perpendicular to the
line of sight.

Maser emission is also observed in the mole-
cule SiO (silicon monoxide). From the regions in
which it is observed, it seems that SiO maser
emission is associated with mass outflow from
evolved red giant stars. Also, some OH masers are
associated with similar regions.

15.6.3 Energetic Flows

A major recent discovery is that many regions of
star formation seem to be characterized by strong
outflows of material. One piece of evidence for
such flows comes from the observation of very broad
wings on the emission lines of CO (Fig. 15.16). The
widths of these wings range from 10 to 200 km/s.
The broad wings are usually seen only over a
small region where the CO emission is strongest.
A peculiar feature of this emission is that the red-
shifted wing and blueshifted wing seem to be

L 1 L L L L 1 L L L L 1
-50 0 50
Velocity (km/s)

Spectrum of the 2.6 mm CO emission line
from the core of the molecular cloud behind the Orion

Nebula (Fig. 15.28.) The broad wings extend many tens of
kilometers per second on both sides of the line center.
[Jeffrey Mangum, NRAO/AUI/NSF]
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Model for a bipolar flow. Material coming
towards us on the near side of the cloud is blueshifted.
Material going away from us on the far side of the cloud is
redshifted. If the flow is not aligned along the line of sight,
the redshifted and blueshifted emission will appear in differ-

ent locations on the sky.

coming from different parts of the cloud. This
suggests that we are seeing two jets of gas, one
coming partially towards us and the other par-
tially away from us, as shown in Fig. 15.17. Because
of this structure, we call these objects sources of
bipolar flows.

Actually, we could also envision a model in
which we are seeing infall rather than outflow.
However, there is evidence we are seeing the
effects of a wind striking the surrounding cloud,
heating a small region. These small heated
regions show emission in the infrared from H,,
requiring temperatures of about 10° K. Current
theories of these sources involve strong stellar
winds, as shown in Fig. 15.18. The star is also sur-
rounded by a dense disk of material. This disk
blocks the wind in most directions, but allows it
to escape along the axis, explaining the bipolar
appearance. Remember, we saw earlier in this
chapter that disks are likely to form around the
collapsing star.

Hert.)ig.—l.-laro' i
Objects .-

—sV

SRR RS A model for sources with bipolar flows and HH
objects. The stellar wind comes out in all directions but is

blocked in most directions by a disk around the star.The
wind emerges mostly at the poles of the disk. This drives
material in the surrounding cloud away. Below, the effects of
the motion on the CO line profiles are shown, assuming that
the wind to the upper left moves away from the observer
and the wind to the lower right moves towards the observer.
[Ronald Snell (University of Massachusetts) Snell,R. A. et al,
Astrophys. J. Lett., 239, L17, 1980, Figs. 2 & 5]

Evidence for collimated winds is present in
another interesting class of objects that we think
are associated with pre-main sequence stars, the
Herbig-Haro (HH) objects shown in Fig. 15.19; see
also Fig.15.20. They were discovered independ-
ently by George Herbig of the Lick Observatory
and Guillermo Haro of the Mexican National
Observatory. HH objects appear as bright nebu-
losity on optical photographs. Their spectra
resemble those of stars, and usually show emis-
sion lines, but no star is present in the nebulosity
(Fig. 15.21). We now think that the wind from a
pre-main sequence star clears a path through the
cloud. The part of the cloud where the wind runs
into the cloud is heated, and glows. We also see
starlight reflected from the dust, explaining the
stellar spectrum. The exciting star is deep within
the cloud and is not seen directly.

These observations indicate that winds are an
important feature of protostellar evolution for
most stars. For low mass stars such as the Sun,
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image of a region, containing a

this wind is relatively gentle, and can clear some
of the debris from around the forming star, leav-
ing any planetary system intact. For massive (O
and B) stars the strong winds drive away a large

Material Jet
flowing A
away from
Observer

Material
flowing

towards A\
Observer Jet

How an isotropic flow can be converted into
two jets. The source of the isotropic outflow is in a hole in a
disk. In most directions the disk can block the flow, but not
in the direction where the disk is thinnest. Jets emerge in

that direction.

\— 1.2 kmeg™!

——=— 1.5 km-5"

bipolar flow and a number of
Herbig—-Haro objects. The solid
contours are the CO emission

*
T2 (co)

that is blueshifted with respect to
the average velocity. The dashed
contours show the redshifted
CO.The plus (+) marked B is
the location of the suspected
source for the flow. [Snell,R. A.
etal, Astrophys. J. Lett., 239, L17,
Figs.2 & 5]

mass. It has been suggested that the combined
effects of winds in OB associations can drive off
enough mass to unbind the association, explain-
ing why associations are not gravitationally
bound. Winds can also carry away some of the
angular momentum in a cloud, allowing the col-
lapse of the remaining material to continue.

IR spectrum of Herbig—-Haro object number
212. Notice the bright emission lines. [ESO]
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(a)

(b)

m Images of two T Tauri stars. (a) T Tauri. The star

is unremarkable, but there is a small nebula to the right. The
star is in a dust cloud. The presence of the dust can be
deduced from the fact that it blocks light from the back-
ground stars. There are therefore fewer background stars in
the center of the photograph than around the edges. (b) HL
Tau.Again, there is some nebulosity near the star and the
star is in a dust cloud. [(a) Courtesy of 2MASS/UMASS/
IPAC/NASA/)PL/Caltech; (b) Laird Close, (University of
Arizona)/Close, L., Astrophys. |., 486, 766, 1997]

15.6.4 T Tauri stars and related objects
Another group of pre-main sequence objects are
called T Tauri stars (Fig. 15.22). T Tauri is a vari-
able star in the constellation Taurus, and T
Tauri stars are variables with properties like
those of T Tauri. Light curves are shown in Fig.
15.23, and a spectrum is shown in Fig. 15.24.
These stars are spectral class K, and appear above
the main sequence on the HR diagram. These
show an irregular variability. Their spectra are
also characterized by the presence of emission
lines.

There are three possible sources of the vari-
ability we see:

(1) The variability could arise in a photosphere.
One model for this involves star spots. These
are dark areas, like sunspots, only larger. As
the star rotates, a different fraction of the
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Light curves for a selection of T Tauri stars in
the Orion Nebula cluster. The horizontal axis is fractions of
a period (which is given in days in the upper right-hand
corner of each curve).Variability is caused by rotation of
stars with large, cool spots. [William Herbst (Wesleyan
University)/Herbst, W. et al., Astrophys. J. Lett, 554, L197,2001]




286

PART IV THE MILKY WAY

12500

I
U

10000
|

7500 - | =
|

5000 (- f =

2500 -

1 L | 1
6550 6560 6570 6580

Wavelength (angstroms)
Strong Ha emission line from a T Tauri star.
[George Herbig, IFA, Hawaii]

observed surface is covered by the spots, and
the brightness changes.
(2) The variations may arise in the chromosphere.
(3) The variations may actually result from
changes in the opacity of the dust shell sur-
rounding the star.

The emission lines show Doppler-shifted
absorption wings, like those in Fig. 15.24. This sug-
gests material both falling into the star and mate-
rial coming off the star. The infall may be close to
the star as the final stage of collapse, while the out-
flow is a wind (like the solar wind, but stronger) far-
ther away from the star. Alternatively, the infall
may be in the form of a disk around the star’s equa-
tor, while the outflow is along the polar axes.

CoKu Tau1 DG Tau B

10,000 AU

m Far IR image of protostellar core. This is a

ground-based image from Mauna Kea, at 850 wm.The beam
size is shown in the red circle to the lower right, so you can
see that the sources are barely resolved. Notice the separation
into two sources. The irregular edges of the image are due to
problems with the detectors near the edge. This is an example
of what is called a Class 0 protostar, which is thought to be the
youngest stage, where there is a strong outflow but the sur-
rounding cloud has not been driven away. [Yancy Shirley,
University of Texas, Austin, made with SCUBA on the JCMT]

From studies of the spectral lines, we think
that the winds may have speeds of about
200 km/s. The mass loss in the wind, dM/dt, is
about 10”7 Mg/yr. The total luminosity in the

HST images of

infrared emission from selected
disks around forming stars. All
six objects are in Taurus, at a
distance of 150 pc. [STScl/NASA]
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wind is that rate at which kinetic energy is car-
ried away in the wind,

Ly = (1/2)(dM/dt)v* (15.28)

Using the numbers given, we find a wind
luminosity of about 1 Ls. That is, the star gives off
as much energy per second in its wind as the Sun
gives off at all wavelengths. However, the wind
phase is a short lived one. The wind does sweep
away some of the dust that has collected around
the star. We think that a similar wind from the
Sun was important in clearing debris out of the
early Solar System.

It is now possible to make far IR images of pro-
tostellar cores, like that in Fig. 15.25. Far IR emis-
sion HST and IR satellites have provided us with
some images, such as those in Fig. 15.26, which may
be the result of infrared emission from dust shells
around recently formed stars. Molecular spectral
line observations of these disks will require reso-
lutions achievable using interferometers.

I5.7 | Picture of a star forming

region: Orion

The Orion region (Fig. 15.27) is one of the most
extensively studied star forming regions. It is rel-
atively nearby, only about 500 pc from the Sun. It
is away from the plane of the Milky Way, so there
is little confusion with foreground and back-
ground stars. There is also an interesting variety
of activity in this region.

The region contains a large OB association.
There are four distinct subgroups. The two oldest
are near Orion’s belt, and the two youngest are
near the Orion Nebula (Fig. 15.28a) in Orion’s
sword. The Orion Nebula is an HII region powered
by the brightest stars in the youngest subgroup.
Images of the Orion Nebula and its cluster are in
Figs. 15.28(b)—(e).

The region also contains two giant molecular
cloud complexes, also shown in Fig. 15.4. A far IR
image of the GMCs is shown in Fig. 15.27(a). The
northern complex is associated with the belt
region, which contains the two oldest subgroups,
and a strong HII region just north of the
Horsehead Nebula. The southern complex is asso-
ciated with the sword region, which contains the
two youngest subgroups. The southern complex

contains the Orion Nebula and several smaller HII
regions. The Orion Nebula is actually on the front
side of the molecular cloud. Behind the HII region
is a dense molecular core. It is totally invisible in
the optical part of the spectrum because of the
foreground material. However, it can be studied
in detail using radio observations of molecules. In
addition, it is a source of infrared emission.

ROSAT PSPC
Orion

WE 9,90

(b)

Large-scale images of the Orion region, mostly
at a distance of 500 pc. (a) Far IR image from IRAS. (b) X-ray
image from ROSAT. [(a) NASA, (b) NASA/MPI]
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FESIPERS Images of the Orion region, mostly at a distance
of 500 pc. (a) Large scale view of the belt and sword regions.
Two of the three belt stars appear at the top of the image.The
lower left belt star illuminates an HIl region that has the
Horsehead Nebula superimposed.The sword region is near the
bottom.The Orion Nebula is overexposed in this image, and
surrounds the central sword star. (b) The Orion Nebula. There
is a small cluster of O and B stars that ionize this nebula. A
dense dust cloud provides over 100 mag of visual extinction in
the central part.The object near the top of the photo is a sep-
arate small HIl region illuminated by a single star. Compare its

simple appearance to the complex structure of the big nebula.
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(e)

Fig 15.28.
stars in the central part of the cloud are called the Trapezium, because of their arrangement. Notice the dense dark cloud
intruding from the upper left. (d) A larger field HST image of the Orion Nebula, assembled from |5 smaller field images. This

image is approximately | pc across. (e) HST image of filaments in the nebula. The diagonal length of this image is 0.5 pc.The
plume of gas at the lower left is the result of a wind from a newly formed star. Red light depicts emission in nitrogen; green is
hydrogen; blue is oxygen. [(a) © Anglo-Australian Observatory/Royal Observator, Edinburgh. Photograph from ULK Schmidt
plates by David Malin; (b) Courtesy of 2MASS/UMASS/IPAC/NASA/JPL/Caltech; (c) ESO; (d), (e) STScl/NASA]

(Continued) (c) Central part of the Orion Nebula. This gives a better view of the O and B stars. The brightest four

The general picture of the southern complex
that has emerged has the HII region expanding
into the molecular cloud, compressing it. This
compression probably triggered a new generation
of star formation. This new cluster of stars now
appears as a series of small infrared sources and
masers. There is evidence for an energetic flow.
We see very broad (over 100 km/s) lines in CO and
other molecules. These wings have the character-
istics of the bipolar flows discussed in the preced-
ing section. We also see evidence for small regions

of gas heated to high temperatures in the regions
where the wind strikes the surrounding cloud.
Infrared line emission from H, is seen from this
2000 K gas. We can also study the proper motions
of the maser and see that the region is expanding.
(The best measurement of the distances to this
region comes from studying the proper motions
of masers, as discussed in the preceding section.)
It is likely that this dense region will appear as
another OB subgroup when there has been suffi-
cient time to clear the interstellar material away.

Chapter summary

In this chapter we saw how the various compo-
nents of the interstellar medium, discussed in
Chapter 14, are involved in the process of star for-
mation. We first looked at the conditions for grav-
itational binding, and found that molecular
clouds are the likely sites of star formation.
Current problems in star formation include how
the collapse is actually initiated, what fraction of
the mass is converted into stars, how planetary
systems form, and how OB associations form. We

saw how rotation can slow or stop the collapse,
and lead to the formation of binaries, planetary
systems and disks.

We saw how the magnetic field in a cloud
can affect its collapse if the magnetic energy is
comparable to the gravitational potential
energy. As a cloud collapses, we expect that flux
freezing will lead to an increase in the magnetic
field strength within the cloud. We saw that
there are two ways to overcome the support the
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magnetic field provides. One produces a steady
stream of low mass stars, and the other pro-
duces waves of high mass (as well as low mass)
star formation.

We saw how the molecular clouds, being
cool and dense, are the most likely sites of star
formation. The most massive stars seem to be
born in the giant molecular clouds. These
clouds have masses in excess of 10° My and are
found in complexes with masses in excess of
10° Mo,

We looked at how collapsing clouds eventu-
ally become protostars, glowing mostly in the
near infrared. Their radiation is provided by the
decrease in the gravitational potential energy as
the cloud collapses.

Questions

Once an O or early B star forms in a molecular
cloud, the gas around the cloud is ionized, pro-
ducing an HII region. The size of the HII region is
determined by a balance between ionizations and
recombinations. The continuous radiation from
HII regions comes from free-free scattering of
electrons. Recombinations lead to electrons pass-
ing through many energy levels, giving off recom-
bination line radiation.

Other indicators of recent star formation are
masers and energetic flows. The bipolar flows pro-
vide indirect evidence for the existence of disks
that collimate the flows.

We looked at the Orion region as an nearby
example of ongoing high and low mass star for-
mation.

15.1. Explain why cool dense regions are the most

likely sites of star formation.

Suppose we have a cloud of 2 pc radius,

formed of a material whose Jeans length is

10 km. Will the cloud collapse?

15.3. As a cloud collapses, what happens to the
Jeans mass of the new individual fragments?

15.4. If a cloud has a higher density in the center
than at the edge when its collapse starts,
explain what happens to the density con-
trast between the center and the outer part
as the collapse continues. (Hint: Think about
free-fall time.)

*15.5. As a cloud collapses, the acceleration of the
particles increases. Therefore, the free-fall
time will be less than we would calculate on
the basis on constant acceleration. However,
we still use the initial free-fall time as an
estimate of the total free-fall time. Why does
this work? (Hint: Think in terms of the time
for the radius to halve, and halve again, and
So on.)

15.6. Explain why a rotating cloud flattens as it
collapses.

15.7. How does the formation of multiple star
systems help in the star formation process?

15.8. As a cloud collapses, is it likely that it will
rotate as a rigid body (w independent of )?

15.9. What do we mean by a “trigger” for star
formation?

15.2.

