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PREFACE

This is a concise multi-subject handbook, which consists of three major parts: mathe-
matics, physics, and applied and engineering sciences. It presents basic notions, formulas,
equations, problems, theorems, methods, and laws on each of the subjects in brief form. The
absence of proofs and a concise presentation has permitted combining a substantial amount
of reference material in a single volume. The handbook is intended for a wide audience of
engineers and researchers (not specialized in mathematics or theoretical physics) as well as
graduate and postgraduate students.

e The first part of the book contains chapters on arithmetics, elementary and analytic
geometry, algebra, differential and integral calculus, functions of complex variable, integral
transforms, ordinary and partial differential equations, special functions, probability theory,
etc.

e The second part of the book contains chapters on molecular physics and thermo-
dynamics, electricity and magnetism, oscillations and waves, optics, special relativity,
quantum mechanics, atomic physics, etc.

e The third part of the book contains chapters on dimensional analysis and similarity,
mechanics of point masses and rigid bodies, strength of materials, hydrodynamics, mass and
heat transfer, electrical engineering, and methods for constructing empirical and engineering
formulas.

A compact and clear presentation of the material allows the reader to get quick help on
(or revise) the desired topic. Special attention is paid to issues that many engineers and
students may find difficult to understand.

When selecting the material, the authors have given a pronounced preference to practical
aspects; namely, to formulas, problems, methods, and laws that most frequently occur in sci-
ences and engineering applications and university education. Many results are represented
in tabular form.

For the convenience of a wider audience with different mathematical backgrounds,
the authors tried to avoid special terminology whenever possible. Therefore, some of the
topics and methods are outlined in a schematic and somewhat simplified manner, which is
sufficient for them to be used successfully in most cases. Many sections were written so that
they could be read independently. The material within subsections is arranged in increasing
order of complexity. This allows the reader to get to the heart of the matter quickly.

The material of the reference book can be roughly categorized into the following three
groups according to meaning:

1. The main text containing a concise, coherent survey of the most important definitions,
formulas, equations, methods, theorems, and laws.

2. For the reader’s better understanding of the topics and methods under study, numerous
examples are given throughout the book.

3. Discussion of additional issues of interest, given in the form of remarks in small
print.

For the reader’s convenience, several long mathematical tables—indefinite and definite
integrals, direct and inverse integral transforms (Laplace, Mellin, and Fourier transforms),
and exact solutions of differential equations—which contain a large amount of information,
are presented in the supplement of the book. Also included are some physical tables and
the periodic table of the chemical elements.

This handbook consists of parts, chapters, sections, and subsections. Figures and ta-
bles are numbered separately in each section, while formulas (equations) and examples
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are numbered separately in each subsection. When citing a formula, we use notation like
(M3.1.2.5), which means formula 5 in Subsection M3.1.2. For the reader’s convenience,
each citation number is preceded by a letter to indicate one of the major parts: mathe-
matics (M), physics (P), engineering sciences (E), or supplements (S). At the end of each
chapter, we present a list of main and additional literature sources containing more detailed
information about topics of interest to the reader.

Special font highlighting in the text, cross-references, an extensive table of contents,
and a detailed index help the reader to find the desired information.

Chapters M1, M2, and M6-M9 were written by V. M. Safrai and A. 1. Zhurov, Chapters
M3-M5, M10, and M14 by A. V. Manzhirov and V. A. Popov, Chapters M11-M13, E1, E4,
ES, E7, and S1-S5 by A. D. Polyanin, Chapters P1-P8 by A.I. Chernoutsan, Chapter E2 by
V. D. Polyanin, Chapter E3 by B. V. Putyatin, Chapter E6 by A. V. Egorov and Yu. V. Repina,
and Chapters S6 and S7 by A.I. Chernoutsan and A.I. Zhurov. Part M was edited by A.D.
Polyanin and parts E and S were edited by A.D. Polyanin and A.I. Chernoutsan.

We would like to express our deep gratitude to Vladimir Nazaikinskii for translating
several chapters of this handbook.

The authors hope that this book will be helpful for a wide range of engineers, scientists,
university teachers, and students engaged in the fields of physics, mechanics, engineering
sciences, chemistry, biology, ecology, medicine as well as social and economical sciences.

Andrei D. Polyanin
Alexei I. Chernoutsan
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Chapter M1
Arithmetic and Elementary Algebra

M1.1. Real Numbers
M1.1.1. Integer Numbers

» Natural, integer, even, and odd numbers. Natural numbers: 1, 2, 3, ... (all positive
whole numbers).

Integer numbers (or simply integers): 0, £1, 2, +3, ...

Even numbers: 0, 2, 4, ... (all nonnegative integers that can be divided evenly by 2).
An even number can generally be represented as n = 2k, where k=0, 1, 2, ...

Remark 1. Sometimes all integers that are multiples of 2, such as 0, £2, +4, ..., are considered to be
even numbers.

Odd numbers: 1, 3,5, ... (all natural numbers that cannot be divided evenly by 2). An
odd number can generally be represented as n = 2k + 1, where k =0, 1, 2, ...

Remark 2. Sometimes all integers that are not multiples of 2, such as 1, +3, 5, ..., are considered to
be odd numbers.

All integers as well as even numbers and odd numbers form infinite countable sets,
which means that the elements of these sets can be enumerated using the natural numbers
1,2,3,...

» Prime and composite numbers. A prime number is a positive integer that is greater
than 1 and has no positive integer divisors other than 1 and itself. The prime numbers form
an infinite countable set. The first ten prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, ...

A composite number is a positive integer that is greater than 1 and is not prime, i.e.,
has factors other than 1 and itself. Any composite number can be uniquely factored into
a product of prime numbers. The following numbers are composite: 4 =2x 2,6 =2 X 3,
8=2%,9=3%10=2x5,12=22x3,...

The number 1 is a special case that is considered to be neither composite nor prime.

» Divisibility tests. Below are some simple rules helping to determine if an integer is
divisible by another integer.

All integers are divisible by 1.

Divisibility by 2: last digit is divisible by 2.

Divisibility by 3: sum of digits is divisible by 3.

Divisibility by 4: two last digits form a number divisible by 4.

Divisibility by 5: last digit is either O or 5.

Divisibility by 6: divisible by both 2 and 3.

Divisibility by 9: sum of digits is divisible by 9.

Divisibility by 10: last digit is 0.

Divisibility by 11: the difference between the sum of the odd-numbered digits (1st, 3rd,
5th, etc.) and the sum of the even-numbered digits (2nd, 4th, etc.) is divisible by 11.
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4 ARITHMETIC AND ELEMENTARY ALGEBRA

Example 1. Let us show that the number 80729 is divisible by 11.

The sum of the odd-numbered digits is ¥; = 8 + 7+ 9 = 24. The sum of the even-numbered digits is
3> =0+2 =2. The difference between them is >; — ¥, = 22 and is divisible by 11. Consequently, the original
number is also divisible by 11.

» Greatest common divisor and least common multiple.

1°. The greatest common divisor of natural numbers a1, a, ..., a, is the largest natural
number, b, which is a common divisor to ay, ..., ay,.
Suppose some positive numbers ap, ay, ..., a, are factored into products of primes so
that
_ k k1a k _ ky kx k _k kno k
ar=p"py " pp™s a2 =pltpy D™, e, A =PIt py e
where p1, p2, ..., pp are different prime numbers and the k;; are nonnegative integers
(t=1,2,...,n; 7=1,2,..., m). Then the greatest common divisor b of a, a, ..., a, is
calculated as
— 102 o = min ks
b=p|'py* ...y Uj_@;%k”'

Example 2. The greatest common divisor of 180 and 280 is 2> x 5 = 20 due to the following factorization:
180 = 2" x3* x5 =2"x 3" x5' x 7",
280=2"x5x7 =2’x3"x5" x7".
2°. The least common multiple of n natural numbers ai, ay, ..., a, is the smallest natural
number, A, that is a multiple of all the ay.
Suppose some natural numbers ay, ..., a, are factored into products of primes just as
in Item 1°. Then the least common multiple of all the ay, is calculated as
A=ppl2. . plm, v; = max k;;.
pl p2 Pm J 1<i<n )

Example 3. The least common multiple of 180 and 280 is equal to 2° x 3% x 5! x 7! = 2520 due to the
factorization given in Example 2.

M1.1.2. Real, Rational, and Irrational Numbers

» Real numbers. The real numbers are all the positive numbers, negative numbers, and
zero. Any real number can be represented by a decimal fraction (or simply decimal), finite
or infinite. The set of all real numbers is denoted by R.

All real numbers are categorized into two classes: the rational numbers and irrational
numbers.

» Rational numbers. A rational number is a real number that can be written as a fraction
(ratio) p/q with integer p and ¢ (¢ # 0). It is only the rational numbers that can be written
in the form of finite (terminating) or periodic (recurring) decimals (e.g., 1/8 = 0.125 and
1/6 =0.16666...). Any integer is a rational number.

The rational numbers form an infinite countable set. The set of all rational numbers is
everywhere dense. This means that, for any two distinct rational numbers a and b such that
a < b, there exists at least one more rational number ¢ such that a < ¢ < b, and hence there
are infinitely many rational numbers between a and b. (Between any two rational numbers,
there always exist irrational numbers.)

» Irrational numbers. An irrational number is a real number that is not rational; no
irrational number can be written as a fraction p/q with integer p and ¢ (¢ # 0). To
the irrational numbers there correspond nonperiodic (nonrepeating) decimals. Here are
examples of irrational numbers: \/§ =1.73205..., 7= 3.14159...

The set of irrational numbers is everywhere dense, which means that between any
two distinct irrational numbers, there are both rational and irrational numbers. The set of
irrational numbers is uncountable.
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M1.2. Equalities and Inequalities. Arithmetic Operations.
Absolute Value

M1.2.1. Equalities and Inequalities

Throughout Subsection 1.2.1, it is assumed that a, b, ¢, d are real numbers.

» Basic properties of equalities.

1. Ifa=0,then b =a.

2. If a = b, then a + ¢ = b+ ¢, where c is any real number; furthermore, if a + ¢ = b+ ¢, then
a=>b.

If a = b, then ac = be, where c is any real number; furthermore, if ac = bc and ¢ # 0, then
a=hb.

Ifa=band b=c, thena =c.

If ab = 0, then either a = 0 or b = 0; furthermore, if ab # 0, then a # 0 and b # 0.

W

Basic properties of inequalities.

If a < b, then b > a.
Ifa<bandb < q, thena =b.

Ifa<bandb<c thena<ec.
Ifa<bandb<c(ora<bandb<c), thena < c.
Ifa<bandc<d(orc=d),thena+c<b+d.
If a <band ¢ >0, then ac < be.

If a <band c <0, then ac = be.
If0<a<b(ora<b<0),thenl/a>1/b.

PN LE W=V Lk

M1.2.2. Addition and Multiplication of Numbers

» Addition of real numbers. The sum of real numbers is a real number.
Properties of addition:
a+0=a (property of zero),
a+b=b+a (addition is commutative),
a+(b+c)=(a+b)+c=a+b+c (addition is associative),
where a, b, c are arbitrary real numbers.
For any real number a, there exists its unique additive inverse, or its opposite, denoted

by —a, such that
a+(-a)=a-a=0.
» Multiplication of real numbers. The product of real numbers is a real number.
Properties of multiplication:
ax0=0 (property of zero),
ab=ba (multiplication is commutative),
a(bc) = (ab)c = abe  (multiplication is associative),
axl=1xXa=a (multiplication by unity),
a(b+c)=ab+ac  (multiplication is distributive),
where a, b, ¢ are arbitrary real numbers.

For any nonzero real number a, there exists its unique multiplicative inverse, or its
reciprocal, denoted by alorl /a, such that

aa’l =1 (a#0).
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M1.2.3. Ratios and Proportions

» Operations with fractions and properties of fractions. Ratios are written as fractions:
a :b=a/b. The number a is called the numerator and the number b (b # 0) is called the
denominator of a fraction.

Properties of fractions and operations with fractions:

a a ab a:c . . .
—=a, —=—=—— (simplest properties of fractions);
1 b bc b:c

+ dxb
% t % =4 2 C, % t 5 =4 o ¢ (addition and subtraction of fractions);
&y c= E, 42 (multiplication by a number and by a fraction);
b b b d b

d

% ic= %, % : % = Z—C (division by a number and by a fraction).

» Proportions. Simplest relations. Derivative proportions. A proportion is an equation
with a ratio on each side. A proportion is denoted by a/b=c/dora:b=c:d.

1°. The following simplest relations follow from a/b = ¢/d:
ad = be, ¢ _
c

2°. The following derivative proportions follow from a/b = ¢/d:

ma+nb mc+nd

pa + qb - pc+qd’
ma+nc mb+nd

pa+qc  pb+qd’

where m, n, p, q are arbitrary real numbers.
Some special cases of the above formulas:

axb cxd a-b c¢—-d

b d a+b c+d

M1.2.4. Percentage

» Definition. Main percentage problems. A percentage is a way of expressing a ratio
or a fraction as a whole number, by using 100 as the denominator. One percent is one per
one hundred, or one hundredth of a whole number; notation: 1%.

Below are the statements of main percentage problems and their solutions.

1°. Find the number b that makes up p% of a number a. Answer: b = %

o O

2°. Find the number a whose p% is equal to a number b. Answer: a = le)b.

3°. What percentage does a number b make up of a number a? Answer: p = %Ob%.
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» Simple and compound percentage.

1°. Simple percentage. Suppose a cash deposit is increased yearly by the same amount
defined as a percentage, p%, of the initial deposit, a. Then the amount accumulated after
t years is calculated by the simple percentage formula

w=a<1+%>.

2°. Compound percentage. Suppose a cash deposit is increased yearly by an amount defined
as a percentage, p%, of the deposit in the previous year. If a is the initial deposit, then the
amount accumulated after ¢ years is calculated by the compound percentage formula

T :a(l + %)t

M1.2.5. Absolute Value of a Number (Modulus of a Number)
» Definition. The absolute value of a real number a, denoted by |al, is defined by the

formula )
|CL| — { a if a> 0,
a if a<O.

An important property: |a| > 0.
» Some formulas and inequalities.

1°. The following relations hold true:

la| = |-al = Va2, a<|al,
lla| = 18] < |a +b] < |a] + o],
lla| = 1b]] < |a—b] < [a] + 2.
jab| = [al [bl,  |a/b] = |al/[b].

2°. From the inequalities |a| < A and |b| < B it follows that |a + b| < A+ B and |ab| < AB.

M1.3. Powers and Logarithms
M1.3.1. Powers and Roots

» Powers and roots: the main definitions. Given a positive real number a and a positive
integer n, the nth power of a, written as a”, is defined as the multiplication of a by itself
repeated n times:

a=aXaxaxX---Xa.

n multipliers

The number « is called the base and n is called the exponent.
Obvious properties: 0" =0, 1" =1, a' = a.
Raising to the zeroth power: a® = 1, where a # 0.

.. . _ 1 . o
Raising to a negative power: a~'* = —, where n is a positive integer.
n

a

If a is a positive real number and n is a positive integer, then the nth arithmetic root or

radical of a, written as {/a, is the unique positive real number b such that b = a. In the
case of n = 2, the brief notation /a is used to denote /a.
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The following relations hold:
%=0, {VI:L ({75)"=a.
Raising to a fractional power p = m/n, where m and n are natural numbers:
af = qm/" = Vam, a>0.
» Operations with powers and roots. The properties given below are valid for any real

exponents p and ¢ (a >0, b > 0):
1

’

ap
aPal = gP*? = qP 4
9 aq 9
a\? al
ab)? = aPbP, (—) =—, (a)?=al
(ab) 7) =5 @
In operations with roots (radicals) the following properties are used:

Remark. It often pays to represent roots as powers with rational exponents and apply the properties of
operations with powers.

aP =

M1.3.2. Logarithms

» Definition. The main logarithmic identity. The logarithm of a positive number b to a
given base a is the exponent of the power c to which the base a must be raised to produce b.
It is written as log, b = c.

Equivalent representations:

log,b=c <= a“=b,

where ¢ >0,a # 1, and b > 0.

Main logarithmic identity:

al%2a b = p,
Simple properties:
log,1=0, log,a=1.

» Properties of logarithms. The common and natural logarithms. Properties of
logarithms:

b
log,(bc) =log, b+log, c, log,, (—) =log, b—log, c,
c

1

log,,(b") = klog,, b, loggrb=—log, b (k#0),
log, b

log, b = bzD, log,b=—22  (c#1),

logy, a log.a

C
where a > 0,a # 1, b >0, ¢ > 0, and k is any number.
The logarithm to the base 10 is called the common or decadic logarithm and written as

log,gb=1ogb orsometimes log,,b=1gb.
The logarithm to the base e (the base of natural logarithms) is called the natural

logarithm and written as
log,b=1nb,

where e = lim (1+1)"=2.718281...

n—oo
The following relations hold:

Inb=2.302591gb, 1gb=0.434291nbd
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M1.4. Binomial Theorem and Related Formulas
M1.4.1. Factorials. Binomial Coefficients. Binomial Theorem

» Factorials. Binomial coefficients.

Factorial:
ol=1!'=1,
n!l=1x2x3x---Xx(n-1)xn, n=2,3,4,...
Double factorial:
on=11=1,
n”—{(Zk)” if n =2k,
TTLRE+D!N ifn=2k+1,

QN =2X4X6X -+ X (2k-2)x (2k) = 2" k!,
RE+DN =1x3x5%x---xRk-1)xQ2k+1),

where n and k are natural numbers.
Binomial coefficients:

k(T _ n! _nn-1)...(n-k+1) 3 )

C"_<k)_k!(n—k)!_ ! » k=L23...m
-D...(a-k+1

C'f:a(a )k'(a +), where k=1,2, 3, ...,

where n is a natural number and a is any number.

» Binomial theorem. Let a, b, and ¢ be real (or complex) numbers. The following
formulas hold true:

(atb)? =a>+2ab+ 12,
(atb)® =a®+3a%b+ 3ab® £ b,

(atb)* = a* +4d°b + 6470 + 4ab® + b*,

The last formula is known as the binomial theorem, where the C¥ are binomial coefficients.

M1.4.2. Related Formulas

» Formulas involving powers < 4.

a>—b* =(a-b)a+b),

G+ = (a+ b)(a2 —ab+ bz),

a-b = (a- b)(a2 +ab+ bz),

at —b* = (a-b)(a +b)(a* + V),
(a+b+c)2 = a’ + b* + & + 2ab + 2ac + 2be,

at+a?? + b = (a2 +ab+ bz)(a2 —ab+ bz).
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» Formulas involving arbitrary powers. Let n be any positive integer. Then
A" =" =(a-b)@" " +a" b+ -+ a2+ M.
If n is a positive even number, then
a"=b" = (a+b)a" " —a" b+ +ab" 2 ="
=(a=b)a+b)a" 2 +a" " + -+ 20+ 0.
If n is a positive odd number, then

A"+ 0" = (a+b) @ —a" b+ —ab" T+ Y.

M1.5. Progressions
M1.5.1. Arithmetic Progression

1°. An arithmetic progression, or arithmetic sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term plus a constant d, called
the common difference, so that a,+1 = a, +d, n =1,2,3,... In general, the terms of an
arithmetic progression are expressed as

ap =ap +(n-1)d, n=1,2,3,...,

where a is the first term of the progression. An arithmetic progression is called increasing
if d > 0 and decreasing if d < 0.

2°. An arithmetic progression has the property
an = %(an—l + apt1)-
3°. The sum of n first terms of an arithmetic progression is calculated as

Sp=ai+---+a, = %(al +ap)n = %[Zal + (n - 1d]n.

M1.5.2. Geometric Progression

1°. A geometric progression, or geometric sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term multiplied by a constant ¢,
called the common ratio, so that a,41 = ang, n = 1,2,3,... In general, the terms of a
geometric progression are expressed as

an = a1q"™, n=1,2,3,...,

where a1 is the first term of the progression.

2°. A geometric progression with positive terms has the property

Gn =/ 0n-10n+1.
3°. The sum of n first terms of a geometric progression is calculated as (¢ # 1)
1-¢"
l-q°

Sp=a1+--+a,=q]
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M1.6. Mean Values and Some Inequalities
M1.6.1. Arithmetic Mean, Geometric Mean, and Other Mean Values

The arithmetic mean of a set of n real numbers a1, a, ..., a, is defined as
aj+ay+---+a
My = —— 2 n (1.6.1.1)
n
Geometric mean of n positive numbers aj, a, . .., Gn:
mg = (a1az . . . ap)'/™. (1.6.1.2)
Harmonic mean of n real numbers ay, as, ..., ap:
n
mp = , ap # 0. (1.6.1.3)
(I/ap)+ A /ap)+--+(1/ay)
Quadratic mean (or root mean square) of n real numbers ay, ay, ..., ay:
2, 2 2
at+ai+---+a
mq=¢ L2 iy (1.6.1.4)
n
M1.6.2. Inequalities for Mean Values
Given n positive numbers a;, as, .. ., 4, the following inequalities hold true:
mp < mg < my < myg, (1.6.1.5)

where the mean values are defined above by (1.6.1.1)—(1.6.1.4). The equalities in (1.6.1.5)
are attained only if a; = ay =--- = ay.
To make it easier to remember, let us rewrite inequalities (1.6.1.5) in words as

‘ harmonic mean ‘ < ‘ geometric mean ‘ < ‘ arithmetic mean ‘ < ‘ quadratic mean ‘

M1.6.3. Some Inequalities of General Form

Let a;, and by, be real numbers with k =1,2, ..., n.
Generalized triangle inequality:

n

S

k=1

n
<.
k=1

Cauchy’s inequality (also known as the Cauchy—Bunyakovsky inequality or Cauchy—
Schwarz—Bunyakovsky inequality):

Minkowski’s inequality:

(Z |ay, + bk|p>
Pt

S
S
S |

i
\4
-

< <g|ak|p> + <g|bk|p>
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M1.7. Some Mathematical Methods
M1.7.1. Proof by Contradiction

Proof by contradiction (also known as reductio ad absurdum) is an indirect method of
mathematical proof. It is based on the law of non-contradiction (a statement cannot be true
and false at the same time) and includes the following reasoning:

1. Suppose one has to prove some statement S

2. One assumes that the opposite of S is true.

3. Based on known axioms, definitions, theorems, formulas, and the assumption of
Item 2, one arrives at a contradiction (deduces some obviously false statement).