15.10. How is it possible for a gravitationally bound
cloud to give birth to a gravitationally
unbound association?

(a) What is the difference between ioniza-
tion bounded and density bounded HII
regions? (b) Why are density bounded HII
regions important?

Explain why the CII zone around a star is
much larger than the HII region. Consider
(a) the relative ionization energies, and

(b) the relative abundances.

Explain why almost all carbon ionizations
result from photons with energies
between the ionization energy of carbon
and that of hydrogen, even though pho-
tons that can ionize hydrogen can also
ionize carbon.

15.14. Why is the temperature of an HII region so
high?

(a) How can an expanding HII region trig-
ger star formation? (b) Why is the rate at
which the gas can cool important to the
process?

Why is coherence important for a maser?
How do we know that masers are small?
What features of T Tauri stars lead us to
believe that they are still in the formative
process?

15.11.

15.12.

15.13.

15.15.

15.16.
15.17.
15.18.



I5 STAR FORMATION

291

Problems

15.1.

15.2.

15.3.

15.4.

15.5.

15.6.

15.7.

15.8.

15.9.

15.10.

15.11.

15.12.

15.13.

Compare the Jeans mass and radius for
typical HI and molecular clouds.

Suppose we made an interferometer with
one telescope on the Earth and the other on
the Moon. What would be its angular
resolution at a wavelength of 1 cm?

Suppose that a cloud contracts to one-tenth
of its initial size. How do the Jeans length
and mass compare with those in the original
cloud?

Compare the density and pressure of a dense
interstellar cloud with those of the gas in
your room.

(a) Find the Jeans length for a cloud with a
density 10° H, molecules/cm® and T = 100 K.
(b) What angle does this subtend at a
distance of 1 kpc from the Earth?

Use the results of Example 15.2 to give the
free-fall time (in years) for objects whose
density is given as a fraction of 10° atoms/cm®.
An interstellar cloud is found to be rotating
such that a velocity shift of 1 km/s/pc is
observed across it. (a) What is the angular
speed (rad/s)? (b) What is the rotation period?
For an object on the surface of the Sun,
compare the two terms on the right-hand
side of equation (15.14b).

For a spherical interstellar cloud of mass
1000 M and radius 10 pc, rotating once
every 107 years, compare the two terms on
the right-hand side of equation (15.14b).

For a spherical interstellar cloud of mass
1000 My and radius 10 pc, rotating once
every 107 years, compare the gravitational
potential energy with the kinetic energy of
rotation.

For a uniform sphere, what does it mean for
d?1/dt? to be small compared with the gravi-
tational potential energy?

For the protostar considered in Example 15.6,
how much more energy will be released as
the star contracts by another factor of five?
If this takes another 100 years, what is the
average luminosity over that period?

For a 10 Mg protostar that has collapsed to a
radius of 1000 R, (a) calculate the energy
that has been liberated to this point, and

(b) use this to calculate the average luminos-

15.14.

15.15.

15.16.

15.17.

15.18.

15.19.

ity if most of the energy is liberated over the
last 50 years of the collapse.

From the evolutionary track in Fig. 15.6,
calculate the radius of a 3 My protostar
when it has reached a temperature of 10* K.
(a) For a star of radius R, emitting like a
blackbody of temperature T, find an expres-
sion for the number of photons per second
emitted capable of ionizing hydrogen. (b) For
hv >> kT, evaluate the integral. (c) Why is
the approximation in (b) valid for an
ordinary star?

Compare the radii of HII regions around

an O5 and an O7 star if the density is

ng = 10° cm 3.

What is the Doppler width of the H110« line
at a wavelength of 6 cm, for a temperature
of 10* K?

What is the shift from the H110« to the
C110a line wavelength, if it just depends on
the nucleus-electron reduced mass?
Suppose an HII region is formed in a cloud
with a density of 10* H, molecules/cm®. If the
temperature in the HII region is 10* K and the
temperature of the surrounding molecular
cloud is 10% K, how much will the HII region
expand before the pressures equalize?

*15.20.(a) Derive an expression, analogous to equa-

15.21.

15.22.

tion (15.27), for the radius rg (He) of an ion-
ized helium region around a star in terms of
Nuv (He), the number of photons per second
emitted by the star capable of ionizing
helium. Give your answer in terms of n, and
Nie - Assume that « is the same for H and
He. Assume that anywhere that He is ion-
ized, all of the H is ionized, so that n. = n,,.
(b) Repeat the calculation for carbon, giving
your answer in terms of Ny, (C), n, and nc.
For carbon, assume that it is ionized over a
much larger region than H because of its
lower ionization energy, so that n. = nc.
From observations of the masers in Orion,
we find an average radial velocity of

24.0 km/s, and proper motions of 0.01 arc
sec/yr. How far away are these masers?

(a) For a maser, show that a population
inversion corresponds to a negative excita-
tion temperature. (b) The negative excitation
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temperature gives a negative optical depth.
Show from the radiative transfer equation
that this implies amplification.

15.23. If the Sun turns off, how long will it take
the light to go from full intensity to zero?

15.24. (a) If an object dims in a day, how large can
it be? (b) What angle would it subtend at a
distance of 1 kpc?

15.25. Calculate the rate at which energy is deliv-
ered to a cloud by a 108 My/yr flow with a
speed of 100 km/s.

15.26. For the flow in the previous question, what is
the rate at which interstellar material is
being swept up if the sweeping occurs as long
as the wind speed is greater than 5 km/s?

Computer problems

15.27. (a) For the typical T Tauri wind described in

this chapter, what is the momentum per sec-
ond carried away by the wind? (b) If the
wind drives away dust, and slows by conser-
vation of momentum, and the wind is effec-
tive at driving dust away until it slows to

5 km/s, what is the rate at which dust can be
driven away?

15.28. By how much is the Ha line shifted by the

200 km/s wind in T Tauri?

15.29. Calculate the energy used up in ionizing

1 My, of atomic H. To what radius must a

1 M, protostar collapse for this much energy
to be released in the change in gravitational
potential energy?

15.1. Make a table showing the Jeans mass and length
for clouds with densities of 1, 10° and 10° H
atoms/cm?, and kinetic temperatures of 10, 30 and
100 K.

15.2. Add a column to Table 15.2, giving the Stromgren
radius in each case. Assume that n, is 10* cm™>.

Take a constant value of « = 2.6 X 10~ % cm?®/s.

15.3. Suppose we start with an interstellar cloud with a

density of 10° H atoms/cm®. Using the variable
acceleration in equation (15.6), find the actual
collapse time, and compare it with the estimate
for the free-fall time, given in equation (15.8).

15.4. Reproduce Table 15.2, using the radii and temper-

atures of the spectral types given.



Chapter 16

The Milky Way galaxy

16.1 | Overview

Throughout this book we have discussed the com-
ponents of our galaxy: stars, clusters of stars,
interstellar gas and dust. We now look at how
these components are arranged in the galaxy. The
study of the large scale structure of our galaxy is
difficult from our particular viewing point. We
are in the plane of the galaxy, so all we see is a
band of light (Fig. 16.1). The interstellar dust pre-
vents us from seeing very far into the galaxy. We
see a distorted view.

The first evidence on our true position in the
galaxy came from the work of Harlow Shapley,
who studied the distribution of globular clusters
(Fig. 16.2). He found the distances to the clusters
from observations of Cepheids and RR Lyrae stars.
Shapley found that the globular clusters form a
spherical distribution. The center of this distribu-
tion is some 10 kpc from the Sun. Presumably, the
center of the globular cluster distribution is the
center of the galaxy. This means that we are
about 10 kpc from the galactic center.

In Chapter 13, when we studied HR diagrams
for clusters, we introduced the concept of stellar
populations I and II. The distribution of these
populations in the galaxy can help us understand
how the galaxy has evolved. Population I material
is loosely thought of as being the young material
in the galaxy. Population I stars are found in
galactic clusters, and are characterized by high
metalicity. Some are also associated with inter-
stellar gas and dust, suggesting that they are
young enough to have some of their parent cloud

around them. Population I stars are confined to
the galactic plane.

Population II stars are thought of as being the
“old” component of the galaxy. They are found in
globular clusters and are characterized by low
metalicity. They have no gas and dust around
them. Their galactic distribution is very different
from that of population I stars. The population II
stars form a spherical distribution, as opposed to
a disk. This spherical distribution is sometimes
called the halo. When we talk about a spherical
distribution, we do not mean just a spherical
shell around the galaxy. Instead, we mean the
spherically symmetric distribution whose density
falls off with increasing distance from the galac-
tic center. Population II objects also seem to have
a larger velocity spread in their motions than do
population I objects. Table 16.1 shows the charac-
teristic thicknesses and velocity dispersions for
some components of the galaxy.

The schematic arrangement of these compo-
nents is shown in Fig. 16.3. First we see the disk
and the halo. Note that the halo has a spherical
distribution with a density of material that falls
off radially. We then look at the disk. First there is
an overhead view, showing the location of the Sun.
The best estimates, which we will discuss later in
this chapter, place the Sun 8.5 kpc from the galac-
tic center, about halfway out to the edge of the disk.
We then look at a side view of the disk. The inner
part of the disk (closer to the center than the Sun)
is relatively thin and flat. The outer part of the disk
is warped and also gets thicker, that is, it flares. We
will also discuss the evidence for this in this
chapter. Surrounding the center region is a bulge.
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m Images of the Milky Way at different wavelengths. (a) Radio continuum (408 MHz), from Bonn, Jodrell Bank and Parkes.
(b) HI column density, derived from 21 cm emission (Leiden—-Dwingeloo survey). (c) Radio continuum (2.4-2.7 GHz), from Bonn and

from IRAS (1.25,2.2 and 3.5 pm). (f) Mid infrared (6.8—10.8 .m), data from the SPIRIT Ill instrument on the Midcourse Space
Experiment (MSX) satellite. (g) Near infrared from COBE (12,60 and 100 um). (h) Optical from wide field photographs (compiled at
ESO). (i) X-ray (0.25,0.75 and 1.5 keV) from ROSAT. (j) Gamma-ray (CGRO).All of the images (except the optical) have angular reso-
lutions of between one-half and two degrees.All images are centered on the galactic center, and cover |0° above and below the galac-
tic plane. [Courtesy of NASA, provided by the GSFC Astrophysics Data Facility (ADF) (a), (e), (g), (i), (j) ADF; (b) Dap Hartmann,“The
Leider/Dwingeloo Survey of Galactic Neutral Hydrogen”, Ph.D. Thesis, University of Leider, 1974; (c) A. R. Duncan, University of
Queensland, Australia; (d) Thonas Dame, CFA; (f) Stephan D. Price, Hanscom AFB; (h) Axel Mellinger, University of Potsdam, Germany]

Parkes. (d) H2 column densities based on CO emission at |15 GHz (CFA at Harvard and in Chile). (¢) Composite mid and far infrared
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m Three-dimensional distribution of globular

clusters. (X, Y, Z) are linear coordinates (kpc) centered at
the galactic center. The galactic plane is Z = 0.The Sun is
located at (—8.5, 0, 0). (a) Overhead view. The dashed circle
shows the extent of the galactic disk. (b) Side view, with the
solid line indicating the extent of the disk. (c) The other side
view, with the solid line indicating the extent of the disk.
[William Harris, McMaster University]

16.2.1 Rotation and mass distribution

The orbital period of any particle will depend
on the mass about which it is orbiting and the
radius of the orbit. Just as we use the period

Disk

Halo

(a)
Sun
Galactic
Center

(b)

Bulge WP Flare
P Disk
Flare - P

(c)

m Schematic arrangements of major components

of the galaxy. (a) The relationship between the halo and the
disk. The lighter shading as one moves farther out in the
halo is to suggest a decrease in density with distance from
the center. (b) Top view of the disk, showing the location of
the Sun. (c) Side view of the disk, showing the warp and flare
in the outer part of the disk, and the bulge near the galactic

center.
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Table 16.1. | Scale heights® and velocity
dispersions.

Scale Velocity

Constituent height (pc) dispersion (km/s)
O Stars 50 5
GMCs 60 7
Galactic clusters 80
HI clouds 120
F stars 190 20
Planetary nebulae 260 20
M stars 350
RR Lyrae stars:

Short period 900 25

Long period 2000 30
Globular clusters 3000

“Scale height is the distance over which a quantity
falls to /e of its maximum value.

and size of the Earth’s orbit to tell us the mass
of the Sun, we can use the orbital periods at
different distances from the galactic center to
tell us about the distribution of mass in the
galaxy.

To see how this works, we assume that all mat-
ter follows circular orbits. At a distance R from
the center, the orbital speed is v(R), and the angu-
lar speed is 2(R). The mass interior to radius R is

(16.1)

where p(r) is the density at radius r, and dV is a
volume element. For a spherical mass distribu-
tion, the motion of an object at R depends only
on M(R). Furthermore, the mass M(R) behaves as if
it were all concentrated at the center. (This also
works for particles in the plane of a thin disk.)
For a particle of mass m orbiting at a radius R,
the gravitational force is GM(R)m/R?, and this must
provide the acceleration for circular motion, so

GM(R)m _ mv4(R)

& 2 (16.2)
Solving for M(R) gives
v*(R)R
R) = (16.3)

G

Therefore, if we can measure v(R), we can deduce

M(R), the mass distribution in the galaxy.

Equivalently, we can use (2(R), since

O(R) = v(R)/R (16.4)
Substituting into equation (16.3) gives

M(R) = Q*(R)R%/G (16.5)

If all of the mass is, indeed, concentrated at
the center of the galaxy, then M(R) is a constant,
so equation (16.5) gives Kepler’s third law (men-
tioned in Chapter 5). (We speak of the orbits as
being “Keplerian”.) The function v(R), or (R), is
called the rotation curve for the galaxy.

16.2.2 Rotation curve and Doppler shift
The differential galactic rotation produces
Doppler shifts in spectral lines that we observe
from gas at different distances from the galactic
center than the Sun. This is illustrated in Fig.
16.4. In Fig. 16.4(a), we look at five test particles at
different distances along the line of sight. In each
case the Doppler shift depends on the relative
radial velocity of the test particle and the Sun.
That is, we take the line of sight component of
the particle’s motion and subtract the line of
sight component of the Sun’s motion.

In Fig. 16.4(b) we look at the Doppler shifts
for each test particle. Point 1 is slightly closer to
the center than the Sun. It is moving slightly
faster than we are, so there will be a small
Doppler shift. It is moving away from us so that
the shift will be to longer wavelength (redshift).
Point 2 is where our line of sight crosses the
same circle. The speed is the same as at point 1,
and the angle with the line of sight is the nega-
tive of that at point 1. Since the line of sight
component depends on the cosine of that angle,
that component is the same. The Doppler shift
for point 2 is therefore the same as for point 1.
Point 3 is where the line of sight passes closest
to the center. Material is moving fastest around
that circle. It is also moving directly away from
us, so that point has the largest Doppler shift to
the red. Point 4 is in the same orbit as the Sun.
Our distance from that object is constant, so our
relative radial velocity must be zero, meaning
that the Doppler shift is zero. Point 5 is farther
from the center than the Sun, and is moving
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FER B Doppler shift produced by galactic differential

rotation by material at different locations along a given line
of sight. (a) The locations of five test particles in an overhead
view. Arrows for each particle indicate the velocity (magni-
tude and direction). For each particle the Doppler shift will
depend on the relative radial velocity of that particle and the
Sun. (b) For each particle, the position of the arrow shows

the amount of Doppler shift.

slower than us. We are therefore overtaking it,
so there is a Doppler shift to shorter wavelength
(blueshift).

In determining the rotation curve for our
galaxy, it is convenient to introduce a set of coor-
dinates, known as galactic coordinates, measured
from our viewing point at the Sun. They are
shown in Fig. 16.5. The galactic latitude, b, meas-
ures the angle above or below the galactic plane
of an object. The galactic longitude, €, is an angle

measured around the galactic plane, starting in
the direction of the galactic center.