4. One concludes that the assumption of Item 2 is false and hence the original state-
ment .S is true, which was to be proved.

Example. (Euclid’s proof of the irrationality of the square root of 2 by contradiction.)
1. Tt is required to prove that v/2 is an irrational number, that is, a real number that cannot be represented
as a fraction p/q, where p and ¢ are both integers.

2. Assume the opposite: /2 is a rational number. This means that v/2 can be represented as a fraction

V2=p/q. (1.7.1.1)

Without loss of generality the fraction p/q is assumed to be irreducible, implying that p and g are mutually
prime (have no common factor other than 1).
3. Square both sides of (1.7.1.1) and then multiply by ¢* to obtain

2¢° = p’. (1.7.1.2)

The left-hand side is divisible by 2. Then the right-hand side, p*, and hence p is also divisible by 2. Consequently,
p is an even number so that
p=2n, (1.7.1.3)

where 7 is an integer. Substituting (1.7.1.3) into (1.7.1.2) and then dividing by 2 yields
¢ =2p". (1.7.1.4)

Now it can be concluded, just as above, that ¢* and hence ¢ must be divisible by 2. Consequently, ¢ is an even
number so that
q=2m, (1.7.1.5)

where m is an integer.
It is now apparent from (1.7.1.3) and (1.7.1.5) that the fraction p/q is not simple, since p and ¢ have a
common factor 2. This contradicts the assumption made in Item 2.

4. It follows from the results of Item 3 that the representation of v/2 in the form of a fraction (1.7.1.1) is
false, which means that v/2 is irrational.

M1.7.2. Mathematical Induction

The method of proof by (complete) mathematical induction is based on the following
reasoning:

1. Let A(n) be a statement dependent on n withn =1, 2, ... (A is a hypothesis at this
stage).

2. Base case. Suppose the initial statement A(1) is true. This is usually established by
direct substitution n = 1.

3. Induction step. Assume that A(n) is true for any n and then, based on this assumption,
prove that A(n + 1) is also true.

4. Principle of mathematical induction. From the results of Items 2-3 it is concluded
that the statement A(n) is true for any n.
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Example.
1. Prove the formula for the sum of odd numbers

143+45+--+Q2n-1)=n’ (1.7.2.1)

for any natural n.

2. Forn = 1, we have an obvious identity: 1 = 1.

3. Let us assume that formula (1.7.2.1) holds for any n. To consider the case of n + 1, let us add the next
term, (2n + 1), to both sides of (1.7.2.1) to obtain

143+54-+Q2n-D+Cn+D=n’+Q2n+1)=n+ 1>

Thus, from the assumption of the validity of formula (1.7.2.1) for any n it follows that (1.7.2.1) is also valid
forn + 1.
4. According to the principle of mathematical induction, this proves formula (1.7.2.1).

Remark. The first step, the formulation of an original hypothesis, is the most difficult part of the method
of mathematical induction. This step is often omitted from the method.

M1.7.3. Proof by Counterexample

A counterexample is an example which is used to prove that a statement (proposition) is
false. Counterexamples play an important role in mathematics. Whereas a complicated
proof may be the only way to demonstrate the validity of a particular theorem, a single
counterexample is all that is needed to refute the validity of a proposed theorem.

In general, the scheme of a proof by counterexample is as follows:

1. Given a proposition: all elements a that belong to a set A also belong to a set (possess
a property) B.

2. Refutation of the proposition: one specifies an element a, (counterexample) that
belongs to A but does not belong to B.

Example. Proposition: Numbers in the form 22"+ 1, where n is a positive integer, were once thought to
be prime.
These numbers are prime for n = 1, 2, 3, 4. But for n = 5, we have a counterexample, since

22 4 1 = 4294967297 = 641 X 6700417

it is a composite number.
. . . n .. . .
Conclusion: When faced with a number in the form 2>" + 1, we are not allowed to assume it is either prime
or composite, unless we know for sure for some other reason.
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Chapter M2
Elementary Functions

Basic elementary functions: power, exponential, logarithmic, trigonometric, and inverse
trigonometric (arc-trigonometric or antitrigonometric) functions. All other elementary
functions are obtained from the basic elementary functions and constants by means of
the four arithmetic operations (addition, subtraction, multiplication, and division) and the
operation of composition (composite functions).

The graphs and the main properties of the basic as well as some other frequently
occurring elementary functions of the real variable are described below.

M2.1. Power, Exponential, and Logarithmic Functions
M2.1.1. Power Function: y = £° (« is an Arbitrary Real Number)

» Graphs of the power function. General properties of the graphs: the point (1, 1)
belongs to all the graphs, and y > 0 for = > 0. For a > 0, the graphs pass through the origin
(0,0); for a < 0, the graphs have the vertical asymptote x = 0 (y — +oo as x — 0). For
a = 0, the graph is a straight line parallel to the x-axis.

Consider more closely the following cases.

Case I: y = 22", where n is a positive integer (n = 1, 2, ...). This function is defined
for all real x and its range consists of all y 2 0. This function is even, nonperiodic, and
unbounded. It crosses the axis Oy and is tangential to the axis Oz at the origin x =0, y = 0.
On the interval (o0, 0) this function decreases, and it increases on the interval (0, +o0). It
attains its minimum value y = 0 at = 0. The graph of the function y = 22 (parabola) is
given in Fig. M2.1 a.

|

(b)
Figure M2.1. Graphs of the power function y = 2", where n is an integer.

15
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Case 2: y = 2°™*!, where n is a positive integer. This function is defined on the entire
x-axis and its range coincides with the y-axis. This function is odd, nonperiodic, and
unbounded. It crosses the x-axis and the y-axis at the origin x =0, y = 0. It is an increasing
function on the entire axis with no points of extremum, the origin being its inflection point.
The graph of the function y = 2> (cubic parabola) is shown in Fig. M2.1 a.

Case 3: y = 272", where n is a positive integer. This function is defined for all z # 0,
and its range is the semiaxis y > 0. It is an even, nonperiodic, unbounded function having
no intersection with the coordinate axes. It increases on the interval (—oo,0), decreases
on the interval (0, +00), and has no points of extremum. The graph of the function has a
vertical asymptote = = 0. The graph of the function y = 22 is given in Fig. M2.1 b.

Case 4: 1y = x72"*1, where n is a positive integer. This function is defined for all 2 # 0,
and its range is the entire y-axis. It is an odd, nonperiodic, unbounded function with no
intersections with the coordinate axes. This is a decreasing function on the entire axis with
no points of extremum. It has a vertical asymptote = = 0. The graph of the function y = 2!
is given in Fig. M2.1 b.

Case 5: y = x with a noninteger o > 0. This function is defined for all* x > 0 and
its range is the semiaxis y = 0. This function is neither odd nor even and it is nonperiodic
and unbounded. It crosses the axes Ox and Oy at the origin z = 0, y = 0 and increases
everywhere in its domain, taking its smallest value at the point = 0, y = 0. The graph of
the function y = z!/2 is given in Fig. M2.2.

Ay
4

) y= Y= X2

Y

0 1 2 3 4 5

Figure M2.2. Graphs of the power function y = %, where « is a noninteger.

Case 6: y = z® with a noninteger o < 0. This function is defined for all x > 0 and its
range is the semiaxis y > 0. This function is neither odd nor even, it is nonperiodic and
unbounded, and it has no intersections with the coordinate axes, which coincide with its
horizontal and vertical asymptotes. This function is decreasing on its entire domain and has
no points of extremum. The graph of the function y = z~1/2 is given in Fig. M2.2.

» Properties of the power function. Basic properties of the power function:
2P = 2P (wyx0)* = z{as, (x%)° = 28,

for any « and (3, where x > 0, 1 > 0, 2y > 0.

* In fact, the power function y = 2™ with an odd integer n is also defined for all x < 0. Here, however, it
m/n

is always assumed that z > 0. A similar assumption is made with regard to the functions of the form y = ™/ ",
where m is a positive integer and m /n is an irreducible fraction.
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Differentiation and integration formulas:

xa+1

(wa)/:axafl’ /.Z'ad.Z': m+0 if a#-1,
Inlz|+C if a=-1.

The Taylor series expansion in a neighborhood of an arbitrary point z:

[o¢]
¢ = Z Chag " (w—z0)" for |x—xo| <l|xol,

n=0

ala-=1)...(x=n+1)
n!

where C], = are binomial coefficients.

M2.1.2. Exponential Function: y = a” (a >0, a # 1)

» Graphs of the exponential function. This function is defined for all x and its range is
the semiaxis y > 0. This function is neither odd nor even, it is nonperiodic and unbounded,
and it crosses the axis Oy at y = 1 and does not cross the axis Ox. For a > 1, it is an
increasing function on the entire x-axis; for 0 < a < 1, it is a decreasing function. This
function has no extremal points; the axis Ox is its horizontal asymptote. The graphs of
these functions have the following common property: they pass through the point (0, 1).
The graph of y = a® is symmetrical to the graph of y = (1/a)* with respect to the y-axis.
For a > 1, the function a® grows faster than any power of x as x — +o00, and it decays faster
than any power of 1/x as 2 — —oo. The graphs of the functions y = 2% and y = (1/2)" are
given in Fig. M2.3.

2 -1 O

Figure M2.3. Graphs of the exponential function.
» Properties of the exponential function. Basic properties of the exponential function:
al‘laxz — al‘1+1‘2’ axbl‘ — (ab)x, (al‘l)xz — a:cl:cz‘

Number e, base of natural (Napierian) logarithms, and the function e”:

1\n T\
e= lim <1+—> =2718281.... ¢*= lim (1+—) .

n—oo n n—oo n
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The formula for passing from an arbitrary base a to the base e of natural logarithms:

ot = ewlna‘

The inequality

Tt 5 g {x1>w2 if a>1,
r1<zy 1if O<a<l.
The limit relations for any a > 1 and b > 0:
€T

— =00, lim am|3:|b=0.
T—+00 ’x‘b T——00

Differentiation and integration formulas:

(") =¢”, /em dx =e* + C;
al‘

@*Y =a®Ina, a®dr = +C.
Ina

Power series expansion:
2 3
E IS L +—+ Z .
n 20 3 k!

M2.1.3. Logarithmic Function: y = log, = (a > 0, a = 1)

» Graphs of the logarithmic function. This function is defined for all x > 0 and its range
is the entire y-axis. The function is neither odd nor even; it is nonperiodic and unbounded;
it crosses the axis Ox at = 1 and does not cross the axis Oy. For a > 1, this function is
increasing, and for 0 < a < 1, it is a decreasing function; it has no extremal points, and the
axis Oy is its vertical asymptote. The common property of the graphs of such functions is
that they all pass through the point (1, 0). The graph of the function y = log,, = is symmetric
to that of y = log,; Ja® with respect to the z-axis. The modulus of the logarithmic function

tends to infinity slower than any power of x as  — +oc and slower than any power of 1/z
as x — +0. The graphs of the functions y =log, z and y = log, /, « are shown in Fig. M2 4.
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2 y=log,x

Figure M2.4. Graphs of the logarithmic function.
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» Properties of the logarithmic function. By definition, the logarithmic function is the
inverse of the exponential function. The following equivalence relation holds:

y=log,z <= z=4d’

where a >0, a # 1.
Basic properties of the logarithmic function:

a'%%a® = g, log,(z1x2) = log, =1 + log, x2,
log, «

k
log,(z") = klog, z, log,x= log, 0’

where £ >0,21>0,2,>0,a>0,a#1,6>0,b# 1.
The simplest inequality:

1 >xy if a>1,
log, z1 >log, vy <= {w1<x2 if 0<a<l.

For any b > 0, the following limit relations hold:

log =«
lim Eal _ 0, lim z° log, x =0.
T—+00 €T z—+0

The logarithmic function with the base e (base of natural logarithms, Napierian base)
is denoted by
log, z =Inz,

where ¢ = lim (1 + l>n =2.718281...

n—oo n
Formulas for passing from an arbitrary base a to the Napierian base e:

1 =—.
08, T na

Differentiation and integration formulas:
, 1
(Inz) =—, Inzder=xzlnz-x+C.
x

Power series expansion:

2 3 n

[e.e] k
_ r— T n-1T _Z k1%
1n(1+$)—$—7+?—“‘+(—1) 74‘"'— (—1) -, -1<x<1.

M2.2. Trigonometric Functions
M2.2.1. Trigonometric Circle. Definition of Trigonometric Functions

» Trigonometric circle. Degrees and radians. Trigonometric circle is the circle of unit
radius with center at the origin of an orthogonal coordinate system Oxy. The coordinate
axes divide the circle into four quarters (quadrants); see Fig. M2.5. Consider rotation of the
polar radius issuing from the origin O and ending at a point M of the trigonometric circle.
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Figure M2.5. Trigonometric circle.

Let o be the angle between the z-axis and the polar radius O M measured from the positive
direction of the z-axis. This angle is assumed positive in the case of counterclockwise
rotation and negative in the case of clockwise rotation.

Angles are measured either in radians or in degrees. One radian is the angle at the vertex
of the sector of the trigonometric circle supported by its arc of unit length. One degree is
the angle at the vertex of the sector of the trigonometric circle supported by its arc of length
7/180. The radians are related to the degrees by the formulas

1 radian = 180 ;o 1°= -
T

» Definition of trigonometric functions. The sine of « is the ordinate (the projection to
the axis Oy) of the point on the trigonometric circle corresponding to the angle of « radians.
The cosine of « is the abscissa (projection to the axis Ox) of that point (see Fig. M2.5).
The sine and the cosine are basic trigonometric functions and are denoted, respectively, by
sin & and cos a.

Other trigonometric functions are tangent, cotangent, secant, and cosecant. These are
derived from the basic trigonometric functions, sine and cosine, as follows:

sin «v Ccos (v 1 1
tan o = , cota=— , sec o= , coseco = —.
cos o sin «v cos av sin v

Table M2.1 gives the signs of the trigonometric functions in different quadrants. The
signs and the values of sin a and cos « do not change if the argument « is incremented by
+27mn, where n = 1, 2, ... The signs and the values of tan a and cot o do not change if the
argument « is incremented by t7n, wheren =1, 2, ...

TABLE M2.1
Signs of trigonometric functions in different quarters.
Quarter Angle in radians sin « cos « tan o cota sec av cosec
I O<a<? + + + + + +
11 % <a<Tm + — _ _ _ +
1l T<a<iZ - - + + - -
v T ca<dn - + - - + -
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TABLE M2.2
Numerical values of trigonometric functions for some angles « (in radians).
Angle o 0 £ % 5 3 = i = T
sin 0 % % @ 1 % % % 0
V3 V2 1 _1 V2 V3
cosa 1 5 5 2 0 2 -5 -5 -1
tan o 0 3 1 V3 00 -3 -1 -3 0
cotar 0 V3 1 % 0 —% -1 -3 00

Table M2.2 gives the values of trigonometric functions for some values of their argument

(the symbol co means that the function is undefined for the corresponding value of its
argument).

M2.2.2. Graphs of Trigonometric Functions

» Sine: y = sin x. This function is defined for all « and its range is y € [-1,1]. The
sine is an odd, bounded, periodic function (with period 27). It crosses the axis Oy at the
point y = 0 and crosses the axis Oz at the points z = 7wn, n = 0,+1,22,... The sine is an
increasing function on every segment [-5 +2mn, 7 + 27n] and is a decreasing function on

every segment [ 5 + 27, %71 +2mn]. For x = 7 +27n, it attains its maximal value (y = 1),
and for x = -5 + 27rn it attains its minimal value (y = —1). The graph of the function
y = sin z is called the sinusoid or sine curve and is shown in Fig. M2.6.
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Figure M2.6. Graph of the function y = sinx.
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» Cosine: y = cos x. This function is defined for all x and its range is y € [-1, 1]. The
cosine is a bounded, even, periodic function (with period 2). It crosses the axis Oy at the
point y = 1, and crosses the axis Ox at the points = 7 + 7n. The cosine is an increasing
function on every segment [ + 27n, 27n] and is a decreasing function on every segment
[2mn,7m+2mn],n =0,£1,+2,... For z = 27n it attains its maximal value (y = 1), and for
T = T+ 27n it attains its minimal value (y = —1). The graph of the function y = cosz is a
sinusoid obtained by shifting the graph of the function y = sinz by 7 to the left along the
axis Ox (see Fig. M2.7).

» Tangent: y = tan x. This function is defined for all x # % +7mn,n=0,%1,+2,...,
and its range is the entire y-axis. The tangent is an unbounded, odd, periodic function (with
period 7). It crosses the axis Oy at the point y = 0 and crosses the axis Oz at the points
x = mn. This is an increasing function on every interval (-3 + 7n, 5 + 7n). This function
has no points of extremum and has vertical asymptotes at z = 5 +7n, n = 0,£1,%2,...
The graph of the function y = tan x is given in Fig. M2.8.
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AY

Figure M2.7. Graph of the function y = cos z.

» Cotangent: y = cot x. This function is defined for all x # 7n,n =0,%x1,£2,..., and
its range is the entire y-axis. The cotangent is an unbounded, odd, periodic function (with
period 7). It crosses the axis O at the points x = Z- + 7n, and does not cross the axis Oy.
This is a decreasing function on every interval (7n, m + 7wn). This function has no extremal
points and has vertical asymptotes at x = 7mn, n = 0,%1,%2,... The graph of the function
y = cotz is given in Fig. M2.9.
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Figure M2.8. Graph of the function y = tan x. Figure M2.9. Graph of the function y = cot x.

M2.2.3. Properties of Trigonometric Functions

» Simplest relations.

2 2

sin“x +cos“x =1, tanzcotx =1,

sin(—x) = —sin x,
sinx

tanx = R
cCosx

tan(—x) = —tan x,
1

1+tan’z =

cos?x’

» Reduction formulas.

sin(z £ 2nm) = sin x,
sin(x £ nw) = (-1)" sin z,
2n+1

sin <m + 77) =+(-1)"cos z,

cos(—x) = cos x,
cos T

cotx = —,

sin x
cot(—x) = —cot x,
1

sin2 x

1+cot?z =

cos(xz £ 2nm) = cos x,
cos(z £ nw) = (-1)" cos z,
2n+1

cos <a: + 77) =F(-1)"sinz,
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sin <a: t %) = g(sin r tcosx), cos <:p + %) = ?(cos ¥ sin x),

tan(x * nw) =tanx, cot(x T nm) = cot x,

2n+1 2n+1
tan(:ni 7r> =-—cotz, cot(mi 77) =—-tanz,
) ( +7r) tanx + 1 t( +7T> cot x¥1
an(zt — ) = ——, cotfzt—) = ——,

4 1¥tanx 4 1+cotx

wheren =1, 2, ...

» Relations between trigonometric functions of single argument.

. tan x 1
sint =%V 1-cos?2z ==

V1+tanlz Vitcolz

; 1 cotx
cosx =1V 1-sin2x ==

V1+tanlz Vitcolz

sin V1-coszx 1

V1 —sin 2 cos T cotz’
V1-sin2z COS T 1

sinx V1_cos2y tanx

The sign before the radical is determined by the quarter in which the argument takes its
values.

Il
I+

1l
I+

Il
I+

tanx = *

Il
I+

cotxr ==

» Addition and subtraction of trigonometric functions.

+ —_
sinx+siny:2sin<x y)cos<w y>’

2 2
. . . (T=Y r+y
—siny = 2sin (=% ) cos (<),
sinx — siny sin 5 cos 5
cosx+cosy=200s(x+y)cos(x_y>,
2 2
COST —COSYy = 2sin<x+y>sin($_y)
y= 2 A

sin” z — sin’ Y= cos® Yy — cos’ z = sin(x + y) sin(z — y),

21— cos? y =—cos(z + y) cos(x —y),

. N
78111(% £y cotx tcoty = LH@ )

sin

tanz *tany =

cosx cosy’ sinzsiny’

acosx + bsinx = rsin(x + @) = r cos(z — ).

Here, r = Va2 + b2, sinp =a/r, cosp =b/r, sint) =b/r, and cos) =a/r.
» Products of trigonometric functions.

sinxsiny = %[cos(az —y)——cos(z + )],

COS T COSY = %[cos(az —y) +cos(xz + )],

sinx cosy = %[sin(aj —y) + sin(x + y)].



24 ELEMENTARY FUNCTIONS

» Powers of trigonometric functions.

C082x=%0082(£+%, s1n2w——%0052w+
cos3x:%cos3x+%cosx, s1n3w:—% s1n3x+zs1nx
costx = %cos4x+ %0052w+ %, sin*x = é cosdy — 1 2 cos 2z + 3 2
cos® z = - cos 5z + ¢ CO8 3rx+ 3cosz, sin® z = - sin 52 — = sin 3x + 2 sin z,
16 8 16 16 3
— n
cos = 22n—1 cos[2(n k)x] + —C5,
cos?™*! 22n Z C’2n+1 cos[(2n =2k + 1)x],
k=0
1 = 1
n . _ n—k n
sin“" x = S Z( 1) C’ , cos[2(n — k)x] + 52m Can
k=0
1
2n+1 n— k .
sin T = o Z( 1) 2n+1 sin[(2n -2k + D)x].
k=0
m! ) ) .
Here,n=1, 2, ... and Cﬁl = m are binomial coefficients (0! = 1).
'(m—-k)!

» Addition formulas.

sin(zty) =sinxzxcosyxcosxsiny, cos(xxy)=coszcosyFsinxsiny,

tan(z 7)) = tanz * tany cot(z + y) = 1¥tanz tany
- 1Ftanrtany’ - tanx *tany

» Trigonometric functions of multiple arguments.

cos2x =2cos’x—1=1-2sin*z, sin 2z = 2 sin x cos x,
cos 3z = -3 cosx + 4 cos® z, sin3z = 3sinz —4sin’ z,
cos4z =1-8cos® x + 8cos* z, sindx = 4 cos z (sin z — 2 sin’ z),

cos5z = 5cosx —20cos’ x + 16 cos’ x, sinSz=5sinz-20 sin’ z + 16 sin’

N (=1 ... [n° - (k=1)]
2K)!

4F gin?* T,

cos2nz) = 1 +Z( 1

k=1

cos[(2n+1)z] = cos x {1+Z(—1

k=1

2k)!