We also define a convenient reference frame
for measuring velocities, called the local stan-
dard of rest, LSR. If the only motion the Sun had
were its orbital motion about the galactic cen-
ter, then the local standard of rest would coin-
cide with the Sun’s motion. That is, we could
simply measure motions with respect to the
Sun (so-called heliocentric velocities). However,
because of gravitational interactions with its
nearest neighbors, the Sun has a small motion
superimposed on its circular orbital motion, so
it is not a convenient reference point for veloci-
ties. There are actually two ways of defining the
LSR:

(1) Dynamical. The origin of the coordinate sys-
tem orbits at a distance R, from the galactic
center, and R is the distance of the Sun from
the galactic center. The coordinate system
moves with a velocity v(Rg) = vy, or 2(Ry) = €2,
appropriate for circular motion at Ry. Defined

Sun

®
Galactic
Center

b

Disk
Galactic
Center

m Galactic coordinates.

Sun
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this way, the motion of the LSR depends only
on M(Ry).

Kinematic. The origin of the coordinate system
moves with the average velocity of all the
stars in the vicinity of the Sun. This averages
out the effects of the random motions of
these stars.

S

The two definitions should result in the same
velocity system. However, there are small differ-
ences, which we will ignore. (The difference tells
us about the dynamical properties of the galaxy.)
With respect to the LSR, the Sun is moving at
about 20 km/s towards a right ascension of 18 h,
and a declination of 30°. (In galactic coordinates,
this is € = 56°, b = 23°.) Once we know the Sun’s
motion, we can use it to correct Doppler shift
measurements to give us the radial velocity of the
object with respect to the LSR.

We now look at the Doppler shifts we will
observe for some material a distance R from the
galactic center, moving in a circular orbit with a
speed v(R). The situation is shown in Fig. 16.6 for
R <Ry, but the result holds for R > R, (see Problem
16.12). The relative radial velocity is given by

v, = V(R) cos (90° — 0) — v, cos (90° — ¢) (16.6)
Sun
= V()
E

/o)

S LH Y Differential rotation and radial velocities. The sun
is a distance R, from the galactic center.We observe an

object at point P, along a line making an angle € with the line
of sight from us to the galactic center. P is a distance R from

the galactic center.

Using the relationship between sines and
cosines, gives
vy = V(R) sin @ — v, sin €
= RO(R) sin 0 — Ry2, sin ¢ (16.7)

We can measure ¢, but not 0, so we must elimi-
nate it using the law of sines:

sin(180° — 6)/R, = sin €/R (16.8)
Simplifying the left-hand side gives

sin /R, = sin £/ R (16.9)
Substituting into equation (16.7) gives

vy = Ro2(R)sin € — Ry(2, sin € (16.10)
Factoring out the R, sin ¢ gives

v = [QR) — O]Rpsin € (16.11)

In tracing the behavior of v,, it is convenient
to divide the galaxy into quadrants, based on the
value of €. This is illustrated in Fig. 16.7.

Let’s look along a line of sight at some galac-
tic longitude € and see how the radial velocity
changes with increasing distance d from the Sun.
This is illustrated in Fig. 16.8. We first look at the
case for ¢ <90° (first quadrant). As we look at
material closer to the galactic center, the quantity
[2(R) — 2] becomes larger. This means that v,
increases. We see that this line of sight has a

1T II

L\

v

®
Galactic
Center

ALY AN Galactic quadrants.
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the Sun, d, along a given line of sight. The upper curve is
typical of € between 0 and 90°. The maximum v, corresponds
to the point at which the line of sight passes closest to the

galactic center. The close point with v, = 0 corresponds to
local material, and the far point with v, = 0 corresponds to
our line of sight crossing the Sun’s orbit. Inside the Sun’s orbit,
each v, (except for the maximum) occurs twice. The lower
curve is typical of values of € between 90° and 180°. All of
these points are outside the Sun’s orbit, so each circle is
crossed only once, and each v, is reached only once.

[F rancoise Combes, Observatoire de Meudon]

point of closest approach to the galactic center.
This point is called the subcentral point. Of all the
material along this line of sight, the material at
the subcentral point produces the largest v,. As we
go beyond the subcentral point, we are recrossing
orbits, and v, becomes smaller. Eventually, v,
reaches zero, when the Sun’s orbit is crossed again.
For points beyond the Sun’s orbit, 2(R) < (2. This
means that v, is negative and increases in
absolute value as d increases.

For € > 270° (the fourth quadrant), the behav-
ior of v, is similar to that in the first quadrant,
except that when v, is positive in the first quad-
rant it is negative in the fourth quadrant, and

when it is negative in the first quadrant it is pos-
itive in the fourth quadrant.

In the second quadrant (90° <¢< 180°), all
lines of sight pass only through material out-
side the Sun’s orbit. There is no maximum v,; it
just increases with d. The behavior in the third
quadrant is the negative of that in the second
quadrant.

We can also find an expression for the relative
transverse velocity. This will produce proper
motions. The relative velocity is given by

vy = V(R) sin (90° — 6) — v, sin (90° — €)

= V(R) cos 6 — v, cos €

= RO(R) cos 6§ — Ryf2, cos ¢ (16.12)
From Fig. 16.6 we see that
Rocos € =d + Rcos 6 (16.13)
This gives
Rcos§ =Rycos ¢ —d (16.14)

Substituting this into equation (16.12) gives

vy = Q(R)[Ry cos € — d] — Ry{2y cos € (16.15)
Grouping the terms with cos ¢ gives
vy = [QR) — 2¢]Ry cos € — 2(R) d (16.16)

The quantity Ry, our distance from the galac-
tic center, is determined from studies of the dis-
tribution of globular clusters, and more recently
from the studies of clusters of masers near the
galactic center. For approximately 20 years prior
to 1985, the generally accepted value was
10.0 kpc. However, data accumulated by 1985 sug-
gest a smaller value. As of 1985, the International
Astronomical Union started recommending the
value

Ry = 8.5 kpc

By using an agreed upon value, astronomers
can be sure that they are using the same values
when they compare their studies of various
aspects of galactic structure. Prior to 1985, the
adopted value for v,, the orbital speed about the
galactic center, was 250 km/s. The value recom-
mended in 1985, to go with the new Ry, is

Vo = 220 km/s
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Example 16.1 Galactic rotation

For the values of the galactic rotation constants,
find the time it takes the Sun to orbit the galactic
center and the mass interior to the Sun’s orbit.

SOLUTION
The time for the Sun to orbit is simply the circum-
ference, 27R,, divided by the speed v,:

. 2mR,
Vo

2m(8.5 X 10% pc)(3.1 X 10™ km/pc)
(220 km/s)

=75X10"%s
=24 X 10%yr

The Sun orbits the galactic center in 240 million
years. We find the mass interior to R, from equa-
tion (16.3):

V2R
MER) ==
(220 X 10° cm/s)*(8.5 X 10° pc)(3.1 X 10" cm/pc)
(6.67 X 10~ dyn cm?/g*)
=20X10*g
=1.0 X 10" Mg,
16.3 | Determination of the

rotation curve

The rotation curve for material within the Sun’s
orbit can be determined reasonably well from
21 cm line observations. In determining the rota-
tion curve, we make two important assumptions:
(1) The orbits are circular. This means that we
need to determine v(R) at only one point for each
value of R. (2) There is some atomic hydrogen all
along any given line of sight. It is especially
important that there be some hydrogen at the
subcentral point of each line of sight.

The method takes advantage of the fact that,
for lines of sight through the part of the galaxy
interior to the Sun’s orbit, there is a maximum
Doppler shift. It is easy to inspect the 21 cm
spectrum at each longitude and determine the

maximum Doppler shift. We then assign that
Doppler shift to material at the subcentral point
(the point of closest approach to the galactic cen-
ter) for that particular longitude. We can see
from Fig. 16.6 that the distance of the subcentral
point to the galactic center, Ry, is

Rimin = Ry sin ¢ (16.17)

From equation (16.11), we see that if vy, is
the maximum radial velocity along a given line of
sight, then the angular speed (R ;,) for that line
of sight is given by

O(R sin €) = (Vipax/Ro sin €) + O (16.18)

By studying lines of sight with longitudes
ranging from 0° to 90°, the corresponding value
of R, will range from zero to Ry. This means
that we measure ()(R) once for each value of R
from zero to R,. However, we have already said
that, if the material is moving in circular orbits,
one measurement per orbit is sufficient to deter-
mine the rotation curve.

There are some limitations to this technique.
We have already seen that the distribution of
interstellar gas is irregular. If there happens to be
no atomic hydrogen at the subcentral point for
some line of sight, we will see a v,,,,, which is less
than the value that we would see if there were
material at the subcentral point. There are also
problems arising from non-circular orbits. The
effect of both of these problems can be reduced
by repeating the procedure for the fourth quad-
rant. Because of the inclination of the galactic
plane relative to the celestial equator, the fourth
quadrant studies must be performed in the south-
ern hemisphere, and have been done in Australia.
For a number of years it seemed that there were
disagreements between the first and fourth quad-
rant rotation curves, but we now think we under-
stand them in terms of non-circular motions. There
is further evidence for such motions in the large
radial velocities observed for € close to 0° and 180°.

Another problem is that we cannot really cover
the full range from zero to R,. For ¢ close to zero,
sin ¢ is close to zero, and the Doppler shift is very
small. Random motions of clouds are much larger
than the radial velocity due to galactic rotation.
Similarly, for € near 90°, {2 is close to (2, providing
a small radial velocity due to galactic rotation.
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SRS Rotation curve for the Milky Way. The curve
inside the Sun’s orbit is well determined from 21 c¢m studies.
Outside the Sun’s orbit, we use Hll regions in molecular
clouds.We use spectroscopic parallax on the exciting stars
to give the distance to the HIl regions, and then CO
observations to measure the Doppler shift. [Daniel Clemens
(Boston University) Clemens, D., Astrophys. J., 295, 422, 1985]

When we eliminate these ends, a reasonable rota-
tion curve has been derived for R in the range 3 to
8 kpc. This is shown as part of the curve in Fig. 16.9.

Using HI to determine the rotation curve out-
side the Sun’s orbit is more difficult. There is no
maximum Doppler shift along any line of sight. It
is therefore necessary to measure independently v
and d, the distance from the Sun to the material
being studied. From d and ¢, we can deduce R (see
Problem 16.6). Until molecular observations, there
was no reliable rotation curve for R > R,. The best
astronomers could do was to derive the mass dis-
tribution for R < Ry, and then make some assump-
tions about how the mass distribution would
continue for R > R,. From the assumed mass dis-
tribution, a rotation curve could be derived. It
was assumed that there was relatively little mass
outside the Sun’s orbit, so the rotation curve was
characterized by a falloff in v(R) that was close to
that predicted by Kepler’s third law.

However, recent observations of molecular
clouds have provided a direct method of measur-
ing the rotation curve outside the Sun’s orbit.
Molecular clouds associated with HII regions were
studied. The radial velocities were determined from
observations of the carbon monoxide (CO) emission
from the clouds. The distance to the stars exciting
the HII regions were determined by spectroscopic

parallax. This gives a reliable rotation curve at
least out to about 20 kpc. The combined rotation
curve (using HI inside the solar circle and CO out-
side, is shown in Fig. 16.9. There is no falloff in
v(R) out to 20 kpc, and there may even be a slight
rise. This means that there is much more mass
outside the Sun’s orbit than previously thought!

We can see from equation (16.3) that if v(R) is
constant from 8 to 16 kpc, then M(16 kpc) will be
twice M(8 kpc). This means that there is as much
mass between 8 and 16 kpc as there is out to 8 kpc.
However, the luminosity of our galaxy is falling
very fast as R increases. Since the luminous part
of the matter is mostly in the disk, it would seem
that this extra mass cannot be part of the disk.
Current thinking places the extra mass in the
halo of the galaxy. We still have little idea of what
form this matter takes. It has been suggested that
it can be in the form of faint red stars, but recent
results make this seen unlikely. This is our first
encounter with dark matter, matter whose gravi-
tational effects are felt, but which is not very
luminous. (Astronomers used to call this “miss-
ing” matter, but it is not missing. We can tell that
it is there by its gravitational effects. We just
can’t see it.) We will see that there is strong evi-
dence for dark matter in other galaxies, and we
will discuss it farther in Chapter 17.

Example 16.2 Galactic mass distribution
For what (spherically symmetric) mass distribution
is V(R) constant?

SOLUTION

From equation (16.3), we know how M(R) is related
to v(R), and from equation (16.1) we know how p(1)
is related to M(R).

For a spherical coordinate system, the volume
element is 47rr*dr, so equation (16.1) becomes

M(R) = fp(?’) 4ar? dr

q ) 4mr
or

1 dM(r)
plr) = 471 dr
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If v(R) is a constant, say v,, then equation (16.3) tells
us that

M _v(z)r
(="
)
dr G

Equating the two expressions for dM(r)/dr gives

vo

p(?’) - 4’7ﬂ’ZG

This means that the density falls as 1/r*. While this
sounds like a rapid falloff, remember that the
volume of a shell of thickness dr and radius r is
4rr* dr. So, in calculating the mass of each shell,
the r* factors cancel. This means that, as we go
farther out, the mass of each shell stays constant.
So, as far as we continue to add shells with this 1/r*
density falloff, the mass of the galaxy grows by the
same amount with every shell we add.

Once we have a rotation curve for our galaxy,
it is possible to use measured Doppler shifts to
determine distances to objects. Since these dis-
tances are determined from the motions of the
objects, they are called kinematic distances. For any
particular object, we measure v, and €. We then
determine the angular speed (2 from

0O = (v,/Rysin €) + 0, (16.19)

It is assumed that we know R, and (2,. Once
we know (2 we can use the known rotation curve
to find the value of R to which the (2 corresponds.

There are a few limitations to this technique.
It does not work for material whose radial veloc-
ity due to galactic rotation is less than that due to
the random motions of the clouds. This rules out
material near longitudes of 0° and 180°, as well
as material close to the Sun.

Another problem arises for material inside
the Sun’s orbit. There are two points along the
same line of sight that produce the same radial
velocity. (The one exception is the subcentral
point.) Both of these points are the same distance
from the galactic center, but they are different
distances from us. This problem is called the dis-
tance ambiguity. We can use the rotation curve to
say that the object is in one of two places, and we
must then use other information to resolve the

ambiguity. Remember, there is no distance ambi-
guity for material outside the Sun’s orbit, making
this an interesting part of the galaxy to study.

16.4 | Average gas distribution

To understand star formation on a galactic scale,
we must know how the interstellar gas, out of
which the stars will be formed, is distributed in the
galaxy. We are interested in the average distribu-
tions of various constituents. By “average” we mean
that we are interested only in the large-scale struc-
ture. We would like to know the radial distribution
of interstellar gas. (Remember, this is not the same
as M(R), which includes mass in all forms.) We
would also like to know the degree to which the gas
is confined to the disk. We can express this as a
thickness of the disk, as determined from various
constituents. We would also like to know whether
the thickness is constant, or whether it varies with
position in the galaxy. Finally, we would like to
know if the plane of the galaxy is truly flat, or if it
has some large-scale bumps and wiggles.

We first look at HI. The amount of HI doesn’t
fall off very quickly as one goes to larger R. For
example, the mass of HI interior to R, is about
1 X 10° My, and the mass exterior to R, is about

Mass Surface Density ( Ma pc" )

O " ] 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

R (kpc)

Radial distribution of H,, with the H, deduced
from CO observations, assuming a constant conversion from
CO luminosity to mass. There is growing evidence that this
conversion factor actually changes with environment, and

this curve may underestimate the mass in the outer galaxy
by a factor of three.Also, remember that there is a larger
volume, so even a lower density of material can still translate

into a significant mass. [Thomas Dame, CFA]
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2 X 10° Mo, (Of course, this larger mass is spread
out over a larger volume. See Problem 16.5.) Note
that the mass of HI is only about 1% of the total
mass interior to a given radius. This means that
the gas does not provide most of the large-scale
gravitational force in the galaxy. It just responds
to the gravitational effects of the stars, and what-
ever dark matter there is in the halo.