_ _ . - PG § Y (2 W (e o R
sin(2nx) = 2ncosx [sm T+ ;(—4) kD! sin x|,

sin[(2n+1)x] =(2n+1){sin I+Z( 1 (2k+1)!

f=1
2tanx 3tanz —tan® z 4tanzx —4tan’

tan 3x = T tan4x =
1-3tan"x

1-6tan’z +tan*z’

wheren =1, 2, ...

e [Qn+1)2-1[2n+1)*-3%]...[Qn+1)*-Q2k-1)] i

)k[(2n+1)2 1[2n+1)=3%] ... [2n+1)~(2k— 1)2] 2k

o
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» Trigonometric functions of half argument.

., x l-cosx »x l+cosz
sin — = ——— cos” — = ———
2 2 ’ 2 2 ’
T sin x 1-cosz T sin z 1+cosx
tan — = = . , cot— = = i
2 1+cosx sin x 2 1-coszx sin x
) 2tan 5 1 —tan? ox 2tan 5
Sanf:i”, COS[L'=72$, tanx=7”.
1+ tan 3 1 +tan 7 1 —tan 7

» Differentiation formulas.

dsinzx dcoszx . dtanx 1 dcotx 1
=cosz =—sinz, = =—— )
dz ’ dz dz cos?x’ dx sin? &

» Integration formulas.
/sinwdw:—cosx+0, /coswdw:sinx+C,

/tana:da::—lnlcosa:|+0, /cotxd:p:lnlsinx|+0,

where C' is an arbitrary constant.

» Power series expansions.

2 4 336 2n

cos:p:1—%+%—a+---+(—l)n(2n)!+--- (|z| < 00),
sinx:a:—;;—?+§—j—:;—:+---+(—1)"%+-~ (|z| < 00),
tan$=$+%3+21—x;+ 1371‘? +oo 4 22n(22(r;;)1!)|32n|x2”1+-" (x| < 7/2),
cotw:%—(%+%+%+---+% 2”1+-~> 0 < |z| < 7),

where B,, are Bernoulli numbers (see Subsection M13.1.2).

» Representation in the form of infinite products.

2 2 2 2
T T T T
inz=z(l-—||l-—|(l-— ... |l =-—— )] ...
ne=o(1-5) (155 ) (1-53) - (--75)
2 2 2 2
cosT = 1—4i 1—4i l—i I—L
2 972 2572 2n +1)27?
» Euler and de Moivre formulas. Relation to hyperbolic functions.

YT = eY(cosz +isinx), (cosz +isinz)” = cos(nz) +isin(nz), i>=-1,
sin(¢4x) = ¢sinhx, cos(ixz) =coshz, tan(ix)=+<tanhx, cot(¢x) =—icothx.
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M2.3. Inverse Trigonometric Functions
M2.3.1. Definitions. Graphs of Inverse Trigonometric Functions

» Definitions of inverse trigonometric functions. Inverse trigonometric functions (arc
functions) are the functions that are inverse to the trigonometric functions. Since the trigono-
metric functions sin x, cos z, tan x, cot x are periodic, the corresponding inverse functions,
denoted by Arcsin x, Arccos x, Arctan x, Arccot z, are multi-valued. The following rela-
tions define the multi-valued inverse trigonometric functions:

sin(Arcsinx) = x, cos(Arccos x) = x,
tan(Arctanx) = x, cot(Arccotx) = x.

These functions admit the following verbal definitions: Arcsin x is the angle whose sine is
equal to z; Arccos z is the angle whose cosine is equal to z; Arctan x is the angle whose
tangent is equal to x; Arccot x is the angle whose cotangent is equal to x.
The principal (single-valued) branches of the inverse trigonometric functions are denoted
by
arcsinz =sin"' 2 (arcsine is the inverse of sine),

arccos ¥ = cos ' (arccosine is the inverse of cosine),
arctanz = tan"' z  (arctangent is the inverse of tangent),

arccotz =cot™' x  (arccotangent is the inverse of cotangent)

and are determined by the inequalities

O<arccosz < -1<z<L1);

O<arccotz <m (—00 < x < 00).

s : s
5 <arcsinx < T
us us
> <arctanx < R

The following equivalent relations can be taken as definitions of single-valued inverse
trigonometric functions:

y=arcsinz, -—-1<zx<1 < <z =siny, —%Sysg,
y=arccosx, —-1<zx<1 <~ «x=cosy, O0Zy<m;
y=arctanzr, -o00<r<+00 <= x=tany, —g<y<%;
y=arccotx, —-oo<zx<+00 <= ux=coty, O<y<m.

The multi-valued and the single-valued inverse trigonometric functions are related by
the formulas
Arcsinx = (-=1)" arcsin z + 7n,

Arccos x = T arccos x + 27n,
Arctan x = arctan x + 7n,
Arccot x = arccot x + mn,
where n =0, £1, £2, ...
The graphs of inverse trigonometric functions are obtained from the graphs of the

corresponding trigonometric functions by mirror reflection with respect to the straight line
y = z (with the domain of each function being taken into account).
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» Arcsine: y = arcsinx. This function is defined for all z € [-1, 1] and its range is
Yy € [—%, %]. The arcsine is an odd, nonperiodic, bounded function that crosses the axes
Oz and Oy at the origin x = 0, y = 0. This is an increasing function in its domain, and it
takes its smallest value y = -7 at the point = = —1; it takes its largest value y = 7 at the
point x = 1. The graph of the function y = arcsin x is given in Fig. M2.10.

» Arccosine: y = arccos x. This function is defined for all z € [-1, 1] and its range is
y € [0, ]. It is neither odd nor even. It is a nonperiodic, bounded function that crosses the
axis Oy at the point y = 7 and crosses the axis Oz at the point x = 1. This is a decreasing
function in its domain, and at the point x = -1 it takes its largest value y = 7; at the point
x = 1 it takes its smallest value y = 0. For all = in its domain, the following relation holds:
arccos x = 5 —arcsin z. The graph of the function y = arccos x is given in Fig. M2.11.
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Figure M2.10. Graph of the function y = arcsin x. Figure M2.11. Graph of the function y = arccos x.

» Arctangent: y = arctanx. This function is defined for all z, and its range is
Y € (—%, %). The arctangent is an odd, nonperiodic, bounded function that crosses the
coordinate axes at the origin x = 0, y = 0. This is an increasing function with no points of
extremum. It has two horizontal asymptotes: y =—7 (as x — —o00) and y = 7 (as x — +00).
The graph of the function y = arctan z is given in Fig. M2.12.

» Arccotangent: y = arccot x. This function is defined for all x, and its range is
y € (0, ). The arccotangent is neither odd nor even. It is a nonperiodic, bounded function
that crosses the axis Oy at the point y = 7 and does not cross the axis Oz. This is a
decreasing function on the entire x-axis with no points of extremum. It has two horizontal
asymptotes y = 0 (as x — +00) and y = 7 (as x — —o0). For all z, the following relation

holds: arccot z = 7 —arctan . The graph of the function y = arccot x is given in Fig. M2.13.
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Figure M2.12. Graph of the function y = arctan x. Figure M2.13. Graph of the function y = arccot x.

M2.3.2. Properties of Inverse Trigonometric Functions
» Simplest formulas.
sin(arcsinx) = x, cos(arccos x) = x,
tan(arctan x) = x, cot(arccotx) = x.
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» Some properties.
arcsin(—z) = —arcsin z, arccos(—x) = 7 — arccos x,
arctan(—x) = —arctan z, arccot(—x) = m — arccot z,

xr=2nw if ZnW—%SmSZn

. . ™+
arcsin(sin ) = {—x +2n+Dr if Qn+Dr-T<z<2mn+Dr+T,

T -2nmw if 2nr <x < 2n+ D,

arccos(cos ) = { 42+ D if Qn+ Dr <2 <20+ D,

arctan(tanz) = x —nn  if nr-5 <r<nm+3,

arccot(cotr) =rx—-nm if nr<xr<n+)m.

» Relations between inverse trigonometric functions.

arcsin & +arccos x = %, arctan z+arccotx = %;
arccos V' 1—22 if 0<z<1, arcsin V' 1—22 if 0<z<1,
—arccos V 1—a2 if -1<2<0, m—arcsin V' 1—x2
. . 2
= { arctan if -1<z<1 = -z
arcsin — , arccosT arctan
T
) T
arccot - if -1<2<0; arccot >
T 1-x
. T 1
arcsin —— forany z, arcsin
V1+a? 1+22
1 i >0 1
arccos i x=0, m—arcsin —— if £ <0
1 +I2 A/ 1 +x2 ’
arctanx = 1 arccotx = 1
—arccos 5 if z<0, arctan — if x>0,
1+x T
1 . 1 .
arccot — if £ >0; mT+arctan — if z<0.
T T

» Addition and subtraction of inverse trigonometric functions.

arcsin x + arcsin y = arcsin(w\/l —y+ y\/l —xz) for z*+y* <1,

arccos x * arccos y = arccos [zyF/(1 -22)(1-y?) ] for z+y>0,

r+y

arctan x + arctan y = arctan I for zy<l1,
-
r—y
arctan x — arctan y = arctan for zy>-1.
+zy
» Differentiation formulas.

. 1 d 1
—arcsiny = ———, — arccos r = ————,
dzx V1_g2 dx NS

1
—arctaney = ———, — arccotx = — .
dx 1+ 22 dz 1422

if -1<z<0,
if 0<x <1,

if -l<x<1;

if x>0,
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» Integration formulas.
/arcsin:z:da: =zgarcsinz + V1-22+C, /arccosxd:c =zarccosz—V1-22+C,
1 2 1 2
arctan x dx = x arctan x — 5 In(1+z)+C, arccotx dx = x arccotx + 5 In(1+z°)+C,

where C is an arbitrary constant.

» Power series expansions.

arcsinx—x+lx—3+ 1><3:v_5+ 1><3><5x_7+ .\ Ix3x---x(2n-1) z2"*! . (el < 1)
T2 3 T 2x4 5 2x4x6 7 2x4x%---x(2n) 2n+1 ’
3 5 7 2n-1
arctanx=x—%+%—%+~-~+(—l)”’1%+u~ (2 < 1),
arctan 1+ ! ! ++(=D" ! + (lz] > 1)
r=——-——+-—-—=<++-1))'— T .
2 x 323 52° 2n—1)g2n-1

The expansions for arccos z and arccotx can be obtained from the relations arccos x =
7 —arcsinx and arccotx = 5 —arctan .

M2.4. Hyperbolic Functions
M2.4.1. Definitions. Graphs of Hyperbolic Functions

» Definitions of hyperbolic functions. Hyperbolic functions are defined in terms of the
exponential functions as follows:
: e —e” T+e™® et —e@ et +e®
sinlhr = ————, coshz=———, tanhz=———, cothz=
2 2 et +e®

The graphs of hyperbolic functions are given below.

et —e T’

» Hyperbolic sine: y = sinh . This function is defined for all = and its range is the
entire y-axis. The hyperbolic sine is an odd, nonperiodic, unbounded function that crosses
the axes Ox and Oy at the origin « = 0, y = 0. This is an increasing function in its domain
with no points of extremum. The graph of the function y = sinh x is given in Fig. M2.14.

» Hyperbolic cosine: y = cosh x. This function is defined for all z, and its range
is y € [1,+00). The hyperbolic cosine is an even, nonperiodic, unbounded function that
crosses the axis Oy at y = 1 and does not cross the axis Ox. This function is decreasing on
the interval (—co, 0) and increasing on the interval (0, +00); it takes its smallest value y = 1
at z = 0. The graph of the function y = cosh z is given in Fig. M2.15.