The abundance of H, (Fig. 16.10) falls off more
rapidly with R than does that of HI. Inside the
Sun’s orbit, the mass of H, is approximately equal
to that of HI, about 1 X 10° M. Outside the Sun’s
orbit, the mass of H, is about 5 X 10® My, about
one-quarter that of HI. There appears to be a peak
in the H, distribution about 6 kpc from the galac-
tic center. This is sometimes called the molecular
ring. It appears that most of the H, seems to be
concentrated into a few thousand giant molecular
clouds, rather than a large number of small
clouds. The distribution of molecular hydrogen
H, is generally deduced indirectly from observa-
tions of CO. There are still disagreements over
how to derive the H, abundance from the inten-
sity of the CO emission. There is growing evi-
dence that the conversion factor changes with
galactic environment, and that the mass of the
outer galaxy (like the derived mass distribution
in Fig. 16.10) are underestimated by as much as a
factor of three.

We generally express the thickness of the disk
by finding the separation between the two
points, one above and one below, at which the HI
density falls to half of its value in the middle of
the plane. This is called the full-width at half
maximum or FWHM. At the orbit of the Sun, the
thickness of the HI layer is about 300 pc. At R =
15 kpc, the thickness is about 1 kpc. This trend is
shown in Fig. 16.11. This means that the plane
becomes thicker as one goes farther out from the
center of the galaxy (as depicted schematically in
Fig. 16.3¢). This is called the “flaring” of the galac-
tic disk. In addition, we find that the disk isn’t
flat. It has a warp to it, like the brim of a hat (Fig.
16.12). This is also shown schematically in Fig.
16.3(c). The warp is most prominent outside the
Sun’s orbit. The bend is upward in the first and
second quadrants and downward in the third and
fourth quadrants.

It is also interesting to see the degree to which
various constitents (atomic, molecular, ionized) are

h (kpe)

0.0 L . L L
10 15 20 25 30

R (kpe)

Thickness of the plane of the Milky Way as
determined from 2| cm observations. The plot shows the
layer thickness (measured as a gaussian width), with dotted
lines for range 20°'<# <160’, the dashed for 200" < § <340,
and the solid line the average of both ranges. 6 is galactocen-
tric azimuth, where 6 = 0’ is the direction £ = 0. [Butler

Burton, Sterrewacht, Leiden University]

confined to the plane. Fig. 16.13 shows the thick-
ness of the plane as measured by various tracers. In
general, we think that components that are more
closely tied to the plane are younger. This means
that HII regions and molecular clouds have formed
more recently than HI clouds or globular clusters.
Molecular hydrogen is more closely confined
to the galactic plane than atomic hydrogen. The

z (kpc)

30
R (kpe)

Height of the plane of the Milky Way, as deter-
mined from 21 cm observations. The solid contours are
heights (in kpc) above the plane, and dashed contours are
heights below the plane, where the solid lines trace the warp
heights in the first and second quadrants (upper) and in the
third and fourth (lower). The dotted lines are fits used in

modelling. [Butler Burton, Sterrewacht, Leiden University]
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Normalized Intensity

Galactic Latitude (Deg.)

Thickness of the plane as measure by four trac-
ers. In general, components that are more concentrated to
the plane are thought of as being younger, in the sense that
they have not had as much time to spread out. [Eli Dwek,
NASA/Sodroski, T. et al., Astrophys. J., 322, 101, 1987]

thickness of the plane in H, is about half that in
HI. We have seen that one feature of population I
material is its confinement to the galactic plane.
We therefore think of molecular clouds as repre-
senting a more extreme population I than that
represented by the HI clouds. This might indicate
that molecular clouds, as a whole, are more
recently formed than the HI clouds. Finally, the
H, shows the same flaring and warp as the HI.

Additional information on the total gas distri-
bution (HI plus H,) comes from observations of
gamma-rays. These gamma-rays are created when
cosmic rays strike protons. It doesn’t matter what
types of atoms or molecules the protons are in.
The results are somewhat uncertain, but provide
an additional constraint. The general conclusion
from such observations supports the conclusions
from the CO observations.

16.5 | Spiral structure in

the Milky Way

Early photographic surveys revealed a number of
nebulae with a spiral appearance. In Chapter 17
we will discuss the reasons for believing that
these spiral nebulae are distant galaxies, distinct

from our own, rather than part of the interstellar
medium in our galaxy. Some examples of spiral
galaxies are shown in Fig. 17.3. Given that many
other galaxies seem to have a spiral appearance,
it is reasonable to wonder whether our galaxy is
also a spiral. Unfortunately, from our vantage
point within the galaxy, it is very difficult to see
the overall pattern. In other galaxies, the spiral
pattern appears in the disk.

However, we can detect certain similarities
between our galaxy and spiral galaxies. In partic-
ular, spiral galaxies have a significant amount of
gas and dust. The amount of gas and dust in our
galaxy is comparable to that in other spirals. For
this reason, astronomers have been encouraged
in trying to unravel the spiral structure of our
galaxy.

16.5.1 Optical tracers of spiral structure
When we look at spiral galaxies we see that the
spiral arms are not continuous bands of light.
Rather, they appear to contain knots of bright
stars and glowing gas. For example, it appears
that HII regions and OB associations trace out
spiral arms in other galaxies. For this reason, we
have tried to see if the HII regions we can see
optically in our galaxy form any distinct pat-
tern. By using optical observations we can rely
on distances determined by spectroscopic paral-
lax for the stars exciting the HII regions.
Similarly, we can also look at the distribution of
OB associations. A drawback is that, with optical
observations, we cannot see very far along the
plane of the galaxy. When we study the distribu-
tion of HII regions and OB associations, it is
clear that the placement is not entirely random.
We seem to see at least pieces of connected
chains of HII regions and OB associations. These
pieces have been identified as a series of named
“arms”, identified by the constellation in which
they are most prominent. This is all a tantaliz-
ing hint of spiral structure, but is not a defini-
tive picture.

16.5.2 Radio tracers of spiral structure

We can view the situation on a larger scale by
using radio observations to look at the distribution
of interstellar gas. This allows us to see across the
whole galaxy. We can utilize kinematic distances,
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from giant molecular cloud complexes inside the solar circle.

The sizes of the circles indicate the masses of the complexes,

as indicated in the upper right. The 4 kpc and Scutum arms
are drawn from the 2| cm maps. The Sagittarius arm is
drawn as it would best fit the CO data. [Thomas Dame,
CFA/Dame, T.M. et al., Astrophys. ., 305, 892, 1986, Fig. 9]

but must still deal with the distance ambiguity.
Initial radio studies of the interstellar gas and spi-
ral structure involved the 21 cm line. Again, long
connected features have been identified.

With the discovery of molecular clouds, it was
hoped that they would reveal the spiral structure
of our galaxy. This is because the optical tracers
of spiral structure we see in other galaxies — OB
associations, HII regions, dust lanes — are all asso-
ciated with giant molecular clouds. A number of
groups have carried out large-scale surveys of
emission from CO throughout the galaxy. We
look at some results in Fig. 16.14. Most of the
work involved material inside the Sun’s orbit. The
problem is that the distance ambiguity makes it
difficult to place uniquely all of the emitting
regions. One approach has been to take specific
models for spiral arms and predict the outcome
of CO observations. Again, pieces of arms have
been identified, and again we see pieces of arms.
This may be telling us about the difficulties of

studying the spiral structure in inner parts of our
own galaxy, especially with the distance ambigu-
ity. Or, it may be telling us that the spiral pattern
in the inner galaxy is not that well defined. We
will see in Chapter 17 that, in many other spirals,
the pattern gets stronger as one moves farther out.

Outside the Sun’s orbit, the approach is more
direct. Since we have a rotation curve for the outer
part of the galaxy and there is no distance ambi-
guity, it is easier to trace out the large-scale struc-
ture. It is in the regions outside the Sun’s orbit
that we see the best evidence for spiral structure,
with some features being traced over at least a
quarter the circumference of the galaxy (Fig. 16.15).
There is a growing confidence that the outer part
of our galaxy is a four arm spiral. This work is still
going on.

Much of our understanding of spiral struc-
ture comes from comparing our galaxy to other

Locations of Mapped Clouds

M/M
4 >10° R,
® 3x10%*-10°
® 10*-3x10*
o 3x10%-10*

R =13 kpc

(a)

m Molecular clouds outside the Sun’s orbit and

spiral structure. (a) First and second galactic quadrants.The
cloud masses are denoted by the symbols, shown at the
lower left. The circle at 13 kpc is drawn in for reference.
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part of what is called the Carina arm. [(a) Kathryn N. Mead;

(b) Yasuo Fukui, Nobeyama Radio Observatory]

galaxies. Therefore, we will leave further expla-
nation of spiral structure until Chapter 17, when
we look at other galaxies.

16.6 | The galactic center
16.6.1 Distribution of material near

the center

Ever since it was realized that the galactic center
is someplace else from where we are, astronomers
have wondered about its nature. Is it simply a geo-
metric location, or is it the site of unusual activ-
ity? We will see in Chapter 19 that the centers of
many other galaxies are the sites of unusual
activity. This makes the search for activity in our
galactic center a natural focus. When we talk
about the center region, we are talking about
roughly the inner 500 pc of the galaxy.

Visual extinction in the galactic plane makes
optical studies of the galactic center virtually
impossible. We are able to observe the galactic
center in the radio and infrared parts of the
spectrum. In the radio, we detect continuum
emission from ionized gas and line emission
from molecular clouds. In the infrared, contin-
uum observations tell us about the dust temper-
ature and opacity, and spectral line observations
tell us about the neutral and ionized gas. Near
infrared observations can also be used to study
rich star clusters near the center. Millimeter
observations of interstellar molecules tell us
about the cold dense component. Because of the
great distance to the galactic center, many obser-
vations are limited by poor angular resolution.
In the past several years, a major breakthrough
has resulted from VLA and VLBI observations.
The development of sensitive infrared array
detectors has also been very important. Maps of
radio emission and X-ray emission are shown in
Fig. 16.16.

Studies of the ionized gas show a bent arc of
emission perpendicular to the galactic plane. This
structure is about 15 arc min in extent. It shows
a filamentary structure. This feature is also seen
in the infrared. The emission seems to be a com-
bination of thermal (free-free) radiation and
non-thermal (synchrotron) radiation. The pre-
sense of extended X-ray emission (Fig. 16.16b),
suggests temperatures as high as 107 to 10® K. It
is speculated that these high temperatures result
from a past explosive event. This event may have
been a number of supernova explosions follow-
ing an unusual wave of star formation. (We will
discuss these “starbursts” more in Chapter 19.) At
the higher end of that range, the gas would not
be bound to the galaxy.

The molecular material in the inner 200 pc is
remarkably hot and dense, compared with giant
molecular clouds elsewhere in the galaxy (Chapter
15). Typical temperatures are 70 K, and densities
are greater than 10* cm™2. These are conditions
found in normal molecular cloud cores, but they
are found over the full extent of the clouds. The
internal velocity dispersions are up to 50 km/s,
much greater than even in molecular cloud cores.
The amount of molecular material may be as high
as 10® M. It has been suggested that the ionized
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(b)

gas filaments are the boundaries of dense molecu-
lar clouds, which have been exposed to the intense
ionizing radiation near the center.

If we are to understand the dynamics of this
unusual environment, we must also know the
magnetic field strength (and arrangement). As
we discussed in Chapter 14, magnetic fields are
generally hard to measure. For the galactic cen-
ter, even the Zeeman effect in HI is hard to
measure because the spectral lines are so much

(0

FERLH LT Maps of the galactic center. (a) VLA map of

radio emission at a wavelength of 6 cm.An arc like structure
is visible. Much of this pattern is viewed as coming from a
tilted ring of ionized gas. (b) Chandra image of X-ray emis-
sion from hot gas hear the galactic center. (c) The blue image
shows the X-ray emission relative to the radio emission,
which is shown in red. [(a) NRAO/AUI/NSF; (b), (c) NASA]

wider than in the normal interstellar medium.
However, a variety of techniques suggest very
high field strengths, of the order of a few milli-
gauss. (Remember, typical interstellar fields are
tens of microgauss.)

The galactic center provides a totally unique
environment for star formation. There is a high
density to help, but it is inhibited by higher tem-
peratures, velocity dispersions, magnetic pressure,
and tidal effects. Observations (such as those
shown in Fig. 16.17) tell us that the central parsec
is very rich in past and current star formation.
The star formation rate in the central region is
estimated to be as high as 1Mg[yr. The central
cluster shows evidence for a new 10* M, superim-
posed on an older 10° M, cluster. It has been sug-
gested that the formation of the newest cluster
triggered the formation of at least two other rich
nearby clusters. (We discussed triggering of star
formation in Chapter 15.)
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16.6.2 A massive black hole?

There has been considerable speculation on the
nature of the central object. It has been suggested
that it might be a few million My black hole. In
establishing the existence of such a black hole,
there are two observational steps that must be
made. First, we must accurately determine the
mass of the object. The best way to do this is by its
gravitational influence on nearby surrounding
stars or gas. Second, we must show that the object
is smaller than the Schwarzschild radius for that
mass.

You can get an idea of how difficult this is. By
equation (8.10), the Schwarzschild radius for a
10° Mg, black hole is 3 X 10° km, which is about
10~ 7 pc, and would subtend an angle of about
10~ ° arc sec.

One interesting approach to this problem was
started in 1995 by Andrea Ghez (Fig. 16.18) of UCLA,
and co-workers, using the Keck 10 m telescope
(described in Chapter 4). Their goal was to meas-
ure the proper motions of stars in the direction of
SgrA*, the source in the center of the galaxy.
Ghez’s group observed in the near infrared
(2.2 pm), which provided good angular resolution,
but still had less extinction to the galactic center
than they would have had in the visible. To obtain
the best possible resolution, they took a number
of short exposures, so there was little atmospheric
smudging in each image. In adding the images
together, they shifted the image to remove changes
in atmospheric refraction from image to image.
The final images had a resolution of about 0.5 arc
sec. If the diffraction pattern is very clean (and it
is for their system) then it is possible to measure
the position of each star to much greater accu-

FESER AN HST near IR images

of the galactic center, showing rich
star clusters. [STScI/NASA]

racy, in their case to within 0.002 arc sec. When
we have previously talked about using velocities
to measure the mass of a system, in using the vir-
ial theorem for example, we used radial velocities
as measured from Doppler shifts. We could have
used proper motions, but they are generally too
small to measure over a period of a few years.
Velocities near a massive black hole would be large

SESERER Andrea Ghez. [Andrea Ghez, UCLA] ‘
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enough to produce measurable proper motions.
Measuring Doppler shift for these stars would be
hard, because they required such short exposures
to achieve good angular resolution. Their results
are summarized in Fig. 16.19.
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FHESLH AR (a) Measured positions for three observing

years near the position of SgrA*. (b) Positions of the 90 stars
whose proper motions were measured, with the size of the
symbol scaled to the size of the motion. (c) Projected stellar
velocity dispersion as a function of distance from SgrA”". The
solid line is the value for Keplerian orbits (still outside all of
the mass). (d) Enclosed mass as a function of projected dis-

tance for 30 stars.

With three observing runs, a year apart, Ghez’s
group were able to identify 90 stars with proper
motions large enough to measure. The largest
proper motion corresponded to a tangential veloc-
ity of 1400 km/s. They found that this motion is
organized about the position of SgrA* to within
0.1 arc sec. The projected positions and velocities
are consistent with Keplerian motion. This
means that essentially all of the mass is closer to
the center than any of the stars measured. The
best estimate of the mass in the central object
is (2.6 = 0.2) X 10° M. The observations don’t
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Fig 16.19.
three stars. [Andrea Ghez, UCLA; (a)—(d) Ghez,A.M. et dl.,
Astrophys. J., 509, 678, 1998, Figs. 3—6; (e) Ghez, A. M. et al.
Reprinted by permission from Nature, 407, 307, Fig. |,
Copyright (2000) Macmillan Publishers Ltd.]