» Hyperbolic tangent: y = tanh x. This function is defined for all z, and its range is
y € (-1, 1). The hyperbolic tangent is an odd, nonperiodic, bounded function that crosses
the coordinate axes at the origin z = 0, y = 0. This is an increasing function on the entire
x-axis and has two horizontal asymptotes: y = -1 (as x — —oco) and y = 1 (as z — +00).
The graph of the function y = tanh x is given in Fig. M2.16.

» Hyperbolic cotangent: y = coth . This function is defined for all x # 0, and
its range consists of all y € (-o0,-1) and y € (1,+00). The hyperbolic cotangent is an
odd, nonperiodic, unbounded function that does not cross the coordinate axes. This is a
decreasing function on each of the semiaxes of its domain; it has no points of extremum. It
has two horizontal asymptotes: y = -1 (as * — —o0o0) and y = 1 (as * — +00). The graph of
the function y = coth x is given in Fig. M2.17.
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y=coshx

X
>

2 -1 0 1 2

Figure M2.14. Graph of the function y = sinh x. Figure M2.15. Graph of the function y = cosh z.
A
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1+
1 ,,,,,,,,
= tanh x 0
y x I 1 D
2 -l o 1 2
,,,,, S |
Figure M2.16. Graph of the function y = tanh x. Figure M2.17. Graph of the function y = coth z.

M2.4.2. Properties of Hyperbolic Functions

» Simplest relations.

cosh? z —sinh®z = 1, tanh x cothx =1,
sinh(-z) = —sinh x, cosh(—zx) = cosh z,
i h
tanh x = sinh z , cothz = C?S :E,
coshx sinh x

tanh(—z) = —tanh z, coth(—x) = —coth x,

1
l—tanhzaj:;, cothzx—lzj.

cosh? sinh” x

» Relations between hyperbolic functions of single argument (x > 0).

tanh 1
sinhz = Vcosh?x—1= am e

\/l—tanhzzp \/cothzzn—l
1 th
coshz = Vsinh?z+1 = = conz ,
\/l—tanth \/cothzx—l

sinh x Vcosh?z -1 1

tanh x = = =

VsinhZ 7 + 1 cosh z cothz’
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Vsinh? z + 1 _ cosh x 1

sinh a /cosh? z — 1 " tanhz
» Addition formulas.

sinh(z = y) = sinh x coshy £ sinhycoshx, cosh(x £ y) = cosh x cosh y * sinh = sinh y,
tanh x £ tanh y ’ coth(z £ ) = cothxzcothy =1 .
1+ tanh x tanh y cothy + cothx

» Addition and subtraction of hyperbolic functions.

+ ¥
sinhx £sinhy = 2sinh<$2—y) cosh(ﬂ),

cothz =

tanh(x £ y) =

2
coshx + coshy = 200sh($—;_z/) cosh(%),
cosh x —cosh y :ZSinh<x;y> sinh(w;y),

sinh? 2 — sinh? y = cosh? = — cosh? y = sinh(z + ) sinh(z — v),
sinh? z + cosh? y = cosh(z + y) cosh(x — y),
(cosh z £ sinh )™ = cosh(nx) * sinh(nx),

sinh(x £ y) + sinh(x * y)

cothx £cothy =+

tanh z * tanhy = , -
4 cosh z cosh y sinh z sinh y

where n =0, £1, £2, ...

» Products of hyperbolic functions.
sinh z sinh y = %[cosh(w + y) — cosh(x —y)],
cosh x coshy = %[cosh(m + 1) + cosh(x — )],

sinh z coshy = %[sinh(w + y) + sinh(x — y)].
» Powers of hyperbolic functions.

cosh? x = % cosh 2z + % sinh? x = % cosh Zx—%,
3, ._1 3 131 3
cosh” x = 7 cosh 3x+ I cosh zx, sinh” x = 7 sinh 3z — I sinh x,
4 .1 1 3 R | 1 3
cosh™ x = 3 cosh 43:+7 cosh 2x + 3 sinh” x = 3 cosh4m—7 cosh2x + 3
5. .1 5 5 S R 5 o 5 o
cosh” x = 16 cosh 5x+ i€ cosh 3z + 3 coshx, sinh’z= 16 sinh Sx—ﬁ sinh 3z + 3 sinh z,
1 n-1
2n . _ k n
cosh™ x = S g C5,, cosh[2(n— k‘)x]+—C’2n,
k=0

cosh?™*! 1 22n Z el COSh[(2n—2k+1)zx],

n-1 n
s1nh2"ac—22 — Z( l)kan cosh[2(n—k)z]+ (_ ) C'znn,
k=0

sinh?"*! ¢ 22 Z( DY | sinh[(2n—2k+1)z].

Here,n=1, 2, ... and C’ﬁl are b1norn1a1 coefficients.



32 ELEMENTARY FUNCTIONS

» Hyperbolic functions of multiple argument.

cosh2z =2cosh*z-1, sinh 2z = 2 sinh x cosh z,
cosh 3z = -3 cosh x +4 cosh® z, sinh 3z = 3 sinh z +4 sinh®
cosh 4z = 1—8 cosh® z + 8 cosh* z, sinh 4x =4 cosh z(sinh x +2 sinh® ),

cosh 52 = 5 cosh 2—20cosh’ z+16 cosh® #,  sinh 52 = 5 sinh 2 + 20 sinh? z + 16 sinh® z

[n/2]

1 k+1
cosh(nz) =2"" 1cosh"gn+ ) ol ,% 22"_2]“_2(cosh x)" 2
2 k+1 ™
k=0
[(n-1)/2]
sinh(nz) = sinh x Z k- le g (cosh )™ 2k
k=0

Here, C* are binomial coefficients and [A] stands for the integer part of the number A.

» Hyperbolic functions of half argument.

,hx_ . coshx —1 hw_ coshx +1
sin 2—51gnacw 5 , cos 2—\/ 5 ,

tanh x sinh = coshx -1 h x sinh z coshx +1
anh — = = coth = = =
2 coshz+1 sinhx 2  coshz—-1 sinh x
» Differentiation formulas.
dsinh z dcosh z .
= cosh z, = sinh z,
dx dx
dtanh x 3 1 dcothzx 3 1
dx cosh? 2’ dx sinh? z

» Integration formulas.

/sinhwdw:coshw+0, /coshmdmzsinhw+C,

/tanhxdx:lncoshx+C, /cothxdmzlnlsinthC,

where C is an arbitrary constant.

» Power series expansions.

I n
coshx_1+%+% Z—+---+(§n)!+--- (lz] < 00),
) P I R p2n+
sin $—$+?+? —+“‘+m+"' (|$|<OO),
3 7 2n9y2n 2n—1
2 20 17z 12727 = D|Boplx
anhe =r-+95 -3 e 2n)! (fal <m/2)
1 = 23 2:L'5 27| By |21
ther= —+———— ... _1”*1—” ,
cohz =2+ 375 545 D el (et <m

where B,, are Bernoulli numbers (see Subsection M13.1.2).
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» Relation to trigonometric functions.

sinh(¢x)=¢sinx, cosh(¢x)=cosx, tanh(tx)=itanz, coth(ix)=—icotz, it =-1.

M2.5. Inverse Hyperbolic Functions
M2.5.1. Definitions. Graphs of Inverse Hyperbolic Functions

» Definitions of inverse hyperbolic functions. The inverse hyperbolic functions (also
known as the area hyperbolic functions) are the inverses of the respective hyperbolic
functions. The following notation is used for inverse hyperbolic functions:

arcsinh z = arsinh z =sinh' «  (inverse of hyperbolic sine),
arccosh z = arcosh z = cosh™ z  (inverse of hyperbolic cosine),
arctanh x = artanh z = tanh ! = (inverse of hyperbolic tangent),

arccoth z = arcoth z = coth ™'z (inverse of hyperbolic cotangent).
Inverse hyperbolic functions can be expressed in terms of logarithmic functions:

arcsinh z = ln(w +vVat+1 ) (z is any); arccoshx = ln(x +vVal-1 ) (x=21);

1 1 1
T (lz| < 1); arccoth x = 5 In T

1
arctanh x = 0 In (lx] > 1).

1-z |

Here, only one (principal) branch of the function arccosh z is listed, the function itself being
double-valued. In order to write out both branches of arccosh z, the symbol * should be
placed before the logarithm on the right-hand side of the formula.

The graphs of the inverse hyperbolic functions are given below. These are obtained
from the graphs of the corresponding hyperbolic functions by mirror reflection with respect
to the straight line y = x (with the domain of each function taken into account).

» Inverse hyperbolic sine: y = arcsinh x. This function is defined for all x, and its
range coincides with the y-axis. The arcsinh x is an odd, nonperiodic, unbounded function
that crosses the axes Oz and Oy at the origin « = 0, y = 0. This is an increasing function
on the entire x-axis with no points of extremum. The graph of the function y = arcsinh z is
given in Fig. M2.18.

» Inverse hyperbolic cosine: y=arccosh x. This functionis defined forall x € [1, +00),
and its range consists of y € [0, +00). The arccosh z is neither odd nor even; it is nonperiodic
and unbounded. It does not cross the axis Oy and crosses the axis Ox at the point x = 1. It
is an increasing function in its domain with the minimal value y = 0 at = = 1. The graph of
the function y = arccosh z is given in Fig. M2.19.

AY
AY

1 y = arcsinh x o)
X
> = arccosh x

2 - o 1 2 | Y
,1 i
(0] 1 2 3 4

Figure M2.18. Graph of the function y = arcsinh x. Figure M2.19. Graph of the function y = arccosh x.
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» Inverse hyperbolic tangent: y = arctanh x. This function is defined for all = €
(-1, 1), and its range consists of all y. The arctanh z is an odd, nonperiodic, unbounded
function that crosses the coordinate axes at the origin = 0, y = 0. This is an increasing
function in its domain with no points of extremum and an inflection point at the origin. It
has two vertical asymptotes: x = 1. The graph of the function y = arctanh x is given in
Fig. M2.20.

» Inverse hyperbolic cotangent: y = arccoth x. This function is defined for x €
(-00,-1) and x € (1,+00). Its range consists of all y # 0. The arccoth x is an odd,
nonperiodic, unbounded function that does not cross the coordinate axes. It is a decreasing
function on each of the semiaxes of its domain. This function has no points of extremum
and has one horizontal asymptote y = 0 and two vertical asymptotes « = 1. The graph of
the function y = arccoth z is given in Fig. M2.21.

Ay AY
| |
| 2 [ | |
| | | |
| | | N\ V= arccoth x
1
| V= arctanh x | |
[ I x I | X
e T ]
| |
| | | |
| | | |
| | | |
| | | |
| | |
| |
Figure M2.20. Graph of the function y =arctanh x. Figure M2.21. Graph of the function y =arccoth x.

M2.5.2. Properties of Inverse Hyperbolic Functions

» Simplest relations.
arcsinh(—z) = —arcsinh x,  arctanh(—x) = —arctanh x,  arccoth(—x) = —arccoth x.

» Relations between inverse hyperbolic functions.