(Continued) (e) Curvature in the paths of

conclusively show that this mass is contained
within Rg, but alternative explanations, such as a
very rich cluster, don’t seem very likely. These
masses are consistent with previous determina-
tions using other techniques, but the new meas-
urements place much tighter constraints on the
confinement of the matter, and the coincidence
with SgrA*.

By following these stars for another two years
(through 1999), the group found three stars whose
paths had a measurable curvature about the SgrA’
position (Fig. 16.19e). These stars had projected posi-
tions on the sky ~0.005 pc from SgrA*. From this
curvature, they could directly measure the acceler-
ation in the circular orbit. It turns out to be numer-
ically close to the value of the Earth’s acceleration
in its motion about the Sun. The shortest orbital
period is 20 years, so we have the prospect of being
able to watch something make a complete revolu-
tion about the galactic center in our lifetimes.
Acceleration vectors don’t allow for a better mass
estimate, but if you use the mass estimate from the
proper motions, the volume the mass is con-
strained to is decreased by an order of magnitude.
This greatly strengthens the case for that mass to
be included within its Schwarzschild radius.

There is also indirect evidence for explosive
activity in the galactic center region. For example,
there is an armlike feature in our galaxy, some 3
to 4 kpc from the galactic center, called the “3 kpc
arm”, which appears to be expanding at about
50 kmy/s. Speculation is that this expansion is due
to some explosion in the relatively recent past (see
Problem 16.14). We see other similar features
closer in, suggesting that this activity has taken
place on a continuing basis. We will see in
Chapter 19 that the activity in our galactic center
is small compared with that in many galaxies.
However, it gives us our best opportunity to study
such activity “close up”. For this reason, study of
the galactic center is a very active field.

Chapter summary

In this chapter we saw how stars and interstellar
material are arranged in the Milky Way.

We saw how the rotation curve tells us about
the mass distribution in the galaxy, and how that
rotation curve is determined. Different tech-
niques are needed for material inside and outside
the Sun’s orbit about the galactic center. We saw
how the rotation provides evidence for dark mat-
ter. Once the rotation curve is known, velocities
of objects can be used to estimate distances. This
works better outside the Sun’s orbit than inside,
because of the distance ambiguity.

In looking at the average gas distribution, we
found that the HI is extended beyond the Sun’s
orbit, while the number of molecular clouds
falls off more sharply with distance from the
center of the galaxy. The molecular clouds are
also more tightly concentrated toward the galac-
tic plane than the HI clouds. This concentration
toward the plane suggests that the molecular
clouds are younger.

We discussed evidence for spiral structure in
the Milky Way and the difficulties in tracing out
spiral arms in our galaxy. We saw that tracers for
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spiral structure include HII regions, OB associa-

tions and molecular clouds.

In looking at the galactic center, we found
that it contains a small, active region. The center

has a

mass concentration which may be a few

million M, black hole.

Questions
16.1. How do we know that v(R) tells us the total 16.5. Contrast the method of measuring the rota-
mass interior to R? tion curve inside the Sun’s orbit with that
*16.2. Why should the kinematic and dynamical for measuring it outside the Sun’s orbit.
definitions of the local standard of rest give 16.6. Describe the difficulties in studying spiral
the same rest frame? structure in our galaxy.
16.3. Why is it sufficient to measure the rotation 16.7. Compare the methods for using GMCs and
curve only for subcentral points for R < Ry? HII regions to study spiral structure.
*16.4. Why can’t we use transverse velocities to 16.8. Why is it easier to study spiral structure in the
measure the rotation curve of our galaxy? outer part of our galaxy than in the inner part?
Problems
16.1. Show that the radial velocity equation of sight. Show that the component of their
(16.11), derived for the first quadrant of the velocity along the line of sight is the same.
galaxy, holds for the second quadrant. 16.9. Show that the radial velocity of a point in the
*16.2. For material observed at a radial velocity v, fourth quadrant is the negative of that of the
along a line of sight at galactic longitude ¢, corresponding point in the first quadrant.
find an expression for the separation between  16.10. If we can only measure kinematic distances
the near and far points producing that v,. for points with v, > 10 km/s, what range of R
*16.3. Calculate (2(R) and v(R) for the following den- can we study?
sity models: (a) all the mass M at the center 16.11. For € = 45°, we observe v, = + 30 km/s.
of the galaxy; (b) a constant density, adding What are R and d?
up to a mass M(R,) at the Sun’s orbit and no 16.12. If v(R) = 220 km/s for Ry <R < 2R, find an
mass beyond. expression for v, as a function of (¢, R).
16.4. Suppose the rotation curve of the Milky Way  16.13. When the constants R, and v, changed from
is flat out to 2R,. What mass does that imply 10.0 kpc and 250 km/s to 8.5 kpc and
out to that distance? 220 km/s, respectively, by what factor did
16.5. Convert the HI and H, masses given in the the mass inside the Sun’s orbit change?
chapter into: (a) average volume densities 16.14. What is the Schwarzschild radius for a 5 X
and (b) average surface densities for the 10° M, black hole? How does this compare
regions R < Ry and Ry < R < 2R, (assuming with the sizes of the structures found in the
that all of the mass outside R, is between R, galactic center?
and 2R). *16.15. The mass distribution for material near the
*16.6. For material outside the Sun’s orbit, derive galactic center can be determined from stud-
an expression to convert observed v, and d ies of the rotation curve close to the center.
into 2(R) and R. When the rotation velocity is plotted vs. log R
16.7. (a) Estimate the age of the 3 kpc arm from for the inner 10 pc, the result is approximately
its radius and expansion speed. (b) Is this an a straight line. v(R) is 200 km/s at r = 2 pc
upper or lower limit to its age? Explain. and 70 km/s at R = 10 pc. (a) Use this data to
16.8. Draw a diagram showing two points with find M(R) for 2 pc < R < 10 pc. (b) Assuming

the same radial velocity along the same line

a spherical distribution, find p(r).
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Computer problems

16.1. Plot a graph of Doppler shift as a function of dis-
tance along a line of sight for ¢ = 45° and for ¢ =

135°.

16.2. Plot a graph of v, vs. € for € ranging from 0 to

90 degrees.

16.3. Complete the following table by giving kinematic
R and d for the indicated € and v,. (In case of a dis-

tance ambiguity, give both values.)

¢ v
30 +30
30 ~30
60 +30
60 ~30

120 —40

240 +40

330 +30

330 —30




PartV

The universe at large

To this point we have been studying the stellar life cycle and how stars
and other material are arranged in the Milky Way Galaxy.VWe will now
turn to studies on a much larger scale.We will first look at other galaxies,
and see that some of them tell us more about our own galaxy, which is so
hard to observe.When we talk about how the universe is put together,
each galaxy has only as much importance as a single molecule of oxygen
has in describing the gas in your room.

As we go to larger scales, we will look at how galaxies are distributed
on the sky, and how they move relative to one another.We will also see
how the problem of dark matter becomes more important as we go to
larger and larger scales.

As we go to larger scales, increasing the number of galaxies that we
observe, we also find a variety of interesting phenomena associated with
galaxies. In Chapter 19 we will discuss aspects of galactic activity, particu-
larly as evidenced by radio galaxies and quasars.

In Chapter 20 and 2| we will turn to cosmology, the study of the uni-
verse on the largest scales. This also includes the past and future evolution
of the universe. It is in the study of the past that we encounter one of the
most fascinating aspects of modern astrophysics research, the merging of
physics on the smallest (elementary particles) and largest (structure of the
universe) scales.






Chapter 17

Normal galaxies

Our study of the Milky Way has been aided greatly
by studies of other galaxies. However, for a long
time it wasn’t clear that the spiral nebulae we see
in the sky are really other galaxies. From their
appearance, it might just be assumed that these
nebulae are small nearby objects, just as HII
regions are part of our galaxy.

The issues were crystallized in 1920 in a debate
between Harlow Shapley and Heber D. Curtis. Curtis
argued that spiral nebulae were really other galax-
ies. His argument was based on some erroneous
assumptions. First, he confused novae in our galaxy
with supernovae in other galaxies. Shapley
thought the spiral nebulae were part of our own
galaxy, partly based on an erroneous report of a
measurable proper motion for some nebulae.

The issue was settled in 1924 by the observa-
tional astronomer Edwin Hubble (after whom the
Space Telescope is named). Hubble studied Cepheids
in three spiral nebulae (including the Andromeda
Galaxy), and clearly established their distance as
being large compared with the size of the Milky
Way. There is some problem with Hubble’s analysis,
involving type I vs. type II Cepheids. However, even
this factor of 2 error in the distance was not enough
to alter the basic conclusion that spiral nebulae are
not part of our own galaxy. Following this work,
Hubble made a number of pioneering studies of
other galaxies, essentially opening up the field of
extragalactic astronomy.

17.1 | Types of galaxies

In his studies Hubble realized immediately that
not all spiral galaxies have the same appearance.

Furthermore, he found galaxies that do not have
a spiral structure. Hubble classified the galaxies
he studied according to their basic appearance. It
was originally thought that the different types of
galaxies represented different stages of galactic
evolution. (Similarly, some astronomers thought
that different spectral type stars along the main
sequence were evolutionary states of the same
star.) We now know that this is not the case.
However, Hubble’s classification scheme, depicted
in Fig. 17.1, is still quite useful.

[7.1.1 Elliptical galaxies

Elliptical galaxies have, as their name suggests,
simple elliptical appearances. Some examples of
ellipticals are shown in Fig. 17.2. The ellipticals are
classified according to their degree of eccentric-
ity. The ones that look spherical (zero eccentricity)
are called EO, and the most eccentric are called E7.

The most common type of elliptical galaxies
are called dwarf ellipticals, since they are also the
smallest. Their sizes are typically a few kilopar-
secs and their masses are a few million solar
masses. More spectacular are the giant ellipticals,
with extents up to 100 kpc and masses of about
10"®M,,, with some with masses up to a factor of
ten higher.

The gas content of ellipticals is low. Studies of
HI, using the 21 cm line emission, as well as IRAS
observations of weak emission from their dust,
suggest that the mass of the interstellar medium
may be up to about 1% of the mass of the stars
that we see. The low gas content rules out the pos-
sibility that ellipticals eventually flatten to form
spirals. The continuing process of star formation in
a galaxy depletes its supply of interstellar matter,
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Spirals metal abundances are not low. Giant ellipticals
have metal abundances that are quite high, about

O 6 b twice the solar value.
() Some ellipticals are rotating very slowly. They
Sa Sb Sc

have a higher ratio of random velocities to rota-
tional velocities than do spirals. We think that
their slow rotation means that they could
collapse without much flattening. Remember,

SO
@ @ @ when we discussed collapsing interstellar clouds,

SBa SBb SBc
Barred Spirals

T8 WA B Hubble classification of galaxies. Ellipticals range
from EO (round) to E7 (the most oblate). The regular spirals

Ellipticals

EO0 E4 E7

are divided according to the relative size of the nucleus and
the disk, and the tightness of the spiral arms.The Sa have the
largest nuclei and the most open arms.The barred spirals,
SB, follow the same classification as the normal spirals. SO
galaxies have nuclei and small disks but no spiral arms.

so if spirals are merely evolved ellipticals, we have
no way of understanding why spirals have more
gas and dust than ellipticals.

Ellipticals generally contain an evolved stellar
population, with no O or B stars. However, their

(b)

(a)

FES A Elliptical galaxies. (a) M87, in Virgo, which is a

giant elliptical, type EO.The fuzzy patches visible near the
edge of the galaxy are globular star clusters.The inset shows
a blow-up of the center. (b) M49, in Virgo, type El. It is about
15 Mpc away, and about 15 kpc across. (c) M32 in
Andromeda, which is a dwarf elliptical companion to the
Andromeda Galaxy (M3, Fig. 17.3b) and is type E2. It is only
800 pc across. [NOAO/AURA/NSF]
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we found that rapid rotation retards collapse
perpendicular to the axis of rotation, resulting in
the formation of a disk.

We can use photometry to study the bright-
ness distribution in ellipticals. Since we see the
galaxy projected as a two-dimensional object on
the sky, it is convenient to speak of the luminos-
ity per unit surface area L(r), where r is the pro-
jected distance from the center of the elliptical.
Studies show that the light from most ellipticals
can be described well by a simple relationship
(known as de Vaucouleur’s law):

L(r) = 1(0)e” " (17.1)

In this expression L(0) and r, are constants. The
values of L(0) are found not to vary very much,
with a typical value of about 2 X 10° Lo/pc®. The
values of 1y, however, show a very large spread.

17.1.2 Spiral galaxies

Spirals make up about two-thirds of all bright
galaxies. They are subdivided into classes Sa, Sb
and Sc. The two important features of the classi-
fication are (1) the openness or tightness of the
winding of the spiral pattern, and (2) the relative
importance of the central bulge and the disk of
the galaxy. Sa galaxies have the largest bulges
and the most tightly wound arms. Sc galaxies
have the smallest bulges and the most open
arms. We think that the Milky Way is between Sb
and Sc. Different types of spirals are shown in
Fig. 17.3.

Some spirals have a bright bar running
through their center, out to the point where the
arms appear to start. These are called barred spi-
rals. Some examples are shown in Fig. 17.4. The
barred spirals are also subclassified into SBa, SBb
and SBc, according to the same criteria as Sa, Sb
and Sc. In general, the spiral pattern in barred
spirals is quite well defined.

When the spiral pattern is well defined, we
call the galaxy a grand design spiral. They have a
continuous pattern running throughout the
galaxy. Other spirals have a less organized appear-
ance. These are called flocculent spirals. A compari-
son is shown in Fig. 17.5.

It has been realized that spirals of the same
type can have different luminosities. This point
is important in trying to determine the distances

to galaxies that are so far away that we cannot
distinguish individual stars of HII regions. As sug-
gested by Sydney Van den Bergh, astronomers have
taken to adding a luminosity class to the spiral

(b)

FESEATE Various types of spiral galaxies. () NGC 7217, an
Sa galaxy. (b) The Andromeda Galaxy (M31), type Sb, one of

our nearest neighbors. It is at a distance of about 700 kpc, and
is more than 20 kpc across. Notice the two companions,
including M32.We think that it is very similar to our own Milky
Way.
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(Continued) (c) NGC 4622 in Centaurus, at a
distance of 60 Mpc. It is type Sab. (d) M101,in Ursa Major; at a
distance of 5 Mpc, type Sc. (e) A section of M101. Note the
spiral arms of collections of bright patches, probably Hll
regions and OB associations, with dust lanes superimposed.
(f) M33, in Triangulum, is type Sc. (g) NGC 1232 (Sc).
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SR FATE (Continued) (h) M83

(the Southern Pinwheel) in Hydra,
is 3 Mpc away, and is type Sc.

(i) M104, (Sab) the Sombrero
Galaxy, looks like a Mexican hat
viewed almost edge-on. This is an
edge-on spiral with a prominent
bulge.The dark lane is the collec-
tive extinction of dusty molecular
clouds in the disk. (j) The edge-on
spiral NGC 4565, in Coma
Berenices, is type Sb. [(a) Image
from the OSU Bright Spiral Galaxy
Survey; (b)—(f), (h), (j), (k) NOAO;
(®. ) ESO]

(h)

classification. This is done by adding a I through
V following the Hubble classification, with I
being the brightest (just as for stars). Efforts are
still underway to find other properties of spirals
that correlate with luminosity class. In this way,
the luminosity of a galaxy can be determined
without needing to know its distance. (Similarly,
the luminosity class of a star can be determined
from the shapes of certain spectral lines, allow-
ing us to know the absolute magnitude of a star
without knowing its distance.) Once the absolute

magnitude of a galaxy is known, and its apparent
magnitude is observed, its distance can be
determined.