) T
arcsinh x = arccosh V22 + 1 = arctanh ——,
V2 +1

) 5 Vz2-1

arccosh z = arcsinh vV x* — 1 = arctanh —,
T

) T 1
arctanh x = arcsinh ——— = arccosh = arccoth —.

1
V1-a2 V1-22 T

» Addition and subtraction of inverse hyperbolic functions.

arcsinh x * arcsinh y = arcsinh (:nv 1+ > tyV1+a2 ),
arccosh x * arccosh y = arccosh [my V(@2 -1D(@y*-1) ] ,
arcsinh z * arccosh y = arcsinh [zy £ /(22 + D(y?> - 1) ],

Tty zyt1l
arctanh x * arctanh y = arctanh TS0’ arctanh x t arccoth y = arctanh
txy
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» Differentiation formulas.

— arcsinh x = ——, — arccoshr = ——,
dz 22+ 1 dz 22_1
d arctanh ( 2« 1) d arccoth ( 2> 1)
— T = T , — T = T
dx 1-22 dz 1 -2
» Integration formulas.
/arcsinh xdr=zarcsinhz—V1+22+C,
/arccoshxd:n=:narccosh:n—\/a:2—1+0,
1 2
arctanh x dx = x arctanh x + 5 In(1-z%)+C,
1 2
arccothwdw:warccothw+Eln(x -D+C,
where C is an arbitrary constant.
» Power series expansions.
123 1x342° Ix3x---xQ2n-1) 2!
Mho =2~ — +—— . 4 (=1)" 1
wesinh e =2 =53t axas OV T e et T (i< D,
, 11 1x3 1 Ix3x---x2n-1) 1
he=InQz)+ == + = - 1
arcsinhz =InQ22) + 5 o * a2t T Taxaxx@n) aneze T @D
11 1x3 1 Ix3x---x2n-1) 1
he=1nQz) - — — -~~~ _..._ ... 1
arccosh = 1In22) -5 575 = 55 4 44 Ixdx-x2n) 2nzn (21> 1),
. P+l
arctanhx_:v+?+?+7+---+2n+1+--- (|| < 1),
1 1 1 1 1
arCCOthI=E+W+g+W+"'+W+ (|I|>1)
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Chapter M3
Elementary Geometry

M3.1. Plane Geometry
M3.1.1. Triangles
» Plane triangle and its properties.

1°. A plane triangle, or simply a triangle, is a plane figure bounded by three straight line
segments (sides) connecting three noncollinear points (vertices) (Fig. M3.1a). The smaller
angle between the two rays issuing from a vertex and passing through the other two vertices
is called an (interior) angle of the triangle. The angle adjacent to an interior angle is called
an external angle of the triangle. An external angle is equal to the sum of the two interior
angles to which it is not adjacent.

(b)

Figure M3.1. Plane triangle (a). Midline of a triangle (b).

A triangle is uniquely determined by any of the following sets of its parts:

Two angles and their included side.
Two sides and their included angle.
Three sides.

w =

Depending on the angles, a triangle is said to be:

Acute if all three angles are acute.
. Right (or right-angled) if one of the angles is right.
3. Obtuse if one of the angles is obtuse.

[N

Depending on the relation between the side lengths, a triangle is said to be:

. Regular (or equilateral) if all sides have the same length.
. Isosceles if two of the sides are of equal length.
. Scalene if all sides have different lengths.

W N =

2°. Congruence tests for triangles:

1. If two sides of a triangle and their included angle are congruent to the corresponding
parts of another triangle, then the triangles are congruent.

2. If two angles of a triangle and their included side are congruent to the corresponding
parts of another triangle, then the triangles are congruent.

37
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3. If three sides of a triangle are congruent to the corresponding sides of another triangle,
then the triangles are congruent.

3°. Triangles are said to be similar if their corresponding angles are equal and their corre-
sponding sides are proportional.

Similarity tests for triangles:

1. If all three pairs of corresponding sides in a pair of triangles are in proportion, then the
triangles are similar.

2. If two pairs of corresponding angles in a pair of triangles are congruent, then the triangles
are similar.

3. If two pairs of corresponding sides in a pair of triangles are in proportion and the
included angles are congruent, then the triangles are similar.

The areas of similar triangles are proportional to the squares of the corresponding linear
parts (such as sides, altitudes, medians, etc.).

4°. The line connecting the midpoints of two sides of a triangle is called a midline of the
triangle. The midline is parallel to and half as long as the third side (Fig. M3.1b).

Let a, b, and ¢ be the lengths of the sides of a triangle; let o, 3, and y be the respective
opposite angles (Fig. M3.1a); let R and r be the circumradius and the inradius, respectively;
and let p = %(a + b + ¢) be the semiperimeter.

Table M3.1 represents the basic properties and relations characterizing triangles.

TABLE M3.1
Basic properties and relations characterizing plane triangles.

No. The name of property Properties and relations
Trianele inequalit The length of any side of a triangle does not exceed
1 & quatity the sum of lengths of the other two sides
Sum of angles of °
2 a triangle a+f+y=180
b
3 Law of sines 2 -2 - ¢ -9p
sinaw  sinf8  sinvy
4 Law of cosines & =a* +b* - 2abcos o'
tan[ (o + t( 1
5 Law of tangents ath _ o [ % (o ﬁ)] = col ( 27)
a-b tan[ia-p)] tan[i(a-p)]
Theorem on projections _
6 (law of cosines) c=acosf+bcosa
‘ ‘ sin) =,/ @-0@-b v _ [pe-0)
. Trigonometric 2 ab 2 ab
angle formulas — —
Y p-a)p-b . 2
1. — = _— = — — -b —
an oo 7= VPE-ap-be-o
csin csin 3
L f t. t. t = =
8 aw of tangents any b—ccosa a-ccosf
a+b_cos[1(a ﬂ)] _cos[l ]
c sin cos +3)]°
9 Mollweide’s formulas : 1( 2 7) [ 2 (@ ﬂ)]
a_b_sm[ ] _ sm[ ]
c cos(zfy) - sm[ (a+5)]
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Table M3.2 permits one to find the sides and angles of an arbitrary triangle if three
appropriately chosen sides and/or angles are given. From the relations given in Tables M3.1
and M3.2, one can derive all missing relations by cyclic permutations of the sides a, b, and ¢
and the angles «, (3, and 7.

TABLE M3.2
Solution of plane triangles.

No. Three parts

. Formulas for the remaining parts
specified

1 Three sides First method.
a,b,c . . . b+ —a?
One of the angles is determined by the law of cosines, cosa = T
c
Then either the law of sines or the law of cosines is applied.

Second method.
One of the angles is determined by trigonometric angle formulas. Further
proceed in a similar way.

Remark. The sum of lengths of any two sides must be greater than the length of
the third side.

2 Two sides a, b | First method.
and the included The side c¢ is determined by the law of cosines, ¢ =/ a? + b? —2abcos 7.

angle ~ The angle « is determined by either the law of cosines or the law of sines. The
angle (3 is determined from the sum of angles in triangle, 3 = 180° — o — .
Second method.
a + 3 is found from the sum of angles in triangle, o+ 3 = 180° —;
- -b
a—f is found from the law of tangents, tan a-p =2 cot 1.

a+
Then « and 3 can be found. The third side c is determined by either the law of
cosines or the law of sines.

3 Asside ¢ The third angle ~ is found from the sum of angles in triangle, v = 180° — o — 3.
and the two Sides a and b are determined by the law of sines.
angles «, 8

adjacent to it

b
4 | Twosides a, b | The second angle is determined by the law of sines, sin 3 = 5 sin a.

and the angle & | o pird angle is = 180° — v — 3.
opposite one

of them The third side is determined by the law of sines, ¢ = a Sy

sina’

Remark. Five cases are possible:

1. a > b; i.e., the angle is opposite the greater side. Then o > 3, 8 < 90° (the larger
angle is opposite the larger side), and the triangle is determined uniquely.

a = b; i.e., the triangle is isosceles and is determined uniquely.

. a <band bsina < a. Then there are two solutions, 3; + 3, = 180°.

. a < band bsin «a = a. Then the solution is unique, 3 =90°.

. a <band bsina > a. Then there are no solutions.

T ERE )

» Medians, angle bisectors, and altitudes of a triangle. A straight line through a
vertex of a triangle and the midpoint of the opposite side is called a median of the triangle
(Fig. M3.2a). The three medians of a triangle intersect in a single point lying strictly inside
the triangle, which is called the centroid or center of gravity of the triangle. This point cuts
the medians in the ratio 2 : 1 (counting from the corresponding vertices).

The length of the median m,, to the side a is equal to

1 1
- 24 2 2 — 2 2
My = 2\/2(1) +c*)—a = 2\/a + 4b* —4abcos . M3.1.1.1)
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(b)

C
Figure M3.2. Medians (a), angle bisectors (b), and altitudes (c) of a triangle.

An angle bisector of a triangle is a line segment between a vertex and a point of the
opposite side and dividing the angle at that vertex into two equal parts (Fig. M3.2b). The
three angle bisectors intersect in a single point lying strictly inside the triangle. This point
is equidistant from all sides and is called the incenter (the center of the incircle of the
triangle). The angle bisector through a vertex cuts the opposite side in ratio proportional to
the adjacent sides of the triangle.

The length of the angle bisector [, drawn to the side a is given by the formulas

Vobc[(b+c)? —a?]  \/4p(p - a)be

lg = =
b+c b+c
_205005(%04) _IR sin fsiny sin(3 ) sin(37) (M3.1.1.2)
T bte cos[3(B-7)] - P sin (3 + sin

where R is the circumradius (see below).

An altitude of a triangle is a straight line passing through a vertex and perpendicular to
the straight line containing the opposite side (Fig. M3.2¢). The three altitudes of a triangle
intersect in a single point, called the orthocenter of the triangle.

The length of the altitude h,, to the side a is given by the formulas

ha=bsin7=csinﬁ=2,
. 251% . o 8 o~ (M3.1.1.3)
ha:Z(p—a)cosEcoszcosz:Z(p—b)smzsmzcosz.

The lengths of the altitude, the angle bisector, and the median through the same vertex
satisfy the inequality h, <1, <mg. If hy =1, = m,, then the triangle is isosceles; moreover,
the first equality implies the second, and vice versa.

» Circumcircle and incircle. A straight line passing through the midpoint of a segment
and perpendicular to it is called the perpendicular bisector of the segment. The circle
passing through the vertices of a triangle is called the circumcircle of the triangle. The
center O of the circumcircle, called the circumcenter, is the point where the perpendicular
bisectors of the sides of the triangle meet (Fig. M3.3a). The feet of the perpendiculars
drawn from a point @) on the circumcircle to the three sides of the triangle lie on the same
straight line called the Simpson line of () with respect to the triangle (Fig. M3.3b). The
circumcenter, the orthocenter, and the centroid lie on a single line, called the Euler line
(Fig. M3.3c¢).

The circle tangent to the three sides of a triangle and lying inside the triangle is called
the incircle of the triangle. The center O, of the incircle (the incenter) is the point where the
angle bisectors meet (Fig. M3.4a). The straight lines connecting the vertices of a triangle
with the points at which the incircle is tangent to the respective opposite sides intersect in
a single point G called the Gergonne point (Fig. M3.4D).
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}j\

Figure M3.3. The circumcircle of a triangle. The circumcenter (a), the Simpson line (), and the Euler line (c).