An important feature of spirals is the obvious
presence of an interstellar medium — gas and
dust. Even when a spiral is seen edge-on, we can
tell that it is a spiral by the presence of a lane of
obscuring dust in the disk of the galaxy. The
light from spirals contains an important contri-
bution from a relatively small number of young
blue stars, suggesting that star formation is still
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m Grand design and flocculent spirals. (a) A grand

design galaxy, M8, type Sb. (b) A flocculent spiral, M94, also a
type Sb. [NOAO/AURA/NSF]

taking place in spirals. Where galaxies are found

in a cluster, to be discussed in Chapter 18,

approximately 80% of the galaxies are ellipticals.
Outside of clusters, approximately 80% are spi-

(b) ) . .

rals. Typical radii for the luminous part of the

m Various types of barred spirals. (2) NGC 1530,in | disk in spirals are about 10 to 30 kpc. Stellar

Cameleopardalis, is type SBb. (b) NGC 1365, in Fornax, type masses of the galaxies we can see range from 107
SBc. [(a) NOAO/AURA/NSF; (b) ESO] to 10" M
.
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Fig. 17.6. shows the distribution of tracers of
young stars in a selection of spirals. In studying
general trends, we can get a good idea of the dis-
tribution of young stars as we go farther out in
the disks of spiral galaxies. The luminosity of the
disk falls off sharply with r, the distance from the
center. We can approximately fit the observed
falloff with an exponential expression. That is, if
Ly is the luminosity at the center, the L(r), the
luminosity at radius r, is given by

L(t) = Ly e (17.2)

In this expression, D is called the luminosity
scale length and gives a measure of the character-
istic radius of the galaxy as seen in visible light.
Typical values of D are about 5 kpc. This means
that the luminosity of the disk of a spiral falls to
1/e of its peak value at r = 5 kpc.

Table 17.1. | Properties of spirals and
ellipticals.

Property Spirals Ellipticals
Gas yes some
Dust yes some
Young stars yes none
Shape flat round
Stellar motions  circular rotation  random
Color blue red

GRS VA HST images of six

spiral galaxies, showing regions of
star formation. These are false
color images made through three
separate filters. The red repre-
sents the Paschen line from H at
1.87 pwm. Blue shows near IR
emission (1.4 to 1.8 um ). Green
is a mixture of the two.
[STScI/NASA]

[7.1.3 Other types of galaxies

There is an additional type of galaxy that has cer-
tain features in common with spirals, but does
not show spiral arms. This type is called SO (‘S-
zero’) (Fig. 17.7). The bulge in an SO is almost as
large as the rest of the disk, giving the galaxy an
almost spherical appearance. Some SO galaxies
also contain gas and dust, suggesting that they
belong in the spiral classification. However, most

SRR MI02, type SO. [NOAO/AURA/NSF]
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(b)

GUALVE The Magellanic Clouds. (a) The Large Magellanic
Cloud (LMC) is 50 kpc from us. (b) The Small Magellanic
Cloud (SMC), which is 65 kpc from us. [NOAO/AURA/NSF]

S0 galaxies have no detectable gas. The role of SO
galaxies is still not well understood.

Some galaxies have no regular pattern in their
appearance. These are called irregular galaxies. The
Magellanic Clouds, shown in Fig. 17.8, are irregular
companions to our own galaxy. Irregulars make up a
few percent of all galaxies. We distinguish between
two types of irregulars: Irr I galaxies are resolved
into stars and nebulae; Irr II galaxies just have a
general amorphous appearance. Lenticular galaxies
have an irregular elongated structure. Ring galaxies
have prominent bright rings around their centers.

Peculiar galaxies have a general overall pattern,
but also have some irregular structure indicative
of unusual activity in the galaxy. An example is
shown in Fig. 17.9.

There are also types of galaxies that are char-
acterized by a very bright nucleus. Seyfert galaxies
are named after their discoverer Carl Seyfert, who

This galaxy, M82, is the scene of very unusual activ-
ity. At first it was thought that this galaxy was exploding.
However, it just seems to have undergone a rapid wave of star
formation. Galaxies like this are known as starburst galaxies, and
we will discuss them more in Chapter 19. [NOAO/AURA/NSF]

reported their existence in 1943. These are spiral
galaxies with a bright small nucleus. The spectra
show broad emission lines, an indication of a
very hot or energetic gas. Seyferts make up about
2 to 5% of all spiral galaxies. An example of a simi-
lar phenomenon in ellipticals is found in N galaxies
(where the N stands for ‘nucleus’). There is also a
class of galaxies that give off very strong radio
emission, radio galaxies. All of these active galaxies
will be discussed in Chapter 19.

17.2 | Star formation in galaxies

An important opportunity provided by other
galaxies is the opportunity to study star forma-
tion in a variety of environments. We can see how
various factors, such as the type of galaxy, its
metallicity, and the interstellar radiation field
within the galaxy, affect star formation. We dis-
cussed the basic idea of star formation in the
interstellar medium in Chapters 14-16. We would
like to apply the ideas we developed when study-
ing star formation in our galaxy to help us under-
stand other galaxies. In turn, our understanding
of other galaxies will help our analysis of our
galaxy. We can ask a number of questions about
star formation in galaxies.

(1) Does star formation take place in molecular
clouds, as it does in the Milky Way? If so, are
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the properties of those clouds similar to the
ones we find in our galaxy?

(2) What is the large-scale distribution of star-
forming material within the galaxy?

(3) What is the distribution of newly formed
stars?

(4) Does the mix of stellar masses (the initial
mass function) appear to vary from galaxy to
galaxy, or within galaxies?

(5) How does the star formation rate vary from
galaxy to galaxy and within galaxies?

To study molecular material, we still need to
observe trace constituents, such as CO, using mil-
limeter telescopes. For more distant galaxies,
angular resolution with single dishes is a limit-
ing factor, but millimeter interferometers are
becoming more powerful, and give much more
useful resolutions. To study hot cores and proto-
stars, near infrared observations are useful, and
angular resolution is not a serious problem. To
study recent sites of massive star formation, we
look for HII regions, either by their Hax emission
(through Ha filters), or by observing their radio
continuum emission, at centimeter wavelengths.
The latter requires interferometers for good
angular resolution.

[7.2.1 Star formation in the Large
Magellanic Cloud

The Magellanic Clouds (Fig. 17.8) are the closest
galaxies in which we can study star formation. At
the 50 kpc distance of the LMC, a 1 parsec extent,
subtends an angle of 4 arc sec. So the 20 arc sec res-
olution of typical millimeter telescopes corre-
sponds to a size of 5 pc. This is adequate for study-
ing giant molecular clouds with extents of tens of
parsecs (though ultimately arrays like ALMA, shown
in Fig. 4.32, will be needed to study small clouds
and cloud cores). The Swedish-ESO-Submillimetre
Telescope (SEST, Fig. 4.28b), placed in Chile, has been
particularly well suited to study the Magellanic
Clouds.

As Fig. 17.10 shows, the LMC is the site of many
HII regions. As we discussed in Chapter 15, this
implies the existence of recent massive (O and B)
star formation. Fig. 17.10(a) shows an optical image
of the brightest HII region in the LMC. Because of
its appearance, it is called the Tarantula Nebula.
The exciting star is 30 Dorado, and this is some-

s I e ! : NIT .'ﬁ_

30DOR-CENTER
& SOUTH

(b)

HIl regions in the LMC. (a) Optical image of the
Tarantula Nebula, 30 Dorado. (b) Image of the LMC, taken with
an Ha filter, shows the locations of the Hll regions.The two

rectangular boxes show the regions of detailed study in Fig.
17.11.[(a) STScl/NASA,; (b) Monica Rubio, University of Chile]

times referred to as the 30 Dor complex. An Ha
image of the whole LMC is shown in Fig. 17.10(b),
showing HII regions all over the LMC. We will look
in a little detail at the large dark cloud (visible in
Fig. 17.8b) that runs south from 30 Dor, and an iso-
lated HII region in the northeast corner of the
image, known as N11. Both of these regions are
indicated by the rectangular boxes on Fig. 17.10(b)

Maps of the CO emission from these regions
of detailed study are shown in Fig. 17.11, both by
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CO images (contours) of star forming regions in the LMC, with
observations done on the SEST, on La Silla, Chile. These are superimposed on FIR
images from IRAS (the gray scale). (a) The 30 Dor Complex. Notice the complex
3 of giant molecular clouds. More detailed maps show two dozen GMCs in this
complex, with properties very much like Milky Way GMCs. FIR peaks all have
associated strong CO emission, suggesting there are dense cores there. There are
also CO peaks away from FIR emission. Perhaps these are clouds that are not as
far along the star formation process. (b) The N 11 region. In this more open ring,
the individual clouds are more easily seen. HIRES refers to a type of image
processing, which enhances the angular resolution [author].
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themselves, and superimposed in the FIR images.
We first look at the 30 Dor complex (Fig. 17.11a).
The CO emission shows a complex of molecular
clouds that extend over part of an arc for about
600 pc. A more detailed picture shows that this is
composed of some two dozen clouds, each with
an extent of tens of parsecs, and each with a mass

(determined from the virial theorem) of a few
times 10°M,. These are very much like giant
molecular clouds, and this whole long dark cloud
is like a GMC complex in the Milky Way. The FIR
image shows a number of embedded regions
where dust is being heated by ongoing or recent
star formation, just as for massive star forming
regions in the Milky Way. It appears that the
Tarantula Nebula is at the northern end of this
complex, and is in a region where there are more
young stars, but less molecular clouds. It has
been suggested that this is a site of sequential
star formation, also similar to situations found in
the Milky Way.

The N11 region, Fig. 17.11(b), has a more open
appearance, so it is easier to see the structure.
Here we see a ring of clouds (with an extension to
the northwest). These clouds also look like Milky
Way GMCs, and they also have masses of a few
times 10°> M. All of these clouds have internal
velocity dispersions comparable to Milky Way
GMCs. This grouping has a similar appearance to
the Orion region (partly shown in Fig. 15.4). So, it
appears that star forming regions in the LMC are
very similar to those in the Milky Way, despite the
many differences between the LMC and the Milky
Way.

17.2.2 Star formation in spiral galaxies

When we look at the various images of spirals
(Fig. 17.3), we see that the spiral arms are traced
by strings of bright HII regions. This suggests that
the spiral arms are sites of enhanced massive star
formation. We would like to apply the ideas we
developed when studying star formation in our
galaxy to help us understand other spiral galax-
ies. In turn, our understanding of other galaxies
will help our analysis of our galaxy. We can ask a
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21 cm map of the Andromeda Galaxy, M31,
made using the Westerbork interferometer in the

Netherlands. [Elias Brinks, Sterre wacht, Leiden University]

number of questions about star formation in spri-
ral galaxies.

(1) What is the large-scale distribution of star form-
ing material? How does it vary in the disk with
distance from the center? How does it vary with
distance from the central plane of the disk?

(2) Is the interstellar medium concentrated into
the spiral arms?

(3) How do the sizes of molecular clouds compare
with those in our galaxy? Are the physical
conditions within the star forming clouds the
same?

In studying the interstellar medium of our
galaxy, or any other, radio observations play an
important role. Except for the nearest galaxies,
single-dish radio observations do not provide
much spatial detail. However, with the extensive
use of interferometers we have now obtained very
detailed maps of many galaxies. Continuum
observations can be used to study the positions of
HII regions and young supernova remnants, both
signs of relatively recent star formation. Studies
of spiral structure have been limited by poor
angular resolution for single-dish studies.
However, sufficient resolution is available to
study nearby galaxies.

M31 is the nearest spiral, so it provides the
best opportunity for studying the interstellar
medium in detail. At 700 kpc distance, 1 arc sec
corresponds to a linear size of 3 pc, so a 100 pc
long giant molecular cloud would subtend an
angle of 30 arc sec. This corresponds to the reso-
lution of typical single-dish millimeter tele-
scopes. To study the large-scale distribution of
molecular material, we could use single-dish
observations, but to study individual clouds we
have to use millimeter arrays. To study the HI, sin-
gle-dish observations at 21 cm do not give suffi-
cient resolution, so we must use arrays.

Fig. 17.12. shows an interferometer map of the
large-scale distribution of HI in M31. The large-
scale molecular distribution is shown in a single-
dish CO map in Fig. 17.13. One of the problems in
studying the spiral structure in M31 is that it is
tilted so it is hard to trace accurately the spiral
arms as they would appear if we were looking
from overhead. The large-scale distribution of
star forming regions in M31 is shown by the FIR
image in Fig. 17.14.

The single-dish CO observations of spirals
reveal a sharp falloff in brightness with radius,
similar to that of the visible light. The falloff in
CO emission may indicate the true gas distribu-
tion. However, it may be due to the fact that the
gas cools, and therefore radiates less strongly
where there are fewer stars to heat it. There may
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Large-scale distribution of CO emission in the
galaxy M31.This map was made using a | m diameter tele-
scope at the Center for Astrophysics (Harvard). [Thomas
Dame, CFA/Dame,T. et al,, Astrophys. J., 418, 730, 1993, Fig. 1 (a)]

also be significant amounts of molecular gas in
the outer parts of spiral galaxies.

In studies of several spirals it is found that the
relative amounts of molecular and atomic hydro-
gen vary significantly. These variations occur both

GESRAER  IRAS map of M31. [NASA]

within a galaxy and from galaxy to galaxy. Within
a galaxy, the general trend is to have the molecu-
lar hydrogen abundance fall off faster with radius
than the atomic hydrogen abundance. We find
some galaxies in which the molecular hydrogen
makes up over half of the interstellar medium, and
others in which it seems to be less than 10%, as
determined from a deficiency of CO emission. In
galaxies that seem to be deficient in molecular
hydrogen, we still don’t have observations with
sufficient resolution to tell us whether this is
because they contain fewer molecular clouds than
the other galaxies, or whether the clouds are less
dense. Also, even galaxies that appear to be defi-
cient in molecular clouds have O stars. This tells
us that we still do not fully understand the con-
nection between molecular clouds and massive
star formation.

|7.3 | Explanations of spiral

structure

It is actually quite surprising that we see any spi-
ral structure in galaxies. The differential rotation
of a galaxy should smear out any pattern on a
time scale comparable to the orbital period. For
the Sun, the orbit period is about 200 million
years. We think that the age of the galaxy is about
10 billion years. This means that any initial spiral
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(a) (b)

© ©

(© (d

SEPAIE Scenario for temporary spiral structure. (a) The
dark area is the center of the galaxy, and the arrows indicate

the orbital speeds of material at different distances from the
center. (b) A large-scale burst of star formation takes place.
(c) The differential rotation stretches the stars out, producing
part of a spiral arm. (d) After a few rotations the arm is
stretched out so much that we can no longer detect its
presence.

pattern would have had ample time to smear out.
Therefore, spiral arms must be temporary, or
there must be a way of perpetuating them.

A scenario for temporary arm formation is
shown in Fig. 17.15. For one reason or another, star
formation starts in one region. It may even spread
via some of the triggering mechanisms discussed
in Chapter 15. The region with new stars is then
stretched out by the differential rotation into a
piece of a spiral pattern. This may explain why we
see pieces of spiral features but no complete arms
in our galaxy. In this scenario each ‘arm’ lives for
a short time, and new ones are always forming.

If spiral patterns persist for many revolutions
of a galaxy, then it may be that the pattern and
the matter itself are moving at different speeds.
At first this may seem strange, but we can use an
analogy to see how it might work (Fig. 17.16).
Suppose we have cars moving along a two-lane
highway, and we are looking from above, in a traf-
fic helicopter. A truck breaks down in the right
lane, causing a traffic jam. If we look from above,
we see cars backed up for some distance behind
the truck. The density of cars is higher for this
region. Far behind the truck, the cars are still
moving at their normal speed, and after the cars
squeeze past the truck, they will resume their
normal speed. If we come back a few minutes
later, we will see the same pattern of cars.
However, the specific cars involved in the buildup
will be different. The cars that we saw originally
will be far down the road. In this case, the cars are
moving along, but the pattern stays in the same
place because the truck stays in the same place.

m Car analogy to density wave.

(2) A truck (shaded) is broken down in the

right lane. Far in front and behind the truck,
cars have the normal speed and low density.
Just behind the truck, the density of cars

(a) goes up, and their speed goes down. (b) As
time goes on, cars slowly squeeze by the
truck. The basic pattern is retained. However,

@ as the numbers on the cars show, different
cars are stuck behind the truck than in the
earlier frame.We therefore have a density

(b) concentration along the highway while the
individual cars are not permanently attached
to the concentration. (c) This concentration

CAR SPEED
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@ can even move. Instead of being stuck,
suppose the truck is moving slowly. The
pattern moves along with the truck, while

(©) the individual cars move at higher speeds.
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Now suppose the truck is moving at a slow
speed. Again, there will be a buildup behind the
truck as cars squeeze into one lane to move past
the truck. As in the case of the stationary truck,
we see the cars moving at their normal speed.
However, now the pattern moves. The speed of
the pattern is not related to the speed of the
cars — it is determined by the speed of the truck.
The truck is responsible for the pattern. The cars
simply respond to the presence of the truck. This
is the type of situation in which the pattern (the
traffic jam) can move at one speed, and the mat-
ter (the cars) at another.

There is a theory that the same type of situa-
tion can occur in spiral galaxies. Since the matter
moves at a different speed from a density
buildup, the theory is called the density wave
theory. In a galaxy, the dynamics is controlled by
the halo, which contains most of the mass. The
bright spiral arms contain a small fraction of the
mass of the galaxy, and represent material which
is orbiting at its normal speed, but responding to
the gravitational effects of the asymmetric distri-
bution of the stars in the halo. The mathemati-
cian C. C. Lin has shown that once a spiral pattern
is established in a galaxy, it can sustain itself for
a long time in this type of wave. Eventually, the
wave will die out and a new one must be
generated.

In the density wave picture, the visible arms
are a result of a gathering of interstellar matter.
When high enough densities are reached, star
formation may take place. One scenario for this is
illustrated in Fig. 17.17. A large HI cloud, or a
group of small clouds, approaches an arm at a
speed of about 100 km/s relative to the arm. (In
this case, the arm may be moving at 100 km/s,
and the matter overtaking it at 200 km/s.) The
arm acts like a gravitational potential well, caus-
ing material to take more time to traverse the
arm than a similar distance between arms. The
matter entering an arm will leave its circular
path, and have some motion along the arm,
before finally emerging. It should be noted that,
even if the density waves don’t cause strong
visible arms, they alter the orbits, resulting in
noncircular motions. Some of the results of criti-
cal calculations of density waves are shown in
Fig. 17.18.

_ @ — —>
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Stars Dissipation
HI Cloud
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Small Molecular H,H
Clouds Regions

GUEHARAS Scenario for molecular clouds tracing spiral

arms. If the gas is circulating faster than the spiral pattern, as
with the density wave picture, the gas can overtake the spiral
arms from behind. Before reaching the arms, the gas is in the
form of low density HI cloud, possibly containing some small
molecular clouds.The entry into the arm slows the HI
clouds down and compresses them. It may also gather
together small molecular clouds. In any event, giant molecular
clouds form.These clouds give birth to O and B stars (as
well as to all the other types).The radiation from the O and

B stars disrupts the clouds.

As the front of the cloud enters the arm, it
slows down. The only way for the back of the
cloud to know that this has happened is for a
pressure wave (sound wave) to travel from the
front of the cloud to the back. However, the speed
of the cloud is greatly in excess of the speed of
sound within the cloud (a few kilometers per sec-
ond). The back of the cloud doesn’t receive the
message to slow down until it has almost over-
taken the front. The cloud has been compressed.
(This may also gather small molecular clouds into
giant molecular clouds.) At this point, we see the
cloud as part of a dust lane, explaining why dust
lanes appear at the back of spiral arms. Since the
cloud has been compressed, star formation is ini-
tiated. Massive (as well as low mass) star forma-
tion takes place. The bright stars don’t live very
long, so we see them only over a small range,
forming the bright chains that mark the fronts of
the arms.

The massive stars also have the effect of driv-
ing the clouds apart. This can be through the
effect of stellar winds, expanding HII regions, and
supernova explosions. The clouds dissipate. The
material again resembles that which originally
entered the back of the arm. It remains this way
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S AL The results of
theoretical calculations
demonstrating the ability of galaxies
to amplify small perturbations into
a well defined spiral pattern. [Alar
Toomre, MIT]

until it overtakes the next arm. According to this
picture, giant molecular clouds should be seen
almost exclusively in spiral arms. It is a good
observational test of the theory, but, as we have
seen, the limited angular resolution of single
dishes makes these observations difficult.

We have already seen that spirals seem to fall
into two categories: grand design and flocculent.
It may be that the underlying cause of the two
types of spiral structure is different. One observa-
tion to support this is that grand design spirals
seem to occur in galaxies with internal bars or
with nearby neighbors. It is suspected that
the tidal interactions between the galaxy and the
neighbors set up the spiral density wave in the
mass distribution of the galaxy. As the gas
streams through the density wave, it is com-
pressed into giant molecular clouds, which give
birth to stars and then dissipate, as shown in Fig.
17.17. In flocculent spirals, the spiral structure
may be a series of temporary patterns, in which
the results of local bursts of star formation are
drawn into a spiral by the differential rotation of
the galaxy.

The density wave theory seems to be best

applied to grand design galaxies. We will briefly
look at one that has been studied in detail, M51 m Optical image of the Whirlpool Galaxy, M5,
(the ‘Whirlpool’). This is shown in Fig. 17.19. In 9:6 Mpc distant [NOAG/AURA/NSF].
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Doppler

M51 we can see clearly the location of the dust
lanes with respect to the bright arms. The lanes
are on the inside edges of the bright arms.
Remember, in the density wave picture, the inter-
stellar gas is swept up, forming giant molecular
clouds. These giant molecular clouds are visible
as the dust patches. Eventually, these clouds give
birth to O stars, which illuminate HII regions.
The O stars and HII regions trace out bright arms.
The density wave picture therefore makes a spe-
cific prediction of the relative positions of the
dust and bright arms. Radio continuum maps of
M51 show that the synchrotron emission is
strongest in the direction of the dust lanes. At
first we might expect the synchrotron emission
to be strongest where there are the most super-
novae, on the bright side of the arm. However, the
compression of the interstellar medium on the
dark dust side of the arms produces relatively
strong magnetic fields, and the synchrotron
emission becomes stronger when the magnetic
field strengthens.

Fig. 17.20. shows the results of a detailed
study of the spiral structure made by Stuart
Vogel (University of Maryland). One of the fea-
tures that we see is that the CO emission comes
from the inside of the arms, consistent with the
predictions of density wave theory. Also note

Gas Flow m Tracers of the spiral
pattern in M51."Visible’ is R band
taken at Mt Palomar.‘IR’ is K
band, taken at Kitt Peak.‘Doppler’
is Ha velocities, taken at Mt
Palomar. ‘Gas Flow’ are the resid-
ual velocities from ‘Doppler’ with
the average rotation taken out.
This gives the streaming motions.
‘Molecular Gas’ is CO emission
from BIMA.‘Atomic Gas’ is HI
emission with the VLA. ‘lonized
Gas’ is Ha from Kitt Peak.
‘Combined Gas’ is HI in blue, Ha
in green and CO in red, to com-
pare the locations of these com-
ponents. [Stuart Vogel, University
of Maryland; HI emission, Arnold
Rots, CFA]

that the molecular gas dominates the inner disk
and the atomic gas dominates the outer part of
the disk.

The face-on appearance of M51 means that we
can easily see the relative placement of features.
However, we have very little velocity information,
since all of the galactic rotation is perpendicular
to our line of sight. We see that the largest
Doppler shifts are in edge-on spirals, but we can-
not make out any spatial structure from their
edge-on appearance. Studies of more inclined
spirals, such as M81, shown in Fig. 17.5(a), have
been useful in testing velocity shift predictions of
the density wave theory.

|74 | Dark matter in galaxies

When we look at a galaxy in visible light we obvi-
ously see the most luminous objects. However,
some of the mass may not be luminous. It could
be there but hard to detect. The only sure way to
trace out the total mass, whether it is bright or
dark, is to study its gravitational effects. In a
galaxy, the easiest way to study the gravitational
forces is to measure the rotation curve. We have
already discussed the rotation curve in our galaxy
in Chapter 16.
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that v(r) stays roughly constant out as far as we
see luminous material. This immediately tells us
that the mass doesn’t fall off as fast as the lumi-
nosity. The masses that are found are as high as
2 X 10"*M,. In many galaxies, no edge has yet
been found. The rotation curves are still flat out
to radii where the interstellar medium can no
longer be detected, even using 21 cm observa-
tions, which show material farther out than the
Ha emission.

Where can this matter reside? One possibility
is that it is part of the disk. However, theoretical
models show that such a large mass would gather
the disk into a bar. The disks that we see would

GBS (a) Vera Rubin.

(b) Rotation velocity as a function
of distance from the center of a
galaxy, for five spiral galaxies. The
fact that the rotation velocity is
large at great distances from the
center of the galaxy is taken as
evidence for the existence of dark

®
i~

—
—
e

matter. [Vera Rubin, Department
of Terrestrial Magnetism; (b)
Reprinted with permission from
Rubin,V,, Science, 220, 1339,
Fig.| © (1983) AAAS.]

VELOCITY IN PLANE OF GALAXY (KM S7")

Rotation curves can be determined from the
measurement of Doppler shifts in spectral lines.
This can be done with optical lines, such as Ha.
Extensive studies have been carried out by Vera
Rubin (Fig. 17.21 a), at the Carnegie Institution.
Typical results are shown in Fig. 17.21 (b). We find

10 20 30 40 50 7 100
DISTANCE FROM NUCLEUS (kpc)

(b)

not be stable. The galaxies are more stable if the
dark mass has a spherical distribution. This
would mean that the dark matter is most likely in
the halo. Remember, the halo is not a ring
around the galaxy. It is a spherically symmetric
mass distribution.
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We can use the rotation curve to give us the
mass distribution in the halo. If M(r) is the mass
interior to radius r, then v(r) is related to it by the
fact that the acceleration of gravity must provide
the acceleration for a circular orbit (v?[r), so
GM(r)  v¥(r)

r

Solving for M(r) gives

(17.3)

We can relate M(r) to the density distribution
p(r) by the equation of mass continuity (equation
9.33), which was one of the equations of stellar
structure:

dM/dr = 4mr?p(r) (17.4)
Solving for p(r) gives

dMm
= (1)(0)

If we take v(r) = v, a constant, then differen-
tiating equation (17.3) with respect to r gives
dMm(r) v

ar G

(17.6)
Finally, substituting equation (17.6) into equation
(17.5) gives

vo
4mGr?

p(r) (17.7)

The density in the halo therefore falls off as
1/r?. It is not nearly as fast as the exponential
falloff in the light of the disk.

With a 1/r? falloff in density, it might seem
that there is not much matter very far out.
However, if we divide the galaxy into spherical
shells, each of thickness dr, the volume of each
shell is 47rr*dr. This means that the mass of each
shell is constant! As far out as the rotation curve
remains flat, we are adding significant amounts
of matter to the galaxy. This is particularly impor-
tant, since the rotation curves seem flat as far out
as we can measure. [t may also be that there is still
a significant amount of matter beyond those
points.

What is the dark matter in the halo? We can
get a clue by looking at mass-to-light ratios of various

objects. This is the ratio of mass, expressed in
solar masses, to the luminosity, expressed in
solar luminosities. By definition, the mass-to-
light ratio of the Sun is one. The mass-to-light
ratios of main sequence stars are given in the
mass-luminosity relationship discussed in
Section 5.5. If we know the mass-to-light ratio of a
galaxy, we can see what types of objects have
similar mass-to-light ratios. For spiral galaxies,
the mass-to-light ratio is 1:3 near the center. This
means that most of the mass near the center
probably comes from normal stars. However, near
the edge of the visible disk, the ratio climbs to
20:1, and is above 100:1 for the farthest points to
which rotation curves have been measured.

It has been suggested that the halos might
consist of faint, old red stars. These stars would
have masses less than 1Mg. There is even some
direct observational evidence for such stars in
the halos of nearby galaxies. The mass-to-light
ratio of such stars is about 20:1. They might
therefore provide the dark matter out to the edge
of the visible disk, but something else is needed
beyond that. More recent observations seem to
rule out all nuclear burning material as a signif-
icant part of the halo. Some astronomers have
suggested that a lot of mass could be hidden in
Jupiter-sized objects, which are obviously not very
luminous.

Recently a new technique has been employed
to search for massive compact halo objects (MACHOs) .
If these objects are massive and small then they
should bend starlight passing close to their sur-
face. The bending of light is a prediction of gen-
eral relativity, as discussed in Chapter 8. When a
MACHO passes in front of a star in another
nearby galaxy (such as the LMC) there will be a
very brief change in the intensity of that light.
This is known as microlensing. Systematic searches
for microlensing events have been carried out.
There have been some detections of such events,
in which light from stars in the LMC shows varia-
tions suggestive of microlensing. However, there
is still a question about whether we are seeing
microlensing due to a star in the halo of our
galaxy, or due to one near the target star in the
LMC. (The LMC is used for such studies because it
provides us with a large number of stars to study,
and it is far from our galactic plane, so, if we see
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lensing events, it is more likely that they are
caused by objects in the halo of our galaxy, than
the disk.)

It has been suggested that the dark matter
could be in the form of neutrinos, if neutrinos
have a small rest mass. Remember, we saw in
Chapter 9 that there is growing evidence that the
neutrino mass is in about the 10~ 2 eV range This
is small enough to have been overlooked in
previous experiments. However, there are so
many neutrinos in the universe that even a small
mass for each neutrino can add a lot of mass to a

galaxy. The idea of neutrinos as dark matter in
galaxies is still not generally accepted.

The rotation curves of galaxies are our first
evidence for the existence of dark matter. We
know it is there because we can measure its
gravitational effects, but we cannot see it. When
astronomers were not sure the matter was there,
there was a ‘missing mass problem’. However, the
mass isn’t missing; it is just nonluminous. As we
go to larger scales in the universe, we will see
that we will find evidence that dark matter
becomes more and more important.

Chapter summary

In this chapter we looked at the properties of
various types of galaxies.

Elliptical galaxies have no evidence for recent
star formation. However, the metal abundances
are high. Ellipticals are classified according to
the eccentricity of their appearance. Spirals have
an evident interstellar medium, as well as O and
B stars, meaning that star formation is still tak-
ing place. Spirals are classified according to the
tightness of the spiral arms and the relative sizes
of the nucleus and disk.

Questions

We applied some of the ideas of star forma-
tion, discussed in previous chapters, to look at
star formation in the LMC and in spirals. We also
looked at how the density wave theory might
explain spiral structure.

In studying rotation curves of galaxies we
found that the masses of galaxies are greater
than would be determined from luminous mate-
rial. It has been suggested that most of the
matter is distributed in a spherically symmetric
halo.

17.1.1f we see a spiral galaxy edge-on, how do we
know that it is a spiral?

17.2.(a) Why is it not likely that single spirals
formed from single ellipticals? (b) Why is it
not likely that ellipticals formed from spirals?
(Hint: Think of the effects of rotation.)

17.3.Compare the properties of dwarf ellipticals
with the properties of globular clusters in our
own galaxy.

17.4.What features of SO galaxies make them
similar to (a) spirals, (b) ellipticals?

17.5.Assume there is some way, either by
spectroscopy or by some aspect of the shape
of the galaxy, to determine the luminosity
class for a galaxy. How can this information
be used, along with other observations, to
determine the distance to a galaxy?