(a) (b)
a b a b
0s 0,
C C

Figure M3.4. The incircle of a triangle (a). The incenter and the Gergonne point (b).

(a) %,
o]
*Yo,]

The inradius 7 and the circumradius R satisfy the relations

7«:\/(p_a)(p_b)(p_c)=ptangtanﬁtanl=(p c)tan . (M3.1.1.4)
» R )
a _ b _ ¢ _ p . (M3.1.1.5)

o T 2 T2 - 1 1 1
2sina 2sinf 2sinvy 4cos(7a) cos(jﬁ) cos(fy)
The distance d between the circumcenter and the incenter is given by the expression

d=V R?-2Rr. (M3.1.1.6)

» Area of a triangle. The area S of a triangle is given by the formulas

S = 2ah 2abs1n7—rp, (M3.1.1.7)

S = \/p(p —a)(p-b)(p—c) (Heron’s formula), (M3.1.1.8)

S = j—l;; =2R?sin asin B sin~, (M3.1.1.9)
2s1nas1nﬂ , sinasin 3

5= 2siny 2sin(a+ 3)° (M3.1.1.10)

» Right (right-angled) triangles. A right triangle is a triangle with a right angle. The
side opposite the right angle is called the hypotenuse, and the other two sides are called the
legs (Fig. M3.5).
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Figure M3.5. A right triangle.

The hypotenuse c, the legs a and b, and the angles « and 3 opposite the legs satisfy the
following relations:

a+[3=90°

. _a o b
s1na—cosﬁ—z, smﬁ—cosa—z, (M3.1.1.11)

a b

tana=cot3=—, tanf=cota=—.

b a

One also has

a*+b* =c*> (PYTHAGOREAN THEOREM), (M3.1.1.12)
h? = mn, a* = me, b = ne, (M3.1.1.13)

where h is the length of the altitude drawn to the hypotenuse; moreover, the altitude cuts
the hypotenuse into segments of lengths m and n.

In a right triangle, the length of the median m. drawn from the vertex of the right
angle coincides with the circumradius R and is equal to half the length of the hypotenuse c,

me=R= %c. The inradius is given by the formula r = %(a + b—c). The area of the right
triangle is S = %aha = %ab (see also formulas (M3.1.1.4), (M3.1.1.5), and (M3.1.1.9)).

» Isosceles and equilateral triangles.

1°. An isosceles triangle is a triangle with two equal sides. These sides are called the legs,
and the third side is called the base (Fig. M3.6a).

(a) (b)

a

Figure M3.6. An isosceles triangle (a). An equilateral triangle (b).

Properties of isosceles triangles:

—

In an isosceles triangle, the angles adjacent to the base are equal.

2. In an isosceles triangle, the median drawn to the base is the angle bisector and the
altitude.

3. In an isosceles triangle, the sum of distances from a point of the base to the legs is

constant.
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Criteria for a triangle to be isosceles:

1. If two angles in a triangle are equal, then the triangle is isosceles.
2. If a median in a triangle is also an altitude, then the triangle is isosceles.
3. If a bisector in a triangle is also an altitude, then the triangle is isosceles.

2°. An equilateral (or regular) triangle is a triangle with all three sides equal (Fig. M3.6b).
All angles of an equilateral triangle are equal to 60°. In an equilateral triangle, the circum-
radius R and the inradius r satisfy the relation R = 2r.

For an equilateral triangle with side length a, the circumradius and the inradius are given

by the formulas R = ?a and r = %a, and the area is equal to S = @az.

M3.1.2. Polygons

» Polygons. Basic information. A polygon is a plane figure bounded by a closed broken
line. The straight line segments forming a polygon are called its sides (or edges). The
points at which two sides meet are called the vertices (or corners) of the polygon. Two
sides sharing a vertex, as well as two successive vertices (the endpoints of the same edge),
are said to be adjacent. A polygon is said to be convex if it lies on one side of any straight
line passing through two neighboring vertices. In what follows, we consider only simple
convex polygons.

An (interior) angle of a convex polygon is the angle between two sides meeting in a
vertex. A convex polygon is said to be inscribed in a circle if all of its vertices lie on the
circle. A polygon is said to be circumscribed about a circle if all of its sides are tangent to
the circle.

For a convex polygon with n sides, the sum of interior angles is equal to 180°(n — 2).

One can find the area of an arbitrary polygon by dividing it into triangles.

Properties of quadrilaterals.

The diagonals of a convex quadrilateral meet.

The sum of interior angles of a convex quadrilateral equals 360° (Figs. M3.7a and b).
The lengths of the sides a, b, ¢, and d, the diagonals d; and d,, and the segment
m connecting the midpoints of the diagonals satisfy the relation a” + b*> + ¢ + d* =
d% + d% +4m?.

A convex quadrilateral is circumscribed if and only if a + ¢ = b + d.

A convex quadrilateral is inscribed if and only if a + v = 3 + 4.

The relation ac + bd = d;d; holds for inscribed quadrilaterals (PTOLEMY’S THEOREM).

wro—Y

A

(b)

Figure M3.7. Quadrilaterals.

» Areas of quadrilaterals. The area of a convex quadrilateral is equal to

S = %dldz sin g = \/p(p—a)(p—b)(p—c)(p—d)—abcdcos2 525’ (M3.1.2.1)

where ¢ is the angle between the diagonals d; and d; and p = %(a +b+c+d).
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The area of an inscribed quadrilateral is

S =/pp-a)p-b)p-c)p-d). (M3.1.2.2)

The area of a circumscribed quadrilateral is

S = \/abedsin2 2 ;’ 0 (M3.1.2.3)

1°. A parallelogram is a quadrilateral such that both pairs of opposite sides are parallel
(Fig. M3.8a).

» Basic quadrilaterals.

(a) (b)

Figure M3.8. A parallelogram (@) and a thombus (b).

Attributes of parallelograms (a quadrilateral is a parallelogram if):
Both pairs of opposite sides have equal length.

Both pairs of opposite angles are equal.

Two opposite sides are parallel and have equal length.

W=

Properties of parallelograms:

1. The diagonals meet and bisect each other.

2. Opposite sides have equal length, and opposite angles are equal.

3. The diagonals and the sides satisfy the relation d% + d% = 2(a* + b?).
4. The area of a parallelogram is S = ah, where h is the altitude.

2°. A rhombus is a parallelogram in which all sides are of equal length (Fig. M3.8b).

Properties of rhombi:

1. The diagonals are perpendicular.
2. The diagonals are angle bisectors.
3. The area of a rhombus is S = ah = a®sina = %dldz.

3°. A rectangle is a parallelogram in which all angles are right angles (Fig. M3.9a).

(a) (b)
b b
a d a d

Figure M3.9. A rectangle (a) and a square (b).
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Properties of rectangles:
1. The diagonals have equal lengths.
2. The area of a rectangle is .S = ab.

4°. A square is a rectangle in which all sides have equal lengths (Fig. M3.9b). A square is
also a rhombus with right angles.

Properties of squares:
All angles are right angles.

The diagonals are equal to d = av/2.
The diagonals meet at a right angle and are angle bisectors.

. _2_17n
The area of a square is equal to S = a” = 5d-.

Ll e

5°. A trapezoid is a quadrilateral in which two sides are parallel and the other two sides are
nonparallel (Fig. M3.10). The parallel sides a and b are called the bases of the trapezoid,
and the other two sides are called the legs. In an isosceles trapezoid, the legs are of equal
length. The line segment connecting the midpoints of the legs is called the median of the
trapezoid. The length of the median is equal to half the sum of the lengths of the bases,

m = %(a+b).
c m \d
[\

b

Figure M3.10. A trapezoid.

The perpendicular distance between the bases is called the altitude of a trapezoid.

Properties of trapezoids:

A trapezoid is circumscribed if and only if a + b = c + d.

A trapezoid is inscribed if and only if it is isosceles.

3. The area of a trapezoid is S = %(a +b)h = mh = %dldz sin ¢, where ¢ is the angle
between the diagonals d; and dj.

4. The segment connecting the midpoints of the diagonals is parallel to the bases and has
the length %(b —a).

» Regular polygons. A convex polygon is said to be regular if all of its sides have the
same length and all of its interior angles are equal. A convex n-gon is regular if and only if
it is taken to itself by the rotation by an angle of 27t /n about some point O. The point O is
called the center of the regular polygon. The angle between two rays issuing from the center
and passing through two neighboring vertices is called the central angle (Fig. M3.11).

B

[N

Figure M3.11. A regular polygon.
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Properties of regular polygons:

—

The center is equidistant from all vertices as well as from all sides of a regular polygon.

2. A regular polygon is simultaneously inscribed and circumscribed; the centers of the
circumcircle and the incircle coincide with the center of the polygon itself.

3. In aregular polygon, the central angle is o = 360° /n, the external angle is 3 = 360° /n,
and the interior angle is v = 180° — (3.

4. The circumradius R, the inradius r, and the side length a of a regular polygon satisfy

the relations

a=2V RZ—TZ:ZRsin% :2rtan%. (M3.1.2.4)

5. The area S of a regular n-gon is given by the formula

1
S = — = nr? tan% =nR? sin% = Znaz cot %. M3.1.2.5)

Table M3.3 presents several useful formulas for regular polygons.

TABLE M3.3
Regular polygons (a is the side length).

No. Name Inradius r Circumradius R Area S
a a
1 Regular polygon Jtan = = 2sin = Earn
2 Triangle Qa @ a ﬁ a?
6 3 4
1 1
Square — —a 2
3 q P a \/z a
4 Pentagon S+ 2\/§a 5+V5 u Maz
20 10 4
5 Hexagon ﬁa a ﬁ a2
2 2
6 Octagon 1 +2\/§ a \/2;’ V2 a 2(1 +v2)a?
7| Enncagon S+2V5, 1+v5, V542V5
2 2 2
2+3 3+V3
8 Dodecagon a 32+ V3)a>
B a \/6 ( )a
M3.1.3. Circle

» Some definitions and formulas. A circle is the set of all points in the plane that are
the same fixed distance R from a fixed point O (Fig. M3.12a). The distance R is called the
radius of the circle and the point O is called its center. A plane figure bounded by a circle,
including its interior, is called a disk. A segment connecting two points on a circle is called
a chord. A chord passing through the center of a circle is called a diameter of the circle
(Fig. M3.12b). The length of a diameter is d = 2R. A straight line that touches a circle
at a single point is called a rangent, and the common point is called the point of tangency
(Fig. M3.12¢). A straight line that cuts a circle at two points, an extended chord, is called a
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(@ (®) ©
(D
NS

Figure M3.12. A circle (a), a diameter (b) and a tangent (c) of a circle.

secant. The angle formed by two radii is called a central angle. The angle formed by two
chords with a common endpoint is called an inscribed angle.

Properties of circles and disks:

The circumference is L = 27 R = wd = 2v/7S.

The area of a disk is S = TR* = %ﬂ'dz = %Ld.

The diameter of a circle is a longest chord.

The diameter passing through the midpoint of a chord is perpendicular to the chord.
The radius drawn to the point of tangency is perpendicular to the tangent.

An inscribed angle is half the central angle subtended by the same chord, o = %ZB ocC
(Fig. M3.13a).

AU

(b)

(©) (d)
'd 4 B
""?7 D )
P A
¢ (>
D c

Figure M3.13. Properties of circles and disks.

7. The angle between a chord, AC, and