17.6.How do the relative abundances of atomic
and molecular hydrogen vary within a spiral
galaxy?
17.7.What parts of the interstellar medium would
you expect to best trace out spiral arms?
Explain your answer.
17.8.What are the differences between grand design
and flocculent spiral galaxies (a) in their
appearance and (b) in the scenario by which
the spiral arms are formed and maintained?
*17.9.1n equation (17.4) we used the relationship
between mass and density for a spherically
symmetric system. However, spiral galaxies
have a disklike appearance. Why is the use of
equation (17.4) valid?
17.10.How does the density wave theory help us
explain spiral structure?
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Problems

17.1. Given the luminosity profile in equation
(17.1), what would the luminosity be at

(@) r = 1o, (b) 212

Given the luminosity profile in equation (17.2),
what is the luminosity at (a) r = D, (b) r = 2 D?
(Express your answer in terms of L.)

Given the luminosity profile in equation
(17.2), for a given galaxy how far out would
you have to go before you have 95% of the
galactic luminosity? Express your answer as
a multiple of D.

Given the luminosity profile in equation
(17.2) and the density profile in equation
(17.7), find an expression for the mass-to-
light ratio as a function of distance from the
center of the galaxy r. Assume that the ratio
is unity at r = D.

The Andromeda Galaxy is at a distance of
700 kpc. (a) Suppose we observe the CO(2-1)
transition at a wavelength of 1.3 mm, with a
30 m diameter telescope. What is the linear
resolution?

(b) Suppose we use a millimeter interfero-
meter with a maximum baseline of 1 km?
(c) Repeat these calculations for the
Whirlpool Galaxy, at a distance of 9.6 Mpc.

17.2.

17.3.

17.4.

17.5.

Computer problems

17.6. Suppose we are observing a galaxy to meas-
ure its rotation curve. By how much would
the wavelength of the 21 cm line shift as we
moved from the center to the edge of the
galaxy, which has an orbital speed of 200 km/s
(a) if we are in the plane of the galaxy, (b) if
the galaxy is tilted at a 45° angle to our line
of sight?
If we measure the rotation curve of a galaxy,
how far out would the orbital speed have to
be 300 km/s, to give the largest measured
mass, 2 X 102M?
For a galaxy, with a flat rotation curve, whose
density distribution is given by equation (17.7)
out to a radius of 20 kpc, calculate (leaving
your answer in terms of v,) (a) the total mass
out to 20 kpc, (b) the gravitational potential
energy, (c) the rotational kinetic energy.
(d) Compare (b) and (c) and note if they obey
the virial theorem.
Calculate the mass of a galaxy with a flat
rotation curve, with v = 300 km/s, out to
r = 20 kpc. (Express your answer in M)
17.10. If neutrinos have a rest mass equal to 10 * of
the electron rest mass, how many neutrinos
do you need to give 10*M?

17.7.

17.8.

17.9.

17.1. Use the mass-luminosity relationship discussed
in Chapter 5 to draw a graph of the mass-to-light

ratio for main sequence stars as a function of

spectral type.

Draw a graph of the luminosity profile, L(r)/L(0) vs.
r, for elliptical galaxies (equation 17.1), for vy = 5,
10, 20 kpc.

17.2.

17.3. Draw a graph of the luminosity profile, L(r)/Lo vs. 1,
for spiral galaxies (equation 17.2), for D = 2.5, 5,
10 kpc.

17.4. Use the rotation curves in Fig. 17.21(b) to deter-
mine the mass interior to the largest radius out to
which the rotation curve has been measured.
(Express your answer in Mg,.)



Chapter 8

Clusters of galaxies

18.1 | Distribution of galaxies

If we look at the distribution of galaxies, such as
that shown in Fig. 18.1, we see that the galaxies
are not randomly arranged on the sky. Among the
patterns we see distinct groupings, called clusters
of galaxies.

Clusters are interesting for a number of rea-
sons. They may provide us with clues on the for-
mation of galaxies themselves. This is especially
true if, as many think, cluster-sized objects formed
first and then broke into galaxy-sized objects. (The
alternative view is that galaxies formed first and
then gathered into clusters.) Clusters also pose us
with interesting dynamical problems, including a
dark matter problem of their own. Finally, when
we reach the scale of clusters of galaxies, we are
beginning to reach a scale which has some signifi-
cance in the overall structure of the universe.

The cluster of galaxies to which the Milky Way
belongs is called the Local Group. As clusters go, it
is not a very rich one. Besides the Milky Way, it
contains several irregulars, including our com-
panions, the Large and Small Magellanic Clouds,
the spiral galaxies M31 and M33, and a number of
dwarf ellipticals. Other nearby clusters are
named by the constellation in which they are
centered. For example the Virgo, Coma, Hercules
and Centaurus clusters are shown in Fig. 18.2.

18.2 | Cluster dynamics

Just as with clusters of stars, clusters of galaxies
may be isolated collections of masses interacting

gravitationally. As such, they are interesting sys-
tems to understand. In addition, by studying the
gravitational interactions, we learn about the
masses of the individual galaxies and the cluster
as a whole. It has been found that the number of
galaxies per unit area in a cluster falls off approx-
imately as exp[—(rro)*/*]. This is the same as the
surface brightness in elliptical galaxies. We know
that ellipticals are dynamically relaxed systems.
If clusters and ellipticals have similar density dis-
tributions, then this suggests that some of the
clusters are dynamically relaxed also.

Example 18.1 Crossing time for a cluster of
galaxies

The time for a galaxy to cross from one side of a
cluster to the other is called the crossing time. Find
the crossing time for a cluster of galaxies with an
extent of 1 Mpc, and galaxies moving at 10° km/s.

SOLUTION
The time for a galaxy to cross is the diameter
divided by the speed, so

teross = (10° pc)(3 X 10 cm/pc)/(10% cm/s)
= 3 X 10%s
= 1x10°yr

We think that clusters of galaxies have been
around for over 10'° years (the age of our galaxy as
determined from globular cluster HR diagrams). If
they were not gravitationally bound they would
have had many crossing times to evaporate. We
therefore think that clusters are gravitationally
bound. They have also had sufficient time to
become relaxed, so we can apply the virial theo-
rem to analyze their internal motions (Fig. 18.3).
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SESER Y Distribution of galax-

ies. This is a two-dimensional view
as seen from the Earth. It is from
the APM Galaxy Survey, which
detected over two million galaxies,
covering approximately one-tenth
of the whole sky. This image cov-
ers a region of about 100° X 50°
about the South Galactic Pole. The
intensities of each pixel are scaled
by the number of galaxies in that
pixel. [Steven Maddox, Nottingham
University]

In terms of the internal motions, the virial Example 18.2 Virial mass of cluster

mass is given by equation (13.47): For the Coma cluster we have v,,; = 860 km/s and

5\ WA R a cluster radius of 6.1 Mpc. Find the virial mass of
M= (*) the cluster.

3 G

In terms of observed Doppler shifts, the virial ~SOLUTION
mass is given by equation (13.52) From equation (18.1) we have
5 WA R M= (5)(8.6 X 10" cm/s)* (6.1 Mpc)(3.1 X 10** cm/Mpc)
TG (18.1) h (6.67 X 108 dyn cm?*/g?)
= 1X10¥g

5 X 10" My

(b)

SR EY Nearby clusters of galaxies. (a) Virgo. This is a
rich cluster, with a few thousand members, but it is not very

strongly concentrated towards the center. (b) Coma

Berenices. This cluster contains more than 1000 galaxies,

with a large number of types E and SO.
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TS PR (Continued) (c) Hercules. This is a small irregular

cluster at a distance of 120 Mpc. (d) Centaurus, in the
southern hemisphere. [NOAO/AURA/NSF]

When we add up all the mass that we can see
in the cluster, we find that it does not add up to
the amount required by the virial theorem. This
was originally done by using just the mass of the
luminous matter in the galaxies. However, we saw
in Chapter 17 that the halos of galaxies may con-
tain dark matter. Even if we don’t know what that
dark matter is, we know it is there, and can add
its mass to that of the luminous matter in each
galaxy. However, clusters have many ellipticals
and SO galaxies which may not have massive

Motion of Cluster
—_—

Motion of

Net Motion
Galaxy within NQ of Galaxy
Cluster \
© —-
B Motions of a galaxy in a cluster. The blue arrow
shows the overall motion of the cluster. The green arrows

show the motions of the galaxies within the cluster. The net
motion for each galaxy (shown in red) is the vector sum of
its internal motion with the overall motion of the cluster.

(d)

halos. We should only add the dark matter that
we know is there, so we only add enough to
account for the observed rotation curves in dif-
ferent types of galaxies. (We suspect that there
may be more dark matter beyond the points
where the rotation curves have been measured,
because there is no evidence of the rotational
velocities beginning to fall off.) Even this amount
of dark matter is not enough to account for the
virial mass.

Some of the mass may be in the form of low
density gas within the cluster, but between the
galaxies. This gas has either been ejected from
the galaxies, or has fallen into the cluster. In
either case, we would expect this gas to be very
hot, about 107 K. It should be hot enough to give
off faint X-ray emission. In fact, such emission is
observed. In Figs. 18.4 and 18.5, we see X-ray
images of two clusters. The hot gas contributes a
significant amount of mass, but doesn’t com-
pletely solve the problem.

There are still two possible solutions. One is
that the individual galaxies have, as some have
suspected, halos that go out even farther than
the rotation curves can be measured. There is evi-
dence to support this in studies of the interac-
tions of binary galaxies. The advantage of a
binary galaxy over the rotation curve studies is
that the galaxies in a binary system are far
enough apart to sample the full mass of each
other. The other possibility is that the clusters
contain their own dark matter. This matter may



338

PART V  THE UNIVERSE AT LARGE

Virgo Cluster
0.5-2.0 keV

1 Degree

ST A ROSAT X-ray image of the Virgo cluster (Fig. 18.2a)

shows the hot intracluster, intergalactic gas. [NASA/MPI]

be the same as that in the halos of galaxies, but
there just may be additional amounts in the clus-
ter, not bound to any one galaxy. If a rich cluster
has the mass implied by the virial theorem, then
the mass-to-light ratio is about 200. This would
be consistent with either the extended halos in

(Fig. 18.2d), showing more detail in the hot gas [NASA].

FESERT Chandra X-ray image of the Centaurus cluster

Luminous Matter
Dark Matter

Possible distribution of dark matter in a cluster
of galaxies. Each blue patch indicates the position of lumi-
nous matter within the cluster. The red areas indicate the
locations of the dark matter. The darker the areas are, the

greater the concentration of dark matter.

individual galaxies or the generally distributed
dark matter. A possible distribution of dark mat-
ter in a cluster of galaxies is shown schematically
in Fig. 18.6.

Another interesting feature about clusters of
galaxies is that giant elliptical galaxies are
found near the centers of some clusters (such as
M87, in Fig. 17.2a). These galaxies are central dom-
inant or ¢D galaxies. Some cD galaxies also seem
to have multiple nuclei. It has been noted that
the center of a cluster is the most likely place for
galaxies to pass near each other. Some galaxy col-
lisions result in galaxy mergers. Once a few
galaxies have merged, they can swallow galaxies
that pass too close. The process is called galactic
cannibalism.

The whole subject of galaxy encounters is
under active study. Numerical simulations have
been carried out to find out what happens to the
stars and gas in each of the two colliding galaxies,
both for very close encounters and for direct col-
lisions. The result of one such calculation is
shown in Fig. 18.7. Some examples of interacting
galaxies are shown in Fig. 18.8. As you can see, the
calculations produce results that look like objects
that are actually observed.
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B A Interacting galaxies. Steps in the computer simu-

lation. (a) The galaxies are far apart. (b) They are closer
together; and the effects of the interaction are showing.
Note that the tidal effects, tending to stretch the structures,
are very important. In encounters, individual stars never
actually touch. [Visualization by Frank Summers (STScl);
simulation by Chris Mihos (Case Western Reserve

University) and Lars Hemquist (Harvard University)]

18.3 | Expansion of the universe

18.3.1 Hubble’s law

In Hubble’s study of galaxies, he found that all
galaxies have redshifted spectral lines. The red-
shift means that they are all moving away from
us. Furthermore, the rate at which any galaxy is
receding from us is proportional to its distance
from us. We can write this in the simple form:

v=Hyd (18.2)

SRS ERE Observations of interacting galaxies. (a) A pair of
galaxies, NGC 4038 and 4039, which have an appearance sim-

ilar to the simulation. Because of their appearance, these are
called ‘The Antennae’. (b) HST image of the nucleus of the
elliptical galaxy NGC 1316.There is an unusually large number
of bright young clusters in this image, suggesting that they were
formed in some encounter with another galaxy. [STScl/NASA]

where v is the speed of the galaxy, d is the dis-
tance, and Hy is a constant, called the Hubble con-
stant. (The subscript zero on the H indicates that
this is the current value. As we will see in Chapter
20, H is constant in the sense that it is the same
at every place, but can change with time.) The
relationship given by equation (18.2) is called
Hubble’s law. Results of more recent studies are
shown in Fig. 18.9.
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SRR A Hubble’s law. The distance is plotted on the ver-
tical axis, and the radial velocity (from the redshift) is plotted
on the horizontal axis. This is the result of the HST Key
Project to study Hubble’s law, and data using different dis-
tance indicators are shown with different colored symbols.
The labelled lines show lines corresponding to different
values of H. [John Huchra, CFA]

At first it might seem unusual that we are in
some special part of the universe, so that all things
are moving away from us in a very particular way.
However, we interpret Hubble’s law as telling us
that all galaxies are moving away from each other.
This motion represents the overall expansion of
the universe. (We will discuss this in more detail
in Chapter 20.) To visualize this, we can imagine
the galaxies as dots on the surface of a balloon, as
shown in Fig. 18.10. As the balloon is blown up, all
the dots move away from all the other dots. In
Fig. 18.11, we see that the separations between
any pair of galaxies increases, and that the larger
separations increase faster. This means that we
could observe from any of the galaxies, and we
would still obtain Hubble’s law.

Suppose that in some time At, the balloon
expands so that all distances are multiplied by a
factor (1 +f). If two objects were initially a dis-
tance d apart, their distance at the end of the
interval is (1 + f)d. The change in the distance
between the two objects is fd, so the average rela-
tive velocity of the two objects is fd/At. This is the
same form as Hubble’s law.

Suppose the rate of expansion has been con-
stant over the age of the universe. If all objects
started very close together at t = 0 (whatever that
time means), then the current distance between
any two objects would be

d= vty

where t, is the current age of the universe. Solving
for v gives

v = (1/to)d

(18.3)

FESERE The universe as an expanding balloon. The
galaxies are painted on the surface of the balloon.As the
balloon expands, each galaxy moves away from every other
galaxy. This is a two-dimensional analogy to help us with the
visualization.




18 CLUSTERS OF GALAXIES

341

#1

©

<

4+—><

""\@\\3

Separations at
Earlier Time

6

»
L |

6)

Separations at C)
Later Time

vy

A AA \\ﬁiii\\

\/

>

Change in Separation

SERER R The effect of all galaxies moving away from

each other.The two frames show the positions of the galax-
ies at different times, with the bottom frame being later. In

the top frame the green arrows show the separations at the
earlier time. In the bottom frame, the blue arrows show the

separations at the later time.The red arrows show the
change in separation between the two times for each pair of
galaxies (the difference between the blue and green arrows).
You can see that the galaxies that were initially farther apart
have the greatest change in separation, and the galaxies that
were closest have the least change in separation.

This is the same as Hubble’s law, if we make
the identification

Ho = 1/to (18.4)

Then, 1/H, , called the Hubble time, is the age of
the universe if the expansion has been constant.
Actually, as we will discuss in Chapter 20, the
expansion is not constant. If the expansion is slow-
ing down, the actual age of the universe is less
than the Hubble time. If the expansion is speeding
up, the actual age of the universe is greater than
the Hubble time.

The value that Hubble obtained for H, was
500 km/s/Mpc. Note that the units of 